1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2016-2020 Arm Limited 3 // CMN-600 Coherent Mesh Network PMU driver 4 5 #include <linux/acpi.h> 6 #include <linux/bitfield.h> 7 #include <linux/bitops.h> 8 #include <linux/debugfs.h> 9 #include <linux/interrupt.h> 10 #include <linux/io.h> 11 #include <linux/io-64-nonatomic-lo-hi.h> 12 #include <linux/kernel.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/perf_event.h> 17 #include <linux/platform_device.h> 18 #include <linux/slab.h> 19 #include <linux/sort.h> 20 21 /* Common register stuff */ 22 #define CMN_NODE_INFO 0x0000 23 #define CMN_NI_NODE_TYPE GENMASK_ULL(15, 0) 24 #define CMN_NI_NODE_ID GENMASK_ULL(31, 16) 25 #define CMN_NI_LOGICAL_ID GENMASK_ULL(47, 32) 26 27 #define CMN_NODEID_DEVID(reg) ((reg) & 3) 28 #define CMN_NODEID_EXT_DEVID(reg) ((reg) & 1) 29 #define CMN_NODEID_PID(reg) (((reg) >> 2) & 1) 30 #define CMN_NODEID_EXT_PID(reg) (((reg) >> 1) & 3) 31 #define CMN_NODEID_1x1_PID(reg) (((reg) >> 2) & 7) 32 #define CMN_NODEID_X(reg, bits) ((reg) >> (3 + (bits))) 33 #define CMN_NODEID_Y(reg, bits) (((reg) >> 3) & ((1U << (bits)) - 1)) 34 35 #define CMN_CHILD_INFO 0x0080 36 #define CMN_CI_CHILD_COUNT GENMASK_ULL(15, 0) 37 #define CMN_CI_CHILD_PTR_OFFSET GENMASK_ULL(31, 16) 38 39 #define CMN_CHILD_NODE_ADDR GENMASK(29, 0) 40 #define CMN_CHILD_NODE_EXTERNAL BIT(31) 41 42 #define CMN_MAX_DIMENSION 12 43 #define CMN_MAX_XPS (CMN_MAX_DIMENSION * CMN_MAX_DIMENSION) 44 #define CMN_MAX_DTMS (CMN_MAX_XPS + (CMN_MAX_DIMENSION - 1) * 4) 45 46 /* The CFG node has various info besides the discovery tree */ 47 #define CMN_CFGM_PERIPH_ID_01 0x0008 48 #define CMN_CFGM_PID0_PART_0 GENMASK_ULL(7, 0) 49 #define CMN_CFGM_PID1_PART_1 GENMASK_ULL(35, 32) 50 #define CMN_CFGM_PERIPH_ID_23 0x0010 51 #define CMN_CFGM_PID2_REVISION GENMASK_ULL(7, 4) 52 53 #define CMN_CFGM_INFO_GLOBAL 0x900 54 #define CMN_INFO_MULTIPLE_DTM_EN BIT_ULL(63) 55 #define CMN_INFO_RSP_VC_NUM GENMASK_ULL(53, 52) 56 #define CMN_INFO_DAT_VC_NUM GENMASK_ULL(51, 50) 57 58 #define CMN_CFGM_INFO_GLOBAL_1 0x908 59 #define CMN_INFO_SNP_VC_NUM GENMASK_ULL(3, 2) 60 #define CMN_INFO_REQ_VC_NUM GENMASK_ULL(1, 0) 61 62 /* XPs also have some local topology info which has uses too */ 63 #define CMN_MXP__CONNECT_INFO(p) (0x0008 + 8 * (p)) 64 #define CMN__CONNECT_INFO_DEVICE_TYPE GENMASK_ULL(4, 0) 65 66 #define CMN_MAX_PORTS 6 67 #define CI700_CONNECT_INFO_P2_5_OFFSET 0x10 68 69 /* PMU registers occupy the 3rd 4KB page of each node's region */ 70 #define CMN_PMU_OFFSET 0x2000 71 72 /* For most nodes, this is all there is */ 73 #define CMN_PMU_EVENT_SEL 0x000 74 #define CMN__PMU_CBUSY_SNTHROTTLE_SEL GENMASK_ULL(44, 42) 75 #define CMN__PMU_SN_HOME_SEL GENMASK_ULL(40, 39) 76 #define CMN__PMU_HBT_LBT_SEL GENMASK_ULL(38, 37) 77 #define CMN__PMU_CLASS_OCCUP_ID GENMASK_ULL(36, 35) 78 /* Technically this is 4 bits wide on DNs, but we only use 2 there anyway */ 79 #define CMN__PMU_OCCUP1_ID GENMASK_ULL(34, 32) 80 81 /* HN-Ps are weird... */ 82 #define CMN_HNP_PMU_EVENT_SEL 0x008 83 84 /* DTMs live in the PMU space of XP registers */ 85 #define CMN_DTM_WPn(n) (0x1A0 + (n) * 0x18) 86 #define CMN_DTM_WPn_CONFIG(n) (CMN_DTM_WPn(n) + 0x00) 87 #define CMN_DTM_WPn_CONFIG_WP_CHN_NUM GENMASK_ULL(20, 19) 88 #define CMN_DTM_WPn_CONFIG_WP_DEV_SEL2 GENMASK_ULL(18, 17) 89 #define CMN_DTM_WPn_CONFIG_WP_COMBINE BIT(9) 90 #define CMN_DTM_WPn_CONFIG_WP_EXCLUSIVE BIT(8) 91 #define CMN600_WPn_CONFIG_WP_COMBINE BIT(6) 92 #define CMN600_WPn_CONFIG_WP_EXCLUSIVE BIT(5) 93 #define CMN_DTM_WPn_CONFIG_WP_GRP GENMASK_ULL(5, 4) 94 #define CMN_DTM_WPn_CONFIG_WP_CHN_SEL GENMASK_ULL(3, 1) 95 #define CMN_DTM_WPn_CONFIG_WP_DEV_SEL BIT(0) 96 #define CMN_DTM_WPn_VAL(n) (CMN_DTM_WPn(n) + 0x08) 97 #define CMN_DTM_WPn_MASK(n) (CMN_DTM_WPn(n) + 0x10) 98 99 #define CMN_DTM_PMU_CONFIG 0x210 100 #define CMN__PMEVCNT0_INPUT_SEL GENMASK_ULL(37, 32) 101 #define CMN__PMEVCNT0_INPUT_SEL_WP 0x00 102 #define CMN__PMEVCNT0_INPUT_SEL_XP 0x04 103 #define CMN__PMEVCNT0_INPUT_SEL_DEV 0x10 104 #define CMN__PMEVCNT0_GLOBAL_NUM GENMASK_ULL(18, 16) 105 #define CMN__PMEVCNTn_GLOBAL_NUM_SHIFT(n) ((n) * 4) 106 #define CMN__PMEVCNT_PAIRED(n) BIT(4 + (n)) 107 #define CMN__PMEVCNT23_COMBINED BIT(2) 108 #define CMN__PMEVCNT01_COMBINED BIT(1) 109 #define CMN_DTM_PMU_CONFIG_PMU_EN BIT(0) 110 111 #define CMN_DTM_PMEVCNT 0x220 112 113 #define CMN_DTM_PMEVCNTSR 0x240 114 115 #define CMN650_DTM_UNIT_INFO 0x0910 116 #define CMN_DTM_UNIT_INFO 0x0960 117 #define CMN_DTM_UNIT_INFO_DTC_DOMAIN GENMASK_ULL(1, 0) 118 119 #define CMN_DTM_NUM_COUNTERS 4 120 /* Want more local counters? Why not replicate the whole DTM! Ugh... */ 121 #define CMN_DTM_OFFSET(n) ((n) * 0x200) 122 123 /* The DTC node is where the magic happens */ 124 #define CMN_DT_DTC_CTL 0x0a00 125 #define CMN_DT_DTC_CTL_DT_EN BIT(0) 126 127 /* DTC counters are paired in 64-bit registers on a 16-byte stride. Yuck */ 128 #define _CMN_DT_CNT_REG(n) ((((n) / 2) * 4 + (n) % 2) * 4) 129 #define CMN_DT_PMEVCNT(n) (CMN_PMU_OFFSET + _CMN_DT_CNT_REG(n)) 130 #define CMN_DT_PMCCNTR (CMN_PMU_OFFSET + 0x40) 131 132 #define CMN_DT_PMEVCNTSR(n) (CMN_PMU_OFFSET + 0x50 + _CMN_DT_CNT_REG(n)) 133 #define CMN_DT_PMCCNTRSR (CMN_PMU_OFFSET + 0x90) 134 135 #define CMN_DT_PMCR (CMN_PMU_OFFSET + 0x100) 136 #define CMN_DT_PMCR_PMU_EN BIT(0) 137 #define CMN_DT_PMCR_CNTR_RST BIT(5) 138 #define CMN_DT_PMCR_OVFL_INTR_EN BIT(6) 139 140 #define CMN_DT_PMOVSR (CMN_PMU_OFFSET + 0x118) 141 #define CMN_DT_PMOVSR_CLR (CMN_PMU_OFFSET + 0x120) 142 143 #define CMN_DT_PMSSR (CMN_PMU_OFFSET + 0x128) 144 #define CMN_DT_PMSSR_SS_STATUS(n) BIT(n) 145 146 #define CMN_DT_PMSRR (CMN_PMU_OFFSET + 0x130) 147 #define CMN_DT_PMSRR_SS_REQ BIT(0) 148 149 #define CMN_DT_NUM_COUNTERS 8 150 #define CMN_MAX_DTCS 4 151 152 /* 153 * Even in the worst case a DTC counter can't wrap in fewer than 2^42 cycles, 154 * so throwing away one bit to make overflow handling easy is no big deal. 155 */ 156 #define CMN_COUNTER_INIT 0x80000000 157 /* Similarly for the 40-bit cycle counter */ 158 #define CMN_CC_INIT 0x8000000000ULL 159 160 161 /* Event attributes */ 162 #define CMN_CONFIG_TYPE GENMASK_ULL(15, 0) 163 #define CMN_CONFIG_EVENTID GENMASK_ULL(26, 16) 164 #define CMN_CONFIG_OCCUPID GENMASK_ULL(30, 27) 165 #define CMN_CONFIG_BYNODEID BIT_ULL(31) 166 #define CMN_CONFIG_NODEID GENMASK_ULL(47, 32) 167 168 #define CMN_EVENT_TYPE(event) FIELD_GET(CMN_CONFIG_TYPE, (event)->attr.config) 169 #define CMN_EVENT_EVENTID(event) FIELD_GET(CMN_CONFIG_EVENTID, (event)->attr.config) 170 #define CMN_EVENT_OCCUPID(event) FIELD_GET(CMN_CONFIG_OCCUPID, (event)->attr.config) 171 #define CMN_EVENT_BYNODEID(event) FIELD_GET(CMN_CONFIG_BYNODEID, (event)->attr.config) 172 #define CMN_EVENT_NODEID(event) FIELD_GET(CMN_CONFIG_NODEID, (event)->attr.config) 173 174 #define CMN_CONFIG_WP_COMBINE GENMASK_ULL(30, 27) 175 #define CMN_CONFIG_WP_DEV_SEL GENMASK_ULL(50, 48) 176 #define CMN_CONFIG_WP_CHN_SEL GENMASK_ULL(55, 51) 177 /* Note that we don't yet support the tertiary match group on newer IPs */ 178 #define CMN_CONFIG_WP_GRP BIT_ULL(56) 179 #define CMN_CONFIG_WP_EXCLUSIVE BIT_ULL(57) 180 #define CMN_CONFIG1_WP_VAL GENMASK_ULL(63, 0) 181 #define CMN_CONFIG2_WP_MASK GENMASK_ULL(63, 0) 182 183 #define CMN_EVENT_WP_COMBINE(event) FIELD_GET(CMN_CONFIG_WP_COMBINE, (event)->attr.config) 184 #define CMN_EVENT_WP_DEV_SEL(event) FIELD_GET(CMN_CONFIG_WP_DEV_SEL, (event)->attr.config) 185 #define CMN_EVENT_WP_CHN_SEL(event) FIELD_GET(CMN_CONFIG_WP_CHN_SEL, (event)->attr.config) 186 #define CMN_EVENT_WP_GRP(event) FIELD_GET(CMN_CONFIG_WP_GRP, (event)->attr.config) 187 #define CMN_EVENT_WP_EXCLUSIVE(event) FIELD_GET(CMN_CONFIG_WP_EXCLUSIVE, (event)->attr.config) 188 #define CMN_EVENT_WP_VAL(event) FIELD_GET(CMN_CONFIG1_WP_VAL, (event)->attr.config1) 189 #define CMN_EVENT_WP_MASK(event) FIELD_GET(CMN_CONFIG2_WP_MASK, (event)->attr.config2) 190 191 /* Made-up event IDs for watchpoint direction */ 192 #define CMN_WP_UP 0 193 #define CMN_WP_DOWN 2 194 195 196 /* Internal values for encoding event support */ 197 enum cmn_model { 198 CMN600 = 1, 199 CMN650 = 2, 200 CMN700 = 4, 201 CI700 = 8, 202 /* ...and then we can use bitmap tricks for commonality */ 203 CMN_ANY = -1, 204 NOT_CMN600 = -2, 205 CMN_650ON = CMN650 | CMN700, 206 }; 207 208 /* Actual part numbers and revision IDs defined by the hardware */ 209 enum cmn_part { 210 PART_CMN600 = 0x434, 211 PART_CMN650 = 0x436, 212 PART_CMN700 = 0x43c, 213 PART_CI700 = 0x43a, 214 }; 215 216 /* CMN-600 r0px shouldn't exist in silicon, thankfully */ 217 enum cmn_revision { 218 REV_CMN600_R1P0, 219 REV_CMN600_R1P1, 220 REV_CMN600_R1P2, 221 REV_CMN600_R1P3, 222 REV_CMN600_R2P0, 223 REV_CMN600_R3P0, 224 REV_CMN600_R3P1, 225 REV_CMN650_R0P0 = 0, 226 REV_CMN650_R1P0, 227 REV_CMN650_R1P1, 228 REV_CMN650_R2P0, 229 REV_CMN650_R1P2, 230 REV_CMN700_R0P0 = 0, 231 REV_CMN700_R1P0, 232 REV_CMN700_R2P0, 233 REV_CMN700_R3P0, 234 REV_CI700_R0P0 = 0, 235 REV_CI700_R1P0, 236 REV_CI700_R2P0, 237 }; 238 239 enum cmn_node_type { 240 CMN_TYPE_INVALID, 241 CMN_TYPE_DVM, 242 CMN_TYPE_CFG, 243 CMN_TYPE_DTC, 244 CMN_TYPE_HNI, 245 CMN_TYPE_HNF, 246 CMN_TYPE_XP, 247 CMN_TYPE_SBSX, 248 CMN_TYPE_MPAM_S, 249 CMN_TYPE_MPAM_NS, 250 CMN_TYPE_RNI, 251 CMN_TYPE_RND = 0xd, 252 CMN_TYPE_RNSAM = 0xf, 253 CMN_TYPE_MTSX, 254 CMN_TYPE_HNP, 255 CMN_TYPE_CXRA = 0x100, 256 CMN_TYPE_CXHA, 257 CMN_TYPE_CXLA, 258 CMN_TYPE_CCRA, 259 CMN_TYPE_CCHA, 260 CMN_TYPE_CCLA, 261 CMN_TYPE_CCLA_RNI, 262 CMN_TYPE_HNS = 0x200, 263 CMN_TYPE_HNS_MPAM_S, 264 CMN_TYPE_HNS_MPAM_NS, 265 /* Not a real node type */ 266 CMN_TYPE_WP = 0x7770 267 }; 268 269 enum cmn_filter_select { 270 SEL_NONE = -1, 271 SEL_OCCUP1ID, 272 SEL_CLASS_OCCUP_ID, 273 SEL_CBUSY_SNTHROTTLE_SEL, 274 SEL_HBT_LBT_SEL, 275 SEL_SN_HOME_SEL, 276 SEL_MAX 277 }; 278 279 struct arm_cmn_node { 280 void __iomem *pmu_base; 281 u16 id, logid; 282 enum cmn_node_type type; 283 284 int dtm; 285 union { 286 /* DN/HN-F/CXHA */ 287 struct { 288 u8 val : 4; 289 u8 count : 4; 290 } occupid[SEL_MAX]; 291 /* XP */ 292 u8 dtc; 293 }; 294 union { 295 u8 event[4]; 296 __le32 event_sel; 297 u16 event_w[4]; 298 __le64 event_sel_w; 299 }; 300 }; 301 302 struct arm_cmn_dtm { 303 void __iomem *base; 304 u32 pmu_config_low; 305 union { 306 u8 input_sel[4]; 307 __le32 pmu_config_high; 308 }; 309 s8 wp_event[4]; 310 }; 311 312 struct arm_cmn_dtc { 313 void __iomem *base; 314 int irq; 315 int irq_friend; 316 bool cc_active; 317 318 struct perf_event *counters[CMN_DT_NUM_COUNTERS]; 319 struct perf_event *cycles; 320 }; 321 322 #define CMN_STATE_DISABLED BIT(0) 323 #define CMN_STATE_TXN BIT(1) 324 325 struct arm_cmn { 326 struct device *dev; 327 void __iomem *base; 328 unsigned int state; 329 330 enum cmn_revision rev; 331 enum cmn_part part; 332 u8 mesh_x; 333 u8 mesh_y; 334 u16 num_xps; 335 u16 num_dns; 336 bool multi_dtm; 337 u8 ports_used; 338 struct { 339 unsigned int rsp_vc_num : 2; 340 unsigned int dat_vc_num : 2; 341 unsigned int snp_vc_num : 2; 342 unsigned int req_vc_num : 2; 343 }; 344 345 struct arm_cmn_node *xps; 