xref: /openbmc/linux/drivers/pcmcia/cistpl.c (revision 1a59d1b8)
1 /*
2  * cistpl.c -- 16-bit PCMCIA Card Information Structure parser
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * The initial developer of the original code is David A. Hinds
9  * <dahinds@users.sourceforge.net>.  Portions created by David A. Hinds
10  * are Copyright (C) 1999 David A. Hinds.  All Rights Reserved.
11  *
12  * (C) 1999		David A. Hinds
13  */
14 
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/major.h>
20 #include <linux/errno.h>
21 #include <linux/timer.h>
22 #include <linux/slab.h>
23 #include <linux/mm.h>
24 #include <linux/pci.h>
25 #include <linux/ioport.h>
26 #include <linux/io.h>
27 #include <asm/byteorder.h>
28 #include <asm/unaligned.h>
29 
30 #include <pcmcia/ss.h>
31 #include <pcmcia/cisreg.h>
32 #include <pcmcia/cistpl.h>
33 #include "cs_internal.h"
34 
35 static const u_char mantissa[] = {
36     10, 12, 13, 15, 20, 25, 30, 35,
37     40, 45, 50, 55, 60, 70, 80, 90
38 };
39 
40 static const u_int exponent[] = {
41     1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
42 };
43 
44 /* Convert an extended speed byte to a time in nanoseconds */
45 #define SPEED_CVT(v) \
46     (mantissa[(((v)>>3)&15)-1] * exponent[(v)&7] / 10)
47 /* Convert a power byte to a current in 0.1 microamps */
48 #define POWER_CVT(v) \
49     (mantissa[((v)>>3)&15] * exponent[(v)&7] / 10)
50 #define POWER_SCALE(v)		(exponent[(v)&7])
51 
52 /* Upper limit on reasonable # of tuples */
53 #define MAX_TUPLES		200
54 
55 /* Bits in IRQInfo1 field */
56 #define IRQ_INFO2_VALID		0x10
57 
58 /* 16-bit CIS? */
59 static int cis_width;
60 module_param(cis_width, int, 0444);
61 
62 void release_cis_mem(struct pcmcia_socket *s)
63 {
64 	mutex_lock(&s->ops_mutex);
65 	if (s->cis_mem.flags & MAP_ACTIVE) {
66 		s->cis_mem.flags &= ~MAP_ACTIVE;
67 		s->ops->set_mem_map(s, &s->cis_mem);
68 		if (s->cis_mem.res) {
69 			release_resource(s->cis_mem.res);
70 			kfree(s->cis_mem.res);
71 			s->cis_mem.res = NULL;
72 		}
73 		iounmap(s->cis_virt);
74 		s->cis_virt = NULL;
75 	}
76 	mutex_unlock(&s->ops_mutex);
77 }
78 
79 /**
80  * set_cis_map() - map the card memory at "card_offset" into virtual space.
81  *
82  * If flags & MAP_ATTRIB, map the attribute space, otherwise
83  * map the memory space.
84  *
85  * Must be called with ops_mutex held.
86  */
87 static void __iomem *set_cis_map(struct pcmcia_socket *s,
88 				unsigned int card_offset, unsigned int flags)
89 {
90 	pccard_mem_map *mem = &s->cis_mem;
91 	int ret;
92 
93 	if (!(s->features & SS_CAP_STATIC_MAP) && (mem->res == NULL)) {
94 		mem->res = pcmcia_find_mem_region(0, s->map_size,
95 						s->map_size, 0, s);
96 		if (mem->res == NULL) {
97 			dev_notice(&s->dev, "cs: unable to map card memory!\n");
98 			return NULL;
99 		}
100 		s->cis_virt = NULL;
101 	}
102 
103 	if (!(s->features & SS_CAP_STATIC_MAP) && (!s->cis_virt))
104 		s->cis_virt = ioremap(mem->res->start, s->map_size);
105 
106 	mem->card_start = card_offset;
107 	mem->flags = flags;
108 
109 	ret = s->ops->set_mem_map(s, mem);
110 	if (ret) {
111 		iounmap(s->cis_virt);
112 		s->cis_virt = NULL;
113 		return NULL;
114 	}
115 
116 	if (s->features & SS_CAP_STATIC_MAP) {
117 		if (s->cis_virt)
118 			iounmap(s->cis_virt);
119 		s->cis_virt = ioremap(mem->static_start, s->map_size);
120 	}
121 
122 	return s->cis_virt;
123 }
124 
125 
126 /* Bits in attr field */
127 #define IS_ATTR		1
128 #define IS_INDIRECT	8
129 
130 /**
131  * pcmcia_read_cis_mem() - low-level function to read CIS memory
132  *
133  * must be called with ops_mutex held
134  */
135 int pcmcia_read_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
136 		 u_int len, void *ptr)
137 {
138 	void __iomem *sys, *end;
139 	unsigned char *buf = ptr;
140 
141 	dev_dbg(&s->dev, "pcmcia_read_cis_mem(%d, %#x, %u)\n", attr, addr, len);
142 
143 	if (attr & IS_INDIRECT) {
144 		/* Indirect accesses use a bunch of special registers at fixed
145 		   locations in common memory */
146 		u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
147 		if (attr & IS_ATTR) {
148 			addr *= 2;
149 			flags = ICTRL0_AUTOINC;
150 		}
151 
152 		sys = set_cis_map(s, 0, MAP_ACTIVE |
153 				((cis_width) ? MAP_16BIT : 0));
154 		if (!sys) {
155 			dev_dbg(&s->dev, "could not map memory\n");
156 			memset(ptr, 0xff, len);
157 			return -1;
158 		}
159 
160 		writeb(flags, sys+CISREG_ICTRL0);
161 		writeb(addr & 0xff, sys+CISREG_IADDR0);
162 		writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
163 		writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
164 		writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
165 		for ( ; len > 0; len--, buf++)
166 			*buf = readb(sys+CISREG_IDATA0);
167 	} else {
168 		u_int inc = 1, card_offset, flags;
169 
170 		if (addr > CISTPL_MAX_CIS_SIZE) {
171 			dev_dbg(&s->dev,
172 				"attempt to read CIS mem at addr %#x", addr);
173 			memset(ptr, 0xff, len);
174 			return -1;
175 		}
176 
177 		flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
178 		if (attr) {
179 			flags |= MAP_ATTRIB;
180 			inc++;
181 			addr *= 2;
182 		}
183 
184 		card_offset = addr & ~(s->map_size-1);
185 		while (len) {
186 			sys = set_cis_map(s, card_offset, flags);
187 			if (!sys) {
188 				dev_dbg(&s->dev, "could not map memory\n");
189 				memset(ptr, 0xff, len);
190 				return -1;
191 			}
192 			end = sys + s->map_size;
193 			sys = sys + (addr & (s->map_size-1));
194 			for ( ; len > 0; len--, buf++, sys += inc) {
195 				if (sys == end)
196 					break;
197 				*buf = readb(sys);
198 			}
199 			card_offset += s->map_size;
200 			addr = 0;
201 		}
202 	}
203 	dev_dbg(&s->dev, "  %#2.2x %#2.2x %#2.2x %#2.2x ...\n",
204 		*(u_char *)(ptr+0), *(u_char *)(ptr+1),
205 		*(u_char *)(ptr+2), *(u_char *)(ptr+3));
206 	return 0;
207 }
208 
209 
210 /**
211  * pcmcia_write_cis_mem() - low-level function to write CIS memory
212  *
213  * Probably only useful for writing one-byte registers. Must be called
214  * with ops_mutex held.
