xref: /openbmc/linux/drivers/perf/arm-cci.c (revision f77d1a49)
1 // SPDX-License-Identifier: GPL-2.0
2 // CCI Cache Coherent Interconnect PMU driver
3 // Copyright (C) 2013-2018 Arm Ltd.
4 // Author: Punit Agrawal <punit.agrawal@arm.com>, Suzuki Poulose <suzuki.poulose@arm.com>
5 
6 #include <linux/arm-cci.h>
7 #include <linux/io.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/of_device.h>
12 #include <linux/of_irq.h>
13 #include <linux/of_platform.h>
14 #include <linux/perf_event.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 
19 #define DRIVER_NAME		"ARM-CCI PMU"
20 
21 #define CCI_PMCR		0x0100
22 #define CCI_PID2		0x0fe8
23 
24 #define CCI_PMCR_CEN		0x00000001
25 #define CCI_PMCR_NCNT_MASK	0x0000f800
26 #define CCI_PMCR_NCNT_SHIFT	11
27 
28 #define CCI_PID2_REV_MASK	0xf0
29 #define CCI_PID2_REV_SHIFT	4
30 
31 #define CCI_PMU_EVT_SEL		0x000
32 #define CCI_PMU_CNTR		0x004
33 #define CCI_PMU_CNTR_CTRL	0x008
34 #define CCI_PMU_OVRFLW		0x00c
35 
36 #define CCI_PMU_OVRFLW_FLAG	1
37 
38 #define CCI_PMU_CNTR_SIZE(model)	((model)->cntr_size)
39 #define CCI_PMU_CNTR_BASE(model, idx)	((idx) * CCI_PMU_CNTR_SIZE(model))
40 #define CCI_PMU_CNTR_MASK		((1ULL << 32) - 1)
41 #define CCI_PMU_CNTR_LAST(cci_pmu)	(cci_pmu->num_cntrs - 1)
42 
43 #define CCI_PMU_MAX_HW_CNTRS(model) \
44 	((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
45 
46 /* Types of interfaces that can generate events */
47 enum {
48 	CCI_IF_SLAVE,
49 	CCI_IF_MASTER,
50 #ifdef CONFIG_ARM_CCI5xx_PMU
51 	CCI_IF_GLOBAL,
52 #endif
53 	CCI_IF_MAX,
54 };
55 
56 #define NUM_HW_CNTRS_CII_4XX	4
57 #define NUM_HW_CNTRS_CII_5XX	8
58 #define NUM_HW_CNTRS_MAX	NUM_HW_CNTRS_CII_5XX
59 
60 #define FIXED_HW_CNTRS_CII_4XX	1
61 #define FIXED_HW_CNTRS_CII_5XX	0
62 #define FIXED_HW_CNTRS_MAX	FIXED_HW_CNTRS_CII_4XX
63 
64 #define HW_CNTRS_MAX		(NUM_HW_CNTRS_MAX + FIXED_HW_CNTRS_MAX)
65 
66 struct event_range {
67 	u32 min;
68 	u32 max;
69 };
70 
71 struct cci_pmu_hw_events {
72 	struct perf_event **events;
73 	unsigned long *used_mask;
74 	raw_spinlock_t pmu_lock;
75 };
76 
77 struct cci_pmu;
78 /*
79  * struct cci_pmu_model:
80  * @fixed_hw_cntrs - Number of fixed event counters
81  * @num_hw_cntrs - Maximum number of programmable event counters
82  * @cntr_size - Size of an event counter mapping
83  */
84 struct cci_pmu_model {
85 	char *name;
86 	u32 fixed_hw_cntrs;
87 	u32 num_hw_cntrs;
88 	u32 cntr_size;
89 	struct attribute **format_attrs;
90 	struct attribute **event_attrs;
91 	struct event_range event_ranges[CCI_IF_MAX];
92 	int (*validate_hw_event)(struct cci_pmu *, unsigned long);
93 	int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
94 	void (*write_counters)(struct cci_pmu *, unsigned long *);
95 };
96 
97 static struct cci_pmu_model cci_pmu_models[];
98 
99 struct cci_pmu {
100 	void __iomem *base;
101 	void __iomem *ctrl_base;
102 	struct pmu pmu;
103 	int cpu;
104 	int nr_irqs;
105 	int *irqs;
106 	unsigned long active_irqs;
107 	const struct cci_pmu_model *model;
108 	struct cci_pmu_hw_events hw_events;
109 	struct platform_device *plat_device;
110 	int num_cntrs;
111 	atomic_t active_events;
112 	struct mutex reserve_mutex;
113 };
114 
115 #define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
116 
117 static struct cci_pmu *g_cci_pmu;
118 
119 enum cci_models {
120 #ifdef CONFIG_ARM_CCI400_PMU
121 	CCI400_R0,
122 	CCI400_R1,
123 #endif
124 #ifdef CONFIG_ARM_CCI5xx_PMU
125 	CCI500_R0,
126 	CCI550_R0,
127 #endif
128 	CCI_MODEL_MAX
129 };
130 
131 static void pmu_write_counters(struct cci_pmu *cci_pmu,
132 				 unsigned long *mask);
133 static ssize_t __maybe_unused cci_pmu_format_show(struct device *dev,
134 			struct device_attribute *attr, char *buf);
135 static ssize_t __maybe_unused cci_pmu_event_show(struct device *dev,
136 			struct device_attribute *attr, char *buf);
137 
138 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) 				\
139 	&((struct dev_ext_attribute[]) {					\
140 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }	\
141 	})[0].attr.attr
142 
143 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
144 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
145 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
146 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
147 
148 /* CCI400 PMU Specific definitions */
149 
150 #ifdef CONFIG_ARM_CCI400_PMU
151 
152 /* Port ids */
153 #define CCI400_PORT_S0		0
154 #define CCI400_PORT_S1		1
155 #define CCI400_PORT_S2		2
156 #define CCI400_PORT_S3		3
157 #define CCI400_PORT_S4		4
158 #define CCI400_PORT_M0		5
159 #define CCI400_PORT_M1		6
160 #define CCI400_PORT_M2		7
161 
162 #define CCI400_R1_PX		5
163 
164 /*
165  * Instead of an event id to monitor CCI cycles, a dedicated counter is
166  * provided. Use 0xff to represent CCI cycles and hope that no future revisions
167  * make use of this event in hardware.
168  */
169 enum cci400_perf_events {
170 	CCI400_PMU_CYCLES = 0xff
171 };
172 
173 #define CCI400_PMU_CYCLE_CNTR_IDX	0
174 #define CCI400_PMU_CNTR0_IDX		1
175 
176 /*
177  * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
178  * ports and bits 4:0 are event codes. There are different event codes
179  * associated with each port type.
180  *
181  * Additionally, the range of events associated with the port types changed
182  * between Rev0 and Rev1.
183  *
184  * The constants below define the range of valid codes for each port type for
185  * the different revisions and are used to validate the event to be monitored.
