xref: /openbmc/linux/drivers/perf/arm_cspmu/arm_cspmu.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARM CoreSight Architecture PMU driver.
4  *
5  * This driver adds support for uncore PMU based on ARM CoreSight Performance
6  * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7  * like other uncore PMUs, it does not support process specific events and
8  * cannot be used in sampling mode.
9  *
10  * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11  * generic implementation to operate the PMU according to CoreSight PMU
12  * architecture and ACPI ARM PMU table (APMT) documents below:
13  *   - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14  *   - APMT document number: ARM DEN0117.
15  *
16  * The user should refer to the vendor technical documentation to get details
17  * about the supported events.
18  *
19  * Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20  *
21  */
22 
23 #include <linux/acpi.h>
24 #include <linux/cacheinfo.h>
25 #include <linux/ctype.h>
26 #include <linux/interrupt.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/module.h>
29 #include <linux/perf_event.h>
30 #include <linux/platform_device.h>
31 #include <acpi/processor.h>
32 
33 #include "arm_cspmu.h"
34 #include "nvidia_cspmu.h"
35 
36 #define PMUNAME "arm_cspmu"
37 #define DRVNAME "arm-cs-arch-pmu"
38 
39 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config)			\
40 	ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show,	\
41 				(unsigned long)_config)
42 
43 /*
44  * CoreSight PMU Arch register offsets.
45  */
46 #define PMEVCNTR_LO					0x0
47 #define PMEVCNTR_HI					0x4
48 #define PMEVTYPER					0x400
49 #define PMCCFILTR					0x47C
50 #define PMEVFILTR					0xA00
51 #define PMCNTENSET					0xC00
52 #define PMCNTENCLR					0xC20
53 #define PMINTENSET					0xC40
54 #define PMINTENCLR					0xC60
55 #define PMOVSCLR					0xC80
56 #define PMOVSSET					0xCC0
57 #define PMCFGR						0xE00
58 #define PMCR						0xE04
59 #define PMIIDR						0xE08
60 
61 /* PMCFGR register field */
62 #define PMCFGR_NCG					GENMASK(31, 28)
63 #define PMCFGR_HDBG					BIT(24)
64 #define PMCFGR_TRO					BIT(23)
65 #define PMCFGR_SS					BIT(22)
66 #define PMCFGR_FZO					BIT(21)
67 #define PMCFGR_MSI					BIT(20)
68 #define PMCFGR_UEN					BIT(19)
69 #define PMCFGR_NA					BIT(17)
70 #define PMCFGR_EX					BIT(16)
71 #define PMCFGR_CCD					BIT(15)
72 #define PMCFGR_CC					BIT(14)
73 #define PMCFGR_SIZE					GENMASK(13, 8)
74 #define PMCFGR_N					GENMASK(7, 0)
75 
76 /* PMCR register field */
77 #define PMCR_TRO					BIT(11)
78 #define PMCR_HDBG					BIT(10)
79 #define PMCR_FZO					BIT(9)
80 #define PMCR_NA						BIT(8)
81 #define PMCR_DP						BIT(5)
82 #define PMCR_X						BIT(4)
83 #define PMCR_D						BIT(3)
84 #define PMCR_C						BIT(2)
85 #define PMCR_P						BIT(1)
86 #define PMCR_E						BIT(0)
87 
88 /* Each SET/CLR register supports up to 32 counters. */
89 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT		5
90 #define ARM_CSPMU_SET_CLR_COUNTER_NUM		\
91 	(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
92 
93 /* Convert counter idx into SET/CLR register number. */
94 #define COUNTER_TO_SET_CLR_ID(idx)			\
95 	(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
96 
97 /* Convert counter idx into SET/CLR register bit. */
98 #define COUNTER_TO_SET_CLR_BIT(idx)			\
99 	(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
100 
101 #define ARM_CSPMU_ACTIVE_CPU_MASK		0x0
102 #define ARM_CSPMU_ASSOCIATED_CPU_MASK		0x1
103 
104 /* Check if field f in flags is set with value v */
105 #define CHECK_APMT_FLAG(flags, f, v) \
106 	((flags & (ACPI_APMT_FLAGS_ ## f)) == (ACPI_APMT_FLAGS_ ## f ## _ ## v))
107 
108 /* Check and use default if implementer doesn't provide attribute callback */
109 #define CHECK_DEFAULT_IMPL_OPS(ops, callback)			\
110 	do {							\
111 		if (!ops->callback)				\
112 			ops->callback = arm_cspmu_ ## callback;	\
113 	} while (0)
114 
115 /*
116  * Maximum poll count for reading counter value using high-low-high sequence.
117  */
118 #define HILOHI_MAX_POLL	1000
119 
120 /* JEDEC-assigned JEP106 identification code */
121 #define ARM_CSPMU_IMPL_ID_NVIDIA		0x36B
122 
123 static unsigned long arm_cspmu_cpuhp_state;
124 
125 /*
126  * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
127  * counter register. The counter register can be implemented as 32-bit or 64-bit
128  * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
129  * single-copy 64-bit atomic support is implementation defined. APMT node flag
130  * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
131  * single copy atomic is not supported, the driver treats the register as a pair
132  * of 32-bit register.