215  */
216 int pcmcia_write_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
217 		   u_int len, void *ptr)
218 {
219 	void __iomem *sys, *end;
220 	unsigned char *buf = ptr;
221 
222 	dev_dbg(&s->dev,
223 		"pcmcia_write_cis_mem(%d, %#x, %u)\n", attr, addr, len);
224 
225 	if (attr & IS_INDIRECT) {
226 		/* Indirect accesses use a bunch of special registers at fixed
227 		   locations in common memory */
228 		u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
229 		if (attr & IS_ATTR) {
230 			addr *= 2;
231 			flags = ICTRL0_AUTOINC;
232 		}
233 
234 		sys = set_cis_map(s, 0, MAP_ACTIVE |
235 				((cis_width) ? MAP_16BIT : 0));
236 		if (!sys) {
237 			dev_dbg(&s->dev, "could not map memory\n");
238 			return -EINVAL;
239 		}
240 
241 		writeb(flags, sys+CISREG_ICTRL0);
242 		writeb(addr & 0xff, sys+CISREG_IADDR0);
243 		writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
244 		writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
245 		writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
246 		for ( ; len > 0; len--, buf++)
247 			writeb(*buf, sys+CISREG_IDATA0);
248 	} else {
249 		u_int inc = 1, card_offset, flags;
250 
251 		flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
252 		if (attr & IS_ATTR) {
253 			flags |= MAP_ATTRIB;
254 			inc++;
255 			addr *= 2;
256 		}
257 
258 		card_offset = addr & ~(s->map_size-1);
259 		while (len) {
260 			sys = set_cis_map(s, card_offset, flags);
261 			if (!sys) {
262 				dev_dbg(&s->dev, "could not map memory\n");
263 				return -EINVAL;
264 			}
265 
266 			end = sys + s->map_size;
267 			sys = sys + (addr & (s->map_size-1));
268 			for ( ; len > 0; len--, buf++, sys += inc) {
269 				if (sys == end)
270 					break;
271 				writeb(*buf, sys);
272 			}
273 			card_offset += s->map_size;
274 			addr = 0;
275 		}
276 	}
277 	return 0;
278 }
279 
280 
281 /**
282  * read_cis_cache() - read CIS memory or its associated cache
283  *
284  * This is a wrapper around read_cis_mem, with the same interface,
285  * but which caches information, for cards whose CIS may not be
286  * readable all the time.
287  */
288 static int read_cis_cache(struct pcmcia_socket *s, int attr, u_int addr,
289 			size_t len, void *ptr)
290 {
291 	struct cis_cache_entry *cis;
292 	int ret = 0;
293 
294 	if (s->state & SOCKET_CARDBUS)
295 		return -EINVAL;
296 
297 	mutex_lock(&s->ops_mutex);
298 	if (s->fake_cis) {
299 		if (s->fake_cis_len >= addr+len)
300 			memcpy(ptr, s->fake_cis+addr, len);
301 		else {
302 			memset(ptr, 0xff, len);
303 			ret = -EINVAL;
304 		}
305 		mutex_unlock(&s->ops_mutex);
306 		return ret;
307 	}
308 
309 	list_for_each_entry(cis, &s->cis_cache, node) {
310 		if (cis->addr == addr && cis->len == len && cis->attr == attr) {
311 			memcpy(ptr, cis->cache, len);
312 			mutex_unlock(&s->ops_mutex);
313 			return 0;
314 		}
315 	}
316 
317 	ret = pcmcia_read_cis_mem(s, attr, addr, len, ptr);
318 
319 	if (ret == 0) {
320 		/* Copy data into the cache */
321 		cis = kmalloc(sizeof(struct cis_cache_entry) + len, GFP_KERNEL);
322 		if (cis) {
323 			cis->addr = addr;
324 			cis->len = len;
325 			cis->attr = attr;
326 			memcpy(cis->cache, ptr, len);
327 			list_add(&cis->node, &s->cis_cache);
328 		}
329 	}
330 	mutex_unlock(&s->ops_mutex);
331 
332 	return ret;
333 }
334 
335 static void
336 remove_cis_cache(struct pcmcia_socket *s, int attr, u_int addr, u_int len)
337 {
338 	struct cis_cache_entry *cis;
339 
340 	mutex_lock(&s->ops_mutex);
341 	list_for_each_entry(cis, &s->cis_cache, node)
342 		if (cis->addr == addr && cis->len == len && cis->attr == attr) {
343 			list_del(&cis->node);
344 			kfree(cis);
345 			break;
346 		}
347 	mutex_unlock(&s->ops_mutex);
348 }
349 
350 /**
351  * destroy_cis_cache() - destroy the CIS cache
352  * @s:		pcmcia_socket for which CIS cache shall be destroyed
353  *
354  * This destroys the CIS cache but keeps any fake CIS alive. Must be
355  * called with ops_mutex held.
356  */
357 void destroy_cis_cache(struct pcmcia_socket *s)
358 {
359 	struct list_head *l, *n;
360 	struct cis_cache_entry *cis;
361 
362 	list_for_each_safe(l, n, &s->cis_cache) {
363 		cis = list_entry(l, struct cis_cache_entry, node);
364 		list_del(&cis->node);
365 		kfree(cis);
366 	}
367 }
368 
369 /**
370  * verify_cis_cache() - does the CIS match what is in the CIS cache?
371  */
372 int verify_cis_cache(struct pcmcia_socket *s)
373 {
374 	struct cis_cache_entry *cis;
375 	char *buf;
376 	int ret;
377 
378 	if (s->state & SOCKET_CARDBUS)
379 		return -EINVAL;
380 
381 	buf = kmalloc(256, GFP_KERNEL);
382 	if (buf == NULL) {
383 		dev_warn(&s->dev, "no memory for verifying CIS\n");
384 		return -ENOMEM;
385 	}
386 	mutex_lock(&s->ops_mutex);
387 	list_for_each_entry(cis, &s->cis_cache, node) {
388 		int len = cis->len;
389 
390 		if (len > 256)
391 			len = 256;
392 
393 		ret = pcmcia_read_cis_mem(s, cis->attr, cis->addr, len, buf);
394 		if (ret || memcmp(buf, cis->cache, len) != 0) {
395 			kfree(buf);
396 			mutex_unlock(&s->ops_mutex);
397 			return -1;
398 		}
399 	}
400 	kfree(buf);
401 	mutex_unlock(&s->ops_mutex);
402 	return 0;
403 }
404 
405 /**
406  * pcmcia_replace_cis() - use a replacement CIS instead of the card's CIS
407  *
408  * For really bad cards, we provide a facility for uploading a
409  * replacement CIS.
