1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * ARM CoreSight Architecture PMU driver. 4 * 5 * This driver adds support for uncore PMU based on ARM CoreSight Performance 6 * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and 7 * like other uncore PMUs, it does not support process specific events and 8 * cannot be used in sampling mode. 9 * 10 * This code is based on other uncore PMUs like ARM DSU PMU. It provides a 11 * generic implementation to operate the PMU according to CoreSight PMU 12 * architecture and ACPI ARM PMU table (APMT) documents below: 13 * - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0. 14 * - APMT document number: ARM DEN0117. 15 * 16 * The user should refer to the vendor technical documentation to get details 17 * about the supported events. 18 * 19 * Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. 20 * 21 */ 22 23 #include <linux/acpi.h> 24 #include <linux/cacheinfo.h> 25 #include <linux/ctype.h> 26 #include <linux/interrupt.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/module.h> 29 #include <linux/perf_event.h> 30 #include <linux/platform_device.h> 31 32 #include "arm_cspmu.h" 33 #include "nvidia_cspmu.h" 34 35 #define PMUNAME "arm_cspmu" 36 #define DRVNAME "arm-cs-arch-pmu" 37 38 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \ 39 ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \ 40 (unsigned long)_config) 41 42 /* 43 * CoreSight PMU Arch register offsets. 44 */ 45 #define PMEVCNTR_LO 0x0 46 #define PMEVCNTR_HI 0x4 47 #define PMEVTYPER 0x400 48 #define PMCCFILTR 0x47C 49 #define PMEVFILTR 0xA00 50 #define PMCNTENSET 0xC00 51 #define PMCNTENCLR 0xC20 52 #define PMINTENSET 0xC40 53 #define PMINTENCLR 0xC60 54 #define PMOVSCLR 0xC80 55 #define PMOVSSET 0xCC0 56 #define PMCFGR 0xE00 57 #define PMCR 0xE04 58 #define PMIIDR 0xE08 59 60 /* PMCFGR register field */ 61 #define PMCFGR_NCG GENMASK(31, 28) 62 #define PMCFGR_HDBG BIT(24) 63 #define PMCFGR_TRO BIT(23) 64 #define PMCFGR_SS BIT(22) 65 #define PMCFGR_FZO BIT(21) 66 #define PMCFGR_MSI BIT(20) 67 #define PMCFGR_UEN BIT(19) 68 #define PMCFGR_NA BIT(17) 69 #define PMCFGR_EX BIT(16) 70 #define PMCFGR_CCD BIT(15) 71 #define PMCFGR_CC BIT(14) 72 #define PMCFGR_SIZE GENMASK(13, 8) 73 #define PMCFGR_N GENMASK(7, 0) 74 75 /* PMCR register field */ 76 #define PMCR_TRO BIT(11) 77 #define PMCR_HDBG BIT(10) 78 #define PMCR_FZO BIT(9) 79 #define PMCR_NA BIT(8) 80 #define PMCR_DP BIT(5) 81 #define PMCR_X BIT(4) 82 #define PMCR_D BIT(3) 83 #define PMCR_C BIT(2) 84 #define PMCR_P BIT(1) 85 #define PMCR_E BIT(0) 86 87 /* Each SET/CLR register supports up to 32 counters. */ 88 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5 89 #define ARM_CSPMU_SET_CLR_COUNTER_NUM \ 90 (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT) 91 92 /* Convert counter idx into SET/CLR register number. */ 93 #define COUNTER_TO_SET_CLR_ID(idx) \ 94 (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT) 95 96 /* Convert counter idx into SET/CLR register bit. */ 97 #define COUNTER_TO_SET_CLR_BIT(idx) \ 98 (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1)) 99 100 #define ARM_CSPMU_ACTIVE_CPU_MASK 0x0 101 #define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1 102 103 /* Check and use default if implementer doesn't provide attribute callback */ 104 #define CHECK_DEFAULT_IMPL_OPS(ops, callback) \ 105 do { \ 106 if (!ops->callback) \ 107 ops->callback = arm_cspmu_ ## callback; \ 108 } while (0) 109 110 /* 111 * Maximum poll count for reading counter value using high-low-high sequence. 112 */ 113 #define HILOHI_MAX_POLL 1000 114 115 /* JEDEC-assigned JEP106 identification code */ 116 #define ARM_CSPMU_IMPL_ID_NVIDIA 0x36B 117 118 static unsigned long arm_cspmu_cpuhp_state; 119 120 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev) 121 { 122 return *(struct acpi_apmt_node **)dev_get_platdata(dev); 123 } 124 125 /* 126 * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except 127 * counter register. The counter register can be implemented as 32-bit or 64-bit 128 * register depending on the value of PMCFGR.SIZE field. For 64-bit access, 129 * single-copy 64-bit atomic support is implementation defined. APMT node flag 130 * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit 131 * single copy atomic is not supported, the driver treats the register as a pair 132 * of 32-bit register. 