xref: /openbmc/linux/drivers/perf/arm-cci.c (revision e7253313)
1 // SPDX-License-Identifier: GPL-2.0
2 // CCI Cache Coherent Interconnect PMU driver
3 // Copyright (C) 2013-2018 Arm Ltd.
4 // Author: Punit Agrawal <punit.agrawal@arm.com>, Suzuki Poulose <suzuki.poulose@arm.com>
5 
6 #include <linux/arm-cci.h>
7 #include <linux/io.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/of_device.h>
12 #include <linux/of_irq.h>
13 #include <linux/of_platform.h>
14 #include <linux/perf_event.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 
19 #define DRIVER_NAME		"ARM-CCI PMU"
20 
21 #define CCI_PMCR		0x0100
22 #define CCI_PID2		0x0fe8
23 
24 #define CCI_PMCR_CEN		0x00000001
25 #define CCI_PMCR_NCNT_MASK	0x0000f800
26 #define CCI_PMCR_NCNT_SHIFT	11
27 
28 #define CCI_PID2_REV_MASK	0xf0
29 #define CCI_PID2_REV_SHIFT	4
30 
31 #define CCI_PMU_EVT_SEL		0x000
32 #define CCI_PMU_CNTR		0x004
33 #define CCI_PMU_CNTR_CTRL	0x008
34 #define CCI_PMU_OVRFLW		0x00c
35 
36 #define CCI_PMU_OVRFLW_FLAG	1
37 
38 #define CCI_PMU_CNTR_SIZE(model)	((model)->cntr_size)
39 #define CCI_PMU_CNTR_BASE(model, idx)	((idx) * CCI_PMU_CNTR_SIZE(model))
40 #define CCI_PMU_CNTR_MASK		((1ULL << 32) -1)
41 #define CCI_PMU_CNTR_LAST(cci_pmu)	(cci_pmu->num_cntrs - 1)
42 
43 #define CCI_PMU_MAX_HW_CNTRS(model) \
44 	((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
45 
46 /* Types of interfaces that can generate events */
47 enum {
48 	CCI_IF_SLAVE,
49 	CCI_IF_MASTER,
50 #ifdef CONFIG_ARM_CCI5xx_PMU
51 	CCI_IF_GLOBAL,
52 #endif
53 	CCI_IF_MAX,
54 };
55 
56 #define NUM_HW_CNTRS_CII_4XX	4
57 #define NUM_HW_CNTRS_CII_5XX	8
58 #define NUM_HW_CNTRS_MAX	NUM_HW_CNTRS_CII_5XX
59 
60 #define FIXED_HW_CNTRS_CII_4XX	1
61 #define FIXED_HW_CNTRS_CII_5XX	0
62 #define FIXED_HW_CNTRS_MAX	FIXED_HW_CNTRS_CII_4XX
63 
64 #define HW_CNTRS_MAX		(NUM_HW_CNTRS_MAX + FIXED_HW_CNTRS_MAX)
65 
66 struct event_range {
67 	u32 min;
68 	u32 max;
69 };
70 
71 struct cci_pmu_hw_events {
72 	struct perf_event **events;
73 	unsigned long *used_mask;
74 	raw_spinlock_t pmu_lock;
75 };
76 
77 struct cci_pmu;
78 /*
79  * struct cci_pmu_model:
80  * @fixed_hw_cntrs - Number of fixed event counters
81  * @num_hw_cntrs - Maximum number of programmable event counters
82  * @cntr_size - Size of an event counter mapping
83  */
84 struct cci_pmu_model {
85 	char *name;
86 	u32 fixed_hw_cntrs;
87 	u32 num_hw_cntrs;
88 	u32 cntr_size;
89 	struct attribute **format_attrs;
90 	struct attribute **event_attrs;
91 	struct event_range event_ranges[CCI_IF_MAX];
92 	int (*validate_hw_event)(struct cci_pmu *, unsigned long);
93 	int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
94 	void (*write_counters)(struct cci_pmu *, unsigned long *);
95 };
96 
97 static struct cci_pmu_model cci_pmu_models[];
98 
99 struct cci_pmu {
100 	void __iomem *base;
101 	void __iomem *ctrl_base;
102 	struct pmu pmu;
103 	int cpu;
104 	int nr_irqs;
105 	int *irqs;
106 	unsigned long active_irqs;
107 	const struct cci_pmu_model *model;
108 	struct cci_pmu_hw_events hw_events;
109 	struct platform_device *plat_device;
110 	int num_cntrs;
111 	atomic_t active_events;
112 	struct mutex reserve_mutex;
113 };
114 
115 #define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
116 
117 static struct cci_pmu *g_cci_pmu;
118 
119 enum cci_models {
120 #ifdef CONFIG_ARM_CCI400_PMU
121 	CCI400_R0,
122 	CCI400_R1,
123 #endif
124 #ifdef CONFIG_ARM_CCI5xx_PMU
125 	CCI500_R0,
126 	CCI550_R0,
127 #endif
128 	CCI_MODEL_MAX
129 };
130 
131 static void pmu_write_counters(struct cci_pmu *cci_pmu,
132 				 unsigned long *mask);
133 static ssize_t __maybe_unused cci_pmu_format_show(struct device *dev,
134 			struct device_attribute *attr, char *buf);
135 static ssize_t __maybe_unused cci_pmu_event_show(struct device *dev,
136 			struct device_attribute *attr, char *buf);
137 
138 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) 				\
139 	&((struct dev_ext_attribute[]) {					\
140 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }	\
141 	})[0].attr.attr
142 
143 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
144 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
145 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
146 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
147 
148 /* CCI400 PMU Specific definitions */
149 
150 #ifdef CONFIG_ARM_CCI400_PMU
151 
152 /* Port ids */
153 #define CCI400_PORT_S0		0
154 #define CCI400_PORT_S1		1
155 #define CCI400_PORT_S2		2
156 #define CCI400_PORT_S3		3
157 #define CCI400_PORT_S4		4
158 #define CCI400_PORT_M0		5
159 #define CCI400_PORT_M1		6
160 #define CCI400_PORT_M2		7
161 
162 #define CCI400_R1_PX		5
163 
164 /*
165  * Instead of an event id to monitor CCI cycles, a dedicated counter is
166  * provided. Use 0xff to represent CCI cycles and hope that no future revisions
167  * make use of this event in hardware.
168  */
169 enum cci400_perf_events {
170 	CCI400_PMU_CYCLES = 0xff
171 };
172 
173 #define CCI400_PMU_CYCLE_CNTR_IDX	0
174 #define CCI400_PMU_CNTR0_IDX		1
175 
176 /*
177  * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
178  * ports and bits 4:0 are event codes. There are different event codes
179  * associated with each port type.
180  *
181  * Additionally, the range of events associated with the port types changed
182  * between Rev0 and Rev1.
