1 #undef DEBUG 2 3 /* 4 * ARM performance counter support. 5 * 6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 8 * 9 * This code is based on the sparc64 perf event code, which is in turn based 10 * on the x86 code. 11 */ 12 #define pr_fmt(fmt) "hw perfevents: " fmt 13 14 #include <linux/bitmap.h> 15 #include <linux/cpumask.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/export.h> 18 #include <linux/kernel.h> 19 #include <linux/perf/arm_pmu.h> 20 #include <linux/platform_device.h> 21 #include <linux/slab.h> 22 #include <linux/sched/clock.h> 23 #include <linux/spinlock.h> 24 #include <linux/irq.h> 25 #include <linux/irqdesc.h> 26 27 #include <asm/irq_regs.h> 28 29 static int 30 armpmu_map_cache_event(const unsigned (*cache_map) 31 [PERF_COUNT_HW_CACHE_MAX] 32 [PERF_COUNT_HW_CACHE_OP_MAX] 33 [PERF_COUNT_HW_CACHE_RESULT_MAX], 34 u64 config) 35 { 36 unsigned int cache_type, cache_op, cache_result, ret; 37 38 cache_type = (config >> 0) & 0xff; 39 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 40 return -EINVAL; 41 42 cache_op = (config >> 8) & 0xff; 43 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 44 return -EINVAL; 45 46 cache_result = (config >> 16) & 0xff; 47 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 48 return -EINVAL; 49 50 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 51 52 if (ret == CACHE_OP_UNSUPPORTED) 53 return -ENOENT; 54 55 return ret; 56 } 57 58 static int 59 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 60 { 61 int mapping; 62 63 if (config >= PERF_COUNT_HW_MAX) 64 return -EINVAL; 65 66 mapping = (*event_map)[config]; 67 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 68 } 69 70 static int 71 armpmu_map_raw_event(u32 raw_event_mask, u64 config) 72 { 73 return (int)(config & raw_event_mask); 74 } 75 76 int 77 armpmu_map_event(struct perf_event *event, 78 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 79 const unsigned (*cache_map) 80 [PERF_COUNT_HW_CACHE_MAX] 81 [PERF_COUNT_HW_CACHE_OP_MAX] 82 [PERF_COUNT_HW_CACHE_RESULT_MAX], 83 u32 raw_event_mask) 84 { 85 u64 config = event->attr.config; 86 int type = event->attr.type; 87 88 if (type == event->pmu->type) 89 return armpmu_map_raw_event(raw_event_mask, config); 90 91 switch (type) { 92 case PERF_TYPE_HARDWARE: 93 return armpmu_map_hw_event(event_map, config); 94 case PERF_TYPE_HW_CACHE: 95 return armpmu_map_cache_event(cache_map, config); 96 case PERF_TYPE_RAW: 97 return armpmu_map_raw_event(raw_event_mask, config); 98 } 99 100 return -ENOENT; 101 } 102 103 int armpmu_event_set_period(struct perf_event *event) 104 { 105 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 106 struct hw_perf_event *hwc = &event->hw; 107 s64 left = local64_read(&hwc->period_left); 108 s64 period = hwc->sample_period; 109 int ret = 0; 110 111 if (unlikely(left <= -period)) { 112 left = period; 113 local64_set(&hwc->period_left, left); 114 hwc->last_period = period; 115 ret = 1; 116 } 117 118 if (unlikely(left <= 0)) { 119 left += period; 120 local64_set(&hwc->period_left, left); 121 hwc->last_period = period; 122 ret = 1; 123 } 124 125 /* 126 * Limit the maximum period to prevent the counter value 127 * from overtaking the one we are about to program. In 128 * effect we are reducing max_period to account for 129 * interrupt latency (and we are being very conservative). 