133 */ 134 135 /* 136 * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence. 137 */ 138 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count) 139 { 140 u32 val_lo, val_hi; 141 u64 val; 142 143 /* Use high-low-high sequence to avoid tearing */ 144 do { 145 if (max_poll_count-- == 0) { 146 pr_err("ARM CSPMU: timeout hi-low-high sequence\n"); 147 return 0; 148 } 149 150 val_hi = readl(addr + 4); 151 val_lo = readl(addr); 152 } while (val_hi != readl(addr + 4)); 153 154 val = (((u64)val_hi << 32) | val_lo); 155 156 return val; 157 } 158 159 /* Check if cycle counter is supported. */ 160 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu) 161 { 162 return (cspmu->pmcfgr & PMCFGR_CC); 163 } 164 165 /* Get counter size, which is (PMCFGR_SIZE + 1). */ 166 static inline u32 counter_size(const struct arm_cspmu *cspmu) 167 { 168 return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1; 169 } 170 171 /* Get counter mask. */ 172 static inline u64 counter_mask(const struct arm_cspmu *cspmu) 173 { 174 return GENMASK_ULL(counter_size(cspmu) - 1, 0); 175 } 176 177 /* Check if counter is implemented as 64-bit register. */ 178 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu) 179 { 180 return (counter_size(cspmu) > 32); 181 } 182 183 ssize_t arm_cspmu_sysfs_event_show(struct device *dev, 184 struct device_attribute *attr, char *buf) 185 { 186 struct perf_pmu_events_attr *pmu_attr; 187 188 pmu_attr = container_of(attr, typeof(*pmu_attr), attr); 189 return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id); 190 } 191 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show); 192 193 /* Default event list. */ 194 static struct attribute *arm_cspmu_event_attrs[] = { 195 ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT), 196 NULL, 197 }; 198 199 static struct attribute ** 200 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu) 201 { 202 struct attribute **attrs; 203 204 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs, 205 sizeof(arm_cspmu_event_attrs), GFP_KERNEL); 206 207 return attrs; 208 } 209 210 static umode_t 211 arm_cspmu_event_attr_is_visible(struct kobject *kobj, 212 struct attribute *attr, int unused) 213 { 214 struct device *dev = kobj_to_dev(kobj); 215 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); 216 struct perf_pmu_events_attr *eattr; 217 218 eattr = container_of(attr, typeof(*eattr), attr.attr); 219 220 /* Hide cycle event if not supported */ 221 if (!supports_cycle_counter(cspmu) && 222 eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT) 223 return 0; 224 225 return attr->mode; 226 } 227 228 ssize_t arm_cspmu_sysfs_format_show(struct device *dev, 229 struct device_attribute *attr, 230 char *buf) 231 { 232 struct dev_ext_attribute *eattr = 233 container_of(attr, struct dev_ext_attribute, attr); 234 return sysfs_emit(buf, "%s\n", (char *)eattr->var); 235 } 236 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show); 237 238 static struct attribute *arm_cspmu_format_attrs[] = { 239 ARM_CSPMU_FORMAT_EVENT_ATTR, 240 ARM_CSPMU_FORMAT_FILTER_ATTR, 241 NULL, 242 }; 243 244 static struct attribute ** 245 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu) 246 { 247 struct attribute **attrs; 248 249 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs, 250 sizeof(arm_cspmu_format_attrs), GFP_KERNEL); 251 252 return attrs; 253 } 254 255 static u32 arm_cspmu_event_type(const struct perf_event *event) 256 { 257 return event->attr.config & ARM_CSPMU_EVENT_MASK; 258 } 259 260 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event) 261 { 262 return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT); 263 } 264 265 static u32 arm_cspmu_event_filter(const struct perf_event *event) 266 { 267 return event->attr.config1 & ARM_CSPMU_FILTER_MASK; 268 } 269 270 static ssize_t arm_cspmu_identifier_show(struct device *dev, 271 struct device_attribute *attr, 272 char *page) 273 { 274 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); 275 276 return sysfs_emit(page, "%s\n", cspmu->identifier); 277 } 278 279 static struct device_attribute arm_cspmu_identifier_attr = 280 __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL); 281 282 static struct attribute *arm_cspmu_identifier_attrs[] = { 283 &arm_cspmu_identifier_attr.attr, 284 NULL, 285 }; 286 287 static struct attribute_group arm_cspmu_identifier_attr_group = { 288 .attrs = arm_cspmu_identifier_attrs, 289 }; 290 291 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu) 292 { 293 const char *identifier = 294 devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x", 295 cspmu->impl.pmiidr); 296 return identifier; 297 } 298 299 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = { 300 "mc", 301 "smmu", 302 "pcie", 303 "acpi", 304 "cache", 305 }; 306 307 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu) 