xref: /openbmc/linux/drivers/pci/vpd.c (revision e2ad626f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI VPD support
4  *
5  * Copyright (C) 2010 Broadcom Corporation.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/export.h>
11 #include <linux/sched/signal.h>
12 #include <asm/unaligned.h>
13 #include "pci.h"
14 
15 #define PCI_VPD_LRDT_TAG_SIZE		3
16 #define PCI_VPD_SRDT_LEN_MASK		0x07
17 #define PCI_VPD_SRDT_TAG_SIZE		1
18 #define PCI_VPD_STIN_END		0x0f
19 #define PCI_VPD_INFO_FLD_HDR_SIZE	3
20 
21 static u16 pci_vpd_lrdt_size(const u8 *lrdt)
22 {
23 	return get_unaligned_le16(lrdt + 1);
24 }
25 
26 static u8 pci_vpd_srdt_tag(const u8 *srdt)
27 {
28 	return *srdt >> 3;
29 }
30 
31 static u8 pci_vpd_srdt_size(const u8 *srdt)
32 {
33 	return *srdt & PCI_VPD_SRDT_LEN_MASK;
34 }
35 
36 static u8 pci_vpd_info_field_size(const u8 *info_field)
37 {
38 	return info_field[2];
39 }
40 
41 /* VPD access through PCI 2.2+ VPD capability */
42 
43 static struct pci_dev *pci_get_func0_dev(struct pci_dev *dev)
44 {
45 	return pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
46 }
47 
48 #define PCI_VPD_MAX_SIZE	(PCI_VPD_ADDR_MASK + 1)
49 #define PCI_VPD_SZ_INVALID	UINT_MAX
50 
51 /**
52  * pci_vpd_size - determine actual size of Vital Product Data
53  * @dev:	pci device struct
54  */
55 static size_t pci_vpd_size(struct pci_dev *dev)
56 {
57 	size_t off = 0, size;
58 	unsigned char tag, header[1+2];	/* 1 byte tag, 2 bytes length */
59 
60 	while (pci_read_vpd_any(dev, off, 1, header) == 1) {
61 		size = 0;
62 
63 		if (off == 0 && (header[0] == 0x00 || header[0] == 0xff))
64 			goto error;
65 
66 		if (header[0] & PCI_VPD_LRDT) {
67 			/* Large Resource Data Type Tag */
68 			if (pci_read_vpd_any(dev, off + 1, 2, &header[1]) != 2) {
69 				pci_warn(dev, "failed VPD read at offset %zu\n",
70 					 off + 1);
71 				return off ?: PCI_VPD_SZ_INVALID;
72 			}
73 			size = pci_vpd_lrdt_size(header);
74 			if (off + size > PCI_VPD_MAX_SIZE)
75 				goto error;
76 
77 			off += PCI_VPD_LRDT_TAG_SIZE + size;
78 		} else {
79 			/* Short Resource Data Type Tag */
80 			tag = pci_vpd_srdt_tag(header);
81 			size = pci_vpd_srdt_size(header);
82 			if (off + size > PCI_VPD_MAX_SIZE)
83 				goto error;
84 
85 			off += PCI_VPD_SRDT_TAG_SIZE + size;
86 			if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */
87 				return off;
88 		}
89 	}
90 	return off;
91 
92 error:
93 	pci_info(dev, "invalid VPD tag %#04x (size %zu) at offset %zu%s\n",
94 		 header[0], size, off, off == 0 ?
95 		 "; assume missing optional EEPROM" : "");
96 	return off ?: PCI_VPD_SZ_INVALID;
97 }
98 
99 static bool pci_vpd_available(struct pci_dev *dev, bool check_size)
100 {
101 	struct pci_vpd *vpd = &dev->vpd;
102 
103 	if (!vpd->cap)
104 		return false;
105 
106 	if (vpd->len == 0 && check_size) {
107 		vpd->len = pci_vpd_size(dev);
108 		if (vpd->len == PCI_VPD_SZ_INVALID) {
109 			vpd->cap = 0;
110 			return false;
111 		}
112 	}
113 
114 	return true;
115 }
116 
117 /*
118  * Wait for last operation to complete.
119  * This code has to spin since there is no other notification from the PCI
120  * hardware. Since the VPD is often implemented by serial attachment to an
121  * EEPROM, it may take many milliseconds to complete.
