xref: /openbmc/linux/drivers/perf/arm_pmu.c (revision 2359ccdd)
1 #undef DEBUG
2 
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13 
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/slab.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
25 
26 #include <asm/irq_regs.h>
27 
28 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
29 static DEFINE_PER_CPU(int, cpu_irq);
30 
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33 				      [PERF_COUNT_HW_CACHE_MAX]
34 				      [PERF_COUNT_HW_CACHE_OP_MAX]
35 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
36 		       u64 config)
37 {
38 	unsigned int cache_type, cache_op, cache_result, ret;
39 
40 	cache_type = (config >>  0) & 0xff;
41 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42 		return -EINVAL;
43 
44 	cache_op = (config >>  8) & 0xff;
45 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46 		return -EINVAL;
47 
48 	cache_result = (config >> 16) & 0xff;
49 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50 		return -EINVAL;
51 
52 	if (!cache_map)
53 		return -ENOENT;
54 
55 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
56 
57 	if (ret == CACHE_OP_UNSUPPORTED)
58 		return -ENOENT;
59 
60 	return ret;
61 }
62 
63 static int
64 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
65 {
66 	int mapping;
67 
68 	if (config >= PERF_COUNT_HW_MAX)
69 		return -EINVAL;
70 
71 	if (!event_map)
72 		return -ENOENT;
73 
74 	mapping = (*event_map)[config];
75 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
76 }
77 
78 static int
79 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
80 {
81 	return (int)(config & raw_event_mask);
82 }
83 
84 int
85 armpmu_map_event(struct perf_event *event,
86 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
87 		 const unsigned (*cache_map)
88 				[PERF_COUNT_HW_CACHE_MAX]
89 				[PERF_COUNT_HW_CACHE_OP_MAX]
90 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
91 		 u32 raw_event_mask)
92 {
93 	u64 config = event->attr.config;
94 	int type = event->attr.type;
95 
96 	if (type == event->pmu->type)
97 		return armpmu_map_raw_event(raw_event_mask, config);
98 
99 	switch (type) {
100 	case PERF_TYPE_HARDWARE:
101 		return armpmu_map_hw_event(event_map, config);
102 	case PERF_TYPE_HW_CACHE:
103 		return armpmu_map_cache_event(cache_map, config);
104 	case PERF_TYPE_RAW:
105 		return armpmu_map_raw_event(raw_event_mask, config);
106 	}
107 
108 	return -ENOENT;
109 }
110 
111 int armpmu_event_set_period(struct perf_event *event)
112 {
113 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
114 	struct hw_perf_event *hwc = &event->hw;
115 	s64 left = local64_read(&hwc->period_left);
116 	s64 period = hwc->sample_period;
117 	int ret = 0;
118 
119 	if (unlikely(left <= -period)) {
120 		left = period;
121 		local64_set(&hwc->period_left, left);
122 		hwc->last_period = period;
123 		ret = 1;
124 	}
125 
126 	if (unlikely(left <= 0)) {
127 		left += period;
128 		local64_set(&hwc->period_left, left);
129 		hwc->last_period = period;
130 		ret = 1;
131 	}
132 
133 	/*
134 	 * Limit the maximum period to prevent the counter value
135 	 * from overtaking the one we are about to program. In
136 	 * effect we are reducing max_period to account for
137 	 * interrupt latency (and we are being very conservative).
138 	 */
139 	if (left > (armpmu->max_period >> 1))
140 		left = armpmu->max_period >> 1;
141 
142 	local64_set(&hwc->prev_count, (u64)-left);
143 
144 	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
145 
146 	perf_event_update_userpage(event);
147 
148 	return ret;
149 }
150 
151 u64 armpmu_event_update(struct perf_event *event)
152 {
153 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
154 	struct hw_perf_event *hwc = &event->hw;
155 	u64 delta, prev_raw_count, new_raw_count;
156 
157 again:
158 	prev_raw_count = local64_read(&hwc->prev_count);
159 	new_raw_count = armpmu->read_counter(event);
160 
161 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
162 			     new_raw_count) != prev_raw_count)
163 		goto again;
164 
165 	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
166 
167 	local64_add(delta, &event->count);
168 	local64_sub(delta, &hwc->period_left);
169 
170 	return new_raw_count;
171 }
172 
173 static void
174 armpmu_read(struct perf_event *event)
175 {
176 	armpmu_event_update(event);
177 }
178 
179 static void
180 armpmu_stop(struct perf_event *event, int flags)
181 {
182 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
183 	struct hw_perf_event *hwc = &event->hw;
184 
185 	/*
186 	 * ARM pmu always has to update the counter, so ignore
187 	 * PERF_EF_UPDATE, see comments in armpmu_start().
