xref: /openbmc/linux/drivers/perf/arm-cmn.c (revision cdcc26d714c96e9de75c549f05d770b3ddaf2d21)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2016-2020 Arm Limited
3 // CMN-600 Coherent Mesh Network PMU driver
4 
5 #include <linux/acpi.h>
6 #include <linux/bitfield.h>
7 #include <linux/bitops.h>
8 #include <linux/debugfs.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/io-64-nonatomic-lo-hi.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/perf_event.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
19 #include <linux/sort.h>
20 
21 /* Common register stuff */
22 #define CMN_NODE_INFO			0x0000
23 #define CMN_NI_NODE_TYPE		GENMASK_ULL(15, 0)
24 #define CMN_NI_NODE_ID			GENMASK_ULL(31, 16)
25 #define CMN_NI_LOGICAL_ID		GENMASK_ULL(47, 32)
26 
27 #define CMN_CHILD_INFO			0x0080
28 #define CMN_CI_CHILD_COUNT		GENMASK_ULL(15, 0)
29 #define CMN_CI_CHILD_PTR_OFFSET		GENMASK_ULL(31, 16)
30 
31 #define CMN_CHILD_NODE_ADDR		GENMASK(29, 0)
32 #define CMN_CHILD_NODE_EXTERNAL		BIT(31)
33 
34 #define CMN_MAX_DIMENSION		12
35 #define CMN_MAX_XPS			(CMN_MAX_DIMENSION * CMN_MAX_DIMENSION)
36 #define CMN_MAX_DTMS			(CMN_MAX_XPS + (CMN_MAX_DIMENSION - 1) * 4)
37 
38 /* Currently XPs are the node type we can have most of; others top out at 128 */
39 #define CMN_MAX_NODES_PER_EVENT		CMN_MAX_XPS
40 
41 /* The CFG node has various info besides the discovery tree */
42 #define CMN_CFGM_PERIPH_ID_01		0x0008
43 #define CMN_CFGM_PID0_PART_0		GENMASK_ULL(7, 0)
44 #define CMN_CFGM_PID1_PART_1		GENMASK_ULL(35, 32)
45 #define CMN_CFGM_PERIPH_ID_23		0x0010
46 #define CMN_CFGM_PID2_REVISION		GENMASK_ULL(7, 4)
47 
48 #define CMN_CFGM_INFO_GLOBAL		0x900
49 #define CMN_INFO_MULTIPLE_DTM_EN	BIT_ULL(63)
50 #define CMN_INFO_RSP_VC_NUM		GENMASK_ULL(53, 52)
51 #define CMN_INFO_DAT_VC_NUM		GENMASK_ULL(51, 50)
52 
53 #define CMN_CFGM_INFO_GLOBAL_1		0x908
54 #define CMN_INFO_SNP_VC_NUM		GENMASK_ULL(3, 2)
55 #define CMN_INFO_REQ_VC_NUM		GENMASK_ULL(1, 0)
56 
57 /* XPs also have some local topology info which has uses too */
58 #define CMN_MXP__CONNECT_INFO(p)	(0x0008 + 8 * (p))
59 #define CMN__CONNECT_INFO_DEVICE_TYPE	GENMASK_ULL(4, 0)
60 
61 #define CMN_MAX_PORTS			6
62 #define CI700_CONNECT_INFO_P2_5_OFFSET	0x10
63 
64 /* PMU registers occupy the 3rd 4KB page of each node's region */
65 #define CMN_PMU_OFFSET			0x2000
66 
67 /* For most nodes, this is all there is */
68 #define CMN_PMU_EVENT_SEL		0x000
69 #define CMN__PMU_CBUSY_SNTHROTTLE_SEL	GENMASK_ULL(44, 42)
70 #define CMN__PMU_SN_HOME_SEL		GENMASK_ULL(40, 39)
71 #define CMN__PMU_HBT_LBT_SEL		GENMASK_ULL(38, 37)
72 #define CMN__PMU_CLASS_OCCUP_ID		GENMASK_ULL(36, 35)
73 /* Technically this is 4 bits wide on DNs, but we only use 2 there anyway */
74 #define CMN__PMU_OCCUP1_ID		GENMASK_ULL(34, 32)
75 
76 /* Some types are designed to coexist with another device in the same node */
77 #define CMN_CCLA_PMU_EVENT_SEL		0x008
78 #define CMN_HNP_PMU_EVENT_SEL		0x008
79 
80 /* DTMs live in the PMU space of XP registers */
81 #define CMN_DTM_WPn(n)			(0x1A0 + (n) * 0x18)
82 #define CMN_DTM_WPn_CONFIG(n)		(CMN_DTM_WPn(n) + 0x00)
83 #define CMN_DTM_WPn_CONFIG_WP_CHN_NUM	GENMASK_ULL(20, 19)
84 #define CMN_DTM_WPn_CONFIG_WP_DEV_SEL2	GENMASK_ULL(18, 17)
85 #define CMN_DTM_WPn_CONFIG_WP_COMBINE	BIT(9)
86 #define CMN_DTM_WPn_CONFIG_WP_EXCLUSIVE	BIT(8)
87 #define CMN600_WPn_CONFIG_WP_COMBINE	BIT(6)
88 #define CMN600_WPn_CONFIG_WP_EXCLUSIVE	BIT(5)
89 #define CMN_DTM_WPn_CONFIG_WP_GRP	GENMASK_ULL(5, 4)
90 #define CMN_DTM_WPn_CONFIG_WP_CHN_SEL	GENMASK_ULL(3, 1)
91 #define CMN_DTM_WPn_CONFIG_WP_DEV_SEL	BIT(0)
92 #define CMN_DTM_WPn_VAL(n)		(CMN_DTM_WPn(n) + 0x08)
93 #define CMN_DTM_WPn_MASK(n)		(CMN_DTM_WPn(n) + 0x10)
94 
95 #define CMN_DTM_PMU_CONFIG		0x210
96 #define CMN__PMEVCNT0_INPUT_SEL		GENMASK_ULL(37, 32)
97 #define CMN__PMEVCNT0_INPUT_SEL_WP	0x00
98 #define CMN__PMEVCNT0_INPUT_SEL_XP	0x04
99 #define CMN__PMEVCNT0_INPUT_SEL_DEV	0x10
100 #define CMN__PMEVCNT0_GLOBAL_NUM	GENMASK_ULL(18, 16)
101 #define CMN__PMEVCNTn_GLOBAL_NUM_SHIFT(n)	((n) * 4)
102 #define CMN__PMEVCNT_PAIRED(n)		BIT(4 + (n))
103 #define CMN__PMEVCNT23_COMBINED		BIT(2)
104 #define CMN__PMEVCNT01_COMBINED		BIT(1)
105 #define CMN_DTM_PMU_CONFIG_PMU_EN	BIT(0)
106 
107 #define CMN_DTM_PMEVCNT			0x220
108 
109 #define CMN_DTM_PMEVCNTSR		0x240
110 
111 #define CMN650_DTM_UNIT_INFO		0x0910
112 #define CMN_DTM_UNIT_INFO		0x0960
113 #define CMN_DTM_UNIT_INFO_DTC_DOMAIN	GENMASK_ULL(1, 0)
114 
115 #define CMN_DTM_NUM_COUNTERS		4
116 /* Want more local counters? Why not replicate the whole DTM! Ugh... */
117 #define CMN_DTM_OFFSET(n)		((n) * 0x200)
118 
119 /* The DTC node is where the magic happens */
120 #define CMN_DT_DTC_CTL			0x0a00
121 #define CMN_DT_DTC_CTL_DT_EN		BIT(0)
122 
123 /* DTC counters are paired in 64-bit registers on a 16-byte stride. Yuck */
124 #define _CMN_DT_CNT_REG(n)		((((n) / 2) * 4 + (n) % 2) * 4)
125 #define CMN_DT_PMEVCNT(n)		(CMN_PMU_OFFSET + _CMN_DT_CNT_REG(n))
126 #define CMN_DT_PMCCNTR			(CMN_PMU_OFFSET + 0x40)
127 
128 #define CMN_DT_PMEVCNTSR(n)		(CMN_PMU_OFFSET + 0x50 + _CMN_DT_CNT_REG(n))
129 #define CMN_DT_PMCCNTRSR		(CMN_PMU_OFFSET + 0x90)
130 
131 #define CMN_DT_PMCR			(CMN_PMU_OFFSET + 0x100)
132 #define CMN_DT_PMCR_PMU_EN		BIT(0)
133 #define CMN_DT_PMCR_CNTR_RST		BIT(5)
134 #define CMN_DT_PMCR_OVFL_INTR_EN	BIT(6)
135 
136 #define CMN_DT_PMOVSR			(CMN_PMU_OFFSET + 0x118)
137 #define CMN_DT_PMOVSR_CLR		(CMN_PMU_OFFSET + 0x120)
138 
139 #define CMN_DT_PMSSR			(CMN_PMU_OFFSET + 0x128)
140 #define CMN_DT_PMSSR_SS_STATUS(n)	BIT(n)
141 
142 #define CMN_DT_PMSRR			(CMN_PMU_OFFSET + 0x130)
143 #define CMN_DT_PMSRR_SS_REQ		BIT(0)
144 
145 #define CMN_DT_NUM_COUNTERS		8
146 #define CMN_MAX_DTCS			4
147 
148 /*
149  * Even in the worst case a DTC counter can't wrap in fewer than 2^42 cycles,
150  * so throwing away one bit to make overflow handling easy is no big deal.
151  */
152 #define CMN_COUNTER_INIT		0x80000000
153 /* Similarly for the 40-bit cycle counter */
154 #define CMN_CC_INIT			0x8000000000ULL
155 
156 
157 /* Event attributes */
158 #define CMN_CONFIG_TYPE			GENMASK_ULL(15, 0)
159 #define CMN_CONFIG_EVENTID		GENMASK_ULL(26, 16)
160 #define CMN_CONFIG_OCCUPID		GENMASK_ULL(30, 27)
161 #define CMN_CONFIG_BYNODEID		BIT_ULL(31)
162 #define CMN_CONFIG_NODEID		GENMASK_ULL(47, 32)
163 
164 #define CMN_EVENT_TYPE(event)		FIELD_GET(CMN_CONFIG_TYPE, (event)->attr.config)
165 #define CMN_EVENT_EVENTID(event)	FIELD_GET(CMN_CONFIG_EVENTID, (event)->attr.config)
166 #define CMN_EVENT_OCCUPID(event)	FIELD_GET(CMN_CONFIG_OCCUPID, (event)->attr.config)
167 #define CMN_EVENT_BYNODEID(event)	FIELD_GET(CMN_CONFIG_BYNODEID, (event)->attr.config)
168 #define CMN_EVENT_NODEID(event)		FIELD_GET(CMN_CONFIG_NODEID, (event)->attr.config)
169 
170 #define CMN_CONFIG_WP_COMBINE		GENMASK_ULL(30, 27)
171 #define CMN_CONFIG_WP_DEV_SEL		GENMASK_ULL(50, 48)
172 #define CMN_CONFIG_WP_CHN_SEL		GENMASK_ULL(55, 51)
173 /* Note that we don't yet support the tertiary match group on newer IPs */
174 #define CMN_CONFIG_WP_GRP		BIT_ULL(56)
175 #define CMN_CONFIG_WP_EXCLUSIVE		BIT_ULL(57)
176 #define CMN_CONFIG1_WP_VAL		GENMASK_ULL(63, 0)
177 #define CMN_CONFIG2_WP_MASK		GENMASK_ULL(63, 0)
178 
179 #define CMN_EVENT_WP_COMBINE(event)	FIELD_GET(CMN_CONFIG_WP_COMBINE, (event)->attr.config)
180 #define CMN_EVENT_WP_DEV_SEL(event)	FIELD_GET(CMN_CONFIG_WP_DEV_SEL, (event)->attr.config)
181 #define CMN_EVENT_WP_CHN_SEL(event)	FIELD_GET(CMN_CONFIG_WP_CHN_SEL, (event)->attr.config)
182 #define CMN_EVENT_WP_GRP(event)		FIELD_GET(CMN_CONFIG_WP_GRP, (event)->attr.config)
183 #define CMN_EVENT_WP_EXCLUSIVE(event)	FIELD_GET(CMN_CONFIG_WP_EXCLUSIVE, (event)->attr.config)
184 #define CMN_EVENT_WP_VAL(event)		FIELD_GET(CMN_CONFIG1_WP_VAL, (event)->attr.config1)
185 #define CMN_EVENT_WP_MASK(event)	FIELD_GET(CMN_CONFIG2_WP_MASK, (event)->attr.config2)
186 
187 /* Made-up event IDs for watchpoint direction */
188 #define CMN_WP_UP			0
189 #define CMN_WP_DOWN			2
190 
191 
192 /* Internal values for encoding event support */
193 enum cmn_model {
194 	CMN600 = 1,
195 	CMN650 = 2,
196 	CMN700 = 4,
197 	CI700 = 8,
198 	/* ...and then we can use bitmap tricks for commonality */
199 	CMN_ANY = -1,
200 	NOT_CMN600 = -2,
201 	CMN_650ON = CMN650 | CMN700,
202 };
203 
204 /* Actual part numbers and revision IDs defined by the hardware */
205 enum cmn_part {
206 	PART_CMN600 = 0x434,
207 	PART_CMN650 = 0x436,
208 	PART_CMN700 = 0x43c,
209 	PART_CI700 = 0x43a,
210 };
211 
212 /* CMN-600 r0px shouldn't exist in silicon, thankfully */
213 enum cmn_revision {
214 	REV_CMN600_R1P0,
215 	REV_CMN600_R1P1,
216 	REV_CMN600_R1P2,
217 	REV_CMN600_R1P3,
218 	REV_CMN600_R2P0,
219 	REV_CMN600_R3P0,
220 	REV_CMN600_R3P1,
221 	REV_CMN650_R0P0 = 0,
222 	REV_CMN650_R1P0,
223 	REV_CMN650_R1P1,
224 	REV_CMN650_R2P0,
225 	REV_CMN650_R1P2,
226 	REV_CMN700_R0P0 = 0,
227 	REV_CMN700_R1P0,
228 	REV_CMN700_R2P0,
229 	REV_CMN700_R3P0,
230 	REV_CI700_R0P0 = 0,
231 	REV_CI700_R1P0,
232 	REV_CI700_R2P0,
233 };
234 
235 enum cmn_node_type {
236 	CMN_TYPE_INVALID,
237 	CMN_TYPE_DVM,
238 	CMN_TYPE_CFG,
239 	CMN_TYPE_DTC,
240 	CMN_TYPE_HNI,
241 	CMN_TYPE_HNF,
242 	CMN_TYPE_XP,
243 	CMN_TYPE_SBSX,
244 	CMN_TYPE_MPAM_S,
245 	CMN_TYPE_MPAM_NS,
246 	CMN_TYPE_RNI,
247 	CMN_TYPE_RND = 0xd,
248 	CMN_TYPE_RNSAM = 0xf,
249 	CMN_TYPE_MTSX,
250 	CMN_TYPE_HNP,
251 	CMN_TYPE_CXRA = 0x100,
252 	CMN_TYPE_CXHA,
253 	CMN_TYPE_CXLA,
254 	CMN_TYPE_CCRA,
255 	CMN_TYPE_CCHA,
256 	CMN_TYPE_CCLA,
257 	CMN_TYPE_CCLA_RNI,
258 	CMN_TYPE_HNS = 0x200,
259 	CMN_TYPE_HNS_MPAM_S,
260 	CMN_TYPE_HNS_MPAM_NS,
261 	/* Not a real node type */
262 	CMN_TYPE_WP = 0x7770
263 };
264 
265 enum cmn_filter_select {
266 	SEL_NONE = -1,
267 	SEL_OCCUP1ID,
268 	SEL_CLASS_OCCUP_ID,
269 	SEL_CBUSY_SNTHROTTLE_SEL,
270 	SEL_HBT_LBT_SEL,
271 	SEL_SN_HOME_SEL,
272 	SEL_MAX
273 };
274 
275 struct arm_cmn_node {
276 	void __iomem *pmu_base;
277 	u16 id, logid;
278 	enum cmn_node_type type;
279 
280 	/* XP properties really, but replicated to children for convenience */
281 	u8 dtm;
282 	s8 dtc;
283 	u8 portid_bits:4;
284 	u8 deviceid_bits:4;
285 	/* DN/HN-F/CXHA */
286 	struct {
287 		u8 val : 4;
288 		u8 count : 4;
289 	} occupid[SEL_MAX];
290 	union {
291 		u8 event[4];
292 		__le32 event_sel;
293 		u16 event_w[4];
294 		__le64 event_sel_w;
295 	};
296 };
297 
298 struct arm_cmn_dtm {
299 	void __iomem *base;
300 	u32 pmu_config_low;
301 	union {
302 		u8 input_sel[4];
303 		__le32 pmu_config_high;
304 	};
305 	s8 wp_event[4];
306 };
307 
308 struct arm_cmn_dtc {
309 	void __iomem *base;
310 	int irq;
311 	int irq_friend;
312 	bool cc_active;
313 
314 	struct perf_event *counters[CMN_DT_NUM_COUNTERS];
315 	struct perf_event *cycles;
316 };
317 
318 #define CMN_STATE_DISABLED	BIT(0)
319 #define CMN_STATE_TXN		BIT(1)
320 
321 struct arm_cmn {
322 	struct device *dev;
323 	void __iomem *base;
324 	unsigned int state;
325 
326 	enum cmn_revision rev;
327 	enum cmn_part part;
328 	u8 mesh_x;
329 	u8 mesh_y;
330 	u16 num_xps;
331 	u16 num_dns;
332 	bool multi_dtm;
333 	u8 ports_used;
334 	struct {
335 		unsigned int rsp_vc_num : 2;
336 		unsigned int dat_vc_num : 2;
337 		unsigned int snp_vc_num : 2;
338 		unsigned int req_vc_num : 2;
339 	};
340 
341 	struct arm_cmn_node *xps;
342 	struct arm_cmn_node *dns;
343 
344 	struct arm_cmn_dtm *dtms;
345 	struct arm_cmn_dtc *dtc;
346 	unsigned int num_dtcs;
347 
348 	int cpu;
349 	struct hlist_node cpuhp_node;
350 
351 	struct pmu pmu;
352 	struct dentry *debug;
353 };
354 
355 #define to_cmn(p)	container_of(p, struct arm_cmn, pmu)
356 
357 static int arm_cmn_hp_state;
358 
359 struct arm_cmn_nodeid {
360 	u8 port;
361 	u8 dev;
362 };
363 
364 static int arm_cmn_xyidbits(const struct arm_cmn *cmn)
365 {
366 	return fls((cmn->mesh_x - 1) | (cmn->mesh_y - 1));
367 }
368 
369 static struct arm_cmn_nodeid arm_cmn_nid(const struct arm_cmn_node *dn)
370 {
371 	struct arm_cmn_nodeid nid;
372 
373 	nid.dev = dn->id & ((1U << dn->deviceid_bits) - 1);
374 	nid.port = (dn->id >> dn->deviceid_bits) & ((1U << dn->portid_bits) - 1);
375 	return nid;
376 }
377 
378 static struct arm_cmn_node *arm_cmn_node_to_xp(const struct arm_cmn *cmn,
379 					       const struct arm_cmn_node *dn)
380 {
381 	int id = dn->id >> (dn->portid_bits + dn->deviceid_bits);
382 	int bits = arm_cmn_xyidbits(cmn);
383 	int x = id >> bits;
384 	int y = id & ((1U << bits) - 1);
385 
386 	return cmn->xps + cmn->mesh_x * y + x;
387 }
388 static struct arm_cmn_node *arm_cmn_node(const struct arm_cmn *cmn,
389 					 enum cmn_node_type type)
390 {
391 	struct arm_cmn_node *dn;
392 
393 	for (dn = cmn->dns; dn->type; dn++)
394 		if (dn->type == type)
395 			return dn;
396 	return NULL;
397 }
398 
399 static enum cmn_model arm_cmn_model(const struct arm_cmn *cmn)
400 {
401 	switch (cmn->part) {
402 	case PART_CMN600:
403 		return CMN600;
404 	case PART_CMN650:
405 		return CMN650;
406 	case PART_CMN700:
407 		return CMN700;
408 	case PART_CI700:
409 		return CI700;
410 	default:
411 		return 0;
412 	};
413 }
414 
415 static u32 arm_cmn_device_connect_info(const struct arm_cmn *cmn,
416 				       const struct arm_cmn_node *xp, int port)
417 {
418 	int offset = CMN_MXP__CONNECT_INFO(port);
419 
420 	if (port >= 2) {
421 		if (cmn->part == PART_CMN600 || cmn->part == PART_CMN650)
422 			return 0;
423 		/*
424 		 * CI-700 may have extra ports, but still has the
425 		 * mesh_port_connect_info registers in the way.