122  * @set: if true wait for flag to be set, else wait for it to be cleared
123  *
124  * Returns 0 on success, negative values indicate error.
125  */
126 static int pci_vpd_wait(struct pci_dev *dev, bool set)
127 {
128 	struct pci_vpd *vpd = &dev->vpd;
129 	unsigned long timeout = jiffies + msecs_to_jiffies(125);
130 	unsigned long max_sleep = 16;
131 	u16 status;
132 	int ret;
133 
134 	do {
135 		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
136 						&status);
137 		if (ret < 0)
138 			return ret;
139 
140 		if (!!(status & PCI_VPD_ADDR_F) == set)
141 			return 0;
142 
143 		if (time_after(jiffies, timeout))
144 			break;
145 
146 		usleep_range(10, max_sleep);
147 		if (max_sleep < 1024)
148 			max_sleep *= 2;
149 	} while (true);
150 
151 	pci_warn(dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n");
152 	return -ETIMEDOUT;
153 }
154 
155 static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
156 			    void *arg, bool check_size)
157 {
158 	struct pci_vpd *vpd = &dev->vpd;
159 	unsigned int max_len;
160 	int ret = 0;
161 	loff_t end = pos + count;
162 	u8 *buf = arg;
163 
164 	if (!pci_vpd_available(dev, check_size))
165 		return -ENODEV;
166 
167 	if (pos < 0)
168 		return -EINVAL;
169 
170 	max_len = check_size ? vpd->len : PCI_VPD_MAX_SIZE;
171 
172 	if (pos >= max_len)
173 		return 0;
174 
175 	if (end > max_len) {
176 		end = max_len;
177 		count = end - pos;
178 	}
179 
180 	if (mutex_lock_killable(&vpd->lock))
181 		return -EINTR;
182 
183 	while (pos < end) {
184 		u32 val;
185 		unsigned int i, skip;
186 
187 		if (fatal_signal_pending(current)) {
188 			ret = -EINTR;
189 			break;
190 		}
191 
192 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
193 						 pos & ~3);
194 		if (ret < 0)
195 			break;
196 		ret = pci_vpd_wait(dev, true);
197 		if (ret < 0)
198 			break;
199 
200 		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
201 		if (ret < 0)
202 			break;
203 
204 		skip = pos & 3;
205 		for (i = 0;  i < sizeof(u32); i++) {
206 			if (i >= skip) {
207 				*buf++ = val;
208 				if (++pos == end)
209 					break;
210 			}
211 			val >>= 8;
212 		}
213 	}
214 
215 	mutex_unlock(&vpd->lock);
216 	return ret ? ret : count;
217 }
218 
219 static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
220 			     const void *arg, bool check_size)
221 {
222 	struct pci_vpd *vpd = &dev->vpd;
223 	unsigned int max_len;
224 	const u8 *buf = arg;
225 	loff_t end = pos + count;
226 	int ret = 0;
227 
228 	if (!pci_vpd_available(dev, check_size))
229 		return -ENODEV;
230 
231 	if (pos < 0 || (pos & 3) || (count & 3))
232 		return -EINVAL;
233 
234 	max_len = check_size ? vpd->len : PCI_VPD_MAX_SIZE;
235 
236 	if (end > max_len)
237 		return -EINVAL;
238 
239 	if (mutex_lock_killable(&vpd->lock))
240 		return -EINTR;
241 
242 	while (pos < end) {
243 		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA,
244 						  get_unaligned_le32(buf));
245 		if (ret < 0)
246 			break;
247 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
248 						 pos | PCI_VPD_ADDR_F);
249 		if (ret < 0)
250 			break;
251 
252 		ret = pci_vpd_wait(dev, false);
253 		if (ret < 0)
254 			break;
255 
256 		buf += sizeof(u32);
257 		pos += sizeof(u32);
258 	}
259 
260 	mutex_unlock(&vpd->lock);
261 	return ret ? ret : count;
262 }
263 
264 void pci_vpd_init(struct pci_dev *dev)
265 {
266 	if (dev->vpd.len == PCI_VPD_SZ_INVALID)
267 		return;
268 
269 	dev->vpd.cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
270 	mutex_init(&dev->vpd.lock);
271 }
272 
273 static ssize_t vpd_read(struct file *filp, struct kobject *kobj,