188 	 */
189 	if (!(hwc->state & PERF_HES_STOPPED)) {
190 		armpmu->disable(event);
191 		armpmu_event_update(event);
192 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
193 	}
194 }
195 
196 static void armpmu_start(struct perf_event *event, int flags)
197 {
198 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199 	struct hw_perf_event *hwc = &event->hw;
200 
201 	/*
202 	 * ARM pmu always has to reprogram the period, so ignore
203 	 * PERF_EF_RELOAD, see the comment below.
204 	 */
205 	if (flags & PERF_EF_RELOAD)
206 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
207 
208 	hwc->state = 0;
209 	/*
210 	 * Set the period again. Some counters can't be stopped, so when we
211 	 * were stopped we simply disabled the IRQ source and the counter
212 	 * may have been left counting. If we don't do this step then we may
213 	 * get an interrupt too soon or *way* too late if the overflow has
214 	 * happened since disabling.
215 	 */
216 	armpmu_event_set_period(event);
217 	armpmu->enable(event);
218 }
219 
220 static void
221 armpmu_del(struct perf_event *event, int flags)
222 {
223 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
224 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
225 	struct hw_perf_event *hwc = &event->hw;
226 	int idx = hwc->idx;
227 
228 	armpmu_stop(event, PERF_EF_UPDATE);
229 	hw_events->events[idx] = NULL;
230 	clear_bit(idx, hw_events->used_mask);
231 	if (armpmu->clear_event_idx)
232 		armpmu->clear_event_idx(hw_events, event);
233 
234 	perf_event_update_userpage(event);
235 }
236 
237 static int
238 armpmu_add(struct perf_event *event, int flags)
239 {
240 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
242 	struct hw_perf_event *hwc = &event->hw;
243 	int idx;
244 
245 	/* An event following a process won't be stopped earlier */
246 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
247 		return -ENOENT;
248 
249 	/* If we don't have a space for the counter then finish early. */
250 	idx = armpmu->get_event_idx(hw_events, event);
251 	if (idx < 0)
252 		return idx;
253 
254 	/*
255 	 * If there is an event in the counter we are going to use then make
256 	 * sure it is disabled.
257 	 */
258 	event->hw.idx = idx;
259 	armpmu->disable(event);
260 	hw_events->events[idx] = event;
261 
262 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
263 	if (flags & PERF_EF_START)
264 		armpmu_start(event, PERF_EF_RELOAD);
265 
266 	/* Propagate our changes to the userspace mapping. */
267 	perf_event_update_userpage(event);
268 
269 	return 0;
270 }
271 
272 static int
273 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
274 			       struct perf_event *event)
275 {
276 	struct arm_pmu *armpmu;
277 
278 	if (is_software_event(event))
279 		return 1;
280 
281 	/*
282 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
283 	 * core perf code won't check that the pmu->ctx == leader->ctx
284 	 * until after pmu->event_init(event).
285 	 */
286 	if (event->pmu != pmu)
287 		return 0;
288 
289 	if (event->state < PERF_EVENT_STATE_OFF)
290 		return 1;
291 
292 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
293 		return 1;
294 
295 	armpmu = to_arm_pmu(event->pmu);
296 	return armpmu->get_event_idx(hw_events, event) >= 0;
297 }
298 
299 static int
300 validate_group(struct perf_event *event)
301 {
302 	struct perf_event *sibling, *leader = event->group_leader;
303 	struct pmu_hw_events fake_pmu;
304 
305 	/*
306 	 * Initialise the fake PMU. We only need to populate the
307 	 * used_mask for the purposes of validation.
