1 #undef DEBUG 2 3 /* 4 * ARM performance counter support. 5 * 6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 8 * 9 * This code is based on the sparc64 perf event code, which is in turn based 10 * on the x86 code. 11 */ 12 #define pr_fmt(fmt) "hw perfevents: " fmt 13 14 #include <linux/bitmap.h> 15 #include <linux/cpumask.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/export.h> 18 #include <linux/kernel.h> 19 #include <linux/perf/arm_pmu.h> 20 #include <linux/slab.h> 21 #include <linux/sched/clock.h> 22 #include <linux/spinlock.h> 23 #include <linux/irq.h> 24 #include <linux/irqdesc.h> 25 26 #include <asm/irq_regs.h> 27 28 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); 29 static DEFINE_PER_CPU(int, cpu_irq); 30 31 static int 32 armpmu_map_cache_event(const unsigned (*cache_map) 33 [PERF_COUNT_HW_CACHE_MAX] 34 [PERF_COUNT_HW_CACHE_OP_MAX] 35 [PERF_COUNT_HW_CACHE_RESULT_MAX], 36 u64 config) 37 { 38 unsigned int cache_type, cache_op, cache_result, ret; 39 40 cache_type = (config >> 0) & 0xff; 41 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 42 return -EINVAL; 43 44 cache_op = (config >> 8) & 0xff; 45 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 46 return -EINVAL; 47 48 cache_result = (config >> 16) & 0xff; 49 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 50 return -EINVAL; 51 52 if (!cache_map) 53 return -ENOENT; 54 55 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 56 57 if (ret == CACHE_OP_UNSUPPORTED) 58 return -ENOENT; 59 60 return ret; 61 } 62 63 static int 64 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 65 { 66 int mapping; 67 68 if (config >= PERF_COUNT_HW_MAX) 69 return -EINVAL; 70 71 if (!event_map) 72 return -ENOENT; 73 74 mapping = (*event_map)[config]; 75 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 76 } 77 78 static int 79 armpmu_map_raw_event(u32 raw_event_mask, u64 config) 80 { 81 return (int)(config & raw_event_mask); 82 } 83 84 int 85 armpmu_map_event(struct perf_event *event, 86 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 87 const unsigned (*cache_map) 88 [PERF_COUNT_HW_CACHE_MAX] 89 [PERF_COUNT_HW_CACHE_OP_MAX] 90 [PERF_COUNT_HW_CACHE_RESULT_MAX], 91 u32 raw_event_mask) 92 { 93 u64 config = event->attr.config; 94 int type = event->attr.type; 95 96 if (type == event->pmu->type) 97 return armpmu_map_raw_event(raw_event_mask, config); 98 99 switch (type) { 100 case PERF_TYPE_HARDWARE: 101 return armpmu_map_hw_event(event_map, config); 102 case PERF_TYPE_HW_CACHE: 103 return armpmu_map_cache_event(cache_map, config); 104 case PERF_TYPE_RAW: 105 return armpmu_map_raw_event(raw_event_mask, config); 106 } 107 108 return -ENOENT; 109 } 110 111 int armpmu_event_set_period(struct perf_event *event) 112 { 113 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 114 struct hw_perf_event *hwc = &event->hw; 115 s64 left = local64_read(&hwc->period_left); 116 s64 period = hwc->sample_period; 117 int ret = 0; 118 119 if (unlikely(left <= -period)) { 120 left = period; 121 local64_set(&hwc->period_left, left); 122 hwc->last_period = period; 123 ret = 1; 124 } 125 126 if (unlikely(left <= 0)) { 127 left += period; 128 local64_set(&hwc->period_left, left); 129 hwc->last_period = period; 130 ret = 1; 131 } 132 133 /* 134 * Limit the maximum period to prevent the counter value 135 * from overtaking the one we are about to program. In 136 * effect we are reducing max_period to account for 137 * interrupt latency (and we are being very conservative). 