426 		 */
427 		if (cmn->part == PART_CI700)
428 			offset += CI700_CONNECT_INFO_P2_5_OFFSET;
429 	}
430 
431 	return readl_relaxed(xp->pmu_base - CMN_PMU_OFFSET + offset);
432 }
433 
434 static struct dentry *arm_cmn_debugfs;
435 
436 #ifdef CONFIG_DEBUG_FS
437 static const char *arm_cmn_device_type(u8 type)
438 {
439 	switch(FIELD_GET(CMN__CONNECT_INFO_DEVICE_TYPE, type)) {
440 		case 0x00: return "        |";
441 		case 0x01: return "  RN-I  |";
442 		case 0x02: return "  RN-D  |";
443 		case 0x04: return " RN-F_B |";
444 		case 0x05: return "RN-F_B_E|";
445 		case 0x06: return " RN-F_A |";
446 		case 0x07: return "RN-F_A_E|";
447 		case 0x08: return "  HN-T  |";
448 		case 0x09: return "  HN-I  |";
449 		case 0x0a: return "  HN-D  |";
450 		case 0x0b: return "  HN-P  |";
451 		case 0x0c: return "  SN-F  |";
452 		case 0x0d: return "  SBSX  |";
453 		case 0x0e: return "  HN-F  |";
454 		case 0x0f: return " SN-F_E |";
455 		case 0x10: return " SN-F_D |";
456 		case 0x11: return "  CXHA  |";
457 		case 0x12: return "  CXRA  |";
458 		case 0x13: return "  CXRH  |";
459 		case 0x14: return " RN-F_D |";
460 		case 0x15: return "RN-F_D_E|";
461 		case 0x16: return " RN-F_C |";
462 		case 0x17: return "RN-F_C_E|";
463 		case 0x18: return " RN-F_E |";
464 		case 0x19: return "RN-F_E_E|";
465 		case 0x1c: return "  MTSX  |";
466 		case 0x1d: return "  HN-V  |";
467 		case 0x1e: return "  CCG   |";
468 		default:   return "  ????  |";
469 	}
470 }
471 
472 static void arm_cmn_show_logid(struct seq_file *s, const struct arm_cmn_node *xp, int p, int d)
473 {
474 	struct arm_cmn *cmn = s->private;
475 	struct arm_cmn_node *dn;
476 	u16 id = xp->id | d | (p << xp->deviceid_bits);
477 
478 	for (dn = cmn->dns; dn->type; dn++) {
479 		int pad = dn->logid < 10;
480 
481 		if (dn->type == CMN_TYPE_XP)
482 			continue;
483 		/* Ignore the extra components that will overlap on some ports */
484 		if (dn->type < CMN_TYPE_HNI)
485 			continue;
486 
487 		if (dn->id != id)
488 			continue;
489 
490 		seq_printf(s, " %*c#%-*d  |", pad + 1, ' ', 3 - pad, dn->logid);
491 		return;
492 	}
493 	seq_puts(s, "        |");
494 }
495 
496 static int arm_cmn_map_show(struct seq_file *s, void *data)
497 {
498 	struct arm_cmn *cmn = s->private;
499 	int x, y, p, pmax = fls(cmn->ports_used);
500 
501 	seq_puts(s, "     X");
502 	for (x = 0; x < cmn->mesh_x; x++)
503 		seq_printf(s, "    %-2d   ", x);
504 	seq_puts(s, "\nY P D+");
505 	y = cmn->mesh_y;
506 	while (y--) {
507 		int xp_base = cmn->mesh_x * y;
508 		struct arm_cmn_node *xp = cmn->xps + xp_base;
509 		u8 port[CMN_MAX_PORTS][CMN_MAX_DIMENSION];
510 
511 		for (x = 0; x < cmn->mesh_x; x++)
512 			seq_puts(s, "--------+");
513 
514 		seq_printf(s, "\n%-2d   |", y);
515 		for (x = 0; x < cmn->mesh_x; x++) {
516 			for (p = 0; p < CMN_MAX_PORTS; p++)
517 				port[p][x] = arm_cmn_device_connect_info(cmn, xp + x, p);
518 			seq_printf(s, " XP #%-3d|", xp_base + x);
519 		}
520 
521 		seq_puts(s, "\n     |");
522 		for (x = 0; x < cmn->mesh_x; x++) {
523 			s8 dtc = xp[x].dtc;
524 
525 			if (dtc < 0)
526 				seq_puts(s, " DTC ?? |");
527 			else
528 				seq_printf(s, " DTC %d  |", dtc);
529 		}
530 		seq_puts(s, "\n     |");
531 		for (x = 0; x < cmn->mesh_x; x++)
532 			seq_puts(s, "........|");
533 
534 		for (p = 0; p < pmax; p++) {
535 			seq_printf(s, "\n  %d  |", p);
536 			for (x = 0; x < cmn->mesh_x; x++)
537 				seq_puts(s, arm_cmn_device_type(port[p][x]));
538 			seq_puts(s, "\n    0|");
539 			for (x = 0; x < cmn->mesh_x; x++)
540 				arm_cmn_show_logid(s, xp + x, p, 0);
541 			seq_puts(s, "\n    1|");
542 			for (x = 0; x < cmn->mesh_x; x++)
543 				arm_cmn_show_logid(s, xp + x, p, 1);
544 		}
545 		seq_puts(s, "\n-----+");
546 	}
547 	for (x = 0; x < cmn->mesh_x; x++)
548 		seq_puts(s, "--------+");
549 	seq_puts(s, "\n");
550 	return 0;
551 }
552 DEFINE_SHOW_ATTRIBUTE(arm_cmn_map);
553 
554 static void arm_cmn_debugfs_init(struct arm_cmn *cmn, int id)
555 {
556 	const char *name  = "map";
557 
558 	if (id > 0)
559 		name = devm_kasprintf(cmn->dev, GFP_KERNEL, "map_%d", id);
560 	if (!name)
561 		return;
562 
563 	cmn->debug = debugfs_create_file(name, 0444, arm_cmn_debugfs, cmn, &arm_cmn_map_fops);
564 }
565 #else
566 static void arm_cmn_debugfs_init(struct arm_cmn *cmn, int id) {}
567 #endif
568 
569 struct arm_cmn_hw_event {
570 	struct arm_cmn_node *dn;
571 	u64 dtm_idx[DIV_ROUND_UP(CMN_MAX_NODES_PER_EVENT * 2, 64)];
572 	s8 dtc_idx[CMN_MAX_DTCS];
573 	u8 num_dns;
574 	u8 dtm_offset;
575 	bool wide_sel;
576 	enum cmn_filter_select filter_sel;
577 };
578 
579 #define for_each_hw_dn(hw, dn, i) \
580 	for (i = 0, dn = hw->dn; i < hw->num_dns; i++, dn++)
581 
582 /* @i is the DTC number, @idx is the counter index on that DTC */
583 #define for_each_hw_dtc_idx(hw, i, idx) \
584 	for (int i = 0, idx; i < CMN_MAX_DTCS; i++) if ((idx = hw->dtc_idx[i]) >= 0)
585 
586 static struct arm_cmn_hw_event *to_cmn_hw(struct perf_event *event)
587 {
588 	BUILD_BUG_ON(sizeof(struct arm_cmn_hw_event) > offsetof(struct hw_perf_event, target));
589 	return (struct arm_cmn_hw_event *)&event->hw;
590 }
591 
592 static void arm_cmn_set_index(u64 x[], unsigned int pos, unsigned int val)
593 {
594 	x[pos / 32] |= (u64)val << ((pos % 32) * 2);
595 }
596 
597 static unsigned int arm_cmn_get_index(u64 x[], unsigned int pos)
598 {
599 	return (x[pos / 32] >> ((pos % 32) * 2)) & 3;
600 }
601 
602 struct arm_cmn_event_attr {
603 	struct device_attribute attr;
604 	enum cmn_model model;
605 	enum cmn_node_type type;
606 	enum cmn_filter_select fsel;
607 	u16 eventid;
608 	u8 occupid;
609 };
610 
611 struct arm_cmn_format_attr {
612 	struct device_attribute attr;
613 	u64 field;
614 	int config;
615 };
616 
617 #define _CMN_EVENT_ATTR(_model, _name, _type, _eventid, _occupid, _fsel)\
618 	(&((struct arm_cmn_event_attr[]) {{				\
619 		.attr = __ATTR(_name, 0444, arm_cmn_event_show, NULL),	\
620 		.model = _model,					\
621 		.type = _type,						\
622 		.eventid = _eventid,					\
623 		.occupid = _occupid,					\
624 		.fsel = _fsel,						\
625 	}})[0].attr.attr)
626 #define CMN_EVENT_ATTR(_model, _name, _type, _eventid)			\
627 	_CMN_EVENT_ATTR(_model, _name, _type, _eventid, 0, SEL_NONE)
628 
629 static ssize_t arm_cmn_event_show(struct device *dev,
630 				  struct device_attribute *attr, char *buf)
631 {
632 	struct arm_cmn_event_attr *eattr;
633 
634 	eattr = container_of(attr, typeof(*eattr), attr);
635 
636 	if (eattr->type == CMN_TYPE_DTC)
637 		return sysfs_emit(buf, "type=0x%x\n", eattr->type);
638 
639 	if (eattr->type == CMN_TYPE_WP)
640 		return sysfs_emit(buf,
641 				  "type=0x%x,eventid=0x%x,wp_dev_sel=?,wp_chn_sel=?,wp_grp=?,wp_val=?,wp_mask=?\n",
642 				  eattr->type, eattr->eventid);
643 
644 	if (eattr->fsel > SEL_NONE)
645 		return sysfs_emit(buf, "type=0x%x,eventid=0x%x,occupid=0x%x\n",
646 				  eattr->type, eattr->eventid, eattr->occupid);
647 
648 	return sysfs_emit(buf, "type=0x%x,eventid=0x%x\n", eattr->type,
649 			  eattr->eventid);
650 }
651 
652 static umode_t arm_cmn_event_attr_is_visible(struct kobject *kobj,
653 					     struct attribute *attr,
654 					     int unused)
655 {
656 	struct device *dev = kobj_to_dev(kobj);
657 	struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev));
658 	struct arm_cmn_event_attr *eattr;
659 	enum cmn_node_type type;
660 	u16 eventid;
661 
662 	eattr = container_of(attr, typeof(*eattr), attr.attr);
663 
664 	if (!(eattr->model & arm_cmn_model(cmn)))
665 		return 0;
666 
667 	type = eattr->type;
668 	eventid = eattr->eventid;
669 
670 	/* Watchpoints aren't nodes, so avoid confusion */
671 	if (type == CMN_TYPE_WP)
672 		return attr->mode;
673 
674 	/* Hide XP events for unused interfaces/channels */
675 	if (type == CMN_TYPE_XP) {
676 		unsigned int intf = (eventid >> 2) & 7;
677 		unsigned int chan = eventid >> 5;
678 
679 		if ((intf & 4) && !(cmn->ports_used & BIT(intf & 3)))
680 			return 0;
681 
682 		if (chan == 4 && cmn->part == PART_CMN600)
683 			return 0;
684 
685 		if ((chan == 5 && cmn->rsp_vc_num < 2) ||
686 		    (chan == 6 && cmn->dat_vc_num < 2) ||
687 		    (chan == 7 && cmn->snp_vc_num < 2) ||
688 		    (chan == 8 && cmn->req_vc_num < 2))
689 			return 0;
690 	}
691 
692 	/* Revision-specific differences */
693 	if (cmn->part == PART_CMN600) {
694 		if (cmn->rev < REV_CMN600_R1P3) {
695 			if (type == CMN_TYPE_CXRA && eventid > 0x10)
696 				return 0;
697 		}
698 		if (cmn->rev < REV_CMN600_R1P2) {
699 			if (type == CMN_TYPE_HNF && eventid == 0x1b)
700 				return 0;
701 			if (type == CMN_TYPE_CXRA || type == CMN_TYPE_CXHA)
702 				return 0;
703 		}
704 	} else if (cmn->part == PART_CMN650) {
705 		if (cmn->rev < REV_CMN650_R2P0 || cmn->rev == REV_CMN650_R1P2) {
706 			if (type == CMN_TYPE_HNF && eventid > 0x22)
707 				return 0;
708 			if (type == CMN_TYPE_SBSX && eventid == 0x17)
709 				return 0;
710 			if (type == CMN_TYPE_RNI && eventid > 0x10)
711 				return 0;
712 		}
713 	} else if (cmn->part == PART_CMN700) {
714 		if (cmn->rev < REV_CMN700_R2P0) {
715 			if (type == CMN_TYPE_HNF && eventid > 0x2c)
716 				return 0;
717 			if (type == CMN_TYPE_CCHA && eventid > 0x74)
718 				return 0;
719 			if (type == CMN_TYPE_CCLA && eventid > 0x27)
720 				return 0;
721 		}
722 		if (cmn->rev < REV_CMN700_R1P0) {
723 			if (type == CMN_TYPE_HNF && eventid > 0x2b)
724 				return 0;
725 		}
726 	}
727 
728 	if (!arm_cmn_node(cmn, type))
729 		return 0;
730 
731 	return attr->mode;
732 }
733 
734 #define _CMN_EVENT_DVM(_model, _name, _event, _occup, _fsel)	\
735 	_CMN_EVENT_ATTR(_model, dn_##_name, CMN_TYPE_DVM, _event, _occup, _fsel)
736 #define CMN_EVENT_DTC(_name)					\
737 	CMN_EVENT_ATTR(CMN_ANY, dtc_##_name, CMN_TYPE_DTC, 0)
738 #define CMN_EVENT_HNF(_model, _name, _event)			\
739 	CMN_EVENT_ATTR(_model, hnf_##_name, CMN_TYPE_HNF, _event)
740 #define CMN_EVENT_HNI(_name, _event)				\
741 	CMN_EVENT_ATTR(CMN_ANY, hni_##_name, CMN_TYPE_HNI, _event)
742 #define CMN_EVENT_HNP(_name, _event)				\
743 	CMN_EVENT_ATTR(CMN_ANY, hnp_##_name, CMN_TYPE_HNP, _event)
744 #define __CMN_EVENT_XP(_name, _event)				\
745 	CMN_EVENT_ATTR(CMN_ANY, mxp_##_name, CMN_TYPE_XP, _event)
746 #define CMN_EVENT_SBSX(_model, _name, _event)			\
747 	CMN_EVENT_ATTR(_model, sbsx_##_name, CMN_TYPE_SBSX, _event)
748 #define CMN_EVENT_RNID(_model, _name, _event)			\
749 	CMN_EVENT_ATTR(_model, rnid_##_name, CMN_TYPE_RNI, _event)
750 #define CMN_EVENT_MTSX(_name, _event)				\
751 	CMN_EVENT_ATTR(CMN_ANY, mtsx_##_name, CMN_TYPE_MTSX, _event)
752 #define CMN_EVENT_CXRA(_model, _name, _event)				\
753 	CMN_EVENT_ATTR(_model, cxra_##_name, CMN_TYPE_CXRA, _event)
754 #define CMN_EVENT_CXHA(_name, _event)				\
755 	CMN_EVENT_ATTR(CMN_ANY, cxha_##_name, CMN_TYPE_CXHA, _event)
756 #define CMN_EVENT_CCRA(_name, _event)				\
757 	CMN_EVENT_ATTR(CMN_ANY, ccra_##_name, CMN_TYPE_CCRA, _event)
758 #define CMN_EVENT_CCHA(_name, _event)				\
