xref: /openbmc/linux/drivers/pcmcia/cistpl.c (revision 1fa6ac37)
1 /*
2  * cistpl.c -- 16-bit PCMCIA Card Information Structure parser
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * The initial developer of the original code is David A. Hinds
9  * <dahinds@users.sourceforge.net>.  Portions created by David A. Hinds
10  * are Copyright (C) 1999 David A. Hinds.  All Rights Reserved.
11  *
12  * (C) 1999		David A. Hinds
13  */
14 
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/major.h>
20 #include <linux/errno.h>
21 #include <linux/timer.h>
22 #include <linux/slab.h>
23 #include <linux/mm.h>
24 #include <linux/pci.h>
25 #include <linux/ioport.h>
26 #include <linux/io.h>
27 #include <asm/byteorder.h>
28 #include <asm/unaligned.h>
29 
30 #include <pcmcia/cs_types.h>
31 #include <pcmcia/ss.h>
32 #include <pcmcia/cs.h>
33 #include <pcmcia/cisreg.h>
34 #include <pcmcia/cistpl.h>
35 #include "cs_internal.h"
36 
37 static const u_char mantissa[] = {
38     10, 12, 13, 15, 20, 25, 30, 35,
39     40, 45, 50, 55, 60, 70, 80, 90
40 };
41 
42 static const u_int exponent[] = {
43     1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
44 };
45 
46 /* Convert an extended speed byte to a time in nanoseconds */
47 #define SPEED_CVT(v) \
48     (mantissa[(((v)>>3)&15)-1] * exponent[(v)&7] / 10)
49 /* Convert a power byte to a current in 0.1 microamps */
50 #define POWER_CVT(v) \
51     (mantissa[((v)>>3)&15] * exponent[(v)&7] / 10)
52 #define POWER_SCALE(v)		(exponent[(v)&7])
53 
54 /* Upper limit on reasonable # of tuples */
55 #define MAX_TUPLES		200
56 
57 /* 16-bit CIS? */
58 static int cis_width;
59 module_param(cis_width, int, 0444);
60 
61 void release_cis_mem(struct pcmcia_socket *s)
62 {
63 	mutex_lock(&s->ops_mutex);
64 	if (s->cis_mem.flags & MAP_ACTIVE) {
65 		s->cis_mem.flags &= ~MAP_ACTIVE;
66 		s->ops->set_mem_map(s, &s->cis_mem);
67 		if (s->cis_mem.res) {
68 			release_resource(s->cis_mem.res);
69 			kfree(s->cis_mem.res);
70 			s->cis_mem.res = NULL;
71 		}
72 		iounmap(s->cis_virt);
73 		s->cis_virt = NULL;
74 	}
75 	mutex_unlock(&s->ops_mutex);
76 }
77 
78 /**
79  * set_cis_map() - map the card memory at "card_offset" into virtual space.
80  *
81  * If flags & MAP_ATTRIB, map the attribute space, otherwise
82  * map the memory space.
83  *
84  * Must be called with ops_mutex held.
85  */
86 static void __iomem *set_cis_map(struct pcmcia_socket *s,
87 				unsigned int card_offset, unsigned int flags)
88 {
89 	pccard_mem_map *mem = &s->cis_mem;
90 	int ret;
91 
92 	if (!(s->features & SS_CAP_STATIC_MAP) && (mem->res == NULL)) {
93 		mem->res = pcmcia_find_mem_region(0, s->map_size,
94 						s->map_size, 0, s);
95 		if (mem->res == NULL) {
96 			dev_printk(KERN_NOTICE, &s->dev,
97 				   "cs: unable to map card memory!\n");
98 			return NULL;
99 		}
100 		s->cis_virt = NULL;
101 	}
102 
103 	if (!(s->features & SS_CAP_STATIC_MAP) && (!s->cis_virt))
104 		s->cis_virt = ioremap(mem->res->start, s->map_size);
105 
106 	mem->card_start = card_offset;
107 	mem->flags = flags;
108 
109 	ret = s->ops->set_mem_map(s, mem);
110 	if (ret) {
111 		iounmap(s->cis_virt);
112 		s->cis_virt = NULL;
113 		return NULL;
114 	}
115 
116 	if (s->features & SS_CAP_STATIC_MAP) {
117 		if (s->cis_virt)
118 			iounmap(s->cis_virt);
119 		s->cis_virt = ioremap(mem->static_start, s->map_size);
120 	}
121 
122 	return s->cis_virt;
123 }
124 
125 
126 /* Bits in attr field */
127 #define IS_ATTR		1
128 #define IS_INDIRECT	8
129 
130 /**
131  * pcmcia_read_cis_mem() - low-level function to read CIS memory
132  *
133  * must be called with ops_mutex held
134  */
135 int pcmcia_read_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
136 		 u_int len, void *ptr)
137 {
138 	void __iomem *sys, *end;
139 	unsigned char *buf = ptr;
140 
141 	dev_dbg(&s->dev, "pcmcia_read_cis_mem(%d, %#x, %u)\n", attr, addr, len);
142 
143 	if (attr & IS_INDIRECT) {
144 		/* Indirect accesses use a bunch of special registers at fixed
145 		   locations in common memory */
146 		u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
147 		if (attr & IS_ATTR) {
148 			addr *= 2;
149 			flags = ICTRL0_AUTOINC;
150 		}
151 
152 		sys = set_cis_map(s, 0, MAP_ACTIVE |
153 				((cis_width) ? MAP_16BIT : 0));
154 		if (!sys) {
155 			dev_dbg(&s->dev, "could not map memory\n");
156 			memset(ptr, 0xff, len);
157 			return -1;
158 		}
159 
160 		writeb(flags, sys+CISREG_ICTRL0);
161 		writeb(addr & 0xff, sys+CISREG_IADDR0);
162 		writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
163 		writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
164 		writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
165 		for ( ; len > 0; len--, buf++)
166 			*buf = readb(sys+CISREG_IDATA0);
167 	} else {
168 		u_int inc = 1, card_offset, flags;
169 
170 		if (addr > CISTPL_MAX_CIS_SIZE)
171 			dev_dbg(&s->dev,
172 				"attempt to read CIS mem at addr %#x", addr);
173 
174 		flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
175 		if (attr) {
176 			flags |= MAP_ATTRIB;
177 			inc++;
178 			addr *= 2;
179 		}
180 
181 		card_offset = addr & ~(s->map_size-1);
182 		while (len) {
183 			sys = set_cis_map(s, card_offset, flags);
184 			if (!sys) {
185 				dev_dbg(&s->dev, "could not map memory\n");
186 				memset(ptr, 0xff, len);
187 				return -1;
188 			}
189 			end = sys + s->map_size;
190 			sys = sys + (addr & (s->map_size-1));
191 			for ( ; len > 0; len--, buf++, sys += inc) {
192 				if (sys == end)
193 					break;
194 				*buf = readb(sys);
195 			}
196 			card_offset += s->map_size;
197 			addr = 0;
198 		}
199 	}
200 	dev_dbg(&s->dev, "  %#2.2x %#2.2x %#2.2x %#2.2x ...\n",
201 		*(u_char *)(ptr+0), *(u_char *)(ptr+1),
202 		*(u_char *)(ptr+2), *(u_char *)(ptr+3));
203 	return 0;
204 }
205 
206 
207 /**
208  * pcmcia_write_cis_mem() - low-level function to write CIS memory
209  *
210  * Probably only useful for writing one-byte registers. Must be called
211  * with ops_mutex held.
