xref: /openbmc/linux/drivers/perf/arm_pmu.c (revision 41e4b7dc)
1 #undef DEBUG
2 
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13 
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int
30 armpmu_map_cache_event(const unsigned (*cache_map)
31 				      [PERF_COUNT_HW_CACHE_MAX]
32 				      [PERF_COUNT_HW_CACHE_OP_MAX]
33 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
34 		       u64 config)
35 {
36 	unsigned int cache_type, cache_op, cache_result, ret;
37 
38 	cache_type = (config >>  0) & 0xff;
39 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40 		return -EINVAL;
41 
42 	cache_op = (config >>  8) & 0xff;
43 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44 		return -EINVAL;
45 
46 	cache_result = (config >> 16) & 0xff;
47 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48 		return -EINVAL;
49 
50 	if (!cache_map)
51 		return -ENOENT;
52 
53 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
54 
55 	if (ret == CACHE_OP_UNSUPPORTED)
56 		return -ENOENT;
57 
58 	return ret;
59 }
60 
61 static int
62 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
63 {
64 	int mapping;
65 
66 	if (config >= PERF_COUNT_HW_MAX)
67 		return -EINVAL;
68 
69 	if (!event_map)
70 		return -ENOENT;
71 
72 	mapping = (*event_map)[config];
73 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
74 }
75 
76 static int
77 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
78 {
79 	return (int)(config & raw_event_mask);
80 }
81 
82 int
83 armpmu_map_event(struct perf_event *event,
84 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
85 		 const unsigned (*cache_map)
86 				[PERF_COUNT_HW_CACHE_MAX]
87 				[PERF_COUNT_HW_CACHE_OP_MAX]
88 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
89 		 u32 raw_event_mask)
90 {
91 	u64 config = event->attr.config;
92 	int type = event->attr.type;
93 
94 	if (type == event->pmu->type)
95 		return armpmu_map_raw_event(raw_event_mask, config);
96 
97 	switch (type) {
98 	case PERF_TYPE_HARDWARE:
99 		return armpmu_map_hw_event(event_map, config);
100 	case PERF_TYPE_HW_CACHE:
101 		return armpmu_map_cache_event(cache_map, config);
102 	case PERF_TYPE_RAW:
103 		return armpmu_map_raw_event(raw_event_mask, config);
104 	}
105 
106 	return -ENOENT;
107 }
108 
109 int armpmu_event_set_period(struct perf_event *event)
110 {
111 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
112 	struct hw_perf_event *hwc = &event->hw;
113 	s64 left = local64_read(&hwc->period_left);
114 	s64 period = hwc->sample_period;
115 	int ret = 0;
116 
117 	if (unlikely(left <= -period)) {
118 		left = period;
119 		local64_set(&hwc->period_left, left);
120 		hwc->last_period = period;
121 		ret = 1;
122 	}
123 
124 	if (unlikely(left <= 0)) {
125 		left += period;
126 		local64_set(&hwc->period_left, left);
127 		hwc->last_period = period;
128 		ret = 1;
129 	}
130 
131 	/*
132 	 * Limit the maximum period to prevent the counter value
133 	 * from overtaking the one we are about to program. In
134 	 * effect we are reducing max_period to account for
135 	 * interrupt latency (and we are being very conservative).
136 	 */
137 	if (left > (armpmu->max_period >> 1))
138 		left = armpmu->max_period >> 1;
139 
140 	local64_set(&hwc->prev_count, (u64)-left);
141 
142 	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
143 
144 	perf_event_update_userpage(event);
145 
146 	return ret;
147 }
148 
149 u64 armpmu_event_update(struct perf_event *event)
150 {
151 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
152 	struct hw_perf_event *hwc = &event->hw;
153 	u64 delta, prev_raw_count, new_raw_count;
154 
155 again:
156 	prev_raw_count = local64_read(&hwc->prev_count);
157 	new_raw_count = armpmu->read_counter(event);
158 
159 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
160 			     new_raw_count) != prev_raw_count)
161 		goto again;
162 
163 	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
164 
165 	local64_add(delta, &event->count);
166 	local64_sub(delta, &hwc->period_left);
167 
168 	return new_raw_count;
169 }
170 
171 static void
172 armpmu_read(struct perf_event *event)
173 {
174 	armpmu_event_update(event);
175 }
176 
177 static void
178 armpmu_stop(struct perf_event *event, int flags)
179 {
180 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
181 	struct hw_perf_event *hwc = &event->hw;
182 
183 	/*
184 	 * ARM pmu always has to update the counter, so ignore
185 	 * PERF_EF_UPDATE, see comments in armpmu_start().