130 */ 131 if (left > (armpmu->max_period >> 1)) 132 left = armpmu->max_period >> 1; 133 134 local64_set(&hwc->prev_count, (u64)-left); 135 136 armpmu->write_counter(event, (u64)(-left) & 0xffffffff); 137 138 perf_event_update_userpage(event); 139 140 return ret; 141 } 142 143 u64 armpmu_event_update(struct perf_event *event) 144 { 145 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 146 struct hw_perf_event *hwc = &event->hw; 147 u64 delta, prev_raw_count, new_raw_count; 148 149 again: 150 prev_raw_count = local64_read(&hwc->prev_count); 151 new_raw_count = armpmu->read_counter(event); 152 153 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 154 new_raw_count) != prev_raw_count) 155 goto again; 156 157 delta = (new_raw_count - prev_raw_count) & armpmu->max_period; 158 159 local64_add(delta, &event->count); 160 local64_sub(delta, &hwc->period_left); 161 162 return new_raw_count; 163 } 164 165 static void 166 armpmu_read(struct perf_event *event) 167 { 168 armpmu_event_update(event); 169 } 170 171 static void 172 armpmu_stop(struct perf_event *event, int flags) 173 { 174 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 175 struct hw_perf_event *hwc = &event->hw; 176 177 /* 178 * ARM pmu always has to update the counter, so ignore 179 * PERF_EF_UPDATE, see comments in armpmu_start(). 180 */ 181 if (!(hwc->state & PERF_HES_STOPPED)) { 182 armpmu->disable(event); 183 armpmu_event_update(event); 184 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 185 } 186 } 187 188 static void armpmu_start(struct perf_event *event, int flags) 189 { 190 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 191 struct hw_perf_event *hwc = &event->hw; 192 193 /* 194 * ARM pmu always has to reprogram the period, so ignore 195 * PERF_EF_RELOAD, see the comment below. 196 */ 197 if (flags & PERF_EF_RELOAD) 198 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 199 200 hwc->state = 0; 201 /* 202 * Set the period again. Some counters can't be stopped, so when we 203 * were stopped we simply disabled the IRQ source and the counter 204 * may have been left counting. If we don't do this step then we may 205 * get an interrupt too soon or *way* too late if the overflow has 206 * happened since disabling. 207 */ 208 armpmu_event_set_period(event); 209 armpmu->enable(event); 210 } 211 212 static void 213 armpmu_del(struct perf_event *event, int flags) 214 { 215 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 216 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 217 struct hw_perf_event *hwc = &event->hw; 218 int idx = hwc->idx; 219 220 armpmu_stop(event, PERF_EF_UPDATE); 221 hw_events->events[idx] = NULL; 222 clear_bit(idx, hw_events->used_mask); 223 if (armpmu->clear_event_idx) 224 armpmu->clear_event_idx(hw_events, event); 225 226 perf_event_update_userpage(event); 227 } 228 229 static int 230 armpmu_add(struct perf_event *event, int flags) 231 { 232 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 233 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 234 struct hw_perf_event *hwc = &event->hw; 235 int idx; 236 237 /* An event following a process won't be stopped earlier */ 238 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 239 return -ENOENT; 240 241 /* If we don't have a space for the counter then finish early. */ 242 idx = armpmu->get_event_idx(hw_events, event); 243 if (idx < 0) 244 return idx; 245 246 /* 247 * If there is an event in the counter we are going to use then make 248 * sure it is disabled. 249 */ 250 event->hw.idx = idx; 251 armpmu->disable(event); 252 hw_events->events[idx] = event; 253 254 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 255 if (flags & PERF_EF_START) 256 armpmu_start(event, PERF_EF_RELOAD); 257 258 /* Propagate our changes to the userspace mapping. */ 259 perf_event_update_userpage(event); 260 261 return 0; 262 } 263 264 static int 265 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 266 struct perf_event *event) 267 { 268 struct arm_pmu *armpmu; 269 270 if (is_software_event(event)) 271 return 1; 272 273 /* 274 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 275 * core perf code won't check that the pmu->ctx == leader->ctx 276 * until after pmu->event_init(event). 