186  */
187 
188 #define CCI400_PMU_EVENT_MASK		0xffUL
189 #define CCI400_PMU_EVENT_SOURCE_SHIFT	5
190 #define CCI400_PMU_EVENT_SOURCE_MASK	0x7
191 #define CCI400_PMU_EVENT_CODE_SHIFT	0
192 #define CCI400_PMU_EVENT_CODE_MASK	0x1f
193 #define CCI400_PMU_EVENT_SOURCE(event) \
194 	((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
195 			CCI400_PMU_EVENT_SOURCE_MASK)
196 #define CCI400_PMU_EVENT_CODE(event) \
197 	((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
198 
199 #define CCI400_R0_SLAVE_PORT_MIN_EV	0x00
200 #define CCI400_R0_SLAVE_PORT_MAX_EV	0x13
201 #define CCI400_R0_MASTER_PORT_MIN_EV	0x14
202 #define CCI400_R0_MASTER_PORT_MAX_EV	0x1a
203 
204 #define CCI400_R1_SLAVE_PORT_MIN_EV	0x00
205 #define CCI400_R1_SLAVE_PORT_MAX_EV	0x14
206 #define CCI400_R1_MASTER_PORT_MIN_EV	0x00
207 #define CCI400_R1_MASTER_PORT_MAX_EV	0x11
208 
209 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
210 	CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
211 					(unsigned long)_config)
212 
213 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
214 			struct device_attribute *attr, char *buf);
215 
216 static struct attribute *cci400_pmu_format_attrs[] = {
217 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
218 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
219 	NULL
220 };
221 
222 static struct attribute *cci400_r0_pmu_event_attrs[] = {
223 	/* Slave events */
224 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
225 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
226 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
227 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
228 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
229 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
230 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
231 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
232 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
233 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
234 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
235 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
236 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
237 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
238 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
239 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
240 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
241 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
242 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
243 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
244 	/* Master events */
245 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
246 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
247 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
248 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
249 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
250 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
251 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
252 	/* Special event for cycles counter */
253 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
254 	NULL
255 };
256 
257 static struct attribute *cci400_r1_pmu_event_attrs[] = {
258 	/* Slave events */
259 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
260 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
261 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
262 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
263 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
264 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
265 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
266 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
267 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
268 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
269 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
270 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
271 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
272 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
273 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
274 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
275 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
276 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
277 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
278 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
279 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
280 	/* Master events */
281 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
282 	CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
283 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
284 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
285 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
286 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
287 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
288 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
289 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
290 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
291 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
292 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
293 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
294 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
295 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
296 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
297 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
298 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
299 	/* Special event for cycles counter */
300 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
301 	NULL
302 };
303 
304 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
305 			struct device_attribute *attr, char *buf)
306 {
307 	struct dev_ext_attribute *eattr = container_of(attr,
308 				struct dev_ext_attribute, attr);
309 	return sysfs_emit(buf, "config=0x%lx\n", (unsigned long)eattr->var);
310 }
311 
312 static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
313 				struct cci_pmu_hw_events *hw,
314 				unsigned long cci_event)
315 {
316 	int idx;
317 
318 	/* cycles event idx is fixed */
319 	if (cci_event == CCI400_PMU_CYCLES) {
320 		if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
321 			return -EAGAIN;
322 
323 		return CCI400_PMU_CYCLE_CNTR_IDX;
324 	}
325 
326 	for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
327 		if (!test_and_set_bit(idx, hw->used_mask))
328 			return idx;
329 
330 	/* No counters available */
331 	return -EAGAIN;
332 }
333 
334 static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
335 {
336 	u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
337 	u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
338 	int if_type;
339 
340 	if (hw_event & ~CCI400_PMU_EVENT_MASK)
341 		return -ENOENT;
342 
343 	if (hw_event == CCI400_PMU_CYCLES)
344 		return hw_event;
345 
346 	switch (ev_source) {
347 	case CCI400_PORT_S0:
348 	case CCI400_PORT_S1:
349 	case CCI400_PORT_S2:
350 	case CCI400_PORT_S3:
351 	case CCI400_PORT_S4:
352 		/* Slave Interface */
353 		if_type = CCI_IF_SLAVE;
354 		break;
355 	case CCI400_PORT_M0:
356 	case CCI400_PORT_M1:
357 	case CCI400_PORT_M2:
358 		/* Master Interface */
359 		if_type = CCI_IF_MASTER;
360 		break;
361 	default:
362 		return -ENOENT;
363 	}
364 
365 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
366 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
367 		return hw_event;
368 
369 	return -ENOENT;
370 }
371 
372 static int probe_cci400_revision(struct cci_pmu *cci_pmu)
373 {
374 	int rev;
375 	rev = readl_relaxed(cci_pmu->ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
376 	rev >>= CCI_PID2_REV_SHIFT;
377 
378 	if (rev < CCI400_R1_PX)
379 		return CCI400_R0;
380 	else
381 		return CCI400_R1;
382 }
383 
384 static const struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
385 {
386 	if (platform_has_secure_cci_access())
387 		return &cci_pmu_models[probe_cci400_revision(cci_pmu)];
388 	return NULL;
389 }
390 #else	/* !CONFIG_ARM_CCI400_PMU */
391 static inline struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
392 {
393 	return NULL;
394 }
395 #endif	/* CONFIG_ARM_CCI400_PMU */
396 
397 #ifdef CONFIG_ARM_CCI5xx_PMU
398 
399 /*
400  * CCI5xx PMU event id is an 9-bit value made of two parts.