308 	 */
309 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
310 
311 	if (!validate_event(event->pmu, &fake_pmu, leader))
312 		return -EINVAL;
313 
314 	for_each_sibling_event(sibling, leader) {
315 		if (!validate_event(event->pmu, &fake_pmu, sibling))
316 			return -EINVAL;
317 	}
318 
319 	if (!validate_event(event->pmu, &fake_pmu, event))
320 		return -EINVAL;
321 
322 	return 0;
323 }
324 
325 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
326 {
327 	struct arm_pmu *armpmu;
328 	int ret;
329 	u64 start_clock, finish_clock;
330 
331 	/*
332 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
333 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
334 	 * do any necessary shifting, we just need to perform the first
335 	 * dereference.
336 	 */
337 	armpmu = *(void **)dev;
338 	if (WARN_ON_ONCE(!armpmu))
339 		return IRQ_NONE;
340 
341 	start_clock = sched_clock();
342 	ret = armpmu->handle_irq(irq, armpmu);
343 	finish_clock = sched_clock();
344 
345 	perf_sample_event_took(finish_clock - start_clock);
346 	return ret;
347 }
348 
349 static int
350 event_requires_mode_exclusion(struct perf_event_attr *attr)
351 {
352 	return attr->exclude_idle || attr->exclude_user ||
353 	       attr->exclude_kernel || attr->exclude_hv;
354 }
355 
356 static int
357 __hw_perf_event_init(struct perf_event *event)
358 {
359 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
360 	struct hw_perf_event *hwc = &event->hw;
361 	int mapping;
362 
363 	mapping = armpmu->map_event(event);
364 
365 	if (mapping < 0) {
366 		pr_debug("event %x:%llx not supported\n", event->attr.type,
367 			 event->attr.config);
368 		return mapping;
369 	}
370 
371 	/*
372 	 * We don't assign an index until we actually place the event onto
373 	 * hardware. Use -1 to signify that we haven't decided where to put it
374 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
375 	 * clever allocation or constraints checking at this point.
376 	 */
377 	hwc->idx		= -1;
378 	hwc->config_base	= 0;
379 	hwc->config		= 0;
380 	hwc->event_base		= 0;
381 
382 	/*
383 	 * Check whether we need to exclude the counter from certain modes.
384 	 */
385 	if ((!armpmu->set_event_filter ||
386 	     armpmu->set_event_filter(hwc, &event->attr)) &&
387 	     event_requires_mode_exclusion(&event->attr)) {
388 		pr_debug("ARM performance counters do not support "
389 			 "mode exclusion\n");
390 		return -EOPNOTSUPP;
391 	}
392 
393 	/*
394 	 * Store the event encoding into the config_base field.
395 	 */
396 	hwc->config_base	    |= (unsigned long)mapping;
397 
398 	if (!is_sampling_event(event)) {
399 		/*
400 		 * For non-sampling runs, limit the sample_period to half
401 		 * of the counter width. That way, the new counter value
402 		 * is far less likely to overtake the previous one unless
403 		 * you have some serious IRQ latency issues.
404 		 */
405 		hwc->sample_period  = armpmu->max_period >> 1;
406 		hwc->last_period    = hwc->sample_period;
407 		local64_set(&hwc->period_left, hwc->sample_period);
408 	}
409 
410 	if (event->group_leader != event) {
411 		if (validate_group(event) != 0)
412 			return -EINVAL;
413 	}
414 
415 	return 0;
416 }
417 
418 static int armpmu_event_init(struct perf_event *event)
419 {
420 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
421 
422 	/*
423 	 * Reject CPU-affine events for CPUs that are of a different class to
424 	 * that which this PMU handles. Process-following events (where
425 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
426 	 * reject them later (in armpmu_add) if they're scheduled on a
427 	 * different class of CPU.