346 struct arm_cmn_node *dns; 347 348 struct arm_cmn_dtm *dtms; 349 struct arm_cmn_dtc *dtc; 350 unsigned int num_dtcs; 351 352 int cpu; 353 struct hlist_node cpuhp_node; 354 355 struct pmu pmu; 356 struct dentry *debug; 357 }; 358 359 #define to_cmn(p) container_of(p, struct arm_cmn, pmu) 360 361 static int arm_cmn_hp_state; 362 363 struct arm_cmn_nodeid { 364 u8 x; 365 u8 y; 366 u8 port; 367 u8 dev; 368 }; 369 370 static int arm_cmn_xyidbits(const struct arm_cmn *cmn) 371 { 372 return fls((cmn->mesh_x - 1) | (cmn->mesh_y - 1) | 2); 373 } 374 375 static struct arm_cmn_nodeid arm_cmn_nid(const struct arm_cmn *cmn, u16 id) 376 { 377 struct arm_cmn_nodeid nid; 378 379 if (cmn->num_xps == 1) { 380 nid.x = 0; 381 nid.y = 0; 382 nid.port = CMN_NODEID_1x1_PID(id); 383 nid.dev = CMN_NODEID_DEVID(id); 384 } else { 385 int bits = arm_cmn_xyidbits(cmn); 386 387 nid.x = CMN_NODEID_X(id, bits); 388 nid.y = CMN_NODEID_Y(id, bits); 389 if (cmn->ports_used & 0xc) { 390 nid.port = CMN_NODEID_EXT_PID(id); 391 nid.dev = CMN_NODEID_EXT_DEVID(id); 392 } else { 393 nid.port = CMN_NODEID_PID(id); 394 nid.dev = CMN_NODEID_DEVID(id); 395 } 396 } 397 return nid; 398 } 399 400 static struct arm_cmn_node *arm_cmn_node_to_xp(const struct arm_cmn *cmn, 401 const struct arm_cmn_node *dn) 402 { 403 struct arm_cmn_nodeid nid = arm_cmn_nid(cmn, dn->id); 404 int xp_idx = cmn->mesh_x * nid.y + nid.x; 405 406 return cmn->xps + xp_idx; 407 } 408 static struct arm_cmn_node *arm_cmn_node(const struct arm_cmn *cmn, 409 enum cmn_node_type type) 410 { 411 struct arm_cmn_node *dn; 412 413 for (dn = cmn->dns; dn->type; dn++) 414 if (dn->type == type) 415 return dn; 416 return NULL; 417 } 418 419 static enum cmn_model arm_cmn_model(const struct arm_cmn *cmn) 420 { 421 switch (cmn->part) { 422 case PART_CMN600: 423 return CMN600; 424 case PART_CMN650: 425 return CMN650; 426 case PART_CMN700: 427 return CMN700; 428 case PART_CI700: 429 return CI700; 430 default: 431 return 0; 432 }; 433 } 434 435 static u32 arm_cmn_device_connect_info(const struct arm_cmn *cmn, 436 const struct arm_cmn_node *xp, int port) 437 { 438 int offset = CMN_MXP__CONNECT_INFO(port); 439 440 if (port >= 2) { 441 if (cmn->part == PART_CMN600 || cmn->part == PART_CMN650) 442 return 0; 443 /* 444 * CI-700 may have extra ports, but still has the 445 * mesh_port_connect_info registers in the way. 446 */ 447 if (cmn->part == PART_CI700) 448 offset += CI700_CONNECT_INFO_P2_5_OFFSET; 449 } 450 451 return readl_relaxed(xp->pmu_base - CMN_PMU_OFFSET + offset); 452 } 453 454 static struct dentry *arm_cmn_debugfs; 455 456 #ifdef CONFIG_DEBUG_FS 457 static const char *arm_cmn_device_type(u8 type) 458 { 459 switch(FIELD_GET(CMN__CONNECT_INFO_DEVICE_TYPE, type)) { 460 case 0x00: return " |"; 461 case 0x01: return " RN-I |"; 462 case 0x02: return " RN-D |"; 463 case 0x04: return " RN-F_B |"; 464 case 0x05: return "RN-F_B_E|"; 465 case 0x06: return " RN-F_A |"; 466 case 0x07: return "RN-F_A_E|"; 467 case 0x08: return " HN-T |"; 468 case 0x09: return " HN-I |"; 469 case 0x0a: return " HN-D |"; 470 case 0x0b: return " HN-P |"; 471 case 0x0c: return " SN-F |"; 472 case 0x0d: return " SBSX |"; 473 case 0x0e: return " HN-F |"; 474 case 0x0f: return " SN-F_E |"; 475 case 0x10: return " SN-F_D |"; 476 case 0x11: return " CXHA |"; 477 case 0x12: return " CXRA |"; 478 case 0x13: return " CXRH |"; 479 case 0x14: return " RN-F_D |"; 480 case 0x15: return "RN-F_D_E|"; 481 case 0x16: return " RN-F_C |"; 482 case 0x17: return "RN-F_C_E|"; 483 case 0x18: return " RN-F_E |"; 484 case 0x19: return "RN-F_E_E|"; 485 case 0x1c: return " MTSX |"; 486 case 0x1d: return " HN-V |"; 487 case 0x1e: return " CCG |"; 488 default: return " ???? |"; 489 } 490 } 491 492 static void arm_cmn_show_logid(struct seq_file *s, int x, int y, int p, int d) 493 { 494 struct arm_cmn *cmn = s->private; 495 struct arm_cmn_node *dn; 496 497 for (dn = cmn->dns; dn->type; dn++) { 498 struct arm_cmn_nodeid nid = arm_cmn_nid(cmn, dn->id); 499 500 if (dn->type == CMN_TYPE_XP) 501 continue; 502 /* Ignore the extra components that will overlap on some ports */ 503 if (dn->type < CMN_TYPE_HNI) 504 continue; 505 506 if (nid.x != x || nid.y != y || nid.port != p || nid.dev != d) 507 continue; 508 509 seq_printf(s, " #%-2d |", dn->logid); 510 return; 511 } 512 seq_puts(s, " |"); 513 } 514 515 static int arm_cmn_map_show(struct seq_file *s, void *data) 516 { 517 struct arm_cmn *cmn = s->private; 518 int x, y, p, pmax = fls(cmn->ports_used); 519 520 seq_puts(s, " X"); 521 for (x = 0; x < cmn->mesh_x; x++) 522 seq_printf(s, " %d ", x); 523 seq_puts(s, "\nY P D+"); 524 y = cmn->mesh_y; 525 while (y--) { 526 int xp_base = cmn->mesh_x * y; 527 u8 port[CMN_MAX_PORTS][CMN_MAX_DIMENSION]; 528 529 for (x = 0; x < cmn->mesh_x; x++) 530 seq_puts(s, "--------+"); 531 532 seq_printf(s, "\n%d |", y); 533 for (x = 0; x < cmn->mesh_x; x++) { 534 struct arm_cmn_node *xp = cmn->xps + xp_base + x; 535 536 for (p = 0; p < CMN_MAX_PORTS; p++) 537 port[p][x] = arm_cmn_device_connect_info(cmn, xp, p); 538 seq_printf(s, " XP #%-2d |", xp_base + x); 539 } 540 541 seq_puts(s, "\n |"); 542 for (x = 0; x < cmn->mesh_x; x++) { 543 u8 dtc = cmn->xps[xp_base + x].dtc; 544 545 if (dtc & (dtc - 1)) 546 seq_puts(s, " DTC ?? |"); 547 else 548 seq_printf(s, " DTC %ld |", __ffs(dtc)); 549 } 550 seq_puts(s, "\n |"); 551 for (x = 0; x < cmn->mesh_x; x++) 552 seq_puts(s, "........|"); 553 554 for (p = 0; p < pmax; p++) { 555 seq_printf(s, "\n %d |", p); 556 for (x = 0; x < cmn->mesh_x; x++) 557 seq_puts(s, arm_cmn_device_type(port[p][x])); 558 seq_puts(s, "\n 0|"); 559 for (x = 0; x < cmn->mesh_x; x++) 560 arm_cmn_show_logid(s, x, y, p, 0); 561 seq_puts(s, "\n 1|"); 562 for (x = 0; x < cmn->mesh_x; x++) 563 arm_cmn_show_logid(s, x, y, p, 1); 564 } 565 seq_puts(s, "\n-----+"); 566 } 567 for (x = 0; x < cmn->mesh_x; x++) 568 seq_puts(s, "--------+"); 569 seq_puts(s, "\n"); 570 return 0; 571 } 572 DEFINE_SHOW_ATTRIBUTE(arm_cmn_map); 573 574 static void arm_cmn_debugfs_init(struct arm_cmn *cmn, int id) 575 { 576 const char *name = "map"; 577 578 if (id > 0) 579 name = devm_kasprintf(cmn->dev, GFP_KERNEL, "map_%d", id); 580 if (!name) 581 return; 582 583 cmn->debug = debugfs_create_file(name, 0444, arm_cmn_debugfs, cmn, &arm_cmn_map_fops); 584 } 585 #else 586 static void arm_cmn_debugfs_init(struct arm_cmn *cmn, int id) {} 587 #endif 588 589 struct arm_cmn_hw_event { 590 struct arm_cmn_node *dn; 591 u64 dtm_idx[4]; 592 unsigned int dtc_idx; 593 u8 dtcs_used; 594 u8 num_dns; 595 u8 dtm_offset; 596 bool wide_sel; 597 enum cmn_filter_select filter_sel; 598 }; 599 600 #define for_each_hw_dn(hw, dn, i) \ 601 for (i = 0, dn = hw->dn; i < hw->num_dns; i++, dn++) 602 603 static struct arm_cmn_hw_event *to_cmn_hw(struct perf_event *event) 604 { 605 BUILD_BUG_ON(sizeof(struct arm_cmn_hw_event) > offsetof(struct hw_perf_event, target)); 606 return (struct arm_cmn_hw_event *)&event->hw; 607 } 608 609 static void arm_cmn_set_index(u64 x[], unsigned int pos, unsigned int val) 610 { 611 x[pos / 32] |= (u64)val << ((pos % 32) * 2); 612 } 613 614 static unsigned int arm_cmn_get_index(u64 x[], unsigned int pos) 615 { 616 return (x[pos / 32] >> ((pos % 32) * 2)) & 3; 617 } 618 619 struct arm_cmn_event_attr { 620 struct device_attribute attr; 621 enum cmn_model model; 622 enum cmn_node_type type; 623 enum cmn_filter_select fsel; 624 u16 eventid; 625 u8 occupid; 626 }; 627 628 struct arm_cmn_format_attr { 629 struct device_attribute attr; 630 u64 field; 631 int config; 632 }; 633 634 #define _CMN_EVENT_ATTR(_model, _name, _type, _eventid, _occupid, _fsel)\ 635 (&((struct arm_cmn_event_attr[]) {{ \ 636 .attr = __ATTR(_name, 0444, arm_cmn_event_show, NULL), \ 637 .model = _model, \ 638 .type = _type, \ 639 .eventid = _eventid, \ 640 .occupid = _occupid, \ 641 .fsel = _fsel, \ 642 }})[0].attr.attr) 643 #define CMN_EVENT_ATTR(_model, _name, _type, _eventid) \ 644 _CMN_EVENT_ATTR(_model, _name, _type, _eventid, 0, SEL_NONE) 645 646 static ssize_t arm_cmn_event_show(struct device *dev, 647 struct device_attribute *attr, char *buf) 648 { 649 struct arm_cmn_event_attr *eattr; 650 651 eattr = container_of(attr, typeof(*eattr), attr); 652 653 if (eattr->type == CMN_TYPE_DTC) 654 return sysfs_emit(buf, "type=0x%x\n", eattr->type); 655 656 if (eattr->type == CMN_TYPE_WP) 657 return sysfs_emit(buf, 658 "type=0x%x,eventid=0x%x,wp_dev_sel=?,wp_chn_sel=?,wp_grp=?,wp_val=?,wp_mask=?\n", 659 eattr->type, eattr->eventid); 660 661 if (eattr->fsel > SEL_NONE) 662 return sysfs_emit(buf, "type=0x%x,eventid=0x%x,occupid=0x%x\n", 663 eattr->type, eattr->eventid, eattr->occupid); 664 665 return sysfs_emit(buf, "type=0x%x,eventid=0x%x\n", eattr->type, 666 eattr->eventid); 667 } 668 669 static umode_t arm_cmn_event_attr_is_visible(struct kobject *kobj, 670 struct attribute *attr, 671 int unused) 672 { 673 struct device *dev = kobj_to_dev(kobj); 674 struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev)); 675 struct arm_cmn_event_attr *eattr; 676 enum cmn_node_type type; 677 u16 eventid; 678 679 eattr = container_of(attr, typeof(*eattr), attr.attr); 680 681 if (!(eattr->model & arm_cmn_model(cmn))) 682 return 0; 683 684 type = eattr->type; 685 eventid = eattr->eventid; 686 687 /* Watchpoints aren't nodes, so avoid confusion */ 688 if (type == CMN_TYPE_WP) 689 return attr->mode; 690 691 /* Hide XP events for unused interfaces/channels */ 692 if (type == CMN_TYPE_XP) { 693 unsigned int intf = (eventid >> 2) & 7; 694 unsigned int chan = eventid >> 5; 695 696 if ((intf & 4) && !