401  *	 bits [8:5] - Source for the event
402  *	 bits [4:0] - Event code (specific to type of interface)
403  *
404  *
405  */
406 
407 /* Port ids */
408 #define CCI5xx_PORT_S0			0x0
409 #define CCI5xx_PORT_S1			0x1
410 #define CCI5xx_PORT_S2			0x2
411 #define CCI5xx_PORT_S3			0x3
412 #define CCI5xx_PORT_S4			0x4
413 #define CCI5xx_PORT_S5			0x5
414 #define CCI5xx_PORT_S6			0x6
415 
416 #define CCI5xx_PORT_M0			0x8
417 #define CCI5xx_PORT_M1			0x9
418 #define CCI5xx_PORT_M2			0xa
419 #define CCI5xx_PORT_M3			0xb
420 #define CCI5xx_PORT_M4			0xc
421 #define CCI5xx_PORT_M5			0xd
422 #define CCI5xx_PORT_M6			0xe
423 
424 #define CCI5xx_PORT_GLOBAL		0xf
425 
426 #define CCI5xx_PMU_EVENT_MASK		0x1ffUL
427 #define CCI5xx_PMU_EVENT_SOURCE_SHIFT	0x5
428 #define CCI5xx_PMU_EVENT_SOURCE_MASK	0xf
429 #define CCI5xx_PMU_EVENT_CODE_SHIFT	0x0
430 #define CCI5xx_PMU_EVENT_CODE_MASK	0x1f
431 
432 #define CCI5xx_PMU_EVENT_SOURCE(event)	\
433 	((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
434 #define CCI5xx_PMU_EVENT_CODE(event)	\
435 	((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
436 
437 #define CCI5xx_SLAVE_PORT_MIN_EV	0x00
438 #define CCI5xx_SLAVE_PORT_MAX_EV	0x1f
439 #define CCI5xx_MASTER_PORT_MIN_EV	0x00
440 #define CCI5xx_MASTER_PORT_MAX_EV	0x06
441 #define CCI5xx_GLOBAL_PORT_MIN_EV	0x00
442 #define CCI5xx_GLOBAL_PORT_MAX_EV	0x0f
443 
444 
445 #define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
446 	CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
447 					(unsigned long) _config)
448 
449 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
450 				struct device_attribute *attr, char *buf);
451 
452 static struct attribute *cci5xx_pmu_format_attrs[] = {
453 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
454 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
455 	NULL,
456 };
457 
458 static struct attribute *cci5xx_pmu_event_attrs[] = {
459 	/* Slave events */
460 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
461 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
462 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
463 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
464 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
465 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
466 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
467 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
468 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
469 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
470 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
471 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
472 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
473 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
474 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
475 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
476 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
477 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
478 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
479 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
480 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
481 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
482 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
483 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
484 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
485 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
486 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
487 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
488 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
489 	CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
490 	CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
491 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
492 
493 	/* Master events */
494 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
495 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
496 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
497 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
498 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
499 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
500 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
501 
502 	/* Global events */
503 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
504 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
505 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
506 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
507 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
508 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
509 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
510 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
511 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
512 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
513 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
514 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
515 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
516 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
517 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full, 0xE),
518 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
519 	NULL
520 };
521 
522 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
523 				struct device_attribute *attr, char *buf)
524 {
525 	struct dev_ext_attribute *eattr = container_of(attr,
526 					struct dev_ext_attribute, attr);
527 	/* Global events have single fixed source code */
528 	return sysfs_emit(buf, "event=0x%lx,source=0x%x\n",
529 			  (unsigned long)eattr->var, CCI5xx_PORT_GLOBAL);
530 }
531 
532 /*
533  * CCI500 provides 8 independent event counters that can count
534  * any of the events available.
535  * CCI500 PMU event source ids
536  *	0x0-0x6 - Slave interfaces
537  *	0x8-0xD - Master interfaces
538  *	0xf     - Global Events
539  *	0x7,0xe - Reserved
540  */
541 static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
542 					unsigned long hw_event)
543 {
544 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
545 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
546 	int if_type;
547 
548 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
549 		return -ENOENT;
550 
551 	switch (ev_source) {
552 	case CCI5xx_PORT_S0:
553 	case CCI5xx_PORT_S1:
554 	case CCI5xx_PORT_S2:
555 	case CCI5xx_PORT_S3:
556 	case CCI5xx_PORT_S4:
557 	case CCI5xx_PORT_S5:
558 	case CCI5xx_PORT_S6:
559 		if_type = CCI_IF_SLAVE;
560 		break;
561 	case CCI5xx_PORT_M0:
562 	case CCI5xx_PORT_M1:
563 	case CCI5xx_PORT_M2:
564 	case CCI5xx_PORT_M3:
565 	case CCI5xx_PORT_M4:
566 	case CCI5xx_PORT_M5:
567 		if_type = CCI_IF_MASTER;
568 		break;
569 	case CCI5xx_PORT_GLOBAL:
570 		if_type = CCI_IF_GLOBAL;
571 		break;
572 	default:
573 		return -ENOENT;
574 	}
575 
576 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
577 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
578 		return hw_event;
579 
580 	return -ENOENT;
581 }
582 
583 /*
584  * CCI550 provides 8 independent event counters that can count
585  * any of the events available.
586  * CCI550 PMU event source ids
587  *	0x0-0x6 - Slave interfaces
588  *	0x8-0xe - Master interfaces
589  *	0xf     - Global Events
590  *	0x7	- Reserved
591  */
592 static int cci550_validate_hw_event(struct cci_pmu *cci_pmu,
593 					unsigned long hw_event)
594 {
595 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
596 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
597 	int if_type;
598 
599 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
600 		return -ENOENT;
601 
602 	switch (ev_source) {
603 	case CCI5xx_PORT_S0:
604 	case CCI5xx_PORT_S1:
605 	case CCI5xx_PORT_S2:
606 	case CCI5xx_PORT_S3:
607 	case CCI5xx_PORT_S4:
608 	case CCI5xx_PORT_S5:
609 	case CCI5xx_PORT_S6:
610 		if_type = CCI_IF_SLAVE;
611 		break;
612 	case CCI5xx_PORT_M0:
613 	case CCI5xx_PORT_M1:
614 	case CCI5xx_PORT_M2:
615 	case CCI5xx_PORT_M3:
616 	case CCI5xx_PORT_M4:
617 	case CCI5xx_PORT_M5:
618 	case CCI5xx_PORT_M6:
619 		if_type = CCI_IF_MASTER;
620 		break;
621 	case CCI5xx_PORT_GLOBAL:
622 		if_type = CCI_IF_GLOBAL;
623 		break;
624 	default:
625 		return -ENOENT;
626 	}
627 
628 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
629 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
630 		return hw_event;
631 
632 	return -ENOENT;
633 }
634 
635 #endif	/* CONFIG_ARM_CCI5xx_PMU */
636 
637 /*
638  * Program the CCI PMU counters which have PERF_HES_ARCH set
639  * with the event period and mark them ready before we enable
640  * PMU.