138 */ 139 if (left > (armpmu->max_period >> 1)) 140 left = armpmu->max_period >> 1; 141 142 local64_set(&hwc->prev_count, (u64)-left); 143 144 armpmu->write_counter(event, (u64)(-left) & 0xffffffff); 145 146 perf_event_update_userpage(event); 147 148 return ret; 149 } 150 151 u64 armpmu_event_update(struct perf_event *event) 152 { 153 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 154 struct hw_perf_event *hwc = &event->hw; 155 u64 delta, prev_raw_count, new_raw_count; 156 157 again: 158 prev_raw_count = local64_read(&hwc->prev_count); 159 new_raw_count = armpmu->read_counter(event); 160 161 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 162 new_raw_count) != prev_raw_count) 163 goto again; 164 165 delta = (new_raw_count - prev_raw_count) & armpmu->max_period; 166 167 local64_add(delta, &event->count); 168 local64_sub(delta, &hwc->period_left); 169 170 return new_raw_count; 171 } 172 173 static void 174 armpmu_read(struct perf_event *event) 175 { 176 armpmu_event_update(event); 177 } 178 179 static void 180 armpmu_stop(struct perf_event *event, int flags) 181 { 182 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 183 struct hw_perf_event *hwc = &event->hw; 184 185 /* 186 * ARM pmu always has to update the counter, so ignore 187 * PERF_EF_UPDATE, see comments in armpmu_start(). 188 */ 189 if (!(hwc->state & PERF_HES_STOPPED)) { 190 armpmu->disable(event); 191 armpmu_event_update(event); 192 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 193 } 194 } 195 196 static void armpmu_start(struct perf_event *event, int flags) 197 { 198 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 199 struct hw_perf_event *hwc = &event->hw; 200 201 /* 202 * ARM pmu always has to reprogram the period, so ignore 203 * PERF_EF_RELOAD, see the comment below. 204 */ 205 if (flags & PERF_EF_RELOAD) 206 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 207 208 hwc->state = 0; 209 /* 210 * Set the period again. Some counters can't be stopped, so when we 211 * were stopped we simply disabled the IRQ source and the counter 212 * may have been left counting. If we don't do this step then we may 213 * get an interrupt too soon or *way* too late if the overflow has 214 * happened since disabling. 215 */ 216 armpmu_event_set_period(event); 217 armpmu->enable(event); 218 } 219 220 static void 221 armpmu_del(struct perf_event *event, int flags) 222 { 223 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 224 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 225 struct hw_perf_event *hwc = &event->hw; 226 int idx = hwc->idx; 227 228 armpmu_stop(event, PERF_EF_UPDATE); 229 hw_events->events[idx] = NULL; 230 clear_bit(idx, hw_events->used_mask); 231 if (armpmu->clear_event_idx) 232 armpmu->clear_event_idx(hw_events, event); 233 234 perf_event_update_userpage(event); 235 } 236 237 static int 238 armpmu_add(struct perf_event *event, int flags) 239 { 240 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 241 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 242 struct hw_perf_event *hwc = &event->hw; 243 int idx; 244 245 /* An event following a process won't be stopped earlier */ 246 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 247 return -ENOENT; 248 249 /* If we don't have a space for the counter then finish early. */ 250 idx = armpmu->get_event_idx(hw_events, event); 251 if (idx < 0) 252 return idx; 253 254 /* 255 * If there is an event in the counter we are going to use then make 256 * sure it is disabled. 257 */ 258 event->hw.idx = idx; 259 armpmu->disable(event); 260 hw_events->events[idx] = event; 261 262 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 263 if (flags & PERF_EF_START) 264 armpmu_start(event, PERF_EF_RELOAD); 265 266 /* Propagate our changes to the userspace mapping. */ 267 perf_event_update_userpage(event); 268 269 return 0; 270 } 271 272 static int 273 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 274 struct perf_event *event) 275 { 276 struct arm_pmu *armpmu; 277 278 if (is_software_event(event)) 279 return 1; 280 281 /* 282 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 283 * core perf code won't check that the pmu->ctx == leader->ctx 284 * until after pmu->event_init(event). 