212  */
213 void pcmcia_write_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
214 		   u_int len, void *ptr)
215 {
216 	void __iomem *sys, *end;
217 	unsigned char *buf = ptr;
218 
219 	dev_dbg(&s->dev,
220 		"pcmcia_write_cis_mem(%d, %#x, %u)\n", attr, addr, len);
221 
222 	if (attr & IS_INDIRECT) {
223 		/* Indirect accesses use a bunch of special registers at fixed
224 		   locations in common memory */
225 		u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
226 		if (attr & IS_ATTR) {
227 			addr *= 2;
228 			flags = ICTRL0_AUTOINC;
229 		}
230 
231 		sys = set_cis_map(s, 0, MAP_ACTIVE |
232 				((cis_width) ? MAP_16BIT : 0));
233 		if (!sys) {
234 			dev_dbg(&s->dev, "could not map memory\n");
235 			return; /* FIXME: Error */
236 		}
237 
238 		writeb(flags, sys+CISREG_ICTRL0);
239 		writeb(addr & 0xff, sys+CISREG_IADDR0);
240 		writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
241 		writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
242 		writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
243 		for ( ; len > 0; len--, buf++)
244 			writeb(*buf, sys+CISREG_IDATA0);
245 	} else {
246 		u_int inc = 1, card_offset, flags;
247 
248 		flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
249 		if (attr & IS_ATTR) {
250 			flags |= MAP_ATTRIB;
251 			inc++;
252 			addr *= 2;
253 		}
254 
255 		card_offset = addr & ~(s->map_size-1);
256 		while (len) {
257 			sys = set_cis_map(s, card_offset, flags);
258 			if (!sys) {
259 				dev_dbg(&s->dev, "could not map memory\n");
260 				return; /* FIXME: error */
261 			}
262 
263 			end = sys + s->map_size;
264 			sys = sys + (addr & (s->map_size-1));
265 			for ( ; len > 0; len--, buf++, sys += inc) {
266 				if (sys == end)
267 					break;
268 				writeb(*buf, sys);
269 			}
270 			card_offset += s->map_size;
271 			addr = 0;
272 		}
273 	}
274 }
275 
276 
277 /**
278  * read_cis_cache() - read CIS memory or its associated cache
279  *
280  * This is a wrapper around read_cis_mem, with the same interface,
281  * but which caches information, for cards whose CIS may not be
282  * readable all the time.
283  */
284 static int read_cis_cache(struct pcmcia_socket *s, int attr, u_int addr,
285 			size_t len, void *ptr)
286 {
287 	struct cis_cache_entry *cis;
288 	int ret = 0;
289 
290 	if (s->state & SOCKET_CARDBUS)
291 		return -EINVAL;
292 
293 	mutex_lock(&s->ops_mutex);
294 	if (s->fake_cis) {
295 		if (s->fake_cis_len >= addr+len)
296 			memcpy(ptr, s->fake_cis+addr, len);
297 		else {
298 			memset(ptr, 0xff, len);
299 			ret = -EINVAL;
300 		}
301 		mutex_unlock(&s->ops_mutex);
302 		return ret;
303 	}
304 
305 	list_for_each_entry(cis, &s->cis_cache, node) {
306 		if (cis->addr == addr && cis->len == len && cis->attr == attr) {
307 			memcpy(ptr, cis->cache, len);
308 			mutex_unlock(&s->ops_mutex);
309 			return 0;
310 		}
311 	}
312 
313 	ret = pcmcia_read_cis_mem(s, attr, addr, len, ptr);
314 
315 	if (ret == 0) {
316 		/* Copy data into the cache */
317 		cis = kmalloc(sizeof(struct cis_cache_entry) + len, GFP_KERNEL);
318 		if (cis) {
319 			cis->addr = addr;
320 			cis->len = len;
321 			cis->attr = attr;
322 			memcpy(cis->cache, ptr, len);
323 			list_add(&cis->node, &s->cis_cache);
324 		}
325 	}
326 	mutex_unlock(&s->ops_mutex);
327 
328 	return ret;
329 }
330 
331 static void
332 remove_cis_cache(struct pcmcia_socket *s, int attr, u_int addr, u_int len)
333 {
334 	struct cis_cache_entry *cis;
335 
336 	mutex_lock(&s->ops_mutex);
337 	list_for_each_entry(cis, &s->cis_cache, node)
338 		if (cis->addr == addr && cis->len == len && cis->attr == attr) {
339 			list_del(&cis->node);
340 			kfree(cis);
341 			break;
342 		}
343 	mutex_unlock(&s->ops_mutex);
344 }
345 
346 /**
347  * destroy_cis_cache() - destroy the CIS cache
348  * @s:		pcmcia_socket for which CIS cache shall be destroyed
349  *
350  * This destroys the CIS cache but keeps any fake CIS alive. Must be
351  * called with ops_mutex held.
352  */
353 void destroy_cis_cache(struct pcmcia_socket *s)
354 {
355 	struct list_head *l, *n;
356 	struct cis_cache_entry *cis;
357 
358 	list_for_each_safe(l, n, &s->cis_cache) {
359 		cis = list_entry(l, struct cis_cache_entry, node);
360 		list_del(&cis->node);
361 		kfree(cis);
362 	}
363 }
364 
365 /**
366  * verify_cis_cache() - does the CIS match what is in the CIS cache?
367  */
368 int verify_cis_cache(struct pcmcia_socket *s)
369 {
370 	struct cis_cache_entry *cis;
371 	char *buf;
372 	int ret;
373 
374 	if (s->state & SOCKET_CARDBUS)
375 		return -EINVAL;
376 
377 	buf = kmalloc(256, GFP_KERNEL);
378 	if (buf == NULL) {
379 		dev_printk(KERN_WARNING, &s->dev,
380 			   "no memory for verifying CIS\n");
381 		return -ENOMEM;
382 	}
383 	mutex_lock(&s->ops_mutex);
384 	list_for_each_entry(cis, &s->cis_cache, node) {
385 		int len = cis->len;
386 
387 		if (len > 256)
388 			len = 256;
389 
390 		ret = pcmcia_read_cis_mem(s, cis->attr, cis->addr, len, buf);
391 		if (ret || memcmp(buf, cis->cache, len) != 0) {
392 			kfree(buf);
393 			mutex_unlock(&s->ops_mutex);
394 			return -1;
395 		}
396 	}
397 	kfree(buf);
398 	mutex_unlock(&s->ops_mutex);
399 	return 0;
400 }
401 
402 /**
403  * pcmcia_replace_cis() - use a replacement CIS instead of the card's CIS
404  *
405  * For really bad cards, we provide a facility for uploading a
406  * replacement CIS.