308 { 309 struct device *dev; 310 struct acpi_apmt_node *apmt_node; 311 u8 pmu_type; 312 char *name; 313 char acpi_hid_string[ACPI_ID_LEN] = { 0 }; 314 static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 }; 315 316 dev = cspmu->dev; 317 apmt_node = arm_cspmu_apmt_node(dev); 318 pmu_type = apmt_node->type; 319 320 if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) { 321 dev_err(dev, "unsupported PMU type-%u\n", pmu_type); 322 return NULL; 323 } 324 325 if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) { 326 memcpy(acpi_hid_string, 327 &apmt_node->inst_primary, 328 sizeof(apmt_node->inst_primary)); 329 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME, 330 arm_cspmu_type_str[pmu_type], 331 acpi_hid_string, 332 apmt_node->inst_secondary); 333 } else { 334 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME, 335 arm_cspmu_type_str[pmu_type], 336 atomic_fetch_inc(&pmu_idx[pmu_type])); 337 } 338 339 return name; 340 } 341 342 static ssize_t arm_cspmu_cpumask_show(struct device *dev, 343 struct device_attribute *attr, 344 char *buf) 345 { 346 struct pmu *pmu = dev_get_drvdata(dev); 347 struct arm_cspmu *cspmu = to_arm_cspmu(pmu); 348 struct dev_ext_attribute *eattr = 349 container_of(attr, struct dev_ext_attribute, attr); 350 unsigned long mask_id = (unsigned long)eattr->var; 351 const cpumask_t *cpumask; 352 353 switch (mask_id) { 354 case ARM_CSPMU_ACTIVE_CPU_MASK: 355 cpumask = &cspmu->active_cpu; 356 break; 357 case ARM_CSPMU_ASSOCIATED_CPU_MASK: 358 cpumask = &cspmu->associated_cpus; 359 break; 360 default: 361 return 0; 362 } 363 return cpumap_print_to_pagebuf(true, buf, cpumask); 364 } 365 366 static struct attribute *arm_cspmu_cpumask_attrs[] = { 367 ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK), 368 ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK), 369 NULL, 370 }; 371 372 static struct attribute_group arm_cspmu_cpumask_attr_group = { 373 .attrs = arm_cspmu_cpumask_attrs, 374 }; 375 376 struct impl_match { 377 u32 pmiidr; 378 u32 mask; 379 int (*impl_init_ops)(struct arm_cspmu *cspmu); 380 }; 381 382 static const struct impl_match impl_match[] = { 383 { 384 .pmiidr = ARM_CSPMU_IMPL_ID_NVIDIA, 385 .mask = ARM_CSPMU_PMIIDR_IMPLEMENTER, 386 .impl_init_ops = nv_cspmu_init_ops 387 }, 388 {} 389 }; 390 391 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu) 392 { 393 int ret; 394 struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; 395 struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev); 396 const struct impl_match *match = impl_match; 397 398 /* 399 * Get PMU implementer and product id from APMT node. 400 * If APMT node doesn't have implementer/product id, try get it 401 * from PMIIDR. 402 */ 403 cspmu->impl.pmiidr = 404 (apmt_node->impl_id) ? apmt_node->impl_id : 405 readl(cspmu->base0 + PMIIDR); 406 407 /* Find implementer specific attribute ops. */ 408 for (; match->pmiidr; match++) { 409 const u32 mask = match->mask; 410 411 if ((match->pmiidr & mask) == (cspmu->impl.pmiidr & mask)) { 412 ret = match->impl_init_ops(cspmu); 413 if (ret) 414 return ret; 415 416 break; 417 } 418 } 419 420 /* Use default callbacks if implementer doesn't provide one. */ 421 CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs); 422 CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs); 423 CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier); 424 CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name); 425 CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event); 426 CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type); 427 CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter); 428 CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible); 429 430 return 0; 431 } 432 433 static struct attribute_group * 434 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu) 435 { 436 struct attribute_group *event_group; 437 struct device *dev = cspmu->dev; 438 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; 439 440 event_group = 441 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); 442 if (!event_group) 443 return NULL; 444 445 event_group->name = "events"; 446 event_group->is_visible = impl_ops->event_attr_is_visible; 447 event_group->attrs = impl_ops->get_event_attrs(cspmu); 448 449 if (!event_group->attrs) 450 return NULL; 451 452 return event_group; 453 } 454 455 static struct attribute_group * 456 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu) 457 { 458 struct attribute_group *format_group; 459 struct device *dev = cspmu->dev; 460 461 format_group = 462 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); 