277 */ 278 if (event->pmu != pmu) 279 return 0; 280 281 if (event->state < PERF_EVENT_STATE_OFF) 282 return 1; 283 284 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 285 return 1; 286 287 armpmu = to_arm_pmu(event->pmu); 288 return armpmu->get_event_idx(hw_events, event) >= 0; 289 } 290 291 static int 292 validate_group(struct perf_event *event) 293 { 294 struct perf_event *sibling, *leader = event->group_leader; 295 struct pmu_hw_events fake_pmu; 296 297 /* 298 * Initialise the fake PMU. We only need to populate the 299 * used_mask for the purposes of validation. 300 */ 301 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 302 303 if (!validate_event(event->pmu, &fake_pmu, leader)) 304 return -EINVAL; 305 306 list_for_each_entry(sibling, &leader->sibling_list, group_entry) { 307 if (!validate_event(event->pmu, &fake_pmu, sibling)) 308 return -EINVAL; 309 } 310 311 if (!validate_event(event->pmu, &fake_pmu, event)) 312 return -EINVAL; 313 314 return 0; 315 } 316 317 static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu) 318 { 319 struct platform_device *pdev = armpmu->plat_device; 320 321 return pdev ? dev_get_platdata(&pdev->dev) : NULL; 322 } 323 324 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 325 { 326 struct arm_pmu *armpmu; 327 struct arm_pmu_platdata *plat; 328 int ret; 329 u64 start_clock, finish_clock; 330 331 /* 332 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 333 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 334 * do any necessary shifting, we just need to perform the first 335 * dereference. 336 */ 337 armpmu = *(void **)dev; 338 339 plat = armpmu_get_platdata(armpmu); 340 341 start_clock = sched_clock(); 342 if (plat && plat->handle_irq) 343 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq); 344 else 345 ret = armpmu->handle_irq(irq, armpmu); 346 finish_clock = sched_clock(); 347 348 perf_sample_event_took(finish_clock - start_clock); 349 return ret; 350 } 351 352 static int 353 event_requires_mode_exclusion(struct perf_event_attr *attr) 354 { 355 return attr->exclude_idle || attr->exclude_user || 356 attr->exclude_kernel || attr->exclude_hv; 357 } 358 359 static int 360 __hw_perf_event_init(struct perf_event *event) 361 { 362 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 363 struct hw_perf_event *hwc = &event->hw; 364 int mapping; 365 366 mapping = armpmu->map_event(event); 367 368 if (mapping < 0) { 369 pr_debug("event %x:%llx not supported\n", event->attr.type, 370 event->attr.config); 371 return mapping; 372 } 373 374 /* 375 * We don't assign an index until we actually place the event onto 376 * hardware. Use -1 to signify that we haven't decided where to put it 377 * yet. For SMP systems, each core has it's own PMU so we can't do any 378 * clever allocation or constraints checking at this point. 379 */ 380 hwc->idx = -1; 381 hwc->config_base = 0; 382 hwc->config = 0; 383 hwc->event_base = 0; 384 385 /* 386 * Check whether we need to exclude the counter from certain modes. 387 */ 388 if ((!armpmu->set_event_filter || 389 armpmu->set_event_filter(hwc, &event->attr)) && 390 event_requires_mode_exclusion(&event->attr)) { 391 pr_debug("ARM performance counters do not support " 392 "mode exclusion\n"); 393 return -EOPNOTSUPP; 394 } 395 396 /* 397 * Store the event encoding into the config_base field. 398 */ 399 hwc->config_base |= (unsigned long)mapping; 400 401 if (!is_sampling_event(event)) { 402 /* 403 * For non-sampling runs, limit the sample_period to half 404 * of the counter width. That way, the new counter value 405 * is far less likely to overtake the previous one unless 406 * you have some serious IRQ latency issues. 