407  */
408 int pcmcia_replace_cis(struct pcmcia_socket *s,
409 		       const u8 *data, const size_t len)
410 {
411 	if (len > CISTPL_MAX_CIS_SIZE) {
412 		dev_printk(KERN_WARNING, &s->dev, "replacement CIS too big\n");
413 		return -EINVAL;
414 	}
415 	mutex_lock(&s->ops_mutex);
416 	kfree(s->fake_cis);
417 	s->fake_cis = kmalloc(len, GFP_KERNEL);
418 	if (s->fake_cis == NULL) {
419 		dev_printk(KERN_WARNING, &s->dev, "no memory to replace CIS\n");
420 		mutex_unlock(&s->ops_mutex);
421 		return -ENOMEM;
422 	}
423 	s->fake_cis_len = len;
424 	memcpy(s->fake_cis, data, len);
425 	dev_info(&s->dev, "Using replacement CIS\n");
426 	mutex_unlock(&s->ops_mutex);
427 	return 0;
428 }
429 
430 /* The high-level CIS tuple services */
431 
432 typedef struct tuple_flags {
433 	u_int		link_space:4;
434 	u_int		has_link:1;
435 	u_int		mfc_fn:3;
436 	u_int		space:4;
437 } tuple_flags;
438 
439 #define LINK_SPACE(f)	(((tuple_flags *)(&(f)))->link_space)
440 #define HAS_LINK(f)	(((tuple_flags *)(&(f)))->has_link)
441 #define MFC_FN(f)	(((tuple_flags *)(&(f)))->mfc_fn)
442 #define SPACE(f)	(((tuple_flags *)(&(f)))->space)
443 
444 int pccard_get_first_tuple(struct pcmcia_socket *s, unsigned int function,
445 			tuple_t *tuple)
446 {
447 	if (!s)
448 		return -EINVAL;
449 
450 	if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS))
451 		return -ENODEV;
452 	tuple->TupleLink = tuple->Flags = 0;
453 
454 	/* Assume presence of a LONGLINK_C to address 0 */
455 	tuple->CISOffset = tuple->LinkOffset = 0;
456 	SPACE(tuple->Flags) = HAS_LINK(tuple->Flags) = 1;
457 
458 	if ((s->functions > 1) && !(tuple->Attributes & TUPLE_RETURN_COMMON)) {
459 		cisdata_t req = tuple->DesiredTuple;
460 		tuple->DesiredTuple = CISTPL_LONGLINK_MFC;
461 		if (pccard_get_next_tuple(s, function, tuple) == 0) {
462 			tuple->DesiredTuple = CISTPL_LINKTARGET;
463 			if (pccard_get_next_tuple(s, function, tuple) != 0)
464 				return -ENOSPC;
465 		} else
466 			tuple->CISOffset = tuple->TupleLink = 0;
467 		tuple->DesiredTuple = req;
468 	}
469 	return pccard_get_next_tuple(s, function, tuple);
470 }
471 
472 static int follow_link(struct pcmcia_socket *s, tuple_t *tuple)
473 {
474 	u_char link[5];
475 	u_int ofs;
476 	int ret;
477 
478 	if (MFC_FN(tuple->Flags)) {
479 		/* Get indirect link from the MFC tuple */
480 		ret = read_cis_cache(s, LINK_SPACE(tuple->Flags),
481 				tuple->LinkOffset, 5, link);
482 		if (ret)
483 			return -1;
484 		ofs = get_unaligned_le32(link + 1);
485 		SPACE(tuple->Flags) = (link[0] == CISTPL_MFC_ATTR);
486 		/* Move to the next indirect link */
487 		tuple->LinkOffset += 5;
488 		MFC_FN(tuple->Flags)--;
489 	} else if (HAS_LINK(tuple->Flags)) {
490 		ofs = tuple->LinkOffset;
491 		SPACE(tuple->Flags) = LINK_SPACE(tuple->Flags);
492 		HAS_LINK(tuple->Flags) = 0;
493 	} else
494 		return -1;
495 
496 	if (SPACE(tuple->Flags)) {
497 		/* This is ugly, but a common CIS error is to code the long
498 		   link offset incorrectly, so we check the right spot... */
499 		ret = read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
500 		if (ret)
501 			return -1;
502 		if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
503 			(strncmp(link+2, "CIS", 3) == 0))
504 			return ofs;
505 		remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
506 		/* Then, we try the wrong spot... */
507 		ofs = ofs >> 1;
508 	}
509 	ret = read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
510 	if (ret)
511 		return -1;
512 	if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
513 		(strncmp(link+2, "CIS", 3) == 0))
514 		return ofs;
515 	remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
516 	return -1;
517 }
518 
519 int pccard_get_next_tuple(struct pcmcia_socket *s, unsigned int function,
520 			tuple_t *tuple)
521 {
522 	u_char link[2], tmp;
523 	int ofs, i, attr;
524 	int ret;
525 
526 	if (!s)
527 		return -EINVAL;
528 	if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS))
529 		return -ENODEV;
530 
531 	link[1] = tuple->TupleLink;
532 	ofs = tuple->CISOffset + tuple->TupleLink;
533 	attr = SPACE(tuple->Flags);
534 
535 	for (i = 0; i < MAX_TUPLES; i++) {
536 		if (link[1] == 0xff)
537 			link[0] = CISTPL_END;
538 		else {
539 			ret = read_cis_cache(s, attr, ofs, 2, link);
540 			if (ret)
541 				return -1;
542 			if (link[0] == CISTPL_NULL) {
543 				ofs++;
544 				continue;
545 			}
546 		}
547 
548 		/* End of chain?  Follow long link if possible */
549 		if (link[0] == CISTPL_END) {
550 			ofs = follow_link(s, tuple);
551 			if (ofs < 0)
552 				return -ENOSPC;
553 			attr = SPACE(tuple->Flags);
554 			ret = read_cis_cache(s, attr, ofs, 2, link);
555 			if (ret)
556 				return -1;
557 		}
558 
559 		/* Is this a link tuple?  Make a note of it */
560 		if ((link[0] == CISTPL_LONGLINK_A) ||
561 			(link[0] == CISTPL_LONGLINK_C) ||
562 			(link[0] == CISTPL_LONGLINK_MFC) ||
563 			(link[0] == CISTPL_LINKTARGET) ||
564 			(link[0] == CISTPL_INDIRECT) ||
565 			(link[0] == CISTPL_NO_LINK)) {