641  */
642 static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
643 {
644 	int i;
645 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
646 	DECLARE_BITMAP(mask, HW_CNTRS_MAX);
647 
648 	bitmap_zero(mask, HW_CNTRS_MAX);
649 	for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
650 		struct perf_event *event = cci_hw->events[i];
651 
652 		if (WARN_ON(!event))
653 			continue;
654 
655 		/* Leave the events which are not counting */
656 		if (event->hw.state & PERF_HES_STOPPED)
657 			continue;
658 		if (event->hw.state & PERF_HES_ARCH) {
659 			__set_bit(i, mask);
660 			event->hw.state &= ~PERF_HES_ARCH;
661 		}
662 	}
663 
664 	pmu_write_counters(cci_pmu, mask);
665 }
666 
667 /* Should be called with cci_pmu->hw_events->pmu_lock held */
668 static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
669 {
670 	u32 val;
671 
672 	/* Enable all the PMU counters. */
673 	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
674 	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
675 }
676 
677 /* Should be called with cci_pmu->hw_events->pmu_lock held */
678 static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
679 {
680 	cci_pmu_sync_counters(cci_pmu);
681 	__cci_pmu_enable_nosync(cci_pmu);
682 }
683 
684 /* Should be called with cci_pmu->hw_events->pmu_lock held */
685 static void __cci_pmu_disable(struct cci_pmu *cci_pmu)
686 {
687 	u32 val;
688 
689 	/* Disable all the PMU counters. */
690 	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
691 	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
692 }
693 
694 static ssize_t cci_pmu_format_show(struct device *dev,
695 			struct device_attribute *attr, char *buf)
696 {
697 	struct dev_ext_attribute *eattr = container_of(attr,
698 				struct dev_ext_attribute, attr);
699 	return sysfs_emit(buf, "%s\n", (char *)eattr->var);
700 }
701 
702 static ssize_t cci_pmu_event_show(struct device *dev,
703 			struct device_attribute *attr, char *buf)
704 {
705 	struct dev_ext_attribute *eattr = container_of(attr,
706 				struct dev_ext_attribute, attr);
707 	/* source parameter is mandatory for normal PMU events */
708 	return sysfs_emit(buf, "source=?,event=0x%lx\n",
709 			  (unsigned long)eattr->var);
710 }
711 
712 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
713 {
714 	return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
715 }
716 
717 static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
718 {
719 	return readl_relaxed(cci_pmu->base +
720 			     CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
721 }
722 
723 static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
724 			       int idx, unsigned int offset)
725 {
726 	writel_relaxed(value, cci_pmu->base +
727 		       CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
728 }
729 
730 static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
731 {
732 	pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
733 }
734 
735 static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
736 {
737 	pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
738 }
739 
740 static bool __maybe_unused
741 pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
742 {
743 	return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
744 }
745 
746 static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
747 {
748 	pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
749 }
750 
751 /*
752  * For all counters on the CCI-PMU, disable any 'enabled' counters,
753  * saving the changed counters in the mask, so that we can restore
754  * it later using pmu_restore_counters. The mask is private to the
755  * caller. We cannot rely on the used_mask maintained by the CCI_PMU
756  * as it only tells us if the counter is assigned to perf_event or not.
757  * The state of the perf_event cannot be locked by the PMU layer, hence
758  * we check the individual counter status (which can be locked by
759  * cci_pm->hw_events->pmu_lock).
760  *
761  * @mask should be initialised to empty by the caller.
762  */
763 static void __maybe_unused
764 pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
765 {
766 	int i;
767 
768 	for (i = 0; i < cci_pmu->num_cntrs; i++) {
769 		if (pmu_counter_is_enabled(cci_pmu, i)) {
770 			set_bit(i, mask);
771 			pmu_disable_counter(cci_pmu, i);
772 		}
773 	}
774 }
775 
776 /*
777  * Restore the status of the counters. Reversal of the pmu_save_counters().
778  * For each counter set in the mask, enable the counter back.
779  */
780 static void __maybe_unused
781 pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
782 {
783 	int i;
784 
785 	for_each_set_bit(i, mask, cci_pmu->num_cntrs)
786 		pmu_enable_counter(cci_pmu, i);
787 }
788 
789 /*
790  * Returns the number of programmable counters actually implemented
791  * by the cci
792  */
793 static u32 pmu_get_max_counters(struct cci_pmu *cci_pmu)
794 {
795 	return (readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) &
796 		CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
797 }
798 
799 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
800 {
801 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
802 	unsigned long cci_event = event->hw.config_base;
803 	int idx;
804 
805 	if (cci_pmu->model->get_event_idx)
806 		return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
807 
808 	/* Generic code to find an unused idx from the mask */
809 	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
810 		if (!test_and_set_bit(idx, hw->used_mask))
811 			return idx;
812 
813 	/* No counters available */
814 	return -EAGAIN;
815 }
816 
817 static int pmu_map_event(struct perf_event *event)
818 {
819 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
820 
821 	if (event->attr.type < PERF_TYPE_MAX ||
822 			!cci_pmu->model->validate_hw_event)
823 		return -ENOENT;
824 
825 	return	cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
826 }
827 
828 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
829 {
830 	int i;
831 	struct platform_device *pmu_device = cci_pmu->plat_device;
832 
833 	if (unlikely(!pmu_device))
834 		return -ENODEV;
835 
836 	if (cci_pmu->nr_irqs < 1) {
837 		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
838 		return -ENODEV;
839 	}
840 
841 	/*
842 	 * Register all available CCI PMU interrupts. In the interrupt handler
843 	 * we iterate over the counters checking for interrupt source (the
844 	 * overflowing counter) and clear it.
845 	 *
846 	 * This should allow handling of non-unique interrupt for the counters.
847 	 */
848 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
849 		int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
850 				"arm-cci-pmu", cci_pmu);
851 		if (err) {
852 			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
853 				cci_pmu->irqs[i]);
854 			return err;
855 		}
856 
857 		set_bit(i, &cci_pmu->active_irqs);
858 	}
859 
860 	return 0;
861 }
862 
863 static void pmu_free_irq(struct cci_pmu *cci_pmu)
864 {
865 	int i;
866 
867 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
868 		if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
869 			continue;
870 
871 		free_irq(cci_pmu->irqs[i], cci_pmu);
872 	}
873 }
874 
875 static u32 pmu_read_counter(struct perf_event *event)
876 {
877 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
878 	struct hw_perf_event *hw_counter = &event->hw;
879 	int idx = hw_counter->idx;
880 	u32 value;
881 
882 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
883 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
884 		return 0;
885 	}
886 	value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
887 
888 	return value;
889 }
890 
891 static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
892 {
893 	pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
894 }
895 
896 static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
897 {
898 	int i;
899 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
900 
901 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
902 		struct perf_event *event = cci_hw->events[i];
903 
904 		if (WARN_ON(!event))
905 			continue;
906 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
907 	}
908 }
909 
910 static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
911 {
912 	if (cci_pmu->model->write_counters)
913 		cci_pmu->model->write_counters(cci_pmu, mask);
914 	else
915 		__pmu_write_counters(cci_pmu, mask);
916 }
917 
918 #ifdef CONFIG_ARM_CCI5xx_PMU
919 
920 /*
921  * CCI-500/CCI-550 has advanced power saving policies, which could gate the
922  * clocks to the PMU counters, which makes the writes to them ineffective.
923  * The only way to write to those counters is when the global counters
924  * are enabled and the particular counter is enabled.
925  *
926  * So we do the following :
927  *
928  * 1) Disable all the PMU counters, saving their current state
929  * 2) Enable the global PMU profiling, now that all counters are
930  *    disabled.
931  *
932  * For each counter to be programmed, repeat steps 3-7:
933  *
934  * 3) Write an invalid event code to the event control register for the
935       counter, so that the counters are not modified.
936  * 4) Enable the counter control for the counter.
937  * 5) Set the counter value
938  * 6) Disable the counter
939  * 7) Restore the event in the target counter
940  *
941  * 8) Disable the global PMU.