274 			struct bin_attribute *bin_attr, char *buf, loff_t off,
275 			size_t count)
276 {
277 	struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj));
278 	struct pci_dev *vpd_dev = dev;
279 	ssize_t ret;
280 
281 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) {
282 		vpd_dev = pci_get_func0_dev(dev);
283 		if (!vpd_dev)
284 			return -ENODEV;
285 	}
286 
287 	pci_config_pm_runtime_get(vpd_dev);
288 	ret = pci_read_vpd(vpd_dev, off, count, buf);
289 	pci_config_pm_runtime_put(vpd_dev);
290 
291 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
292 		pci_dev_put(vpd_dev);
293 
294 	return ret;
295 }
296 
297 static ssize_t vpd_write(struct file *filp, struct kobject *kobj,
298 			 struct bin_attribute *bin_attr, char *buf, loff_t off,
299 			 size_t count)
300 {
301 	struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj));
302 	struct pci_dev *vpd_dev = dev;
303 	ssize_t ret;
304 
305 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) {
306 		vpd_dev = pci_get_func0_dev(dev);
307 		if (!vpd_dev)
308 			return -ENODEV;
309 	}
310 
311 	pci_config_pm_runtime_get(vpd_dev);
312 	ret = pci_write_vpd(vpd_dev, off, count, buf);
313 	pci_config_pm_runtime_put(vpd_dev);
314 
315 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
316 		pci_dev_put(vpd_dev);
317 
318 	return ret;
319 }
320 static BIN_ATTR(vpd, 0600, vpd_read, vpd_write, 0);
321 
322 static struct bin_attribute *vpd_attrs[] = {
323 	&bin_attr_vpd,
324 	NULL,
325 };
326 
327 static umode_t vpd_attr_is_visible(struct kobject *kobj,
328 				   struct bin_attribute *a, int n)
329 {
330 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
331 
332 	if (!pdev->vpd.cap)
333 		return 0;
334 
335 	return a->attr.mode;
336 }
337 
338 const struct attribute_group pci_dev_vpd_attr_group = {
339 	.bin_attrs = vpd_attrs,
340 	.is_bin_visible = vpd_attr_is_visible,
341 };
342 
343 void *pci_vpd_alloc(struct pci_dev *dev, unsigned int *size)
344 {
345 	unsigned int len;
346 	void *buf;
347 	int cnt;
348 
349 	if (!pci_vpd_available(dev, true))
350 		return ERR_PTR(-ENODEV);
351 
352 	len = dev->vpd.len;
353 	buf = kmalloc(len, GFP_KERNEL);
354 	if (!buf)
355 		return ERR_PTR(-ENOMEM);
356 
357 	cnt = pci_read_vpd(dev, 0, len, buf);
358 	if (cnt != len) {
359 		kfree(buf);
360 		return ERR_PTR(-EIO);
361 	}
362 
363 	if (size)
364 		*size = len;
365 
366 	return buf;
367 }
368 EXPORT_SYMBOL_GPL(pci_vpd_alloc);
369 
370 static int pci_vpd_find_tag(const u8 *buf, unsigned int len, u8 rdt, unsigned int *size)
371 {
372 	int i = 0;
373 
374 	/* look for LRDT tags only, end tag is the only SRDT tag */
375 	while (i + PCI_VPD_LRDT_TAG_SIZE <= len && buf[i] & PCI_VPD_LRDT) {
376 		unsigned int lrdt_len = pci_vpd_lrdt_size(buf + i);
377 		u8 tag = buf[i];
378 
379 		i += PCI_VPD_LRDT_TAG_SIZE;
380 		if (tag == rdt) {
381 			if (i + lrdt_len > len)
382 				lrdt_len = len - i;
383 			if (size)
384 				*size = lrdt_len;
385 			return i;
386 		}
387 
388 		i += lrdt_len;
389 	}
390 
391 	return -ENOENT;
392 }
393 
394 int pci_vpd_find_id_string(const u8 *buf, unsigned int len, unsigned int *size)
395 {
396 	return pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_ID_STRING, size);
397 }
398 EXPORT_SYMBOL_GPL(pci_vpd_find_id_string);
399 
400 static int pci_vpd_find_info_keyword(const u8 *buf, unsigned int off,
401 			      unsigned int len, const char *kw)
402 {
403 	int i;
404 
405 	for (i = off; i + PCI_VPD_INFO_FLD_HDR_SIZE <= off + len;) {
406 		if (buf[i + 0] == kw[0] &&
407 		    buf[i + 1] == kw[1])
408 			return i;
409 
410 		i += PCI_VPD_INFO_FLD_HDR_SIZE +