133  */
134 
135 /*
136  * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
137  */
138 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
139 {
140 	u32 val_lo, val_hi;
141 	u64 val;
142 
143 	/* Use high-low-high sequence to avoid tearing */
144 	do {
145 		if (max_poll_count-- == 0) {
146 			pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
147 			return 0;
148 		}
149 
150 		val_hi = readl(addr + 4);
151 		val_lo = readl(addr);
152 	} while (val_hi != readl(addr + 4));
153 
154 	val = (((u64)val_hi << 32) | val_lo);
155 
156 	return val;
157 }
158 
159 /* Check if PMU supports 64-bit single copy atomic. */
160 static inline bool supports_64bit_atomics(const struct arm_cspmu *cspmu)
161 {
162 	return CHECK_APMT_FLAG(cspmu->apmt_node->flags, ATOMIC, SUPP);
163 }
164 
165 /* Check if cycle counter is supported. */
166 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
167 {
168 	return (cspmu->pmcfgr & PMCFGR_CC);
169 }
170 
171 /* Get counter size, which is (PMCFGR_SIZE + 1). */
172 static inline u32 counter_size(const struct arm_cspmu *cspmu)
173 {
174 	return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
175 }
176 
177 /* Get counter mask. */
178 static inline u64 counter_mask(const struct arm_cspmu *cspmu)
179 {
180 	return GENMASK_ULL(counter_size(cspmu) - 1, 0);
181 }
182 
183 /* Check if counter is implemented as 64-bit register. */
184 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
185 {
186 	return (counter_size(cspmu) > 32);
187 }
188 
189 ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
190 				struct device_attribute *attr, char *buf)
191 {
192 	struct dev_ext_attribute *eattr =
193 		container_of(attr, struct dev_ext_attribute, attr);
194 	return sysfs_emit(buf, "event=0x%llx\n",
195 			  (unsigned long long)eattr->var);
196 }
197 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
198 
199 /* Default event list. */
200 static struct attribute *arm_cspmu_event_attrs[] = {
201 	ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
202 	NULL,
203 };
204 
205 static struct attribute **
206 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
207 {
208 	struct attribute **attrs;
209 
210 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
211 		sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
212 
213 	return attrs;
214 }
215 
216 static umode_t
217 arm_cspmu_event_attr_is_visible(struct kobject *kobj,
218 				struct attribute *attr, int unused)
219 {
220 	struct device *dev = kobj_to_dev(kobj);
221 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
222 	struct perf_pmu_events_attr *eattr;
223 
224 	eattr = container_of(attr, typeof(*eattr), attr.attr);
225 
226 	/* Hide cycle event if not supported */
227 	if (!supports_cycle_counter(cspmu) &&
228 	    eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
229 		return 0;
230 
231 	return attr->mode;
232 }
233 
234 ssize_t arm_cspmu_sysfs_format_show(struct device *dev,
235 				struct device_attribute *attr,
236 				char *buf)
237 {
238 	struct dev_ext_attribute *eattr =
239 		container_of(attr, struct dev_ext_attribute, attr);
240 	return sysfs_emit(buf, "%s\n", (char *)eattr->var);
241 }
242 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show);
243 
244 static struct attribute *arm_cspmu_format_attrs[] = {
245 	ARM_CSPMU_FORMAT_EVENT_ATTR,
246 	ARM_CSPMU_FORMAT_FILTER_ATTR,
247 	NULL,
248 };
249 
250 static struct attribute **
251 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
252 {
253 	struct attribute **attrs;
254 
255 	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
256 		sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
257 
258 	return attrs;
259 }
260 
261 static u32 arm_cspmu_event_type(const struct perf_event *event)
262 {
263 	return event->attr.config & ARM_CSPMU_EVENT_MASK;
264 }
265 
266 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
267 {
268 	return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
269 }
270 
271 static u32 arm_cspmu_event_filter(const struct perf_event *event)
272 {
273 	return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
274 }
275 
276 static ssize_t arm_cspmu_identifier_show(struct device *dev,
277 					 struct device_attribute *attr,
278 					 char *page)
279 {
280 	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
281 
282 	return sysfs_emit(page, "%s\n", cspmu->identifier);
283 }
284 
285 static struct device_attribute arm_cspmu_identifier_attr =
286 	__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
287 
288 static struct attribute *arm_cspmu_identifier_attrs[] = {
289 	&arm_cspmu_identifier_attr.attr,
290 	NULL,
291 };
292 
293 static struct attribute_group arm_cspmu_identifier_attr_group = {
294 	.attrs = arm_cspmu_identifier_attrs,
295 };
296 
297 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
298 {
299 	const char *identifier =
300 		devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
301 			       cspmu->impl.pmiidr);
302 	return identifier;