463 if (!format_group) 464 return NULL; 465 466 format_group->name = "format"; 467 format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu); 468 469 if (!format_group->attrs) 470 return NULL; 471 472 return format_group; 473 } 474 475 static struct attribute_group ** 476 arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu) 477 { 478 struct attribute_group **attr_groups = NULL; 479 struct device *dev = cspmu->dev; 480 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; 481 int ret; 482 483 ret = arm_cspmu_init_impl_ops(cspmu); 484 if (ret) 485 return NULL; 486 487 cspmu->identifier = impl_ops->get_identifier(cspmu); 488 cspmu->name = impl_ops->get_name(cspmu); 489 490 if (!cspmu->identifier || !cspmu->name) 491 return NULL; 492 493 attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *), 494 GFP_KERNEL); 495 if (!attr_groups) 496 return NULL; 497 498 attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu); 499 attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu); 500 attr_groups[2] = &arm_cspmu_identifier_attr_group; 501 attr_groups[3] = &arm_cspmu_cpumask_attr_group; 502 503 if (!attr_groups[0] || !attr_groups[1]) 504 return NULL; 505 506 return attr_groups; 507 } 508 509 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu) 510 { 511 u32 pmcr = 0; 512 513 pmcr |= PMCR_P; 514 pmcr |= PMCR_C; 515 writel(pmcr, cspmu->base0 + PMCR); 516 } 517 518 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu) 519 { 520 writel(PMCR_E, cspmu->base0 + PMCR); 521 } 522 523 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu) 524 { 525 writel(0, cspmu->base0 + PMCR); 526 } 527 528 static void arm_cspmu_enable(struct pmu *pmu) 529 { 530 bool disabled; 531 struct arm_cspmu *cspmu = to_arm_cspmu(pmu); 532 533 disabled = bitmap_empty(cspmu->hw_events.used_ctrs, 534 cspmu->num_logical_ctrs); 535 536 if (disabled) 537 return; 538 539 arm_cspmu_start_counters(cspmu); 540 } 541 542 static void arm_cspmu_disable(struct pmu *pmu) 543 { 544 struct arm_cspmu *cspmu = to_arm_cspmu(pmu); 545 546 arm_cspmu_stop_counters(cspmu); 547 } 548 549 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events, 550 struct perf_event *event) 551 { 552 int idx; 553 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 554 555 if (supports_cycle_counter(cspmu)) { 556 if (cspmu->impl.ops.is_cycle_counter_event(event)) { 557 /* Search for available cycle counter. */ 558 if (test_and_set_bit(cspmu->cycle_counter_logical_idx, 559 hw_events->used_ctrs)) 560 return -EAGAIN; 561 562 return cspmu->cycle_counter_logical_idx; 563 } 564 565 /* 566 * Search a regular counter from the used counter bitmap. 567 * The cycle counter divides the bitmap into two parts. Search 568 * the first then second half to exclude the cycle counter bit. 569 */ 570 idx = find_first_zero_bit(hw_events->used_ctrs, 571 cspmu->cycle_counter_logical_idx); 572 if (idx >= cspmu->cycle_counter_logical_idx) { 573 idx = find_next_zero_bit( 574 hw_events->used_ctrs, 575 cspmu->num_logical_ctrs, 576 cspmu->cycle_counter_logical_idx + 1); 577 } 578 } else { 579 idx = find_first_zero_bit(hw_events->used_ctrs, 580 cspmu->num_logical_ctrs); 581 } 582 583 if (idx >= cspmu->num_logical_ctrs) 584 return -EAGAIN; 585 586 set_bit(idx, hw_events->used_ctrs); 587 588 return idx; 589 } 590 591 static bool arm_cspmu_validate_event(struct pmu *pmu, 592 struct arm_cspmu_hw_events *hw_events, 593 struct perf_event *event) 594 { 595 if (is_software_event(event)) 596 return true; 597 598 /* Reject groups spanning multiple HW PMUs. */ 599 if (event->pmu != pmu) 600 return false; 601 602 return (arm_cspmu_get_event_idx(hw_events, event) >= 0); 603 } 604 605 /* 606 * Make sure the group of events can be scheduled at once 607 * on the PMU. 608 */ 609 static bool arm_cspmu_validate_group(struct perf_event *event) 610 { 611 struct perf_event *sibling, *leader = event->group_leader; 612 struct arm_cspmu_hw_events fake_hw_events; 613 614 if (event->group_leader == event) 615 return true; 616 617 memset(&fake_hw_events, 0, sizeof(fake_hw_events)); 618 619 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader)) 620 return false; 621 622 for_each_sibling_event(sibling, leader) { 623 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, 624 sibling)) 625 return false; 626 } 627 628 return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event); 629 } 630 631 static int arm_cspmu_event_init(struct perf_event *event) 632 { 633 struct arm_cspmu *cspmu; 634 struct hw_perf_event *hwc = &event->hw; 635 636 cspmu = to_arm_cspmu(event->pmu); 637 638 if (event->attr.type != event->pmu->type) 639 return -ENOENT; 640 641 /* 642 * Following other "uncore" PMUs, we do not support sampling mode or 643 * attach to a task (per-process mode). 