428 	 */
429 	if (event->cpu != -1 &&
430 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
431 		return -ENOENT;
432 
433 	/* does not support taken branch sampling */
434 	if (has_branch_stack(event))
435 		return -EOPNOTSUPP;
436 
437 	if (armpmu->map_event(event) == -ENOENT)
438 		return -ENOENT;
439 
440 	return __hw_perf_event_init(event);
441 }
442 
443 static void armpmu_enable(struct pmu *pmu)
444 {
445 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
446 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
447 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
448 
449 	/* For task-bound events we may be called on other CPUs */
450 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
451 		return;
452 
453 	if (enabled)
454 		armpmu->start(armpmu);
455 }
456 
457 static void armpmu_disable(struct pmu *pmu)
458 {
459 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
460 
461 	/* For task-bound events we may be called on other CPUs */
462 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
463 		return;
464 
465 	armpmu->stop(armpmu);
466 }
467 
468 /*
469  * In heterogeneous systems, events are specific to a particular
470  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
471  * the same microarchitecture.
472  */
473 static int armpmu_filter_match(struct perf_event *event)
474 {
475 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
476 	unsigned int cpu = smp_processor_id();
477 	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
478 }
479 
480 static ssize_t armpmu_cpumask_show(struct device *dev,
481 				   struct device_attribute *attr, char *buf)
482 {
483 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
484 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
485 }
486 
487 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
488 
489 static struct attribute *armpmu_common_attrs[] = {
490 	&dev_attr_cpus.attr,
491 	NULL,
492 };
493 
494 static struct attribute_group armpmu_common_attr_group = {
495 	.attrs = armpmu_common_attrs,
496 };
497 
498 /* Set at runtime when we know what CPU type we are. */
499 static struct arm_pmu *__oprofile_cpu_pmu;
500 
501 /*
502  * Despite the names, these two functions are CPU-specific and are used
503  * by the OProfile/perf code.
504  */
505 const char *perf_pmu_name(void)
506 {
507 	if (!__oprofile_cpu_pmu)
508 		return NULL;
509 
510 	return __oprofile_cpu_pmu->name;
511 }
512 EXPORT_SYMBOL_GPL(perf_pmu_name);
513 
514 int perf_num_counters(void)
515 {
516 	int max_events = 0;
517 
518 	if (__oprofile_cpu_pmu != NULL)
519 		max_events = __oprofile_cpu_pmu->num_events;
520 
521 	return max_events;
522 }
523 EXPORT_SYMBOL_GPL(perf_num_counters);
524 
525 static int armpmu_count_irq_users(const int irq)
526 {
527 	int cpu, count = 0;
528 
529 	for_each_possible_cpu(cpu) {
530 		if (per_cpu(cpu_irq, cpu) == irq)
531 			count++;
532 	}
533 
534 	return count;
535 }
536 
537 void armpmu_free_irq(int irq, int cpu)
538 {
539 	if (per_cpu(cpu_irq, cpu) == 0)
540 		return;
541 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
542 		return;
543 
544 	if (!irq_is_percpu_devid(irq))
545 		free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
546 	else if (armpmu_count_irq_users(irq) == 1)
547 		free_percpu_irq(irq, &cpu_armpmu);
548 
549 	per_cpu(cpu_irq, cpu) = 0;
550 }
551 
552 int armpmu_request_irq(int irq, int cpu)
553 {
554 	int err = 0;
555 	const irq_handler_t handler = armpmu_dispatch_irq;
556 	if (!irq)
557 		return 0;
558 
559 	if (!irq_is_percpu_devid(irq)) {
560 		unsigned long irq_flags;
561 
562 		err = irq_force_affinity(irq, cpumask_of(cpu));
563 
564 		if (err && num_possible_cpus() > 1) {
565 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
566 				irq, cpu);
567 			goto err_out;
568 		}
569 
570 		irq_flags = IRQF_PERCPU |
571 			    IRQF_NOBALANCING |
572 			    IRQF_NO_THREAD;
573 
574 		irq_set_status_flags(irq, IRQ_NOAUTOEN);
575 		err = request_irq(irq, handler, irq_flags, "arm-pmu",
576 				  per_cpu_ptr(&cpu_armpmu, cpu));
577 	} else if (armpmu_count_irq_users(irq) == 0) {
578 		err = request_percpu_irq(irq, handler, "arm-pmu",
579 					 &cpu_armpmu);
580 	}
581 
582 	if (err)
583 		goto err_out;
584 
585 	per_cpu(cpu_irq, cpu) = irq;
586 	return 0;
587 
588 err_out:
589 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
590 	return err;
591 }
592 
593 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
594 {
595 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
596 	return per_cpu(hw_events->irq, cpu);
597 }
598 
599 /*
600  * PMU hardware loses all context when a CPU goes offline.