303 }
304 
305 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
306 	"mc",
307 	"smmu",
308 	"pcie",
309 	"acpi",
310 	"cache",
311 };
312 
313 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
314 {
315 	struct device *dev;
316 	struct acpi_apmt_node *apmt_node;
317 	u8 pmu_type;
318 	char *name;
319 	char acpi_hid_string[ACPI_ID_LEN] = { 0 };
320 	static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
321 
322 	dev = cspmu->dev;
323 	apmt_node = cspmu->apmt_node;
324 	pmu_type = apmt_node->type;
325 
326 	if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
327 		dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
328 		return NULL;
329 	}
330 
331 	if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
332 		memcpy(acpi_hid_string,
333 			&apmt_node->inst_primary,
334 			sizeof(apmt_node->inst_primary));
335 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
336 				      arm_cspmu_type_str[pmu_type],
337 				      acpi_hid_string,
338 				      apmt_node->inst_secondary);
339 	} else {
340 		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
341 				      arm_cspmu_type_str[pmu_type],
342 				      atomic_fetch_inc(&pmu_idx[pmu_type]));
343 	}
344 
345 	return name;
346 }
347 
348 static ssize_t arm_cspmu_cpumask_show(struct device *dev,
349 				      struct device_attribute *attr,
350 				      char *buf)
351 {
352 	struct pmu *pmu = dev_get_drvdata(dev);
353 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
354 	struct dev_ext_attribute *eattr =
355 		container_of(attr, struct dev_ext_attribute, attr);
356 	unsigned long mask_id = (unsigned long)eattr->var;
357 	const cpumask_t *cpumask;
358 
359 	switch (mask_id) {
360 	case ARM_CSPMU_ACTIVE_CPU_MASK:
361 		cpumask = &cspmu->active_cpu;
362 		break;
363 	case ARM_CSPMU_ASSOCIATED_CPU_MASK:
364 		cpumask = &cspmu->associated_cpus;
365 		break;
366 	default:
367 		return 0;
368 	}
369 	return cpumap_print_to_pagebuf(true, buf, cpumask);
370 }
371 
372 static struct attribute *arm_cspmu_cpumask_attrs[] = {
373 	ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
374 	ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
375 	NULL,
376 };
377 
378 static struct attribute_group arm_cspmu_cpumask_attr_group = {
379 	.attrs = arm_cspmu_cpumask_attrs,
380 };
381 
382 struct impl_match {
383 	u32 pmiidr;
384 	u32 mask;
385 	int (*impl_init_ops)(struct arm_cspmu *cspmu);
386 };
387 
388 static const struct impl_match impl_match[] = {
389 	{
390 	  .pmiidr = ARM_CSPMU_IMPL_ID_NVIDIA,
391 	  .mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
392 	  .impl_init_ops = nv_cspmu_init_ops
393 	},
394 	{}
395 };
396 
397 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
398 {
399 	int ret;
400 	struct acpi_apmt_node *apmt_node = cspmu->apmt_node;
401 	struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
402 	const struct impl_match *match = impl_match;
403 
404 	/*
405 	 * Get PMU implementer and product id from APMT node.
406 	 * If APMT node doesn't have implementer/product id, try get it
407 	 * from PMIIDR.
408 	 */
409 	cspmu->impl.pmiidr =
410 		(apmt_node->impl_id) ? apmt_node->impl_id :
411 				       readl(cspmu->base0 + PMIIDR);
412 
413 	/* Find implementer specific attribute ops. */
414 	for (; match->pmiidr; match++) {
415 		const u32 mask = match->mask;
416 
417 		if ((match->pmiidr & mask) == (cspmu->impl.pmiidr & mask)) {
418 			ret = match->impl_init_ops(cspmu);
419 			if (ret)
420 				return ret;
421 
422 			break;
423 		}
424 	}
425 
426 	/* Use default callbacks if implementer doesn't provide one. */
427 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs);
428 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs);
429 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier);
430 	CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name);
431 	CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event);
432 	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type);
433 	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter);
434 	CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible);
435 
436 	return 0;
437 }
438 
439 static struct attribute_group *
440 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
441 {
442 	struct attribute_group *event_group;
443 	struct device *dev = cspmu->dev;
444 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
445 
446 	event_group =
447 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
448 	if (!event_group)
449 		return NULL;
450 
451 	event_group->name = "events";
452 	event_group->is_visible = impl_ops->event_attr_is_visible;
453 	event_group->attrs = impl_ops->get_event_attrs(cspmu);
454 
455 	if (!event_group->attrs)
456 		return NULL;
457 
458 	return event_group;
459 }
460 
461 static struct attribute_group *
462 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
463 {
464 	struct attribute_group *format_group;
465 	struct device *dev = cspmu->dev;
466 
467 	format_group =