759 	CMN_EVENT_ATTR(CMN_ANY, ccha_##_name, CMN_TYPE_CCHA, _event)
760 #define CMN_EVENT_CCLA(_name, _event)				\
761 	CMN_EVENT_ATTR(CMN_ANY, ccla_##_name, CMN_TYPE_CCLA, _event)
762 #define CMN_EVENT_CCLA_RNI(_name, _event)				\
763 	CMN_EVENT_ATTR(CMN_ANY, ccla_rni_##_name, CMN_TYPE_CCLA_RNI, _event)
764 #define CMN_EVENT_HNS(_name, _event)				\
765 	CMN_EVENT_ATTR(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event)
766 
767 #define CMN_EVENT_DVM(_model, _name, _event)			\
768 	_CMN_EVENT_DVM(_model, _name, _event, 0, SEL_NONE)
769 #define CMN_EVENT_DVM_OCC(_model, _name, _event)			\
770 	_CMN_EVENT_DVM(_model, _name##_all, _event, 0, SEL_OCCUP1ID),	\
771 	_CMN_EVENT_DVM(_model, _name##_dvmop, _event, 1, SEL_OCCUP1ID),	\
772 	_CMN_EVENT_DVM(_model, _name##_dvmsync, _event, 2, SEL_OCCUP1ID)
773 
774 #define CMN_EVENT_HN_OCC(_model, _name, _type, _event)		\
775 	_CMN_EVENT_ATTR(_model, _name##_all, _type, _event, 0, SEL_OCCUP1ID), \
776 	_CMN_EVENT_ATTR(_model, _name##_read, _type, _event, 1, SEL_OCCUP1ID), \
777 	_CMN_EVENT_ATTR(_model, _name##_write, _type, _event, 2, SEL_OCCUP1ID), \
778 	_CMN_EVENT_ATTR(_model, _name##_atomic, _type, _event, 3, SEL_OCCUP1ID), \
779 	_CMN_EVENT_ATTR(_model, _name##_stash, _type, _event, 4, SEL_OCCUP1ID)
780 #define CMN_EVENT_HN_CLS(_model, _name, _type, _event)			\
781 	_CMN_EVENT_ATTR(_model, _name##_class0, _type, _event, 0, SEL_CLASS_OCCUP_ID), \
782 	_CMN_EVENT_ATTR(_model, _name##_class1, _type, _event, 1, SEL_CLASS_OCCUP_ID), \
783 	_CMN_EVENT_ATTR(_model, _name##_class2, _type, _event, 2, SEL_CLASS_OCCUP_ID), \
784 	_CMN_EVENT_ATTR(_model, _name##_class3, _type, _event, 3, SEL_CLASS_OCCUP_ID)
785 #define CMN_EVENT_HN_SNT(_model, _name, _type, _event)			\
786 	_CMN_EVENT_ATTR(_model, _name##_all, _type, _event, 0, SEL_CBUSY_SNTHROTTLE_SEL), \
787 	_CMN_EVENT_ATTR(_model, _name##_group0_read, _type, _event, 1, SEL_CBUSY_SNTHROTTLE_SEL), \
788 	_CMN_EVENT_ATTR(_model, _name##_group0_write, _type, _event, 2, SEL_CBUSY_SNTHROTTLE_SEL), \
789 	_CMN_EVENT_ATTR(_model, _name##_group1_read, _type, _event, 3, SEL_CBUSY_SNTHROTTLE_SEL), \
790 	_CMN_EVENT_ATTR(_model, _name##_group1_write, _type, _event, 4, SEL_CBUSY_SNTHROTTLE_SEL), \
791 	_CMN_EVENT_ATTR(_model, _name##_read, _type, _event, 5, SEL_CBUSY_SNTHROTTLE_SEL), \
792 	_CMN_EVENT_ATTR(_model, _name##_write, _type, _event, 6, SEL_CBUSY_SNTHROTTLE_SEL)
793 
794 #define CMN_EVENT_HNF_OCC(_model, _name, _event)			\
795 	CMN_EVENT_HN_OCC(_model, hnf_##_name, CMN_TYPE_HNF, _event)
796 #define CMN_EVENT_HNF_CLS(_model, _name, _event)			\
797 	CMN_EVENT_HN_CLS(_model, hnf_##_name, CMN_TYPE_HNF, _event)
798 #define CMN_EVENT_HNF_SNT(_model, _name, _event)			\
799 	CMN_EVENT_HN_SNT(_model, hnf_##_name, CMN_TYPE_HNF, _event)
800 
801 #define CMN_EVENT_HNS_OCC(_name, _event)				\
802 	CMN_EVENT_HN_OCC(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event),	\
803 	_CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_rxsnp, CMN_TYPE_HNS, _event, 5, SEL_OCCUP1ID), \
804 	_CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_lbt, CMN_TYPE_HNS, _event, 6, SEL_OCCUP1ID), \
805 	_CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_hbt, CMN_TYPE_HNS, _event, 7, SEL_OCCUP1ID)
806 #define CMN_EVENT_HNS_CLS( _name, _event)				\
807 	CMN_EVENT_HN_CLS(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event)
808 #define CMN_EVENT_HNS_SNT(_name, _event)				\
809 	CMN_EVENT_HN_SNT(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event)
810 #define CMN_EVENT_HNS_HBT(_name, _event)				\
811 	_CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_all, CMN_TYPE_HNS, _event, 0, SEL_HBT_LBT_SEL), \
812 	_CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_hbt, CMN_TYPE_HNS, _event, 1, SEL_HBT_LBT_SEL), \
813 	_CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_lbt, CMN_TYPE_HNS, _event, 2, SEL_HBT_LBT_SEL)
814 #define CMN_EVENT_HNS_SNH(_name, _event)				\
815 	_CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_all, CMN_TYPE_HNS, _event, 0, SEL_SN_HOME_SEL), \
816 	_CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_sn, CMN_TYPE_HNS, _event, 1, SEL_SN_HOME_SEL), \
817 	_CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_home, CMN_TYPE_HNS, _event, 2, SEL_SN_HOME_SEL)
818 
819 #define _CMN_EVENT_XP_MESH(_name, _event)			\
820 	__CMN_EVENT_XP(e_##_name, (_event) | (0 << 2)),		\
821 	__CMN_EVENT_XP(w_##_name, (_event) | (1 << 2)),		\
822 	__CMN_EVENT_XP(n_##_name, (_event) | (2 << 2)),		\
823 	__CMN_EVENT_XP(s_##_name, (_event) | (3 << 2))
824 
825 #define _CMN_EVENT_XP_PORT(_name, _event)			\
826 	__CMN_EVENT_XP(p0_##_name, (_event) | (4 << 2)),	\
827 	__CMN_EVENT_XP(p1_##_name, (_event) | (5 << 2)),	\
828 	__CMN_EVENT_XP(p2_##_name, (_event) | (6 << 2)),	\
829 	__CMN_EVENT_XP(p3_##_name, (_event) | (7 << 2))
830 
831 #define _CMN_EVENT_XP(_name, _event)				\
832 	_CMN_EVENT_XP_MESH(_name, _event),			\
833 	_CMN_EVENT_XP_PORT(_name, _event)
834 
835 /* Good thing there are only 3 fundamental XP events... */
836 #define CMN_EVENT_XP(_name, _event)				\
837 	_CMN_EVENT_XP(req_##_name, (_event) | (0 << 5)),	\
838 	_CMN_EVENT_XP(rsp_##_name, (_event) | (1 << 5)),	\
839 	_CMN_EVENT_XP(snp_##_name, (_event) | (2 << 5)),	\
840 	_CMN_EVENT_XP(dat_##_name, (_event) | (3 << 5)),	\
841 	_CMN_EVENT_XP(pub_##_name, (_event) | (4 << 5)),	\
842 	_CMN_EVENT_XP(rsp2_##_name, (_event) | (5 << 5)),	\
843 	_CMN_EVENT_XP(dat2_##_name, (_event) | (6 << 5)),	\
844 	_CMN_EVENT_XP(snp2_##_name, (_event) | (7 << 5)),	\
845 	_CMN_EVENT_XP(req2_##_name, (_event) | (8 << 5))
846 
847 #define CMN_EVENT_XP_DAT(_name, _event)				\
848 	_CMN_EVENT_XP_PORT(dat_##_name, (_event) | (3 << 5)),	\
849 	_CMN_EVENT_XP_PORT(dat2_##_name, (_event) | (6 << 5))
850 
851 
852 static struct attribute *arm_cmn_event_attrs[] = {
853 	CMN_EVENT_DTC(cycles),
854 
855 	/*
856 	 * DVM node events conflict with HN-I events in the equivalent PMU
857 	 * slot, but our lazy short-cut of using the DTM counter index for
858 	 * the PMU index as well happens to avoid that by construction.
859 	 */
860 	CMN_EVENT_DVM(CMN600, rxreq_dvmop,		0x01),
861 	CMN_EVENT_DVM(CMN600, rxreq_dvmsync,		0x02),
862 	CMN_EVENT_DVM(CMN600, rxreq_dvmop_vmid_filtered, 0x03),
863 	CMN_EVENT_DVM(CMN600, rxreq_retried,		0x04),
864 	CMN_EVENT_DVM_OCC(CMN600, rxreq_trk_occupancy,	0x05),
865 	CMN_EVENT_DVM(NOT_CMN600, dvmop_tlbi,		0x01),
866 	CMN_EVENT_DVM(NOT_CMN600, dvmop_bpi,		0x02),
867 	CMN_EVENT_DVM(NOT_CMN600, dvmop_pici,		0x03),
868 	CMN_EVENT_DVM(NOT_CMN600, dvmop_vici,		0x04),
869 	CMN_EVENT_DVM(NOT_CMN600, dvmsync,		0x05),
870 	CMN_EVENT_DVM(NOT_CMN600, vmid_filtered,	0x06),
871 	CMN_EVENT_DVM(NOT_CMN600, rndop_filtered,	0x07),
872 	CMN_EVENT_DVM(NOT_CMN600, retry,		0x08),
873 	CMN_EVENT_DVM(NOT_CMN600, txsnp_flitv,		0x09),
874 	CMN_EVENT_DVM(NOT_CMN600, txsnp_stall,		0x0a),
875 	CMN_EVENT_DVM(NOT_CMN600, trkfull,		0x0b),
876 	CMN_EVENT_DVM_OCC(NOT_CMN600, trk_occupancy,	0x0c),
877 	CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_cxha,	0x0d),
878 	CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_pdn,	0x0e),
879 	CMN_EVENT_DVM(CMN700, trk_alloc,		0x0f),
880 	CMN_EVENT_DVM(CMN700, trk_cxha_alloc,		0x10),
881 	CMN_EVENT_DVM(CMN700, trk_pdn_alloc,		0x11),
882 	CMN_EVENT_DVM(CMN700, txsnp_stall_limit,	0x12),
883 	CMN_EVENT_DVM(CMN700, rxsnp_stall_starv,	0x13),
884 	CMN_EVENT_DVM(CMN700, txsnp_sync_stall_op,	0x14),
885 
886 	CMN_EVENT_HNF(CMN_ANY, cache_miss,		0x01),
887 	CMN_EVENT_HNF(CMN_ANY, slc_sf_cache_access,	0x02),
888 	CMN_EVENT_HNF(CMN_ANY, cache_fill,		0x03),
889 	CMN_EVENT_HNF(CMN_ANY, pocq_retry,		0x04),
890 	CMN_EVENT_HNF(CMN_ANY, pocq_reqs_recvd,		0x05),
891 	CMN_EVENT_HNF(CMN_ANY, sf_hit,			0x06),
892 	CMN_EVENT_HNF(CMN_ANY, sf_evictions,		0x07),
893 	CMN_EVENT_HNF(CMN_ANY, dir_snoops_sent,		0x08),
894 	CMN_EVENT_HNF(CMN_ANY, brd_snoops_sent,		0x09),
895 	CMN_EVENT_HNF(CMN_ANY, slc_eviction,		0x0a),
896 	CMN_EVENT_HNF(CMN_ANY, slc_fill_invalid_way,	0x0b),
897 	CMN_EVENT_HNF(CMN_ANY, mc_retries,		0x0c),
898 	CMN_EVENT_HNF(CMN_ANY, mc_reqs,			0x0d),
899 	CMN_EVENT_HNF(CMN_ANY, qos_hh_retry,		0x0e),
900 	CMN_EVENT_HNF_OCC(CMN_ANY, qos_pocq_occupancy,	0x0f),
901 	CMN_EVENT_HNF(CMN_ANY, pocq_addrhaz,		0x10),
902 	CMN_EVENT_HNF(CMN_ANY, pocq_atomic_addrhaz,	0x11),
903 	CMN_EVENT_HNF(CMN_ANY, ld_st_swp_adq_full,	0x12),
904 	CMN_EVENT_HNF(CMN_ANY, cmp_adq_full,		0x13),
905 	CMN_EVENT_HNF(CMN_ANY, txdat_stall,		0x14),
906 	CMN_EVENT_HNF(CMN_ANY, txrsp_stall,		0x15),
907 	CMN_EVENT_HNF(CMN_ANY, seq_full,		0x16),
908 	CMN_EVENT_HNF(CMN_ANY, seq_hit,			0x17),
909 	CMN_EVENT_HNF(CMN_ANY, snp_sent,		0x18),
910 	CMN_EVENT_HNF(CMN_ANY, sfbi_dir_snp_sent,	0x19),
911 	CMN_EVENT_HNF(CMN_ANY, sfbi_brd_snp_sent,	0x1a),
912 	CMN_EVENT_HNF(CMN_ANY, snp_sent_untrk,		0x1b),
913 	CMN_EVENT_HNF(CMN_ANY, intv_dirty,		0x1c),
914 	CMN_EVENT_HNF(CMN_ANY, stash_snp_sent,		0x1d),
915 	CMN_EVENT_HNF(CMN_ANY, stash_data_pull,		0x1e),
916 	CMN_EVENT_HNF(CMN_ANY, snp_fwded,		0x1f),
917 	CMN_EVENT_HNF(NOT_CMN600, atomic_fwd,		0x20),
918 	CMN_EVENT_HNF(NOT_CMN600, mpam_hardlim,		0x21),
919 	CMN_EVENT_HNF(NOT_CMN600, mpam_softlim,		0x22),
920 	CMN_EVENT_HNF(CMN_650ON, snp_sent_cluster,	0x23),
921 	CMN_EVENT_HNF(CMN_650ON, sf_imprecise_evict,	0x24),
922 	CMN_EVENT_HNF(CMN_650ON, sf_evict_shared_line,	0x25),
923 	CMN_EVENT_HNF_CLS(CMN700, pocq_class_occup,	0x26),
924 	CMN_EVENT_HNF_CLS(CMN700, pocq_class_retry,	0x27),
925 	CMN_EVENT_HNF_CLS(CMN700, class_mc_reqs,	0x28),
926 	CMN_EVENT_HNF_CLS(CMN700, class_cgnt_cmin,	0x29),
927 	CMN_EVENT_HNF_SNT(CMN700, sn_throttle,		0x2a),
928 	CMN_EVENT_HNF_SNT(CMN700, sn_throttle_min,	0x2b),
929 	CMN_EVENT_HNF(CMN700, sf_precise_to_imprecise,	0x2c),
930 	CMN_EVENT_HNF(CMN700, snp_intv_cln,		0x2d),
931 	CMN_EVENT_HNF(CMN700, nc_excl,			0x2e),
932 	CMN_EVENT_HNF(CMN700, excl_mon_ovfl,		0x2f),
933 
934 	CMN_EVENT_HNI(rrt_rd_occ_cnt_ovfl,		0x20),
935 	CMN_EVENT_HNI(rrt_wr_occ_cnt_ovfl,		0x21),
936 	CMN_EVENT_HNI(rdt_rd_occ_cnt_ovfl,		0x22),
937 	CMN_EVENT_HNI(rdt_wr_occ_cnt_ovfl,		0x23),
938 	CMN_EVENT_HNI(wdb_occ_cnt_ovfl,			0x24),
939 	CMN_EVENT_HNI(rrt_rd_alloc,			0x25),
940 	CMN_EVENT_HNI(rrt_wr_alloc,			0x26),
941 	CMN_EVENT_HNI(rdt_rd_alloc,			0x27),
942 	CMN_EVENT_HNI(rdt_wr_alloc,			0x28),
943 	CMN_EVENT_HNI(wdb_alloc,			0x29),
944 	CMN_EVENT_HNI(txrsp_retryack,			0x2a),
945 	CMN_EVENT_HNI(arvalid_no_arready,		0x2b),
946 	CMN_EVENT_HNI(arready_no_arvalid,		0x2c),
947 	CMN_EVENT_HNI(awvalid_no_awready,		0x2d),
948 	CMN_EVENT_HNI(awready_no_awvalid,		0x2e),
949 	CMN_EVENT_HNI(wvalid_no_wready,			0x2f),
950 	CMN_EVENT_HNI(txdat_stall,			0x30),
951 	CMN_EVENT_HNI(nonpcie_serialization,		0x31),
952 	CMN_EVENT_HNI(pcie_serialization,		0x32),
953 
954 	/*
955 	 * HN-P events squat on top of the HN-I similarly to DVM events, except
956 	 * for being crammed into the same physical node as well. And of course
957 	 * where would the fun be if the same events were in the same order...