407 */ 408 hwc->sample_period = armpmu->max_period >> 1; 409 hwc->last_period = hwc->sample_period; 410 local64_set(&hwc->period_left, hwc->sample_period); 411 } 412 413 if (event->group_leader != event) { 414 if (validate_group(event) != 0) 415 return -EINVAL; 416 } 417 418 return 0; 419 } 420 421 static int armpmu_event_init(struct perf_event *event) 422 { 423 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 424 425 /* 426 * Reject CPU-affine events for CPUs that are of a different class to 427 * that which this PMU handles. Process-following events (where 428 * event->cpu == -1) can be migrated between CPUs, and thus we have to 429 * reject them later (in armpmu_add) if they're scheduled on a 430 * different class of CPU. 431 */ 432 if (event->cpu != -1 && 433 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 434 return -ENOENT; 435 436 /* does not support taken branch sampling */ 437 if (has_branch_stack(event)) 438 return -EOPNOTSUPP; 439 440 if (armpmu->map_event(event) == -ENOENT) 441 return -ENOENT; 442 443 return __hw_perf_event_init(event); 444 } 445 446 static void armpmu_enable(struct pmu *pmu) 447 { 448 struct arm_pmu *armpmu = to_arm_pmu(pmu); 449 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 450 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 451 452 /* For task-bound events we may be called on other CPUs */ 453 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 454 return; 455 456 if (enabled) 457 armpmu->start(armpmu); 458 } 459 460 static void armpmu_disable(struct pmu *pmu) 461 { 462 struct arm_pmu *armpmu = to_arm_pmu(pmu); 463 464 /* For task-bound events we may be called on other CPUs */ 465 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 466 return; 467 468 armpmu->stop(armpmu); 469 } 470 471 /* 472 * In heterogeneous systems, events are specific to a particular 473 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 474 * the same microarchitecture. 475 */ 476 static int armpmu_filter_match(struct perf_event *event) 477 { 478 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 479 unsigned int cpu = smp_processor_id(); 480 return cpumask_test_cpu(cpu, &armpmu->supported_cpus); 481 } 482 483 static ssize_t armpmu_cpumask_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); 487 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); 488 } 489 490 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL); 491 492 static struct attribute *armpmu_common_attrs[] = { 493 &dev_attr_cpus.attr, 494 NULL, 495 }; 496 497 static struct attribute_group armpmu_common_attr_group = { 498 .attrs = armpmu_common_attrs, 499 }; 500 501 /* Set at runtime when we know what CPU type we are. */ 502 static struct arm_pmu *__oprofile_cpu_pmu; 503 504 /* 505 * Despite the names, these two functions are CPU-specific and are used 506 * by the OProfile/perf code. 507 */ 508 const char *perf_pmu_name(void) 509 { 510 if (!__oprofile_cpu_pmu) 511 return NULL; 512 513 return __oprofile_cpu_pmu->name; 514 } 515 EXPORT_SYMBOL_GPL(perf_pmu_name); 516 517 int perf_num_counters(void) 518 { 519 int max_events = 0; 520 521 if (__oprofile_cpu_pmu != NULL) 522 max_events = __oprofile_cpu_pmu->num_events; 523 524 return max_events; 525 } 526 EXPORT_SYMBOL_GPL(perf_num_counters); 527 528 void armpmu_free_irq(struct arm_pmu *armpmu, int cpu) 529 { 530 struct pmu_hw_events __percpu *hw_events = armpmu->hw_events; 531 int irq = per_cpu(hw_events->irq, cpu); 532 533 if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs)) 534 return; 535 536 if (irq_is_percpu(irq)) { 537 free_percpu_irq(irq, &hw_events->percpu_pmu); 538 cpumask_clear(&armpmu->active_irqs); 539 return; 540 } 541 542 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu)); 543 } 544 545 void armpmu_free_irqs(struct arm_pmu *armpmu) 546 { 547 int cpu; 548 549 for_each_cpu(cpu, &armpmu->supported_cpus) 550 armpmu_free_irq(armpmu, cpu); 551 } 552 553 int armpmu_request_irq(struct arm_pmu *armpmu, int cpu) 554 { 555 int err = 0; 556 struct pmu_hw_events __percpu *hw_events = armpmu->hw_events; 557 const irq_handler_t handler = armpmu_dispatch_irq; 558 int irq = per_cpu(hw_events->irq, cpu); 559 if (!irq) 560 return 0; 561 562 if (irq_is_percpu(irq) && cpumask_empty(&armpmu->active_irqs)) { 563 err = request_percpu_irq(irq, handler, "arm-pmu", 564 &hw_events->percpu_pmu); 565 } else if (irq_is_percpu(irq)) { 566 int other_cpu = cpumask_first(&armpmu->active_irqs); 567 int other_irq = per_cpu(hw_events->irq, other_cpu); 568 569 if (irq != other_irq) { 570 pr_warn("mismatched PPIs detected.