410  */
411 int pcmcia_replace_cis(struct pcmcia_socket *s,
412 		       const u8 *data, const size_t len)
413 {
414 	if (len > CISTPL_MAX_CIS_SIZE) {
415 		dev_warn(&s->dev, "replacement CIS too big\n");
416 		return -EINVAL;
417 	}
418 	mutex_lock(&s->ops_mutex);
419 	kfree(s->fake_cis);
420 	s->fake_cis = kmalloc(len, GFP_KERNEL);
421 	if (s->fake_cis == NULL) {
422 		dev_warn(&s->dev, "no memory to replace CIS\n");
423 		mutex_unlock(&s->ops_mutex);
424 		return -ENOMEM;
425 	}
426 	s->fake_cis_len = len;
427 	memcpy(s->fake_cis, data, len);
428 	dev_info(&s->dev, "Using replacement CIS\n");
429 	mutex_unlock(&s->ops_mutex);
430 	return 0;
431 }
432 
433 /* The high-level CIS tuple services */
434 
435 struct tuple_flags {
436 	u_int		link_space:4;
437 	u_int		has_link:1;
438 	u_int		mfc_fn:3;
439 	u_int		space:4;
440 };
441 
442 #define LINK_SPACE(f)	(((struct tuple_flags *)(&(f)))->link_space)
443 #define HAS_LINK(f)	(((struct tuple_flags *)(&(f)))->has_link)
444 #define MFC_FN(f)	(((struct tuple_flags *)(&(f)))->mfc_fn)
445 #define SPACE(f)	(((struct tuple_flags *)(&(f)))->space)
446 
447 int pccard_get_first_tuple(struct pcmcia_socket *s, unsigned int function,
448 			tuple_t *tuple)
449 {
450 	if (!s)
451 		return -EINVAL;
452 
453 	if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS))
454 		return -ENODEV;
455 	tuple->TupleLink = tuple->Flags = 0;
456 
457 	/* Assume presence of a LONGLINK_C to address 0 */
458 	tuple->CISOffset = tuple->LinkOffset = 0;
459 	SPACE(tuple->Flags) = HAS_LINK(tuple->Flags) = 1;
460 
461 	if ((s->functions > 1) && !(tuple->Attributes & TUPLE_RETURN_COMMON)) {
462 		cisdata_t req = tuple->DesiredTuple;
463 		tuple->DesiredTuple = CISTPL_LONGLINK_MFC;
464 		if (pccard_get_next_tuple(s, function, tuple) == 0) {
465 			tuple->DesiredTuple = CISTPL_LINKTARGET;
466 			if (pccard_get_next_tuple(s, function, tuple) != 0)
467 				return -ENOSPC;
468 		} else
469 			tuple->CISOffset = tuple->TupleLink = 0;
470 		tuple->DesiredTuple = req;
471 	}
472 	return pccard_get_next_tuple(s, function, tuple);
473 }
474 
475 static int follow_link(struct pcmcia_socket *s, tuple_t *tuple)
476 {
477 	u_char link[5];
478 	u_int ofs;
479 	int ret;
480 
481 	if (MFC_FN(tuple->Flags)) {
482 		/* Get indirect link from the MFC tuple */
483 		ret = read_cis_cache(s, LINK_SPACE(tuple->Flags),
484 				tuple->LinkOffset, 5, link);
485 		if (ret)
486 			return -1;
487 		ofs = get_unaligned_le32(link + 1);
488 		SPACE(tuple->Flags) = (link[0] == CISTPL_MFC_ATTR);
489 		/* Move to the next indirect link */
490 		tuple->LinkOffset += 5;
491 		MFC_FN(tuple->Flags)--;
492 	} else if (HAS_LINK(tuple->Flags)) {
493 		ofs = tuple->LinkOffset;
494 		SPACE(tuple->Flags) = LINK_SPACE(tuple->Flags);
495 		HAS_LINK(tuple->Flags) = 0;
496 	} else
497 		return -1;
498 
499 	if (SPACE(tuple->Flags)) {
500 		/* This is ugly, but a common CIS error is to code the long
501 		   link offset incorrectly, so we check the right spot... */
502 		ret = read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
503 		if (ret)
504 			return -1;
505 		if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
506 			(strncmp(link+2, "CIS", 3) == 0))
507 			return ofs;
508 		remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
509 		/* Then, we try the wrong spot... */
510 		ofs = ofs >> 1;
511 	}
512 	ret = read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
513 	if (ret)
514 		return -1;
515 	if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
516 		(strncmp(link+2, "CIS", 3) == 0))
517 		return ofs;
518 	remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
519 	return -1;
520 }
521 
522 int pccard_get_next_tuple(struct pcmcia_socket *s, unsigned int function,
523 			tuple_t *tuple)
524 {
525 	u_char link[2], tmp;
526 	int ofs, i, attr;
527 	int ret;
528 
529 	if (!s)
530 		return -EINVAL;
531 	if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS))
532 		return -ENODEV;
533 
534 	link[1] = tuple->TupleLink;
535 	ofs = tuple->CISOffset + tuple->TupleLink;
536 	attr = SPACE(tuple->Flags);
537 
538 	for (i = 0; i < MAX_TUPLES; i++) {
539 		if (link[1] == 0xff)
540 			link[0] = CISTPL_END;
541 		else {
542 			ret = read_cis_cache(s, attr, ofs, 2, link);
543 			if (ret)
544 				return -1;
545 			if (link[0] == CISTPL_NULL) {
546 				ofs++;
547 				continue;
548 			}
549 		}
550 
551 		/* End of chain?  Follow long link if possible */
552 		if (link[0] == CISTPL_END) {
553 			ofs = follow_link(s, tuple);
554 			if (ofs < 0)
555 				return -ENOSPC;
556 			attr = SPACE(tuple->Flags);
557 			ret = read_cis_cache(s, attr, ofs, 2, link);
558 			if (ret)
559 				return -1;
560 		}
561 
562 		/* Is this a link tuple?  Make a note of it */
563 		if ((link[0] == CISTPL_LONGLINK_A) ||
564 			(link[0] == CISTPL_LONGLINK_C) ||
565 			(link[0] == CISTPL_LONGLINK_MFC) ||
566 			(link[0] == CISTPL_LINKTARGET) ||
567 			(link[0] == CISTPL_INDIRECT) ||
568 			(link[0] == CISTPL_NO_LINK)) {