566 			switch (link[0]) {
567 			case CISTPL_LONGLINK_A:
568 				HAS_LINK(tuple->Flags) = 1;
569 				LINK_SPACE(tuple->Flags) = attr | IS_ATTR;
570 				ret = read_cis_cache(s, attr, ofs+2, 4,
571 						&tuple->LinkOffset);
572 				if (ret)
573 					return -1;
574 				break;
575 			case CISTPL_LONGLINK_C:
576 				HAS_LINK(tuple->Flags) = 1;
577 				LINK_SPACE(tuple->Flags) = attr & ~IS_ATTR;
578 				ret = read_cis_cache(s, attr, ofs+2, 4,
579 						&tuple->LinkOffset);
580 				if (ret)
581 					return -1;
582 				break;
583 			case CISTPL_INDIRECT:
584 				HAS_LINK(tuple->Flags) = 1;
585 				LINK_SPACE(tuple->Flags) = IS_ATTR |
586 					IS_INDIRECT;
587 				tuple->LinkOffset = 0;
588 				break;
589 			case CISTPL_LONGLINK_MFC:
590 				tuple->LinkOffset = ofs + 3;
591 				LINK_SPACE(tuple->Flags) = attr;
592 				if (function == BIND_FN_ALL) {
593 					/* Follow all the MFC links */
594 					ret = read_cis_cache(s, attr, ofs+2,
595 							1, &tmp);
596 					if (ret)
597 						return -1;
598 					MFC_FN(tuple->Flags) = tmp;
599 				} else {
600 					/* Follow exactly one of the links */
601 					MFC_FN(tuple->Flags) = 1;
602 					tuple->LinkOffset += function * 5;
603 				}
604 				break;
605 			case CISTPL_NO_LINK:
606 				HAS_LINK(tuple->Flags) = 0;
607 				break;
608 			}
609 			if ((tuple->Attributes & TUPLE_RETURN_LINK) &&
610 				(tuple->DesiredTuple == RETURN_FIRST_TUPLE))
611 				break;
612 		} else
613 			if (tuple->DesiredTuple == RETURN_FIRST_TUPLE)
614 				break;
615 
616 		if (link[0] == tuple->DesiredTuple)
617 			break;
618 		ofs += link[1] + 2;
619 	}
620 	if (i == MAX_TUPLES) {
621 		dev_dbg(&s->dev, "cs: overrun in pcmcia_get_next_tuple\n");
622 		return -ENOSPC;
623 	}
624 
625 	tuple->TupleCode = link[0];
626 	tuple->TupleLink = link[1];
627 	tuple->CISOffset = ofs + 2;
628 	return 0;
629 }
630 
631 int pccard_get_tuple_data(struct pcmcia_socket *s, tuple_t *tuple)
632 {
633 	u_int len;
634 	int ret;
635 
636 	if (!s)
637 		return -EINVAL;
638 
639 	if (tuple->TupleLink < tuple->TupleOffset)
640 		return -ENOSPC;
641 	len = tuple->TupleLink - tuple->TupleOffset;
642 	tuple->TupleDataLen = tuple->TupleLink;
643 	if (len == 0)
644 		return 0;
645 	ret = read_cis_cache(s, SPACE(tuple->Flags),
646 			tuple->CISOffset + tuple->TupleOffset,
647 			min(len, (u_int) tuple->TupleDataMax),
648 			tuple->TupleData);
649 	if (ret)
650 		return -1;
651 	return 0;
652 }
653 
654 
655 /* Parsing routines for individual tuples */
656 
657 static int parse_device(tuple_t *tuple, cistpl_device_t *device)
658 {
659 	int i;
660 	u_char scale;
661 	u_char *p, *q;
662 
663 	p = (u_char *)tuple->TupleData;
664 	q = p + tuple->TupleDataLen;
665 
666 	device->ndev = 0;
667 	for (i = 0; i < CISTPL_MAX_DEVICES; i++) {
668 
669 		if (*p == 0xff)
670 			break;
671 		device->dev[i].type = (*p >> 4);
672 		device->dev[i].wp = (*p & 0x08) ? 1 : 0;
673 		switch (*p & 0x07) {
674 		case 0:
675 			device->dev[i].speed = 0;
676 			break;
677 		case 1:
678 			device->dev[i].speed = 250;
679 			break;
680 		case 2:
681 			device->dev[i].speed = 200;
682 			break;
683 		case 3:
684 			device->dev[i].speed = 150;
685 			break;
686 		case 4:
687 			device->dev[i].speed = 100;
688 			break;
689 		case 7:
690 			if (++p == q)
691 				return -EINVAL;
692 			device->dev[i].speed = SPEED_CVT(*p);
693 			while (*p & 0x80)
694 				if (++p == q)
695 					return -EINVAL;
696 			break;
697 		default:
698 			return -EINVAL;
699 		}
700 
701 		if (++p == q)
702 			return -EINVAL;
703 		if (*p == 0xff)
704 			break;
705 		scale = *p & 7;
706 		if (scale == 7)
707 			return -EINVAL;
708 		device->dev[i].size = ((*p >> 3) + 1) * (512 << (scale*2));
709 		device->ndev++;
710 		if (++p == q)
711 			break;
712 	}
713 
714 	return 0;
715 }
716 
717 
718 static int parse_checksum(tuple_t *tuple, cistpl_checksum_t *csum)
719 {
720 	u_char *p;
721 	if (tuple->TupleDataLen < 5)
722 		return -EINVAL;
723 	p = (u_char *) tuple->TupleData;
724 	csum->addr = tuple->CISOffset + get_unaligned_le16(p) - 2;
725 	csum->len = get_unaligned_le16(p + 2);
726 	csum->sum = *(p + 4);
727 	return 0;
728 }
729 
730 
731 static int parse_longlink(tuple_t *tuple, cistpl_longlink_t *link)
732 {
733 	if (tuple->TupleDataLen < 4)
734 		return -EINVAL;
735 	link->addr = get_unaligned_le32(tuple->TupleData);
736 	return 0;
737 }
738 
739 
740 static int parse_longlink_mfc(tuple_t *tuple, cistpl_longlink_mfc_t *link)
741 {
742 	u_char *p;
743 	int i;
744 
745 	p = (u_char *)tuple->TupleData;
746 
747 	link->nfn = *p; p++;
748 	if (tuple->TupleDataLen <= link->nfn*5)
749 		return -EINVAL;
750 	for (i = 0; i < link->nfn; i++) {
751 		link->fn[i].space = *p; p++;
752 		link->fn[i].addr = get_unaligned_le32(p);
753 		p += 4;
754 	}
755 	return 0;
756 }
757 
758 
759 static int parse_strings(u_char *p, u_char *q, int max,
760 			 char *s, u_char *ofs, u_char *found)
761 {
762 	int i, j, ns;
763 
764 	if (p == q)
765 		return -EINVAL;