468 		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
469 	if (!format_group)
470 		return NULL;
471 
472 	format_group->name = "format";
473 	format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
474 
475 	if (!format_group->attrs)
476 		return NULL;
477 
478 	return format_group;
479 }
480 
481 static struct attribute_group **
482 arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu)
483 {
484 	struct attribute_group **attr_groups = NULL;
485 	struct device *dev = cspmu->dev;
486 	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
487 	int ret;
488 
489 	ret = arm_cspmu_init_impl_ops(cspmu);
490 	if (ret)
491 		return NULL;
492 
493 	cspmu->identifier = impl_ops->get_identifier(cspmu);
494 	cspmu->name = impl_ops->get_name(cspmu);
495 
496 	if (!cspmu->identifier || !cspmu->name)
497 		return NULL;
498 
499 	attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *),
500 				   GFP_KERNEL);
501 	if (!attr_groups)
502 		return NULL;
503 
504 	attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
505 	attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
506 	attr_groups[2] = &arm_cspmu_identifier_attr_group;
507 	attr_groups[3] = &arm_cspmu_cpumask_attr_group;
508 
509 	if (!attr_groups[0] || !attr_groups[1])
510 		return NULL;
511 
512 	return attr_groups;
513 }
514 
515 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
516 {
517 	u32 pmcr = 0;
518 
519 	pmcr |= PMCR_P;
520 	pmcr |= PMCR_C;
521 	writel(pmcr, cspmu->base0 + PMCR);
522 }
523 
524 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
525 {
526 	writel(PMCR_E, cspmu->base0 + PMCR);
527 }
528 
529 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
530 {
531 	writel(0, cspmu->base0 + PMCR);
532 }
533 
534 static void arm_cspmu_enable(struct pmu *pmu)
535 {
536 	bool disabled;
537 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
538 
539 	disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
540 				cspmu->num_logical_ctrs);
541 
542 	if (disabled)
543 		return;
544 
545 	arm_cspmu_start_counters(cspmu);
546 }
547 
548 static void arm_cspmu_disable(struct pmu *pmu)
549 {
550 	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
551 
552 	arm_cspmu_stop_counters(cspmu);
553 }
554 
555 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
556 				struct perf_event *event)
557 {
558 	int idx;
559 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
560 
561 	if (supports_cycle_counter(cspmu)) {
562 		if (cspmu->impl.ops.is_cycle_counter_event(event)) {
563 			/* Search for available cycle counter. */
564 			if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
565 					     hw_events->used_ctrs))
566 				return -EAGAIN;
567 
568 			return cspmu->cycle_counter_logical_idx;
569 		}
570 
571 		/*
572 		 * Search a regular counter from the used counter bitmap.
573 		 * The cycle counter divides the bitmap into two parts. Search
574 		 * the first then second half to exclude the cycle counter bit.
575 		 */
576 		idx = find_first_zero_bit(hw_events->used_ctrs,
577 					  cspmu->cycle_counter_logical_idx);
578 		if (idx >= cspmu->cycle_counter_logical_idx) {
579 			idx = find_next_zero_bit(
580 				hw_events->used_ctrs,
581 				cspmu->num_logical_ctrs,
582 				cspmu->cycle_counter_logical_idx + 1);
583 		}
584 	} else {
585 		idx = find_first_zero_bit(hw_events->used_ctrs,
586 					  cspmu->num_logical_ctrs);
587 	}
588 
589 	if (idx >= cspmu->num_logical_ctrs)
590 		return -EAGAIN;
591 
592 	set_bit(idx, hw_events->used_ctrs);
593 
594 	return idx;
595 }
596 
597 static bool arm_cspmu_validate_event(struct pmu *pmu,
598 				 struct arm_cspmu_hw_events *hw_events,
599 				 struct perf_event *event)
600 {
601 	if (is_software_event(event))
602 		return true;
603 
604 	/* Reject groups spanning multiple HW PMUs. */
605 	if (event->pmu != pmu)
606 		return false;
607 
608 	return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
609 }
610 
611 /*
612  * Make sure the group of events can be scheduled at once
613  * on the PMU.
614  */
615 static bool arm_cspmu_validate_group(struct perf_event *event)
616 {
617 	struct perf_event *sibling, *leader = event->group_leader;
618 	struct arm_cspmu_hw_events fake_hw_events;
619 
620 	if (event->group_leader == event)
621 		return true;
622 
623 	memset(&fake_hw_events, 0, sizeof(fake_hw_events));
624 
625 	if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
626 		return false;
627 
628 	for_each_sibling_event(sibling, leader) {
629 		if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
630 						  sibling))
631 			return false;
632 	}
633 
634 	return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
635 }
636 
637 static int arm_cspmu_event_init(struct perf_event *event)
638 {
639 	struct arm_cspmu *cspmu;
640 	struct hw_perf_event *hwc = &event->hw;
641 
642 	cspmu = to_arm_cspmu(event->pmu);
643 
644 	/*
645 	 * Following other "uncore" PMUs, we do not support sampling mode or
646 	 * attach to a task (per-process mode).