285 */ 286 if (event->pmu != pmu) 287 return 0; 288 289 if (event->state < PERF_EVENT_STATE_OFF) 290 return 1; 291 292 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 293 return 1; 294 295 armpmu = to_arm_pmu(event->pmu); 296 return armpmu->get_event_idx(hw_events, event) >= 0; 297 } 298 299 static int 300 validate_group(struct perf_event *event) 301 { 302 struct perf_event *sibling, *leader = event->group_leader; 303 struct pmu_hw_events fake_pmu; 304 305 /* 306 * Initialise the fake PMU. We only need to populate the 307 * used_mask for the purposes of validation. 308 */ 309 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 310 311 if (!validate_event(event->pmu, &fake_pmu, leader)) 312 return -EINVAL; 313 314 for_each_sibling_event(sibling, leader) { 315 if (!validate_event(event->pmu, &fake_pmu, sibling)) 316 return -EINVAL; 317 } 318 319 if (!validate_event(event->pmu, &fake_pmu, event)) 320 return -EINVAL; 321 322 return 0; 323 } 324 325 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 326 { 327 struct arm_pmu *armpmu; 328 int ret; 329 u64 start_clock, finish_clock; 330 331 /* 332 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 333 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 334 * do any necessary shifting, we just need to perform the first 335 * dereference. 336 */ 337 armpmu = *(void **)dev; 338 if (WARN_ON_ONCE(!armpmu)) 339 return IRQ_NONE; 340 341 start_clock = sched_clock(); 342 ret = armpmu->handle_irq(armpmu); 343 finish_clock = sched_clock(); 344 345 perf_sample_event_took(finish_clock - start_clock); 346 return ret; 347 } 348 349 static int 350 event_requires_mode_exclusion(struct perf_event_attr *attr) 351 { 352 return attr->exclude_idle || attr->exclude_user || 353 attr->exclude_kernel || attr->exclude_hv; 354 } 355 356 static int 357 __hw_perf_event_init(struct perf_event *event) 358 { 359 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 360 struct hw_perf_event *hwc = &event->hw; 361 int mapping; 362 363 mapping = armpmu->map_event(event); 364 365 if (mapping < 0) { 366 pr_debug("event %x:%llx not supported\n", event->attr.type, 367 event->attr.config); 368 return mapping; 369 } 370 371 /* 372 * We don't assign an index until we actually place the event onto 373 * hardware. Use -1 to signify that we haven't decided where to put it 374 * yet. For SMP systems, each core has it's own PMU so we can't do any 375 * clever allocation or constraints checking at this point. 376 */ 377 hwc->idx = -1; 378 hwc->config_base = 0; 379 hwc->config = 0; 380 hwc->event_base = 0; 381 382 /* 383 * Check whether we need to exclude the counter from certain modes. 384 */ 385 if ((!armpmu->set_event_filter || 386 armpmu->set_event_filter(hwc, &event->attr)) && 387 event_requires_mode_exclusion(&event->attr)) { 388 pr_debug("ARM performance counters do not support " 389 "mode exclusion\n"); 390 return -EOPNOTSUPP; 391 } 392 393 /* 394 * Store the event encoding into the config_base field. 395 */ 396 hwc->config_base |= (unsigned long)mapping; 397 398 if (!is_sampling_event(event)) { 399 /* 400 * For non-sampling runs, limit the sample_period to half 401 * of the counter width. That way, the new counter value 402 * is far less likely to overtake the previous one unless 403 * you have some serious IRQ latency issues. 