644 */ 645 if (is_sampling_event(event)) { 646 dev_dbg(cspmu->pmu.dev, 647 "Can't support sampling events\n"); 648 return -EOPNOTSUPP; 649 } 650 651 if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) { 652 dev_dbg(cspmu->pmu.dev, 653 "Can't support per-task counters\n"); 654 return -EINVAL; 655 } 656 657 /* 658 * Make sure the CPU assignment is on one of the CPUs associated with 659 * this PMU. 660 */ 661 if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) { 662 dev_dbg(cspmu->pmu.dev, 663 "Requested cpu is not associated with the PMU\n"); 664 return -EINVAL; 665 } 666 667 /* Enforce the current active CPU to handle the events in this PMU. */ 668 event->cpu = cpumask_first(&cspmu->active_cpu); 669 if (event->cpu >= nr_cpu_ids) 670 return -EINVAL; 671 672 if (!arm_cspmu_validate_group(event)) 673 return -EINVAL; 674 675 /* 676 * The logical counter id is tracked with hw_perf_event.extra_reg.idx. 677 * The physical counter id is tracked with hw_perf_event.idx. 678 * We don't assign an index until we actually place the event onto 679 * hardware. Use -1 to signify that we haven't decided where to put it 680 * yet. 681 */ 682 hwc->idx = -1; 683 hwc->extra_reg.idx = -1; 684 hwc->config = cspmu->impl.ops.event_type(event); 685 686 return 0; 687 } 688 689 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx) 690 { 691 return (PMEVCNTR_LO + (reg_sz * ctr_idx)); 692 } 693 694 static void arm_cspmu_write_counter(struct perf_event *event, u64 val) 695 { 696 u32 offset; 697 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 698 699 if (use_64b_counter_reg(cspmu)) { 700 offset = counter_offset(sizeof(u64), event->hw.idx); 701 702 writeq(val, cspmu->base1 + offset); 703 } else { 704 offset = counter_offset(sizeof(u32), event->hw.idx); 705 706 writel(lower_32_bits(val), cspmu->base1 + offset); 707 } 708 } 709 710 static u64 arm_cspmu_read_counter(struct perf_event *event) 711 { 712 u32 offset; 713 const void __iomem *counter_addr; 714 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 715 716 if (use_64b_counter_reg(cspmu)) { 717 offset = counter_offset(sizeof(u64), event->hw.idx); 718 counter_addr = cspmu->base1 + offset; 719 720 return cspmu->has_atomic_dword ? 721 readq(counter_addr) : 722 read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL); 723 } 724 725 offset = counter_offset(sizeof(u32), event->hw.idx); 726 return readl(cspmu->base1 + offset); 727 } 728 729 /* 730 * arm_cspmu_set_event_period: Set the period for the counter. 731 * 732 * To handle cases of extreme interrupt latency, we program 733 * the counter with half of the max count for the counters. 734 */ 735 static void arm_cspmu_set_event_period(struct perf_event *event) 736 { 737 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 738 u64 val = counter_mask(cspmu) >> 1ULL; 739 740 local64_set(&event->hw.prev_count, val); 741 arm_cspmu_write_counter(event, val); 742 } 743 744 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx) 745 { 746 u32 reg_id, reg_bit, inten_off, cnten_off; 747 748 reg_id = COUNTER_TO_SET_CLR_ID(idx); 749 reg_bit = COUNTER_TO_SET_CLR_BIT(idx); 750 751 inten_off = PMINTENSET + (4 * reg_id); 752 cnten_off = PMCNTENSET + (4 * reg_id); 753 754 writel(BIT(reg_bit), cspmu->base0 + inten_off); 755 writel(BIT(reg_bit), cspmu->base0 + cnten_off); 756 } 757 758 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx) 759 { 760 u32 reg_id, reg_bit, inten_off, cnten_off; 761 762 reg_id = COUNTER_TO_SET_CLR_ID(idx); 763 reg_bit = COUNTER_TO_SET_CLR_BIT(idx); 764 765 inten_off = PMINTENCLR + (4 * reg_id); 766 cnten_off = PMCNTENCLR + (4 * reg_id); 767 768 writel(BIT(reg_bit), cspmu->base0 + cnten_off); 769 writel(BIT(reg_bit), cspmu->base0 + inten_off); 770 } 771 772 static void arm_cspmu_event_update(struct perf_event *event) 773 { 774 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 775 struct hw_perf_event *hwc = &event->hw; 776 u64 delta, prev, now; 777 778 do { 779 prev = local64_read(&hwc->prev_count); 780 now = arm_cspmu_read_counter(event); 781 } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev); 782 783 delta = (now - prev) & counter_mask(cspmu); 784 local64_add(delta, &event->count); 785 } 786 787 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu, 788 struct hw_perf_event *hwc) 789 { 790 u32 offset = PMEVTYPER + (4 * hwc->idx); 791 792 writel(hwc->config, cspmu->base0 + offset); 793 } 794 795 static inline void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu, 796 struct hw_perf_event *hwc, 797 u32 filter) 798 { 799 u32 offset = PMEVFILTR + (4 * hwc->idx); 800 801 writel(filter, cspmu->base0 + offset); 802 } 803 804 static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter) 805 { 806 u32 offset = PMCCFILTR; 807 808 writel(filter, cspmu->base0 + offset); 809 } 810 811 static void arm_cspmu_start(struct perf_event *event, int pmu_flags) 812 { 813 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 814 struct hw_perf_event *hwc = &event->hw; 815 u32 filter; 816 817 /* We always reprogram the counter */ 818 if (pmu_flags & PERF_EF_RELOAD) 819 WARN_ON(!