186 	 */
187 	if (!(hwc->state & PERF_HES_STOPPED)) {
188 		armpmu->disable(event);
189 		armpmu_event_update(event);
190 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
191 	}
192 }
193 
194 static void armpmu_start(struct perf_event *event, int flags)
195 {
196 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
197 	struct hw_perf_event *hwc = &event->hw;
198 
199 	/*
200 	 * ARM pmu always has to reprogram the period, so ignore
201 	 * PERF_EF_RELOAD, see the comment below.
202 	 */
203 	if (flags & PERF_EF_RELOAD)
204 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
205 
206 	hwc->state = 0;
207 	/*
208 	 * Set the period again. Some counters can't be stopped, so when we
209 	 * were stopped we simply disabled the IRQ source and the counter
210 	 * may have been left counting. If we don't do this step then we may
211 	 * get an interrupt too soon or *way* too late if the overflow has
212 	 * happened since disabling.
213 	 */
214 	armpmu_event_set_period(event);
215 	armpmu->enable(event);
216 }
217 
218 static void
219 armpmu_del(struct perf_event *event, int flags)
220 {
221 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
222 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
223 	struct hw_perf_event *hwc = &event->hw;
224 	int idx = hwc->idx;
225 
226 	armpmu_stop(event, PERF_EF_UPDATE);
227 	hw_events->events[idx] = NULL;
228 	clear_bit(idx, hw_events->used_mask);
229 	if (armpmu->clear_event_idx)
230 		armpmu->clear_event_idx(hw_events, event);
231 
232 	perf_event_update_userpage(event);
233 }
234 
235 static int
236 armpmu_add(struct perf_event *event, int flags)
237 {
238 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
239 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
240 	struct hw_perf_event *hwc = &event->hw;
241 	int idx;
242 
243 	/* An event following a process won't be stopped earlier */
244 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
245 		return -ENOENT;
246 
247 	/* If we don't have a space for the counter then finish early. */
248 	idx = armpmu->get_event_idx(hw_events, event);
249 	if (idx < 0)
250 		return idx;
251 
252 	/*
253 	 * If there is an event in the counter we are going to use then make
254 	 * sure it is disabled.
255 	 */
256 	event->hw.idx = idx;
257 	armpmu->disable(event);
258 	hw_events->events[idx] = event;
259 
260 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
261 	if (flags & PERF_EF_START)
262 		armpmu_start(event, PERF_EF_RELOAD);
263 
264 	/* Propagate our changes to the userspace mapping. */
265 	perf_event_update_userpage(event);
266 
267 	return 0;
268 }
269 
270 static int
271 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
272 			       struct perf_event *event)
273 {
274 	struct arm_pmu *armpmu;
275 
276 	if (is_software_event(event))
277 		return 1;
278 
279 	/*
280 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
281 	 * core perf code won't check that the pmu->ctx == leader->ctx
282 	 * until after pmu->event_init(event).
283 	 */
284 	if (event->pmu != pmu)
285 		return 0;
286 
287 	if (event->state < PERF_EVENT_STATE_OFF)
288 		return 1;
289 
290 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
291 		return 1;
292 
293 	armpmu = to_arm_pmu(event->pmu);
294 	return armpmu->get_event_idx(hw_events, event) >= 0;
295 }
296 
297 static int
298 validate_group(struct perf_event *event)
299 {
300 	struct perf_event *sibling, *leader = event->group_leader;
301 	struct pmu_hw_events fake_pmu;
302 
303 	/*
304 	 * Initialise the fake PMU. We only need to populate the
305 	 * used_mask for the purposes of validation.