647 	 */
648 	if (is_sampling_event(event)) {
649 		dev_dbg(cspmu->pmu.dev,
650 			"Can't support sampling events\n");
651 		return -EOPNOTSUPP;
652 	}
653 
654 	if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
655 		dev_dbg(cspmu->pmu.dev,
656 			"Can't support per-task counters\n");
657 		return -EINVAL;
658 	}
659 
660 	/*
661 	 * Make sure the CPU assignment is on one of the CPUs associated with
662 	 * this PMU.
663 	 */
664 	if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
665 		dev_dbg(cspmu->pmu.dev,
666 			"Requested cpu is not associated with the PMU\n");
667 		return -EINVAL;
668 	}
669 
670 	/* Enforce the current active CPU to handle the events in this PMU. */
671 	event->cpu = cpumask_first(&cspmu->active_cpu);
672 	if (event->cpu >= nr_cpu_ids)
673 		return -EINVAL;
674 
675 	if (!arm_cspmu_validate_group(event))
676 		return -EINVAL;
677 
678 	/*
679 	 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
680 	 * The physical counter id is tracked with hw_perf_event.idx.
681 	 * We don't assign an index until we actually place the event onto
682 	 * hardware. Use -1 to signify that we haven't decided where to put it
683 	 * yet.
684 	 */
685 	hwc->idx = -1;
686 	hwc->extra_reg.idx = -1;
687 	hwc->config = cspmu->impl.ops.event_type(event);
688 
689 	return 0;
690 }
691 
692 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
693 {
694 	return (PMEVCNTR_LO + (reg_sz * ctr_idx));
695 }
696 
697 static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
698 {
699 	u32 offset;
700 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
701 
702 	if (use_64b_counter_reg(cspmu)) {
703 		offset = counter_offset(sizeof(u64), event->hw.idx);
704 
705 		writeq(val, cspmu->base1 + offset);
706 	} else {
707 		offset = counter_offset(sizeof(u32), event->hw.idx);
708 
709 		writel(lower_32_bits(val), cspmu->base1 + offset);
710 	}
711 }
712 
713 static u64 arm_cspmu_read_counter(struct perf_event *event)
714 {
715 	u32 offset;
716 	const void __iomem *counter_addr;
717 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
718 
719 	if (use_64b_counter_reg(cspmu)) {
720 		offset = counter_offset(sizeof(u64), event->hw.idx);
721 		counter_addr = cspmu->base1 + offset;
722 
723 		return supports_64bit_atomics(cspmu) ?
724 			       readq(counter_addr) :
725 			       read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
726 	}
727 
728 	offset = counter_offset(sizeof(u32), event->hw.idx);
729 	return readl(cspmu->base1 + offset);
730 }
731 
732 /*
733  * arm_cspmu_set_event_period: Set the period for the counter.
734  *
735  * To handle cases of extreme interrupt latency, we program
736  * the counter with half of the max count for the counters.
737  */
738 static void arm_cspmu_set_event_period(struct perf_event *event)
739 {
740 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
741 	u64 val = counter_mask(cspmu) >> 1ULL;
742 
743 	local64_set(&event->hw.prev_count, val);
744 	arm_cspmu_write_counter(event, val);
745 }
746 
747 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
748 {
749 	u32 reg_id, reg_bit, inten_off, cnten_off;
750 
751 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
752 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
753 
754 	inten_off = PMINTENSET + (4 * reg_id);
755 	cnten_off = PMCNTENSET + (4 * reg_id);
756 
757 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
758 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
759 }
760 
761 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
762 {
763 	u32 reg_id, reg_bit, inten_off, cnten_off;
764 
765 	reg_id = COUNTER_TO_SET_CLR_ID(idx);
766 	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
767 
768 	inten_off = PMINTENCLR + (4 * reg_id);
769 	cnten_off = PMCNTENCLR + (4 * reg_id);
770 
771 	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
772 	writel(BIT(reg_bit), cspmu->base0 + inten_off);
773 }
774 
775 static void arm_cspmu_event_update(struct perf_event *event)
776 {
777 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
778 	struct hw_perf_event *hwc = &event->hw;
779 	u64 delta, prev, now;
780 
781 	do {
782 		prev = local64_read(&hwc->prev_count);
783 		now = arm_cspmu_read_counter(event);
784 	} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
785 
786 	delta = (now - prev) & counter_mask(cspmu);
787 	local64_add(delta, &event->count);
788 }
789 
790 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
791 					struct hw_perf_event *hwc)
792 {
793 	u32 offset = PMEVTYPER + (4 * hwc->idx);
794 
795 	writel(hwc->config, cspmu->base0 + offset);
796 }
797 
798 static inline void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
799 					   struct hw_perf_event *hwc,
800 					   u32 filter)
801 {
802 	u32 offset = PMEVFILTR + (4 * hwc->idx);
803 
804 	writel(filter, cspmu->base0 + offset);
805 }
806 
807 static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
808 {
809 	u32 offset = PMCCFILTR;
810 
811 	writel(filter, cspmu->base0 + offset);
812 }
813 
814 static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
815 {
816 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
817 	struct hw_perf_event *hwc = &event->hw;
818 	u32 filter;
819 
820 	/* We always reprogram the counter */
821 	if (pmu_flags & PERF_EF_RELOAD)
822 		WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
823 
824 	arm_cspmu_set_event_period(event);
825 
826 	filter = cspmu->impl.ops.event_filter(event);
827 
828 	if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
829 		arm_cspmu_set_cc_filter(cspmu, filter);
830 	} else {
831 		arm_cspmu_set_event(cspmu, hwc);
832 		arm_cspmu_set_ev_filter(cspmu, hwc, filter);
833 	}
834 
835 	hwc->state = 0;
836 
837 	arm_cspmu_enable_counter(cspmu, hwc->idx);
838 }
839 
840 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
841 {
842 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
843 	struct hw_perf_event *hwc = &event->hw;
844 
845 	if (hwc->state & PERF_HES_STOPPED)
846 		return;
847 
848 	arm_cspmu_disable_counter(cspmu, hwc->idx);
849 	arm_cspmu_event_update(event);
850 
851 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
852 }
853 
854 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
855 {
856 	return (idx == cspmu->cycle_counter_logical_idx) ?