(hwc->state & PERF_HES_UPTODATE)); 820 821 arm_cspmu_set_event_period(event); 822 823 filter = cspmu->impl.ops.event_filter(event); 824 825 if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) { 826 arm_cspmu_set_cc_filter(cspmu, filter); 827 } else { 828 arm_cspmu_set_event(cspmu, hwc); 829 arm_cspmu_set_ev_filter(cspmu, hwc, filter); 830 } 831 832 hwc->state = 0; 833 834 arm_cspmu_enable_counter(cspmu, hwc->idx); 835 } 836 837 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags) 838 { 839 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 840 struct hw_perf_event *hwc = &event->hw; 841 842 if (hwc->state & PERF_HES_STOPPED) 843 return; 844 845 arm_cspmu_disable_counter(cspmu, hwc->idx); 846 arm_cspmu_event_update(event); 847 848 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 849 } 850 851 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx) 852 { 853 return (idx == cspmu->cycle_counter_logical_idx) ? 854 ARM_CSPMU_CYCLE_CNTR_IDX : idx; 855 } 856 857 static int arm_cspmu_add(struct perf_event *event, int flags) 858 { 859 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 860 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; 861 struct hw_perf_event *hwc = &event->hw; 862 int idx; 863 864 if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), 865 &cspmu->associated_cpus))) 866 return -ENOENT; 867 868 idx = arm_cspmu_get_event_idx(hw_events, event); 869 if (idx < 0) 870 return idx; 871 872 hw_events->events[idx] = event; 873 hwc->idx = to_phys_idx(cspmu, idx); 874 hwc->extra_reg.idx = idx; 875 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 876 877 if (flags & PERF_EF_START) 878 arm_cspmu_start(event, PERF_EF_RELOAD); 879 880 /* Propagate changes to the userspace mapping. */ 881 perf_event_update_userpage(event); 882 883 return 0; 884 } 885 886 static void arm_cspmu_del(struct perf_event *event, int flags) 887 { 888 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); 889 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; 890 struct hw_perf_event *hwc = &event->hw; 891 int idx = hwc->extra_reg.idx; 892 893 arm_cspmu_stop(event, PERF_EF_UPDATE); 894 895 hw_events->events[idx] = NULL; 896 897 clear_bit(idx, hw_events->used_ctrs); 898 899 perf_event_update_userpage(event); 900 } 901 902 static void arm_cspmu_read(struct perf_event *event) 903 { 904 arm_cspmu_event_update(event); 905 } 906 907 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev) 908 { 909 struct acpi_apmt_node *apmt_node; 910 struct arm_cspmu *cspmu; 911 struct device *dev = &pdev->dev; 912 913 cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL); 914 if (!cspmu) 915 return NULL; 916 917 cspmu->dev = dev; 918 platform_set_drvdata(pdev, cspmu); 919 920 apmt_node = arm_cspmu_apmt_node(dev); 921 cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC; 922 923 return cspmu; 924 } 925 926 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu) 927 { 928 struct device *dev; 929 struct platform_device *pdev; 930 931 dev = cspmu->dev; 932 pdev = to_platform_device(dev); 933 934 /* Base address for page 0. */ 935 cspmu->base0 = devm_platform_ioremap_resource(pdev, 0); 936 if (IS_ERR(cspmu->base0)) { 937 dev_err(dev, "ioremap failed for page-0 resource\n"); 938 return PTR_ERR(cspmu->base0); 939 } 940 941 /* Base address for page 1 if supported. Otherwise point to page 0. */ 942 cspmu->base1 = cspmu->base0; 943 if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) { 944 cspmu->base1 = devm_platform_ioremap_resource(pdev, 1); 945 if (IS_ERR(cspmu->base1)) { 946 dev_err(dev, "ioremap failed for page-1 resource\n"); 947 return PTR_ERR(cspmu->base1); 948 } 949 } 950 951 cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR); 952 953 cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1; 954 955 cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS; 956 957 if (supports_cycle_counter(cspmu)) { 958 /* 959 * The last logical counter is mapped to cycle counter if 960 * there is a gap between regular and cycle counter. Otherwise, 961 * logical and physical have 1-to-1 mapping. 