(cmn->ports_used & BIT(intf & 3))) 697 return 0; 698 699 if (chan == 4 && cmn->part == PART_CMN600) 700 return 0; 701 702 if ((chan == 5 && cmn->rsp_vc_num < 2) || 703 (chan == 6 && cmn->dat_vc_num < 2) || 704 (chan == 7 && cmn->snp_vc_num < 2) || 705 (chan == 8 && cmn->req_vc_num < 2)) 706 return 0; 707 } 708 709 /* Revision-specific differences */ 710 if (cmn->part == PART_CMN600) { 711 if (cmn->rev < REV_CMN600_R1P3) { 712 if (type == CMN_TYPE_CXRA && eventid > 0x10) 713 return 0; 714 } 715 if (cmn->rev < REV_CMN600_R1P2) { 716 if (type == CMN_TYPE_HNF && eventid == 0x1b) 717 return 0; 718 if (type == CMN_TYPE_CXRA || type == CMN_TYPE_CXHA) 719 return 0; 720 } 721 } else if (cmn->part == PART_CMN650) { 722 if (cmn->rev < REV_CMN650_R2P0 || cmn->rev == REV_CMN650_R1P2) { 723 if (type == CMN_TYPE_HNF && eventid > 0x22) 724 return 0; 725 if (type == CMN_TYPE_SBSX && eventid == 0x17) 726 return 0; 727 if (type == CMN_TYPE_RNI && eventid > 0x10) 728 return 0; 729 } 730 } else if (cmn->part == PART_CMN700) { 731 if (cmn->rev < REV_CMN700_R2P0) { 732 if (type == CMN_TYPE_HNF && eventid > 0x2c) 733 return 0; 734 if (type == CMN_TYPE_CCHA && eventid > 0x74) 735 return 0; 736 if (type == CMN_TYPE_CCLA && eventid > 0x27) 737 return 0; 738 } 739 if (cmn->rev < REV_CMN700_R1P0) { 740 if (type == CMN_TYPE_HNF && eventid > 0x2b) 741 return 0; 742 } 743 } 744 745 if (!arm_cmn_node(cmn, type)) 746 return 0; 747 748 return attr->mode; 749 } 750 751 #define _CMN_EVENT_DVM(_model, _name, _event, _occup, _fsel) \ 752 _CMN_EVENT_ATTR(_model, dn_##_name, CMN_TYPE_DVM, _event, _occup, _fsel) 753 #define CMN_EVENT_DTC(_name) \ 754 CMN_EVENT_ATTR(CMN_ANY, dtc_##_name, CMN_TYPE_DTC, 0) 755 #define CMN_EVENT_HNF(_model, _name, _event) \ 756 CMN_EVENT_ATTR(_model, hnf_##_name, CMN_TYPE_HNF, _event) 757 #define CMN_EVENT_HNI(_name, _event) \ 758 CMN_EVENT_ATTR(CMN_ANY, hni_##_name, CMN_TYPE_HNI, _event) 759 #define CMN_EVENT_HNP(_name, _event) \ 760 CMN_EVENT_ATTR(CMN_ANY, hnp_##_name, CMN_TYPE_HNP, _event) 761 #define __CMN_EVENT_XP(_name, _event) \ 762 CMN_EVENT_ATTR(CMN_ANY, mxp_##_name, CMN_TYPE_XP, _event) 763 #define CMN_EVENT_SBSX(_model, _name, _event) \ 764 CMN_EVENT_ATTR(_model, sbsx_##_name, CMN_TYPE_SBSX, _event) 765 #define CMN_EVENT_RNID(_model, _name, _event) \ 766 CMN_EVENT_ATTR(_model, rnid_##_name, CMN_TYPE_RNI, _event) 767 #define CMN_EVENT_MTSX(_name, _event) \ 768 CMN_EVENT_ATTR(CMN_ANY, mtsx_##_name, CMN_TYPE_MTSX, _event) 769 #define CMN_EVENT_CXRA(_model, _name, _event) \ 770 CMN_EVENT_ATTR(_model, cxra_##_name, CMN_TYPE_CXRA, _event) 771 #define CMN_EVENT_CXHA(_name, _event) \ 772 CMN_EVENT_ATTR(CMN_ANY, cxha_##_name, CMN_TYPE_CXHA, _event) 773 #define CMN_EVENT_CCRA(_name, _event) \ 774 CMN_EVENT_ATTR(CMN_ANY, ccra_##_name, CMN_TYPE_CCRA, _event) 775 #define CMN_EVENT_CCHA(_name, _event) \ 776 CMN_EVENT_ATTR(CMN_ANY, ccha_##_name, CMN_TYPE_CCHA, _event) 777 #define CMN_EVENT_CCLA(_name, _event) \ 778 CMN_EVENT_ATTR(CMN_ANY, ccla_##_name, CMN_TYPE_CCLA, _event) 779 #define CMN_EVENT_CCLA_RNI(_name, _event) \ 780 CMN_EVENT_ATTR(CMN_ANY, ccla_rni_##_name, CMN_TYPE_CCLA_RNI, _event) 781 #define CMN_EVENT_HNS(_name, _event) \ 782 CMN_EVENT_ATTR(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event) 783 784 #define CMN_EVENT_DVM(_model, _name, _event) \ 785 _CMN_EVENT_DVM(_model, _name, _event, 0, SEL_NONE) 786 #define CMN_EVENT_DVM_OCC(_model, _name, _event) \ 787 _CMN_EVENT_DVM(_model, _name##_all, _event, 0, SEL_OCCUP1ID), \ 788 _CMN_EVENT_DVM(_model, _name##_dvmop, _event, 1, SEL_OCCUP1ID), \ 789 _CMN_EVENT_DVM(_model, _name##_dvmsync, _event, 2, SEL_OCCUP1ID) 790 791 #define CMN_EVENT_HN_OCC(_model, _name, _type, _event) \ 792 _CMN_EVENT_ATTR(_model, _name##_all, _type, _event, 0, SEL_OCCUP1ID), \ 793 _CMN_EVENT_ATTR(_model, _name##_read, _type, _event, 1, SEL_OCCUP1ID), \ 794 _CMN_EVENT_ATTR(_model, _name##_write, _type, _event, 2, SEL_OCCUP1ID), \ 795 _CMN_EVENT_ATTR(_model, _name##_atomic, _type, _event, 3, SEL_OCCUP1ID), \ 796 _CMN_EVENT_ATTR(_model, _name##_stash, _type, _event, 4, SEL_OCCUP1ID) 797 #define CMN_EVENT_HN_CLS(_model, _name, _type, _event) \ 798 _CMN_EVENT_ATTR(_model, _name##_class0, _type, _event, 0, SEL_CLASS_OCCUP_ID), \ 799 _CMN_EVENT_ATTR(_model, _name##_class1, _type, _event, 1, SEL_CLASS_OCCUP_ID), \ 800 _CMN_EVENT_ATTR(_model, _name##_class2, _type, _event, 2, SEL_CLASS_OCCUP_ID), \ 801 _CMN_EVENT_ATTR(_model, _name##_class3, _type, _event, 3, SEL_CLASS_OCCUP_ID) 802 #define CMN_EVENT_HN_SNT(_model, _name, _type, _event) \ 803 _CMN_EVENT_ATTR(_model, _name##_all, _type, _event, 0, SEL_CBUSY_SNTHROTTLE_SEL), \ 804 _CMN_EVENT_ATTR(_model, _name##_group0_read, _type, _event, 1, SEL_CBUSY_SNTHROTTLE_SEL), \ 805 _CMN_EVENT_ATTR(_model, _name##_group0_write, _type, _event, 2, SEL_CBUSY_SNTHROTTLE_SEL), \ 806 _CMN_EVENT_ATTR(_model, _name##_group1_read, _type, _event, 3, SEL_CBUSY_SNTHROTTLE_SEL), \ 807 _CMN_EVENT_ATTR(_model, _name##_group1_write, _type, _event, 4, SEL_CBUSY_SNTHROTTLE_SEL), \ 808 _CMN_EVENT_ATTR(_model, _name##_read, _type, _event, 5, SEL_CBUSY_SNTHROTTLE_SEL), \ 809 _CMN_EVENT_ATTR(_model, _name##_write, _type, _event, 6, SEL_CBUSY_SNTHROTTLE_SEL) 810 811 #define CMN_EVENT_HNF_OCC(_model, _name, _event) \ 812 CMN_EVENT_HN_OCC(_model, hnf_##_name, CMN_TYPE_HNF, _event) 813 #define CMN_EVENT_HNF_CLS(_model, _name, _event) \ 814 CMN_EVENT_HN_CLS(_model, hnf_##_name, CMN_TYPE_HNF, _event) 815 #define CMN_EVENT_HNF_SNT(_model, _name, _event) \ 816 CMN_EVENT_HN_SNT(_model, hnf_##_name, CMN_TYPE_HNF, _event) 817 818 #define CMN_EVENT_HNS_OCC(_name, _event) \ 819 CMN_EVENT_HN_OCC(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event), \ 820 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_rxsnp, CMN_TYPE_HNS, _event, 5, SEL_OCCUP1ID), \ 821 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_lbt, CMN_TYPE_HNS, _event, 6, SEL_OCCUP1ID), \ 822 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_hbt, CMN_TYPE_HNS, _event, 7, SEL_OCCUP1ID) 823 #define CMN_EVENT_HNS_CLS( _name, _event) \ 824 CMN_EVENT_HN_CLS(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event) 825 #define CMN_EVENT_HNS_SNT(_name, _event) \ 826 CMN_EVENT_HN_SNT(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event) 827 #define CMN_EVENT_HNS_HBT(_name, _event) \ 828 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_all, CMN_TYPE_HNS, _event, 0, SEL_HBT_LBT_SEL), \ 829 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_hbt, CMN_TYPE_HNS, _event, 1, SEL_HBT_LBT_SEL), \ 830 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_lbt, CMN_TYPE_HNS, _event, 2, SEL_HBT_LBT_SEL) 831 #define CMN_EVENT_HNS_SNH(_name, _event) \ 832 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_all, CMN_TYPE_HNS, _event, 0, SEL_SN_HOME_SEL), \ 833 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_sn, CMN_TYPE_HNS, _event, 1, SEL_SN_HOME_SEL), \ 834 _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_home, CMN_TYPE_HNS, _event, 2, SEL_SN_HOME_SEL) 835 836 #define _CMN_EVENT_XP_MESH(_name, _event) \ 837 __CMN_EVENT_XP(e_##_name, (_event) | (0 << 2)), \ 838 __CMN_EVENT_XP(w_##_name, (_event) | (1 << 2)), \ 839 __CMN_EVENT_XP(n_##_name, (_event) | (2 << 2)), \ 840 __CMN_EVENT_XP(s_##_name, (_event) | (3 << 2)) 841 842 #define _CMN_EVENT_XP_PORT(_name, _event) \ 843 __CMN_EVENT_XP(p0_##_name, (_event) | (4 << 2)), \ 844 __CMN_EVENT_XP(p1_##_name, (_event) | (5 << 2)), \ 845 __CMN_EVENT_XP(p2_##_name, (_event) | (6 << 2)), \ 846 __CMN_EVENT_XP(p3_##_name, (_event) | (7 << 2)) 847 848 #define _CMN_EVENT_XP(_name, _event) \ 849 _CMN_EVENT_XP_MESH(_name, _event), \ 850 _CMN_EVENT_XP_PORT(_name, _event) 851 852 /* Good thing there are only 3 fundamental XP events... */ 853 #define CMN_EVENT_XP(_name, _event) \ 854 _CMN_EVENT_XP(req_##_name, (_event) | (0 << 5)), \ 855 _CMN_EVENT_XP(rsp_##_name, (_event) | (1 << 5)), \ 856 _CMN_EVENT_XP(snp_##_name, (_event) | (2 << 5)), \ 857 _CMN_EVENT_XP(dat_##_name, (_event) | (3 << 5)), \ 858 _CMN_EVENT_XP(pub_##_name, (_event) | (4 << 5)), \ 859 _CMN_EVENT_XP(rsp2_##_name, (_event) | (5 << 5)), \ 860 _CMN_EVENT_XP(dat2_##_name, (_event) | (6 << 5)), \ 861 _CMN_EVENT_XP(snp2_##_name, (_event) | (7 << 5)), \ 862 _CMN_EVENT_XP(req2_##_name, (_event) | (8 << 5)) 863 864 #define CMN_EVENT_XP_DAT(_name, _event) \ 865 _CMN_EVENT_XP_PORT(dat_##_name, (_event) | (3 << 5)), \ 866 _CMN_EVENT_XP_PORT(dat2_##_name, (_event) | (6 << 5)) 867 868 869 static struct attribute *arm_cmn_event_attrs[] = { 870 CMN_EVENT_DTC(cycles), 871 872 /* 873 * DVM node events conflict with HN-I events in the equivalent PMU 874 * slot, but our lazy short-cut of using the DTM counter index for 875 * the PMU index as well happens to avoid that by construction. 876 */ 877 CMN_EVENT_DVM(CMN600, rxreq_dvmop, 0x01), 878 CMN_EVENT_DVM(CMN600, rxreq_dvmsync, 0x02), 879 CMN_EVENT_DVM(CMN600, rxreq_dvmop_vmid_filtered, 0x03), 880 CMN_EVENT_DVM(CMN600, rxreq_retried, 0x04), 881 CMN_EVENT_DVM_OCC(CMN600, rxreq_trk_occupancy, 0x05), 882 CMN_EVENT_DVM(NOT_CMN600, dvmop_tlbi, 0x01), 883 CMN_EVENT_DVM(NOT_CMN600, dvmop_bpi, 0x02), 884 CMN_EVENT_DVM(NOT_CMN600, dvmop_pici, 0x03), 885 CMN_EVENT_DVM(NOT_CMN600, dvmop_vici, 0x04), 886 CMN_EVENT_DVM(NOT_CMN600, dvmsync, 0x05), 887 CMN_EVENT_DVM(NOT_CMN600, vmid_filtered, 0x06), 888 CMN_EVENT_DVM(NOT_CMN600, rndop_filtered, 0x07), 889 CMN_EVENT_DVM(NOT_CMN600, retry, 0x08), 890 CMN_EVENT_DVM(NOT_CMN600, txsnp_flitv, 0x09), 891 CMN_EVENT_DVM(NOT_CMN600, txsnp_stall, 0x0a), 892 CMN_EVENT_DVM(NOT_CMN600, trkfull, 0x0b), 893 CMN_EVENT_DVM_OCC(NOT_CMN600, trk_occupancy, 0x0c), 894 CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_cxha, 0x0d), 895 CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_pdn, 0x0e), 896 CMN_EVENT_DVM(CMN700, trk_alloc, 0x0f), 897 CMN_EVENT_DVM(CMN700, trk_cxha_alloc, 0x10), 898 CMN_EVENT_DVM(CMN700, trk_pdn_alloc, 0x11), 899 CMN_EVENT_DVM(CMN700, txsnp_stall_limit, 0x12), 900 CMN_EVENT_DVM(CMN700, rxsnp_stall_starv, 0x13), 901 CMN_EVENT_DVM(CMN700, txsnp_sync_stall_op, 0x14), 902 903 CMN_EVENT_HNF(CMN_ANY, cache_miss, 0x01), 904 CMN_EVENT_HNF(CMN_ANY, slc_sf_cache_access, 0x02), 905 CMN_EVENT_HNF(CMN_ANY, cache_fill, 0x03), 906 CMN_EVENT_HNF(CMN_ANY, pocq_retry, 0x04), 907 CMN_EVENT_HNF(CMN_ANY, pocq_reqs_recvd, 0x05), 908 CMN_EVENT_HNF(CMN_ANY, sf_hit, 0x06), 909 CMN_EVENT_HNF(CMN_ANY, sf_evictions, 0x07), 910 CMN_EVENT_HNF(CMN_ANY, dir_snoops_sent, 0x08), 911 CMN_EVENT_HNF(CMN_ANY, brd_snoops_sent, 0x09), 912 CMN_EVENT_HNF(CMN_ANY, slc_eviction, 0x0a), 913 CMN_EVENT_HNF(CMN_ANY, slc_fill_invalid_way, 0x0b), 914 CMN_EVENT_HNF(CMN_ANY, mc_retries, 0x0c), 915 CMN_EVENT_HNF(CMN_ANY, mc_reqs, 0x0d), 916 CMN_EVENT_HNF(CMN_ANY, qos_hh_retry, 0x0e), 917 CMN_EVENT_HNF_OCC(CMN_ANY, qos_pocq_occupancy, 0x0f), 918 CMN_EVENT_HNF(CMN_ANY, pocq_addrhaz, 0x10), 919 CMN_EVENT_HNF(CMN_ANY, pocq_atomic_addrhaz, 0x11), 920 CMN_EVENT_HNF(CMN_ANY, ld_st_swp_adq_full, 0x12), 921 CMN_EVENT_HNF(CMN_ANY, cmp_adq_full, 0x13), 922 CMN_EVENT_HNF(CMN_ANY, txdat_stall, 0x14), 923 CMN_EVENT_HNF(CMN_ANY, txrsp_stall, 0x15), 924 CMN_EVENT_HNF(CMN_ANY, seq_full, 0x16), 925 CMN_EVENT_HNF(CMN_ANY, seq_hit, 0x17), 926 CMN_EVENT_HNF(CMN_ANY, snp_sent, 0x18), 927 CMN_EVENT_HNF(CMN_ANY, sfbi_dir_snp_sent, 0x19), 928 CMN_EVENT_HNF(CMN_ANY, sfbi_brd_snp_sent, 0x1a), 929 CMN_EVENT_HNF(CMN_ANY, snp_sent_untrk, 0x1b), 930 CMN_EVENT_HNF(CMN_ANY, intv_dirty, 0x1c), 931 CMN_EVENT_HNF(CMN_ANY, stash_snp_sent, 0x1d), 932 CMN_EVENT_HNF(CMN_ANY, stash_data_pull, 0x1e), 933 CMN_EVENT_HNF(CMN_ANY, snp_fwded, 0x1f), 934 CMN_EVENT_HNF(NOT_CMN600, atomic_fwd, 0x20), 935 CMN_EVENT_HNF(NOT_CMN600, mpam_hardlim, 0x21), 936 CMN_EVENT_HNF(NOT_CMN600, mpam_softlim, 0x22), 937 CMN_EVENT_HNF(CMN_650ON, snp_sent_cluster, 0x23), 938 CMN_EVENT_HNF(CMN_650ON, sf_imprecise_evict, 0x24), 939 CMN_EVENT_HNF(CMN_650ON, sf_evict_shared_line, 0x25), 940 CMN_EVENT_HNF_CLS(CMN700, pocq_class_occup, 0x26), 941 CMN_EVENT_HNF_CLS(CMN700, pocq_class_retry, 0x27), 942 CMN_EVENT_HNF_CLS(CMN700, class_mc_reqs, 0x28), 943 CMN_EVENT_HNF_CLS(CMN700, class_cgnt_cmin, 0x29), 944 CMN_EVENT_HNF_SNT(CMN700, sn_throttle, 0x2a), 945 CMN_EVENT_HNF_SNT(CMN700, sn_throttle_min, 0x2b), 946 CMN_EVENT_HNF(CMN700, sf_precise_to_imprecise, 0x2c), 947 CMN_EVENT_HNF(CMN700, snp_intv_cln, 0x2d), 948 CMN_EVENT_HNF(CMN700, nc_excl, 0x2e), 949 CMN_EVENT_HNF(CMN700, excl_mon_ovfl, 0x2f), 950 951 CMN_EVENT_HNI(rrt_rd_occ_cnt_ovfl, 0x20), 952 CMN_EVENT_HNI(rrt_wr_occ_cnt_ovfl, 0x21), 953 CMN_EVENT_HNI(rdt_rd_occ_cnt_ovfl, 0x22), 954 CMN_EVENT_HNI(rdt_wr_occ_cnt_ovfl, 0x23), 955 CMN_EVENT_HNI(wdb_occ_cnt_ovfl, 0x24), 956 CMN_EVENT_HNI(rrt_rd_alloc, 0x25), 957 CMN_EVENT_HNI(rrt_wr_alloc, 0x26), 958 CMN_EVENT_HNI(rdt_rd_alloc, 0x27), 959 CMN_EVENT_HNI(rdt_wr_alloc, 0x28), 960 CMN_EVENT_HNI(wdb_alloc, 0x29), 961 CMN_EVENT_HNI(txrsp_retryack, 0x2a), 962 CMN_EVENT_HNI(arvalid_no_arready, 0x2b), 963 CMN_EVENT_HNI(arready_no_arvalid, 0x2c), 964 CMN_EVENT_HNI(awvalid_no_awready, 0x2d), 965 CMN_EVENT_HNI(awready_no_awvalid, 0x2e), 966 CMN_EVENT_HNI(wvalid_no_wready, 0x2f), 967 CMN_EVENT_HNI(txdat_stall, 0x30), 968 CMN_EVENT_HNI(nonpcie_serialization, 0x31), 969 CMN_EVENT_HNI(pcie_serialization, 0x32), 970 971 /* 972 * HN-P events squat on top of the HN-I similarly to DVM events, except 973 * for being crammed into the same physical node as well. And of course 974 * where would the fun be if the same events were in the same order... 