958 	 */
959 	CMN_EVENT_HNP(rrt_wr_occ_cnt_ovfl,		0x01),
960 	CMN_EVENT_HNP(rdt_wr_occ_cnt_ovfl,		0x02),
961 	CMN_EVENT_HNP(wdb_occ_cnt_ovfl,			0x03),
962 	CMN_EVENT_HNP(rrt_wr_alloc,			0x04),
963 	CMN_EVENT_HNP(rdt_wr_alloc,			0x05),
964 	CMN_EVENT_HNP(wdb_alloc,			0x06),
965 	CMN_EVENT_HNP(awvalid_no_awready,		0x07),
966 	CMN_EVENT_HNP(awready_no_awvalid,		0x08),
967 	CMN_EVENT_HNP(wvalid_no_wready,			0x09),
968 	CMN_EVENT_HNP(rrt_rd_occ_cnt_ovfl,		0x11),
969 	CMN_EVENT_HNP(rdt_rd_occ_cnt_ovfl,		0x12),
970 	CMN_EVENT_HNP(rrt_rd_alloc,			0x13),
971 	CMN_EVENT_HNP(rdt_rd_alloc,			0x14),
972 	CMN_EVENT_HNP(arvalid_no_arready,		0x15),
973 	CMN_EVENT_HNP(arready_no_arvalid,		0x16),
974 
975 	CMN_EVENT_XP(txflit_valid,			0x01),
976 	CMN_EVENT_XP(txflit_stall,			0x02),
977 	CMN_EVENT_XP_DAT(partial_dat_flit,		0x03),
978 	/* We treat watchpoints as a special made-up class of XP events */
979 	CMN_EVENT_ATTR(CMN_ANY, watchpoint_up, CMN_TYPE_WP, CMN_WP_UP),
980 	CMN_EVENT_ATTR(CMN_ANY, watchpoint_down, CMN_TYPE_WP, CMN_WP_DOWN),
981 
982 	CMN_EVENT_SBSX(CMN_ANY, rd_req,			0x01),
983 	CMN_EVENT_SBSX(CMN_ANY, wr_req,			0x02),
984 	CMN_EVENT_SBSX(CMN_ANY, cmo_req,		0x03),
985 	CMN_EVENT_SBSX(CMN_ANY, txrsp_retryack,		0x04),
986 	CMN_EVENT_SBSX(CMN_ANY, txdat_flitv,		0x05),
987 	CMN_EVENT_SBSX(CMN_ANY, txrsp_flitv,		0x06),
988 	CMN_EVENT_SBSX(CMN_ANY, rd_req_trkr_occ_cnt_ovfl, 0x11),
989 	CMN_EVENT_SBSX(CMN_ANY, wr_req_trkr_occ_cnt_ovfl, 0x12),
990 	CMN_EVENT_SBSX(CMN_ANY, cmo_req_trkr_occ_cnt_ovfl, 0x13),
991 	CMN_EVENT_SBSX(CMN_ANY, wdb_occ_cnt_ovfl,	0x14),
992 	CMN_EVENT_SBSX(CMN_ANY, rd_axi_trkr_occ_cnt_ovfl, 0x15),
993 	CMN_EVENT_SBSX(CMN_ANY, cmo_axi_trkr_occ_cnt_ovfl, 0x16),
994 	CMN_EVENT_SBSX(NOT_CMN600, rdb_occ_cnt_ovfl,	0x17),
995 	CMN_EVENT_SBSX(CMN_ANY, arvalid_no_arready,	0x21),
996 	CMN_EVENT_SBSX(CMN_ANY, awvalid_no_awready,	0x22),
997 	CMN_EVENT_SBSX(CMN_ANY, wvalid_no_wready,	0x23),
998 	CMN_EVENT_SBSX(CMN_ANY, txdat_stall,		0x24),
999 	CMN_EVENT_SBSX(CMN_ANY, txrsp_stall,		0x25),
1000 
1001 	CMN_EVENT_RNID(CMN_ANY, s0_rdata_beats,		0x01),
1002 	CMN_EVENT_RNID(CMN_ANY, s1_rdata_beats,		0x02),
1003 	CMN_EVENT_RNID(CMN_ANY, s2_rdata_beats,		0x03),
1004 	CMN_EVENT_RNID(CMN_ANY, rxdat_flits,		0x04),
1005 	CMN_EVENT_RNID(CMN_ANY, txdat_flits,		0x05),
1006 	CMN_EVENT_RNID(CMN_ANY, txreq_flits_total,	0x06),
1007 	CMN_EVENT_RNID(CMN_ANY, txreq_flits_retried,	0x07),
1008 	CMN_EVENT_RNID(CMN_ANY, rrt_occ_ovfl,		0x08),
1009 	CMN_EVENT_RNID(CMN_ANY, wrt_occ_ovfl,		0x09),
1010 	CMN_EVENT_RNID(CMN_ANY, txreq_flits_replayed,	0x0a),
1011 	CMN_EVENT_RNID(CMN_ANY, wrcancel_sent,		0x0b),
1012 	CMN_EVENT_RNID(CMN_ANY, s0_wdata_beats,		0x0c),
1013 	CMN_EVENT_RNID(CMN_ANY, s1_wdata_beats,		0x0d),
1014 	CMN_EVENT_RNID(CMN_ANY, s2_wdata_beats,		0x0e),
1015 	CMN_EVENT_RNID(CMN_ANY, rrt_alloc,		0x0f),
1016 	CMN_EVENT_RNID(CMN_ANY, wrt_alloc,		0x10),
1017 	CMN_EVENT_RNID(CMN600, rdb_unord,		0x11),
1018 	CMN_EVENT_RNID(CMN600, rdb_replay,		0x12),
1019 	CMN_EVENT_RNID(CMN600, rdb_hybrid,		0x13),
1020 	CMN_EVENT_RNID(CMN600, rdb_ord,			0x14),
1021 	CMN_EVENT_RNID(NOT_CMN600, padb_occ_ovfl,	0x11),
1022 	CMN_EVENT_RNID(NOT_CMN600, rpdb_occ_ovfl,	0x12),
1023 	CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice1, 0x13),
1024 	CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice2, 0x14),
1025 	CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice3, 0x15),
1026 	CMN_EVENT_RNID(NOT_CMN600, wrt_throttled,	0x16),
1027 	CMN_EVENT_RNID(CMN700, ldb_full,		0x17),
1028 	CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice0, 0x18),
1029 	CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice1, 0x19),
1030 	CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice2, 0x1a),
1031 	CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice3, 0x1b),
1032 	CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice0, 0x1c),
1033 	CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice1, 0x1d),
1034 	CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice2, 0x1e),
1035 	CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice3, 0x1f),
1036 	CMN_EVENT_RNID(CMN700, rrt_burst_alloc,		0x20),
1037 	CMN_EVENT_RNID(CMN700, awid_hash,		0x21),
1038 	CMN_EVENT_RNID(CMN700, atomic_alloc,		0x22),
1039 	CMN_EVENT_RNID(CMN700, atomic_occ_ovfl,		0x23),
1040 
1041 	CMN_EVENT_MTSX(tc_lookup,			0x01),
1042 	CMN_EVENT_MTSX(tc_fill,				0x02),
1043 	CMN_EVENT_MTSX(tc_miss,				0x03),
1044 	CMN_EVENT_MTSX(tdb_forward,			0x04),
1045 	CMN_EVENT_MTSX(tcq_hazard,			0x05),
1046 	CMN_EVENT_MTSX(tcq_rd_alloc,			0x06),
1047 	CMN_EVENT_MTSX(tcq_wr_alloc,			0x07),
1048 	CMN_EVENT_MTSX(tcq_cmo_alloc,			0x08),
1049 	CMN_EVENT_MTSX(axi_rd_req,			0x09),
1050 	CMN_EVENT_MTSX(axi_wr_req,			0x0a),
1051 	CMN_EVENT_MTSX(tcq_occ_cnt_ovfl,		0x0b),
1052 	CMN_EVENT_MTSX(tdb_occ_cnt_ovfl,		0x0c),
1053 
1054 	CMN_EVENT_CXRA(CMN_ANY, rht_occ,		0x01),
1055 	CMN_EVENT_CXRA(CMN_ANY, sht_occ,		0x02),
1056 	CMN_EVENT_CXRA(CMN_ANY, rdb_occ,		0x03),
1057 	CMN_EVENT_CXRA(CMN_ANY, wdb_occ,		0x04),
1058 	CMN_EVENT_CXRA(CMN_ANY, ssb_occ,		0x05),
1059 	CMN_EVENT_CXRA(CMN_ANY, snp_bcasts,		0x06),
1060 	CMN_EVENT_CXRA(CMN_ANY, req_chains,		0x07),
1061 	CMN_EVENT_CXRA(CMN_ANY, req_chain_avglen,	0x08),
1062 	CMN_EVENT_CXRA(CMN_ANY, chirsp_stalls,		0x09),
1063 	CMN_EVENT_CXRA(CMN_ANY, chidat_stalls,		0x0a),
1064 	CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link0, 0x0b),
1065 	CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link1, 0x0c),
1066 	CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link2, 0x0d),
1067 	CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link0, 0x0e),
1068 	CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link1, 0x0f),
1069 	CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link2, 0x10),
1070 	CMN_EVENT_CXRA(CMN_ANY, external_chirsp_stalls,	0x11),
1071 	CMN_EVENT_CXRA(CMN_ANY, external_chidat_stalls,	0x12),
1072 	CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link0, 0x13),
1073 	CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link1, 0x14),
1074 	CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link2, 0x15),
1075 
1076 	CMN_EVENT_CXHA(rddatbyp,			0x21),
1077 	CMN_EVENT_CXHA(chirsp_up_stall,			0x22),
1078 	CMN_EVENT_CXHA(chidat_up_stall,			0x23),
1079 	CMN_EVENT_CXHA(snppcrd_link0_stall,		0x24),
1080 	CMN_EVENT_CXHA(snppcrd_link1_stall,		0x25),
1081 	CMN_EVENT_CXHA(snppcrd_link2_stall,		0x26),
1082 	CMN_EVENT_CXHA(reqtrk_occ,			0x27),
1083 	CMN_EVENT_CXHA(rdb_occ,				0x28),
1084 	CMN_EVENT_CXHA(rdbyp_occ,			0x29),
1085 	CMN_EVENT_CXHA(wdb_occ,				0x2a),
1086 	CMN_EVENT_CXHA(snptrk_occ,			0x2b),
1087 	CMN_EVENT_CXHA(sdb_occ,				0x2c),
1088 	CMN_EVENT_CXHA(snphaz_occ,			0x2d),
1089 
1090 	CMN_EVENT_CCRA(rht_occ,				0x41),
1091 	CMN_EVENT_CCRA(sht_occ,				0x42),
1092 	CMN_EVENT_CCRA(rdb_occ,				0x43),
1093 	CMN_EVENT_CCRA(wdb_occ,				0x44),
1094 	CMN_EVENT_CCRA(ssb_occ,				0x45),
1095 	CMN_EVENT_CCRA(snp_bcasts,			0x46),
1096 	CMN_EVENT_CCRA(req_chains,			0x47),
1097 	CMN_EVENT_CCRA(req_chain_avglen,		0x48),
1098 	CMN_EVENT_CCRA(chirsp_stalls,			0x49),
1099 	CMN_EVENT_CCRA(chidat_stalls,			0x4a),
1100 	CMN_EVENT_CCRA(cxreq_pcrd_stalls_link0,		0x4b),
1101 	CMN_EVENT_CCRA(cxreq_pcrd_stalls_link1,		0x4c),
1102 	CMN_EVENT_CCRA(cxreq_pcrd_stalls_link2,		0x4d),
1103 	CMN_EVENT_CCRA(cxdat_pcrd_stalls_link0,		0x4e),
1104 	CMN_EVENT_CCRA(cxdat_pcrd_stalls_link1,		0x4f),
1105 	CMN_EVENT_CCRA(cxdat_pcrd_stalls_link2,		0x50),
1106 	CMN_EVENT_CCRA(external_chirsp_stalls,		0x51),
1107 	CMN_EVENT_CCRA(external_chidat_stalls,		0x52),
1108 	CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link0,	0x53),
1109 	CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link1,	0x54),
1110 	CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link2,	0x55),
1111 	CMN_EVENT_CCRA(rht_alloc,			0x56),
1112 	CMN_EVENT_CCRA(sht_alloc,			0x57),
1113 	CMN_EVENT_CCRA(rdb_alloc,			0x58),
1114 	CMN_EVENT_CCRA(wdb_alloc,			0x59),
1115 	CMN_EVENT_CCRA(ssb_alloc,			0x5a),
1116 
1117 	CMN_EVENT_CCHA(rddatbyp,			0x61),
1118 	CMN_EVENT_CCHA(chirsp_up_stall,			0x62),
1119 	CMN_EVENT_CCHA(chidat_up_stall,			0x63),
1120 	CMN_EVENT_CCHA(snppcrd_link0_stall,		0x64),
1121 	CMN_EVENT_CCHA(snppcrd_link1_stall,		0x65),
1122 	CMN_EVENT_CCHA(snppcrd_link2_stall,		0x66),
1123 	CMN_EVENT_CCHA(reqtrk_occ,			0x67),
1124 	CMN_EVENT_CCHA(rdb_occ,				0x68),
1125 	CMN_EVENT_CCHA(rdbyp_occ,			0x69),
1126 	CMN_EVENT_CCHA(wdb_occ,				0x6a),
1127 	CMN_EVENT_CCHA(snptrk_occ,			0x6b),
1128 	CMN_EVENT_CCHA(sdb_occ,				0x6c),
1129 	CMN_EVENT_CCHA(snphaz_occ,			0x6d),
1130 	CMN_EVENT_CCHA(reqtrk_alloc,			0x6e),
1131 	CMN_EVENT_CCHA(rdb_alloc,			0x6f),
1132 	CMN_EVENT_CCHA(rdbyp_alloc,			0x70),
1133 	CMN_EVENT_CCHA(wdb_alloc,			0x71),
1134 	CMN_EVENT_CCHA(snptrk_alloc,			0x72),
1135 	CMN_EVENT_CCHA(sdb_alloc,			0x73),
1136 	CMN_EVENT_CCHA(snphaz_alloc,			0x74),
1137 	CMN_EVENT_CCHA(pb_rhu_req_occ,			0x75),
1138 	CMN_EVENT_CCHA(pb_rhu_req_alloc,		0x76),
1139 	CMN_EVENT_CCHA(pb_rhu_pcie_req_occ,		0x77),
1140 	CMN_EVENT_CCHA(pb_rhu_pcie_req_alloc,		0x78),
1141 	CMN_EVENT_CCHA(pb_pcie_wr_req_occ,		0x79),
1142 	CMN_EVENT_CCHA(pb_pcie_wr_req_alloc,		0x7a),
1143 	CMN_EVENT_CCHA(pb_pcie_reg_req_occ,		0x7b),
1144 	CMN_EVENT_CCHA(pb_pcie_reg_req_alloc,		0x7c),
1145 	CMN_EVENT_CCHA(pb_pcie_rsvd_req_occ,		0x7d),
1146 	CMN_EVENT_CCHA(pb_pcie_rsvd_req_alloc,		0x7e),
1147 	CMN_EVENT_CCHA(pb_rhu_dat_occ,			0x7f),
1148 	CMN_EVENT_CCHA(pb_rhu_dat_alloc,		0x80),
1149 	CMN_EVENT_CCHA(pb_rhu_pcie_dat_occ,		0x81),
1150 	CMN_EVENT_CCHA(pb_rhu_pcie_dat_alloc,		0x82),
1151 	CMN_EVENT_CCHA(pb_pcie_wr_dat_occ,		0x83),
1152 	CMN_EVENT_CCHA(pb_pcie_wr_dat_alloc,		0x84),
1153 
1154 	CMN_EVENT_CCLA(rx_cxs,				0x21),
1155 	CMN_EVENT_CCLA(tx_cxs,				0x22),
1156 	CMN_EVENT_CCLA(rx_cxs_avg_size,			0x23),
1157 	CMN_EVENT_CCLA(tx_cxs_avg_size,			0x24),
1158 	CMN_EVENT_CCLA(tx_cxs_lcrd_backpressure,	0x25),
1159 	CMN_EVENT_CCLA(link_crdbuf_occ,			0x26),
1160 	CMN_EVENT_CCLA(link_crdbuf_alloc,		0x27),
1161 	CMN_EVENT_CCLA(pfwd_rcvr_cxs,			0x28),
1162 	CMN_EVENT_CCLA(pfwd_sndr_num_flits,		0x29),
1163 	CMN_EVENT_CCLA(pfwd_sndr_stalls_static_crd,	0x2a),
1164 	CMN_EVENT_CCLA(pfwd_sndr_stalls_dynmaic_crd,	0x2b),
1165 
1166 	CMN_EVENT_HNS_HBT(cache_miss,			0x01),
1167 	CMN_EVENT_HNS_HBT(slc_sf_cache_access,		0x02),
1168 	CMN_EVENT_HNS_HBT(cache_fill,			0x03),
1169 	CMN_EVENT_HNS_HBT(pocq_retry,			0x04),
1170 	CMN_EVENT_HNS_HBT(pocq_reqs_recvd,		0x05),
1171 	CMN_EVENT_HNS_HBT(sf_hit,			0x06),
1172 	CMN_EVENT_HNS_HBT(sf_evictions,			0x07),
1173 	CMN_EVENT_HNS(dir_snoops_sent,			0x08),
1174 	CMN_EVENT_HNS(brd_snoops_sent,			0x09),
1175 	CMN_EVENT_HNS_HBT(slc_eviction,			0x0a),
1176 	CMN_EVENT_HNS_HBT(slc_fill_invalid_way,		0x0b),
1177 	CMN_EVENT_HNS(mc_retries_local,			0x0c),
1178 	CMN_EVENT_HNS_SNH(mc_reqs_local,		0x0d),
1179 	CMN_EVENT_HNS(qos_hh_retry,			0x0e),
1180 	CMN_EVENT_HNS_OCC(qos_pocq_occupancy,		0x0f),
1181 	CMN_EVENT_HNS(pocq_addrhaz,			0x10),
1182 	CMN_EVENT_HNS(pocq_atomic_addrhaz,		0x11),
1183 	CMN_EVENT_HNS(ld_st_swp_adq_full,		0x12),
1184 	CMN_EVENT_HNS(cmp_adq_full,			0x13),
1185 	CMN_EVENT_HNS(txdat_stall,			0x14),
1186 	CMN_EVENT_HNS(txrsp_stall,			0x15),
1187 	CMN_EVENT_HNS(seq_full,				0x16),
1188 	CMN_EVENT_HNS(seq_hit,				0x17),
1189 	CMN_EVENT_HNS(snp_sent,				0x18),
1190 	CMN_EVENT_HNS(sfbi_dir_snp_sent,		0x19),