942  * 9) Restore the status of the rest of the counters.
943  *
944  * We choose an event which for CCI-5xx is guaranteed not to count.
945  * We use the highest possible event code (0x1f) for the master interface 0.
946  */
947 #define CCI5xx_INVALID_EVENT	((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
948 				 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
949 static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
950 {
951 	int i;
952 	DECLARE_BITMAP(saved_mask, HW_CNTRS_MAX);
953 
954 	bitmap_zero(saved_mask, cci_pmu->num_cntrs);
955 	pmu_save_counters(cci_pmu, saved_mask);
956 
957 	/*
958 	 * Now that all the counters are disabled, we can safely turn the PMU on,
959 	 * without syncing the status of the counters
960 	 */
961 	__cci_pmu_enable_nosync(cci_pmu);
962 
963 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
964 		struct perf_event *event = cci_pmu->hw_events.events[i];
965 
966 		if (WARN_ON(!event))
967 			continue;
968 
969 		pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT);
970 		pmu_enable_counter(cci_pmu, i);
971 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
972 		pmu_disable_counter(cci_pmu, i);
973 		pmu_set_event(cci_pmu, i, event->hw.config_base);
974 	}
975 
976 	__cci_pmu_disable(cci_pmu);
977 
978 	pmu_restore_counters(cci_pmu, saved_mask);
979 }
980 
981 #endif	/* CONFIG_ARM_CCI5xx_PMU */
982 
983 static u64 pmu_event_update(struct perf_event *event)
984 {
985 	struct hw_perf_event *hwc = &event->hw;
986 	u64 delta, prev_raw_count, new_raw_count;
987 
988 	do {
989 		prev_raw_count = local64_read(&hwc->prev_count);
990 		new_raw_count = pmu_read_counter(event);
991 	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
992 		 new_raw_count) != prev_raw_count);
993 
994 	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
995 
996 	local64_add(delta, &event->count);
997 
998 	return new_raw_count;
999 }
1000 
1001 static void pmu_read(struct perf_event *event)
1002 {
1003 	pmu_event_update(event);
1004 }
1005 
1006 static void pmu_event_set_period(struct perf_event *event)
1007 {
1008 	struct hw_perf_event *hwc = &event->hw;
1009 	/*
1010 	 * The CCI PMU counters have a period of 2^32. To account for the
1011 	 * possiblity of extreme interrupt latency we program for a period of
1012 	 * half that. Hopefully we can handle the interrupt before another 2^31
1013 	 * events occur and the counter overtakes its previous value.
1014 	 */
1015 	u64 val = 1ULL << 31;
1016 	local64_set(&hwc->prev_count, val);
1017 
1018 	/*
1019 	 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1020 	 * values needs to be sync-ed with the s/w state before the PMU is
1021 	 * enabled.
1022 	 * Mark this counter for sync.
1023 	 */
1024 	hwc->state |= PERF_HES_ARCH;
1025 }
1026 
1027 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
1028 {
1029 	struct cci_pmu *cci_pmu = dev;
1030 	struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
1031 	int idx, handled = IRQ_NONE;
1032 
1033 	raw_spin_lock(&events->pmu_lock);
1034 
1035 	/* Disable the PMU while we walk through the counters */
1036 	__cci_pmu_disable(cci_pmu);
1037 	/*
1038 	 * Iterate over counters and update the corresponding perf events.
1039 	 * This should work regardless of whether we have per-counter overflow
1040 	 * interrupt or a combined overflow interrupt.
1041 	 */
1042 	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
1043 		struct perf_event *event = events->events[idx];
1044 
1045 		if (!event)
1046 			continue;
1047 
1048 		/* Did this counter overflow? */
1049 		if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
1050 		      CCI_PMU_OVRFLW_FLAG))
1051 			continue;
1052 
1053 		pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
1054 							CCI_PMU_OVRFLW);
1055 
1056 		pmu_event_update(event);
1057 		pmu_event_set_period(event);
1058 		handled = IRQ_HANDLED;
1059 	}
1060 
1061 	/* Enable the PMU and sync possibly overflowed counters */
1062 	__cci_pmu_enable_sync(cci_pmu);
1063 	raw_spin_unlock(&events->pmu_lock);
1064 
1065 	return IRQ_RETVAL(handled);
1066 }
1067 
1068 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
1069 {
1070 	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
1071 	if (ret) {
1072 		pmu_free_irq(cci_pmu);
1073 		return ret;
1074 	}
1075 	return 0;
1076 }
1077 
1078 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
1079 {
1080 	pmu_free_irq(cci_pmu);
1081 }
1082 
1083 static void hw_perf_event_destroy(struct perf_event *event)
1084 {
1085 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1086 	atomic_t *active_events = &cci_pmu->active_events;
1087 	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
1088 
1089 	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
1090 		cci_pmu_put_hw(cci_pmu);
1091 		mutex_unlock(reserve_mutex);
1092 	}
1093 }
1094 
1095 static void cci_pmu_enable(struct pmu *pmu)
1096 {
1097 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1098 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1099 	bool enabled = !bitmap_empty(hw_events->used_mask, cci_pmu->num_cntrs);
1100 	unsigned long flags;
1101 
1102 	if (!enabled)
1103 		return;
1104 
1105 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1106 	__cci_pmu_enable_sync(cci_pmu);
1107 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1108 
1109 }
1110 
1111 static void cci_pmu_disable(struct pmu *pmu)
1112 {
1113 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1114 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1115 	unsigned long flags;
1116 
1117 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1118 	__cci_pmu_disable(cci_pmu);
1119 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1120 }
1121 
1122 /*
1123  * Check if the idx represents a non-programmable counter.
1124  * All the fixed event counters are mapped before the programmable
1125  * counters.
1126  */
1127 static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
1128 {
1129 	return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
1130 }
1131 
1132 static void cci_pmu_start(struct perf_event *event, int pmu_flags)
1133 {
1134 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1135 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1136 	struct hw_perf_event *hwc = &event->hw;
1137 	int idx = hwc->idx;
1138 	unsigned long flags;
1139 
1140 	/*
1141 	 * To handle interrupt latency, we always reprogram the period
1142 	 * regardless of PERF_EF_RELOAD.
