xref: /openbmc/linux/drivers/pci/vpd.c (revision f3d7c2cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI VPD support
4  *
5  * Copyright (C) 2010 Broadcom Corporation.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/export.h>
11 #include <linux/sched/signal.h>
12 #include <asm/unaligned.h>
13 #include "pci.h"
14 
15 #define PCI_VPD_LRDT_TAG_SIZE		3
16 #define PCI_VPD_SRDT_LEN_MASK		0x07
17 #define PCI_VPD_SRDT_TAG_SIZE		1
18 #define PCI_VPD_STIN_END		0x0f
19 #define PCI_VPD_INFO_FLD_HDR_SIZE	3
20 
21 static u16 pci_vpd_lrdt_size(const u8 *lrdt)
22 {
23 	return get_unaligned_le16(lrdt + 1);
24 }
25 
26 static u8 pci_vpd_srdt_tag(const u8 *srdt)
27 {
28 	return *srdt >> 3;
29 }
30 
31 static u8 pci_vpd_srdt_size(const u8 *srdt)
32 {
33 	return *srdt & PCI_VPD_SRDT_LEN_MASK;
34 }
35 
36 static u8 pci_vpd_info_field_size(const u8 *info_field)
37 {
38 	return info_field[2];
39 }
40 
41 /* VPD access through PCI 2.2+ VPD capability */
42 
43 static struct pci_dev *pci_get_func0_dev(struct pci_dev *dev)
44 {
45 	return pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
46 }
47 
48 #define PCI_VPD_MAX_SIZE	(PCI_VPD_ADDR_MASK + 1)
49 #define PCI_VPD_SZ_INVALID	UINT_MAX
50 
51 /**
52  * pci_vpd_size - determine actual size of Vital Product Data
53  * @dev:	pci device struct
54  */
55 static size_t pci_vpd_size(struct pci_dev *dev)
56 {
57 	size_t off = 0, size;
58 	unsigned char tag, header[1+2];	/* 1 byte tag, 2 bytes length */
59 
60 	/* Otherwise the following reads would fail. */
61 	dev->vpd.len = PCI_VPD_MAX_SIZE;
62 
63 	while (pci_read_vpd(dev, off, 1, header) == 1) {
64 		size = 0;
65 
66 		if (off == 0 && (header[0] == 0x00 || header[0] == 0xff))
67 			goto error;
68 
69 		if (header[0] & PCI_VPD_LRDT) {
70 			/* Large Resource Data Type Tag */
71 			if (pci_read_vpd(dev, off + 1, 2, &header[1]) != 2) {
72 				pci_warn(dev, "failed VPD read at offset %zu\n",
73 					 off + 1);
74 				return off ?: PCI_VPD_SZ_INVALID;
75 			}
76 			size = pci_vpd_lrdt_size(header);
77 			if (off + size > PCI_VPD_MAX_SIZE)
78 				goto error;
79 
80 			off += PCI_VPD_LRDT_TAG_SIZE + size;
81 		} else {
82 			/* Short Resource Data Type Tag */
83 			tag = pci_vpd_srdt_tag(header);
84 			size = pci_vpd_srdt_size(header);
85 			if (off + size > PCI_VPD_MAX_SIZE)
86 				goto error;
87 
88 			off += PCI_VPD_SRDT_TAG_SIZE + size;
89 			if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */
90 				return off;
91 		}
92 	}
93 	return off;
94 
95 error:
96 	pci_info(dev, "invalid VPD tag %#04x (size %zu) at offset %zu%s\n",
97 		 header[0], size, off, off == 0 ?
98 		 "; assume missing optional EEPROM" : "");
99 	return off ?: PCI_VPD_SZ_INVALID;
100 }
101 
102 static bool pci_vpd_available(struct pci_dev *dev)
103 {
104 	struct pci_vpd *vpd = &dev->vpd;
105 
106 	if (!vpd->cap)
107 		return false;
108 
109 	if (vpd->len == 0) {
110 		vpd->len = pci_vpd_size(dev);
111 		if (vpd->len == PCI_VPD_SZ_INVALID) {
112 			vpd->cap = 0;
113 			return false;
114 		}
115 	}
116 
117 	return true;
118 }
119 
120 /*
121  * Wait for last operation to complete.