183  *
184  * The constants below define the range of valid codes for each port type for
185  * the different revisions and are used to validate the event to be monitored.
186  */
187 
188 #define CCI400_PMU_EVENT_MASK		0xffUL
189 #define CCI400_PMU_EVENT_SOURCE_SHIFT	5
190 #define CCI400_PMU_EVENT_SOURCE_MASK	0x7
191 #define CCI400_PMU_EVENT_CODE_SHIFT	0
192 #define CCI400_PMU_EVENT_CODE_MASK	0x1f
193 #define CCI400_PMU_EVENT_SOURCE(event) \
194 	((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
195 			CCI400_PMU_EVENT_SOURCE_MASK)
196 #define CCI400_PMU_EVENT_CODE(event) \
197 	((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
198 
199 #define CCI400_R0_SLAVE_PORT_MIN_EV	0x00
200 #define CCI400_R0_SLAVE_PORT_MAX_EV	0x13
201 #define CCI400_R0_MASTER_PORT_MIN_EV	0x14
202 #define CCI400_R0_MASTER_PORT_MAX_EV	0x1a
203 
204 #define CCI400_R1_SLAVE_PORT_MIN_EV	0x00
205 #define CCI400_R1_SLAVE_PORT_MAX_EV	0x14
206 #define CCI400_R1_MASTER_PORT_MIN_EV	0x00
207 #define CCI400_R1_MASTER_PORT_MAX_EV	0x11
208 
209 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
210 	CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
211 					(unsigned long)_config)
212 
213 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
214 			struct device_attribute *attr, char *buf);
215 
216 static struct attribute *cci400_pmu_format_attrs[] = {
217 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
218 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
219 	NULL
220 };
221 
222 static struct attribute *cci400_r0_pmu_event_attrs[] = {
223 	/* Slave events */
224 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
225 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
226 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
227 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
228 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
229 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
230 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
231 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
232 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
233 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
234 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
235 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
236 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
237 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
238 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
239 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
240 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
241 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
242 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
243 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
244 	/* Master events */
245 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
246 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
247 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
248 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
249 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
250 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
251 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
252 	/* Special event for cycles counter */
253 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
254 	NULL
255 };
256 
257 static struct attribute *cci400_r1_pmu_event_attrs[] = {
258 	/* Slave events */
259 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
260 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
261 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
262 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
263 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
264 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
265 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
266 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
267 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
268 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
269 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
270 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
271 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
272 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
273 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
274 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
275 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
276 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
277 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
278 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
279 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
280 	/* Master events */
281 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
282 	CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
283 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
284 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
285 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
286 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
287 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
288 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
289 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
290 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
291 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
292 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
293 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
294 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
295 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
296 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
297 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
298 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
299 	/* Special event for cycles counter */
300 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
301 	NULL
302 };
303 
304 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
305 			struct device_attribute *attr, char *buf)
306 {
307 	struct dev_ext_attribute *eattr = container_of(attr,
308 				struct dev_ext_attribute, attr);
309 	return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
310 }
311 
312 static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
313 				struct cci_pmu_hw_events *hw,
314 				unsigned long cci_event)
315 {
316 	int idx;
317 
318 	/* cycles event idx is fixed */
319 	if (cci_event == CCI400_PMU_CYCLES) {
320 		if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
321 			return -EAGAIN;
322 
323 		return CCI400_PMU_CYCLE_CNTR_IDX;
324 	}
325 
326 	for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
327 		if (!test_and_set_bit(idx, hw->used_mask))
328 			return idx;
329 
330 	/* No counters available */
331 	return -EAGAIN;
332 }
333 
334 static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
335 {
336 	u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
337 	u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
338 	int if_type;
339 
340 	if (hw_event & ~CCI400_PMU_EVENT_MASK)
341 		return -ENOENT;
342 
343 	if (hw_event == CCI400_PMU_CYCLES)
344 		return hw_event;
345 
346 	switch (ev_source) {
347 	case CCI400_PORT_S0:
348 	case CCI400_PORT_S1:
349 	case CCI400_PORT_S2:
350 	case CCI400_PORT_S3:
351 	case CCI400_PORT_S4:
352 		/* Slave Interface */
353 		if_type = CCI_IF_SLAVE;
354 		break;
355 	case CCI400_PORT_M0:
356 	case CCI400_PORT_M1:
357 	case CCI400_PORT_M2:
358 		/* Master Interface */
359 		if_type = CCI_IF_MASTER;
360 		break;
361 	default:
362 		return -ENOENT;
363 	}
364 
365 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
366 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
367 		return hw_event;
368 
369 	return -ENOENT;
370 }
371 
372 static int probe_cci400_revision(struct cci_pmu *cci_pmu)
373 {
374 	int rev;
375 	rev = readl_relaxed(cci_pmu->ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
376 	rev >>= CCI_PID2_REV_SHIFT;
377 
378 	if (rev < CCI400_R1_PX)
379 		return CCI400_R0;
380 	else
381 		return CCI400_R1;
382 }
383 
384 static const struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
385 {
386 	if (platform_has_secure_cci_access())
387 		return &cci_pmu_models[probe_cci400_revision(cci_pmu)];
388 	return NULL;
389 }
390 #else	/* !CONFIG_ARM_CCI400_PMU */
391 static inline struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
392 {
393 	return NULL;
394 }
395 #endif	/* CONFIG_ARM_CCI400_PMU */
396 
397 #ifdef CONFIG_ARM_CCI5xx_PMU
398 
399 /*
400  * CCI5xx PMU event id is an 9-bit value made of two parts.