569 			switch (link[0]) {
570 			case CISTPL_LONGLINK_A:
571 				HAS_LINK(tuple->Flags) = 1;
572 				LINK_SPACE(tuple->Flags) = attr | IS_ATTR;
573 				ret = read_cis_cache(s, attr, ofs+2, 4,
574 						&tuple->LinkOffset);
575 				if (ret)
576 					return -1;
577 				break;
578 			case CISTPL_LONGLINK_C:
579 				HAS_LINK(tuple->Flags) = 1;
580 				LINK_SPACE(tuple->Flags) = attr & ~IS_ATTR;
581 				ret = read_cis_cache(s, attr, ofs+2, 4,
582 						&tuple->LinkOffset);
583 				if (ret)
584 					return -1;
585 				break;
586 			case CISTPL_INDIRECT:
587 				HAS_LINK(tuple->Flags) = 1;
588 				LINK_SPACE(tuple->Flags) = IS_ATTR |
589 					IS_INDIRECT;
590 				tuple->LinkOffset = 0;
591 				break;
592 			case CISTPL_LONGLINK_MFC:
593 				tuple->LinkOffset = ofs + 3;
594 				LINK_SPACE(tuple->Flags) = attr;
595 				if (function == BIND_FN_ALL) {
596 					/* Follow all the MFC links */
597 					ret = read_cis_cache(s, attr, ofs+2,
598 							1, &tmp);
599 					if (ret)
600 						return -1;
601 					MFC_FN(tuple->Flags) = tmp;
602 				} else {
603 					/* Follow exactly one of the links */
604 					MFC_FN(tuple->Flags) = 1;
605 					tuple->LinkOffset += function * 5;
606 				}
607 				break;
608 			case CISTPL_NO_LINK:
609 				HAS_LINK(tuple->Flags) = 0;
610 				break;
611 			}
612 			if ((tuple->Attributes & TUPLE_RETURN_LINK) &&
613 				(tuple->DesiredTuple == RETURN_FIRST_TUPLE))
614 				break;
615 		} else
616 			if (tuple->DesiredTuple == RETURN_FIRST_TUPLE)
617 				break;
618 
619 		if (link[0] == tuple->DesiredTuple)
620 			break;
621 		ofs += link[1] + 2;
622 	}
623 	if (i == MAX_TUPLES) {
624 		dev_dbg(&s->dev, "cs: overrun in pcmcia_get_next_tuple\n");
625 		return -ENOSPC;
626 	}
627 
628 	tuple->TupleCode = link[0];
629 	tuple->TupleLink = link[1];
630 	tuple->CISOffset = ofs + 2;
631 	return 0;
632 }
633 
634 int pccard_get_tuple_data(struct pcmcia_socket *s, tuple_t *tuple)
635 {
636 	u_int len;
637 	int ret;
638 
639 	if (!s)
640 		return -EINVAL;
641 
642 	if (tuple->TupleLink < tuple->TupleOffset)
643 		return -ENOSPC;
644 	len = tuple->TupleLink - tuple->TupleOffset;
645 	tuple->TupleDataLen = tuple->TupleLink;
646 	if (len == 0)
647 		return 0;
648 	ret = read_cis_cache(s, SPACE(tuple->Flags),
649 			tuple->CISOffset + tuple->TupleOffset,
650 			min(len, (u_int) tuple->TupleDataMax),
651 			tuple->TupleData);
652 	if (ret)
653 		return -1;
654 	return 0;
655 }
656 
657 
658 /* Parsing routines for individual tuples */
659 
660 static int parse_device(tuple_t *tuple, cistpl_device_t *device)
661 {
662 	int i;
663 	u_char scale;
664 	u_char *p, *q;
665 
666 	p = (u_char *)tuple->TupleData;
667 	q = p + tuple->TupleDataLen;
668 
669 	device->ndev = 0;
670 	for (i = 0; i < CISTPL_MAX_DEVICES; i++) {
671 
672 		if (*p == 0xff)
673 			break;
674 		device->dev[i].type = (*p >> 4);
675 		device->dev[i].wp = (*p & 0x08) ? 1 : 0;
676 		switch (*p & 0x07) {
677 		case 0:
678 			device->dev[i].speed = 0;
679 			break;
680 		case 1:
681 			device->dev[i].speed = 250;
682 			break;
683 		case 2:
684 			device->dev[i].speed = 200;
685 			break;
686 		case 3:
687 			device->dev[i].speed = 150;
688 			break;
689 		case 4:
690 			device->dev[i].speed = 100;
691 			break;
692 		case 7:
693 			if (++p == q)
694 				return -EINVAL;
695 			device->dev[i].speed = SPEED_CVT(*p);
696 			while (*p & 0x80)
697 				if (++p == q)
698 					return -EINVAL;
699 			break;
700 		default:
701 			return -EINVAL;
702 		}
703 
704 		if (++p == q)
705 			return -EINVAL;
706 		if (*p == 0xff)
707 			break;
708 		scale = *p & 7;
709 		if (scale == 7)
710 			return -EINVAL;
711 		device->dev[i].size = ((*p >> 3) + 1) * (512 << (scale*2));
712 		device->ndev++;
713 		if (++p == q)
714 			break;
715 	}
716 
717 	return 0;
718 }
719 
720 
721 static int parse_checksum(tuple_t *tuple, cistpl_checksum_t *csum)
722 {
723 	u_char *p;
724 	if (tuple->TupleDataLen < 5)
725 		return -EINVAL;
726 	p = (u_char *) tuple->TupleData;
727 	csum->addr = tuple->CISOffset + get_unaligned_le16(p) - 2;
728 	csum->len = get_unaligned_le16(p + 2);
729 	csum->sum = *(p + 4);
730 	return 0;
731 }
732 
733 
734 static int parse_longlink(tuple_t *tuple, cistpl_longlink_t *link)
735 {
736 	if (tuple->TupleDataLen < 4)
737 		return -EINVAL;
738 	link->addr = get_unaligned_le32(tuple->TupleData);
739 	return 0;
740 }
741 
742 
743 static int parse_longlink_mfc(tuple_t *tuple, cistpl_longlink_mfc_t *link)
744 {
745 	u_char *p;
746 	int i;
747 
748 	p = (u_char *)tuple->TupleData;
749 
750 	link->nfn = *p; p++;
751 	if (tuple->TupleDataLen <= link->nfn*5)
752 		return -EINVAL;
753 	for (i = 0; i < link->nfn; i++) {
754 		link->fn[i].space = *p; p++;
755 		link->fn[i].addr = get_unaligned_le32(p);
756 		p += 4;
757 	}
758 	return 0;
759 }
760 
761 
762 static int parse_strings(u_char *p, u_char *q, int max,
763 			 char *s, u_char *ofs, u_char *found)
764 {
765 	int i, j, ns;
766 
767 	if (p == q)
768 		return -EINVAL;
769 	ns = 0; j = 0;