\n"); 571 err = -EINVAL; 572 } 573 } else { 574 err = request_irq(irq, handler, 575 IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu", 576 per_cpu_ptr(&hw_events->percpu_pmu, cpu)); 577 } 578 579 if (err) { 580 pr_err("unable to request IRQ%d for ARM PMU counters\n", 581 irq); 582 return err; 583 } 584 585 cpumask_set_cpu(cpu, &armpmu->active_irqs); 586 587 return 0; 588 } 589 590 int armpmu_request_irqs(struct arm_pmu *armpmu) 591 { 592 int cpu, err; 593 594 for_each_cpu(cpu, &armpmu->supported_cpus) { 595 err = armpmu_request_irq(armpmu, cpu); 596 if (err) 597 break; 598 } 599 600 return err; 601 } 602 603 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) 604 { 605 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 606 return per_cpu(hw_events->irq, cpu); 607 } 608 609 /* 610 * PMU hardware loses all context when a CPU goes offline. 611 * When a CPU is hotplugged back in, since some hardware registers are 612 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 613 * junk values out of them. 614 */ 615 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) 616 { 617 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 618 int irq; 619 620 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 621 return 0; 622 if (pmu->reset) 623 pmu->reset(pmu); 624 625 irq = armpmu_get_cpu_irq(pmu, cpu); 626 if (irq) { 627 if (irq_is_percpu(irq)) { 628 enable_percpu_irq(irq, IRQ_TYPE_NONE); 629 return 0; 630 } 631 632 if (irq_force_affinity(irq, cpumask_of(cpu)) && 633 num_possible_cpus() > 1) { 634 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 635 irq, cpu); 636 } 637 } 638 639 return 0; 640 } 641 642 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) 643 { 644 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 645 int irq; 646 647 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 648 return 0; 649 650 irq = armpmu_get_cpu_irq(pmu, cpu); 651 if (irq && irq_is_percpu(irq)) 652 disable_percpu_irq(irq); 653 654 return 0; 655 } 656 657 #ifdef CONFIG_CPU_PM 658 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) 659 { 660 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 661 struct perf_event *event; 662 int idx; 663 664 for (idx = 0; idx < armpmu->num_events; idx++) { 665 /* 666 * If the counter is not used skip it, there is no 667 * need of stopping/restarting it. 668 */ 669 if (!test_bit(idx, hw_events->used_mask)) 670 continue; 671 672 event = hw_events->events[idx]; 673 674 switch (cmd) { 675 case CPU_PM_ENTER: 676 /* 677 * Stop and update the counter 678 */ 679 armpmu_stop(event, PERF_EF_UPDATE); 680 break; 681 case CPU_PM_EXIT: 682 case CPU_PM_ENTER_FAILED: 683 /* 684 * Restore and enable the counter. 685 * armpmu_start() indirectly calls 686 * 687 * perf_event_update_userpage() 688 * 689 * that requires RCU read locking to be functional, 690 * wrap the call within RCU_NONIDLE to make the 691 * RCU subsystem aware this cpu is not idle from 692 * an RCU perspective for the armpmu_start() call 693 * duration. 694 */ 695 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); 696 break; 697 default: 698 break; 699 } 700 } 701 } 702 703 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 704 void *v) 705 { 706 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); 707 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 708 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 709 710 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 711 return NOTIFY_DONE; 712 713 /* 714 * Always reset the PMU registers on power-up even if 715 * there are no events running. 