601  * When a CPU is hotplugged back in, since some hardware registers are
602  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
603  * junk values out of them.
604  */
605 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
606 {
607 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
608 	int irq;
609 
610 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
611 		return 0;
612 	if (pmu->reset)
613 		pmu->reset(pmu);
614 
615 	per_cpu(cpu_armpmu, cpu) = pmu;
616 
617 	irq = armpmu_get_cpu_irq(pmu, cpu);
618 	if (irq) {
619 		if (irq_is_percpu_devid(irq))
620 			enable_percpu_irq(irq, IRQ_TYPE_NONE);
621 		else
622 			enable_irq(irq);
623 	}
624 
625 	return 0;
626 }
627 
628 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
629 {
630 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
631 	int irq;
632 
633 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
634 		return 0;
635 
636 	irq = armpmu_get_cpu_irq(pmu, cpu);
637 	if (irq) {
638 		if (irq_is_percpu_devid(irq))
639 			disable_percpu_irq(irq);
640 		else
641 			disable_irq_nosync(irq);
642 	}
643 
644 	per_cpu(cpu_armpmu, cpu) = NULL;
645 
646 	return 0;
647 }
648 
649 #ifdef CONFIG_CPU_PM
650 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
651 {
652 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
653 	struct perf_event *event;
654 	int idx;
655 
656 	for (idx = 0; idx < armpmu->num_events; idx++) {
657 		/*
658 		 * If the counter is not used skip it, there is no
659 		 * need of stopping/restarting it.
660 		 */
661 		if (!test_bit(idx, hw_events->used_mask))
662 			continue;
663 
664 		event = hw_events->events[idx];
665 
666 		switch (cmd) {
667 		case CPU_PM_ENTER:
668 			/*
669 			 * Stop and update the counter
670 			 */
671 			armpmu_stop(event, PERF_EF_UPDATE);
672 			break;
673 		case CPU_PM_EXIT:
674 		case CPU_PM_ENTER_FAILED:
675 			 /*
676 			  * Restore and enable the counter.
677 			  * armpmu_start() indirectly calls
678 			  *
679 			  * perf_event_update_userpage()
680 			  *
681 			  * that requires RCU read locking to be functional,
682 			  * wrap the call within RCU_NONIDLE to make the
683 			  * RCU subsystem aware this cpu is not idle from
684 			  * an RCU perspective for the armpmu_start() call
685 			  * duration.
686 			  */
687 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
688 			break;
689 		default:
690 			break;
691 		}
692 	}
693 }
694 
695 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
696 			     void *v)
697 {
698 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
699 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
700 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
701 
702 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
703 		return NOTIFY_DONE;
704 
705 	/*
706 	 * Always reset the PMU registers on power-up even if
707 	 * there are no events running.