401  *	 bits [8:5] - Source for the event
402  *	 bits [4:0] - Event code (specific to type of interface)
403  *
404  *
405  */
406 
407 /* Port ids */
408 #define CCI5xx_PORT_S0			0x0
409 #define CCI5xx_PORT_S1			0x1
410 #define CCI5xx_PORT_S2			0x2
411 #define CCI5xx_PORT_S3			0x3
412 #define CCI5xx_PORT_S4			0x4
413 #define CCI5xx_PORT_S5			0x5
414 #define CCI5xx_PORT_S6			0x6
415 
416 #define CCI5xx_PORT_M0			0x8
417 #define CCI5xx_PORT_M1			0x9
418 #define CCI5xx_PORT_M2			0xa
419 #define CCI5xx_PORT_M3			0xb
420 #define CCI5xx_PORT_M4			0xc
421 #define CCI5xx_PORT_M5			0xd
422 #define CCI5xx_PORT_M6			0xe
423 
424 #define CCI5xx_PORT_GLOBAL		0xf
425 
426 #define CCI5xx_PMU_EVENT_MASK		0x1ffUL
427 #define CCI5xx_PMU_EVENT_SOURCE_SHIFT	0x5
428 #define CCI5xx_PMU_EVENT_SOURCE_MASK	0xf
429 #define CCI5xx_PMU_EVENT_CODE_SHIFT	0x0
430 #define CCI5xx_PMU_EVENT_CODE_MASK	0x1f
431 
432 #define CCI5xx_PMU_EVENT_SOURCE(event)	\
433 	((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
434 #define CCI5xx_PMU_EVENT_CODE(event)	\
435 	((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
436 
437 #define CCI5xx_SLAVE_PORT_MIN_EV	0x00
438 #define CCI5xx_SLAVE_PORT_MAX_EV	0x1f
439 #define CCI5xx_MASTER_PORT_MIN_EV	0x00
440 #define CCI5xx_MASTER_PORT_MAX_EV	0x06
441 #define CCI5xx_GLOBAL_PORT_MIN_EV	0x00
442 #define CCI5xx_GLOBAL_PORT_MAX_EV	0x0f
443 
444 
445 #define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
446 	CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
447 					(unsigned long) _config)
448 
449 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
450 				struct device_attribute *attr, char *buf);
451 
452 static struct attribute *cci5xx_pmu_format_attrs[] = {
453 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
454 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
455 	NULL,
456 };
457 
458 static struct attribute *cci5xx_pmu_event_attrs[] = {
459 	/* Slave events */
460 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
461 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
462 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
463 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
464 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
465 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
466 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
467 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
468 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
469 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
470 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
471 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
472 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
473 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
474 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
475 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
476 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
477 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
478 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
479 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
480 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
481 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
482 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
483 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
484 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
485 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
486 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
487 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
488 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
489 	CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
490 	CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
491 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
492 
493 	/* Master events */
494 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
495 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
496 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
497 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
498 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
499 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
500 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
501 
502 	/* Global events */
503 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
504 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
505 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
506 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
507 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
508 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
509 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
510 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
511 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
512 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
513 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
514 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
515 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
516 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
517 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full, 0xE),
518 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
519 	NULL
520 };
521 
522 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
523 				struct device_attribute *attr, char *buf)
524 {
525 	struct dev_ext_attribute *eattr = container_of(attr,
526 					struct dev_ext_attribute, attr);
527 	/* Global events have single fixed source code */
528 	return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
529 				(unsigned long)eattr->var, CCI5xx_PORT_GLOBAL);
530 }
531 
532 /*
533  * CCI500 provides 8 independent event counters that can count
534  * any of the events available.
535  * CCI500 PMU event source ids
536  *	0x0-0x6 - Slave interfaces
537  *	0x8-0xD - Master interfaces
538  *	0xf     - Global Events
539  *	0x7,0xe - Reserved
540  */
541 static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
542 					unsigned long hw_event)
543 {
544 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
545 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
546 	int if_type;
547 
548 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
549 		return -ENOENT;
550 
551 	switch (ev_source) {
552 	case CCI5xx_PORT_S0:
553 	case CCI5xx_PORT_S1:
554 	case CCI5xx_PORT_S2:
555 	case CCI5xx_PORT_S3:
556 	case CCI5xx_PORT_S4:
557 	case CCI5xx_PORT_S5:
558 	case CCI5xx_PORT_S6:
559 		if_type = CCI_IF_SLAVE;
560 		break;
561 	case CCI5xx_PORT_M0:
562 	case CCI5xx_PORT_M1:
563 	case CCI5xx_PORT_M2:
564 	case CCI5xx_PORT_M3:
565 	case CCI5xx_PORT_M4:
566 	case CCI5xx_PORT_M5:
567 		if_type = CCI_IF_MASTER;
568 		break;
569 	case CCI5xx_PORT_GLOBAL:
570 		if_type = CCI_IF_GLOBAL;
571 		break;
572 	default:
573 		return -ENOENT;
574 	}
575 
576 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
577 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
578 		return hw_event;
579 
580 	return -ENOENT;
581 }
582 
583 /*
584  * CCI550 provides 8 independent event counters that can count
585  * any of the events available.
586  * CCI550 PMU event source ids
587  *	0x0-0x6 - Slave interfaces
588  *	0x8-0xe - Master interfaces
589  *	0xf     - Global Events
590  *	0x7	- Reserved
591  */
592 static int cci550_validate_hw_event(struct cci_pmu *cci_pmu,
593 					unsigned long hw_event)
594 {
595 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
596 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
597 	int if_type;
598 
599 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
600 		return -ENOENT;
601 
602 	switch (ev_source) {
603 	case CCI5xx_PORT_S0:
604 	case CCI5xx_PORT_S1:
605 	case CCI5xx_PORT_S2:
606 	case CCI5xx_PORT_S3:
607 	case CCI5xx_PORT_S4:
608 	case CCI5xx_PORT_S5:
609 	case CCI5xx_PORT_S6:
610 		if_type = CCI_IF_SLAVE;
611 		break;
612 	case CCI5xx_PORT_M0:
613 	case CCI5xx_PORT_M1:
614 	case CCI5xx_PORT_M2:
615 	case CCI5xx_PORT_M3:
616 	case CCI5xx_PORT_M4:
617 	case CCI5xx_PORT_M5:
618 	case CCI5xx_PORT_M6:
619 		if_type = CCI_IF_MASTER;
620 		break;
621 	case CCI5xx_PORT_GLOBAL:
622 		if_type = CCI_IF_GLOBAL;
623 		break;
624 	default:
625 		return -ENOENT;
626 	}
627 
628 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
629 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
630 		return hw_event;
631 
632 	return -ENOENT;
633 }
634 
635 #endif	/* CONFIG_ARM_CCI5xx_PMU */
636 
637 /*
638  * Program the CCI PMU counters which have PERF_HES_ARCH set
639  * with the event period and mark them ready before we enable
640  * PMU.