770 	for (i = 0; i < max; i++) {
771 		if (*p == 0xff)
772 			break;
773 		ofs[i] = j;
774 		ns++;
775 		for (;;) {
776 			s[j++] = (*p == 0xff) ? '\0' : *p;
777 			if ((*p == '\0') || (*p == 0xff))
778 				break;
779 			if (++p == q)
780 				return -EINVAL;
781 		}
782 		if ((*p == 0xff) || (++p == q))
783 			break;
784 	}
785 	if (found) {
786 		*found = ns;
787 		return 0;
788 	}
789 
790 	return (ns == max) ? 0 : -EINVAL;
791 }
792 
793 
794 static int parse_vers_1(tuple_t *tuple, cistpl_vers_1_t *vers_1)
795 {
796 	u_char *p, *q;
797 
798 	p = (u_char *)tuple->TupleData;
799 	q = p + tuple->TupleDataLen;
800 
801 	vers_1->major = *p; p++;
802 	vers_1->minor = *p; p++;
803 	if (p >= q)
804 		return -EINVAL;
805 
806 	return parse_strings(p, q, CISTPL_VERS_1_MAX_PROD_STRINGS,
807 			vers_1->str, vers_1->ofs, &vers_1->ns);
808 }
809 
810 
811 static int parse_altstr(tuple_t *tuple, cistpl_altstr_t *altstr)
812 {
813 	u_char *p, *q;
814 
815 	p = (u_char *)tuple->TupleData;
816 	q = p + tuple->TupleDataLen;
817 
818 	return parse_strings(p, q, CISTPL_MAX_ALTSTR_STRINGS,
819 			altstr->str, altstr->ofs, &altstr->ns);
820 }
821 
822 
823 static int parse_jedec(tuple_t *tuple, cistpl_jedec_t *jedec)
824 {
825 	u_char *p, *q;
826 	int nid;
827 
828 	p = (u_char *)tuple->TupleData;
829 	q = p + tuple->TupleDataLen;
830 
831 	for (nid = 0; nid < CISTPL_MAX_DEVICES; nid++) {
832 		if (p > q-2)
833 			break;
834 		jedec->id[nid].mfr = p[0];
835 		jedec->id[nid].info = p[1];
836 		p += 2;
837 	}
838 	jedec->nid = nid;
839 	return 0;
840 }
841 
842 
843 static int parse_manfid(tuple_t *tuple, cistpl_manfid_t *m)
844 {
845 	if (tuple->TupleDataLen < 4)
846 		return -EINVAL;
847 	m->manf = get_unaligned_le16(tuple->TupleData);
848 	m->card = get_unaligned_le16(tuple->TupleData + 2);
849 	return 0;
850 }
851 
852 
853 static int parse_funcid(tuple_t *tuple, cistpl_funcid_t *f)
854 {
855 	u_char *p;
856 	if (tuple->TupleDataLen < 2)
857 		return -EINVAL;
858 	p = (u_char *)tuple->TupleData;
859 	f->func = p[0];
860 	f->sysinit = p[1];
861 	return 0;
862 }
863 
864 
865 static int parse_funce(tuple_t *tuple, cistpl_funce_t *f)
866 {
867 	u_char *p;
868 	int i;
869 	if (tuple->TupleDataLen < 1)
870 		return -EINVAL;
871 	p = (u_char *)tuple->TupleData;
872 	f->type = p[0];
873 	for (i = 1; i < tuple->TupleDataLen; i++)
874 		f->data[i-1] = p[i];
875 	return 0;
876 }
877 
878 
879 static int parse_config(tuple_t *tuple, cistpl_config_t *config)
880 {
881 	int rasz, rmsz, i;
882 	u_char *p;
883 
884 	p = (u_char *)tuple->TupleData;
885 	rasz = *p & 0x03;
886 	rmsz = (*p & 0x3c) >> 2;
887 	if (tuple->TupleDataLen < rasz+rmsz+4)
888 		return -EINVAL;
889 	config->last_idx = *(++p);
890 	p++;
891 	config->base = 0;
892 	for (i = 0; i <= rasz; i++)
893 		config->base += p[i] << (8*i);
894 	p += rasz+1;
895 	for (i = 0; i < 4; i++)
896 		config->rmask[i] = 0;
897 	for (i = 0; i <= rmsz; i++)
898 		config->rmask[i>>2] += p[i] << (8*(i%4));
899 	config->subtuples = tuple->TupleDataLen - (rasz+rmsz+4);
900 	return 0;
901 }
902 
903 /* The following routines are all used to parse the nightmarish
904  * config table entries.
905  */
906 
907 static u_char *parse_power(u_char *p, u_char *q, cistpl_power_t *pwr)
908 {
909 	int i;
910 	u_int scale;
911 
912 	if (p == q)
913 		return NULL;
914 	pwr->present = *p;
915 	pwr->flags = 0;
916 	p++;
917 	for (i = 0; i < 7; i++)
918 		if (pwr->present & (1<<i)) {
919 			if (p == q)
920 				return NULL;
921 			pwr->param[i] = POWER_CVT(*p);
922 			scale = POWER_SCALE(*p);
923 			while (*p & 0x80) {
924 				if (++p == q)
925 					return NULL;
926 				if ((*p & 0x7f) < 100)
927 					pwr->param[i] +=
928 						(*p & 0x7f) * scale / 100;
929 				else if (*p == 0x7d)
930 					pwr->flags |= CISTPL_POWER_HIGHZ_OK;
931 				else if (*p == 0x7e)
932 					pwr->param[i] = 0;
933 				else if (*p == 0x7f)
934 					pwr->flags |= CISTPL_POWER_HIGHZ_REQ;
935 				else
936 					return NULL;
937 			}
938 			p++;
939 		}
940 	return p;
941 }
942 
943 
944 static u_char *parse_timing(u_char *p, u_char *q, cistpl_timing_t *timing)
945 {
946 	u_char scale;
947 
948 	if (p == q)
949 		return NULL;
950 	scale = *p;
951 	if ((scale & 3) != 3) {
952 		if (++p == q)
953 			return NULL;
954 		timing->wait = SPEED_CVT(*p);
955 		timing->waitscale = exponent[scale & 3];
956 	} else
957 		timing->wait = 0;
958 	scale >>= 2;
959 	if ((scale & 7) != 7) {
960 		if (++p == q)
961 			return NULL;
962 		timing->ready = SPEED_CVT(*p);
963 		timing->rdyscale = exponent[scale & 7];
964 	} else
965 		timing->ready = 0;
966 	scale >>= 3;
967 	if (scale != 7) {
968 		if (++p == q)
969 			return NULL;
970 		timing->reserved = SPEED_CVT(*p);
971 		timing->rsvscale = exponent[scale];
972 	} else
973 		timing->reserved = 0;
974 	p++;
975 	return p;
976 }
977 
978 
979 static u_char *parse_io(u_char *p, u_char *q, cistpl_io_t *io)
980 {
981 	int i, j, bsz, lsz;
982 
983 	if (p == q)
984 		return NULL;
985 	io->flags = *p;