975 */ 976 CMN_EVENT_HNP(rrt_wr_occ_cnt_ovfl, 0x01), 977 CMN_EVENT_HNP(rdt_wr_occ_cnt_ovfl, 0x02), 978 CMN_EVENT_HNP(wdb_occ_cnt_ovfl, 0x03), 979 CMN_EVENT_HNP(rrt_wr_alloc, 0x04), 980 CMN_EVENT_HNP(rdt_wr_alloc, 0x05), 981 CMN_EVENT_HNP(wdb_alloc, 0x06), 982 CMN_EVENT_HNP(awvalid_no_awready, 0x07), 983 CMN_EVENT_HNP(awready_no_awvalid, 0x08), 984 CMN_EVENT_HNP(wvalid_no_wready, 0x09), 985 CMN_EVENT_HNP(rrt_rd_occ_cnt_ovfl, 0x11), 986 CMN_EVENT_HNP(rdt_rd_occ_cnt_ovfl, 0x12), 987 CMN_EVENT_HNP(rrt_rd_alloc, 0x13), 988 CMN_EVENT_HNP(rdt_rd_alloc, 0x14), 989 CMN_EVENT_HNP(arvalid_no_arready, 0x15), 990 CMN_EVENT_HNP(arready_no_arvalid, 0x16), 991 992 CMN_EVENT_XP(txflit_valid, 0x01), 993 CMN_EVENT_XP(txflit_stall, 0x02), 994 CMN_EVENT_XP_DAT(partial_dat_flit, 0x03), 995 /* We treat watchpoints as a special made-up class of XP events */ 996 CMN_EVENT_ATTR(CMN_ANY, watchpoint_up, CMN_TYPE_WP, CMN_WP_UP), 997 CMN_EVENT_ATTR(CMN_ANY, watchpoint_down, CMN_TYPE_WP, CMN_WP_DOWN), 998 999 CMN_EVENT_SBSX(CMN_ANY, rd_req, 0x01), 1000 CMN_EVENT_SBSX(CMN_ANY, wr_req, 0x02), 1001 CMN_EVENT_SBSX(CMN_ANY, cmo_req, 0x03), 1002 CMN_EVENT_SBSX(CMN_ANY, txrsp_retryack, 0x04), 1003 CMN_EVENT_SBSX(CMN_ANY, txdat_flitv, 0x05), 1004 CMN_EVENT_SBSX(CMN_ANY, txrsp_flitv, 0x06), 1005 CMN_EVENT_SBSX(CMN_ANY, rd_req_trkr_occ_cnt_ovfl, 0x11), 1006 CMN_EVENT_SBSX(CMN_ANY, wr_req_trkr_occ_cnt_ovfl, 0x12), 1007 CMN_EVENT_SBSX(CMN_ANY, cmo_req_trkr_occ_cnt_ovfl, 0x13), 1008 CMN_EVENT_SBSX(CMN_ANY, wdb_occ_cnt_ovfl, 0x14), 1009 CMN_EVENT_SBSX(CMN_ANY, rd_axi_trkr_occ_cnt_ovfl, 0x15), 1010 CMN_EVENT_SBSX(CMN_ANY, cmo_axi_trkr_occ_cnt_ovfl, 0x16), 1011 CMN_EVENT_SBSX(NOT_CMN600, rdb_occ_cnt_ovfl, 0x17), 1012 CMN_EVENT_SBSX(CMN_ANY, arvalid_no_arready, 0x21), 1013 CMN_EVENT_SBSX(CMN_ANY, awvalid_no_awready, 0x22), 1014 CMN_EVENT_SBSX(CMN_ANY, wvalid_no_wready, 0x23), 1015 CMN_EVENT_SBSX(CMN_ANY, txdat_stall, 0x24), 1016 CMN_EVENT_SBSX(CMN_ANY, txrsp_stall, 0x25), 1017 1018 CMN_EVENT_RNID(CMN_ANY, s0_rdata_beats, 0x01), 1019 CMN_EVENT_RNID(CMN_ANY, s1_rdata_beats, 0x02), 1020 CMN_EVENT_RNID(CMN_ANY, s2_rdata_beats, 0x03), 1021 CMN_EVENT_RNID(CMN_ANY, rxdat_flits, 0x04), 1022 CMN_EVENT_RNID(CMN_ANY, txdat_flits, 0x05), 1023 CMN_EVENT_RNID(CMN_ANY, txreq_flits_total, 0x06), 1024 CMN_EVENT_RNID(CMN_ANY, txreq_flits_retried, 0x07), 1025 CMN_EVENT_RNID(CMN_ANY, rrt_occ_ovfl, 0x08), 1026 CMN_EVENT_RNID(CMN_ANY, wrt_occ_ovfl, 0x09), 1027 CMN_EVENT_RNID(CMN_ANY, txreq_flits_replayed, 0x0a), 1028 CMN_EVENT_RNID(CMN_ANY, wrcancel_sent, 0x0b), 1029 CMN_EVENT_RNID(CMN_ANY, s0_wdata_beats, 0x0c), 1030 CMN_EVENT_RNID(CMN_ANY, s1_wdata_beats, 0x0d), 1031 CMN_EVENT_RNID(CMN_ANY, s2_wdata_beats, 0x0e), 1032 CMN_EVENT_RNID(CMN_ANY, rrt_alloc, 0x0f), 1033 CMN_EVENT_RNID(CMN_ANY, wrt_alloc, 0x10), 1034 CMN_EVENT_RNID(CMN600, rdb_unord, 0x11), 1035 CMN_EVENT_RNID(CMN600, rdb_replay, 0x12), 1036 CMN_EVENT_RNID(CMN600, rdb_hybrid, 0x13), 1037 CMN_EVENT_RNID(CMN600, rdb_ord, 0x14), 1038 CMN_EVENT_RNID(NOT_CMN600, padb_occ_ovfl, 0x11), 1039 CMN_EVENT_RNID(NOT_CMN600, rpdb_occ_ovfl, 0x12), 1040 CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice1, 0x13), 1041 CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice2, 0x14), 1042 CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice3, 0x15), 1043 CMN_EVENT_RNID(NOT_CMN600, wrt_throttled, 0x16), 1044 CMN_EVENT_RNID(CMN700, ldb_full, 0x17), 1045 CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice0, 0x18), 1046 CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice1, 0x19), 1047 CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice2, 0x1a), 1048 CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice3, 0x1b), 1049 CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice0, 0x1c), 1050 CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice1, 0x1d), 1051 CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice2, 0x1e), 1052 CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice3, 0x1f), 1053 CMN_EVENT_RNID(CMN700, rrt_burst_alloc, 0x20), 1054 CMN_EVENT_RNID(CMN700, awid_hash, 0x21), 1055 CMN_EVENT_RNID(CMN700, atomic_alloc, 0x22), 1056 CMN_EVENT_RNID(CMN700, atomic_occ_ovfl, 0x23), 1057 1058 CMN_EVENT_MTSX(tc_lookup, 0x01), 1059 CMN_EVENT_MTSX(tc_fill, 0x02), 1060 CMN_EVENT_MTSX(tc_miss, 0x03), 1061 CMN_EVENT_MTSX(tdb_forward, 0x04), 1062 CMN_EVENT_MTSX(tcq_hazard, 0x05), 1063 CMN_EVENT_MTSX(tcq_rd_alloc, 0x06), 1064 CMN_EVENT_MTSX(tcq_wr_alloc, 0x07), 1065 CMN_EVENT_MTSX(tcq_cmo_alloc, 0x08), 1066 CMN_EVENT_MTSX(axi_rd_req, 0x09), 1067 CMN_EVENT_MTSX(axi_wr_req, 0x0a), 1068 CMN_EVENT_MTSX(tcq_occ_cnt_ovfl, 0x0b), 1069 CMN_EVENT_MTSX(tdb_occ_cnt_ovfl, 0x0c), 1070 1071 CMN_EVENT_CXRA(CMN_ANY, rht_occ, 0x01), 1072 CMN_EVENT_CXRA(CMN_ANY, sht_occ, 0x02), 1073 CMN_EVENT_CXRA(CMN_ANY, rdb_occ, 0x03), 1074 CMN_EVENT_CXRA(CMN_ANY, wdb_occ, 0x04), 1075 CMN_EVENT_CXRA(CMN_ANY, ssb_occ, 0x05), 1076 CMN_EVENT_CXRA(CMN_ANY, snp_bcasts, 0x06), 1077 CMN_EVENT_CXRA(CMN_ANY, req_chains, 0x07), 1078 CMN_EVENT_CXRA(CMN_ANY, req_chain_avglen, 0x08), 1079 CMN_EVENT_CXRA(CMN_ANY, chirsp_stalls, 0x09), 1080 CMN_EVENT_CXRA(CMN_ANY, chidat_stalls, 0x0a), 1081 CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link0, 0x0b), 1082 CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link1, 0x0c), 1083 CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link2, 0x0d), 1084 CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link0, 0x0e), 1085 CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link1, 0x0f), 1086 CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link2, 0x10), 1087 CMN_EVENT_CXRA(CMN_ANY, external_chirsp_stalls, 0x11), 1088 CMN_EVENT_CXRA(CMN_ANY, external_chidat_stalls, 0x12), 1089 CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link0, 0x13), 1090 CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link1, 0x14), 1091 CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link2, 0x15), 1092 1093 CMN_EVENT_CXHA(rddatbyp, 0x21), 1094 CMN_EVENT_CXHA(chirsp_up_stall, 0x22), 1095 CMN_EVENT_CXHA(chidat_up_stall, 0x23), 1096 CMN_EVENT_CXHA(snppcrd_link0_stall, 0x24), 1097 CMN_EVENT_CXHA(snppcrd_link1_stall, 0x25), 1098 CMN_EVENT_CXHA(snppcrd_link2_stall, 0x26), 1099 CMN_EVENT_CXHA(reqtrk_occ, 0x27), 1100 CMN_EVENT_CXHA(rdb_occ, 0x28), 1101 CMN_EVENT_CXHA(rdbyp_occ, 0x29), 1102 CMN_EVENT_CXHA(wdb_occ, 0x2a), 1103 CMN_EVENT_CXHA(snptrk_occ, 0x2b), 1104 CMN_EVENT_CXHA(sdb_occ, 0x2c), 1105 CMN_EVENT_CXHA(snphaz_occ, 0x2d), 1106 1107 CMN_EVENT_CCRA(rht_occ, 0x41), 1108 CMN_EVENT_CCRA(sht_occ, 0x42), 1109 CMN_EVENT_CCRA(rdb_occ, 0x43), 1110 CMN_EVENT_CCRA(wdb_occ, 0x44), 1111 CMN_EVENT_CCRA(ssb_occ, 0x45), 1112 CMN_EVENT_CCRA(snp_bcasts, 0x46), 1113 CMN_EVENT_CCRA(req_chains, 0x47), 1114 CMN_EVENT_CCRA(req_chain_avglen, 0x48), 1115 CMN_EVENT_CCRA(chirsp_stalls, 0x49), 1116 CMN_EVENT_CCRA(chidat_stalls, 0x4a), 1117 CMN_EVENT_CCRA(cxreq_pcrd_stalls_link0, 0x4b), 1118 CMN_EVENT_CCRA(cxreq_pcrd_stalls_link1, 0x4c), 1119 CMN_EVENT_CCRA(cxreq_pcrd_stalls_link2, 0x4d), 1120 CMN_EVENT_CCRA(cxdat_pcrd_stalls_link0, 0x4e), 1121 CMN_EVENT_CCRA(cxdat_pcrd_stalls_link1, 0x4f), 1122 CMN_EVENT_CCRA(cxdat_pcrd_stalls_link2, 0x50), 1123 CMN_EVENT_CCRA(external_chirsp_stalls, 0x51), 1124 CMN_EVENT_CCRA(external_chidat_stalls, 0x52), 1125 CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link0, 0x53), 1126 CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link1, 0x54), 1127 CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link2, 0x55), 1128 CMN_EVENT_CCRA(rht_alloc, 0x56), 1129 CMN_EVENT_CCRA(sht_alloc, 0x57), 1130 CMN_EVENT_CCRA(rdb_alloc, 0x58), 1131 CMN_EVENT_CCRA(wdb_alloc, 0x59), 1132 CMN_EVENT_CCRA(ssb_alloc, 0x5a), 1133 1134 CMN_EVENT_CCHA(rddatbyp, 0x61), 1135 CMN_EVENT_CCHA(chirsp_up_stall, 0x62), 1136 CMN_EVENT_CCHA(chidat_up_stall, 0x63), 1137 CMN_EVENT_CCHA(snppcrd_link0_stall, 0x64), 1138 CMN_EVENT_CCHA(snppcrd_link1_stall, 0x65), 1139 CMN_EVENT_CCHA(snppcrd_link2_stall, 0x66), 1140 CMN_EVENT_CCHA(reqtrk_occ, 0x67), 1141 CMN_EVENT_CCHA(rdb_occ, 0x68), 1142 CMN_EVENT_CCHA(rdbyp_occ, 0x69), 1143 CMN_EVENT_CCHA(wdb_occ, 0x6a), 1144 CMN_EVENT_CCHA(snptrk_occ, 0x6b), 1145 CMN_EVENT_CCHA(sdb_occ, 0x6c), 1146 CMN_EVENT_CCHA(snphaz_occ, 0x6d), 1147 CMN_EVENT_CCHA(reqtrk_alloc, 0x6e), 1148 CMN_EVENT_CCHA(rdb_alloc, 0x6f), 1149 CMN_EVENT_CCHA(rdbyp_alloc, 0x70), 1150 CMN_EVENT_CCHA(wdb_alloc, 0x71), 1151 CMN_EVENT_CCHA(snptrk_alloc, 0x72), 1152 CMN_EVENT_CCHA(sdb_alloc, 0x73), 1153 CMN_EVENT_CCHA(snphaz_alloc, 0x74), 1154 CMN_EVENT_CCHA(pb_rhu_req_occ, 0x75), 1155 CMN_EVENT_CCHA(pb_rhu_req_alloc, 0x76), 1156 CMN_EVENT_CCHA(pb_rhu_pcie_req_occ, 0x77), 1157 CMN_EVENT_CCHA(pb_rhu_pcie_req_alloc, 0x78), 1158 CMN_EVENT_CCHA(pb_pcie_wr_req_occ, 0x79), 1159 CMN_EVENT_CCHA(pb_pcie_wr_req_alloc, 0x7a), 1160 CMN_EVENT_CCHA(pb_pcie_reg_req_occ, 0x7b), 1161 CMN_EVENT_CCHA(pb_pcie_reg_req_alloc, 0x7c), 1162 CMN_EVENT_CCHA(pb_pcie_rsvd_req_occ, 0x7d), 1163 CMN_EVENT_CCHA(pb_pcie_rsvd_req_alloc, 0x7e), 1164 CMN_EVENT_CCHA(pb_rhu_dat_occ, 0x7f), 1165 CMN_EVENT_CCHA(pb_rhu_dat_alloc, 0x80), 1166 CMN_EVENT_CCHA(pb_rhu_pcie_dat_occ, 0x81), 1167 CMN_EVENT_CCHA(pb_rhu_pcie_dat_alloc, 0x82), 1168 CMN_EVENT_CCHA(pb_pcie_wr_dat_occ, 0x83), 1169 CMN_EVENT_CCHA(pb_pcie_wr_dat_alloc, 0x84), 1170 1171 CMN_EVENT_CCLA(rx_cxs, 0x21), 1172 CMN_EVENT_CCLA(tx_cxs, 0x22), 1173 CMN_EVENT_CCLA(rx_cxs_avg_size, 0x23), 1174 CMN_EVENT_CCLA(tx_cxs_avg_size, 0x24), 1175 CMN_EVENT_CCLA(tx_cxs_lcrd_backpressure, 0x25), 1176 CMN_EVENT_CCLA(link_crdbuf_occ, 0x26), 1177 CMN_EVENT_CCLA(link_crdbuf_alloc, 0x27), 1178 CMN_EVENT_CCLA(pfwd_rcvr_cxs, 0x28), 1179 CMN_EVENT_CCLA(pfwd_sndr_num_flits, 0x29), 1180 CMN_EVENT_CCLA(pfwd_sndr_stalls_static_crd, 0x2a), 1181 CMN_EVENT_CCLA(pfwd_sndr_stalls_dynmaic_crd, 0x2b), 1182 1183 CMN_EVENT_HNS_HBT(cache_miss, 0x01), 1184 CMN_EVENT_HNS_HBT(slc_sf_cache_access, 0x02), 1185 CMN_EVENT_HNS_HBT(cache_fill, 0x03), 1186 CMN_EVENT_HNS_HBT(pocq_retry, 0x04), 1187 CMN_EVENT_HNS_HBT(pocq_reqs_recvd, 0x05), 1188 CMN_EVENT_HNS_HBT(sf_hit, 0x06), 1189 CMN_EVENT_HNS_HBT(sf_evictions, 0x07), 