708 	 */
709 	if (cmd == CPU_PM_EXIT && armpmu->reset)
710 		armpmu->reset(armpmu);
711 
712 	if (!enabled)
713 		return NOTIFY_OK;
714 
715 	switch (cmd) {
716 	case CPU_PM_ENTER:
717 		armpmu->stop(armpmu);
718 		cpu_pm_pmu_setup(armpmu, cmd);
719 		break;
720 	case CPU_PM_EXIT:
721 		cpu_pm_pmu_setup(armpmu, cmd);
722 	case CPU_PM_ENTER_FAILED:
723 		armpmu->start(armpmu);
724 		break;
725 	default:
726 		return NOTIFY_DONE;
727 	}
728 
729 	return NOTIFY_OK;
730 }
731 
732 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
733 {
734 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
735 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
736 }
737 
738 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
739 {
740 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
741 }
742 #else
743 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
744 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
745 #endif
746 
747 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
748 {
749 	int err;
750 
751 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
752 				       &cpu_pmu->node);
753 	if (err)
754 		goto out;
755 
756 	err = cpu_pm_pmu_register(cpu_pmu);
757 	if (err)
758 		goto out_unregister;
759 
760 	return 0;
761 
762 out_unregister:
763 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
764 					    &cpu_pmu->node);
765 out:
766 	return err;
767 }
768 
769 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
770 {
771 	cpu_pm_pmu_unregister(cpu_pmu);
772 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
773 					    &cpu_pmu->node);
774 }
775 
776 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
777 {
778 	struct arm_pmu *pmu;
779 	int cpu;
780 
781 	pmu = kzalloc(sizeof(*pmu), flags);
782 	if (!pmu) {
783 		pr_info("failed to allocate PMU device!\n");
784 		goto out;
785 	}
786 
787 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
788 	if (!pmu->hw_events) {
789 		pr_info("failed to allocate per-cpu PMU data.\n");
790 		goto out_free_pmu;
791 	}
792 
793 	pmu->pmu = (struct pmu) {
794 		.pmu_enable	= armpmu_enable,
795 		.pmu_disable	= armpmu_disable,
796 		.event_init	= armpmu_event_init,
797 		.add		= armpmu_add,
798 		.del		= armpmu_del,
799 		.start		= armpmu_start,
800 		.stop		= armpmu_stop,
801 		.read		= armpmu_read,
802 		.filter_match	= armpmu_filter_match,
803 		.attr_groups	= pmu->attr_groups,
804 		/*
805 		 * This is a CPU PMU potentially in a heterogeneous
806 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
807 		 * and we have taken ctx sharing into account (e.g. with our
808 		 * pmu::filter_match callback and pmu::event_init group
809 		 * validation).
810 		 */
811 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
812 	};
813 
814 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
815 		&armpmu_common_attr_group;
816 
817 	for_each_possible_cpu(cpu) {
818 		struct pmu_hw_events *events;
819 
820 		events = per_cpu_ptr(pmu->hw_events, cpu);
821 		raw_spin_lock_init(&events->pmu_lock);
822 		events->percpu_pmu = pmu;
823 	}
824 
825 	return pmu;
826 
827 out_free_pmu:
828 	kfree(pmu);
829 out:
830 	return NULL;
831 }
832 
833 struct arm_pmu *armpmu_alloc(void)
834 {
835 	return __armpmu_alloc(GFP_KERNEL);
836 }
837 
838 struct arm_pmu *armpmu_alloc_atomic(void)
839 {
840 	return __armpmu_alloc(GFP_ATOMIC);
841 }
842 
843 
844 void armpmu_free(struct arm_pmu *pmu)
845 {
846 	free_percpu(pmu->hw_events);
847 	kfree(pmu);
848 }
849 
850 int armpmu_register(struct arm_pmu *pmu)
851 {
852 	int ret;
853 
854 	ret = cpu_pmu_init(pmu);
855 	if (ret)
856 		return ret;
857 
858 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
859 	if (ret)
860 		goto out_destroy;
861 
862 	if (!__oprofile_cpu_pmu)
863 		__oprofile_cpu_pmu = pmu;
864 
865 	pr_info("enabled with %s PMU driver, %d counters available\n",
866 		pmu->name, pmu->num_events);
867 
868 	return 0;
869 
870 out_destroy:
871 	cpu_pmu_destroy(pmu);
872 	return ret;
873 }
874 
875 static int arm_pmu_hp_init(void)
876 {
877 	int ret;
878 
879 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
880 				      "perf/arm/pmu:starting",
881 				      arm_perf_starting_cpu,
882 				      arm_perf_teardown_cpu);
883 	if (ret)
884 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
885 		       ret);
886 	return ret;
887 }
888 subsys_initcall(arm_pmu_hp_init);
889