986 
987 	if (!(*p & 0x80)) {
988 		io->nwin = 1;
989 		io->win[0].base = 0;
990 		io->win[0].len = (1 << (io->flags & CISTPL_IO_LINES_MASK));
991 		return p+1;
992 	}
993 
994 	if (++p == q)
995 		return NULL;
996 	io->nwin = (*p & 0x0f) + 1;
997 	bsz = (*p & 0x30) >> 4;
998 	if (bsz == 3)
999 		bsz++;
1000 	lsz = (*p & 0xc0) >> 6;
1001 	if (lsz == 3)
1002 		lsz++;
1003 	p++;
1004 
1005 	for (i = 0; i < io->nwin; i++) {
1006 		io->win[i].base = 0;
1007 		io->win[i].len = 1;
1008 		for (j = 0; j < bsz; j++, p++) {
1009 			if (p == q)
1010 				return NULL;
1011 			io->win[i].base += *p << (j*8);
1012 		}
1013 		for (j = 0; j < lsz; j++, p++) {
1014 			if (p == q)
1015 				return NULL;
1016 			io->win[i].len += *p << (j*8);
1017 		}
1018 	}
1019 	return p;
1020 }
1021 
1022 
1023 static u_char *parse_mem(u_char *p, u_char *q, cistpl_mem_t *mem)
1024 {
1025 	int i, j, asz, lsz, has_ha;
1026 	u_int len, ca, ha;
1027 
1028 	if (p == q)
1029 		return NULL;
1030 
1031 	mem->nwin = (*p & 0x07) + 1;
1032 	lsz = (*p & 0x18) >> 3;
1033 	asz = (*p & 0x60) >> 5;
1034 	has_ha = (*p & 0x80);
1035 	if (++p == q)
1036 		return NULL;
1037 
1038 	for (i = 0; i < mem->nwin; i++) {
1039 		len = ca = ha = 0;
1040 		for (j = 0; j < lsz; j++, p++) {
1041 			if (p == q)
1042 				return NULL;
1043 			len += *p << (j*8);
1044 		}
1045 		for (j = 0; j < asz; j++, p++) {
1046 			if (p == q)
1047 				return NULL;
1048 			ca += *p << (j*8);
1049 		}
1050 		if (has_ha)
1051 			for (j = 0; j < asz; j++, p++) {
1052 				if (p == q)
1053 					return NULL;
1054 				ha += *p << (j*8);
1055 			}
1056 		mem->win[i].len = len << 8;
1057 		mem->win[i].card_addr = ca << 8;
1058 		mem->win[i].host_addr = ha << 8;
1059 	}
1060 	return p;
1061 }
1062 
1063 
1064 static u_char *parse_irq(u_char *p, u_char *q, cistpl_irq_t *irq)
1065 {
1066 	if (p == q)
1067 		return NULL;
1068 	irq->IRQInfo1 = *p; p++;
1069 	if (irq->IRQInfo1 & IRQ_INFO2_VALID) {
1070 		if (p+2 > q)
1071 			return NULL;
1072 		irq->IRQInfo2 = (p[1]<<8) + p[0];
1073 		p += 2;
1074 	}
1075 	return p;
1076 }
1077 
1078 
1079 static int parse_cftable_entry(tuple_t *tuple,
1080 			       cistpl_cftable_entry_t *entry)
1081 {
1082 	u_char *p, *q, features;
1083 
1084 	p = tuple->TupleData;
1085 	q = p + tuple->TupleDataLen;
1086 	entry->index = *p & 0x3f;
1087 	entry->flags = 0;
1088 	if (*p & 0x40)
1089 		entry->flags |= CISTPL_CFTABLE_DEFAULT;
1090 	if (*p & 0x80) {
1091 		if (++p == q)
1092 			return -EINVAL;
1093 		if (*p & 0x10)
1094 			entry->flags |= CISTPL_CFTABLE_BVDS;
1095 		if (*p & 0x20)
1096 			entry->flags |= CISTPL_CFTABLE_WP;
1097 		if (*p & 0x40)
1098 			entry->flags |= CISTPL_CFTABLE_RDYBSY;
1099 		if (*p & 0x80)
1100 			entry->flags |= CISTPL_CFTABLE_MWAIT;
1101 		entry->interface = *p & 0x0f;
1102 	} else
1103 		entry->interface = 0;
1104 
1105 	/* Process optional features */
1106 	if (++p == q)
1107 		return -EINVAL;
1108 	features = *p; p++;
1109 
1110 	/* Power options */
1111 	if ((features & 3) > 0) {
1112 		p = parse_power(p, q, &entry->vcc);
1113 		if (p == NULL)
1114 			return -EINVAL;
1115 	} else
1116 		entry->vcc.present = 0;
1117 	if ((features & 3) > 1) {
1118 		p = parse_power(p, q, &entry->vpp1);
1119 		if (p == NULL)
1120 			return -EINVAL;
1121 	} else
1122 		entry->vpp1.present = 0;
1123 	if ((features & 3) > 2) {
1124 		p = parse_power(p, q, &entry->vpp2);
1125 		if (p == NULL)
1126 			return -EINVAL;
1127 	} else
1128 		entry->vpp2.present = 0;
1129 
1130 	/* Timing options */
1131 	if (features & 0x04) {
1132 		p = parse_timing(p, q, &entry->timing);
1133 		if (p == NULL)
1134 			return -EINVAL;
1135 	} else {
1136 		entry->timing.wait = 0;
1137 		entry->timing.ready = 0;
1138 		entry->timing.reserved = 0;
1139 	}
1140 
1141 	/* I/O window options */
1142 	if (features & 0x08) {
1143 		p = parse_io(p, q, &entry->io);
1144 		if (p == NULL)
1145 			return -EINVAL;
1146 	} else
1147 		entry->io.nwin = 0;
1148 
1149 	/* Interrupt options */
1150 	if (features & 0x10) {
1151 		p = parse_irq(p, q, &entry->irq);
1152 		if (p == NULL)
1153 			return -EINVAL;
1154 	} else
1155 		entry->irq.IRQInfo1 = 0;
1156 
1157 	switch (features & 0x60) {
1158 	case 0x00:
1159 		entry->mem.nwin = 0;
1160 		break;
1161 	case 0x20:
1162 		entry->mem.nwin = 1;
1163 		entry->mem.win[0].len = get_unaligned_le16(p) << 8;
1164 		entry->mem.win[0].card_addr = 0;
1165 		entry->mem.win[0].host_addr = 0;
1166 		p += 2;
1167 		if (p > q)
1168 			return -EINVAL;
1169 		break;
1170 	case 0x40:
1171 		entry->mem.nwin = 1;
1172 		entry->mem.win[0].len = get_unaligned_le16(p) << 8;
1173 		entry->mem.win[0].card_addr = get_unaligned_le16(p + 2) << 8;
1174 		entry->mem.win[0].host_addr = 0;
1175 		p += 4;
1176 		if (p > q)
1177 			return -EINVAL;
1178 		break;
1179 	case 0x60:
1180 		p = parse_mem(p, q, &entry->mem);
1181 		if (p == NULL)
1182 			return -EINVAL;
1183 		break;
1184 	}
1185 
1186 	/* Misc features */
1187 	if (features & 0x80) {
1188 		if (p == q)