1190 CMN_EVENT_HNS(dir_snoops_sent, 0x08), 1191 CMN_EVENT_HNS(brd_snoops_sent, 0x09), 1192 CMN_EVENT_HNS_HBT(slc_eviction, 0x0a), 1193 CMN_EVENT_HNS_HBT(slc_fill_invalid_way, 0x0b), 1194 CMN_EVENT_HNS(mc_retries_local, 0x0c), 1195 CMN_EVENT_HNS_SNH(mc_reqs_local, 0x0d), 1196 CMN_EVENT_HNS(qos_hh_retry, 0x0e), 1197 CMN_EVENT_HNS_OCC(qos_pocq_occupancy, 0x0f), 1198 CMN_EVENT_HNS(pocq_addrhaz, 0x10), 1199 CMN_EVENT_HNS(pocq_atomic_addrhaz, 0x11), 1200 CMN_EVENT_HNS(ld_st_swp_adq_full, 0x12), 1201 CMN_EVENT_HNS(cmp_adq_full, 0x13), 1202 CMN_EVENT_HNS(txdat_stall, 0x14), 1203 CMN_EVENT_HNS(txrsp_stall, 0x15), 1204 CMN_EVENT_HNS(seq_full, 0x16), 1205 CMN_EVENT_HNS(seq_hit, 0x17), 1206 CMN_EVENT_HNS(snp_sent, 0x18), 1207 CMN_EVENT_HNS(sfbi_dir_snp_sent, 0x19), 1208 CMN_EVENT_HNS(sfbi_brd_snp_sent, 0x1a), 1209 CMN_EVENT_HNS(intv_dirty, 0x1c), 1210 CMN_EVENT_HNS(stash_snp_sent, 0x1d), 1211 CMN_EVENT_HNS(stash_data_pull, 0x1e), 1212 CMN_EVENT_HNS(snp_fwded, 0x1f), 1213 CMN_EVENT_HNS(atomic_fwd, 0x20), 1214 CMN_EVENT_HNS(mpam_hardlim, 0x21), 1215 CMN_EVENT_HNS(mpam_softlim, 0x22), 1216 CMN_EVENT_HNS(snp_sent_cluster, 0x23), 1217 CMN_EVENT_HNS(sf_imprecise_evict, 0x24), 1218 CMN_EVENT_HNS(sf_evict_shared_line, 0x25), 1219 CMN_EVENT_HNS_CLS(pocq_class_occup, 0x26), 1220 CMN_EVENT_HNS_CLS(pocq_class_retry, 0x27), 1221 CMN_EVENT_HNS_CLS(class_mc_reqs_local, 0x28), 1222 CMN_EVENT_HNS_CLS(class_cgnt_cmin, 0x29), 1223 CMN_EVENT_HNS_SNT(sn_throttle, 0x2a), 1224 CMN_EVENT_HNS_SNT(sn_throttle_min, 0x2b), 1225 CMN_EVENT_HNS(sf_precise_to_imprecise, 0x2c), 1226 CMN_EVENT_HNS(snp_intv_cln, 0x2d), 1227 CMN_EVENT_HNS(nc_excl, 0x2e), 1228 CMN_EVENT_HNS(excl_mon_ovfl, 0x2f), 1229 CMN_EVENT_HNS(snp_req_recvd, 0x30), 1230 CMN_EVENT_HNS(snp_req_byp_pocq, 0x31), 1231 CMN_EVENT_HNS(dir_ccgha_snp_sent, 0x32), 1232 CMN_EVENT_HNS(brd_ccgha_snp_sent, 0x33), 1233 CMN_EVENT_HNS(ccgha_snp_stall, 0x34), 1234 CMN_EVENT_HNS(lbt_req_hardlim, 0x35), 1235 CMN_EVENT_HNS(hbt_req_hardlim, 0x36), 1236 CMN_EVENT_HNS(sf_reupdate, 0x37), 1237 CMN_EVENT_HNS(excl_sf_imprecise, 0x38), 1238 CMN_EVENT_HNS(snp_pocq_addrhaz, 0x39), 1239 CMN_EVENT_HNS(mc_retries_remote, 0x3a), 1240 CMN_EVENT_HNS_SNH(mc_reqs_remote, 0x3b), 1241 CMN_EVENT_HNS_CLS(class_mc_reqs_remote, 0x3c), 1242 1243 NULL 1244 }; 1245 1246 static const struct attribute_group arm_cmn_event_attrs_group = { 1247 .name = "events", 1248 .attrs = arm_cmn_event_attrs, 1249 .is_visible = arm_cmn_event_attr_is_visible, 1250 }; 1251 1252 static ssize_t arm_cmn_format_show(struct device *dev, 1253 struct device_attribute *attr, char *buf) 1254 { 1255 struct arm_cmn_format_attr *fmt = container_of(attr, typeof(*fmt), attr); 1256 int lo = __ffs(fmt->field), hi = __fls(fmt->field); 1257 1258 if (lo == hi) 1259 return sysfs_emit(buf, "config:%d\n", lo); 1260 1261 if (!fmt->config) 1262 return sysfs_emit(buf, "config:%d-%d\n", lo, hi); 1263 1264 return sysfs_emit(buf, "config%d:%d-%d\n", fmt->config, lo, hi); 1265 } 1266 1267 #define _CMN_FORMAT_ATTR(_name, _cfg, _fld) \ 1268 (&((struct arm_cmn_format_attr[]) {{ \ 1269 .attr = __ATTR(_name, 0444, arm_cmn_format_show, NULL), \ 1270 .config = _cfg, \ 1271 .field = _fld, \ 1272 }})[0].attr.attr) 1273 #define CMN_FORMAT_ATTR(_name, _fld) _CMN_FORMAT_ATTR(_name, 0, _fld) 1274 1275 static struct attribute *arm_cmn_format_attrs[] = { 1276 CMN_FORMAT_ATTR(type, CMN_CONFIG_TYPE), 1277 CMN_FORMAT_ATTR(eventid, CMN_CONFIG_EVENTID), 1278 CMN_FORMAT_ATTR(occupid, CMN_CONFIG_OCCUPID), 1279 CMN_FORMAT_ATTR(bynodeid, CMN_CONFIG_BYNODEID), 1280 CMN_FORMAT_ATTR(nodeid, CMN_CONFIG_NODEID), 1281 1282 CMN_FORMAT_ATTR(wp_dev_sel, CMN_CONFIG_WP_DEV_SEL), 1283 CMN_FORMAT_ATTR(wp_chn_sel, CMN_CONFIG_WP_CHN_SEL), 1284 CMN_FORMAT_ATTR(wp_grp, CMN_CONFIG_WP_GRP), 1285 CMN_FORMAT_ATTR(wp_exclusive, CMN_CONFIG_WP_EXCLUSIVE), 1286 CMN_FORMAT_ATTR(wp_combine, CMN_CONFIG_WP_COMBINE), 1287 1288 _CMN_FORMAT_ATTR(wp_val, 1, CMN_CONFIG1_WP_VAL), 1289 _CMN_FORMAT_ATTR(wp_mask, 2, CMN_CONFIG2_WP_MASK), 1290 1291 NULL 1292 }; 1293 1294 static const struct attribute_group arm_cmn_format_attrs_group = { 1295 .name = "format", 1296 .attrs = arm_cmn_format_attrs, 1297 }; 1298 1299 static ssize_t arm_cmn_cpumask_show(struct device *dev, 1300 struct device_attribute *attr, char *buf) 1301 { 1302 struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev)); 1303 1304 return cpumap_print_to_pagebuf(true, buf, cpumask_of(cmn->cpu)); 1305 } 1306 1307 static struct device_attribute arm_cmn_cpumask_attr = 1308 __ATTR(cpumask, 0444, arm_cmn_cpumask_show, NULL); 1309 1310 static ssize_t arm_cmn_identifier_show(struct device *dev, 1311 struct device_attribute *attr, char *buf) 1312 { 1313 struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev)); 1314 1315 return sysfs_emit(buf, "%03x%02x\n", cmn->part, cmn->rev); 1316 } 1317 1318 static struct device_attribute arm_cmn_identifier_attr = 1319 __ATTR(identifier, 0444, arm_cmn_identifier_show, NULL); 1320 1321 static struct attribute *arm_cmn_other_attrs[] = { 1322 &arm_cmn_cpumask_attr.attr, 1323 &arm_cmn_identifier_attr.attr, 1324 NULL, 1325 }; 1326 1327 static const struct attribute_group arm_cmn_other_attrs_group = { 1328 .attrs = arm_cmn_other_attrs, 1329 }; 1330 1331 static const struct attribute_group *arm_cmn_attr_groups[] = { 1332 &arm_cmn_event_attrs_group, 1333 &arm_cmn_format_attrs_group, 1334 &arm_cmn_other_attrs_group, 1335 NULL 1336 }; 1337 1338 static int arm_cmn_wp_idx(struct perf_event *event) 1339 { 1340 return CMN_EVENT_EVENTID(event) + CMN_EVENT_WP_GRP(event); 1341 } 1342 1343 static u32 arm_cmn_wp_config(struct perf_event *event) 1344 { 1345 u32 config; 1346 u32 dev = CMN_EVENT_WP_DEV_SEL(event); 1347 u32 chn = CMN_EVENT_WP_CHN_SEL(event); 1348 u32 grp = CMN_EVENT_WP_GRP(event); 1349 u32 exc = CMN_EVENT_WP_EXCLUSIVE(event); 1350 u32 combine = CMN_EVENT_WP_COMBINE(event); 1351 bool is_cmn600 = to_cmn(event->pmu)->part == PART_CMN600; 1352 1353 config = FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_DEV_SEL, dev) | 1354 FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_CHN_SEL, chn) | 1355 FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_GRP, grp) | 1356 FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_DEV_SEL2, dev >> 1); 1357 if (exc) 1358 config |= is_cmn600 ? CMN600_WPn_CONFIG_WP_EXCLUSIVE : 1359 CMN_DTM_WPn_CONFIG_WP_EXCLUSIVE; 1360 if (combine && !grp) 1361 config |= is_cmn600 ? CMN600_WPn_CONFIG_WP_COMBINE : 1362 CMN_DTM_WPn_CONFIG_WP_COMBINE; 1363 return config; 1364 } 1365 1366 static void arm_cmn_set_state(struct arm_cmn *cmn, u32 state) 1367 { 1368 if (!cmn->state) 1369 writel_relaxed(0, cmn->dtc[0].base + CMN_DT_PMCR); 1370 cmn->state |= state; 1371 } 1372 1373 static void arm_cmn_clear_state(struct arm_cmn *cmn, u32 state) 1374 { 1375 cmn->state &= ~state; 1376 if (!cmn->state) 1377 writel_relaxed(CMN_DT_PMCR_PMU_EN | CMN_DT_PMCR_OVFL_INTR_EN, 1378 cmn->dtc[0].base + CMN_DT_PMCR); 1379 } 1380 1381 static void arm_cmn_pmu_enable(struct pmu *pmu) 1382 { 1383 arm_cmn_clear_state(to_cmn(pmu), CMN_STATE_DISABLED); 1384 } 1385 1386 static void arm_cmn_pmu_disable(struct pmu *pmu) 1387 { 1388 arm_cmn_set_state(to_cmn(pmu), CMN_STATE_DISABLED); 1389 } 1390 1391 static u64 arm_cmn_read_dtm(struct arm_cmn *cmn, struct arm_cmn_hw_event *hw, 1392 bool snapshot) 1393 { 1394 struct arm_cmn_dtm *dtm = NULL; 1395 struct arm_cmn_node *dn; 1396 unsigned int i, offset, dtm_idx; 1397 u64 reg, count = 0; 1398 1399 offset = snapshot ? CMN_DTM_PMEVCNTSR : CMN_DTM_PMEVCNT; 1400 for_each_hw_dn(hw, dn, i) { 1401 if (dtm != &cmn->dtms[dn->dtm]) { 1402 dtm = &cmn->dtms[dn->dtm] + hw->dtm_offset; 1403 reg = readq_relaxed(dtm->base + offset); 1404 } 1405 dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); 1406 count += (u16)(reg >> (dtm_idx * 16)); 1407 } 1408 return count; 1409 } 1410 1411 static u64 arm_cmn_read_cc(struct arm_cmn_dtc *dtc) 1412 { 1413 u64 val = readq_relaxed(dtc->base + CMN_DT_PMCCNTR); 1414 1415 writeq_relaxed(CMN_CC_INIT, dtc->base + CMN_DT_PMCCNTR); 1416 return (val - CMN_CC_INIT) & ((CMN_CC_INIT << 1) - 1); 1417 } 1418 1419 static u32 arm_cmn_read_counter(struct arm_cmn_dtc *dtc, int idx) 1420 { 1421 u32 val, pmevcnt = CMN_DT_PMEVCNT(idx); 1422 1423 val = readl_relaxed(dtc->base + pmevcnt); 1424 writel_relaxed(CMN_COUNTER_INIT, dtc->base + pmevcnt); 1425 return val - CMN_COUNTER_INIT; 1426 } 1427 1428 static void arm_cmn_init_counter(struct perf_event *event) 1429 { 1430 struct arm_cmn *cmn = to_cmn(event->pmu); 1431 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1432 unsigned int i, pmevcnt = CMN_DT_PMEVCNT(hw->dtc_idx); 1433 u64 count; 1434 1435 for (i = 0; hw->dtcs_used & (1U << i); i++) { 1436 writel_relaxed(CMN_COUNTER_INIT, cmn->dtc[i].base + pmevcnt); 1437 cmn->dtc[i].counters[hw->dtc_idx] = event; 1438 } 1439 1440 count = arm_cmn_read_dtm(cmn, hw, false); 1441 local64_set(&event->hw.prev_count, count); 1442 } 1443 1444 static void arm_cmn_event_read(struct perf_event *event) 1445 { 1446 struct arm_cmn *cmn = to_cmn(event->pmu); 1447 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1448 u64 delta, new, prev; 1449 unsigned long flags; 1450 unsigned int i; 1451 1452 if (hw->dtc_idx == CMN_DT_NUM_COUNTERS) { 1453 i = __ffs(hw->dtcs_used); 1454 delta = arm_cmn_read_cc(cmn->dtc + i); 1455 local64_add(delta, &event->count); 1456 return; 1457 } 1458 new = arm_cmn_read_dtm(cmn, hw, false); 1459 prev = local64_xchg(&event->hw.prev_count, new); 1460 1461 delta = new - prev; 1462 1463 local_irq_save(flags); 1464 for (i = 0; hw->dtcs_used & (1U << i); i++) { 1465 new = arm_cmn_read_counter(cmn->dtc + i, hw->dtc_idx); 1466 delta += new << 16; 1467 } 1468 local_irq_restore(flags); 1469 local64_add(delta, &event->count); 1470 } 1471 1472 static int arm_cmn_set_event_sel_hi(struct arm_cmn_node *dn, 1473 enum cmn_filter_select fsel, u8 occupid) 1474 { 1475 u64 reg; 1476 1477 if (fsel == SEL_NONE) 1478 return 0; 1479 1480 if (!dn->occupid[fsel].count) { 1481 dn->occupid[fsel].val = occupid; 1482 reg = FIELD_PREP(CMN__PMU_CBUSY_SNTHROTTLE_SEL, 1483 dn->occupid[SEL_CBUSY_SNTHROTTLE_SEL].val) | 1484 FIELD_PREP(CMN__PMU_SN_HOME_SEL, 1485 dn->occupid[SEL_SN_HOME_SEL].val) | 1486 FIELD_PREP(CMN__PMU_HBT_LBT_SEL, 1487 dn->occupid[SEL_HBT_LBT_SEL].val) | 1488 FIELD_PREP(CMN__PMU_CLASS_OCCUP_ID, 1489 dn->occupid[SEL_CLASS_OCCUP_ID].val) | 1490 FIELD_PREP(CMN__PMU_OCCUP1_ID, 1491 dn->occupid[SEL_OCCUP1ID].val); 1492 writel_relaxed(reg >> 32, dn->pmu_base + CMN_PMU_EVENT_SEL + 4); 1493 } else if (dn->occupid[fsel].val != occupid) { 1494 return -EBUSY; 1495 } 1496 dn->occupid[fsel].count++; 1497 return 0; 1498 } 1499 1500 static void arm_cmn_set_event_sel_lo(struct arm_cmn_node *dn, int dtm_idx, 1501 int eventid, bool wide_sel) 1502 { 1503 if (wide_sel) { 1504 dn->event_w[dtm_idx] = eventid; 1505 writeq_relaxed(le64_to_cpu(dn->event_sel_w), dn->pmu_base + CMN_PMU_EVENT_SEL); 1506 } else { 1507 dn->event[dtm_idx] = eventid; 1508 writel_relaxed(le32_to_cpu(dn->event_sel), dn->pmu_base + CMN_PMU_EVENT_SEL); 1509 } 