306 	 */
307 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
308 
309 	if (!validate_event(event->pmu, &fake_pmu, leader))
310 		return -EINVAL;
311 
312 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
313 		if (!validate_event(event->pmu, &fake_pmu, sibling))
314 			return -EINVAL;
315 	}
316 
317 	if (!validate_event(event->pmu, &fake_pmu, event))
318 		return -EINVAL;
319 
320 	return 0;
321 }
322 
323 static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu)
324 {
325 	struct platform_device *pdev = armpmu->plat_device;
326 
327 	return pdev ? dev_get_platdata(&pdev->dev) : NULL;
328 }
329 
330 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
331 {
332 	struct arm_pmu *armpmu;
333 	struct arm_pmu_platdata *plat;
334 	int ret;
335 	u64 start_clock, finish_clock;
336 
337 	/*
338 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
339 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
340 	 * do any necessary shifting, we just need to perform the first
341 	 * dereference.
342 	 */
343 	armpmu = *(void **)dev;
344 
345 	plat = armpmu_get_platdata(armpmu);
346 
347 	start_clock = sched_clock();
348 	if (plat && plat->handle_irq)
349 		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
350 	else
351 		ret = armpmu->handle_irq(irq, armpmu);
352 	finish_clock = sched_clock();
353 
354 	perf_sample_event_took(finish_clock - start_clock);
355 	return ret;
356 }
357 
358 static int
359 event_requires_mode_exclusion(struct perf_event_attr *attr)
360 {
361 	return attr->exclude_idle || attr->exclude_user ||
362 	       attr->exclude_kernel || attr->exclude_hv;
363 }
364 
365 static int
366 __hw_perf_event_init(struct perf_event *event)
367 {
368 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
369 	struct hw_perf_event *hwc = &event->hw;
370 	int mapping;
371 
372 	mapping = armpmu->map_event(event);
373 
374 	if (mapping < 0) {
375 		pr_debug("event %x:%llx not supported\n", event->attr.type,
376 			 event->attr.config);
377 		return mapping;
378 	}
379 
380 	/*
381 	 * We don't assign an index until we actually place the event onto
382 	 * hardware. Use -1 to signify that we haven't decided where to put it
383 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
384 	 * clever allocation or constraints checking at this point.
385 	 */
386 	hwc->idx		= -1;
387 	hwc->config_base	= 0;
388 	hwc->config		= 0;
389 	hwc->event_base		= 0;
390 
391 	/*
392 	 * Check whether we need to exclude the counter from certain modes.
393 	 */
394 	if ((!armpmu->set_event_filter ||
395 	     armpmu->set_event_filter(hwc, &event->attr)) &&
396 	     event_requires_mode_exclusion(&event->attr)) {
397 		pr_debug("ARM performance counters do not support "
398 			 "mode exclusion\n");
399 		return -EOPNOTSUPP;
400 	}
401 
402 	/*
403 	 * Store the event encoding into the config_base field.
404 	 */
405 	hwc->config_base	    |= (unsigned long)mapping;
406 
407 	if (!is_sampling_event(event)) {
408 		/*
409 		 * For non-sampling runs, limit the sample_period to half
410 		 * of the counter width. That way, the new counter value
411 		 * is far less likely to overtake the previous one unless
412 		 * you have some serious IRQ latency issues.
413 		 */
414 		hwc->sample_period  = armpmu->max_period >> 1;
415 		hwc->last_period    = hwc->sample_period;
416 		local64_set(&hwc->period_left, hwc->sample_period);
417 	}
418 
419 	if (event->group_leader != event) {
420 		if (validate_group(event) != 0)
421 			return -EINVAL;
422 	}
423 
424 	return 0;
425 }
426 
427 static int armpmu_event_init(struct perf_event *event)
428 {
429 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
430 
431 	/*
432 	 * Reject CPU-affine events for CPUs that are of a different class to
433 	 * that which this PMU handles. Process-following events (where
434 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
435 	 * reject them later (in armpmu_add) if they're scheduled on a
436 	 * different class of CPU.