962 */ 963 cspmu->cycle_counter_logical_idx = 964 (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ? 965 cspmu->num_logical_ctrs - 1 : 966 ARM_CSPMU_CYCLE_CNTR_IDX; 967 } 968 969 cspmu->num_set_clr_reg = 970 DIV_ROUND_UP(cspmu->num_logical_ctrs, 971 ARM_CSPMU_SET_CLR_COUNTER_NUM); 972 973 cspmu->hw_events.events = 974 devm_kcalloc(dev, cspmu->num_logical_ctrs, 975 sizeof(*cspmu->hw_events.events), GFP_KERNEL); 976 977 if (!cspmu->hw_events.events) 978 return -ENOMEM; 979 980 return 0; 981 } 982 983 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu, 984 u32 *pmovs) 985 { 986 int i; 987 u32 pmovclr_offset = PMOVSCLR; 988 u32 has_overflowed = 0; 989 990 for (i = 0; i < cspmu->num_set_clr_reg; ++i) { 991 pmovs[i] = readl(cspmu->base1 + pmovclr_offset); 992 has_overflowed |= pmovs[i]; 993 writel(pmovs[i], cspmu->base1 + pmovclr_offset); 994 pmovclr_offset += sizeof(u32); 995 } 996 997 return has_overflowed != 0; 998 } 999 1000 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev) 1001 { 1002 int idx, has_overflowed; 1003 struct perf_event *event; 1004 struct arm_cspmu *cspmu = dev; 1005 DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS); 1006 bool handled = false; 1007 1008 arm_cspmu_stop_counters(cspmu); 1009 1010 has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs); 1011 if (!has_overflowed) 1012 goto done; 1013 1014 for_each_set_bit(idx, cspmu->hw_events.used_ctrs, 1015 cspmu->num_logical_ctrs) { 1016 event = cspmu->hw_events.events[idx]; 1017 1018 if (!event) 1019 continue; 1020 1021 if (!test_bit(event->hw.idx, pmovs)) 1022 continue; 1023 1024 arm_cspmu_event_update(event); 1025 arm_cspmu_set_event_period(event); 1026 1027 handled = true; 1028 } 1029 1030 done: 1031 arm_cspmu_start_counters(cspmu); 1032 return IRQ_RETVAL(handled); 1033 } 1034 1035 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu) 1036 { 1037 int irq, ret; 1038 struct device *dev; 1039 struct platform_device *pdev; 1040 1041 dev = cspmu->dev; 1042 pdev = to_platform_device(dev); 1043 1044 /* Skip IRQ request if the PMU does not support overflow interrupt. */ 1045 irq = platform_get_irq_optional(pdev, 0); 1046 if (irq < 0) 1047 return irq == -ENXIO ? 0 : irq; 1048 1049 ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq, 1050 IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev), 1051 cspmu); 1052 if (ret) { 1053 dev_err(dev, "Could not request IRQ %d\n", irq); 1054 return ret; 1055 } 1056 1057 cspmu->irq = irq; 1058 1059 return 0; 1060 } 1061 1062 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64) 1063 #include <acpi/processor.h> 1064 1065 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid) 1066 { 1067 u32 acpi_uid; 1068 struct device *cpu_dev; 1069 struct acpi_device *acpi_dev; 1070 1071 cpu_dev = get_cpu_device(cpu); 1072 if (!cpu_dev) 1073 return -ENODEV; 1074 1075 acpi_dev = ACPI_COMPANION(cpu_dev); 1076 while (acpi_dev) { 1077 if (!strcmp(acpi_device_hid(acpi_dev), 1078 ACPI_PROCESSOR_CONTAINER_HID) && 1079 !kstrtouint(acpi_device_uid(acpi_dev), 0, &acpi_uid) && 1080 acpi_uid == container_uid) 1081 return 0; 1082 1083 acpi_dev = acpi_dev_parent(acpi_dev); 1084 } 1085 1086 return -ENODEV; 1087 } 1088 1089 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu) 1090 { 1091 struct acpi_apmt_node *apmt_node; 1092 int affinity_flag; 1093 int cpu; 1094 1095 apmt_node = arm_cspmu_apmt_node(cspmu->dev); 1096 affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY; 1097 1098 if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) { 1099 for_each_possible_cpu(cpu) { 1100 if (apmt_node->proc_affinity == 1101 get_acpi_id_for_cpu(cpu)) { 1102 cpumask_set_cpu(cpu, &cspmu->associated_cpus); 1103 break; 1104 } 1105 } 1106 } else { 1107 for_each_possible_cpu(cpu) { 1108 if (arm_cspmu_find_cpu_container( 1109 cpu, apmt_node->proc_affinity)) 1110 continue; 1111 1112 cpumask_set_cpu(cpu, &cspmu->associated_cpus); 1113 } 1114 } 1115 1116 if (cpumask_empty(&cspmu->associated_cpus)) { 1117 dev_dbg(cspmu->dev, "No cpu associated with the PMU\n"); 1118 return -ENODEV; 1119 } 1120 1121 return 0; 1122 } 1123 #else 1124 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu) 1125 { 1126 return -ENODEV; 1127 } 1128 #endif 1129 1130 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu) 1131 { 1132 return arm_cspmu_acpi_get_cpus(cspmu); 1133 } 1134 1135 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu) 1136 { 1137 int ret, capabilities; 