1510 } 1511 1512 static void arm_cmn_event_start(struct perf_event *event, int flags) 1513 { 1514 struct arm_cmn *cmn = to_cmn(event->pmu); 1515 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1516 struct arm_cmn_node *dn; 1517 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1518 int i; 1519 1520 if (type == CMN_TYPE_DTC) { 1521 i = __ffs(hw->dtcs_used); 1522 writeq_relaxed(CMN_CC_INIT, cmn->dtc[i].base + CMN_DT_PMCCNTR); 1523 cmn->dtc[i].cc_active = true; 1524 } else if (type == CMN_TYPE_WP) { 1525 int wp_idx = arm_cmn_wp_idx(event); 1526 u64 val = CMN_EVENT_WP_VAL(event); 1527 u64 mask = CMN_EVENT_WP_MASK(event); 1528 1529 for_each_hw_dn(hw, dn, i) { 1530 void __iomem *base = dn->pmu_base + CMN_DTM_OFFSET(hw->dtm_offset); 1531 1532 writeq_relaxed(val, base + CMN_DTM_WPn_VAL(wp_idx)); 1533 writeq_relaxed(mask, base + CMN_DTM_WPn_MASK(wp_idx)); 1534 } 1535 } else for_each_hw_dn(hw, dn, i) { 1536 int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); 1537 1538 arm_cmn_set_event_sel_lo(dn, dtm_idx, CMN_EVENT_EVENTID(event), 1539 hw->wide_sel); 1540 } 1541 } 1542 1543 static void arm_cmn_event_stop(struct perf_event *event, int flags) 1544 { 1545 struct arm_cmn *cmn = to_cmn(event->pmu); 1546 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1547 struct arm_cmn_node *dn; 1548 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1549 int i; 1550 1551 if (type == CMN_TYPE_DTC) { 1552 i = __ffs(hw->dtcs_used); 1553 cmn->dtc[i].cc_active = false; 1554 } else if (type == CMN_TYPE_WP) { 1555 int wp_idx = arm_cmn_wp_idx(event); 1556 1557 for_each_hw_dn(hw, dn, i) { 1558 void __iomem *base = dn->pmu_base + CMN_DTM_OFFSET(hw->dtm_offset); 1559 1560 writeq_relaxed(0, base + CMN_DTM_WPn_MASK(wp_idx)); 1561 writeq_relaxed(~0ULL, base + CMN_DTM_WPn_VAL(wp_idx)); 1562 } 1563 } else for_each_hw_dn(hw, dn, i) { 1564 int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); 1565 1566 arm_cmn_set_event_sel_lo(dn, dtm_idx, 0, hw->wide_sel); 1567 } 1568 1569 arm_cmn_event_read(event); 1570 } 1571 1572 struct arm_cmn_val { 1573 u8 dtm_count[CMN_MAX_DTMS]; 1574 u8 occupid[CMN_MAX_DTMS][SEL_MAX]; 1575 u8 wp[CMN_MAX_DTMS][4]; 1576 int dtc_count; 1577 bool cycles; 1578 }; 1579 1580 static void arm_cmn_val_add_event(struct arm_cmn *cmn, struct arm_cmn_val *val, 1581 struct perf_event *event) 1582 { 1583 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1584 struct arm_cmn_node *dn; 1585 enum cmn_node_type type; 1586 int i; 1587 1588 if (is_software_event(event)) 1589 return; 1590 1591 type = CMN_EVENT_TYPE(event); 1592 if (type == CMN_TYPE_DTC) { 1593 val->cycles = true; 1594 return; 1595 } 1596 1597 val->dtc_count++; 1598 1599 for_each_hw_dn(hw, dn, i) { 1600 int wp_idx, dtm = dn->dtm, sel = hw->filter_sel; 1601 1602 val->dtm_count[dtm]++; 1603 1604 if (sel > SEL_NONE) 1605 val->occupid[dtm][sel] = CMN_EVENT_OCCUPID(event) + 1; 1606 1607 if (type != CMN_TYPE_WP) 1608 continue; 1609 1610 wp_idx = arm_cmn_wp_idx(event); 1611 val->wp[dtm][wp_idx] = CMN_EVENT_WP_COMBINE(event) + 1; 1612 } 1613 } 1614 1615 static int arm_cmn_validate_group(struct arm_cmn *cmn, struct perf_event *event) 1616 { 1617 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1618 struct arm_cmn_node *dn; 1619 struct perf_event *sibling, *leader = event->group_leader; 1620 enum cmn_node_type type; 1621 struct arm_cmn_val *val; 1622 int i, ret = -EINVAL; 1623 1624 if (leader == event) 1625 return 0; 1626 1627 if (event->pmu != leader->pmu && !is_software_event(leader)) 1628 return -EINVAL; 1629 1630 val = kzalloc(sizeof(*val), GFP_KERNEL); 1631 if (!val) 1632 return -ENOMEM; 1633 1634 arm_cmn_val_add_event(cmn, val, leader); 1635 for_each_sibling_event(sibling, leader) 1636 arm_cmn_val_add_event(cmn, val, sibling); 1637 1638 type = CMN_EVENT_TYPE(event); 1639 if (type == CMN_TYPE_DTC) { 1640 ret = val->cycles ? -EINVAL : 0; 1641 goto done; 1642 } 1643 1644 if (val->dtc_count == CMN_DT_NUM_COUNTERS) 1645 goto done; 1646 1647 for_each_hw_dn(hw, dn, i) { 1648 int wp_idx, wp_cmb, dtm = dn->dtm, sel = hw->filter_sel; 1649 1650 if (val->dtm_count[dtm] == CMN_DTM_NUM_COUNTERS) 1651 goto done; 1652 1653 if (sel > SEL_NONE && val->occupid[dtm][sel] && 1654 val->occupid[dtm][sel] != CMN_EVENT_OCCUPID(event) + 1) 1655 goto done; 1656 1657 if (type != CMN_TYPE_WP) 1658 continue; 1659 1660 wp_idx = arm_cmn_wp_idx(event); 1661 if (val->wp[dtm][wp_idx]) 1662 goto done; 1663 1664 wp_cmb = val->wp[dtm][wp_idx ^ 1]; 1665 if (wp_cmb && wp_cmb != CMN_EVENT_WP_COMBINE(event) + 1) 1666 goto done; 1667 } 1668 1669 ret = 0; 1670 done: 1671 kfree(val); 1672 return ret; 1673 } 1674 1675 static enum cmn_filter_select arm_cmn_filter_sel(const struct arm_cmn *cmn, 1676 enum cmn_node_type type, 1677 unsigned int eventid) 1678 { 1679 struct arm_cmn_event_attr *e; 1680 enum cmn_model model = arm_cmn_model(cmn); 1681 1682 for (int i = 0; i < ARRAY_SIZE(arm_cmn_event_attrs) - 1; i++) { 1683 e = container_of(arm_cmn_event_attrs[i], typeof(*e), attr.attr); 1684 if (e->model & model && e->type == type && e->eventid == eventid) 1685 return e->fsel; 1686 } 1687 return SEL_NONE; 1688 } 1689 1690 1691 static int arm_cmn_event_init(struct perf_event *event) 1692 { 1693 struct arm_cmn *cmn = to_cmn(event->pmu); 1694 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1695 struct arm_cmn_node *dn; 1696 enum cmn_node_type type; 1697 bool bynodeid; 1698 u16 nodeid, eventid; 1699 1700 if (event->attr.type != event->pmu->type) 1701 return -ENOENT; 1702 1703 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) 1704 return -EINVAL; 1705 1706 event->cpu = cmn->cpu; 1707 if (event->cpu < 0) 1708 return -EINVAL; 1709 1710 type = CMN_EVENT_TYPE(event); 1711 /* DTC events (i.e. cycles) already have everything they need */ 1712 if (type == CMN_TYPE_DTC) 1713 return arm_cmn_validate_group(cmn, event); 1714 1715 eventid = CMN_EVENT_EVENTID(event); 1716 /* For watchpoints we need the actual XP node here */ 1717 if (type == CMN_TYPE_WP) { 1718 type = CMN_TYPE_XP; 1719 /* ...and we need a "real" direction */ 1720 if (eventid != CMN_WP_UP && eventid != CMN_WP_DOWN) 1721 return -EINVAL; 1722 /* ...but the DTM may depend on which port we're watching */ 1723 if (cmn->multi_dtm) 1724 hw->dtm_offset = CMN_EVENT_WP_DEV_SEL(event) / 2; 1725 } else if (type == CMN_TYPE_XP && cmn->part == PART_CMN700) { 1726 hw->wide_sel = true; 1727 } 1728 1729 /* This is sufficiently annoying to recalculate, so cache it */ 1730 hw->filter_sel = arm_cmn_filter_sel(cmn, type, eventid); 1731 1732 bynodeid = CMN_EVENT_BYNODEID(event); 1733 nodeid = CMN_EVENT_NODEID(event); 1734 1735 hw->dn = arm_cmn_node(cmn, type); 1736 if (!hw->dn) 1737 return -EINVAL; 1738 for (dn = hw->dn; dn->type == type; dn++) { 1739 if (bynodeid && dn->id != nodeid) { 1740 hw->dn++; 1741 continue; 1742 } 1743 hw->num_dns++; 1744 if (bynodeid) 1745 break; 1746 } 1747 1748 if (!hw->num_dns) { 1749 struct arm_cmn_nodeid nid = arm_cmn_nid(cmn, nodeid); 1750 1751 dev_dbg(cmn->dev, "invalid node 0x%x (%d,%d,%d,%d) type 0x%x\n", 1752 nodeid, nid.x, nid.y, nid.port, nid.dev, type); 1753 return -EINVAL; 1754 } 1755 /* 1756 * Keep assuming non-cycles events count in all DTC domains; turns out 1757 * it's hard to make a worthwhile optimisation around this, short of 1758 * going all-in with domain-local counter allocation as well. 1759 */ 1760 hw->dtcs_used = (1U << cmn->num_dtcs) - 1; 1761 1762 return arm_cmn_validate_group(cmn, event); 1763 } 1764 1765 static void arm_cmn_event_clear(struct arm_cmn *cmn, struct perf_event *event, 1766 int i) 1767 { 1768 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1769 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1770 1771 while (i--) { 1772 struct arm_cmn_dtm *dtm = &cmn->dtms[hw->dn[i].dtm] + hw->dtm_offset; 1773 unsigned int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); 1774 1775 if (type == CMN_TYPE_WP) 1776 dtm->wp_event[arm_cmn_wp_idx(event)] = -1; 1777 1778 if (hw->filter_sel > SEL_NONE) 1779 hw->dn[i].occupid[hw->filter_sel].count--; 1780 1781 dtm->pmu_config_low &= ~CMN__PMEVCNT_PAIRED(dtm_idx); 1782 writel_relaxed(dtm->pmu_config_low, dtm->base + CMN_DTM_PMU_CONFIG); 1783 } 1784 memset(hw->dtm_idx, 0, sizeof(hw->dtm_idx)); 1785 1786 for (i = 0; hw->dtcs_used & (1U << i); i++) 1787 cmn->dtc[i].counters[hw->dtc_idx] = NULL; 1788 } 1789 1790 static int arm_cmn_event_add(struct perf_event *event, int flags) 1791 { 1792 struct arm_cmn *cmn = to_cmn(event->pmu); 1793 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1794 struct arm_cmn_dtc *dtc = &cmn->dtc[0]; 1795 struct arm_cmn_node *dn; 1796 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1797 unsigned int i, dtc_idx, input_sel; 1798 1799 if (type == CMN_TYPE_DTC) { 1800 i = 0; 1801 while (cmn->dtc[i].cycles) 1802 if (++i == cmn->num_dtcs) 1803 return -ENOSPC; 1804 1805 cmn->dtc[i].cycles = event; 1806 hw->dtc_idx = CMN_DT_NUM_COUNTERS; 1807 hw->dtcs_used = 1U << i; 1808 1809 if (flags & PERF_EF_START) 1810 arm_cmn_event_start(event, 0); 1811 return 0; 1812 } 1813 1814 /* Grab a free global counter first... */ 1815 dtc_idx = 0; 1816 while (dtc->counters[dtc_idx]) 1817 if (++dtc_idx == CMN_DT_NUM_COUNTERS) 1818 return -ENOSPC; 1819 1820 hw->dtc_idx = dtc_idx; 1821 1822 /* ...then the local counters to feed it. */ 1823 for_each_hw_dn(hw, dn, i) { 1824 struct arm_cmn_dtm *dtm = &cmn->dtms[dn->dtm] + hw->dtm_offset; 1825 unsigned int dtm_idx, shift; 1826 u64 reg; 1827 1828 dtm_idx = 0; 1829 while (dtm->pmu_config_low & CMN__PMEVCNT_PAIRED(dtm_idx)) 1830 if (++dtm_idx == CMN_DTM_NUM_COUNTERS) 1831 goto free_dtms; 1832 1833 if (type == CMN_TYPE_XP) { 1834 input_sel = CMN__PMEVCNT0_INPUT_SEL_XP + dtm_idx; 1835 } else if (type == CMN_TYPE_WP) { 1836 int tmp, wp_idx = arm_cmn_wp_idx(event); 1837 u32 cfg = arm_cmn_wp_config(event); 1838 1839 if (dtm->wp_event[wp_idx] >= 0) 1840 goto free_dtms; 1841 1842 tmp = dtm->wp_event[wp_idx ^ 1]; 1843 if (tmp >= 0 && CMN_EVENT_WP_COMBINE(event) != 1844 CMN_EVENT_WP_COMBINE(dtc->counters[tmp])) 1845 goto free_dtms; 1846 1847 input_sel = CMN__PMEVCNT0_INPUT_SEL_WP + wp_idx; 1848 dtm->wp_event[wp_idx] = dtc_idx; 1849 writel_relaxed(cfg, dtm->base + CMN_DTM_WPn_CONFIG(wp_idx)); 1850 } else { 1851 struct arm_cmn_nodeid nid = arm_cmn_nid(cmn, dn->id); 1852 1853 if (cmn->multi_dtm) 1854 nid.port %= 2; 1855 1856 input_sel = CMN__PMEVCNT0_INPUT_SEL_DEV + dtm_idx + 1857 (nid.port << 4) + (nid.dev << 2); 1858 1859 if (arm_cmn_set_event_sel_hi(dn, hw->filter_sel, CMN_EVENT_OCCUPID(event))) 1860 goto free_dtms; 1861 } 1862 1863 arm_cmn_set_index(hw->dtm_idx, i, dtm_idx); 1864 1865 dtm->input_sel[dtm_idx] = input_sel; 1866 shift = CMN__PMEVCNTn_GLOBAL_NUM_SHIFT(dtm_idx); 1867 dtm->pmu_config_low &= ~(CMN__PMEVCNT0_GLOBAL_NUM << shift); 1868 dtm->pmu_config_low |= FIELD_PREP(CMN__PMEVCNT0_GLOBAL_NUM, dtc_idx) << shift; 1869 dtm->pmu_config_low |= CMN__PMEVCNT_PAIRED(dtm_idx); 1870 reg = (u64)le32_to_cpu(dtm->pmu_config_high) << 32 | dtm->pmu_config_low; 1871 writeq_relaxed(reg, dtm->base + CMN_DTM_PMU_CONFIG); 1872 } 1873 1874 /* Go go go! */ 1875 arm_cmn_init_counter(event); 1876 1877 if (flags & PERF_EF_START) 1878 arm_cmn_event_start(event, 0); 1879 1880 return 0; 1881 1882 free_dtms: 1883 arm_cmn_event_clear(cmn, event, i); 1884 return -ENOSPC; 1885 } 1886 1887 static void arm_cmn_event_del(struct perf_event *event, int flags) 1888 { 1889 struct arm_cmn *cmn = to_cmn(event->pmu); 1890 struct arm_cmn_hw_event *hw = to_cmn_hw(event); 1891 enum cmn_node_type type = CMN_EVENT_TYPE(event); 1892 1893 arm_cmn_event_stop(event, PERF_EF_UPDATE); 1894 1895 if (type == CMN_TYPE_DTC) 1896 cmn->dtc[__ffs(hw->dtcs_used)].cycles = NULL; 1897 else 1898 arm_cmn_event_clear(cmn, event, hw->num_dns); 1899 } 1900 1901 /* 1902 * We stop the PMU for both add and read, to avoid skew across DTM counters. 