1143 	 */
1144 	if (pmu_flags & PERF_EF_RELOAD)
1145 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
1146 
1147 	hwc->state = 0;
1148 
1149 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1150 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1151 		return;
1152 	}
1153 
1154 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1155 
1156 	/* Configure the counter unless you are counting a fixed event */
1157 	if (!pmu_fixed_hw_idx(cci_pmu, idx))
1158 		pmu_set_event(cci_pmu, idx, hwc->config_base);
1159 
1160 	pmu_event_set_period(event);
1161 	pmu_enable_counter(cci_pmu, idx);
1162 
1163 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1164 }
1165 
1166 static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
1167 {
1168 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1169 	struct hw_perf_event *hwc = &event->hw;
1170 	int idx = hwc->idx;
1171 
1172 	if (hwc->state & PERF_HES_STOPPED)
1173 		return;
1174 
1175 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1176 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1177 		return;
1178 	}
1179 
1180 	/*
1181 	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1182 	 * cci_pmu_start()
1183 	 */
1184 	pmu_disable_counter(cci_pmu, idx);
1185 	pmu_event_update(event);
1186 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1187 }
1188 
1189 static int cci_pmu_add(struct perf_event *event, int flags)
1190 {
1191 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1192 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1193 	struct hw_perf_event *hwc = &event->hw;
1194 	int idx;
1195 
1196 	/* If we don't have a space for the counter then finish early. */
1197 	idx = pmu_get_event_idx(hw_events, event);
1198 	if (idx < 0)
1199 		return idx;
1200 
1201 	event->hw.idx = idx;
1202 	hw_events->events[idx] = event;
1203 
1204 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1205 	if (flags & PERF_EF_START)
1206 		cci_pmu_start(event, PERF_EF_RELOAD);
1207 
1208 	/* Propagate our changes to the userspace mapping. */
1209 	perf_event_update_userpage(event);
1210 
1211 	return 0;
1212 }
1213 
1214 static void cci_pmu_del(struct perf_event *event, int flags)
1215 {
1216 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1217 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1218 	struct hw_perf_event *hwc = &event->hw;
1219 	int idx = hwc->idx;
1220 
1221 	cci_pmu_stop(event, PERF_EF_UPDATE);
1222 	hw_events->events[idx] = NULL;
1223 	clear_bit(idx, hw_events->used_mask);
1224 
1225 	perf_event_update_userpage(event);
1226 }
1227 
1228 static int validate_event(struct pmu *cci_pmu,
1229 			  struct cci_pmu_hw_events *hw_events,
1230 			  struct perf_event *event)
1231 {
1232 	if (is_software_event(event))
1233 		return 1;
1234 
1235 	/*
1236 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1237 	 * core perf code won't check that the pmu->ctx == leader->ctx
1238 	 * until after pmu->event_init(event).
1239 	 */
1240 	if (event->pmu != cci_pmu)
1241 		return 0;
1242 
1243 	if (event->state < PERF_EVENT_STATE_OFF)
1244 		return 1;
1245 
1246 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1247 		return 1;
1248 
1249 	return pmu_get_event_idx(hw_events, event) >= 0;
1250 }
1251 
1252 static int validate_group(struct perf_event *event)
1253 {
1254 	struct perf_event *sibling, *leader = event->group_leader;
1255 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1256 	unsigned long mask[BITS_TO_LONGS(HW_CNTRS_MAX)];
1257 	struct cci_pmu_hw_events fake_pmu = {
1258 		/*
1259 		 * Initialise the fake PMU. We only need to populate the
1260 		 * used_mask for the purposes of validation.
1261 		 */
1262 		.used_mask = mask,
1263 	};
1264 	bitmap_zero(mask, cci_pmu->num_cntrs);
1265 
1266 	if (!validate_event(event->pmu, &fake_pmu, leader))
1267 		return -EINVAL;
1268 
1269 	for_each_sibling_event(sibling, leader) {
1270 		if (!validate_event(event->pmu, &fake_pmu, sibling))
1271 			return -EINVAL;
1272 	}
1273 
1274 	if (!validate_event(event->pmu, &fake_pmu, event))
1275 		return -EINVAL;
1276 
1277 	return 0;
1278 }
1279 
1280 static int __hw_perf_event_init(struct perf_event *event)
1281 {
1282 	struct hw_perf_event *hwc = &event->hw;
1283 	int mapping;
1284 
1285 	mapping = pmu_map_event(event);
1286 
1287 	if (mapping < 0) {
1288 		pr_debug("event %x:%llx not supported\n", event->attr.type,
1289 			 event->attr.config);
1290 		return mapping;
1291 	}
1292 
1293 	/*
1294 	 * We don't assign an index until we actually place the event onto
1295 	 * hardware. Use -1 to signify that we haven't decided where to put it
1296 	 * yet.
1297 	 */
1298 	hwc->idx		= -1;
1299 	hwc->config_base	= 0;
1300 	hwc->config		= 0;
1301 	hwc->event_base		= 0;
1302 
1303 	/*
1304 	 * Store the event encoding into the config_base field.
1305 	 */
1306 	hwc->config_base	    |= (unsigned long)mapping;
1307 
1308 	if (event->group_leader != event) {
1309 		if (validate_group(event) != 0)
1310 			return -EINVAL;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static int cci_pmu_event_init(struct perf_event *event)
1317 {
1318 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1319 	atomic_t *active_events = &cci_pmu->active_events;
1320 	int err = 0;
1321 
1322 	if (event->attr.type != event->pmu->type)
1323 		return -ENOENT;
1324 
1325 	/* Shared by all CPUs, no meaningful state to sample */
1326 	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1327 		return -EOPNOTSUPP;
1328 
1329 	/*
1330 	 * Following the example set by other "uncore" PMUs, we accept any CPU
1331 	 * and rewrite its affinity dynamically rather than having perf core
1332 	 * handle cpu == -1 and pid == -1 for this case.
1333 	 *
1334 	 * The perf core will pin online CPUs for the duration of this call and
1335 	 * the event being installed into its context, so the PMU's CPU can't
1336 	 * change under our feet.