641  */
642 static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
643 {
644 	int i;
645 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
646 	DECLARE_BITMAP(mask, HW_CNTRS_MAX);
647 
648 	bitmap_zero(mask, cci_pmu->num_cntrs);
649 	for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
650 		struct perf_event *event = cci_hw->events[i];
651 
652 		if (WARN_ON(!event))
653 			continue;
654 
655 		/* Leave the events which are not counting */
656 		if (event->hw.state & PERF_HES_STOPPED)
657 			continue;
658 		if (event->hw.state & PERF_HES_ARCH) {
659 			set_bit(i, mask);
660 			event->hw.state &= ~PERF_HES_ARCH;
661 		}
662 	}
663 
664 	pmu_write_counters(cci_pmu, mask);
665 }
666 
667 /* Should be called with cci_pmu->hw_events->pmu_lock held */
668 static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
669 {
670 	u32 val;
671 
672 	/* Enable all the PMU counters. */
673 	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
674 	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
675 }
676 
677 /* Should be called with cci_pmu->hw_events->pmu_lock held */
678 static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
679 {
680 	cci_pmu_sync_counters(cci_pmu);
681 	__cci_pmu_enable_nosync(cci_pmu);
682 }
683 
684 /* Should be called with cci_pmu->hw_events->pmu_lock held */
685 static void __cci_pmu_disable(struct cci_pmu *cci_pmu)
686 {
687 	u32 val;
688 
689 	/* Disable all the PMU counters. */
690 	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
691 	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
692 }
693 
694 static ssize_t cci_pmu_format_show(struct device *dev,
695 			struct device_attribute *attr, char *buf)
696 {
697 	struct dev_ext_attribute *eattr = container_of(attr,
698 				struct dev_ext_attribute, attr);
699 	return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
700 }
701 
702 static ssize_t cci_pmu_event_show(struct device *dev,
703 			struct device_attribute *attr, char *buf)
704 {
705 	struct dev_ext_attribute *eattr = container_of(attr,
706 				struct dev_ext_attribute, attr);
707 	/* source parameter is mandatory for normal PMU events */
708 	return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
709 					 (unsigned long)eattr->var);
710 }
711 
712 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
713 {
714 	return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
715 }
716 
717 static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
718 {
719 	return readl_relaxed(cci_pmu->base +
720 			     CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
721 }
722 
723 static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
724 			       int idx, unsigned int offset)
725 {
726 	writel_relaxed(value, cci_pmu->base +
727 		       CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
728 }
729 
730 static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
731 {
732 	pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
733 }
734 
735 static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
736 {
737 	pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
738 }
739 
740 static bool __maybe_unused
741 pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
742 {
743 	return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
744 }
745 
746 static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
747 {
748 	pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
749 }
750 
751 /*
752  * For all counters on the CCI-PMU, disable any 'enabled' counters,
753  * saving the changed counters in the mask, so that we can restore
754  * it later using pmu_restore_counters. The mask is private to the
755  * caller. We cannot rely on the used_mask maintained by the CCI_PMU
756  * as it only tells us if the counter is assigned to perf_event or not.
757  * The state of the perf_event cannot be locked by the PMU layer, hence
758  * we check the individual counter status (which can be locked by
759  * cci_pm->hw_events->pmu_lock).
760  *
761  * @mask should be initialised to empty by the caller.
762  */
763 static void __maybe_unused
764 pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
765 {
766 	int i;
767 
768 	for (i = 0; i < cci_pmu->num_cntrs; i++) {
769 		if (pmu_counter_is_enabled(cci_pmu, i)) {
770 			set_bit(i, mask);
771 			pmu_disable_counter(cci_pmu, i);
772 		}
773 	}
774 }
775 
776 /*
777  * Restore the status of the counters. Reversal of the pmu_save_counters().
778  * For each counter set in the mask, enable the counter back.
779  */
780 static void __maybe_unused
781 pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
782 {
783 	int i;
784 
785 	for_each_set_bit(i, mask, cci_pmu->num_cntrs)
786 		pmu_enable_counter(cci_pmu, i);
787 }
788 
789 /*
790  * Returns the number of programmable counters actually implemented
791  * by the cci
792  */
793 static u32 pmu_get_max_counters(struct cci_pmu *cci_pmu)
794 {
795 	return (readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) &
796 		CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
797 }
798 
799 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
800 {
801 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
802 	unsigned long cci_event = event->hw.config_base;
803 	int idx;
804 
805 	if (cci_pmu->model->get_event_idx)
806 		return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
807 
808 	/* Generic code to find an unused idx from the mask */
809 	for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
810 		if (!test_and_set_bit(idx, hw->used_mask))
811 			return idx;
812 
813 	/* No counters available */
814 	return -EAGAIN;
815 }
816 
817 static int pmu_map_event(struct perf_event *event)
818 {
819 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
820 
821 	if (event->attr.type < PERF_TYPE_MAX ||
822 			!cci_pmu->model->validate_hw_event)
823 		return -ENOENT;
824 
825 	return	cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
826 }
827 
828 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
829 {
830 	int i;
831 	struct platform_device *pmu_device = cci_pmu->plat_device;
832 
833 	if (unlikely(!pmu_device))
834 		return -ENODEV;
835 
836 	if (cci_pmu->nr_irqs < 1) {
837 		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
838 		return -ENODEV;
839 	}
840 
841 	/*
842 	 * Register all available CCI PMU interrupts. In the interrupt handler
843 	 * we iterate over the counters checking for interrupt source (the
844 	 * overflowing counter) and clear it.
845 	 *
846 	 * This should allow handling of non-unique interrupt for the counters.
847 	 */
848 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
849 		int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
850 				"arm-cci-pmu", cci_pmu);
851 		if (err) {
852 			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
853 				cci_pmu->irqs[i]);
854 			return err;
855 		}
856 
857 		set_bit(i, &cci_pmu->active_irqs);
858 	}
859 
860 	return 0;
861 }
862 
863 static void pmu_free_irq(struct cci_pmu *cci_pmu)
864 {
865 	int i;
866 
867 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
868 		if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
869 			continue;
870 
871 		free_irq(cci_pmu->irqs[i], cci_pmu);
872 	}
873 }
874 
875 static u32 pmu_read_counter(struct perf_event *event)
876 {
877 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
878 	struct hw_perf_event *hw_counter = &event->hw;
879 	int idx = hw_counter->idx;
880 	u32 value;
881 
882 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
883 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
884 		return 0;
885 	}
886 	value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
887 
888 	return value;
889 }
890 
891 static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
892 {
893 	pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
894 }
895 
896 static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
897 {
898 	int i;
899 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
900 
901 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
902 		struct perf_event *event = cci_hw->events[i];
903 
904 		if (WARN_ON(!event))
905 			continue;
906 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
907 	}
908 }
909 
910 static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
911 {
912 	if (cci_pmu->model->write_counters)
913 		cci_pmu->model->write_counters(cci_pmu, mask);
914 	else
915 		__pmu_write_counters(cci_pmu, mask);
916 }
917 
918 #ifdef CONFIG_ARM_CCI5xx_PMU
919 
920 /*
921  * CCI-500/CCI-550 has advanced power saving policies, which could gate the
922  * clocks to the PMU counters, which makes the writes to them ineffective.
923  * The only way to write to those counters is when the global counters
924  * are enabled and the particular counter is enabled.
925  *
926  * So we do the following :
927  *
928  * 1) Disable all the PMU counters, saving their current state
929  * 2) Enable the global PMU profiling, now that all counters are
930  *    disabled.
931  *
932  * For each counter to be programmed, repeat steps 3-7:
933  *
934  * 3) Write an invalid event code to the event control register for the
935       counter, so that the counters are not modified.
936  * 4) Enable the counter control for the counter.
937  * 5) Set the counter value
938  * 6) Disable the counter
939  * 7) Restore the event in the target counter
940  *
941  * 8) Disable the global PMU.