716 */ 717 if (cmd == CPU_PM_EXIT && armpmu->reset) 718 armpmu->reset(armpmu); 719 720 if (!enabled) 721 return NOTIFY_OK; 722 723 switch (cmd) { 724 case CPU_PM_ENTER: 725 armpmu->stop(armpmu); 726 cpu_pm_pmu_setup(armpmu, cmd); 727 break; 728 case CPU_PM_EXIT: 729 cpu_pm_pmu_setup(armpmu, cmd); 730 case CPU_PM_ENTER_FAILED: 731 armpmu->start(armpmu); 732 break; 733 default: 734 return NOTIFY_DONE; 735 } 736 737 return NOTIFY_OK; 738 } 739 740 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) 741 { 742 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; 743 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); 744 } 745 746 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) 747 { 748 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); 749 } 750 #else 751 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } 752 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } 753 #endif 754 755 static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 756 { 757 int err; 758 759 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, 760 &cpu_pmu->node); 761 if (err) 762 goto out; 763 764 err = cpu_pm_pmu_register(cpu_pmu); 765 if (err) 766 goto out_unregister; 767 768 return 0; 769 770 out_unregister: 771 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 772 &cpu_pmu->node); 773 out: 774 return err; 775 } 776 777 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 778 { 779 cpu_pm_pmu_unregister(cpu_pmu); 780 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 781 &cpu_pmu->node); 782 } 783 784 struct arm_pmu *armpmu_alloc(void) 785 { 786 struct arm_pmu *pmu; 787 int cpu; 788 789 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL); 790 if (!pmu) { 791 pr_info("failed to allocate PMU device!\n"); 792 goto out; 793 } 794 795 pmu->hw_events = alloc_percpu(struct pmu_hw_events); 796 if (!pmu->hw_events) { 797 pr_info("failed to allocate per-cpu PMU data.\n"); 798 goto out_free_pmu; 799 } 800 801 pmu->pmu = (struct pmu) { 802 .pmu_enable = armpmu_enable, 803 .pmu_disable = armpmu_disable, 804 .event_init = armpmu_event_init, 805 .add = armpmu_add, 806 .del = armpmu_del, 807 .start = armpmu_start, 808 .stop = armpmu_stop, 809 .read = armpmu_read, 810 .filter_match = armpmu_filter_match, 811 .attr_groups = pmu->attr_groups, 812 /* 813 * This is a CPU PMU potentially in a heterogeneous 814 * configuration (e.g. big.LITTLE). This is not an uncore PMU, 815 * and we have taken ctx sharing into account (e.g. with our 816 * pmu::filter_match callback and pmu::event_init group 817 * validation). 818 */ 819 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS, 820 }; 821 822 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = 823 &armpmu_common_attr_group; 824 825 for_each_possible_cpu(cpu) { 826 struct pmu_hw_events *events; 827 828 events = per_cpu_ptr(pmu->hw_events, cpu); 829 raw_spin_lock_init(&events->pmu_lock); 830 events->percpu_pmu = pmu; 831 } 832 833 return pmu; 834 835 out_free_pmu: 836 kfree(pmu); 837 out: 838 return NULL; 839 } 840 841 void armpmu_free(struct arm_pmu *pmu) 842 { 843 free_percpu(pmu->hw_events); 844 kfree(pmu); 845 } 846 847 int armpmu_register(struct arm_pmu *pmu) 848 { 849 int ret; 850 851 ret = cpu_pmu_init(pmu); 852 if (ret) 853 return ret; 854 855 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); 856 if (ret) 857 goto out_destroy; 858 859 if (!__oprofile_cpu_pmu) 860 __oprofile_cpu_pmu = pmu; 861 862 pr_info("enabled with %s PMU driver, %d counters available\n", 863 pmu->name, pmu->num_events); 864 865 return 0; 866 867 out_destroy: 868 cpu_pmu_destroy(pmu); 869 return ret; 870 } 871 872 static int arm_pmu_hp_init(void) 873 { 874 int ret; 875 876 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, 877 "perf/arm/pmu:starting", 878 arm_perf_starting_cpu, 879 arm_perf_teardown_cpu); 880 if (ret) 881 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", 882 ret); 883 return ret; 884 } 885 subsys_initcall(arm_pmu_hp_init); 886