1138 struct attribute_group **attr_groups; 1139 1140 attr_groups = arm_cspmu_alloc_attr_group(cspmu); 1141 if (!attr_groups) 1142 return -ENOMEM; 1143 1144 ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state, 1145 &cspmu->cpuhp_node); 1146 if (ret) 1147 return ret; 1148 1149 capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1150 if (cspmu->irq == 0) 1151 capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1152 1153 cspmu->pmu = (struct pmu){ 1154 .task_ctx_nr = perf_invalid_context, 1155 .module = THIS_MODULE, 1156 .pmu_enable = arm_cspmu_enable, 1157 .pmu_disable = arm_cspmu_disable, 1158 .event_init = arm_cspmu_event_init, 1159 .add = arm_cspmu_add, 1160 .del = arm_cspmu_del, 1161 .start = arm_cspmu_start, 1162 .stop = arm_cspmu_stop, 1163 .read = arm_cspmu_read, 1164 .attr_groups = (const struct attribute_group **)attr_groups, 1165 .capabilities = capabilities, 1166 }; 1167 1168 /* Hardware counter init */ 1169 arm_cspmu_stop_counters(cspmu); 1170 arm_cspmu_reset_counters(cspmu); 1171 1172 ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1); 1173 if (ret) { 1174 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, 1175 &cspmu->cpuhp_node); 1176 } 1177 1178 return ret; 1179 } 1180 1181 static int arm_cspmu_device_probe(struct platform_device *pdev) 1182 { 1183 int ret; 1184 struct arm_cspmu *cspmu; 1185 1186 cspmu = arm_cspmu_alloc(pdev); 1187 if (!cspmu) 1188 return -ENOMEM; 1189 1190 ret = arm_cspmu_init_mmio(cspmu); 1191 if (ret) 1192 return ret; 1193 1194 ret = arm_cspmu_request_irq(cspmu); 1195 if (ret) 1196 return ret; 1197 1198 ret = arm_cspmu_get_cpus(cspmu); 1199 if (ret) 1200 return ret; 1201 1202 ret = arm_cspmu_register_pmu(cspmu); 1203 if (ret) 1204 return ret; 1205 1206 return 0; 1207 } 1208 1209 static int arm_cspmu_device_remove(struct platform_device *pdev) 1210 { 1211 struct arm_cspmu *cspmu = platform_get_drvdata(pdev); 1212 1213 perf_pmu_unregister(&cspmu->pmu); 1214 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node); 1215 1216 return 0; 1217 } 1218 1219 static const struct platform_device_id arm_cspmu_id[] = { 1220 {DRVNAME, 0}, 1221 { }, 1222 }; 1223 MODULE_DEVICE_TABLE(platform, arm_cspmu_id); 1224 1225 static struct platform_driver arm_cspmu_driver = { 1226 .driver = { 1227 .name = DRVNAME, 1228 .suppress_bind_attrs = true, 1229 }, 1230 .probe = arm_cspmu_device_probe, 1231 .remove = arm_cspmu_device_remove, 1232 .id_table = arm_cspmu_id, 1233 }; 1234 1235 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu) 1236 { 1237 cpumask_set_cpu(cpu, &cspmu->active_cpu); 1238 if (cspmu->irq) 1239 WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu)); 1240 } 1241 1242 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node) 1243 { 1244 struct arm_cspmu *cspmu = 1245 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); 1246 1247 if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus)) 1248 return 0; 1249 1250 /* If the PMU is already managed, there is nothing to do */ 1251 if (!cpumask_empty(&cspmu->active_cpu)) 1252 return 0; 1253 1254 /* Use this CPU for event counting */ 1255 arm_cspmu_set_active_cpu(cpu, cspmu); 1256 1257 return 0; 1258 } 1259 1260 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1261 { 1262 int dst; 1263 struct cpumask online_supported; 1264 1265 struct arm_cspmu *cspmu = 1266 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); 1267 1268 /* Nothing to do if this CPU doesn't own the PMU */ 1269 if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu)) 1270 return 0; 1271 1272 /* Choose a new CPU to migrate ownership of the PMU to */ 1273 cpumask_and(&online_supported, &cspmu->associated_cpus, 1274 cpu_online_mask); 1275 dst = cpumask_any_but(&online_supported, cpu); 1276 if (dst >= nr_cpu_ids) 1277 return 0; 1278 1279 /* Use this CPU for event counting */ 1280 perf_pmu_migrate_context(&cspmu->pmu, cpu, dst); 1281 arm_cspmu_set_active_cpu(dst, cspmu); 1282 1283 return 0; 1284 } 1285 1286 static int __init arm_cspmu_init(void) 1287 { 1288 int ret; 1289 1290 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 1291 "perf/arm/cspmu:online", 1292 arm_cspmu_cpu_online, 1293 arm_cspmu_cpu_teardown); 1294 if (ret < 0) 1295 return ret; 1296 arm_cspmu_cpuhp_state = ret; 1297 return platform_driver_register(&arm_cspmu_driver); 1298 } 1299 1300 static void __exit arm_cspmu_exit(void) 1301 { 1302 platform_driver_unregister(&arm_cspmu_driver); 1303 cpuhp_remove_multi_state(arm_cspmu_cpuhp_state); 1304 } 1305 1306 module_init(arm_cspmu_init); 1307 module_exit(arm_cspmu_exit); 1308 1309 MODULE_LICENSE("GPL v2"); 1310