766 	ns = 0; j = 0;
767 	for (i = 0; i < max; i++) {
768 		if (*p == 0xff)
769 			break;
770 		ofs[i] = j;
771 		ns++;
772 		for (;;) {
773 			s[j++] = (*p == 0xff) ? '\0' : *p;
774 			if ((*p == '\0') || (*p == 0xff))
775 				break;
776 			if (++p == q)
777 				return -EINVAL;
778 		}
779 		if ((*p == 0xff) || (++p == q))
780 			break;
781 	}
782 	if (found) {
783 		*found = ns;
784 		return 0;
785 	}
786 
787 	return (ns == max) ? 0 : -EINVAL;
788 }
789 
790 
791 static int parse_vers_1(tuple_t *tuple, cistpl_vers_1_t *vers_1)
792 {
793 	u_char *p, *q;
794 
795 	p = (u_char *)tuple->TupleData;
796 	q = p + tuple->TupleDataLen;
797 
798 	vers_1->major = *p; p++;
799 	vers_1->minor = *p; p++;
800 	if (p >= q)
801 		return -EINVAL;
802 
803 	return parse_strings(p, q, CISTPL_VERS_1_MAX_PROD_STRINGS,
804 			vers_1->str, vers_1->ofs, &vers_1->ns);
805 }
806 
807 
808 static int parse_altstr(tuple_t *tuple, cistpl_altstr_t *altstr)
809 {
810 	u_char *p, *q;
811 
812 	p = (u_char *)tuple->TupleData;
813 	q = p + tuple->TupleDataLen;
814 
815 	return parse_strings(p, q, CISTPL_MAX_ALTSTR_STRINGS,
816 			altstr->str, altstr->ofs, &altstr->ns);
817 }
818 
819 
820 static int parse_jedec(tuple_t *tuple, cistpl_jedec_t *jedec)
821 {
822 	u_char *p, *q;
823 	int nid;
824 
825 	p = (u_char *)tuple->TupleData;
826 	q = p + tuple->TupleDataLen;
827 
828 	for (nid = 0; nid < CISTPL_MAX_DEVICES; nid++) {
829 		if (p > q-2)
830 			break;
831 		jedec->id[nid].mfr = p[0];
832 		jedec->id[nid].info = p[1];
833 		p += 2;
834 	}
835 	jedec->nid = nid;
836 	return 0;
837 }
838 
839 
840 static int parse_manfid(tuple_t *tuple, cistpl_manfid_t *m)
841 {
842 	if (tuple->TupleDataLen < 4)
843 		return -EINVAL;
844 	m->manf = get_unaligned_le16(tuple->TupleData);
845 	m->card = get_unaligned_le16(tuple->TupleData + 2);
846 	return 0;
847 }
848 
849 
850 static int parse_funcid(tuple_t *tuple, cistpl_funcid_t *f)
851 {
852 	u_char *p;
853 	if (tuple->TupleDataLen < 2)
854 		return -EINVAL;
855 	p = (u_char *)tuple->TupleData;
856 	f->func = p[0];
857 	f->sysinit = p[1];
858 	return 0;
859 }
860 
861 
862 static int parse_funce(tuple_t *tuple, cistpl_funce_t *f)
863 {
864 	u_char *p;
865 	int i;
866 	if (tuple->TupleDataLen < 1)
867 		return -EINVAL;
868 	p = (u_char *)tuple->TupleData;
869 	f->type = p[0];
870 	for (i = 1; i < tuple->TupleDataLen; i++)
871 		f->data[i-1] = p[i];
872 	return 0;
873 }
874 
875 
876 static int parse_config(tuple_t *tuple, cistpl_config_t *config)
877 {
878 	int rasz, rmsz, i;
879 	u_char *p;
880 
881 	p = (u_char *)tuple->TupleData;
882 	rasz = *p & 0x03;
883 	rmsz = (*p & 0x3c) >> 2;
884 	if (tuple->TupleDataLen < rasz+rmsz+4)
885 		return -EINVAL;
886 	config->last_idx = *(++p);
887 	p++;
888 	config->base = 0;
889 	for (i = 0; i <= rasz; i++)
890 		config->base += p[i] << (8*i);
891 	p += rasz+1;
892 	for (i = 0; i < 4; i++)
893 		config->rmask[i] = 0;
894 	for (i = 0; i <= rmsz; i++)
895 		config->rmask[i>>2] += p[i] << (8*(i%4));
896 	config->subtuples = tuple->TupleDataLen - (rasz+rmsz+4);
897 	return 0;
898 }
899 
900 /* The following routines are all used to parse the nightmarish
901  * config table entries.
902  */
903 
904 static u_char *parse_power(u_char *p, u_char *q, cistpl_power_t *pwr)
905 {
906 	int i;
907 	u_int scale;
908 
909 	if (p == q)
910 		return NULL;
911 	pwr->present = *p;
912 	pwr->flags = 0;
913 	p++;
914 	for (i = 0; i < 7; i++)
915 		if (pwr->present & (1<<i)) {
916 			if (p == q)
917 				return NULL;
918 			pwr->param[i] = POWER_CVT(*p);
919 			scale = POWER_SCALE(*p);
920 			while (*p & 0x80) {
921 				if (++p == q)
922 					return NULL;
923 				if ((*p & 0x7f) < 100)
924 					pwr->param[i] +=
925 						(*p & 0x7f) * scale / 100;
926 				else if (*p == 0x7d)
927 					pwr->flags |= CISTPL_POWER_HIGHZ_OK;
928 				else if (*p == 0x7e)
929 					pwr->param[i] = 0;
930 				else if (*p == 0x7f)
931 					pwr->flags |= CISTPL_POWER_HIGHZ_REQ;
932 				else
933 					return NULL;
934 			}
935 			p++;
936 		}
937 	return p;
938 }
939 
940 
941 static u_char *parse_timing(u_char *p, u_char *q, cistpl_timing_t *timing)
942 {
943 	u_char scale;
944 
945 	if (p == q)
946 		return NULL;
947 	scale = *p;
948 	if ((scale & 3) != 3) {
949 		if (++p == q)
950 			return NULL;
951 		timing->wait = SPEED_CVT(*p);
952 		timing->waitscale = exponent[scale & 3];
953 	} else
954 		timing->wait = 0;
955 	scale >>= 2;
956 	if ((scale & 7) != 7) {
957 		if (++p == q)
958 			return NULL;
959 		timing->ready = SPEED_CVT(*p);
960 		timing->rdyscale = exponent[scale & 7];
961 	} else
962 		timing->ready = 0;
963 	scale >>= 3;
964 	if (scale != 7) {
965 		if (++p == q)
966 			return NULL;
967 		timing->reserved = SPEED_CVT(*p);
968 		timing->rsvscale = exponent[scale];
969 	} else
970 		timing->reserved = 0;
971 	p++;
972 	return p;
973 }
974 
975 
976 static u_char *parse_io(u_char *p, u_char *q, cistpl_io_t *io)
977 {
978 	int i, j, bsz, lsz;
979 
980 	if (p == q)
981 		return NULL;