1191 	CMN_EVENT_HNS(sfbi_brd_snp_sent,		0x1a),
1192 	CMN_EVENT_HNS(intv_dirty,			0x1c),
1193 	CMN_EVENT_HNS(stash_snp_sent,			0x1d),
1194 	CMN_EVENT_HNS(stash_data_pull,			0x1e),
1195 	CMN_EVENT_HNS(snp_fwded,			0x1f),
1196 	CMN_EVENT_HNS(atomic_fwd,			0x20),
1197 	CMN_EVENT_HNS(mpam_hardlim,			0x21),
1198 	CMN_EVENT_HNS(mpam_softlim,			0x22),
1199 	CMN_EVENT_HNS(snp_sent_cluster,			0x23),
1200 	CMN_EVENT_HNS(sf_imprecise_evict,		0x24),
1201 	CMN_EVENT_HNS(sf_evict_shared_line,		0x25),
1202 	CMN_EVENT_HNS_CLS(pocq_class_occup,		0x26),
1203 	CMN_EVENT_HNS_CLS(pocq_class_retry,		0x27),
1204 	CMN_EVENT_HNS_CLS(class_mc_reqs_local,		0x28),
1205 	CMN_EVENT_HNS_CLS(class_cgnt_cmin,		0x29),
1206 	CMN_EVENT_HNS_SNT(sn_throttle,			0x2a),
1207 	CMN_EVENT_HNS_SNT(sn_throttle_min,		0x2b),
1208 	CMN_EVENT_HNS(sf_precise_to_imprecise,		0x2c),
1209 	CMN_EVENT_HNS(snp_intv_cln,			0x2d),
1210 	CMN_EVENT_HNS(nc_excl,				0x2e),
1211 	CMN_EVENT_HNS(excl_mon_ovfl,			0x2f),
1212 	CMN_EVENT_HNS(snp_req_recvd,			0x30),
1213 	CMN_EVENT_HNS(snp_req_byp_pocq,			0x31),
1214 	CMN_EVENT_HNS(dir_ccgha_snp_sent,		0x32),
1215 	CMN_EVENT_HNS(brd_ccgha_snp_sent,		0x33),
1216 	CMN_EVENT_HNS(ccgha_snp_stall,			0x34),
1217 	CMN_EVENT_HNS(lbt_req_hardlim,			0x35),
1218 	CMN_EVENT_HNS(hbt_req_hardlim,			0x36),
1219 	CMN_EVENT_HNS(sf_reupdate,			0x37),
1220 	CMN_EVENT_HNS(excl_sf_imprecise,		0x38),
1221 	CMN_EVENT_HNS(snp_pocq_addrhaz,			0x39),
1222 	CMN_EVENT_HNS(mc_retries_remote,		0x3a),
1223 	CMN_EVENT_HNS_SNH(mc_reqs_remote,		0x3b),
1224 	CMN_EVENT_HNS_CLS(class_mc_reqs_remote,		0x3c),
1225 
1226 	NULL
1227 };
1228 
1229 static const struct attribute_group arm_cmn_event_attrs_group = {
1230 	.name = "events",
1231 	.attrs = arm_cmn_event_attrs,
1232 	.is_visible = arm_cmn_event_attr_is_visible,
1233 };
1234 
1235 static ssize_t arm_cmn_format_show(struct device *dev,
1236 				   struct device_attribute *attr, char *buf)
1237 {
1238 	struct arm_cmn_format_attr *fmt = container_of(attr, typeof(*fmt), attr);
1239 	int lo = __ffs(fmt->field), hi = __fls(fmt->field);
1240 
1241 	if (lo == hi)
1242 		return sysfs_emit(buf, "config:%d\n", lo);
1243 
1244 	if (!fmt->config)
1245 		return sysfs_emit(buf, "config:%d-%d\n", lo, hi);
1246 
1247 	return sysfs_emit(buf, "config%d:%d-%d\n", fmt->config, lo, hi);
1248 }
1249 
1250 #define _CMN_FORMAT_ATTR(_name, _cfg, _fld)				\
1251 	(&((struct arm_cmn_format_attr[]) {{				\
1252 		.attr = __ATTR(_name, 0444, arm_cmn_format_show, NULL),	\
1253 		.config = _cfg,						\
1254 		.field = _fld,						\
1255 	}})[0].attr.attr)
1256 #define CMN_FORMAT_ATTR(_name, _fld)	_CMN_FORMAT_ATTR(_name, 0, _fld)
1257 
1258 static struct attribute *arm_cmn_format_attrs[] = {
1259 	CMN_FORMAT_ATTR(type, CMN_CONFIG_TYPE),
1260 	CMN_FORMAT_ATTR(eventid, CMN_CONFIG_EVENTID),
1261 	CMN_FORMAT_ATTR(occupid, CMN_CONFIG_OCCUPID),
1262 	CMN_FORMAT_ATTR(bynodeid, CMN_CONFIG_BYNODEID),
1263 	CMN_FORMAT_ATTR(nodeid, CMN_CONFIG_NODEID),
1264 
1265 	CMN_FORMAT_ATTR(wp_dev_sel, CMN_CONFIG_WP_DEV_SEL),
1266 	CMN_FORMAT_ATTR(wp_chn_sel, CMN_CONFIG_WP_CHN_SEL),
1267 	CMN_FORMAT_ATTR(wp_grp, CMN_CONFIG_WP_GRP),
1268 	CMN_FORMAT_ATTR(wp_exclusive, CMN_CONFIG_WP_EXCLUSIVE),
1269 	CMN_FORMAT_ATTR(wp_combine, CMN_CONFIG_WP_COMBINE),
1270 
1271 	_CMN_FORMAT_ATTR(wp_val, 1, CMN_CONFIG1_WP_VAL),
1272 	_CMN_FORMAT_ATTR(wp_mask, 2, CMN_CONFIG2_WP_MASK),
1273 
1274 	NULL
1275 };
1276 
1277 static const struct attribute_group arm_cmn_format_attrs_group = {
1278 	.name = "format",
1279 	.attrs = arm_cmn_format_attrs,
1280 };
1281 
1282 static ssize_t arm_cmn_cpumask_show(struct device *dev,
1283 				    struct device_attribute *attr, char *buf)
1284 {
1285 	struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev));
1286 
1287 	return cpumap_print_to_pagebuf(true, buf, cpumask_of(cmn->cpu));
1288 }
1289 
1290 static struct device_attribute arm_cmn_cpumask_attr =
1291 		__ATTR(cpumask, 0444, arm_cmn_cpumask_show, NULL);
1292 
1293 static ssize_t arm_cmn_identifier_show(struct device *dev,
1294 				       struct device_attribute *attr, char *buf)
1295 {
1296 	struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev));
1297 
1298 	return sysfs_emit(buf, "%03x%02x\n", cmn->part, cmn->rev);
1299 }
1300 
1301 static struct device_attribute arm_cmn_identifier_attr =
1302 		__ATTR(identifier, 0444, arm_cmn_identifier_show, NULL);
1303 
1304 static struct attribute *arm_cmn_other_attrs[] = {
1305 	&arm_cmn_cpumask_attr.attr,
1306 	&arm_cmn_identifier_attr.attr,
1307 	NULL,
1308 };
1309 
1310 static const struct attribute_group arm_cmn_other_attrs_group = {
1311 	.attrs = arm_cmn_other_attrs,
1312 };
1313 
1314 static const struct attribute_group *arm_cmn_attr_groups[] = {
1315 	&arm_cmn_event_attrs_group,
1316 	&arm_cmn_format_attrs_group,
1317 	&arm_cmn_other_attrs_group,
1318 	NULL
1319 };
1320 
1321 static int arm_cmn_wp_idx(struct perf_event *event)
1322 {
1323 	return CMN_EVENT_EVENTID(event) + CMN_EVENT_WP_GRP(event);
1324 }
1325 
1326 static u32 arm_cmn_wp_config(struct perf_event *event)
1327 {
1328 	u32 config;
1329 	u32 dev = CMN_EVENT_WP_DEV_SEL(event);
1330 	u32 chn = CMN_EVENT_WP_CHN_SEL(event);
1331 	u32 grp = CMN_EVENT_WP_GRP(event);
1332 	u32 exc = CMN_EVENT_WP_EXCLUSIVE(event);
1333 	u32 combine = CMN_EVENT_WP_COMBINE(event);
1334 	bool is_cmn600 = to_cmn(event->pmu)->part == PART_CMN600;
1335 
1336 	config = FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_DEV_SEL, dev) |
1337 		 FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_CHN_SEL, chn) |
1338 		 FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_GRP, grp) |
1339 		 FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_DEV_SEL2, dev >> 1);
1340 	if (exc)
1341 		config |= is_cmn600 ? CMN600_WPn_CONFIG_WP_EXCLUSIVE :
1342 				      CMN_DTM_WPn_CONFIG_WP_EXCLUSIVE;
1343 	if (combine && !grp)
1344 		config |= is_cmn600 ? CMN600_WPn_CONFIG_WP_COMBINE :
1345 				      CMN_DTM_WPn_CONFIG_WP_COMBINE;
1346 	return config;
1347 }
1348 
1349 static void arm_cmn_set_state(struct arm_cmn *cmn, u32 state)
1350 {
1351 	if (!cmn->state)
1352 		writel_relaxed(0, cmn->dtc[0].base + CMN_DT_PMCR);
1353 	cmn->state |= state;
1354 }
1355 
1356 static void arm_cmn_clear_state(struct arm_cmn *cmn, u32 state)
1357 {
1358 	cmn->state &= ~state;
1359 	if (!cmn->state)
1360 		writel_relaxed(CMN_DT_PMCR_PMU_EN | CMN_DT_PMCR_OVFL_INTR_EN,
1361 			       cmn->dtc[0].base + CMN_DT_PMCR);
1362 }
1363 
1364 static void arm_cmn_pmu_enable(struct pmu *pmu)
1365 {
1366 	arm_cmn_clear_state(to_cmn(pmu), CMN_STATE_DISABLED);
1367 }
1368 
1369 static void arm_cmn_pmu_disable(struct pmu *pmu)
1370 {
1371 	arm_cmn_set_state(to_cmn(pmu), CMN_STATE_DISABLED);
1372 }
1373 
1374 static u64 arm_cmn_read_dtm(struct arm_cmn *cmn, struct arm_cmn_hw_event *hw,
1375 			    bool snapshot)
1376 {
1377 	struct arm_cmn_dtm *dtm = NULL;
1378 	struct arm_cmn_node *dn;
1379 	unsigned int i, offset, dtm_idx;
1380 	u64 reg, count = 0;
1381 
1382 	offset = snapshot ? CMN_DTM_PMEVCNTSR : CMN_DTM_PMEVCNT;
1383 	for_each_hw_dn(hw, dn, i) {
1384 		if (dtm != &cmn->dtms[dn->dtm]) {
1385 			dtm = &cmn->dtms[dn->dtm] + hw->dtm_offset;
1386 			reg = readq_relaxed(dtm->base + offset);
1387 		}
1388 		dtm_idx = arm_cmn_get_index(hw->dtm_idx, i);
1389 		count += (u16)(reg >> (dtm_idx * 16));
1390 	}
1391 	return count;
1392 }
1393 
1394 static u64 arm_cmn_read_cc(struct arm_cmn_dtc *dtc)
1395 {
1396 	u64 val = readq_relaxed(dtc->base + CMN_DT_PMCCNTR);
1397 
1398 	writeq_relaxed(CMN_CC_INIT, dtc->base + CMN_DT_PMCCNTR);
1399 	return (val - CMN_CC_INIT) & ((CMN_CC_INIT << 1) - 1);
1400 }
1401 
1402 static u32 arm_cmn_read_counter(struct arm_cmn_dtc *dtc, int idx)
1403 {
1404 	u32 val, pmevcnt = CMN_DT_PMEVCNT(idx);
1405 
1406 	val = readl_relaxed(dtc->base + pmevcnt);
1407 	writel_relaxed(CMN_COUNTER_INIT, dtc->base + pmevcnt);
1408 	return val - CMN_COUNTER_INIT;
1409 }
1410 
1411 static void arm_cmn_init_counter(struct perf_event *event)
1412 {
1413 	struct arm_cmn *cmn = to_cmn(event->pmu);
1414 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1415 	u64 count;
1416 
1417 	for_each_hw_dtc_idx(hw, i, idx) {
1418 		writel_relaxed(CMN_COUNTER_INIT, cmn->dtc[i].base + CMN_DT_PMEVCNT(idx));
1419 		cmn->dtc[i].counters[idx] = event;
1420 	}
1421 
1422 	count = arm_cmn_read_dtm(cmn, hw, false);
1423 	local64_set(&event->hw.prev_count, count);
1424 }
1425 
1426 static void arm_cmn_event_read(struct perf_event *event)
1427 {
1428 	struct arm_cmn *cmn = to_cmn(event->pmu);
1429 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1430 	u64 delta, new, prev;
1431 	unsigned long flags;
1432 
1433 	if (CMN_EVENT_TYPE(event) == CMN_TYPE_DTC) {
1434 		delta = arm_cmn_read_cc(cmn->dtc + hw->dtc_idx[0]);
1435 		local64_add(delta, &event->count);
1436 		return;
1437 	}
1438 	new = arm_cmn_read_dtm(cmn, hw, false);
1439 	prev = local64_xchg(&event->hw.prev_count, new);
1440 
1441 	delta = new - prev;
1442 
1443 	local_irq_save(flags);
1444 	for_each_hw_dtc_idx(hw, i, idx) {
1445 		new = arm_cmn_read_counter(cmn->dtc + i, idx);
1446 		delta += new << 16;
1447 	}
1448 	local_irq_restore(flags);
1449 	local64_add(delta, &event->count);
1450 }
1451 
1452 static int arm_cmn_set_event_sel_hi(struct arm_cmn_node *dn,
1453 				    enum cmn_filter_select fsel, u8 occupid)
1454 {
1455 	u64 reg;
1456 
1457 	if (fsel == SEL_NONE)
1458 		return 0;
1459 
1460 	if (!dn->occupid[fsel].count) {
1461 		dn->occupid[fsel].val = occupid;
1462 		reg = FIELD_PREP(CMN__PMU_CBUSY_SNTHROTTLE_SEL,
1463 				 dn->occupid[SEL_CBUSY_SNTHROTTLE_SEL].val) |
1464 		      FIELD_PREP(CMN__PMU_SN_HOME_SEL,
1465 				 dn->occupid[SEL_SN_HOME_SEL].val) |
1466 		      FIELD_PREP(CMN__PMU_HBT_LBT_SEL,
1467 				 dn->occupid[SEL_HBT_LBT_SEL].val) |
1468 		      FIELD_PREP(CMN__PMU_CLASS_OCCUP_ID,
1469 				 dn->occupid[SEL_CLASS_OCCUP_ID].val) |
1470 		      FIELD_PREP(CMN__PMU_OCCUP1_ID,
1471 				 dn->occupid[SEL_OCCUP1ID].val);
1472 		writel_relaxed(reg >> 32, dn->pmu_base + CMN_PMU_EVENT_SEL + 4);
1473 	} else if (dn->occupid[fsel].val != occupid) {
1474 		return -EBUSY;
1475 	}
1476 	dn->occupid[fsel].count++;
1477 	return 0;
1478 }
1479 
1480 static void arm_cmn_set_event_sel_lo(struct arm_cmn_node *dn, int dtm_idx,
1481 				     int eventid, bool wide_sel)
1482 {
1483 	if (wide_sel) {
1484 		dn->event_w[dtm_idx] = eventid;
1485 		writeq_relaxed(le64_to_cpu(dn->event_sel_w), dn->pmu_base + CMN_PMU_EVENT_SEL);
1486 	} else {
1487 		dn->event[dtm_idx] = eventid;
1488 		writel_relaxed(le32_to_cpu(dn->event_sel), dn->pmu_base + CMN_PMU_EVENT_SEL);
1489 	}
1490 }
1491 
1492 static void arm_cmn_event_start(struct perf_event *event, int flags)
1493 {
1494 	struct arm_cmn *cmn = to_cmn(event->pmu);
1495 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1496 	struct arm_cmn_node *dn;
1497 	enum cmn_node_type type = CMN_EVENT_TYPE(event);
1498 	int i;
1499 
1500 	if (type == CMN_TYPE_DTC) {
1501 		i = hw->dtc_idx[0];
1502 		writeq_relaxed(CMN_CC_INIT, cmn->dtc[i].base + CMN_DT_PMCCNTR);
1503 		cmn->dtc[i].cc_active = true;
1504 	} else if (type == CMN_TYPE_WP) {
1505 		int wp_idx = arm_cmn_wp_idx(event);
1506 		u64 val = CMN_EVENT_WP_VAL(event);
1507 		u64 mask = CMN_EVENT_WP_MASK(event);
1508 
1509 		for_each_hw_dn(hw, dn, i) {
1510 			void __iomem *base = dn->pmu_base + CMN_DTM_OFFSET(hw->dtm_offset);
1511 