942  * 9) Restore the status of the rest of the counters.
943  *
944  * We choose an event which for CCI-5xx is guaranteed not to count.
945  * We use the highest possible event code (0x1f) for the master interface 0.
946  */
947 #define CCI5xx_INVALID_EVENT	((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
948 				 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
949 static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
950 {
951 	int i;
952 	DECLARE_BITMAP(saved_mask, HW_CNTRS_MAX);
953 
954 	bitmap_zero(saved_mask, cci_pmu->num_cntrs);
955 	pmu_save_counters(cci_pmu, saved_mask);
956 
957 	/*
958 	 * Now that all the counters are disabled, we can safely turn the PMU on,
959 	 * without syncing the status of the counters
960 	 */
961 	__cci_pmu_enable_nosync(cci_pmu);
962 
963 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
964 		struct perf_event *event = cci_pmu->hw_events.events[i];
965 
966 		if (WARN_ON(!event))
967 			continue;
968 
969 		pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT);
970 		pmu_enable_counter(cci_pmu, i);
971 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
972 		pmu_disable_counter(cci_pmu, i);
973 		pmu_set_event(cci_pmu, i, event->hw.config_base);
974 	}
975 
976 	__cci_pmu_disable(cci_pmu);
977 
978 	pmu_restore_counters(cci_pmu, saved_mask);
979 }
980 
981 #endif	/* CONFIG_ARM_CCI5xx_PMU */
982 
983 static u64 pmu_event_update(struct perf_event *event)
984 {
985 	struct hw_perf_event *hwc = &event->hw;
986 	u64 delta, prev_raw_count, new_raw_count;
987 
988 	do {
989 		prev_raw_count = local64_read(&hwc->prev_count);
990 		new_raw_count = pmu_read_counter(event);
991 	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
992 		 new_raw_count) != prev_raw_count);
993 
994 	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
995 
996 	local64_add(delta, &event->count);
997 
998 	return new_raw_count;
999 }
1000 
1001 static void pmu_read(struct perf_event *event)
1002 {
1003 	pmu_event_update(event);
1004 }
1005 
1006 static void pmu_event_set_period(struct perf_event *event)
1007 {
1008 	struct hw_perf_event *hwc = &event->hw;
1009 	/*
1010 	 * The CCI PMU counters have a period of 2^32. To account for the
1011 	 * possiblity of extreme interrupt latency we program for a period of
1012 	 * half that. Hopefully we can handle the interrupt before another 2^31
1013 	 * events occur and the counter overtakes its previous value.
1014 	 */
1015 	u64 val = 1ULL << 31;
1016 	local64_set(&hwc->prev_count, val);
1017 
1018 	/*
1019 	 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1020 	 * values needs to be sync-ed with the s/w state before the PMU is
1021 	 * enabled.
1022 	 * Mark this counter for sync.
1023 	 */
1024 	hwc->state |= PERF_HES_ARCH;
1025 }
1026 
1027 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
1028 {
1029 	unsigned long flags;
1030 	struct cci_pmu *cci_pmu = dev;
1031 	struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
1032 	int idx, handled = IRQ_NONE;
1033 
1034 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1035 
1036 	/* Disable the PMU while we walk through the counters */
1037 	__cci_pmu_disable(cci_pmu);
1038 	/*
1039 	 * Iterate over counters and update the corresponding perf events.
1040 	 * This should work regardless of whether we have per-counter overflow
1041 	 * interrupt or a combined overflow interrupt.
1042 	 */
1043 	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
1044 		struct perf_event *event = events->events[idx];
1045 
1046 		if (!event)
1047 			continue;
1048 
1049 		/* Did this counter overflow? */
1050 		if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
1051 		      CCI_PMU_OVRFLW_FLAG))
1052 			continue;
1053 
1054 		pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
1055 							CCI_PMU_OVRFLW);
1056 
1057 		pmu_event_update(event);
1058 		pmu_event_set_period(event);
1059 		handled = IRQ_HANDLED;
1060 	}
1061 
1062 	/* Enable the PMU and sync possibly overflowed counters */
1063 	__cci_pmu_enable_sync(cci_pmu);
1064 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1065 
1066 	return IRQ_RETVAL(handled);
1067 }
1068 
1069 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
1070 {
1071 	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
1072 	if (ret) {
1073 		pmu_free_irq(cci_pmu);
1074 		return ret;
1075 	}
1076 	return 0;
1077 }
1078 
1079 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
1080 {
1081 	pmu_free_irq(cci_pmu);
1082 }
1083 
1084 static void hw_perf_event_destroy(struct perf_event *event)
1085 {
1086 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1087 	atomic_t *active_events = &cci_pmu->active_events;
1088 	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
1089 
1090 	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
1091 		cci_pmu_put_hw(cci_pmu);
1092 		mutex_unlock(reserve_mutex);
1093 	}
1094 }
1095 
1096 static void cci_pmu_enable(struct pmu *pmu)
1097 {
1098 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1099 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1100 	int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
1101 	unsigned long flags;
1102 
1103 	if (!enabled)
1104 		return;
1105 
1106 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1107 	__cci_pmu_enable_sync(cci_pmu);
1108 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1109 
1110 }
1111 
1112 static void cci_pmu_disable(struct pmu *pmu)
1113 {
1114 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1115 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1116 	unsigned long flags;
1117 
1118 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1119 	__cci_pmu_disable(cci_pmu);
1120 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1121 }
1122 
1123 /*
1124  * Check if the idx represents a non-programmable counter.
1125  * All the fixed event counters are mapped before the programmable
1126  * counters.
1127  */
1128 static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
1129 {
1130 	return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
1131 }
1132 
1133 static void cci_pmu_start(struct perf_event *event, int pmu_flags)
1134 {
1135 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1136 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1137 	struct hw_perf_event *hwc = &event->hw;
1138 	int idx = hwc->idx;
1139 	unsigned long flags;
1140 
1141 	/*
1142 	 * To handle interrupt latency, we always reprogram the period
1143 	 * regardlesss of PERF_EF_RELOAD.