857 		ARM_CSPMU_CYCLE_CNTR_IDX : idx;
858 }
859 
860 static int arm_cspmu_add(struct perf_event *event, int flags)
861 {
862 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
863 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
864 	struct hw_perf_event *hwc = &event->hw;
865 	int idx;
866 
867 	if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
868 					   &cspmu->associated_cpus)))
869 		return -ENOENT;
870 
871 	idx = arm_cspmu_get_event_idx(hw_events, event);
872 	if (idx < 0)
873 		return idx;
874 
875 	hw_events->events[idx] = event;
876 	hwc->idx = to_phys_idx(cspmu, idx);
877 	hwc->extra_reg.idx = idx;
878 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
879 
880 	if (flags & PERF_EF_START)
881 		arm_cspmu_start(event, PERF_EF_RELOAD);
882 
883 	/* Propagate changes to the userspace mapping. */
884 	perf_event_update_userpage(event);
885 
886 	return 0;
887 }
888 
889 static void arm_cspmu_del(struct perf_event *event, int flags)
890 {
891 	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
892 	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
893 	struct hw_perf_event *hwc = &event->hw;
894 	int idx = hwc->extra_reg.idx;
895 
896 	arm_cspmu_stop(event, PERF_EF_UPDATE);
897 
898 	hw_events->events[idx] = NULL;
899 
900 	clear_bit(idx, hw_events->used_ctrs);
901 
902 	perf_event_update_userpage(event);
903 }
904 
905 static void arm_cspmu_read(struct perf_event *event)
906 {
907 	arm_cspmu_event_update(event);
908 }
909 
910 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
911 {
912 	struct acpi_apmt_node *apmt_node;
913 	struct arm_cspmu *cspmu;
914 	struct device *dev;
915 
916 	dev = &pdev->dev;
917 	apmt_node = *(struct acpi_apmt_node **)dev_get_platdata(dev);
918 	if (!apmt_node) {
919 		dev_err(dev, "failed to get APMT node\n");
920 		return NULL;
921 	}
922 
923 	cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
924 	if (!cspmu)
925 		return NULL;
926 
927 	cspmu->dev = dev;
928 	cspmu->apmt_node = apmt_node;
929 
930 	platform_set_drvdata(pdev, cspmu);
931 
932 	return cspmu;
933 }
934 
935 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
936 {
937 	struct device *dev;
938 	struct platform_device *pdev;
939 	struct acpi_apmt_node *apmt_node;
940 
941 	dev = cspmu->dev;
942 	pdev = to_platform_device(dev);
943 	apmt_node = cspmu->apmt_node;
944 
945 	/* Base address for page 0. */
946 	cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
947 	if (IS_ERR(cspmu->base0)) {
948 		dev_err(dev, "ioremap failed for page-0 resource\n");
949 		return PTR_ERR(cspmu->base0);
950 	}
951 
952 	/* Base address for page 1 if supported. Otherwise point to page 0. */
953 	cspmu->base1 = cspmu->base0;
954 	if (CHECK_APMT_FLAG(apmt_node->flags, DUAL_PAGE, SUPP)) {
955 		cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
956 		if (IS_ERR(cspmu->base1)) {
957 			dev_err(dev, "ioremap failed for page-1 resource\n");
958 			return PTR_ERR(cspmu->base1);
959 		}
960 	}
961 
962 	cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
963 
964 	cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
965 
966 	cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
967 
968 	if (supports_cycle_counter(cspmu)) {
969 		/*
970 		 * The last logical counter is mapped to cycle counter if
971 		 * there is a gap between regular and cycle counter. Otherwise,
972 		 * logical and physical have 1-to-1 mapping.