1337 	 */
1338 	if (event->cpu < 0)
1339 		return -EINVAL;
1340 	event->cpu = cci_pmu->cpu;
1341 
1342 	event->destroy = hw_perf_event_destroy;
1343 	if (!atomic_inc_not_zero(active_events)) {
1344 		mutex_lock(&cci_pmu->reserve_mutex);
1345 		if (atomic_read(active_events) == 0)
1346 			err = cci_pmu_get_hw(cci_pmu);
1347 		if (!err)
1348 			atomic_inc(active_events);
1349 		mutex_unlock(&cci_pmu->reserve_mutex);
1350 	}
1351 	if (err)
1352 		return err;
1353 
1354 	err = __hw_perf_event_init(event);
1355 	if (err)
1356 		hw_perf_event_destroy(event);
1357 
1358 	return err;
1359 }
1360 
1361 static ssize_t pmu_cpumask_attr_show(struct device *dev,
1362 				     struct device_attribute *attr, char *buf)
1363 {
1364 	struct pmu *pmu = dev_get_drvdata(dev);
1365 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1366 
1367 	return cpumap_print_to_pagebuf(true, buf, cpumask_of(cci_pmu->cpu));
1368 }
1369 
1370 static struct device_attribute pmu_cpumask_attr =
1371 	__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
1372 
1373 static struct attribute *pmu_attrs[] = {
1374 	&pmu_cpumask_attr.attr,
1375 	NULL,
1376 };
1377 
1378 static const struct attribute_group pmu_attr_group = {
1379 	.attrs = pmu_attrs,
1380 };
1381 
1382 static struct attribute_group pmu_format_attr_group = {
1383 	.name = "format",
1384 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1385 };
1386 
1387 static struct attribute_group pmu_event_attr_group = {
1388 	.name = "events",
1389 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1390 };
1391 
1392 static const struct attribute_group *pmu_attr_groups[] = {
1393 	&pmu_attr_group,
1394 	&pmu_format_attr_group,
1395 	&pmu_event_attr_group,
1396 	NULL
1397 };
1398 
1399 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1400 {
1401 	const struct cci_pmu_model *model = cci_pmu->model;
1402 	char *name = model->name;
1403 	u32 num_cntrs;
1404 
1405 	if (WARN_ON(model->num_hw_cntrs > NUM_HW_CNTRS_MAX))
1406 		return -EINVAL;
1407 	if (WARN_ON(model->fixed_hw_cntrs > FIXED_HW_CNTRS_MAX))
1408 		return -EINVAL;
1409 
1410 	pmu_event_attr_group.attrs = model->event_attrs;
1411 	pmu_format_attr_group.attrs = model->format_attrs;
1412 
1413 	cci_pmu->pmu = (struct pmu) {
1414 		.module		= THIS_MODULE,
1415 		.name		= cci_pmu->model->name,
1416 		.task_ctx_nr	= perf_invalid_context,
1417 		.pmu_enable	= cci_pmu_enable,
1418 		.pmu_disable	= cci_pmu_disable,
1419 		.event_init	= cci_pmu_event_init,
1420 		.add		= cci_pmu_add,
1421 		.del		= cci_pmu_del,
1422 		.start		= cci_pmu_start,
1423 		.stop		= cci_pmu_stop,
1424 		.read		= pmu_read,
1425 		.attr_groups	= pmu_attr_groups,
1426 		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
1427 	};
1428 
1429 	cci_pmu->plat_device = pdev;
1430 	num_cntrs = pmu_get_max_counters(cci_pmu);
1431 	if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1432 		dev_warn(&pdev->dev,
1433 			"PMU implements more counters(%d) than supported by"
1434 			" the model(%d), truncated.",
1435 			num_cntrs, cci_pmu->model->num_hw_cntrs);
1436 		num_cntrs = cci_pmu->model->num_hw_cntrs;
1437 	}
1438 	cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1439 
1440 	return perf_pmu_register(&cci_pmu->pmu, name, -1);
1441 }
1442 
1443 static int cci_pmu_offline_cpu(unsigned int cpu)
1444 {
1445 	int target;
1446 
1447 	if (!g_cci_pmu || cpu != g_cci_pmu->cpu)
1448 		return 0;
1449 
1450 	target = cpumask_any_but(cpu_online_mask, cpu);
1451 	if (target >= nr_cpu_ids)
1452 		return 0;
1453 
1454 	perf_pmu_migrate_context(&g_cci_pmu->pmu, cpu, target);
1455 	g_cci_pmu->cpu = target;
1456 	return 0;
1457 }
1458 
1459 static __maybe_unused struct cci_pmu_model cci_pmu_models[] = {
1460 #ifdef CONFIG_ARM_CCI400_PMU
1461 	[CCI400_R0] = {
1462 		.name = "CCI_400",
1463 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1464 		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1465 		.cntr_size = SZ_4K,
1466 		.format_attrs = cci400_pmu_format_attrs,
1467 		.event_attrs = cci400_r0_pmu_event_attrs,
1468 		.event_ranges = {
1469 			[CCI_IF_SLAVE] = {
1470 				CCI400_R0_SLAVE_PORT_MIN_EV,
1471 				CCI400_R0_SLAVE_PORT_MAX_EV,
1472 			},
1473 			[CCI_IF_MASTER] = {
1474 				CCI400_R0_MASTER_PORT_MIN_EV,
1475 				CCI400_R0_MASTER_PORT_MAX_EV,
1476 			},
1477 		},
1478 		.validate_hw_event = cci400_validate_hw_event,
1479 		.get_event_idx = cci400_get_event_idx,
1480 	},
1481 	[CCI400_R1] = {
1482 		.name = "CCI_400_r1",
1483 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1484 		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1485 		.cntr_size = SZ_4K,
1486 		.format_attrs = cci400_pmu_format_attrs,
1487 		.event_attrs = cci400_r1_pmu_event_attrs,
1488 		.event_ranges = {
1489 			[CCI_IF_SLAVE] = {
1490 				CCI400_R1_SLAVE_PORT_MIN_EV,
1491 				CCI400_R1_SLAVE_PORT_MAX_EV,
1492 			},
1493 			[CCI_IF_MASTER] = {
1494 				CCI400_R1_MASTER_PORT_MIN_EV,
1495 				CCI400_R1_MASTER_PORT_MAX_EV,
1496 			},
1497 		},
1498 		.validate_hw_event = cci400_validate_hw_event,
1499 		.get_event_idx = cci400_get_event_idx,
1500 	},
1501 #endif
1502 #ifdef CONFIG_ARM_CCI5xx_PMU
1503 	[CCI500_R0] = {
1504 		.name = "CCI_500",
1505 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1506 		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1507 		.cntr_size = SZ_64K,
1508 		.format_attrs = cci5xx_pmu_format_attrs,
1509 		.event_attrs = cci5xx_pmu_event_attrs,
1510 		.event_ranges = {
1511 			[CCI_IF_SLAVE] = {
1512 				CCI5xx_SLAVE_PORT_MIN_EV,
1513 				CCI5xx_SLAVE_PORT_MAX_EV,
1514 			},
1515 			[CCI_IF_MASTER] = {
1516 				CCI5xx_MASTER_PORT_MIN_EV,
1517 				CCI5xx_MASTER_PORT_MAX_EV,
1518 			},
1519 			[CCI_IF_GLOBAL] = {
1520 				CCI5xx_GLOBAL_PORT_MIN_EV,
1521 				CCI5xx_GLOBAL_PORT_MAX_EV,
1522 			},
1523 		},
1524 		.validate_hw_event = cci500_validate_hw_event,