437 	 */
438 	if (event->cpu != -1 &&
439 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
440 		return -ENOENT;
441 
442 	/* does not support taken branch sampling */
443 	if (has_branch_stack(event))
444 		return -EOPNOTSUPP;
445 
446 	if (armpmu->map_event(event) == -ENOENT)
447 		return -ENOENT;
448 
449 	return __hw_perf_event_init(event);
450 }
451 
452 static void armpmu_enable(struct pmu *pmu)
453 {
454 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
455 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
456 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
457 
458 	/* For task-bound events we may be called on other CPUs */
459 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
460 		return;
461 
462 	if (enabled)
463 		armpmu->start(armpmu);
464 }
465 
466 static void armpmu_disable(struct pmu *pmu)
467 {
468 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
469 
470 	/* For task-bound events we may be called on other CPUs */
471 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
472 		return;
473 
474 	armpmu->stop(armpmu);
475 }
476 
477 /*
478  * In heterogeneous systems, events are specific to a particular
479  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
480  * the same microarchitecture.
481  */
482 static int armpmu_filter_match(struct perf_event *event)
483 {
484 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
485 	unsigned int cpu = smp_processor_id();
486 	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
487 }
488 
489 static ssize_t armpmu_cpumask_show(struct device *dev,
490 				   struct device_attribute *attr, char *buf)
491 {
492 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
493 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
494 }
495 
496 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
497 
498 static struct attribute *armpmu_common_attrs[] = {
499 	&dev_attr_cpus.attr,
500 	NULL,
501 };
502 
503 static struct attribute_group armpmu_common_attr_group = {
504 	.attrs = armpmu_common_attrs,
505 };
506 
507 /* Set at runtime when we know what CPU type we are. */
508 static struct arm_pmu *__oprofile_cpu_pmu;
509 
510 /*
511  * Despite the names, these two functions are CPU-specific and are used
512  * by the OProfile/perf code.
513  */
514 const char *perf_pmu_name(void)
515 {
516 	if (!__oprofile_cpu_pmu)
517 		return NULL;
518 
519 	return __oprofile_cpu_pmu->name;
520 }
521 EXPORT_SYMBOL_GPL(perf_pmu_name);
522 
523 int perf_num_counters(void)
524 {
525 	int max_events = 0;
526 
527 	if (__oprofile_cpu_pmu != NULL)
528 		max_events = __oprofile_cpu_pmu->num_events;
529 
530 	return max_events;
531 }
532 EXPORT_SYMBOL_GPL(perf_num_counters);
533 
534 void armpmu_free_irq(struct arm_pmu *armpmu, int cpu)
535 {
536 	struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
537 	int irq = per_cpu(hw_events->irq, cpu);
538 
539 	if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
540 		return;
541 
542 	if (irq_is_percpu(irq)) {
543 		free_percpu_irq(irq, &hw_events->percpu_pmu);
544 		cpumask_clear(&armpmu->active_irqs);
545 		return;
546 	}
547 
548 	free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
549 }
550 
551 void armpmu_free_irqs(struct arm_pmu *armpmu)
552 {
553 	int cpu;
554 
555 	for_each_cpu(cpu, &armpmu->supported_cpus)
556 		armpmu_free_irq(armpmu, cpu);
557 }
558 
559 int armpmu_request_irq(struct arm_pmu *armpmu, int cpu)
560 {
561 	int err = 0;
562 	struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
563 	const irq_handler_t handler = armpmu_dispatch_irq;
564 	int irq = per_cpu(hw_events->irq, cpu);
565 	if (!irq)
566 		return 0;
567 
568 	if (irq_is_percpu(irq) && cpumask_empty(&armpmu->active_irqs)) {
569 		err = request_percpu_irq(irq, handler, "arm-pmu",
570 					 &hw_events->percpu_pmu);
571 	} else if (irq_is_percpu(irq)) {
572 		int other_cpu = cpumask_first(&armpmu->active_irqs);
573 		int other_irq = per_cpu(hw_events->irq, other_cpu);
574 
575 		if (irq != other_irq) {
576 			pr_warn("mismatched PPIs detected.\n");
577 			err = -EINVAL;
578 			goto err_out;
579 		}