404 */ 405 hwc->sample_period = armpmu->max_period >> 1; 406 hwc->last_period = hwc->sample_period; 407 local64_set(&hwc->period_left, hwc->sample_period); 408 } 409 410 if (event->group_leader != event) { 411 if (validate_group(event) != 0) 412 return -EINVAL; 413 } 414 415 return 0; 416 } 417 418 static int armpmu_event_init(struct perf_event *event) 419 { 420 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 421 422 /* 423 * Reject CPU-affine events for CPUs that are of a different class to 424 * that which this PMU handles. Process-following events (where 425 * event->cpu == -1) can be migrated between CPUs, and thus we have to 426 * reject them later (in armpmu_add) if they're scheduled on a 427 * different class of CPU. 428 */ 429 if (event->cpu != -1 && 430 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 431 return -ENOENT; 432 433 /* does not support taken branch sampling */ 434 if (has_branch_stack(event)) 435 return -EOPNOTSUPP; 436 437 if (armpmu->map_event(event) == -ENOENT) 438 return -ENOENT; 439 440 return __hw_perf_event_init(event); 441 } 442 443 static void armpmu_enable(struct pmu *pmu) 444 { 445 struct arm_pmu *armpmu = to_arm_pmu(pmu); 446 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 447 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 448 449 /* For task-bound events we may be called on other CPUs */ 450 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 451 return; 452 453 if (enabled) 454 armpmu->start(armpmu); 455 } 456 457 static void armpmu_disable(struct pmu *pmu) 458 { 459 struct arm_pmu *armpmu = to_arm_pmu(pmu); 460 461 /* For task-bound events we may be called on other CPUs */ 462 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 463 return; 464 465 armpmu->stop(armpmu); 466 } 467 468 /* 469 * In heterogeneous systems, events are specific to a particular 470 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 471 * the same microarchitecture. 472 */ 473 static int armpmu_filter_match(struct perf_event *event) 474 { 475 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 476 unsigned int cpu = smp_processor_id(); 477 return cpumask_test_cpu(cpu, &armpmu->supported_cpus); 478 } 479 480 static ssize_t armpmu_cpumask_show(struct device *dev, 481 struct device_attribute *attr, char *buf) 482 { 483 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); 484 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); 485 } 486 487 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL); 488 489 static struct attribute *armpmu_common_attrs[] = { 490 &dev_attr_cpus.attr, 491 NULL, 492 }; 493 494 static struct attribute_group armpmu_common_attr_group = { 495 .attrs = armpmu_common_attrs, 496 }; 497 498 /* Set at runtime when we know what CPU type we are. */ 499 static struct arm_pmu *__oprofile_cpu_pmu; 500 501 /* 502 * Despite the names, these two functions are CPU-specific and are used 503 * by the OProfile/perf code. 504 */ 505 const char *perf_pmu_name(void) 506 { 507 if (!__oprofile_cpu_pmu) 508 return NULL; 509 510 return __oprofile_cpu_pmu->name; 511 } 512 EXPORT_SYMBOL_GPL(perf_pmu_name); 513 514 int perf_num_counters(void) 515 { 516 int max_events = 0; 517 518 if (__oprofile_cpu_pmu != NULL) 519 max_events = __oprofile_cpu_pmu->num_events; 520 521 return max_events; 522 } 523 EXPORT_SYMBOL_GPL(perf_num_counters); 524 525 static int armpmu_count_irq_users(const int irq) 526 { 527 int cpu, count = 0; 528 529 for_each_possible_cpu(cpu) { 530 if (per_cpu(cpu_irq, cpu) == irq) 531 count++; 532 } 533 534 return count; 535 } 536 537 void armpmu_free_irq(int irq, int cpu) 538 { 539 if (per_cpu(cpu_irq, cpu) == 0) 540 return; 541 if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) 542 return; 543 544 if (!irq_is_percpu_devid(irq)) 545 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu)); 546 else if (armpmu_count_irq_users(irq) == 1) 547 free_percpu_irq(irq, &cpu_armpmu); 548 549 per_cpu(cpu_irq, cpu) = 0; 550 } 551 552 int armpmu_request_irq(int irq, int cpu) 553 { 554 int err = 0; 555 const irq_handler_t handler = armpmu_dispatch_irq; 556 if (!irq) 557 return 0; 558 559 if (!irq_is_percpu_devid(irq)) { 560 unsigned long irq_flags; 561 562 err = irq_force_affinity(irq, cpumask_of(cpu)); 563 564 if (err && num_possible_cpus() > 1) { 565 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 