1525 		.write_counters	= cci5xx_pmu_write_counters,
1526 	},
1527 	[CCI550_R0] = {
1528 		.name = "CCI_550",
1529 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1530 		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1531 		.cntr_size = SZ_64K,
1532 		.format_attrs = cci5xx_pmu_format_attrs,
1533 		.event_attrs = cci5xx_pmu_event_attrs,
1534 		.event_ranges = {
1535 			[CCI_IF_SLAVE] = {
1536 				CCI5xx_SLAVE_PORT_MIN_EV,
1537 				CCI5xx_SLAVE_PORT_MAX_EV,
1538 			},
1539 			[CCI_IF_MASTER] = {
1540 				CCI5xx_MASTER_PORT_MIN_EV,
1541 				CCI5xx_MASTER_PORT_MAX_EV,
1542 			},
1543 			[CCI_IF_GLOBAL] = {
1544 				CCI5xx_GLOBAL_PORT_MIN_EV,
1545 				CCI5xx_GLOBAL_PORT_MAX_EV,
1546 			},
1547 		},
1548 		.validate_hw_event = cci550_validate_hw_event,
1549 		.write_counters	= cci5xx_pmu_write_counters,
1550 	},
1551 #endif
1552 };
1553 
1554 static const struct of_device_id arm_cci_pmu_matches[] = {
1555 #ifdef CONFIG_ARM_CCI400_PMU
1556 	{
1557 		.compatible = "arm,cci-400-pmu",
1558 		.data	= NULL,
1559 	},
1560 	{
1561 		.compatible = "arm,cci-400-pmu,r0",
1562 		.data	= &cci_pmu_models[CCI400_R0],
1563 	},
1564 	{
1565 		.compatible = "arm,cci-400-pmu,r1",
1566 		.data	= &cci_pmu_models[CCI400_R1],
1567 	},
1568 #endif
1569 #ifdef CONFIG_ARM_CCI5xx_PMU
1570 	{
1571 		.compatible = "arm,cci-500-pmu,r0",
1572 		.data = &cci_pmu_models[CCI500_R0],
1573 	},
1574 	{
1575 		.compatible = "arm,cci-550-pmu,r0",
1576 		.data = &cci_pmu_models[CCI550_R0],
1577 	},
1578 #endif
1579 	{},
1580 };
1581 MODULE_DEVICE_TABLE(of, arm_cci_pmu_matches);
1582 
1583 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1584 {
1585 	int i;
1586 
1587 	for (i = 0; i < nr_irqs; i++)
1588 		if (irq == irqs[i])
1589 			return true;
1590 
1591 	return false;
1592 }
1593 
1594 static struct cci_pmu *cci_pmu_alloc(struct device *dev)
1595 {
1596 	struct cci_pmu *cci_pmu;
1597 	const struct cci_pmu_model *model;
1598 
1599 	/*
1600 	 * All allocations are devm_* hence we don't have to free
1601 	 * them explicitly on an error, as it would end up in driver
1602 	 * detach.
1603 	 */
1604 	cci_pmu = devm_kzalloc(dev, sizeof(*cci_pmu), GFP_KERNEL);
1605 	if (!cci_pmu)
1606 		return ERR_PTR(-ENOMEM);
1607 
1608 	cci_pmu->ctrl_base = *(void __iomem **)dev->platform_data;
1609 
1610 	model = of_device_get_match_data(dev);
1611 	if (!model) {
1612 		dev_warn(dev,
1613 			 "DEPRECATED compatible property, requires secure access to CCI registers");
1614 		model = probe_cci_model(cci_pmu);
1615 	}
1616 	if (!model) {
1617 		dev_warn(dev, "CCI PMU version not supported\n");
1618 		return ERR_PTR(-ENODEV);
1619 	}
1620 
1621 	cci_pmu->model = model;
1622 	cci_pmu->irqs = devm_kcalloc(dev, CCI_PMU_MAX_HW_CNTRS(model),
1623 					sizeof(*cci_pmu->irqs), GFP_KERNEL);
1624 	if (!cci_pmu->irqs)
1625 		return ERR_PTR(-ENOMEM);
1626 	cci_pmu->hw_events.events = devm_kcalloc(dev,
1627 					     CCI_PMU_MAX_HW_CNTRS(model),
1628 					     sizeof(*cci_pmu->hw_events.events),
1629 					     GFP_KERNEL);
1630 	if (!cci_pmu->hw_events.events)
1631 		return ERR_PTR(-ENOMEM);
1632 	cci_pmu->hw_events.used_mask = devm_bitmap_zalloc(dev,
1633 							  CCI_PMU_MAX_HW_CNTRS(model),
1634 							  GFP_KERNEL);
1635 	if (!cci_pmu->hw_events.used_mask)
1636 		return ERR_PTR(-ENOMEM);
1637 
1638 	return cci_pmu;
1639 }
1640 
1641 static int cci_pmu_probe(struct platform_device *pdev)
1642 {
1643 	struct cci_pmu *cci_pmu;
1644 	int i, ret, irq;
1645 
1646 	cci_pmu = cci_pmu_alloc(&pdev->dev);
1647 	if (IS_ERR(cci_pmu))
1648 		return PTR_ERR(cci_pmu);
1649 
1650 	cci_pmu->base = devm_platform_ioremap_resource(pdev, 0);
1651 	if (IS_ERR(cci_pmu->base))
1652 		return -ENOMEM;
1653 
1654 	/*
1655 	 * CCI PMU has one overflow interrupt per counter; but some may be tied
1656 	 * together to a common interrupt.
1657 	 */
1658 	cci_pmu->nr_irqs = 0;
1659 	for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1660 		irq = platform_get_irq(pdev, i);
1661 		if (irq < 0)
1662 			break;
1663 
1664 		if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1665 			continue;
1666 
1667 		cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1668 	}
1669 
1670 	/*
1671 	 * Ensure that the device tree has as many interrupts as the number
1672 	 * of counters.
1673 	 */
1674 	if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1675 		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1676 			i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1677 		return -EINVAL;
1678 	}
1679 
1680 	raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1681 	mutex_init(&cci_pmu->reserve_mutex);
1682 	atomic_set(&cci_pmu->active_events, 0);
1683 
1684 	cci_pmu->cpu = raw_smp_processor_id();
1685 	g_cci_pmu = cci_pmu;
1686 	cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1687 				  "perf/arm/cci:online", NULL,
1688 				  cci_pmu_offline_cpu);
1689 
1690 	ret = cci_pmu_init(cci_pmu, pdev);
1691 	if (ret)
1692 		goto error_pmu_init;
1693 
1694 	pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1695 	return 0;
1696 
1697 error_pmu_init:
1698 	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1699 	g_cci_pmu = NULL;
1700 	return ret;
1701 }
1702 
1703 static int cci_pmu_remove(struct platform_device *pdev)
1704 {
1705 	if (!g_cci_pmu)
1706 		return 0;
1707 
1708 	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1709 	perf_pmu_unregister(&g_cci_pmu->pmu);
1710 	g_cci_pmu = NULL;
1711 
1712 	return 0;
1713 }
1714 
1715 static struct platform_driver cci_pmu_driver = {
1716 	.driver = {
1717 		   .name = DRIVER_NAME,
1718 		   .of_match_table = arm_cci_pmu_matches,
1719 		   .suppress_bind_attrs = true,
1720 		  },
1721 	.probe = cci_pmu_probe,
1722 	.remove = cci_pmu_remove,
1723 };
1724 
1725 module_platform_driver(cci_pmu_driver);
1726 MODULE_LICENSE("GPL v2");
1727 MODULE_DESCRIPTION("ARM CCI PMU support");
1728