1903 * In theory we could use snapshots to read without stopping, but then it 1904 * becomes a lot trickier to deal with overlow and racing against interrupts, 1905 * plus it seems they don't work properly on some hardware anyway :( 1906 */ 1907 static void arm_cmn_start_txn(struct pmu *pmu, unsigned int flags) 1908 { 1909 arm_cmn_set_state(to_cmn(pmu), CMN_STATE_TXN); 1910 } 1911 1912 static void arm_cmn_end_txn(struct pmu *pmu) 1913 { 1914 arm_cmn_clear_state(to_cmn(pmu), CMN_STATE_TXN); 1915 } 1916 1917 static int arm_cmn_commit_txn(struct pmu *pmu) 1918 { 1919 arm_cmn_end_txn(pmu); 1920 return 0; 1921 } 1922 1923 static void arm_cmn_migrate(struct arm_cmn *cmn, unsigned int cpu) 1924 { 1925 unsigned int i; 1926 1927 perf_pmu_migrate_context(&cmn->pmu, cmn->cpu, cpu); 1928 for (i = 0; i < cmn->num_dtcs; i++) 1929 irq_set_affinity(cmn->dtc[i].irq, cpumask_of(cpu)); 1930 cmn->cpu = cpu; 1931 } 1932 1933 static int arm_cmn_pmu_online_cpu(unsigned int cpu, struct hlist_node *cpuhp_node) 1934 { 1935 struct arm_cmn *cmn; 1936 int node; 1937 1938 cmn = hlist_entry_safe(cpuhp_node, struct arm_cmn, cpuhp_node); 1939 node = dev_to_node(cmn->dev); 1940 if (node != NUMA_NO_NODE && cpu_to_node(cmn->cpu) != node && cpu_to_node(cpu) == node) 1941 arm_cmn_migrate(cmn, cpu); 1942 return 0; 1943 } 1944 1945 static int arm_cmn_pmu_offline_cpu(unsigned int cpu, struct hlist_node *cpuhp_node) 1946 { 1947 struct arm_cmn *cmn; 1948 unsigned int target; 1949 int node; 1950 cpumask_t mask; 1951 1952 cmn = hlist_entry_safe(cpuhp_node, struct arm_cmn, cpuhp_node); 1953 if (cpu != cmn->cpu) 1954 return 0; 1955 1956 node = dev_to_node(cmn->dev); 1957 if (cpumask_and(&mask, cpumask_of_node(node), cpu_online_mask) && 1958 cpumask_andnot(&mask, &mask, cpumask_of(cpu))) 1959 target = cpumask_any(&mask); 1960 else 1961 target = cpumask_any_but(cpu_online_mask, cpu); 1962 if (target < nr_cpu_ids) 1963 arm_cmn_migrate(cmn, target); 1964 return 0; 1965 } 1966 1967 static irqreturn_t arm_cmn_handle_irq(int irq, void *dev_id) 1968 { 1969 struct arm_cmn_dtc *dtc = dev_id; 1970 irqreturn_t ret = IRQ_NONE; 1971 1972 for (;;) { 1973 u32 status = readl_relaxed(dtc->base + CMN_DT_PMOVSR); 1974 u64 delta; 1975 int i; 1976 1977 for (i = 0; i < CMN_DT_NUM_COUNTERS; i++) { 1978 if (status & (1U << i)) { 1979 ret = IRQ_HANDLED; 1980 if (WARN_ON(!dtc->counters[i])) 1981 continue; 1982 delta = (u64)arm_cmn_read_counter(dtc, i) << 16; 1983 local64_add(delta, &dtc->counters[i]->count); 1984 } 1985 } 1986 1987 if (status & (1U << CMN_DT_NUM_COUNTERS)) { 1988 ret = IRQ_HANDLED; 1989 if (dtc->cc_active && !WARN_ON(!dtc->cycles)) { 1990 delta = arm_cmn_read_cc(dtc); 1991 local64_add(delta, &dtc->cycles->count); 1992 } 1993 } 1994 1995 writel_relaxed(status, dtc->base + CMN_DT_PMOVSR_CLR); 1996 1997 if (!dtc->irq_friend) 1998 return ret; 1999 dtc += dtc->irq_friend; 2000 } 2001 } 2002 2003 /* We can reasonably accommodate DTCs of the same CMN sharing IRQs */ 2004 static int arm_cmn_init_irqs(struct arm_cmn *cmn) 2005 { 2006 int i, j, irq, err; 2007 2008 for (i = 0; i < cmn->num_dtcs; i++) { 2009 irq = cmn->dtc[i].irq; 2010 for (j = i; j--; ) { 2011 if (cmn->dtc[j].irq == irq) { 2012 cmn->dtc[j].irq_friend = i - j; 2013 goto next; 2014 } 2015 } 2016 err = devm_request_irq(cmn->dev, irq, arm_cmn_handle_irq, 2017 IRQF_NOBALANCING | IRQF_NO_THREAD, 2018 dev_name(cmn->dev), &cmn->dtc[i]); 2019 if (err) 2020 return err; 2021 2022 err = irq_set_affinity(irq, cpumask_of(cmn->cpu)); 2023 if (err) 2024 return err; 2025 next: 2026 ; /* isn't C great? */ 2027 } 2028 return 0; 2029 } 2030 2031 static void arm_cmn_init_dtm(struct arm_cmn_dtm *dtm, struct arm_cmn_node *xp, int idx) 2032 { 2033 int i; 2034 2035 dtm->base = xp->pmu_base + CMN_DTM_OFFSET(idx); 2036 dtm->pmu_config_low = CMN_DTM_PMU_CONFIG_PMU_EN; 2037 writeq_relaxed(dtm->pmu_config_low, dtm->base + CMN_DTM_PMU_CONFIG); 2038 for (i = 0; i < 4; i++) { 2039 dtm->wp_event[i] = -1; 2040 writeq_relaxed(0, dtm->base + CMN_DTM_WPn_MASK(i)); 2041 writeq_relaxed(~0ULL, dtm->base + CMN_DTM_WPn_VAL(i)); 2042 } 2043 } 2044 2045 static int arm_cmn_init_dtc(struct arm_cmn *cmn, struct arm_cmn_node *dn, int idx) 2046 { 2047 struct arm_cmn_dtc *dtc = cmn->dtc + idx; 2048 2049 dtc->base = dn->pmu_base - CMN_PMU_OFFSET; 2050 dtc->irq = platform_get_irq(to_platform_device(cmn->dev), idx); 2051 if (dtc->irq < 0) 2052 return dtc->irq; 2053 2054 writel_relaxed(CMN_DT_DTC_CTL_DT_EN, dtc->base + CMN_DT_DTC_CTL); 2055 writel_relaxed(CMN_DT_PMCR_PMU_EN | CMN_DT_PMCR_OVFL_INTR_EN, dtc->base + CMN_DT_PMCR); 2056 writeq_relaxed(0, dtc->base + CMN_DT_PMCCNTR); 2057 writel_relaxed(0x1ff, dtc->base + CMN_DT_PMOVSR_CLR); 2058 2059 return 0; 2060 } 2061 2062 static int arm_cmn_node_cmp(const void *a, const void *b) 2063 { 2064 const struct arm_cmn_node *dna = a, *dnb = b; 2065 int cmp; 2066 2067 cmp = dna->type - dnb->type; 2068 if (!cmp) 2069 cmp = dna->logid - dnb->logid; 2070 return cmp; 2071 } 2072 2073 static int arm_cmn_init_dtcs(struct arm_cmn *cmn) 2074 { 2075 struct arm_cmn_node *dn, *xp; 2076 int dtc_idx = 0; 2077 u8 dtcs_present = (1 << cmn->num_dtcs) - 1; 2078 2079 cmn->dtc = devm_kcalloc(cmn->dev, cmn->num_dtcs, sizeof(cmn->dtc[0]), GFP_KERNEL); 2080 if (!cmn->dtc) 2081 return -ENOMEM; 2082 2083 sort(cmn->dns, cmn->num_dns, sizeof(cmn->dns[0]), arm_cmn_node_cmp, NULL); 2084 2085 cmn->xps = arm_cmn_node(cmn, CMN_TYPE_XP); 2086 2087 for (dn = cmn->dns; dn->type; dn++) { 2088 if (dn->type == CMN_TYPE_XP) { 2089 dn->dtc &= dtcs_present; 2090 continue; 2091 } 2092 2093 xp = arm_cmn_node_to_xp(cmn, dn); 2094 dn->dtm = xp->dtm; 2095 if (cmn->multi_dtm) 2096 dn->dtm += arm_cmn_nid(cmn, dn->id).port / 2; 2097 2098 if (dn->type == CMN_TYPE_DTC) { 2099 int err; 2100 /* We do at least know that a DTC's XP must be in that DTC's domain */ 2101 if (xp->dtc == 0xf) 2102 xp->dtc = 1 << dtc_idx; 2103 err = arm_cmn_init_dtc(cmn, dn, dtc_idx++); 2104 if (err) 2105 return err; 2106 } 2107 2108 /* To the PMU, RN-Ds don't add anything over RN-Is, so smoosh them together */ 2109 if (dn->type == CMN_TYPE_RND) 2110 dn->type = CMN_TYPE_RNI; 2111 2112 /* We split the RN-I off already, so let the CCLA part match CCLA events */ 2113 if (dn->type == CMN_TYPE_CCLA_RNI) 2114 dn->type = CMN_TYPE_CCLA; 2115 } 2116 2117 arm_cmn_set_state(cmn, CMN_STATE_DISABLED); 2118 2119 return 0; 2120 } 2121 2122 static unsigned int arm_cmn_dtc_domain(struct arm_cmn *cmn, void __iomem *xp_region) 2123 { 2124 int offset = CMN_DTM_UNIT_INFO; 2125 2126 if (cmn->part == PART_CMN650 || cmn->part == PART_CI700) 2127 offset = CMN650_DTM_UNIT_INFO; 2128 2129 return FIELD_GET(CMN_DTM_UNIT_INFO_DTC_DOMAIN, readl_relaxed(xp_region + offset)); 2130 } 2131 2132 static void arm_cmn_init_node_info(struct arm_cmn *cmn, u32 offset, struct arm_cmn_node *node) 2133 { 2134 int level; 2135 u64 reg = readq_relaxed(cmn->base + offset + CMN_NODE_INFO); 2136 2137 node->type = FIELD_GET(CMN_NI_NODE_TYPE, reg); 2138 node->id = FIELD_GET(CMN_NI_NODE_ID, reg); 2139 node->logid = FIELD_GET(CMN_NI_LOGICAL_ID, reg); 2140 2141 node->pmu_base = cmn->base + offset + CMN_PMU_OFFSET; 2142 2143 if (node->type == CMN_TYPE_CFG) 2144 level = 0; 2145 else if (node->type == CMN_TYPE_XP) 2146 level = 1; 2147 else 2148 level = 2; 2149 2150 dev_dbg(cmn->dev, "node%*c%#06hx%*ctype:%-#6x id:%-4hd off:%#x\n", 2151 (level * 2) + 1, ' ', node->id, 5 - (level * 2), ' ', 2152 node->type, node->logid, offset); 2153 } 2154 2155 static enum cmn_node_type arm_cmn_subtype(enum cmn_node_type type) 2156 { 2157 switch (type) { 2158 case CMN_TYPE_HNP: 2159 return CMN_TYPE_HNI; 2160 case CMN_TYPE_CCLA_RNI: 2161 return CMN_TYPE_RNI; 2162 default: 2163 return CMN_TYPE_INVALID; 2164 } 2165 } 2166 2167 static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset) 2168 { 2169 void __iomem *cfg_region; 2170 struct arm_cmn_node cfg, *dn; 2171 struct arm_cmn_dtm *dtm; 2172 enum cmn_part part; 2173 u16 child_count, child_poff; 2174 u32 xp_offset[CMN_MAX_XPS]; 2175 u64 reg; 2176 int i, j; 2177 size_t sz; 2178 2179 arm_cmn_init_node_info(cmn, rgn_offset, &cfg); 2180 if (cfg.type != CMN_TYPE_CFG) 2181 return -ENODEV; 2182 2183 cfg_region = cmn->base + rgn_offset; 2184 2185 reg = readq_relaxed(cfg_region + CMN_CFGM_PERIPH_ID_01); 2186 part = FIELD_GET(CMN_CFGM_PID0_PART_0, reg); 2187 part |= FIELD_GET(CMN_CFGM_PID1_PART_1, reg) << 8; 2188 if (cmn->part && cmn->part != part) 2189 dev_warn(cmn->dev, 2190 "Firmware binding mismatch: expected part number 0x%x, found 0x%x\n", 2191 cmn->part, part); 2192 cmn->part = part; 2193 if (!arm_cmn_model(cmn)) 2194 dev_warn(cmn->dev, "Unknown part number: 0x%x\n", part); 2195 2196 reg = readl_relaxed(cfg_region + CMN_CFGM_PERIPH_ID_23); 2197 cmn->rev = FIELD_GET(CMN_CFGM_PID2_REVISION, reg); 2198 2199 reg = readq_relaxed(cfg_region + CMN_CFGM_INFO_GLOBAL); 2200 cmn->multi_dtm = reg & CMN_INFO_MULTIPLE_DTM_EN; 2201 cmn->rsp_vc_num = FIELD_GET(CMN_INFO_RSP_VC_NUM, reg); 2202 cmn->dat_vc_num = FIELD_GET(CMN_INFO_DAT_VC_NUM, reg); 2203 2204 reg = readq_relaxed(cfg_region + CMN_CFGM_INFO_GLOBAL_1); 2205 cmn->snp_vc_num = FIELD_GET(CMN_INFO_SNP_VC_NUM, reg); 2206 cmn->req_vc_num = FIELD_GET(CMN_INFO_REQ_VC_NUM, reg); 2207 2208 reg = readq_relaxed(cfg_region + CMN_CHILD_INFO); 2209 child_count = FIELD_GET(CMN_CI_CHILD_COUNT, reg); 2210 child_poff = FIELD_GET(CMN_CI_CHILD_PTR_OFFSET, reg); 2211 2212 cmn->num_xps = child_count; 2213 cmn->num_dns = cmn->num_xps; 2214 2215 /* Pass 1: visit the XPs, enumerate their children */ 2216 for (i = 0; i < cmn->num_xps; i++) { 2217 reg = readq_relaxed(cfg_region + child_poff + i * 8); 2218 xp_offset[i] = reg & CMN_CHILD_NODE_ADDR; 2219 2220 reg = readq_relaxed(cmn->base + xp_offset[i] + CMN_CHILD_INFO); 2221 cmn->num_dns += FIELD_GET(CMN_CI_CHILD_COUNT, reg); 2222 } 2223 2224 /* 2225 * Some nodes effectively have two separate types, which we'll handle 2226 * by creating one of each internally. For a (very) safe initial upper 2227 * bound, account for double the number of non-XP nodes. 