1144 	 */
1145 	if (pmu_flags & PERF_EF_RELOAD)
1146 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
1147 
1148 	hwc->state = 0;
1149 
1150 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1151 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1152 		return;
1153 	}
1154 
1155 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1156 
1157 	/* Configure the counter unless you are counting a fixed event */
1158 	if (!pmu_fixed_hw_idx(cci_pmu, idx))
1159 		pmu_set_event(cci_pmu, idx, hwc->config_base);
1160 
1161 	pmu_event_set_period(event);
1162 	pmu_enable_counter(cci_pmu, idx);
1163 
1164 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1165 }
1166 
1167 static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
1168 {
1169 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1170 	struct hw_perf_event *hwc = &event->hw;
1171 	int idx = hwc->idx;
1172 
1173 	if (hwc->state & PERF_HES_STOPPED)
1174 		return;
1175 
1176 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1177 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1178 		return;
1179 	}
1180 
1181 	/*
1182 	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1183 	 * cci_pmu_start()
1184 	 */
1185 	pmu_disable_counter(cci_pmu, idx);
1186 	pmu_event_update(event);
1187 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1188 }
1189 
1190 static int cci_pmu_add(struct perf_event *event, int flags)
1191 {
1192 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1193 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1194 	struct hw_perf_event *hwc = &event->hw;
1195 	int idx;
1196 
1197 	/* If we don't have a space for the counter then finish early. */
1198 	idx = pmu_get_event_idx(hw_events, event);
1199 	if (idx < 0)
1200 		return idx;
1201 
1202 	event->hw.idx = idx;
1203 	hw_events->events[idx] = event;
1204 
1205 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1206 	if (flags & PERF_EF_START)
1207 		cci_pmu_start(event, PERF_EF_RELOAD);
1208 
1209 	/* Propagate our changes to the userspace mapping. */
1210 	perf_event_update_userpage(event);
1211 
1212 	return 0;
1213 }
1214 
1215 static void cci_pmu_del(struct perf_event *event, int flags)
1216 {
1217 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1218 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1219 	struct hw_perf_event *hwc = &event->hw;
1220 	int idx = hwc->idx;
1221 
1222 	cci_pmu_stop(event, PERF_EF_UPDATE);
1223 	hw_events->events[idx] = NULL;
1224 	clear_bit(idx, hw_events->used_mask);
1225 
1226 	perf_event_update_userpage(event);
1227 }
1228 
1229 static int validate_event(struct pmu *cci_pmu,
1230 			  struct cci_pmu_hw_events *hw_events,
1231 			  struct perf_event *event)
1232 {
1233 	if (is_software_event(event))
1234 		return 1;
1235 
1236 	/*
1237 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1238 	 * core perf code won't check that the pmu->ctx == leader->ctx
1239 	 * until after pmu->event_init(event).
1240 	 */
1241 	if (event->pmu != cci_pmu)
1242 		return 0;
1243 
1244 	if (event->state < PERF_EVENT_STATE_OFF)
1245 		return 1;
1246 
1247 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1248 		return 1;
1249 
1250 	return pmu_get_event_idx(hw_events, event) >= 0;
1251 }
1252 
1253 static int validate_group(struct perf_event *event)
1254 {
1255 	struct perf_event *sibling, *leader = event->group_leader;
1256 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1257 	unsigned long mask[BITS_TO_LONGS(HW_CNTRS_MAX)];
1258 	struct cci_pmu_hw_events fake_pmu = {
1259 		/*
1260 		 * Initialise the fake PMU. We only need to populate the
1261 		 * used_mask for the purposes of validation.
1262 		 */
1263 		.used_mask = mask,
1264 	};
1265 	memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
1266 
1267 	if (!validate_event(event->pmu, &fake_pmu, leader))
1268 		return -EINVAL;
1269 
1270 	for_each_sibling_event(sibling, leader) {
1271 		if (!validate_event(event->pmu, &fake_pmu, sibling))
1272 			return -EINVAL;
1273 	}
1274 
1275 	if (!validate_event(event->pmu, &fake_pmu, event))
1276 		return -EINVAL;
1277 
1278 	return 0;
1279 }
1280 
1281 static int __hw_perf_event_init(struct perf_event *event)
1282 {
1283 	struct hw_perf_event *hwc = &event->hw;
1284 	int mapping;
1285 
1286 	mapping = pmu_map_event(event);
1287 
1288 	if (mapping < 0) {
1289 		pr_debug("event %x:%llx not supported\n", event->attr.type,
1290 			 event->attr.config);
1291 		return mapping;
1292 	}
1293 
1294 	/*
1295 	 * We don't assign an index until we actually place the event onto
1296 	 * hardware. Use -1 to signify that we haven't decided where to put it
1297 	 * yet.
1298 	 */
1299 	hwc->idx		= -1;
1300 	hwc->config_base	= 0;
1301 	hwc->config		= 0;
1302 	hwc->event_base		= 0;
1303 
1304 	/*
1305 	 * Store the event encoding into the config_base field.
1306 	 */
1307 	hwc->config_base	    |= (unsigned long)mapping;
1308 
1309 	if (event->group_leader != event) {
1310 		if (validate_group(event) != 0)
1311 			return -EINVAL;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 static int cci_pmu_event_init(struct perf_event *event)
1318 {
1319 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1320 	atomic_t *active_events = &cci_pmu->active_events;
1321 	int err = 0;
1322 
1323 	if (event->attr.type != event->pmu->type)
1324 		return -ENOENT;
1325 
1326 	/* Shared by all CPUs, no meaningful state to sample */
1327 	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1328 		return -EOPNOTSUPP;
1329 
1330 	/*
1331 	 * Following the example set by other "uncore" PMUs, we accept any CPU
1332 	 * and rewrite its affinity dynamically rather than having perf core
1333 	 * handle cpu == -1 and pid == -1 for this case.
1334 	 *
1335 	 * The perf core will pin online CPUs for the duration of this call and
1336 	 * the event being installed into its context, so the PMU's CPU can't
1337 	 * change under our feet.