1512 			writeq_relaxed(val, base + CMN_DTM_WPn_VAL(wp_idx));
1513 			writeq_relaxed(mask, base + CMN_DTM_WPn_MASK(wp_idx));
1514 		}
1515 	} else for_each_hw_dn(hw, dn, i) {
1516 		int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i);
1517 
1518 		arm_cmn_set_event_sel_lo(dn, dtm_idx, CMN_EVENT_EVENTID(event),
1519 					 hw->wide_sel);
1520 	}
1521 }
1522 
1523 static void arm_cmn_event_stop(struct perf_event *event, int flags)
1524 {
1525 	struct arm_cmn *cmn = to_cmn(event->pmu);
1526 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1527 	struct arm_cmn_node *dn;
1528 	enum cmn_node_type type = CMN_EVENT_TYPE(event);
1529 	int i;
1530 
1531 	if (type == CMN_TYPE_DTC) {
1532 		i = hw->dtc_idx[0];
1533 		cmn->dtc[i].cc_active = false;
1534 	} else if (type == CMN_TYPE_WP) {
1535 		int wp_idx = arm_cmn_wp_idx(event);
1536 
1537 		for_each_hw_dn(hw, dn, i) {
1538 			void __iomem *base = dn->pmu_base + CMN_DTM_OFFSET(hw->dtm_offset);
1539 
1540 			writeq_relaxed(0, base + CMN_DTM_WPn_MASK(wp_idx));
1541 			writeq_relaxed(~0ULL, base + CMN_DTM_WPn_VAL(wp_idx));
1542 		}
1543 	} else for_each_hw_dn(hw, dn, i) {
1544 		int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i);
1545 
1546 		arm_cmn_set_event_sel_lo(dn, dtm_idx, 0, hw->wide_sel);
1547 	}
1548 
1549 	arm_cmn_event_read(event);
1550 }
1551 
1552 struct arm_cmn_val {
1553 	u8 dtm_count[CMN_MAX_DTMS];
1554 	u8 occupid[CMN_MAX_DTMS][SEL_MAX];
1555 	u8 wp[CMN_MAX_DTMS][4];
1556 	int dtc_count;
1557 	bool cycles;
1558 };
1559 
1560 static void arm_cmn_val_add_event(struct arm_cmn *cmn, struct arm_cmn_val *val,
1561 				  struct perf_event *event)
1562 {
1563 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1564 	struct arm_cmn_node *dn;
1565 	enum cmn_node_type type;
1566 	int i;
1567 
1568 	if (is_software_event(event))
1569 		return;
1570 
1571 	type = CMN_EVENT_TYPE(event);
1572 	if (type == CMN_TYPE_DTC) {
1573 		val->cycles = true;
1574 		return;
1575 	}
1576 
1577 	val->dtc_count++;
1578 
1579 	for_each_hw_dn(hw, dn, i) {
1580 		int wp_idx, dtm = dn->dtm, sel = hw->filter_sel;
1581 
1582 		val->dtm_count[dtm]++;
1583 
1584 		if (sel > SEL_NONE)
1585 			val->occupid[dtm][sel] = CMN_EVENT_OCCUPID(event) + 1;
1586 
1587 		if (type != CMN_TYPE_WP)
1588 			continue;
1589 
1590 		wp_idx = arm_cmn_wp_idx(event);
1591 		val->wp[dtm][wp_idx] = CMN_EVENT_WP_COMBINE(event) + 1;
1592 	}
1593 }
1594 
1595 static int arm_cmn_validate_group(struct arm_cmn *cmn, struct perf_event *event)
1596 {
1597 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1598 	struct arm_cmn_node *dn;
1599 	struct perf_event *sibling, *leader = event->group_leader;
1600 	enum cmn_node_type type;
1601 	struct arm_cmn_val *val;
1602 	int i, ret = -EINVAL;
1603 
1604 	if (leader == event)
1605 		return 0;
1606 
1607 	if (event->pmu != leader->pmu && !is_software_event(leader))
1608 		return -EINVAL;
1609 
1610 	val = kzalloc(sizeof(*val), GFP_KERNEL);
1611 	if (!val)
1612 		return -ENOMEM;
1613 
1614 	arm_cmn_val_add_event(cmn, val, leader);
1615 	for_each_sibling_event(sibling, leader)
1616 		arm_cmn_val_add_event(cmn, val, sibling);
1617 
1618 	type = CMN_EVENT_TYPE(event);
1619 	if (type == CMN_TYPE_DTC) {
1620 		ret = val->cycles ? -EINVAL : 0;
1621 		goto done;
1622 	}
1623 
1624 	if (val->dtc_count == CMN_DT_NUM_COUNTERS)
1625 		goto done;
1626 
1627 	for_each_hw_dn(hw, dn, i) {
1628 		int wp_idx, wp_cmb, dtm = dn->dtm, sel = hw->filter_sel;
1629 
1630 		if (val->dtm_count[dtm] == CMN_DTM_NUM_COUNTERS)
1631 			goto done;
1632 
1633 		if (sel > SEL_NONE && val->occupid[dtm][sel] &&
1634 		    val->occupid[dtm][sel] != CMN_EVENT_OCCUPID(event) + 1)
1635 			goto done;
1636 
1637 		if (type != CMN_TYPE_WP)
1638 			continue;
1639 
1640 		wp_idx = arm_cmn_wp_idx(event);
1641 		if (val->wp[dtm][wp_idx])
1642 			goto done;
1643 
1644 		wp_cmb = val->wp[dtm][wp_idx ^ 1];
1645 		if (wp_cmb && wp_cmb != CMN_EVENT_WP_COMBINE(event) + 1)
1646 			goto done;
1647 	}
1648 
1649 	ret = 0;
1650 done:
1651 	kfree(val);
1652 	return ret;
1653 }
1654 
1655 static enum cmn_filter_select arm_cmn_filter_sel(const struct arm_cmn *cmn,
1656 						 enum cmn_node_type type,
1657 						 unsigned int eventid)
1658 {
1659 	struct arm_cmn_event_attr *e;
1660 	enum cmn_model model = arm_cmn_model(cmn);
1661 
1662 	for (int i = 0; i < ARRAY_SIZE(arm_cmn_event_attrs) - 1; i++) {
1663 		e = container_of(arm_cmn_event_attrs[i], typeof(*e), attr.attr);
1664 		if (e->model & model && e->type == type && e->eventid == eventid)
1665 			return e->fsel;
1666 	}
1667 	return SEL_NONE;
1668 }
1669 
1670 
1671 static int arm_cmn_event_init(struct perf_event *event)
1672 {
1673 	struct arm_cmn *cmn = to_cmn(event->pmu);
1674 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1675 	struct arm_cmn_node *dn;
1676 	enum cmn_node_type type;
1677 	bool bynodeid;
1678 	u16 nodeid, eventid;
1679 
1680 	if (event->attr.type != event->pmu->type)
1681 		return -ENOENT;
1682 
1683 	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1684 		return -EINVAL;
1685 
1686 	event->cpu = cmn->cpu;
1687 	if (event->cpu < 0)
1688 		return -EINVAL;
1689 
1690 	type = CMN_EVENT_TYPE(event);
1691 	/* DTC events (i.e. cycles) already have everything they need */
1692 	if (type == CMN_TYPE_DTC)
1693 		return arm_cmn_validate_group(cmn, event);
1694 
1695 	eventid = CMN_EVENT_EVENTID(event);
1696 	/* For watchpoints we need the actual XP node here */
1697 	if (type == CMN_TYPE_WP) {
1698 		type = CMN_TYPE_XP;
1699 		/* ...and we need a "real" direction */
1700 		if (eventid != CMN_WP_UP && eventid != CMN_WP_DOWN)
1701 			return -EINVAL;
1702 		/* ...but the DTM may depend on which port we're watching */
1703 		if (cmn->multi_dtm)
1704 			hw->dtm_offset = CMN_EVENT_WP_DEV_SEL(event) / 2;
1705 	} else if (type == CMN_TYPE_XP && cmn->part == PART_CMN700) {
1706 		hw->wide_sel = true;
1707 	}
1708 
1709 	/* This is sufficiently annoying to recalculate, so cache it */
1710 	hw->filter_sel = arm_cmn_filter_sel(cmn, type, eventid);
1711 
1712 	bynodeid = CMN_EVENT_BYNODEID(event);
1713 	nodeid = CMN_EVENT_NODEID(event);
1714 
1715 	hw->dn = arm_cmn_node(cmn, type);
1716 	if (!hw->dn)
1717 		return -EINVAL;
1718 
1719 	memset(hw->dtc_idx, -1, sizeof(hw->dtc_idx));
1720 	for (dn = hw->dn; dn->type == type; dn++) {
1721 		if (bynodeid && dn->id != nodeid) {
1722 			hw->dn++;
1723 			continue;
1724 		}
1725 		hw->num_dns++;
1726 		if (dn->dtc < 0)
1727 			memset(hw->dtc_idx, 0, cmn->num_dtcs);
1728 		else
1729 			hw->dtc_idx[dn->dtc] = 0;
1730 
1731 		if (bynodeid)
1732 			break;
1733 	}
1734 
1735 	if (!hw->num_dns) {
1736 		dev_dbg(cmn->dev, "invalid node 0x%x type 0x%x\n", nodeid, type);
1737 		return -EINVAL;
1738 	}
1739 
1740 	return arm_cmn_validate_group(cmn, event);
1741 }
1742 
1743 static void arm_cmn_event_clear(struct arm_cmn *cmn, struct perf_event *event,
1744 				int i)
1745 {
1746 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1747 	enum cmn_node_type type = CMN_EVENT_TYPE(event);
1748 
1749 	while (i--) {
1750 		struct arm_cmn_dtm *dtm = &cmn->dtms[hw->dn[i].dtm] + hw->dtm_offset;
1751 		unsigned int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i);
1752 
1753 		if (type == CMN_TYPE_WP)
1754 			dtm->wp_event[arm_cmn_wp_idx(event)] = -1;
1755 
1756 		if (hw->filter_sel > SEL_NONE)
1757 			hw->dn[i].occupid[hw->filter_sel].count--;
1758 
1759 		dtm->pmu_config_low &= ~CMN__PMEVCNT_PAIRED(dtm_idx);
1760 		writel_relaxed(dtm->pmu_config_low, dtm->base + CMN_DTM_PMU_CONFIG);
1761 	}
1762 	memset(hw->dtm_idx, 0, sizeof(hw->dtm_idx));
1763 
1764 	for_each_hw_dtc_idx(hw, j, idx)
1765 		cmn->dtc[j].counters[idx] = NULL;
1766 }
1767 
1768 static int arm_cmn_event_add(struct perf_event *event, int flags)
1769 {
1770 	struct arm_cmn *cmn = to_cmn(event->pmu);
1771 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1772 	struct arm_cmn_node *dn;
1773 	enum cmn_node_type type = CMN_EVENT_TYPE(event);
1774 	unsigned int input_sel, i = 0;
1775 
1776 	if (type == CMN_TYPE_DTC) {
1777 		while (cmn->dtc[i].cycles)
1778 			if (++i == cmn->num_dtcs)
1779 				return -ENOSPC;
1780 
1781 		cmn->dtc[i].cycles = event;
1782 		hw->dtc_idx[0] = i;
1783 
1784 		if (flags & PERF_EF_START)
1785 			arm_cmn_event_start(event, 0);
1786 		return 0;
1787 	}
1788 
1789 	/* Grab a free global counter first... */
1790 	for_each_hw_dtc_idx(hw, j, idx) {
1791 		if (j > 0) {
1792 			idx = hw->dtc_idx[0];
1793 		} else {
1794 			idx = 0;
1795 			while (cmn->dtc[j].counters[idx])
1796 				if (++idx == CMN_DT_NUM_COUNTERS)
1797 					return -ENOSPC;
1798 		}
1799 		hw->dtc_idx[j] = idx;
1800 	}
1801 
1802 	/* ...then the local counters to feed it. */
1803 	for_each_hw_dn(hw, dn, i) {
1804 		struct arm_cmn_dtm *dtm = &cmn->dtms[dn->dtm] + hw->dtm_offset;
1805 		unsigned int dtm_idx, shift, d = 0;
1806 		u64 reg;
1807 
1808 		dtm_idx = 0;
1809 		while (dtm->pmu_config_low & CMN__PMEVCNT_PAIRED(dtm_idx))
1810 			if (++dtm_idx == CMN_DTM_NUM_COUNTERS)
1811 				goto free_dtms;
1812 
1813 		if (type == CMN_TYPE_XP) {
1814 			input_sel = CMN__PMEVCNT0_INPUT_SEL_XP + dtm_idx;
1815 		} else if (type == CMN_TYPE_WP) {
1816 			int tmp, wp_idx = arm_cmn_wp_idx(event);
1817 			u32 cfg = arm_cmn_wp_config(event);
1818 
1819 			if (dtm->wp_event[wp_idx] >= 0)
1820 				goto free_dtms;
1821 
1822 			tmp = dtm->wp_event[wp_idx ^ 1];
1823 			if (tmp >= 0 && CMN_EVENT_WP_COMBINE(event) !=
1824 					CMN_EVENT_WP_COMBINE(cmn->dtc[d].counters[tmp]))
1825 				goto free_dtms;
1826 
1827 			input_sel = CMN__PMEVCNT0_INPUT_SEL_WP + wp_idx;
1828 			dtm->wp_event[wp_idx] = hw->dtc_idx[d];
1829 			writel_relaxed(cfg, dtm->base + CMN_DTM_WPn_CONFIG(wp_idx));
1830 		} else {
1831 			struct arm_cmn_nodeid nid = arm_cmn_nid(dn);
1832 
1833 			if (cmn->multi_dtm)
1834 				nid.port %= 2;
1835 
1836 			input_sel = CMN__PMEVCNT0_INPUT_SEL_DEV + dtm_idx +
1837 				    (nid.port << 4) + (nid.dev << 2);
1838 
1839 			if (arm_cmn_set_event_sel_hi(dn, hw->filter_sel, CMN_EVENT_OCCUPID(event)))
1840 				goto free_dtms;
1841 		}
1842 
1843 		arm_cmn_set_index(hw->dtm_idx, i, dtm_idx);
1844 
1845 		dtm->input_sel[dtm_idx] = input_sel;
1846 		shift = CMN__PMEVCNTn_GLOBAL_NUM_SHIFT(dtm_idx);
1847 		dtm->pmu_config_low &= ~(CMN__PMEVCNT0_GLOBAL_NUM << shift);
1848 		dtm->pmu_config_low |= FIELD_PREP(CMN__PMEVCNT0_GLOBAL_NUM, hw->dtc_idx[d]) << shift;
1849 		dtm->pmu_config_low |= CMN__PMEVCNT_PAIRED(dtm_idx);
1850 		reg = (u64)le32_to_cpu(dtm->pmu_config_high) << 32 | dtm->pmu_config_low;
1851 		writeq_relaxed(reg, dtm->base + CMN_DTM_PMU_CONFIG);
1852 	}
1853 
1854 	/* Go go go! */
1855 	arm_cmn_init_counter(event);
1856 
1857 	if (flags & PERF_EF_START)
1858 		arm_cmn_event_start(event, 0);
1859 
1860 	return 0;
1861 
1862 free_dtms:
1863 	arm_cmn_event_clear(cmn, event, i);
1864 	return -ENOSPC;
1865 }
1866 
1867 static void arm_cmn_event_del(struct perf_event *event, int flags)
1868 {
1869 	struct arm_cmn *cmn = to_cmn(event->pmu);
1870 	struct arm_cmn_hw_event *hw = to_cmn_hw(event);
1871 	enum cmn_node_type type = CMN_EVENT_TYPE(event);
1872 
1873 	arm_cmn_event_stop(event, PERF_EF_UPDATE);
1874 
1875 	if (type == CMN_TYPE_DTC)
1876 		cmn->dtc[hw->dtc_idx[0]].cycles = NULL;
1877 	else
1878 		arm_cmn_event_clear(cmn, event, hw->num_dns);
1879 }
1880 
1881 /*
1882  * We stop the PMU for both add and read, to avoid skew across DTM counters.