973 		 */
974 		cspmu->cycle_counter_logical_idx =
975 			(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
976 				cspmu->num_logical_ctrs - 1 :
977 				ARM_CSPMU_CYCLE_CNTR_IDX;
978 	}
979 
980 	cspmu->num_set_clr_reg =
981 		DIV_ROUND_UP(cspmu->num_logical_ctrs,
982 				ARM_CSPMU_SET_CLR_COUNTER_NUM);
983 
984 	cspmu->hw_events.events =
985 		devm_kcalloc(dev, cspmu->num_logical_ctrs,
986 			     sizeof(*cspmu->hw_events.events), GFP_KERNEL);
987 
988 	if (!cspmu->hw_events.events)
989 		return -ENOMEM;
990 
991 	return 0;
992 }
993 
994 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
995 					       u32 *pmovs)
996 {
997 	int i;
998 	u32 pmovclr_offset = PMOVSCLR;
999 	u32 has_overflowed = 0;
1000 
1001 	for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1002 		pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1003 		has_overflowed |= pmovs[i];
1004 		writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1005 		pmovclr_offset += sizeof(u32);
1006 	}
1007 
1008 	return has_overflowed != 0;
1009 }
1010 
1011 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1012 {
1013 	int idx, has_overflowed;
1014 	struct perf_event *event;
1015 	struct arm_cspmu *cspmu = dev;
1016 	DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1017 	bool handled = false;
1018 
1019 	arm_cspmu_stop_counters(cspmu);
1020 
1021 	has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1022 	if (!has_overflowed)
1023 		goto done;
1024 
1025 	for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1026 			cspmu->num_logical_ctrs) {
1027 		event = cspmu->hw_events.events[idx];
1028 
1029 		if (!event)
1030 			continue;
1031 
1032 		if (!test_bit(event->hw.idx, pmovs))
1033 			continue;
1034 
1035 		arm_cspmu_event_update(event);
1036 		arm_cspmu_set_event_period(event);
1037 
1038 		handled = true;
1039 	}
1040 
1041 done:
1042 	arm_cspmu_start_counters(cspmu);
1043 	return IRQ_RETVAL(handled);
1044 }
1045 
1046 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1047 {
1048 	int irq, ret;
1049 	struct device *dev;
1050 	struct platform_device *pdev;
1051 	struct acpi_apmt_node *apmt_node;
1052 
1053 	dev = cspmu->dev;
1054 	pdev = to_platform_device(dev);
1055 	apmt_node = cspmu->apmt_node;
1056 
1057 	/* Skip IRQ request if the PMU does not support overflow interrupt. */
1058 	if (apmt_node->ovflw_irq == 0)
1059 		return 0;
1060 
1061 	irq = platform_get_irq(pdev, 0);
1062 	if (irq < 0)
1063 		return irq;
1064 
1065 	ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1066 			       IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1067 			       cspmu);
1068 	if (ret) {
1069 		dev_err(dev, "Could not request IRQ %d\n", irq);
1070 		return ret;
1071 	}
1072 
1073 	cspmu->irq = irq;
1074 
1075 	return 0;
1076 }
1077 
1078 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1079 {
1080 	u32 acpi_uid;
1081 	struct device *cpu_dev = get_cpu_device(cpu);
1082 	struct acpi_device *acpi_dev = ACPI_COMPANION(cpu_dev);
1083 
1084 	if (!cpu_dev)
1085 		return -ENODEV;
1086 
1087 	while (acpi_dev) {
1088 		if (!strcmp(acpi_device_hid(acpi_dev),
1089 			    ACPI_PROCESSOR_CONTAINER_HID) &&
1090 		    !kstrtouint(acpi_device_uid(acpi_dev), 0, &acpi_uid) &&
1091 		    acpi_uid == container_uid)
1092 			return 0;
1093 
1094 		acpi_dev = acpi_dev_parent(acpi_dev);
1095 	}
1096 
1097 	return -ENODEV;
1098 }
1099 
1100 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1101 {
1102 	struct device *dev;
1103 	struct acpi_apmt_node *apmt_node;
1104 	int affinity_flag;
1105 	int cpu;
1106 
1107 	dev = cspmu->pmu.dev;
1108 	apmt_node = cspmu->apmt_node;
1109 	affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1110 
1111 	if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1112 		for_each_possible_cpu(cpu) {
1113 			if (apmt_node->proc_affinity ==
1114 			    get_acpi_id_for_cpu(cpu)) {
1115 				cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1116 				break;
1117 			}
1118 		}
1119 	} else {
1120 		for_each_possible_cpu(cpu) {
1121 			if (arm_cspmu_find_cpu_container(
1122 				    cpu, apmt_node->proc_affinity))
1123 				continue;
1124 
1125 			cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1126 		}
1127 	}
1128 
1129 	if (cpumask_empty(&cspmu->associated_cpus)) {
1130 		dev_dbg(dev, "No cpu associated with the PMU\n");
1131 		return -ENODEV;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1138 {
1139 	int ret, capabilities;
1140 	struct attribute_group **attr_groups;
1141 