1338 	 */
1339 	if (event->cpu < 0)
1340 		return -EINVAL;
1341 	event->cpu = cci_pmu->cpu;
1342 
1343 	event->destroy = hw_perf_event_destroy;
1344 	if (!atomic_inc_not_zero(active_events)) {
1345 		mutex_lock(&cci_pmu->reserve_mutex);
1346 		if (atomic_read(active_events) == 0)
1347 			err = cci_pmu_get_hw(cci_pmu);
1348 		if (!err)
1349 			atomic_inc(active_events);
1350 		mutex_unlock(&cci_pmu->reserve_mutex);
1351 	}
1352 	if (err)
1353 		return err;
1354 
1355 	err = __hw_perf_event_init(event);
1356 	if (err)
1357 		hw_perf_event_destroy(event);
1358 
1359 	return err;
1360 }
1361 
1362 static ssize_t pmu_cpumask_attr_show(struct device *dev,
1363 				     struct device_attribute *attr, char *buf)
1364 {
1365 	struct pmu *pmu = dev_get_drvdata(dev);
1366 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1367 
1368 	return cpumap_print_to_pagebuf(true, buf, cpumask_of(cci_pmu->cpu));
1369 }
1370 
1371 static struct device_attribute pmu_cpumask_attr =
1372 	__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
1373 
1374 static struct attribute *pmu_attrs[] = {
1375 	&pmu_cpumask_attr.attr,
1376 	NULL,
1377 };
1378 
1379 static struct attribute_group pmu_attr_group = {
1380 	.attrs = pmu_attrs,
1381 };
1382 
1383 static struct attribute_group pmu_format_attr_group = {
1384 	.name = "format",
1385 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1386 };
1387 
1388 static struct attribute_group pmu_event_attr_group = {
1389 	.name = "events",
1390 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1391 };
1392 
1393 static const struct attribute_group *pmu_attr_groups[] = {
1394 	&pmu_attr_group,
1395 	&pmu_format_attr_group,
1396 	&pmu_event_attr_group,
1397 	NULL
1398 };
1399 
1400 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1401 {
1402 	const struct cci_pmu_model *model = cci_pmu->model;
1403 	char *name = model->name;
1404 	u32 num_cntrs;
1405 
1406 	if (WARN_ON(model->num_hw_cntrs > NUM_HW_CNTRS_MAX))
1407 		return -EINVAL;
1408 	if (WARN_ON(model->fixed_hw_cntrs > FIXED_HW_CNTRS_MAX))
1409 		return -EINVAL;
1410 
1411 	pmu_event_attr_group.attrs = model->event_attrs;
1412 	pmu_format_attr_group.attrs = model->format_attrs;
1413 
1414 	cci_pmu->pmu = (struct pmu) {
1415 		.module		= THIS_MODULE,
1416 		.name		= cci_pmu->model->name,
1417 		.task_ctx_nr	= perf_invalid_context,
1418 		.pmu_enable	= cci_pmu_enable,
1419 		.pmu_disable	= cci_pmu_disable,
1420 		.event_init	= cci_pmu_event_init,
1421 		.add		= cci_pmu_add,
1422 		.del		= cci_pmu_del,
1423 		.start		= cci_pmu_start,
1424 		.stop		= cci_pmu_stop,
1425 		.read		= pmu_read,
1426 		.attr_groups	= pmu_attr_groups,
1427 		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
1428 	};
1429 
1430 	cci_pmu->plat_device = pdev;
1431 	num_cntrs = pmu_get_max_counters(cci_pmu);
1432 	if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1433 		dev_warn(&pdev->dev,
1434 			"PMU implements more counters(%d) than supported by"
1435 			" the model(%d), truncated.",
1436 			num_cntrs, cci_pmu->model->num_hw_cntrs);
1437 		num_cntrs = cci_pmu->model->num_hw_cntrs;
1438 	}
1439 	cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1440 
1441 	return perf_pmu_register(&cci_pmu->pmu, name, -1);
1442 }
1443 
1444 static int cci_pmu_offline_cpu(unsigned int cpu)
1445 {
1446 	int target;
1447 
1448 	if (!g_cci_pmu || cpu != g_cci_pmu->cpu)
1449 		return 0;
1450 
1451 	target = cpumask_any_but(cpu_online_mask, cpu);
1452 	if (target >= nr_cpu_ids)
1453 		return 0;
1454 
1455 	perf_pmu_migrate_context(&g_cci_pmu->pmu, cpu, target);
1456 	g_cci_pmu->cpu = target;
1457 	return 0;
1458 }
1459 
1460 static __maybe_unused struct cci_pmu_model cci_pmu_models[] = {
1461 #ifdef CONFIG_ARM_CCI400_PMU
1462 	[CCI400_R0] = {
1463 		.name = "CCI_400",
1464 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1465 		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1466 		.cntr_size = SZ_4K,
1467 		.format_attrs = cci400_pmu_format_attrs,
1468 		.event_attrs = cci400_r0_pmu_event_attrs,
1469 		.event_ranges = {
1470 			[CCI_IF_SLAVE] = {
1471 				CCI400_R0_SLAVE_PORT_MIN_EV,
1472 				CCI400_R0_SLAVE_PORT_MAX_EV,
1473 			},
1474 			[CCI_IF_MASTER] = {
1475 				CCI400_R0_MASTER_PORT_MIN_EV,
1476 				CCI400_R0_MASTER_PORT_MAX_EV,
1477 			},
1478 		},
1479 		.validate_hw_event = cci400_validate_hw_event,
1480 		.get_event_idx = cci400_get_event_idx,
1481 	},
1482 	[CCI400_R1] = {
1483 		.name = "CCI_400_r1",
1484 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1485 		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1486 		.cntr_size = SZ_4K,
1487 		.format_attrs = cci400_pmu_format_attrs,
1488 		.event_attrs = cci400_r1_pmu_event_attrs,
1489 		.event_ranges = {
1490 			[CCI_IF_SLAVE] = {
1491 				CCI400_R1_SLAVE_PORT_MIN_EV,
1492 				CCI400_R1_SLAVE_PORT_MAX_EV,
1493 			},
1494 			[CCI_IF_MASTER] = {
1495 				CCI400_R1_MASTER_PORT_MIN_EV,
1496 				CCI400_R1_MASTER_PORT_MAX_EV,
1497 			},
1498 		},
1499 		.validate_hw_event = cci400_validate_hw_event,
1500 		.get_event_idx = cci400_get_event_idx,
1501 	},
1502 #endif
1503 #ifdef CONFIG_ARM_CCI5xx_PMU
1504 	[CCI500_R0] = {
1505 		.name = "CCI_500",
1506 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1507 		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1508 		.cntr_size = SZ_64K,
1509 		.format_attrs = cci5xx_pmu_format_attrs,
1510 		.event_attrs = cci5xx_pmu_event_attrs,
1511 		.event_ranges = {
1512 			[CCI_IF_SLAVE] = {
1513 				CCI5xx_SLAVE_PORT_MIN_EV,
1514 				CCI5xx_SLAVE_PORT_MAX_EV,
1515 			},
1516 			[CCI_IF_MASTER] = {
1517 				CCI5xx_MASTER_PORT_MIN_EV,
1518 				CCI5xx_MASTER_PORT_MAX_EV,
1519 			},
1520 			[CCI_IF_GLOBAL] = {
1521 				CCI5xx_GLOBAL_PORT_MIN_EV,
1522 				CCI5xx_GLOBAL_PORT_MAX_EV,
1523 			},
1524 		},
1525 		.validate_hw_event = cci500_validate_hw_event,
1526 		.write_counters	= cci5xx_pmu_write_counters,