566 irq, cpu); 567 goto err_out; 568 } 569 570 irq_flags = IRQF_PERCPU | 571 IRQF_NOBALANCING | 572 IRQF_NO_THREAD; 573 574 irq_set_status_flags(irq, IRQ_NOAUTOEN); 575 err = request_irq(irq, handler, irq_flags, "arm-pmu", 576 per_cpu_ptr(&cpu_armpmu, cpu)); 577 } else if (armpmu_count_irq_users(irq) == 0) { 578 err = request_percpu_irq(irq, handler, "arm-pmu", 579 &cpu_armpmu); 580 } 581 582 if (err) 583 goto err_out; 584 585 per_cpu(cpu_irq, cpu) = irq; 586 return 0; 587 588 err_out: 589 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); 590 return err; 591 } 592 593 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) 594 { 595 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 596 return per_cpu(hw_events->irq, cpu); 597 } 598 599 /* 600 * PMU hardware loses all context when a CPU goes offline. 601 * When a CPU is hotplugged back in, since some hardware registers are 602 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 603 * junk values out of them. 604 */ 605 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) 606 { 607 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 608 int irq; 609 610 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 611 return 0; 612 if (pmu->reset) 613 pmu->reset(pmu); 614 615 per_cpu(cpu_armpmu, cpu) = pmu; 616 617 irq = armpmu_get_cpu_irq(pmu, cpu); 618 if (irq) { 619 if (irq_is_percpu_devid(irq)) 620 enable_percpu_irq(irq, IRQ_TYPE_NONE); 621 else 622 enable_irq(irq); 623 } 624 625 return 0; 626 } 627 628 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) 629 { 630 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 631 int irq; 632 633 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 634 return 0; 635 636 irq = armpmu_get_cpu_irq(pmu, cpu); 637 if (irq) { 638 if (irq_is_percpu_devid(irq)) 639 disable_percpu_irq(irq); 640 else 641 disable_irq_nosync(irq); 642 } 643 644 per_cpu(cpu_armpmu, cpu) = NULL; 645 646 return 0; 647 } 648 649 #ifdef CONFIG_CPU_PM 650 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) 651 { 652 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 653 struct perf_event *event; 654 int idx; 655 656 for (idx = 0; idx < armpmu->num_events; idx++) { 657 /* 658 * If the counter is not used skip it, there is no 659 * need of stopping/restarting it. 660 */ 661 if (!test_bit(idx, hw_events->used_mask)) 662 continue; 663 664 event = hw_events->events[idx]; 665 666 switch (cmd) { 667 case CPU_PM_ENTER: 668 /* 669 * Stop and update the counter 670 */ 671 armpmu_stop(event, PERF_EF_UPDATE); 672 break; 673 case CPU_PM_EXIT: 674 case CPU_PM_ENTER_FAILED: 675 /* 676 * Restore and enable the counter. 677 * armpmu_start() indirectly calls 678 * 679 * perf_event_update_userpage() 680 * 681 * that requires RCU read locking to be functional, 682 * wrap the call within RCU_NONIDLE to make the 683 * RCU subsystem aware this cpu is not idle from 684 * an RCU perspective for the armpmu_start() call 685 * duration. 686 */ 687 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); 688 break; 689 default: 690 break; 691 } 692 } 693 } 694 695 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 696 void *v) 697 { 698 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); 699 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 700 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 701 702 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 703 return NOTIFY_DONE; 704 705 /* 706 * Always reset the PMU registers on power-up even if 707 * there are no events running. 