580 	} else {
581 		struct arm_pmu_platdata *platdata = armpmu_get_platdata(armpmu);
582 		unsigned long irq_flags;
583 
584 		err = irq_force_affinity(irq, cpumask_of(cpu));
585 
586 		if (err && num_possible_cpus() > 1) {
587 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
588 				irq, cpu);
589 			goto err_out;
590 		}
591 
592 		if (platdata && platdata->irq_flags) {
593 			irq_flags = platdata->irq_flags;
594 		} else {
595 			irq_flags = IRQF_PERCPU |
596 				    IRQF_NOBALANCING |
597 				    IRQF_NO_THREAD;
598 		}
599 
600 		err = request_irq(irq, handler, irq_flags, "arm-pmu",
601 				  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
602 	}
603 
604 	if (err)
605 		goto err_out;
606 
607 	cpumask_set_cpu(cpu, &armpmu->active_irqs);
608 	return 0;
609 
610 err_out:
611 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
612 	return err;
613 }
614 
615 int armpmu_request_irqs(struct arm_pmu *armpmu)
616 {
617 	int cpu, err;
618 
619 	for_each_cpu(cpu, &armpmu->supported_cpus) {
620 		err = armpmu_request_irq(armpmu, cpu);
621 		if (err)
622 			break;
623 	}
624 
625 	return err;
626 }
627 
628 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
629 {
630 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
631 	return per_cpu(hw_events->irq, cpu);
632 }
633 
634 /*
635  * PMU hardware loses all context when a CPU goes offline.
636  * When a CPU is hotplugged back in, since some hardware registers are
637  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
638  * junk values out of them.
639  */
640 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
641 {
642 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
643 	int irq;
644 
645 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
646 		return 0;
647 	if (pmu->reset)
648 		pmu->reset(pmu);
649 
650 	irq = armpmu_get_cpu_irq(pmu, cpu);
651 	if (irq) {
652 		if (irq_is_percpu(irq)) {
653 			enable_percpu_irq(irq, IRQ_TYPE_NONE);
654 			return 0;
655 		}
656 	}
657 
658 	return 0;
659 }
660 
661 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
662 {
663 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
664 	int irq;
665 
666 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
667 		return 0;
668 
669 	irq = armpmu_get_cpu_irq(pmu, cpu);
670 	if (irq && irq_is_percpu(irq))
671 		disable_percpu_irq(irq);
672 
673 	return 0;
674 }
675 
676 #ifdef CONFIG_CPU_PM
677 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
678 {
679 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
680 	struct perf_event *event;
681 	int idx;
682 
683 	for (idx = 0; idx < armpmu->num_events; idx++) {
684 		/*
685 		 * If the counter is not used skip it, there is no
686 		 * need of stopping/restarting it.
687 		 */
688 		if (!test_bit(idx, hw_events->used_mask))
689 			continue;
690 
691 		event = hw_events->events[idx];
692 
693 		switch (cmd) {
694 		case CPU_PM_ENTER:
695 			/*
696 			 * Stop and update the counter
697 			 */
698 			armpmu_stop(event, PERF_EF_UPDATE);
699 			break;
700 		case CPU_PM_EXIT:
701 		case CPU_PM_ENTER_FAILED:
702 			 /*
703 			  * Restore and enable the counter.
704 			  * armpmu_start() indirectly calls
705 			  *
706 			  * perf_event_update_userpage()
707 			  *
708 			  * that requires RCU read locking to be functional,
709 			  * wrap the call within RCU_NONIDLE to make the
710 			  * RCU subsystem aware this cpu is not idle from
711 			  * an RCU perspective for the armpmu_start() call
712 			  * duration.
713 			  */
714 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
715 			break;
716 		default:
717 			break;
718 		}
719 	}
720 }
721 
722 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
723 			     void *v)
724 {
725 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
726 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
727 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
728 
729 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
730 		return NOTIFY_DONE;
731 
732 	/*
733 	 * Always reset the PMU registers on power-up even if
734 	 * there are no events running.