1142 	attr_groups = arm_cspmu_alloc_attr_group(cspmu);
1143 	if (!attr_groups)
1144 		return -ENOMEM;
1145 
1146 	ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1147 				       &cspmu->cpuhp_node);
1148 	if (ret)
1149 		return ret;
1150 
1151 	capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1152 	if (cspmu->irq == 0)
1153 		capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1154 
1155 	cspmu->pmu = (struct pmu){
1156 		.task_ctx_nr	= perf_invalid_context,
1157 		.module		= THIS_MODULE,
1158 		.pmu_enable	= arm_cspmu_enable,
1159 		.pmu_disable	= arm_cspmu_disable,
1160 		.event_init	= arm_cspmu_event_init,
1161 		.add		= arm_cspmu_add,
1162 		.del		= arm_cspmu_del,
1163 		.start		= arm_cspmu_start,
1164 		.stop		= arm_cspmu_stop,
1165 		.read		= arm_cspmu_read,
1166 		.attr_groups	= (const struct attribute_group **)attr_groups,
1167 		.capabilities	= capabilities,
1168 	};
1169 
1170 	/* Hardware counter init */
1171 	arm_cspmu_stop_counters(cspmu);
1172 	arm_cspmu_reset_counters(cspmu);
1173 
1174 	ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1175 	if (ret) {
1176 		cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1177 					    &cspmu->cpuhp_node);
1178 	}
1179 
1180 	return ret;
1181 }
1182 
1183 static int arm_cspmu_device_probe(struct platform_device *pdev)
1184 {
1185 	int ret;
1186 	struct arm_cspmu *cspmu;
1187 
1188 	cspmu = arm_cspmu_alloc(pdev);
1189 	if (!cspmu)
1190 		return -ENOMEM;
1191 
1192 	ret = arm_cspmu_init_mmio(cspmu);
1193 	if (ret)
1194 		return ret;
1195 
1196 	ret = arm_cspmu_request_irq(cspmu);
1197 	if (ret)
1198 		return ret;
1199 
1200 	ret = arm_cspmu_get_cpus(cspmu);
1201 	if (ret)
1202 		return ret;
1203 
1204 	ret = arm_cspmu_register_pmu(cspmu);
1205 	if (ret)
1206 		return ret;
1207 
1208 	return 0;
1209 }
1210 
1211 static int arm_cspmu_device_remove(struct platform_device *pdev)
1212 {
1213 	struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1214 
1215 	perf_pmu_unregister(&cspmu->pmu);
1216 	cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1217 
1218 	return 0;
1219 }
1220 
1221 static struct platform_driver arm_cspmu_driver = {
1222 	.driver = {
1223 			.name = DRVNAME,
1224 			.suppress_bind_attrs = true,
1225 		},
1226 	.probe = arm_cspmu_device_probe,
1227 	.remove = arm_cspmu_device_remove,
1228 };
1229 
1230 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1231 {
1232 	cpumask_set_cpu(cpu, &cspmu->active_cpu);
1233 	WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1234 }
1235 
1236 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1237 {
1238 	struct arm_cspmu *cspmu =
1239 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1240 
1241 	if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1242 		return 0;
1243 
1244 	/* If the PMU is already managed, there is nothing to do */
1245 	if (!cpumask_empty(&cspmu->active_cpu))
1246 		return 0;
1247 
1248 	/* Use this CPU for event counting */
1249 	arm_cspmu_set_active_cpu(cpu, cspmu);
1250 
1251 	return 0;
1252 }
1253 
1254 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1255 {
1256 	int dst;
1257 	struct cpumask online_supported;
1258 
1259 	struct arm_cspmu *cspmu =
1260 		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1261 
1262 	/* Nothing to do if this CPU doesn't own the PMU */
1263 	if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1264 		return 0;
1265 
1266 	/* Choose a new CPU to migrate ownership of the PMU to */
1267 	cpumask_and(&online_supported, &cspmu->associated_cpus,
1268 		    cpu_online_mask);
1269 	dst = cpumask_any_but(&online_supported, cpu);
1270 	if (dst >= nr_cpu_ids)
1271 		return 0;
1272 
1273 	/* Use this CPU for event counting */
1274 	perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1275 	arm_cspmu_set_active_cpu(dst, cspmu);
1276 
1277 	return 0;
1278 }
1279 
1280 static int __init arm_cspmu_init(void)
1281 {
1282 	int ret;
1283 
1284 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1285 					"perf/arm/cspmu:online",
1286 					arm_cspmu_cpu_online,
1287 					arm_cspmu_cpu_teardown);
1288 	if (ret < 0)
1289 		return ret;
1290 	arm_cspmu_cpuhp_state = ret;
1291 	return platform_driver_register(&arm_cspmu_driver);
1292 }
1293 
1294 static void __exit arm_cspmu_exit(void)
1295 {
1296 	platform_driver_unregister(&arm_cspmu_driver);
1297 	cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1298 }
1299 
1300 module_init(arm_cspmu_init);
1301 module_exit(arm_cspmu_exit);
1302 
1303 MODULE_LICENSE("GPL v2");
1304