2228 */ 2229 dn = devm_kcalloc(cmn->dev, cmn->num_dns * 2 - cmn->num_xps, 2230 sizeof(*dn), GFP_KERNEL); 2231 if (!dn) 2232 return -ENOMEM; 2233 2234 /* Initial safe upper bound on DTMs for any possible mesh layout */ 2235 i = cmn->num_xps; 2236 if (cmn->multi_dtm) 2237 i += cmn->num_xps + 1; 2238 dtm = devm_kcalloc(cmn->dev, i, sizeof(*dtm), GFP_KERNEL); 2239 if (!dtm) 2240 return -ENOMEM; 2241 2242 /* Pass 2: now we can actually populate the nodes */ 2243 cmn->dns = dn; 2244 cmn->dtms = dtm; 2245 for (i = 0; i < cmn->num_xps; i++) { 2246 void __iomem *xp_region = cmn->base + xp_offset[i]; 2247 struct arm_cmn_node *xp = dn++; 2248 unsigned int xp_ports = 0; 2249 2250 arm_cmn_init_node_info(cmn, xp_offset[i], xp); 2251 /* 2252 * Thanks to the order in which XP logical IDs seem to be 2253 * assigned, we can handily infer the mesh X dimension by 2254 * looking out for the XP at (0,1) without needing to know 2255 * the exact node ID format, which we can later derive. 2256 */ 2257 if (xp->id == (1 << 3)) 2258 cmn->mesh_x = xp->logid; 2259 2260 if (cmn->part == PART_CMN600) 2261 xp->dtc = 0xf; 2262 else 2263 xp->dtc = 1 << arm_cmn_dtc_domain(cmn, xp_region); 2264 2265 xp->dtm = dtm - cmn->dtms; 2266 arm_cmn_init_dtm(dtm++, xp, 0); 2267 /* 2268 * Keeping track of connected ports will let us filter out 2269 * unnecessary XP events easily. We can also reliably infer the 2270 * "extra device ports" configuration for the node ID format 2271 * from this, since in that case we will see at least one XP 2272 * with port 2 connected, for the HN-D. 2273 */ 2274 for (int p = 0; p < CMN_MAX_PORTS; p++) 2275 if (arm_cmn_device_connect_info(cmn, xp, p)) 2276 xp_ports |= BIT(p); 2277 2278 if (cmn->multi_dtm && (xp_ports & 0xc)) 2279 arm_cmn_init_dtm(dtm++, xp, 1); 2280 if (cmn->multi_dtm && (xp_ports & 0x30)) 2281 arm_cmn_init_dtm(dtm++, xp, 2); 2282 2283 cmn->ports_used |= xp_ports; 2284 2285 reg = readq_relaxed(xp_region + CMN_CHILD_INFO); 2286 child_count = FIELD_GET(CMN_CI_CHILD_COUNT, reg); 2287 child_poff = FIELD_GET(CMN_CI_CHILD_PTR_OFFSET, reg); 2288 2289 for (j = 0; j < child_count; j++) { 2290 reg = readq_relaxed(xp_region + child_poff + j * 8); 2291 /* 2292 * Don't even try to touch anything external, since in general 2293 * we haven't a clue how to power up arbitrary CHI requesters. 2294 * As of CMN-600r1 these could only be RN-SAMs or CXLAs, 2295 * neither of which have any PMU events anyway. 2296 * (Actually, CXLAs do seem to have grown some events in r1p2, 2297 * but they don't go to regular XP DTMs, and they depend on 2298 * secure configuration which we can't easily deal with) 2299 */ 2300 if (reg & CMN_CHILD_NODE_EXTERNAL) { 2301 dev_dbg(cmn->dev, "ignoring external node %llx\n", reg); 2302 continue; 2303 } 2304 /* 2305 * AmpereOneX erratum AC04_MESH_1 makes some XPs report a bogus 2306 * child count larger than the number of valid child pointers. 2307 * A child offset of 0 can only occur on CMN-600; otherwise it 2308 * would imply the root node being its own grandchild, which 2309 * we can safely dismiss in general. 2310 */ 2311 if (reg == 0 && cmn->part != PART_CMN600) { 2312 dev_dbg(cmn->dev, "bogus child pointer?\n"); 2313 continue; 2314 } 2315 2316 arm_cmn_init_node_info(cmn, reg & CMN_CHILD_NODE_ADDR, dn); 2317 2318 switch (dn->type) { 2319 case CMN_TYPE_DTC: 2320 cmn->num_dtcs++; 2321 dn++; 2322 break; 2323 /* These guys have PMU events */ 2324 case CMN_TYPE_DVM: 2325 case CMN_TYPE_HNI: 2326 case CMN_TYPE_HNF: 2327 case CMN_TYPE_SBSX: 2328 case CMN_TYPE_RNI: 2329 case CMN_TYPE_RND: 2330 case CMN_TYPE_MTSX: 2331 case CMN_TYPE_CXRA: 2332 case CMN_TYPE_CXHA: 2333 case CMN_TYPE_CCRA: 2334 case CMN_TYPE_CCHA: 2335 case CMN_TYPE_CCLA: 2336 case CMN_TYPE_HNS: 2337 dn++; 2338 break; 2339 /* Nothing to see here */ 2340 case CMN_TYPE_MPAM_S: 2341 case CMN_TYPE_MPAM_NS: 2342 case CMN_TYPE_RNSAM: 2343 case CMN_TYPE_CXLA: 2344 case CMN_TYPE_HNS_MPAM_S: 2345 case CMN_TYPE_HNS_MPAM_NS: 2346 break; 2347 /* 2348 * Split "optimised" combination nodes into separate 2349 * types for the different event sets. Offsetting the 2350 * base address lets us handle the second pmu_event_sel 2351 * register via the normal mechanism later. 2352 */ 2353 case CMN_TYPE_HNP: 2354 case CMN_TYPE_CCLA_RNI: 2355 dn[1] = dn[0]; 2356 dn[0].pmu_base += CMN_HNP_PMU_EVENT_SEL; 2357 dn[1].type = arm_cmn_subtype(dn->type); 2358 dn += 2; 2359 break; 2360 /* Something has gone horribly wrong */ 2361 default: 2362 dev_err(cmn->dev, "invalid device node type: 0x%x\n", dn->type); 2363 return -ENODEV; 2364 } 2365 } 2366 } 2367 2368 /* Correct for any nodes we added or skipped */ 2369 cmn->num_dns = dn - cmn->dns; 2370 2371 /* Cheeky +1 to help terminate pointer-based iteration later */ 2372 sz = (void *)(dn + 1) - (void *)cmn->dns; 2373 dn = devm_krealloc(cmn->dev, cmn->dns, sz, GFP_KERNEL); 2374 if (dn) 2375 cmn->dns = dn; 2376 2377 sz = (void *)dtm - (void *)cmn->dtms; 2378 dtm = devm_krealloc(cmn->dev, cmn->dtms, sz, GFP_KERNEL); 2379 if (dtm) 2380 cmn->dtms = dtm; 2381 2382 /* 2383 * If mesh_x wasn't set during discovery then we never saw 2384 * an XP at (0,1), thus we must have an Nx1 configuration. 2385 */ 2386 if (!cmn->mesh_x) 2387 cmn->mesh_x = cmn->num_xps; 2388 cmn->mesh_y = cmn->num_xps / cmn->mesh_x; 2389 2390 /* 1x1 config plays havoc with XP event encodings */ 2391 if (cmn->num_xps == 1) 2392 dev_warn(cmn->dev, "1x1 config not fully supported, translate XP events manually\n"); 2393 2394 dev_dbg(cmn->dev, "periph_id part 0x%03x revision %d\n", cmn->part, cmn->rev); 2395 reg = cmn->ports_used; 2396 dev_dbg(cmn->dev, "mesh %dx%d, ID width %d, ports %6pbl%s\n", 2397 cmn->mesh_x, cmn->mesh_y, arm_cmn_xyidbits(cmn), ®, 2398 cmn->multi_dtm ? ", multi-DTM" : ""); 2399 2400 return 0; 2401 } 2402 2403 static int arm_cmn600_acpi_probe(struct platform_device *pdev, struct arm_cmn *cmn) 2404 { 2405 struct resource *cfg, *root; 2406 2407 cfg = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2408 if (!cfg) 2409 return -EINVAL; 2410 2411 root = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2412 if (!root) 2413 return -EINVAL; 2414 2415 if (!resource_contains(cfg, root)) 2416 swap(cfg, root); 2417 /* 2418 * Note that devm_ioremap_resource() is dumb and won't let the platform 2419 * device claim cfg when the ACPI companion device has already claimed 2420 * root within it. But since they *are* already both claimed in the 2421 * appropriate name, we don't really need to do it again here anyway. 2422 */ 2423 cmn->base = devm_ioremap(cmn->dev, cfg->start, resource_size(cfg)); 2424 if (!cmn->base) 2425 return -ENOMEM; 2426 2427 return root->start - cfg->start; 2428 } 2429 2430 static int arm_cmn600_of_probe(struct device_node *np) 2431 { 2432 u32 rootnode; 2433 2434 return of_property_read_u32(np, "arm,root-node", &rootnode) ?: rootnode; 2435 } 2436 2437 static int arm_cmn_probe(struct platform_device *pdev) 2438 { 2439 struct arm_cmn *cmn; 2440 const char *name; 2441 static atomic_t id; 2442 int err, rootnode, this_id; 2443 2444 cmn = devm_kzalloc(&pdev->dev, sizeof(*cmn), GFP_KERNEL); 2445 if (!cmn) 2446 return -ENOMEM; 2447 2448 cmn->dev = &pdev->dev; 2449 cmn->part = (unsigned long)device_get_match_data(cmn->dev); 2450 platform_set_drvdata(pdev, cmn); 2451 2452 if (cmn->part == PART_CMN600 && has_acpi_companion(cmn->dev)) { 2453 rootnode = arm_cmn600_acpi_probe(pdev, cmn); 2454 } else { 2455 rootnode = 0; 2456 cmn->base = devm_platform_ioremap_resource(pdev, 0); 2457 if (IS_ERR(cmn->base)) 2458 return PTR_ERR(cmn->base); 2459 if (cmn->part == PART_CMN600) 2460 rootnode = arm_cmn600_of_probe(pdev->dev.of_node); 2461 } 2462 if (rootnode < 0) 2463 return rootnode; 2464 2465 err = arm_cmn_discover(cmn, rootnode); 2466 if (err) 2467 return err; 2468 2469 err = arm_cmn_init_dtcs(cmn); 2470 if (err) 2471 return err; 2472 2473 err = arm_cmn_init_irqs(cmn); 2474 if (err) 2475 return err; 2476 2477 cmn->cpu = cpumask_local_spread(0, dev_to_node(cmn->dev)); 2478 cmn->pmu = (struct pmu) { 2479 .module = THIS_MODULE, 2480 .attr_groups = arm_cmn_attr_groups, 2481 .capabilities = PERF_PMU_CAP_NO_EXCLUDE, 2482 .task_ctx_nr = perf_invalid_context, 2483 .pmu_enable = arm_cmn_pmu_enable, 2484 .pmu_disable = arm_cmn_pmu_disable, 2485 .event_init = arm_cmn_event_init, 2486 .add = arm_cmn_event_add, 2487 .del = arm_cmn_event_del, 2488 .start = arm_cmn_event_start, 2489 .stop = arm_cmn_event_stop, 2490 .read = arm_cmn_event_read, 2491 .start_txn = arm_cmn_start_txn, 2492 .commit_txn = arm_cmn_commit_txn, 2493 .cancel_txn = arm_cmn_end_txn, 2494 }; 2495 2496 this_id = atomic_fetch_inc(&id); 2497 name = devm_kasprintf(cmn->dev, GFP_KERNEL, "arm_cmn_%d", this_id); 2498 if (!name) 2499 return -ENOMEM; 2500 2501 err = cpuhp_state_add_instance(arm_cmn_hp_state, &cmn->cpuhp_node); 2502 if (err) 2503 return err; 2504 2505 err = perf_pmu_register(&cmn->pmu, name, -1); 2506 if (err) 2507 cpuhp_state_remove_instance_nocalls(arm_cmn_hp_state, &cmn->cpuhp_node); 2508 else 2509 arm_cmn_debugfs_init(cmn, this_id); 2510 2511 return err; 2512 } 2513 2514 static int arm_cmn_remove(struct platform_device *pdev) 2515 { 2516 struct arm_cmn *cmn = platform_get_drvdata(pdev); 2517 2518 writel_relaxed(0, cmn->dtc[0].base + CMN_DT_DTC_CTL); 2519 2520 perf_pmu_unregister(&cmn->pmu); 2521 cpuhp_state_remove_instance_nocalls(arm_cmn_hp_state, &cmn->cpuhp_node); 2522 debugfs_remove(cmn->debug); 2523 return 0; 2524 } 2525 2526 #ifdef CONFIG_OF 2527 static const struct of_device_id arm_cmn_of_match[] = { 2528 { .compatible = "arm,cmn-600", .data = (void *)PART_CMN600 }, 2529 { .compatible = "arm,cmn-650" }, 2530 { .compatible = "arm,cmn-700" }, 2531 { .compatible = "arm,ci-700" }, 2532 {} 2533 }; 2534 MODULE_DEVICE_TABLE(of, arm_cmn_of_match); 2535 #endif 2536 2537 #ifdef CONFIG_ACPI 2538 static const struct acpi_device_id arm_cmn_acpi_match[] = { 2539 { "ARMHC600", PART_CMN600 }, 2540 { "ARMHC650" }, 2541 { "ARMHC700" }, 2542 {} 2543 }; 2544 MODULE_DEVICE_TABLE(acpi, arm_cmn_acpi_match); 2545 #endif 2546 2547 static struct platform_driver arm_cmn_driver = { 2548 .driver = { 2549 .name = "arm-cmn", 2550 .of_match_table = of_match_ptr(arm_cmn_of_match), 2551 .acpi_match_table = ACPI_PTR(arm_cmn_acpi_match), 2552 }, 2553 .probe = arm_cmn_probe, 2554 .remove = arm_cmn_remove, 2555 }; 2556 2557 static int __init arm_cmn_init(void) 2558 { 2559 int ret; 2560 2561 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 2562 "perf/arm/cmn:online", 2563 arm_cmn_pmu_online_cpu, 2564 arm_cmn_pmu_offline_cpu); 2565 if (ret < 0) 2566 return ret; 2567 2568 arm_cmn_hp_state = ret; 2569 arm_cmn_debugfs = debugfs_create_dir("arm-cmn", NULL); 2570 2571 ret = platform_driver_register(&arm_cmn_driver); 2572 if (ret) { 2573 cpuhp_remove_multi_state(arm_cmn_hp_state); 2574 debugfs_remove(arm_cmn_debugfs); 2575 } 2576 return ret; 2577 } 2578 2579 static void __exit arm_cmn_exit(void) 2580 { 2581 platform_driver_unregister(&arm_cmn_driver); 2582 cpuhp_remove_multi_state(arm_cmn_hp_state); 2583 debugfs_remove(arm_cmn_debugfs); 2584 } 2585 2586 module_init(arm_cmn_init); 2587 module_exit(arm_cmn_exit); 2588 2589 MODULE_AUTHOR("Robin Murphy <robin.murphy@arm.com>"); 2590 MODULE_DESCRIPTION("Arm CMN-600 PMU driver"); 2591 MODULE_LICENSE("GPL v2"); 2592