982 	io->flags = *p;
983 
984 	if (!(*p & 0x80)) {
985 		io->nwin = 1;
986 		io->win[0].base = 0;
987 		io->win[0].len = (1 << (io->flags & CISTPL_IO_LINES_MASK));
988 		return p+1;
989 	}
990 
991 	if (++p == q)
992 		return NULL;
993 	io->nwin = (*p & 0x0f) + 1;
994 	bsz = (*p & 0x30) >> 4;
995 	if (bsz == 3)
996 		bsz++;
997 	lsz = (*p & 0xc0) >> 6;
998 	if (lsz == 3)
999 		lsz++;
1000 	p++;
1001 
1002 	for (i = 0; i < io->nwin; i++) {
1003 		io->win[i].base = 0;
1004 		io->win[i].len = 1;
1005 		for (j = 0; j < bsz; j++, p++) {
1006 			if (p == q)
1007 				return NULL;
1008 			io->win[i].base += *p << (j*8);
1009 		}
1010 		for (j = 0; j < lsz; j++, p++) {
1011 			if (p == q)
1012 				return NULL;
1013 			io->win[i].len += *p << (j*8);
1014 		}
1015 	}
1016 	return p;
1017 }
1018 
1019 
1020 static u_char *parse_mem(u_char *p, u_char *q, cistpl_mem_t *mem)
1021 {
1022 	int i, j, asz, lsz, has_ha;
1023 	u_int len, ca, ha;
1024 
1025 	if (p == q)
1026 		return NULL;
1027 
1028 	mem->nwin = (*p & 0x07) + 1;
1029 	lsz = (*p & 0x18) >> 3;
1030 	asz = (*p & 0x60) >> 5;
1031 	has_ha = (*p & 0x80);
1032 	if (++p == q)
1033 		return NULL;
1034 
1035 	for (i = 0; i < mem->nwin; i++) {
1036 		len = ca = ha = 0;
1037 		for (j = 0; j < lsz; j++, p++) {
1038 			if (p == q)
1039 				return NULL;
1040 			len += *p << (j*8);
1041 		}
1042 		for (j = 0; j < asz; j++, p++) {
1043 			if (p == q)
1044 				return NULL;
1045 			ca += *p << (j*8);
1046 		}
1047 		if (has_ha)
1048 			for (j = 0; j < asz; j++, p++) {
1049 				if (p == q)
1050 					return NULL;
1051 				ha += *p << (j*8);
1052 			}
1053 		mem->win[i].len = len << 8;
1054 		mem->win[i].card_addr = ca << 8;
1055 		mem->win[i].host_addr = ha << 8;
1056 	}
1057 	return p;
1058 }
1059 
1060 
1061 static u_char *parse_irq(u_char *p, u_char *q, cistpl_irq_t *irq)
1062 {
1063 	if (p == q)
1064 		return NULL;
1065 	irq->IRQInfo1 = *p; p++;
1066 	if (irq->IRQInfo1 & IRQ_INFO2_VALID) {
1067 		if (p+2 > q)
1068 			return NULL;
1069 		irq->IRQInfo2 = (p[1]<<8) + p[0];
1070 		p += 2;
1071 	}
1072 	return p;
1073 }
1074 
1075 
1076 static int parse_cftable_entry(tuple_t *tuple,
1077 			       cistpl_cftable_entry_t *entry)
1078 {
1079 	u_char *p, *q, features;
1080 
1081 	p = tuple->TupleData;
1082 	q = p + tuple->TupleDataLen;
1083 	entry->index = *p & 0x3f;
1084 	entry->flags = 0;
1085 	if (*p & 0x40)
1086 		entry->flags |= CISTPL_CFTABLE_DEFAULT;
1087 	if (*p & 0x80) {
1088 		if (++p == q)
1089 			return -EINVAL;
1090 		if (*p & 0x10)
1091 			entry->flags |= CISTPL_CFTABLE_BVDS;
1092 		if (*p & 0x20)
1093 			entry->flags |= CISTPL_CFTABLE_WP;
1094 		if (*p & 0x40)
1095 			entry->flags |= CISTPL_CFTABLE_RDYBSY;
1096 		if (*p & 0x80)
1097 			entry->flags |= CISTPL_CFTABLE_MWAIT;
1098 		entry->interface = *p & 0x0f;
1099 	} else
1100 		entry->interface = 0;
1101 
1102 	/* Process optional features */
1103 	if (++p == q)
1104 		return -EINVAL;
1105 	features = *p; p++;
1106 
1107 	/* Power options */
1108 	if ((features & 3) > 0) {
1109 		p = parse_power(p, q, &entry->vcc);
1110 		if (p == NULL)
1111 			return -EINVAL;
1112 	} else
1113 		entry->vcc.present = 0;
1114 	if ((features & 3) > 1) {
1115 		p = parse_power(p, q, &entry->vpp1);
1116 		if (p == NULL)
1117 			return -EINVAL;
1118 	} else
1119 		entry->vpp1.present = 0;
1120 	if ((features & 3) > 2) {
1121 		p = parse_power(p, q, &entry->vpp2);
1122 		if (p == NULL)
1123 			return -EINVAL;
1124 	} else
1125 		entry->vpp2.present = 0;
1126 
1127 	/* Timing options */
1128 	if (features & 0x04) {
1129 		p = parse_timing(p, q, &entry->timing);
1130 		if (p == NULL)
1131 			return -EINVAL;
1132 	} else {
1133 		entry->timing.wait = 0;
1134 		entry->timing.ready = 0;
1135 		entry->timing.reserved = 0;
1136 	}
1137 
1138 	/* I/O window options */
1139 	if (features & 0x08) {
1140 		p = parse_io(p, q, &entry->io);
1141 		if (p == NULL)
1142 			return -EINVAL;
1143 	} else
1144 		entry->io.nwin = 0;
1145 
1146 	/* Interrupt options */
1147 	if (features & 0x10) {
1148 		p = parse_irq(p, q, &entry->irq);
1149 		if (p == NULL)
1150 			return -EINVAL;
1151 	} else
1152 		entry->irq.IRQInfo1 = 0;
1153 
1154 	switch (features & 0x60) {
1155 	case 0x00:
1156 		entry->mem.nwin = 0;
1157 		break;
1158 	case 0x20:
1159 		entry->mem.nwin = 1;
1160 		entry->mem.win[0].len = get_unaligned_le16(p) << 8;
1161 		entry->mem.win[0].card_addr = 0;
1162 		entry->mem.win[0].host_addr = 0;
1163 		p += 2;
1164 		if (p > q)
1165 			return -EINVAL;
1166 		break;
1167 	case 0x40:
1168 		entry->mem.nwin = 1;
1169 		entry->mem.win[0].len = get_unaligned_le16(p) << 8;
1170 		entry->mem.win[0].card_addr = get_unaligned_le16(p + 2) << 8;
1171 		entry->mem.win[0].host_addr = 0;
1172 		p += 4;
1173 		if (p > q)
1174 			return -EINVAL;
1175 		break;
1176 	case 0x60:
1177 		p = parse_mem(p, q, &entry->mem);
1178 		if (p == NULL)
1179 			return -EINVAL;
1180 		break;
1181 	}
1182 
1183 	/* Misc features */
1184 	if (features & 0x80) {