1189 			return -EINVAL;
1190 		entry->flags |= (*p << 8);
1191 		while (*p & 0x80)
1192 			if (++p == q)
1193 				return -EINVAL;
1194 		p++;
1195 	}
1196 
1197 	entry->subtuples = q-p;
1198 
1199 	return 0;
1200 }
1201 
1202 
1203 static int parse_device_geo(tuple_t *tuple, cistpl_device_geo_t *geo)
1204 {
1205 	u_char *p, *q;
1206 	int n;
1207 
1208 	p = (u_char *)tuple->TupleData;
1209 	q = p + tuple->TupleDataLen;
1210 
1211 	for (n = 0; n < CISTPL_MAX_DEVICES; n++) {
1212 		if (p > q-6)
1213 			break;
1214 		geo->geo[n].buswidth = p[0];
1215 		geo->geo[n].erase_block = 1 << (p[1]-1);
1216 		geo->geo[n].read_block  = 1 << (p[2]-1);
1217 		geo->geo[n].write_block = 1 << (p[3]-1);
1218 		geo->geo[n].partition   = 1 << (p[4]-1);
1219 		geo->geo[n].interleave  = 1 << (p[5]-1);
1220 		p += 6;
1221 	}
1222 	geo->ngeo = n;
1223 	return 0;
1224 }
1225 
1226 
1227 static int parse_vers_2(tuple_t *tuple, cistpl_vers_2_t *v2)
1228 {
1229 	u_char *p, *q;
1230 
1231 	if (tuple->TupleDataLen < 10)
1232 		return -EINVAL;
1233 
1234 	p = tuple->TupleData;
1235 	q = p + tuple->TupleDataLen;
1236 
1237 	v2->vers = p[0];
1238 	v2->comply = p[1];
1239 	v2->dindex = get_unaligned_le16(p + 2);
1240 	v2->vspec8 = p[6];
1241 	v2->vspec9 = p[7];
1242 	v2->nhdr = p[8];
1243 	p += 9;
1244 	return parse_strings(p, q, 2, v2->str, &v2->vendor, NULL);
1245 }
1246 
1247 
1248 static int parse_org(tuple_t *tuple, cistpl_org_t *org)
1249 {
1250 	u_char *p, *q;
1251 	int i;
1252 
1253 	p = tuple->TupleData;
1254 	q = p + tuple->TupleDataLen;
1255 	if (p == q)
1256 		return -EINVAL;
1257 	org->data_org = *p;
1258 	if (++p == q)
1259 		return -EINVAL;
1260 	for (i = 0; i < 30; i++) {
1261 		org->desc[i] = *p;
1262 		if (*p == '\0')
1263 			break;
1264 		if (++p == q)
1265 			return -EINVAL;
1266 	}
1267 	return 0;
1268 }
1269 
1270 
1271 static int parse_format(tuple_t *tuple, cistpl_format_t *fmt)
1272 {
1273 	u_char *p;
1274 
1275 	if (tuple->TupleDataLen < 10)
1276 		return -EINVAL;
1277 
1278 	p = tuple->TupleData;
1279 
1280 	fmt->type = p[0];
1281 	fmt->edc = p[1];
1282 	fmt->offset = get_unaligned_le32(p + 2);
1283 	fmt->length = get_unaligned_le32(p + 6);
1284 
1285 	return 0;
1286 }
1287 
1288 
1289 int pcmcia_parse_tuple(tuple_t *tuple, cisparse_t *parse)
1290 {
1291 	int ret = 0;
1292 
1293 	if (tuple->TupleDataLen > tuple->TupleDataMax)
1294 		return -EINVAL;
1295 	switch (tuple->TupleCode) {
1296 	case CISTPL_DEVICE:
1297 	case CISTPL_DEVICE_A:
1298 		ret = parse_device(tuple, &parse->device);
1299 		break;
1300 	case CISTPL_CHECKSUM:
1301 		ret = parse_checksum(tuple, &parse->checksum);
1302 		break;
1303 	case CISTPL_LONGLINK_A:
1304 	case CISTPL_LONGLINK_C:
1305 		ret = parse_longlink(tuple, &parse->longlink);
1306 		break;
1307 	case CISTPL_LONGLINK_MFC:
1308 		ret = parse_longlink_mfc(tuple, &parse->longlink_mfc);
1309 		break;
1310 	case CISTPL_VERS_1:
1311 		ret = parse_vers_1(tuple, &parse->version_1);
1312 		break;
1313 	case CISTPL_ALTSTR:
1314 		ret = parse_altstr(tuple, &parse->altstr);
1315 		break;
1316 	case CISTPL_JEDEC_A:
1317 	case CISTPL_JEDEC_C:
1318 		ret = parse_jedec(tuple, &parse->jedec);
1319 		break;
1320 	case CISTPL_MANFID:
1321 		ret = parse_manfid(tuple, &parse->manfid);
1322 		break;
1323 	case CISTPL_FUNCID:
1324 		ret = parse_funcid(tuple, &parse->funcid);
1325 		break;
1326 	case CISTPL_FUNCE:
1327 		ret = parse_funce(tuple, &parse->funce);
1328 		break;
1329 	case CISTPL_CONFIG:
1330 		ret = parse_config(tuple, &parse->config);
1331 		break;
1332 	case CISTPL_CFTABLE_ENTRY:
1333 		ret = parse_cftable_entry(tuple, &parse->cftable_entry);
1334 		break;
1335 	case CISTPL_DEVICE_GEO:
1336 	case CISTPL_DEVICE_GEO_A:
1337 		ret = parse_device_geo(tuple, &parse->device_geo);
1338 		break;
1339 	case CISTPL_VERS_2:
1340 		ret = parse_vers_2(tuple, &parse->vers_2);
1341 		break;
1342 	case CISTPL_ORG:
1343 		ret = parse_org(tuple, &parse->org);
1344 		break;
1345 	case CISTPL_FORMAT:
1346 	case CISTPL_FORMAT_A:
1347 		ret = parse_format(tuple, &parse->format);
1348 		break;
1349 	case CISTPL_NO_LINK:
1350 	case CISTPL_LINKTARGET:
1351 		ret = 0;
1352 		break;
1353 	default:
1354 		ret = -EINVAL;
1355 		break;
1356 	}
1357 	if (ret)
1358 		pr_debug("parse_tuple failed %d\n", ret);
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL(pcmcia_parse_tuple);
1362 
1363 
1364 /**
1365  * pccard_validate_cis() - check whether card has a sensible CIS
1366  * @s:		the struct pcmcia_socket we are to check
1367  * @info:	returns the number of tuples in the (valid) CIS, or 0
1368  *
1369  * This tries to determine if a card has a sensible CIS.  In @info, it
1370  * returns the number of tuples in the CIS, or 0 if the CIS looks bad. The
1371  * checks include making sure several critical tuples are present and
1372  * valid; seeing if the total number of tuples is reasonable; and
1373  * looking for tuples that use reserved codes.
1374  *
1375  * The function returns 0 on success.