1883  * In theory we could use snapshots to read without stopping, but then it
1884  * becomes a lot trickier to deal with overlow and racing against interrupts,
1885  * plus it seems they don't work properly on some hardware anyway :(
1886  */
1887 static void arm_cmn_start_txn(struct pmu *pmu, unsigned int flags)
1888 {
1889 	arm_cmn_set_state(to_cmn(pmu), CMN_STATE_TXN);
1890 }
1891 
1892 static void arm_cmn_end_txn(struct pmu *pmu)
1893 {
1894 	arm_cmn_clear_state(to_cmn(pmu), CMN_STATE_TXN);
1895 }
1896 
1897 static int arm_cmn_commit_txn(struct pmu *pmu)
1898 {
1899 	arm_cmn_end_txn(pmu);
1900 	return 0;
1901 }
1902 
1903 static void arm_cmn_migrate(struct arm_cmn *cmn, unsigned int cpu)
1904 {
1905 	unsigned int i;
1906 
1907 	perf_pmu_migrate_context(&cmn->pmu, cmn->cpu, cpu);
1908 	for (i = 0; i < cmn->num_dtcs; i++)
1909 		irq_set_affinity(cmn->dtc[i].irq, cpumask_of(cpu));
1910 	cmn->cpu = cpu;
1911 }
1912 
1913 static int arm_cmn_pmu_online_cpu(unsigned int cpu, struct hlist_node *cpuhp_node)
1914 {
1915 	struct arm_cmn *cmn;
1916 	int node;
1917 
1918 	cmn = hlist_entry_safe(cpuhp_node, struct arm_cmn, cpuhp_node);
1919 	node = dev_to_node(cmn->dev);
1920 	if (node != NUMA_NO_NODE && cpu_to_node(cmn->cpu) != node && cpu_to_node(cpu) == node)
1921 		arm_cmn_migrate(cmn, cpu);
1922 	return 0;
1923 }
1924 
1925 static int arm_cmn_pmu_offline_cpu(unsigned int cpu, struct hlist_node *cpuhp_node)
1926 {
1927 	struct arm_cmn *cmn;
1928 	unsigned int target;
1929 	int node;
1930 	cpumask_t mask;
1931 
1932 	cmn = hlist_entry_safe(cpuhp_node, struct arm_cmn, cpuhp_node);
1933 	if (cpu != cmn->cpu)
1934 		return 0;
1935 
1936 	node = dev_to_node(cmn->dev);
1937 	if (cpumask_and(&mask, cpumask_of_node(node), cpu_online_mask) &&
1938 	    cpumask_andnot(&mask, &mask, cpumask_of(cpu)))
1939 		target = cpumask_any(&mask);
1940 	else
1941 		target = cpumask_any_but(cpu_online_mask, cpu);
1942 	if (target < nr_cpu_ids)
1943 		arm_cmn_migrate(cmn, target);
1944 	return 0;
1945 }
1946 
1947 static irqreturn_t arm_cmn_handle_irq(int irq, void *dev_id)
1948 {
1949 	struct arm_cmn_dtc *dtc = dev_id;
1950 	irqreturn_t ret = IRQ_NONE;
1951 
1952 	for (;;) {
1953 		u32 status = readl_relaxed(dtc->base + CMN_DT_PMOVSR);
1954 		u64 delta;
1955 		int i;
1956 
1957 		for (i = 0; i < CMN_DT_NUM_COUNTERS; i++) {
1958 			if (status & (1U << i)) {
1959 				ret = IRQ_HANDLED;
1960 				if (WARN_ON(!dtc->counters[i]))
1961 					continue;
1962 				delta = (u64)arm_cmn_read_counter(dtc, i) << 16;
1963 				local64_add(delta, &dtc->counters[i]->count);
1964 			}
1965 		}
1966 
1967 		if (status & (1U << CMN_DT_NUM_COUNTERS)) {
1968 			ret = IRQ_HANDLED;
1969 			if (dtc->cc_active && !WARN_ON(!dtc->cycles)) {
1970 				delta = arm_cmn_read_cc(dtc);
1971 				local64_add(delta, &dtc->cycles->count);
1972 			}
1973 		}
1974 
1975 		writel_relaxed(status, dtc->base + CMN_DT_PMOVSR_CLR);
1976 
1977 		if (!dtc->irq_friend)
1978 			return ret;
1979 		dtc += dtc->irq_friend;
1980 	}
1981 }
1982 
1983 /* We can reasonably accommodate DTCs of the same CMN sharing IRQs */
1984 static int arm_cmn_init_irqs(struct arm_cmn *cmn)
1985 {
1986 	int i, j, irq, err;
1987 
1988 	for (i = 0; i < cmn->num_dtcs; i++) {
1989 		irq = cmn->dtc[i].irq;
1990 		for (j = i; j--; ) {
1991 			if (cmn->dtc[j].irq == irq) {
1992 				cmn->dtc[j].irq_friend = i - j;
1993 				goto next;
1994 			}
1995 		}
1996 		err = devm_request_irq(cmn->dev, irq, arm_cmn_handle_irq,
1997 				       IRQF_NOBALANCING | IRQF_NO_THREAD,
1998 				       dev_name(cmn->dev), &cmn->dtc[i]);
1999 		if (err)
2000 			return err;
2001 
2002 		err = irq_set_affinity(irq, cpumask_of(cmn->cpu));
2003 		if (err)
2004 			return err;
2005 	next:
2006 		; /* isn't C great? */
2007 	}
2008 	return 0;
2009 }
2010 
2011 static void arm_cmn_init_dtm(struct arm_cmn_dtm *dtm, struct arm_cmn_node *xp, int idx)
2012 {
2013 	int i;
2014 
2015 	dtm->base = xp->pmu_base + CMN_DTM_OFFSET(idx);
2016 	dtm->pmu_config_low = CMN_DTM_PMU_CONFIG_PMU_EN;
2017 	writeq_relaxed(dtm->pmu_config_low, dtm->base + CMN_DTM_PMU_CONFIG);
2018 	for (i = 0; i < 4; i++) {
2019 		dtm->wp_event[i] = -1;
2020 		writeq_relaxed(0, dtm->base + CMN_DTM_WPn_MASK(i));
2021 		writeq_relaxed(~0ULL, dtm->base + CMN_DTM_WPn_VAL(i));
2022 	}
2023 }
2024 
2025 static int arm_cmn_init_dtc(struct arm_cmn *cmn, struct arm_cmn_node *dn, int idx)
2026 {
2027 	struct arm_cmn_dtc *dtc = cmn->dtc + idx;
2028 
2029 	dtc->base = dn->pmu_base - CMN_PMU_OFFSET;
2030 	dtc->irq = platform_get_irq(to_platform_device(cmn->dev), idx);
2031 	if (dtc->irq < 0)
2032 		return dtc->irq;
2033 
2034 	writel_relaxed(CMN_DT_DTC_CTL_DT_EN, dtc->base + CMN_DT_DTC_CTL);
2035 	writel_relaxed(CMN_DT_PMCR_PMU_EN | CMN_DT_PMCR_OVFL_INTR_EN, dtc->base + CMN_DT_PMCR);
2036 	writeq_relaxed(0, dtc->base + CMN_DT_PMCCNTR);
2037 	writel_relaxed(0x1ff, dtc->base + CMN_DT_PMOVSR_CLR);
2038 
2039 	return 0;
2040 }
2041 
2042 static int arm_cmn_node_cmp(const void *a, const void *b)
2043 {
2044 	const struct arm_cmn_node *dna = a, *dnb = b;
2045 	int cmp;
2046 
2047 	cmp = dna->type - dnb->type;
2048 	if (!cmp)
2049 		cmp = dna->logid - dnb->logid;
2050 	return cmp;
2051 }
2052 
2053 static int arm_cmn_init_dtcs(struct arm_cmn *cmn)
2054 {
2055 	struct arm_cmn_node *dn, *xp;
2056 	int dtc_idx = 0;
2057 
2058 	cmn->dtc = devm_kcalloc(cmn->dev, cmn->num_dtcs, sizeof(cmn->dtc[0]), GFP_KERNEL);
2059 	if (!cmn->dtc)
2060 		return -ENOMEM;
2061 
2062 	sort(cmn->dns, cmn->num_dns, sizeof(cmn->dns[0]), arm_cmn_node_cmp, NULL);
2063 
2064 	cmn->xps = arm_cmn_node(cmn, CMN_TYPE_XP);
2065 
2066 	if (cmn->part == PART_CMN600 && cmn->num_dtcs > 1) {
2067 		/* We do at least know that a DTC's XP must be in that DTC's domain */
2068 		dn = arm_cmn_node(cmn, CMN_TYPE_DTC);
2069 		for (int i = 0; i < cmn->num_dtcs; i++)
2070 			arm_cmn_node_to_xp(cmn, dn + i)->dtc = i;
2071 	}
2072 
2073 	for (dn = cmn->dns; dn->type; dn++) {
2074 		if (dn->type == CMN_TYPE_XP)
2075 			continue;
2076 
2077 		xp = arm_cmn_node_to_xp(cmn, dn);
2078 		dn->dtc = xp->dtc;
2079 		dn->dtm = xp->dtm;
2080 		if (cmn->multi_dtm)
2081 			dn->dtm += arm_cmn_nid(dn).port / 2;
2082 
2083 		if (dn->type == CMN_TYPE_DTC) {
2084 			int err = arm_cmn_init_dtc(cmn, dn, dtc_idx++);
2085 
2086 			if (err)
2087 				return err;
2088 		}
2089 
2090 		/* To the PMU, RN-Ds don't add anything over RN-Is, so smoosh them together */
2091 		if (dn->type == CMN_TYPE_RND)
2092 			dn->type = CMN_TYPE_RNI;
2093 
2094 		/* We split the RN-I off already, so let the CCLA part match CCLA events */
2095 		if (dn->type == CMN_TYPE_CCLA_RNI)
2096 			dn->type = CMN_TYPE_CCLA;
2097 	}
2098 
2099 	arm_cmn_set_state(cmn, CMN_STATE_DISABLED);
2100 
2101 	return 0;
2102 }
2103 
2104 static unsigned int arm_cmn_dtc_domain(struct arm_cmn *cmn, void __iomem *xp_region)
2105 {
2106 	int offset = CMN_DTM_UNIT_INFO;
2107 
2108 	if (cmn->part == PART_CMN650 || cmn->part == PART_CI700)
2109 		offset = CMN650_DTM_UNIT_INFO;
2110 
2111 	return FIELD_GET(CMN_DTM_UNIT_INFO_DTC_DOMAIN, readl_relaxed(xp_region + offset));
2112 }
2113 
2114 static void arm_cmn_init_node_info(struct arm_cmn *cmn, u32 offset, struct arm_cmn_node *node)
2115 {
2116 	int level;
2117 	u64 reg = readq_relaxed(cmn->base + offset + CMN_NODE_INFO);
2118 
2119 	node->type = FIELD_GET(CMN_NI_NODE_TYPE, reg);
2120 	node->id = FIELD_GET(CMN_NI_NODE_ID, reg);
2121 	node->logid = FIELD_GET(CMN_NI_LOGICAL_ID, reg);
2122 
2123 	node->pmu_base = cmn->base + offset + CMN_PMU_OFFSET;
2124 
2125 	if (node->type == CMN_TYPE_CFG)
2126 		level = 0;
2127 	else if (node->type == CMN_TYPE_XP)
2128 		level = 1;
2129 	else
2130 		level = 2;
2131 
2132 	dev_dbg(cmn->dev, "node%*c%#06hx%*ctype:%-#6x id:%-4hd off:%#x\n",
2133 			(level * 2) + 1, ' ', node->id, 5 - (level * 2), ' ',
2134 			node->type, node->logid, offset);
2135 }
2136 
2137 static enum cmn_node_type arm_cmn_subtype(enum cmn_node_type type)
2138 {
2139 	switch (type) {
2140 	case CMN_TYPE_HNP:
2141 		return CMN_TYPE_HNI;
2142 	case CMN_TYPE_CCLA_RNI:
2143 		return CMN_TYPE_RNI;
2144 	default:
2145 		return CMN_TYPE_INVALID;
2146 	}
2147 }
2148 
2149 static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset)
2150 {
2151 	void __iomem *cfg_region;
2152 	struct arm_cmn_node cfg, *dn;
2153 	struct arm_cmn_dtm *dtm;
2154 	enum cmn_part part;
2155 	u16 child_count, child_poff;
2156 	u32 xp_offset[CMN_MAX_XPS];
2157 	u64 reg;
2158 	int i, j;
2159 	size_t sz;
2160 
2161 	arm_cmn_init_node_info(cmn, rgn_offset, &cfg);
2162 	if (cfg.type != CMN_TYPE_CFG)
2163 		return -ENODEV;
2164 
2165 	cfg_region = cmn->base + rgn_offset;
2166 
2167 	reg = readq_relaxed(cfg_region + CMN_CFGM_PERIPH_ID_01);
2168 	part = FIELD_GET(CMN_CFGM_PID0_PART_0, reg);
2169 	part |= FIELD_GET(CMN_CFGM_PID1_PART_1, reg) << 8;
2170 	if (cmn->part && cmn->part != part)
2171 		dev_warn(cmn->dev,
2172 			 "Firmware binding mismatch: expected part number 0x%x, found 0x%x\n",
2173 			 cmn->part, part);
2174 	cmn->part = part;
2175 	if (!arm_cmn_model(cmn))
2176 		dev_warn(cmn->dev, "Unknown part number: 0x%x\n", part);
2177 
2178 	reg = readl_relaxed(cfg_region + CMN_CFGM_PERIPH_ID_23);
2179 	cmn->rev = FIELD_GET(CMN_CFGM_PID2_REVISION, reg);
2180 
2181 	reg = readq_relaxed(cfg_region + CMN_CFGM_INFO_GLOBAL);
2182 	cmn->multi_dtm = reg & CMN_INFO_MULTIPLE_DTM_EN;
2183 	cmn->rsp_vc_num = FIELD_GET(CMN_INFO_RSP_VC_NUM, reg);
2184 	cmn->dat_vc_num = FIELD_GET(CMN_INFO_DAT_VC_NUM, reg);
2185 
2186 	reg = readq_relaxed(cfg_region + CMN_CFGM_INFO_GLOBAL_1);
2187 	cmn->snp_vc_num = FIELD_GET(CMN_INFO_SNP_VC_NUM, reg);
2188 	cmn->req_vc_num = FIELD_GET(CMN_INFO_REQ_VC_NUM, reg);
2189 
2190 	reg = readq_relaxed(cfg_region + CMN_CHILD_INFO);
2191 	child_count = FIELD_GET(CMN_CI_CHILD_COUNT, reg);
2192 	child_poff = FIELD_GET(CMN_CI_CHILD_PTR_OFFSET, reg);
2193 
2194 	cmn->num_xps = child_count;
2195 	cmn->num_dns = cmn->num_xps;
2196 
2197 	/* Pass 1: visit the XPs, enumerate their children */
2198 	for (i = 0; i < cmn->num_xps; i++) {
2199 		reg = readq_relaxed(cfg_region + child_poff + i * 8);
2200 		xp_offset[i] = reg & CMN_CHILD_NODE_ADDR;
2201 
2202 		reg = readq_relaxed(cmn->base + xp_offset[i] + CMN_CHILD_INFO);
2203 		cmn->num_dns += FIELD_GET(CMN_CI_CHILD_COUNT, reg);
2204 	}
2205 
2206 	/*
2207 	 * Some nodes effectively have two separate types, which we'll handle
2208 	 * by creating one of each internally. For a (very) safe initial upper
2209 	 * bound, account for double the number of non-XP nodes.