1185 		if (p == q)
1186 			return -EINVAL;
1187 		entry->flags |= (*p << 8);
1188 		while (*p & 0x80)
1189 			if (++p == q)
1190 				return -EINVAL;
1191 		p++;
1192 	}
1193 
1194 	entry->subtuples = q-p;
1195 
1196 	return 0;
1197 }
1198 
1199 
1200 static int parse_device_geo(tuple_t *tuple, cistpl_device_geo_t *geo)
1201 {
1202 	u_char *p, *q;
1203 	int n;
1204 
1205 	p = (u_char *)tuple->TupleData;
1206 	q = p + tuple->TupleDataLen;
1207 
1208 	for (n = 0; n < CISTPL_MAX_DEVICES; n++) {
1209 		if (p > q-6)
1210 			break;
1211 		geo->geo[n].buswidth = p[0];
1212 		geo->geo[n].erase_block = 1 << (p[1]-1);
1213 		geo->geo[n].read_block  = 1 << (p[2]-1);
1214 		geo->geo[n].write_block = 1 << (p[3]-1);
1215 		geo->geo[n].partition   = 1 << (p[4]-1);
1216 		geo->geo[n].interleave  = 1 << (p[5]-1);
1217 		p += 6;
1218 	}
1219 	geo->ngeo = n;
1220 	return 0;
1221 }
1222 
1223 
1224 static int parse_vers_2(tuple_t *tuple, cistpl_vers_2_t *v2)
1225 {
1226 	u_char *p, *q;
1227 
1228 	if (tuple->TupleDataLen < 10)
1229 		return -EINVAL;
1230 
1231 	p = tuple->TupleData;
1232 	q = p + tuple->TupleDataLen;
1233 
1234 	v2->vers = p[0];
1235 	v2->comply = p[1];
1236 	v2->dindex = get_unaligned_le16(p + 2);
1237 	v2->vspec8 = p[6];
1238 	v2->vspec9 = p[7];
1239 	v2->nhdr = p[8];
1240 	p += 9;
1241 	return parse_strings(p, q, 2, v2->str, &v2->vendor, NULL);
1242 }
1243 
1244 
1245 static int parse_org(tuple_t *tuple, cistpl_org_t *org)
1246 {
1247 	u_char *p, *q;
1248 	int i;
1249 
1250 	p = tuple->TupleData;
1251 	q = p + tuple->TupleDataLen;
1252 	if (p == q)
1253 		return -EINVAL;
1254 	org->data_org = *p;
1255 	if (++p == q)
1256 		return -EINVAL;
1257 	for (i = 0; i < 30; i++) {
1258 		org->desc[i] = *p;
1259 		if (*p == '\0')
1260 			break;
1261 		if (++p == q)
1262 			return -EINVAL;
1263 	}
1264 	return 0;
1265 }
1266 
1267 
1268 static int parse_format(tuple_t *tuple, cistpl_format_t *fmt)
1269 {
1270 	u_char *p;
1271 
1272 	if (tuple->TupleDataLen < 10)
1273 		return -EINVAL;
1274 
1275 	p = tuple->TupleData;
1276 
1277 	fmt->type = p[0];
1278 	fmt->edc = p[1];
1279 	fmt->offset = get_unaligned_le32(p + 2);
1280 	fmt->length = get_unaligned_le32(p + 6);
1281 
1282 	return 0;
1283 }
1284 
1285 
1286 int pcmcia_parse_tuple(tuple_t *tuple, cisparse_t *parse)
1287 {
1288 	int ret = 0;
1289 
1290 	if (tuple->TupleDataLen > tuple->TupleDataMax)
1291 		return -EINVAL;
1292 	switch (tuple->TupleCode) {
1293 	case CISTPL_DEVICE:
1294 	case CISTPL_DEVICE_A:
1295 		ret = parse_device(tuple, &parse->device);
1296 		break;
1297 	case CISTPL_CHECKSUM:
1298 		ret = parse_checksum(tuple, &parse->checksum);
1299 		break;
1300 	case CISTPL_LONGLINK_A:
1301 	case CISTPL_LONGLINK_C:
1302 		ret = parse_longlink(tuple, &parse->longlink);
1303 		break;
1304 	case CISTPL_LONGLINK_MFC:
1305 		ret = parse_longlink_mfc(tuple, &parse->longlink_mfc);
1306 		break;
1307 	case CISTPL_VERS_1:
1308 		ret = parse_vers_1(tuple, &parse->version_1);
1309 		break;
1310 	case CISTPL_ALTSTR:
1311 		ret = parse_altstr(tuple, &parse->altstr);
1312 		break;
1313 	case CISTPL_JEDEC_A:
1314 	case CISTPL_JEDEC_C:
1315 		ret = parse_jedec(tuple, &parse->jedec);
1316 		break;
1317 	case CISTPL_MANFID:
1318 		ret = parse_manfid(tuple, &parse->manfid);
1319 		break;
1320 	case CISTPL_FUNCID:
1321 		ret = parse_funcid(tuple, &parse->funcid);
1322 		break;
1323 	case CISTPL_FUNCE:
1324 		ret = parse_funce(tuple, &parse->funce);
1325 		break;
1326 	case CISTPL_CONFIG:
1327 		ret = parse_config(tuple, &parse->config);
1328 		break;
1329 	case CISTPL_CFTABLE_ENTRY:
1330 		ret = parse_cftable_entry(tuple, &parse->cftable_entry);
1331 		break;
1332 	case CISTPL_DEVICE_GEO:
1333 	case CISTPL_DEVICE_GEO_A:
1334 		ret = parse_device_geo(tuple, &parse->device_geo);
1335 		break;
1336 	case CISTPL_VERS_2:
1337 		ret = parse_vers_2(tuple, &parse->vers_2);
1338 		break;
1339 	case CISTPL_ORG:
1340 		ret = parse_org(tuple, &parse->org);
1341 		break;
1342 	case CISTPL_FORMAT:
1343 	case CISTPL_FORMAT_A:
1344 		ret = parse_format(tuple, &parse->format);
1345 		break;
1346 	case CISTPL_NO_LINK:
1347 	case CISTPL_LINKTARGET:
1348 		ret = 0;
1349 		break;
1350 	default:
1351 		ret = -EINVAL;
1352 		break;
1353 	}
1354 	if (ret)
1355 		pr_debug("parse_tuple failed %d\n", ret);
1356 	return ret;
1357 }
1358 EXPORT_SYMBOL(pcmcia_parse_tuple);
1359 
1360 
1361 /**
1362  * pccard_validate_cis() - check whether card has a sensible CIS
1363  * @s:		the struct pcmcia_socket we are to check
1364  * @info:	returns the number of tuples in the (valid) CIS, or 0
1365  *
1366  * This tries to determine if a card has a sensible CIS.  In @info, it
1367  * returns the number of tuples in the CIS, or 0 if the CIS looks bad. The
1368  * checks include making sure several critical tuples are present and
1369  * valid; seeing if the total number of tuples is reasonable; and
1370  * looking for tuples that use reserved codes.
1371  *
1372  * The function returns 0 on success.