1376  */
1377 int pccard_validate_cis(struct pcmcia_socket *s, unsigned int *info)
1378 {
1379 	tuple_t *tuple;
1380 	cisparse_t *p;
1381 	unsigned int count = 0;
1382 	int ret, reserved, dev_ok = 0, ident_ok = 0;
1383 
1384 	if (!s)
1385 		return -EINVAL;
1386 
1387 	if (s->functions || !(s->state & SOCKET_PRESENT)) {
1388 		WARN_ON(1);
1389 		return -EINVAL;
1390 	}
1391 
1392 	/* We do not want to validate the CIS cache... */
1393 	mutex_lock(&s->ops_mutex);
1394 	destroy_cis_cache(s);
1395 	mutex_unlock(&s->ops_mutex);
1396 
1397 	tuple = kmalloc(sizeof(*tuple), GFP_KERNEL);
1398 	if (tuple == NULL) {
1399 		dev_warn(&s->dev, "no memory to validate CIS\n");
1400 		return -ENOMEM;
1401 	}
1402 	p = kmalloc(sizeof(*p), GFP_KERNEL);
1403 	if (p == NULL) {
1404 		kfree(tuple);
1405 		dev_warn(&s->dev, "no memory to validate CIS\n");
1406 		return -ENOMEM;
1407 	}
1408 
1409 	count = reserved = 0;
1410 	tuple->DesiredTuple = RETURN_FIRST_TUPLE;
1411 	tuple->Attributes = TUPLE_RETURN_COMMON;
1412 	ret = pccard_get_first_tuple(s, BIND_FN_ALL, tuple);
1413 	if (ret != 0)
1414 		goto done;
1415 
1416 	/* First tuple should be DEVICE; we should really have either that
1417 	   or a CFTABLE_ENTRY of some sort */
1418 	if ((tuple->TupleCode == CISTPL_DEVICE) ||
1419 	    (!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY, p)) ||
1420 	    (!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY_CB, p)))
1421 		dev_ok++;
1422 
1423 	/* All cards should have a MANFID tuple, and/or a VERS_1 or VERS_2
1424 	   tuple, for card identification.  Certain old D-Link and Linksys
1425 	   cards have only a broken VERS_2 tuple; hence the bogus test. */
1426 	if ((pccard_read_tuple(s, BIND_FN_ALL, CISTPL_MANFID, p) == 0) ||
1427 	    (pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_1, p) == 0) ||
1428 	    (pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_2, p) != -ENOSPC))
1429 		ident_ok++;
1430 
1431 	if (!dev_ok && !ident_ok)
1432 		goto done;
1433 
1434 	for (count = 1; count < MAX_TUPLES; count++) {
1435 		ret = pccard_get_next_tuple(s, BIND_FN_ALL, tuple);
1436 		if (ret != 0)
1437 			break;
1438 		if (((tuple->TupleCode > 0x23) && (tuple->TupleCode < 0x40)) ||
1439 		    ((tuple->TupleCode > 0x47) && (tuple->TupleCode < 0x80)) ||
1440 		    ((tuple->TupleCode > 0x90) && (tuple->TupleCode < 0xff)))
1441 			reserved++;
1442 	}
1443 	if ((count == MAX_TUPLES) || (reserved > 5) ||
1444 		((!dev_ok || !ident_ok) && (count > 10)))
1445 		count = 0;
1446 
1447 	ret = 0;
1448 
1449 done:
1450 	/* invalidate CIS cache on failure */
1451 	if (!dev_ok || !ident_ok || !count) {
1452 		mutex_lock(&s->ops_mutex);
1453 		destroy_cis_cache(s);
1454 		mutex_unlock(&s->ops_mutex);
1455 		/* We differentiate between dev_ok, ident_ok and count
1456 		   failures to allow for an override for anonymous cards
1457 		   in ds.c */
1458 		if (!dev_ok || !ident_ok)
1459 			ret = -EIO;
1460 		else
1461 			ret = -EFAULT;
1462 	}
1463 
1464 	if (info)
1465 		*info = count;
1466 	kfree(tuple);
1467 	kfree(p);
1468 	return ret;
1469 }
1470 
1471 
1472 #define to_socket(_dev) container_of(_dev, struct pcmcia_socket, dev)
1473 
1474 static ssize_t pccard_extract_cis(struct pcmcia_socket *s, char *buf,
1475 				  loff_t off, size_t count)
1476 {
1477 	tuple_t tuple;
1478 	int status, i;
1479 	loff_t pointer = 0;
1480 	ssize_t ret = 0;
1481 	u_char *tuplebuffer;
1482 	u_char *tempbuffer;
1483 
1484 	tuplebuffer = kmalloc_array(256, sizeof(u_char), GFP_KERNEL);
1485 	if (!tuplebuffer)
1486 		return -ENOMEM;
1487 
1488 	tempbuffer = kmalloc_array(258, sizeof(u_char), GFP_KERNEL);
1489 	if (!tempbuffer) {
1490 		ret = -ENOMEM;
1491 		goto free_tuple;
1492 	}
1493 
1494 	memset(&tuple, 0, sizeof(tuple_t));
1495 
1496 	tuple.Attributes = TUPLE_RETURN_LINK | TUPLE_RETURN_COMMON;
1497 	tuple.DesiredTuple = RETURN_FIRST_TUPLE;
1498 	tuple.TupleOffset = 0;
1499 
1500 	status = pccard_get_first_tuple(s, BIND_FN_ALL, &tuple);
1501 	while (!status) {
1502 		tuple.TupleData = tuplebuffer;
1503 		tuple.TupleDataMax = 255;
1504 		memset(tuplebuffer, 0, sizeof(u_char) * 255);
1505 
1506 		status = pccard_get_tuple_data(s, &tuple);
1507 		if (status)
1508 			break;
1509 
1510 		if (off < (pointer + 2 + tuple.TupleDataLen)) {
1511 			tempbuffer[0] = tuple.TupleCode & 0xff;
1512 			tempbuffer[1] = tuple.TupleLink & 0xff;
1513 			for (i = 0; i < tuple.TupleDataLen; i++)
1514 				tempbuffer[i + 2] = tuplebuffer[i] & 0xff;
1515 
1516 			for (i = 0; i < (2 + tuple.TupleDataLen); i++) {
1517 				if (((i + pointer) >= off) &&
1518 				    (i + pointer) < (off + count)) {
1519 					buf[ret] = tempbuffer[i];
1520 					ret++;
1521 				}
1522 			}
1523 		}
1524 
1525 		pointer += 2 + tuple.TupleDataLen;
1526 
1527 		if (pointer >= (off + count))
1528 			break;
1529 
1530 		if (tuple.TupleCode == CISTPL_END)
1531 			break;
1532 		status = pccard_get_next_tuple(s, BIND_FN_ALL, &tuple);
1533 	}
1534 
1535 	kfree(tempbuffer);
1536  free_tuple:
1537 	kfree(tuplebuffer);
1538 
1539 	return ret;
1540 }
1541 
1542 
1543 static ssize_t pccard_show_cis(struct file *filp, struct kobject *kobj,
1544 			       struct bin_attribute *bin_attr,
1545 			       char *buf, loff_t off, size_t count)
1546 {
1547 	unsigned int size = 0x200;
1548 
1549 	if (off >= size)
1550 		count = 0;
1551 	else {
1552 		struct pcmcia_socket *s;
1553 		unsigned int chains = 1;
1554 
1555 		if (off + count > size)
1556 			count = size - off;
1557 
1558 		s = to_socket(container_of(kobj, struct device, kobj));
1559 
1560 		if (!(s->state & SOCKET_PRESENT))
1561 			return -ENODEV;
1562 		if (!s->functions && pccard_validate_cis(s, &chains))
1563 			return -EIO;
1564 		if (!chains)
1565 			return -ENODATA;
1566 
1567 		count = pccard_extract_cis(s, buf, off, count);
1568 	}
1569 
1570 	return count;
1571 }
1572 
1573 
1574 static ssize_t pccard_store_cis(struct file *filp, struct kobject *kobj,
1575 				struct bin_attribute *bin_attr,
1576 				char *buf, loff_t off, size_t count)
1577 {
1578 	struct pcmcia_socket *s;
1579 	int error;
1580 
1581 	s = to_socket(container_of(kobj, struct device, kobj));
1582 
1583 	if (off)
1584 		return -EINVAL;
1585 
1586 	if (count >= CISTPL_MAX_CIS_SIZE)
1587 		return -EINVAL;
1588 
1589 	if (!(s->state & SOCKET_PRESENT))
1590 		return -ENODEV;
1591 
1592 	error = pcmcia_replace_cis(s, buf, count);
1593 	if (error)
1594 		return -EIO;
1595 
1596 	pcmcia_parse_uevents(s, PCMCIA_UEVENT_REQUERY);
1597 
1598 	return count;
1599 }
1600 
1601 
1602 const struct bin_attribute pccard_cis_attr = {
1603 	.attr = { .name = "cis", .mode = S_IRUGO | S_IWUSR },
1604 	.size = 0x200,
1605 	.read = pccard_show_cis,
1606 	.write = pccard_store_cis,
1607 };
1608