122  * This code has to spin since there is no other notification from the PCI
123  * hardware. Since the VPD is often implemented by serial attachment to an
124  * EEPROM, it may take many milliseconds to complete.
125  * @set: if true wait for flag to be set, else wait for it to be cleared
126  *
127  * Returns 0 on success, negative values indicate error.
128  */
129 static int pci_vpd_wait(struct pci_dev *dev, bool set)
130 {
131 	struct pci_vpd *vpd = &dev->vpd;
132 	unsigned long timeout = jiffies + msecs_to_jiffies(125);
133 	unsigned long max_sleep = 16;
134 	u16 status;
135 	int ret;
136 
137 	do {
138 		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
139 						&status);
140 		if (ret < 0)
141 			return ret;
142 
143 		if (!!(status & PCI_VPD_ADDR_F) == set)
144 			return 0;
145 
146 		if (time_after(jiffies, timeout))
147 			break;
148 
149 		usleep_range(10, max_sleep);
150 		if (max_sleep < 1024)
151 			max_sleep *= 2;
152 	} while (true);
153 
154 	pci_warn(dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n");
155 	return -ETIMEDOUT;
156 }
157 
158 static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
159 			    void *arg)
160 {
161 	struct pci_vpd *vpd = &dev->vpd;
162 	int ret = 0;
163 	loff_t end = pos + count;
164 	u8 *buf = arg;
165 
166 	if (!pci_vpd_available(dev))
167 		return -ENODEV;
168 
169 	if (pos < 0)
170 		return -EINVAL;
171 
172 	if (pos > vpd->len)
173 		return 0;
174 
175 	if (end > vpd->len) {
176 		end = vpd->len;
177 		count = end - pos;
178 	}
179 
180 	if (mutex_lock_killable(&vpd->lock))
181 		return -EINTR;
182 
183 	while (pos < end) {
184 		u32 val;
185 		unsigned int i, skip;
186 
187 		if (fatal_signal_pending(current)) {
188 			ret = -EINTR;
189 			break;
190 		}
191 
192 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
193 						 pos & ~3);
194 		if (ret < 0)
195 			break;
196 		ret = pci_vpd_wait(dev, true);
197 		if (ret < 0)
198 			break;
199 
200 		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
201 		if (ret < 0)
202 			break;
203 
204 		skip = pos & 3;
205 		for (i = 0;  i < sizeof(u32); i++) {
206 			if (i >= skip) {
207 				*buf++ = val;
208 				if (++pos == end)
209 					break;
210 			}
211 			val >>= 8;
212 		}
213 	}
214 
215 	mutex_unlock(&vpd->lock);
216 	return ret ? ret : count;
217 }
218 
219 static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
220 			     const void *arg)
221 {
222 	struct pci_vpd *vpd = &dev->vpd;
223 	const u8 *buf = arg;
224 	loff_t end = pos + count;
225 	int ret = 0;
226 
227 	if (!pci_vpd_available(dev))
228 		return -ENODEV;
229 
230 	if (pos < 0 || (pos & 3) || (count & 3))
231 		return -EINVAL;
232 
233 	if (end > vpd->len)
234 		return -EINVAL;
235 
236 	if (mutex_lock_killable(&vpd->lock))
237 		return -EINTR;
238 
239 	while (pos < end) {
240 		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA,
241 						  get_unaligned_le32(buf));
242 		if (ret < 0)
243 			break;
244 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
245 						 pos | PCI_VPD_ADDR_F);
246 		if (ret < 0)
247 			break;
248 
249 		ret = pci_vpd_wait(dev, false);