735 	 */
736 	if (cmd == CPU_PM_EXIT && armpmu->reset)
737 		armpmu->reset(armpmu);
738 
739 	if (!enabled)
740 		return NOTIFY_OK;
741 
742 	switch (cmd) {
743 	case CPU_PM_ENTER:
744 		armpmu->stop(armpmu);
745 		cpu_pm_pmu_setup(armpmu, cmd);
746 		break;
747 	case CPU_PM_EXIT:
748 		cpu_pm_pmu_setup(armpmu, cmd);
749 	case CPU_PM_ENTER_FAILED:
750 		armpmu->start(armpmu);
751 		break;
752 	default:
753 		return NOTIFY_DONE;
754 	}
755 
756 	return NOTIFY_OK;
757 }
758 
759 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
760 {
761 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
762 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
763 }
764 
765 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
766 {
767 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
768 }
769 #else
770 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
771 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
772 #endif
773 
774 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
775 {
776 	int err;
777 
778 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
779 				       &cpu_pmu->node);
780 	if (err)
781 		goto out;
782 
783 	err = cpu_pm_pmu_register(cpu_pmu);
784 	if (err)
785 		goto out_unregister;
786 
787 	return 0;
788 
789 out_unregister:
790 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
791 					    &cpu_pmu->node);
792 out:
793 	return err;
794 }
795 
796 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
797 {
798 	cpu_pm_pmu_unregister(cpu_pmu);
799 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
800 					    &cpu_pmu->node);
801 }
802 
803 struct arm_pmu *armpmu_alloc(void)
804 {
805 	struct arm_pmu *pmu;
806 	int cpu;
807 
808 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
809 	if (!pmu) {
810 		pr_info("failed to allocate PMU device!\n");
811 		goto out;
812 	}
813 
814 	pmu->hw_events = alloc_percpu(struct pmu_hw_events);
815 	if (!pmu->hw_events) {
816 		pr_info("failed to allocate per-cpu PMU data.\n");
817 		goto out_free_pmu;
818 	}
819 
820 	pmu->pmu = (struct pmu) {
821 		.pmu_enable	= armpmu_enable,
822 		.pmu_disable	= armpmu_disable,
823 		.event_init	= armpmu_event_init,
824 		.add		= armpmu_add,
825 		.del		= armpmu_del,
826 		.start		= armpmu_start,
827 		.stop		= armpmu_stop,
828 		.read		= armpmu_read,
829 		.filter_match	= armpmu_filter_match,
830 		.attr_groups	= pmu->attr_groups,
831 		/*
832 		 * This is a CPU PMU potentially in a heterogeneous
833 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
834 		 * and we have taken ctx sharing into account (e.g. with our
835 		 * pmu::filter_match callback and pmu::event_init group
836 		 * validation).
837 		 */
838 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
839 	};
840 
841 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
842 		&armpmu_common_attr_group;
843 
844 	for_each_possible_cpu(cpu) {
845 		struct pmu_hw_events *events;
846 
847 		events = per_cpu_ptr(pmu->hw_events, cpu);
848 		raw_spin_lock_init(&events->pmu_lock);
849 		events->percpu_pmu = pmu;
850 	}
851 
852 	return pmu;
853 
854 out_free_pmu:
855 	kfree(pmu);
856 out:
857 	return NULL;
858 }
859 
860 void armpmu_free(struct arm_pmu *pmu)
861 {
862 	free_percpu(pmu->hw_events);
863 	kfree(pmu);
864 }
865 
866 int armpmu_register(struct arm_pmu *pmu)
867 {
868 	int ret;
869 
870 	ret = cpu_pmu_init(pmu);
871 	if (ret)
872 		return ret;
873 
874 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
875 	if (ret)
876 		goto out_destroy;
877 
878 	if (!__oprofile_cpu_pmu)
879 		__oprofile_cpu_pmu = pmu;
880 
881 	pr_info("enabled with %s PMU driver, %d counters available\n",
882 		pmu->name, pmu->num_events);
883 
884 	return 0;
885 
886 out_destroy:
887 	cpu_pmu_destroy(pmu);
888 	return ret;
889 }
890 
891 static int arm_pmu_hp_init(void)
892 {
893 	int ret;
894 
895 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
896 				      "perf/arm/pmu:starting",
897 				      arm_perf_starting_cpu,
898 				      arm_perf_teardown_cpu);
899 	if (ret)
900 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
901 		       ret);
902 	return ret;
903 }
904 subsys_initcall(arm_pmu_hp_init);
905