2210 	 */
2211 	dn = devm_kcalloc(cmn->dev, cmn->num_dns * 2 - cmn->num_xps,
2212 			  sizeof(*dn), GFP_KERNEL);
2213 	if (!dn)
2214 		return -ENOMEM;
2215 
2216 	/* Initial safe upper bound on DTMs for any possible mesh layout */
2217 	i = cmn->num_xps;
2218 	if (cmn->multi_dtm)
2219 		i += cmn->num_xps + 1;
2220 	dtm = devm_kcalloc(cmn->dev, i, sizeof(*dtm), GFP_KERNEL);
2221 	if (!dtm)
2222 		return -ENOMEM;
2223 
2224 	/* Pass 2: now we can actually populate the nodes */
2225 	cmn->dns = dn;
2226 	cmn->dtms = dtm;
2227 	for (i = 0; i < cmn->num_xps; i++) {
2228 		void __iomem *xp_region = cmn->base + xp_offset[i];
2229 		struct arm_cmn_node *xp = dn++;
2230 		unsigned int xp_ports = 0;
2231 
2232 		arm_cmn_init_node_info(cmn, xp_offset[i], xp);
2233 		/*
2234 		 * Thanks to the order in which XP logical IDs seem to be
2235 		 * assigned, we can handily infer the mesh X dimension by
2236 		 * looking out for the XP at (0,1) without needing to know
2237 		 * the exact node ID format, which we can later derive.
2238 		 */
2239 		if (xp->id == (1 << 3))
2240 			cmn->mesh_x = xp->logid;
2241 
2242 		if (cmn->part == PART_CMN600)
2243 			xp->dtc = -1;
2244 		else
2245 			xp->dtc = arm_cmn_dtc_domain(cmn, xp_region);
2246 
2247 		xp->dtm = dtm - cmn->dtms;
2248 		arm_cmn_init_dtm(dtm++, xp, 0);
2249 		/*
2250 		 * Keeping track of connected ports will let us filter out
2251 		 * unnecessary XP events easily, and also infer the per-XP
2252 		 * part of the node ID format.
2253 		 */
2254 		for (int p = 0; p < CMN_MAX_PORTS; p++)
2255 			if (arm_cmn_device_connect_info(cmn, xp, p))
2256 				xp_ports |= BIT(p);
2257 
2258 		if (cmn->num_xps == 1) {
2259 			xp->portid_bits = 3;
2260 			xp->deviceid_bits = 2;
2261 		} else if (xp_ports > 0x3) {
2262 			xp->portid_bits = 2;
2263 			xp->deviceid_bits = 1;
2264 		} else {
2265 			xp->portid_bits = 1;
2266 			xp->deviceid_bits = 2;
2267 		}
2268 
2269 		if (cmn->multi_dtm && (xp_ports > 0x3))
2270 			arm_cmn_init_dtm(dtm++, xp, 1);
2271 		if (cmn->multi_dtm && (xp_ports > 0xf))
2272 			arm_cmn_init_dtm(dtm++, xp, 2);
2273 
2274 		cmn->ports_used |= xp_ports;
2275 
2276 		reg = readq_relaxed(xp_region + CMN_CHILD_INFO);
2277 		child_count = FIELD_GET(CMN_CI_CHILD_COUNT, reg);
2278 		child_poff = FIELD_GET(CMN_CI_CHILD_PTR_OFFSET, reg);
2279 
2280 		for (j = 0; j < child_count; j++) {
2281 			reg = readq_relaxed(xp_region + child_poff + j * 8);
2282 			/*
2283 			 * Don't even try to touch anything external, since in general
2284 			 * we haven't a clue how to power up arbitrary CHI requesters.
2285 			 * As of CMN-600r1 these could only be RN-SAMs or CXLAs,
2286 			 * neither of which have any PMU events anyway.
2287 			 * (Actually, CXLAs do seem to have grown some events in r1p2,
2288 			 * but they don't go to regular XP DTMs, and they depend on
2289 			 * secure configuration which we can't easily deal with)
2290 			 */
2291 			if (reg & CMN_CHILD_NODE_EXTERNAL) {
2292 				dev_dbg(cmn->dev, "ignoring external node %llx\n", reg);
2293 				continue;
2294 			}
2295 			/*
2296 			 * AmpereOneX erratum AC04_MESH_1 makes some XPs report a bogus
2297 			 * child count larger than the number of valid child pointers.
2298 			 * A child offset of 0 can only occur on CMN-600; otherwise it
2299 			 * would imply the root node being its own grandchild, which
2300 			 * we can safely dismiss in general.
2301 			 */
2302 			if (reg == 0 && cmn->part != PART_CMN600) {
2303 				dev_dbg(cmn->dev, "bogus child pointer?\n");
2304 				continue;
2305 			}
2306 
2307 			arm_cmn_init_node_info(cmn, reg & CMN_CHILD_NODE_ADDR, dn);
2308 			dn->portid_bits = xp->portid_bits;
2309 			dn->deviceid_bits = xp->deviceid_bits;
2310 
2311 			switch (dn->type) {
2312 			case CMN_TYPE_DTC:
2313 				cmn->num_dtcs++;
2314 				dn++;
2315 				break;
2316 			/* These guys have PMU events */
2317 			case CMN_TYPE_DVM:
2318 			case CMN_TYPE_HNI:
2319 			case CMN_TYPE_HNF:
2320 			case CMN_TYPE_SBSX:
2321 			case CMN_TYPE_RNI:
2322 			case CMN_TYPE_RND:
2323 			case CMN_TYPE_MTSX:
2324 			case CMN_TYPE_CXRA:
2325 			case CMN_TYPE_CXHA:
2326 			case CMN_TYPE_CCRA:
2327 			case CMN_TYPE_CCHA:
2328 			case CMN_TYPE_HNS:
2329 				dn++;
2330 				break;
2331 			case CMN_TYPE_CCLA:
2332 				dn->pmu_base += CMN_CCLA_PMU_EVENT_SEL;
2333 				dn++;
2334 				break;
2335 			/* Nothing to see here */
2336 			case CMN_TYPE_MPAM_S:
2337 			case CMN_TYPE_MPAM_NS:
2338 			case CMN_TYPE_RNSAM:
2339 			case CMN_TYPE_CXLA:
2340 			case CMN_TYPE_HNS_MPAM_S:
2341 			case CMN_TYPE_HNS_MPAM_NS:
2342 				break;
2343 			/*
2344 			 * Split "optimised" combination nodes into separate
2345 			 * types for the different event sets. Offsetting the
2346 			 * base address lets us handle the second pmu_event_sel
2347 			 * register via the normal mechanism later.
2348 			 */
2349 			case CMN_TYPE_HNP:
2350 			case CMN_TYPE_CCLA_RNI:
2351 				dn[1] = dn[0];
2352 				dn[0].pmu_base += CMN_CCLA_PMU_EVENT_SEL;
2353 				dn[1].type = arm_cmn_subtype(dn->type);
2354 				dn += 2;
2355 				break;
2356 			/* Something has gone horribly wrong */
2357 			default:
2358 				dev_err(cmn->dev, "invalid device node type: 0x%x\n", dn->type);
2359 				return -ENODEV;
2360 			}
2361 		}
2362 	}
2363 
2364 	/* Correct for any nodes we added or skipped */
2365 	cmn->num_dns = dn - cmn->dns;
2366 
2367 	/* Cheeky +1 to help terminate pointer-based iteration later */
2368 	sz = (void *)(dn + 1) - (void *)cmn->dns;
2369 	dn = devm_krealloc(cmn->dev, cmn->dns, sz, GFP_KERNEL);
2370 	if (dn)
2371 		cmn->dns = dn;
2372 
2373 	sz = (void *)dtm - (void *)cmn->dtms;
2374 	dtm = devm_krealloc(cmn->dev, cmn->dtms, sz, GFP_KERNEL);
2375 	if (dtm)
2376 		cmn->dtms = dtm;
2377 
2378 	/*
2379 	 * If mesh_x wasn't set during discovery then we never saw
2380 	 * an XP at (0,1), thus we must have an Nx1 configuration.
2381 	 */
2382 	if (!cmn->mesh_x)
2383 		cmn->mesh_x = cmn->num_xps;
2384 	cmn->mesh_y = cmn->num_xps / cmn->mesh_x;
2385 
2386 	/* 1x1 config plays havoc with XP event encodings */
2387 	if (cmn->num_xps == 1)
2388 		dev_warn(cmn->dev, "1x1 config not fully supported, translate XP events manually\n");
2389 
2390 	dev_dbg(cmn->dev, "periph_id part 0x%03x revision %d\n", cmn->part, cmn->rev);
2391 	reg = cmn->ports_used;
2392 	dev_dbg(cmn->dev, "mesh %dx%d, ID width %d, ports %6pbl%s\n",
2393 		cmn->mesh_x, cmn->mesh_y, arm_cmn_xyidbits(cmn), &reg,
2394 		cmn->multi_dtm ? ", multi-DTM" : "");
2395 
2396 	return 0;
2397 }
2398 
2399 static int arm_cmn600_acpi_probe(struct platform_device *pdev, struct arm_cmn *cmn)
2400 {
2401 	struct resource *cfg, *root;
2402 
2403 	cfg = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2404 	if (!cfg)
2405 		return -EINVAL;
2406 
2407 	root = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2408 	if (!root)
2409 		return -EINVAL;
2410 
2411 	if (!resource_contains(cfg, root))
2412 		swap(cfg, root);
2413 	/*
2414 	 * Note that devm_ioremap_resource() is dumb and won't let the platform
2415 	 * device claim cfg when the ACPI companion device has already claimed
2416 	 * root within it. But since they *are* already both claimed in the
2417 	 * appropriate name, we don't really need to do it again here anyway.
2418 	 */
2419 	cmn->base = devm_ioremap(cmn->dev, cfg->start, resource_size(cfg));
2420 	if (!cmn->base)
2421 		return -ENOMEM;
2422 
2423 	return root->start - cfg->start;
2424 }
2425 
2426 static int arm_cmn600_of_probe(struct device_node *np)
2427 {
2428 	u32 rootnode;
2429 
2430 	return of_property_read_u32(np, "arm,root-node", &rootnode) ?: rootnode;
2431 }
2432 
2433 static int arm_cmn_probe(struct platform_device *pdev)
2434 {
2435 	struct arm_cmn *cmn;
2436 	const char *name;
2437 	static atomic_t id;
2438 	int err, rootnode, this_id;
2439 
2440 	cmn = devm_kzalloc(&pdev->dev, sizeof(*cmn), GFP_KERNEL);
2441 	if (!cmn)
2442 		return -ENOMEM;
2443 
2444 	cmn->dev = &pdev->dev;
2445 	cmn->part = (unsigned long)device_get_match_data(cmn->dev);
2446 	platform_set_drvdata(pdev, cmn);
2447 
2448 	if (cmn->part == PART_CMN600 && has_acpi_companion(cmn->dev)) {
2449 		rootnode = arm_cmn600_acpi_probe(pdev, cmn);
2450 	} else {
2451 		rootnode = 0;
2452 		cmn->base = devm_platform_ioremap_resource(pdev, 0);
2453 		if (IS_ERR(cmn->base))
2454 			return PTR_ERR(cmn->base);
2455 		if (cmn->part == PART_CMN600)
2456 			rootnode = arm_cmn600_of_probe(pdev->dev.of_node);
2457 	}
2458 	if (rootnode < 0)
2459 		return rootnode;
2460 
2461 	err = arm_cmn_discover(cmn, rootnode);
2462 	if (err)
2463 		return err;
2464 
2465 	err = arm_cmn_init_dtcs(cmn);
2466 	if (err)
2467 		return err;
2468 
2469 	err = arm_cmn_init_irqs(cmn);
2470 	if (err)
2471 		return err;
2472 
2473 	cmn->cpu = cpumask_local_spread(0, dev_to_node(cmn->dev));
2474 	cmn->pmu = (struct pmu) {
2475 		.module = THIS_MODULE,
2476 		.attr_groups = arm_cmn_attr_groups,
2477 		.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
2478 		.task_ctx_nr = perf_invalid_context,
2479 		.pmu_enable = arm_cmn_pmu_enable,
2480 		.pmu_disable = arm_cmn_pmu_disable,
2481 		.event_init = arm_cmn_event_init,
2482 		.add = arm_cmn_event_add,
2483 		.del = arm_cmn_event_del,
2484 		.start = arm_cmn_event_start,
2485 		.stop = arm_cmn_event_stop,
2486 		.read = arm_cmn_event_read,
2487 		.start_txn = arm_cmn_start_txn,
2488 		.commit_txn = arm_cmn_commit_txn,
2489 		.cancel_txn = arm_cmn_end_txn,
2490 	};
2491 
2492 	this_id = atomic_fetch_inc(&id);
2493 	name = devm_kasprintf(cmn->dev, GFP_KERNEL, "arm_cmn_%d", this_id);
2494 	if (!name)
2495 		return -ENOMEM;
2496 
2497 	err = cpuhp_state_add_instance(arm_cmn_hp_state, &cmn->cpuhp_node);
2498 	if (err)
2499 		return err;
2500 
2501 	err = perf_pmu_register(&cmn->pmu, name, -1);
2502 	if (err)
2503 		cpuhp_state_remove_instance_nocalls(arm_cmn_hp_state, &cmn->cpuhp_node);
2504 	else
2505 		arm_cmn_debugfs_init(cmn, this_id);
2506 
2507 	return err;
2508 }
2509 
2510 static int arm_cmn_remove(struct platform_device *pdev)
2511 {
2512 	struct arm_cmn *cmn = platform_get_drvdata(pdev);
2513 
2514 	writel_relaxed(0, cmn->dtc[0].base + CMN_DT_DTC_CTL);
2515 
2516 	perf_pmu_unregister(&cmn->pmu);
2517 	cpuhp_state_remove_instance_nocalls(arm_cmn_hp_state, &cmn->cpuhp_node);
2518 	debugfs_remove(cmn->debug);
2519 	return 0;
2520 }
2521 
2522 #ifdef CONFIG_OF
2523 static const struct of_device_id arm_cmn_of_match[] = {
2524 	{ .compatible = "arm,cmn-600", .data = (void *)PART_CMN600 },
2525 	{ .compatible = "arm,cmn-650" },
2526 	{ .compatible = "arm,cmn-700" },
2527 	{ .compatible = "arm,ci-700" },
2528 	{}
2529 };
2530 MODULE_DEVICE_TABLE(of, arm_cmn_of_match);
2531 #endif
2532 
2533 #ifdef CONFIG_ACPI
2534 static const struct acpi_device_id arm_cmn_acpi_match[] = {
2535 	{ "ARMHC600", PART_CMN600 },
2536 	{ "ARMHC650" },
2537 	{ "ARMHC700" },
2538 	{}
2539 };
2540 MODULE_DEVICE_TABLE(acpi, arm_cmn_acpi_match);
2541 #endif
2542 
2543 static struct platform_driver arm_cmn_driver = {
2544 	.driver = {
2545 		.name = "arm-cmn",
2546 		.of_match_table = of_match_ptr(arm_cmn_of_match),
2547 		.acpi_match_table = ACPI_PTR(arm_cmn_acpi_match),
2548 	},
2549 	.probe = arm_cmn_probe,
2550 	.remove = arm_cmn_remove,
2551 };
2552 
2553 static int __init arm_cmn_init(void)
2554 {
2555 	int ret;
2556 
2557 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
2558 				      "perf/arm/cmn:online",
2559 				      arm_cmn_pmu_online_cpu,
2560 				      arm_cmn_pmu_offline_cpu);
2561 	if (ret < 0)
2562 		return ret;
2563 
2564 	arm_cmn_hp_state = ret;
2565 	arm_cmn_debugfs = debugfs_create_dir("arm-cmn", NULL);
2566 
2567 	ret = platform_driver_register(&arm_cmn_driver);
2568 	if (ret) {
2569 		cpuhp_remove_multi_state(arm_cmn_hp_state);
2570 		debugfs_remove(arm_cmn_debugfs);
2571 	}
2572 	return ret;
2573 }
2574 
2575 static void __exit arm_cmn_exit(void)
2576 {
2577 	platform_driver_unregister(&arm_cmn_driver);
2578 	cpuhp_remove_multi_state(arm_cmn_hp_state);
2579 	debugfs_remove(arm_cmn_debugfs);
2580 }
2581 
2582 module_init(arm_cmn_init);
2583 module_exit(arm_cmn_exit);
2584 
2585 MODULE_AUTHOR("Robin Murphy <robin.murphy@arm.com>");
2586 MODULE_DESCRIPTION("Arm CMN-600 PMU driver");
2587 MODULE_LICENSE("GPL v2");
2588