250 		if (ret < 0)
251 			break;
252 
253 		buf += sizeof(u32);
254 		pos += sizeof(u32);
255 	}
256 
257 	mutex_unlock(&vpd->lock);
258 	return ret ? ret : count;
259 }
260 
261 void pci_vpd_init(struct pci_dev *dev)
262 {
263 	if (dev->vpd.len == PCI_VPD_SZ_INVALID)
264 		return;
265 
266 	dev->vpd.cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
267 	mutex_init(&dev->vpd.lock);
268 }
269 
270 static ssize_t vpd_read(struct file *filp, struct kobject *kobj,
271 			struct bin_attribute *bin_attr, char *buf, loff_t off,
272 			size_t count)
273 {
274 	struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj));
275 
276 	return pci_read_vpd(dev, off, count, buf);
277 }
278 
279 static ssize_t vpd_write(struct file *filp, struct kobject *kobj,
280 			 struct bin_attribute *bin_attr, char *buf, loff_t off,
281 			 size_t count)
282 {
283 	struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj));
284 
285 	return pci_write_vpd(dev, off, count, buf);
286 }
287 static BIN_ATTR(vpd, 0600, vpd_read, vpd_write, 0);
288 
289 static struct bin_attribute *vpd_attrs[] = {
290 	&bin_attr_vpd,
291 	NULL,
292 };
293 
294 static umode_t vpd_attr_is_visible(struct kobject *kobj,
295 				   struct bin_attribute *a, int n)
296 {
297 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
298 
299 	if (!pdev->vpd.cap)
300 		return 0;
301 
302 	return a->attr.mode;
303 }
304 
305 const struct attribute_group pci_dev_vpd_attr_group = {
306 	.bin_attrs = vpd_attrs,
307 	.is_bin_visible = vpd_attr_is_visible,
308 };
309 
310 void *pci_vpd_alloc(struct pci_dev *dev, unsigned int *size)
311 {
312 	unsigned int len;
313 	void *buf;
314 	int cnt;
315 
316 	if (!pci_vpd_available(dev))
317 		return ERR_PTR(-ENODEV);
318 
319 	len = dev->vpd.len;
320 	buf = kmalloc(len, GFP_KERNEL);
321 	if (!buf)
322 		return ERR_PTR(-ENOMEM);
323 
324 	cnt = pci_read_vpd(dev, 0, len, buf);
325 	if (cnt != len) {
326 		kfree(buf);
327 		return ERR_PTR(-EIO);
328 	}
329 
330 	if (size)
331 		*size = len;
332 
333 	return buf;
334 }
335 EXPORT_SYMBOL_GPL(pci_vpd_alloc);
336 
337 static int pci_vpd_find_tag(const u8 *buf, unsigned int len, u8 rdt, unsigned int *size)
338 {
339 	int i = 0;
340 
341 	/* look for LRDT tags only, end tag is the only SRDT tag */
342 	while (i + PCI_VPD_LRDT_TAG_SIZE <= len && buf[i] & PCI_VPD_LRDT) {
343 		unsigned int lrdt_len = pci_vpd_lrdt_size(buf + i);
344 		u8 tag = buf[i];
345 
346 		i += PCI_VPD_LRDT_TAG_SIZE;
347 		if (tag == rdt) {
348 			if (i + lrdt_len > len)
349 				lrdt_len = len - i;
350 			if (size)
351 				*size = lrdt_len;
352 			return i;
353 		}
354 
355 		i += lrdt_len;
356 	}
357 
358 	return -ENOENT;
359 }
360 
361 int pci_vpd_find_id_string(const u8 *buf, unsigned int len, unsigned int *size)
362 {
363 	return pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_ID_STRING, size);
364 }
365 EXPORT_SYMBOL_GPL(pci_vpd_find_id_string);
366 
367 static int pci_vpd_find_info_keyword(const u8 *buf, unsigned int off,
368 			      unsigned int len, const char *kw)
369 {
370 	int i;
371 
372 	for (i = off; i + PCI_VPD_INFO_FLD_HDR_SIZE <= off + len;) {