1527 	},
1528 	[CCI550_R0] = {
1529 		.name = "CCI_550",
1530 		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1531 		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1532 		.cntr_size = SZ_64K,
1533 		.format_attrs = cci5xx_pmu_format_attrs,
1534 		.event_attrs = cci5xx_pmu_event_attrs,
1535 		.event_ranges = {
1536 			[CCI_IF_SLAVE] = {
1537 				CCI5xx_SLAVE_PORT_MIN_EV,
1538 				CCI5xx_SLAVE_PORT_MAX_EV,
1539 			},
1540 			[CCI_IF_MASTER] = {
1541 				CCI5xx_MASTER_PORT_MIN_EV,
1542 				CCI5xx_MASTER_PORT_MAX_EV,
1543 			},
1544 			[CCI_IF_GLOBAL] = {
1545 				CCI5xx_GLOBAL_PORT_MIN_EV,
1546 				CCI5xx_GLOBAL_PORT_MAX_EV,
1547 			},
1548 		},
1549 		.validate_hw_event = cci550_validate_hw_event,
1550 		.write_counters	= cci5xx_pmu_write_counters,
1551 	},
1552 #endif
1553 };
1554 
1555 static const struct of_device_id arm_cci_pmu_matches[] = {
1556 #ifdef CONFIG_ARM_CCI400_PMU
1557 	{
1558 		.compatible = "arm,cci-400-pmu",
1559 		.data	= NULL,
1560 	},
1561 	{
1562 		.compatible = "arm,cci-400-pmu,r0",
1563 		.data	= &cci_pmu_models[CCI400_R0],
1564 	},
1565 	{
1566 		.compatible = "arm,cci-400-pmu,r1",
1567 		.data	= &cci_pmu_models[CCI400_R1],
1568 	},
1569 #endif
1570 #ifdef CONFIG_ARM_CCI5xx_PMU
1571 	{
1572 		.compatible = "arm,cci-500-pmu,r0",
1573 		.data = &cci_pmu_models[CCI500_R0],
1574 	},
1575 	{
1576 		.compatible = "arm,cci-550-pmu,r0",
1577 		.data = &cci_pmu_models[CCI550_R0],
1578 	},
1579 #endif
1580 	{},
1581 };
1582 MODULE_DEVICE_TABLE(of, arm_cci_pmu_matches);
1583 
1584 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1585 {
1586 	int i;
1587 
1588 	for (i = 0; i < nr_irqs; i++)
1589 		if (irq == irqs[i])
1590 			return true;
1591 
1592 	return false;
1593 }
1594 
1595 static struct cci_pmu *cci_pmu_alloc(struct device *dev)
1596 {
1597 	struct cci_pmu *cci_pmu;
1598 	const struct cci_pmu_model *model;
1599 
1600 	/*
1601 	 * All allocations are devm_* hence we don't have to free
1602 	 * them explicitly on an error, as it would end up in driver
1603 	 * detach.
1604 	 */
1605 	cci_pmu = devm_kzalloc(dev, sizeof(*cci_pmu), GFP_KERNEL);
1606 	if (!cci_pmu)
1607 		return ERR_PTR(-ENOMEM);
1608 
1609 	cci_pmu->ctrl_base = *(void __iomem **)dev->platform_data;
1610 
1611 	model = of_device_get_match_data(dev);
1612 	if (!model) {
1613 		dev_warn(dev,
1614 			 "DEPRECATED compatible property, requires secure access to CCI registers");
1615 		model = probe_cci_model(cci_pmu);
1616 	}
1617 	if (!model) {
1618 		dev_warn(dev, "CCI PMU version not supported\n");
1619 		return ERR_PTR(-ENODEV);
1620 	}
1621 
1622 	cci_pmu->model = model;
1623 	cci_pmu->irqs = devm_kcalloc(dev, CCI_PMU_MAX_HW_CNTRS(model),
1624 					sizeof(*cci_pmu->irqs), GFP_KERNEL);
1625 	if (!cci_pmu->irqs)
1626 		return ERR_PTR(-ENOMEM);
1627 	cci_pmu->hw_events.events = devm_kcalloc(dev,
1628 					     CCI_PMU_MAX_HW_CNTRS(model),
1629 					     sizeof(*cci_pmu->hw_events.events),
1630 					     GFP_KERNEL);
1631 	if (!cci_pmu->hw_events.events)
1632 		return ERR_PTR(-ENOMEM);
1633 	cci_pmu->hw_events.used_mask = devm_kcalloc(dev,
1634 						BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
1635 						sizeof(*cci_pmu->hw_events.used_mask),
1636 						GFP_KERNEL);
1637 	if (!cci_pmu->hw_events.used_mask)
1638 		return ERR_PTR(-ENOMEM);
1639 
1640 	return cci_pmu;
1641 }
1642 
1643 static int cci_pmu_probe(struct platform_device *pdev)
1644 {
1645 	struct cci_pmu *cci_pmu;
1646 	int i, ret, irq;
1647 
1648 	cci_pmu = cci_pmu_alloc(&pdev->dev);
1649 	if (IS_ERR(cci_pmu))
1650 		return PTR_ERR(cci_pmu);
1651 
1652 	cci_pmu->base = devm_platform_ioremap_resource(pdev, 0);
1653 	if (IS_ERR(cci_pmu->base))
1654 		return -ENOMEM;
1655 
1656 	/*
1657 	 * CCI PMU has one overflow interrupt per counter; but some may be tied
1658 	 * together to a common interrupt.
1659 	 */
1660 	cci_pmu->nr_irqs = 0;
1661 	for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1662 		irq = platform_get_irq(pdev, i);
1663 		if (irq < 0)
1664 			break;
1665 
1666 		if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1667 			continue;
1668 
1669 		cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1670 	}
1671 
1672 	/*
1673 	 * Ensure that the device tree has as many interrupts as the number
1674 	 * of counters.
1675 	 */
1676 	if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1677 		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1678 			i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1679 		return -EINVAL;
1680 	}
1681 
1682 	raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1683 	mutex_init(&cci_pmu->reserve_mutex);
1684 	atomic_set(&cci_pmu->active_events, 0);
1685 
1686 	cci_pmu->cpu = raw_smp_processor_id();
1687 	g_cci_pmu = cci_pmu;
1688 	cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1689 				  "perf/arm/cci:online", NULL,
1690 				  cci_pmu_offline_cpu);
1691 
1692 	ret = cci_pmu_init(cci_pmu, pdev);
1693 	if (ret)
1694 		goto error_pmu_init;
1695 
1696 	pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1697 	return 0;
1698 
1699 error_pmu_init:
1700 	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1701 	g_cci_pmu = NULL;
1702 	return ret;
1703 }
1704 
1705 static int cci_pmu_remove(struct platform_device *pdev)
1706 {
1707 	if (!g_cci_pmu)
1708 		return 0;
1709 
1710 	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1711 	perf_pmu_unregister(&g_cci_pmu->pmu);
1712 	g_cci_pmu = NULL;
1713 
1714 	return 0;
1715 }
1716 
1717 static struct platform_driver cci_pmu_driver = {
1718 	.driver = {
1719 		   .name = DRIVER_NAME,
1720 		   .of_match_table = arm_cci_pmu_matches,
1721 		  },
1722 	.probe = cci_pmu_probe,
1723 	.remove = cci_pmu_remove,
1724 };
1725 
1726 module_platform_driver(cci_pmu_driver);
1727 MODULE_LICENSE("GPL v2");
1728 MODULE_DESCRIPTION("ARM CCI PMU support");
1729