1373  */
1374 int pccard_validate_cis(struct pcmcia_socket *s, unsigned int *info)
1375 {
1376 	tuple_t *tuple;
1377 	cisparse_t *p;
1378 	unsigned int count = 0;
1379 	int ret, reserved, dev_ok = 0, ident_ok = 0;
1380 
1381 	if (!s)
1382 		return -EINVAL;
1383 
1384 	if (s->functions) {
1385 		WARN_ON(1);
1386 		return -EINVAL;
1387 	}
1388 
1389 	/* We do not want to validate the CIS cache... */
1390 	mutex_lock(&s->ops_mutex);
1391 	destroy_cis_cache(s);
1392 	mutex_unlock(&s->ops_mutex);
1393 
1394 	tuple = kmalloc(sizeof(*tuple), GFP_KERNEL);
1395 	if (tuple == NULL) {
1396 		dev_warn(&s->dev, "no memory to validate CIS\n");
1397 		return -ENOMEM;
1398 	}
1399 	p = kmalloc(sizeof(*p), GFP_KERNEL);
1400 	if (p == NULL) {
1401 		kfree(tuple);
1402 		dev_warn(&s->dev, "no memory to validate CIS\n");
1403 		return -ENOMEM;
1404 	}
1405 
1406 	count = reserved = 0;
1407 	tuple->DesiredTuple = RETURN_FIRST_TUPLE;
1408 	tuple->Attributes = TUPLE_RETURN_COMMON;
1409 	ret = pccard_get_first_tuple(s, BIND_FN_ALL, tuple);
1410 	if (ret != 0)
1411 		goto done;
1412 
1413 	/* First tuple should be DEVICE; we should really have either that
1414 	   or a CFTABLE_ENTRY of some sort */
1415 	if ((tuple->TupleCode == CISTPL_DEVICE) ||
1416 	    (!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY, p)) ||
1417 	    (!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY_CB, p)))
1418 		dev_ok++;
1419 
1420 	/* All cards should have a MANFID tuple, and/or a VERS_1 or VERS_2
1421 	   tuple, for card identification.  Certain old D-Link and Linksys
1422 	   cards have only a broken VERS_2 tuple; hence the bogus test. */
1423 	if ((pccard_read_tuple(s, BIND_FN_ALL, CISTPL_MANFID, p) == 0) ||
1424 	    (pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_1, p) == 0) ||
1425 	    (pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_2, p) != -ENOSPC))
1426 		ident_ok++;
1427 
1428 	if (!dev_ok && !ident_ok)
1429 		goto done;
1430 
1431 	for (count = 1; count < MAX_TUPLES; count++) {
1432 		ret = pccard_get_next_tuple(s, BIND_FN_ALL, tuple);
1433 		if (ret != 0)
1434 			break;
1435 		if (((tuple->TupleCode > 0x23) && (tuple->TupleCode < 0x40)) ||
1436 		    ((tuple->TupleCode > 0x47) && (tuple->TupleCode < 0x80)) ||
1437 		    ((tuple->TupleCode > 0x90) && (tuple->TupleCode < 0xff)))
1438 			reserved++;
1439 	}
1440 	if ((count == MAX_TUPLES) || (reserved > 5) ||
1441 		((!dev_ok || !ident_ok) && (count > 10)))
1442 		count = 0;
1443 
1444 	ret = 0;
1445 
1446 done:
1447 	/* invalidate CIS cache on failure */
1448 	if (!dev_ok || !ident_ok || !count) {
1449 		mutex_lock(&s->ops_mutex);
1450 		destroy_cis_cache(s);
1451 		mutex_unlock(&s->ops_mutex);
1452 		ret = -EIO;
1453 	}
1454 
1455 	if (info)
1456 		*info = count;
1457 	kfree(tuple);
1458 	kfree(p);
1459 	return ret;
1460 }
1461 
1462 
1463 #define to_socket(_dev) container_of(_dev, struct pcmcia_socket, dev)
1464 
1465 static ssize_t pccard_extract_cis(struct pcmcia_socket *s, char *buf,
1466 				  loff_t off, size_t count)
1467 {
1468 	tuple_t tuple;
1469 	int status, i;
1470 	loff_t pointer = 0;
1471 	ssize_t ret = 0;
1472 	u_char *tuplebuffer;
1473 	u_char *tempbuffer;
1474 
1475 	tuplebuffer = kmalloc(sizeof(u_char) * 256, GFP_KERNEL);
1476 	if (!tuplebuffer)
1477 		return -ENOMEM;
1478 
1479 	tempbuffer = kmalloc(sizeof(u_char) * 258, GFP_KERNEL);
1480 	if (!tempbuffer) {
1481 		ret = -ENOMEM;
1482 		goto free_tuple;
1483 	}
1484 
1485 	memset(&tuple, 0, sizeof(tuple_t));
1486 
1487 	tuple.Attributes = TUPLE_RETURN_LINK | TUPLE_RETURN_COMMON;
1488 	tuple.DesiredTuple = RETURN_FIRST_TUPLE;
1489 	tuple.TupleOffset = 0;
1490 
1491 	status = pccard_get_first_tuple(s, BIND_FN_ALL, &tuple);
1492 	while (!status) {
1493 		tuple.TupleData = tuplebuffer;
1494 		tuple.TupleDataMax = 255;
1495 		memset(tuplebuffer, 0, sizeof(u_char) * 255);
1496 
1497 		status = pccard_get_tuple_data(s, &tuple);
1498 		if (status)
1499 			break;
1500 
1501 		if (off < (pointer + 2 + tuple.TupleDataLen)) {
1502 			tempbuffer[0] = tuple.TupleCode & 0xff;
1503 			tempbuffer[1] = tuple.TupleLink & 0xff;
1504 			for (i = 0; i < tuple.TupleDataLen; i++)
1505 				tempbuffer[i + 2] = tuplebuffer[i] & 0xff;
1506 
1507 			for (i = 0; i < (2 + tuple.TupleDataLen); i++) {
1508 				if (((i + pointer) >= off) &&
1509 				    (i + pointer) < (off + count)) {
1510 					buf[ret] = tempbuffer[i];
1511 					ret++;
1512 				}
1513 			}
1514 		}
1515 
1516 		pointer += 2 + tuple.TupleDataLen;
1517 
1518 		if (pointer >= (off + count))
1519 			break;
1520 
1521 		if (tuple.TupleCode == CISTPL_END)
1522 			break;
1523 		status = pccard_get_next_tuple(s, BIND_FN_ALL, &tuple);
1524 	}
1525 
1526 	kfree(tempbuffer);
1527  free_tuple:
1528 	kfree(tuplebuffer);
1529 
1530 	return ret;
1531 }
1532 
1533 
1534 static ssize_t pccard_show_cis(struct file *filp, struct kobject *kobj,
1535 			       struct bin_attribute *bin_attr,
1536 			       char *buf, loff_t off, size_t count)
1537 {
1538 	unsigned int size = 0x200;
1539 
1540 	if (off >= size)
1541 		count = 0;
1542 	else {
1543 		struct pcmcia_socket *s;
1544 		unsigned int chains = 1;
1545 
1546 		if (off + count > size)
1547 			count = size - off;
1548 
1549 		s = to_socket(container_of(kobj, struct device, kobj));
1550 
1551 		if (!(s->state & SOCKET_PRESENT))
1552 			return -ENODEV;
1553 		if (!s->functions && pccard_validate_cis(s, &chains))
1554 			return -EIO;
1555 		if (!chains)
1556 			return -ENODATA;
1557 
1558 		count = pccard_extract_cis(s, buf, off, count);
1559 	}
1560 
1561 	return count;
1562 }
1563 
1564 
1565 static ssize_t pccard_store_cis(struct file *filp, struct kobject *kobj,
1566 				struct bin_attribute *bin_attr,
1567 				char *buf, loff_t off, size_t count)
1568 {
1569 	struct pcmcia_socket *s;
1570 	int error;
1571 
1572 	s = to_socket(container_of(kobj, struct device, kobj));
1573 
1574 	if (off)
1575 		return -EINVAL;
1576 
1577 	if (count >= CISTPL_MAX_CIS_SIZE)
1578 		return -EINVAL;
1579 
1580 	if (!(s->state & SOCKET_PRESENT))
1581 		return -ENODEV;
1582 
1583 	error = pcmcia_replace_cis(s, buf, count);
1584 	if (error)
1585 		return -EIO;
1586 
1587 	pcmcia_parse_uevents(s, PCMCIA_UEVENT_REQUERY);
1588 
1589 	return count;
1590 }
1591 
1592 
1593 struct bin_attribute pccard_cis_attr = {
1594 	.attr = { .name = "cis", .mode = S_IRUGO | S_IWUSR },
1595 	.size = 0x200,
1596 	.read = pccard_show_cis,
1597 	.write = pccard_store_cis,
1598 };
1599