373 		if (buf[i + 0] == kw[0] &&
374 		    buf[i + 1] == kw[1])
375 			return i;
376 
377 		i += PCI_VPD_INFO_FLD_HDR_SIZE +
378 		     pci_vpd_info_field_size(&buf[i]);
379 	}
380 
381 	return -ENOENT;
382 }
383 
384 /**
385  * pci_read_vpd - Read one entry from Vital Product Data
386  * @dev:	PCI device struct
387  * @pos:	offset in VPD space
388  * @count:	number of bytes to read
389  * @buf:	pointer to where to store result
390  */
391 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
392 {
393 	ssize_t ret;
394 
395 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) {
396 		dev = pci_get_func0_dev(dev);
397 		if (!dev)
398 			return -ENODEV;
399 
400 		ret = pci_vpd_read(dev, pos, count, buf);
401 		pci_dev_put(dev);
402 		return ret;
403 	}
404 
405 	return pci_vpd_read(dev, pos, count, buf);
406 }
407 EXPORT_SYMBOL(pci_read_vpd);
408 
409 /**
410  * pci_write_vpd - Write entry to Vital Product Data
411  * @dev:	PCI device struct
412  * @pos:	offset in VPD space
413  * @count:	number of bytes to write
414  * @buf:	buffer containing write data
415  */
416 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
417 {
418 	ssize_t ret;
419 
420 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) {
421 		dev = pci_get_func0_dev(dev);
422 		if (!dev)
423 			return -ENODEV;
424 
425 		ret = pci_vpd_write(dev, pos, count, buf);
426 		pci_dev_put(dev);
427 		return ret;
428 	}
429 
430 	return pci_vpd_write(dev, pos, count, buf);
431 }
432 EXPORT_SYMBOL(pci_write_vpd);
433 
434 int pci_vpd_find_ro_info_keyword(const void *buf, unsigned int len,
435 				 const char *kw, unsigned int *size)
436 {
437 	int ro_start, infokw_start;
438 	unsigned int ro_len, infokw_size;
439 
440 	ro_start = pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_RO_DATA, &ro_len);
441 	if (ro_start < 0)
442 		return ro_start;
443 
444 	infokw_start = pci_vpd_find_info_keyword(buf, ro_start, ro_len, kw);
445 	if (infokw_start < 0)
446 		return infokw_start;
447 
448 	infokw_size = pci_vpd_info_field_size(buf + infokw_start);
449 	infokw_start += PCI_VPD_INFO_FLD_HDR_SIZE;
450 
451 	if (infokw_start + infokw_size > len)
452 		return -EINVAL;
453 
454 	if (size)
455 		*size = infokw_size;
456 
457 	return infokw_start;
458 }
459 EXPORT_SYMBOL_GPL(pci_vpd_find_ro_info_keyword);
460 
461 int pci_vpd_check_csum(const void *buf, unsigned int len)
462 {
463 	const u8 *vpd = buf;
464 	unsigned int size;
465 	u8 csum = 0;
466 	int rv_start;
467 
468 	rv_start = pci_vpd_find_ro_info_keyword(buf, len, PCI_VPD_RO_KEYWORD_CHKSUM, &size);
469 	if (rv_start == -ENOENT) /* no checksum in VPD */
470 		return 1;
471 	else if (rv_start < 0)
472 		return rv_start;
473 
474 	if (!size)
475 		return -EINVAL;
476 
477 	while (rv_start >= 0)
478 		csum += vpd[rv_start--];
479 
480 	return csum ? -EILSEQ : 0;
481 }
482 EXPORT_SYMBOL_GPL(pci_vpd_check_csum);
483 
484 #ifdef CONFIG_PCI_QUIRKS
485 /*
486  * Quirk non-zero PCI functions to route VPD access through function 0 for
487  * devices that share VPD resources between functions.  The functions are
488  * expected to be identical devices.