708 */ 709 if (cmd == CPU_PM_EXIT && armpmu->reset) 710 armpmu->reset(armpmu); 711 712 if (!enabled) 713 return NOTIFY_OK; 714 715 switch (cmd) { 716 case CPU_PM_ENTER: 717 armpmu->stop(armpmu); 718 cpu_pm_pmu_setup(armpmu, cmd); 719 break; 720 case CPU_PM_EXIT: 721 cpu_pm_pmu_setup(armpmu, cmd); 722 case CPU_PM_ENTER_FAILED: 723 armpmu->start(armpmu); 724 break; 725 default: 726 return NOTIFY_DONE; 727 } 728 729 return NOTIFY_OK; 730 } 731 732 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) 733 { 734 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; 735 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); 736 } 737 738 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) 739 { 740 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); 741 } 742 #else 743 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } 744 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } 745 #endif 746 747 static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 748 { 749 int err; 750 751 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, 752 &cpu_pmu->node); 753 if (err) 754 goto out; 755 756 err = cpu_pm_pmu_register(cpu_pmu); 757 if (err) 758 goto out_unregister; 759 760 return 0; 761 762 out_unregister: 763 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 764 &cpu_pmu->node); 765 out: 766 return err; 767 } 768 769 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 770 { 771 cpu_pm_pmu_unregister(cpu_pmu); 772 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 773 &cpu_pmu->node); 774 } 775 776 static struct arm_pmu *__armpmu_alloc(gfp_t flags) 777 { 778 struct arm_pmu *pmu; 779 int cpu; 780 781 pmu = kzalloc(sizeof(*pmu), flags); 782 if (!pmu) { 783 pr_info("failed to allocate PMU device!\n"); 784 goto out; 785 } 786 787 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags); 788 if (!pmu->hw_events) { 789 pr_info("failed to allocate per-cpu PMU data.\n"); 790 goto out_free_pmu; 791 } 792 793 pmu->pmu = (struct pmu) { 794 .pmu_enable = armpmu_enable, 795 .pmu_disable = armpmu_disable, 796 .event_init = armpmu_event_init, 797 .add = armpmu_add, 798 .del = armpmu_del, 799 .start = armpmu_start, 800 .stop = armpmu_stop, 801 .read = armpmu_read, 802 .filter_match = armpmu_filter_match, 803 .attr_groups = pmu->attr_groups, 804 /* 805 * This is a CPU PMU potentially in a heterogeneous 806 * configuration (e.g. big.LITTLE). This is not an uncore PMU, 807 * and we have taken ctx sharing into account (e.g. with our 808 * pmu::filter_match callback and pmu::event_init group 809 * validation). 810 */ 811 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS, 812 }; 813 814 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = 815 &armpmu_common_attr_group; 816 817 for_each_possible_cpu(cpu) { 818 struct pmu_hw_events *events; 819 820 events = per_cpu_ptr(pmu->hw_events, cpu); 821 raw_spin_lock_init(&events->pmu_lock); 822 events->percpu_pmu = pmu; 823 } 824 825 return pmu; 826 827 out_free_pmu: 828 kfree(pmu); 829 out: 830 return NULL; 831 } 832 833 struct arm_pmu *armpmu_alloc(void) 834 { 835 return __armpmu_alloc(GFP_KERNEL); 836 } 837 838 struct arm_pmu *armpmu_alloc_atomic(void) 839 { 840 return __armpmu_alloc(GFP_ATOMIC); 841 } 842 843 844 void armpmu_free(struct arm_pmu *pmu) 845 { 846 free_percpu(pmu->hw_events); 847 kfree(pmu); 848 } 849 850 int armpmu_register(struct arm_pmu *pmu) 851 { 852 int ret; 853 854 ret = cpu_pmu_init(pmu); 855 if (ret) 856 return ret; 857 858 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); 859 if (ret) 860 goto out_destroy; 861 862 if (!__oprofile_cpu_pmu) 863 __oprofile_cpu_pmu = pmu; 864 865 pr_info("enabled with %s PMU driver, %d counters available\n", 866 pmu->name, pmu->num_events); 867 868 return 0; 869 870 out_destroy: 871 cpu_pmu_destroy(pmu); 872 return ret; 873 } 874 875 static int arm_pmu_hp_init(void) 876 { 877 int ret; 878 879 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, 880 "perf/arm/pmu:starting", 881 arm_perf_starting_cpu, 882 arm_perf_teardown_cpu); 883 if (ret) 884 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", 885 ret); 886 return ret; 887 } 888 subsys_initcall(arm_pmu_hp_init); 889