489  */
490 static void quirk_f0_vpd_link(struct pci_dev *dev)
491 {
492 	struct pci_dev *f0;
493 
494 	if (!PCI_FUNC(dev->devfn))
495 		return;
496 
497 	f0 = pci_get_func0_dev(dev);
498 	if (!f0)
499 		return;
500 
501 	if (f0->vpd.cap && dev->class == f0->class &&
502 	    dev->vendor == f0->vendor && dev->device == f0->device)
503 		dev->dev_flags |= PCI_DEV_FLAGS_VPD_REF_F0;
504 
505 	pci_dev_put(f0);
506 }
507 DECLARE_PCI_FIXUP_CLASS_EARLY(PCI_VENDOR_ID_INTEL, PCI_ANY_ID,
508 			      PCI_CLASS_NETWORK_ETHERNET, 8, quirk_f0_vpd_link);
509 
510 /*
511  * If a device follows the VPD format spec, the PCI core will not read or
512  * write past the VPD End Tag.  But some vendors do not follow the VPD
513  * format spec, so we can't tell how much data is safe to access.  Devices
514  * may behave unpredictably if we access too much.  Blacklist these devices
515  * so we don't touch VPD at all.
516  */
517 static void quirk_blacklist_vpd(struct pci_dev *dev)
518 {
519 	dev->vpd.len = PCI_VPD_SZ_INVALID;
520 	pci_warn(dev, FW_BUG "disabling VPD access (can't determine size of non-standard VPD format)\n");
521 }
522 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0060, quirk_blacklist_vpd);
523 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x007c, quirk_blacklist_vpd);
524 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0413, quirk_blacklist_vpd);
525 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0078, quirk_blacklist_vpd);
526 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0079, quirk_blacklist_vpd);
527 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0073, quirk_blacklist_vpd);
528 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0071, quirk_blacklist_vpd);
529 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005b, quirk_blacklist_vpd);
530 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x002f, quirk_blacklist_vpd);
531 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005d, quirk_blacklist_vpd);
532 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005f, quirk_blacklist_vpd);
533 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_ATTANSIC, PCI_ANY_ID, quirk_blacklist_vpd);
534 /*
535  * The Amazon Annapurna Labs 0x0031 device id is reused for other non Root Port
536  * device types, so the quirk is registered for the PCI_CLASS_BRIDGE_PCI class.
537  */
538 DECLARE_PCI_FIXUP_CLASS_HEADER(PCI_VENDOR_ID_AMAZON_ANNAPURNA_LABS, 0x0031,
539 			       PCI_CLASS_BRIDGE_PCI, 8, quirk_blacklist_vpd);
540 
541 static void quirk_chelsio_extend_vpd(struct pci_dev *dev)
542 {
543 	int chip = (dev->device & 0xf000) >> 12;
544 	int func = (dev->device & 0x0f00) >>  8;
545 	int prod = (dev->device & 0x00ff) >>  0;
546 
547 	/*
548 	 * If this is a T3-based adapter, there's a 1KB VPD area at offset
549 	 * 0xc00 which contains the preferred VPD values.  If this is a T4 or
550 	 * later based adapter, the special VPD is at offset 0x400 for the
551 	 * Physical Functions (the SR-IOV Virtual Functions have no VPD
552 	 * Capabilities).  The PCI VPD Access core routines will normally
553 	 * compute the size of the VPD by parsing the VPD Data Structure at
554 	 * offset 0x000.  This will result in silent failures when attempting
555 	 * to accesses these other VPD areas which are beyond those computed
556 	 * limits.
557 	 */
558 	if (chip == 0x0 && prod >= 0x20)
559 		dev->vpd.len = 8192;
560 	else if (chip >= 0x4 && func < 0x8)
561 		dev->vpd.len = 2048;
562 }
563 
564 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_CHELSIO, PCI_ANY_ID,
565 			 quirk_chelsio_extend_vpd);
566 
567 #endif
568