411 		     pci_vpd_info_field_size(&buf[i]);
412 	}
413 
414 	return -ENOENT;
415 }
416 
417 static ssize_t __pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf,
418 			      bool check_size)
419 {
420 	ssize_t ret;
421 
422 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) {
423 		dev = pci_get_func0_dev(dev);
424 		if (!dev)
425 			return -ENODEV;
426 
427 		ret = pci_vpd_read(dev, pos, count, buf, check_size);
428 		pci_dev_put(dev);
429 		return ret;
430 	}
431 
432 	return pci_vpd_read(dev, pos, count, buf, check_size);
433 }
434 
435 /**
436  * pci_read_vpd - Read one entry from Vital Product Data
437  * @dev:	PCI device struct
438  * @pos:	offset in VPD space
439  * @count:	number of bytes to read
440  * @buf:	pointer to where to store result
441  */
442 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
443 {
444 	return __pci_read_vpd(dev, pos, count, buf, true);
445 }
446 EXPORT_SYMBOL(pci_read_vpd);
447 
448 /* Same, but allow to access any address */
449 ssize_t pci_read_vpd_any(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
450 {
451 	return __pci_read_vpd(dev, pos, count, buf, false);
452 }
453 EXPORT_SYMBOL(pci_read_vpd_any);
454 
455 static ssize_t __pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count,
456 			       const void *buf, bool check_size)
457 {
458 	ssize_t ret;
459 
460 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) {
461 		dev = pci_get_func0_dev(dev);
462 		if (!dev)
463 			return -ENODEV;
464 
465 		ret = pci_vpd_write(dev, pos, count, buf, check_size);
466 		pci_dev_put(dev);
467 		return ret;
468 	}
469 
470 	return pci_vpd_write(dev, pos, count, buf, check_size);
471 }
472 
473 /**
474  * pci_write_vpd - Write entry to Vital Product Data
475  * @dev:	PCI device struct
476  * @pos:	offset in VPD space
477  * @count:	number of bytes to write
478  * @buf:	buffer containing write data
479  */
480 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
481 {
482 	return __pci_write_vpd(dev, pos, count, buf, true);
483 }
484 EXPORT_SYMBOL(pci_write_vpd);
485 
486 /* Same, but allow to access any address */
487 ssize_t pci_write_vpd_any(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
488 {
489 	return __pci_write_vpd(dev, pos, count, buf, false);
490 }
491 EXPORT_SYMBOL(pci_write_vpd_any);
492 
493 int pci_vpd_find_ro_info_keyword(const void *buf, unsigned int len,
494 				 const char *kw, unsigned int *size)
495 {
496 	int ro_start, infokw_start;
497 	unsigned int ro_len, infokw_size;
498 
499 	ro_start = pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_RO_DATA, &ro_len);
500 	if (ro_start < 0)
501 		return ro_start;
502 
503 	infokw_start = pci_vpd_find_info_keyword(buf, ro_start, ro_len, kw);
504 	if (infokw_start < 0)
505 		return infokw_start;
506 
507 	infokw_size = pci_vpd_info_field_size(buf + infokw_start);
508 	infokw_start += PCI_VPD_INFO_FLD_HDR_SIZE;
509 
510 	if (infokw_start + infokw_size > len)
511 		return -EINVAL;
512 
513 	if (size)
514 		*size = infokw_size;
515 
516 	return infokw_start;
517 }
518 EXPORT_SYMBOL_GPL(pci_vpd_find_ro_info_keyword);
519 
520 int pci_vpd_check_csum(const void *buf, unsigned int len)
521 {
522 	const u8 *vpd = buf;
523 	unsigned int size;
524 	u8 csum = 0;
525 	int rv_start;
526 
527 	rv_start = pci_vpd_find_ro_info_keyword(buf, len, PCI_VPD_RO_KEYWORD_CHKSUM, &size);
528 	if (rv_start == -ENOENT) /* no checksum in VPD */
529 		return 1;
530 	else if (rv_start < 0)
531 		return rv_start;
532 
533 	if (!size)
534 		return -EINVAL;
535 
536 	while (rv_start >= 0)
537 		csum += vpd[rv_start--];
538 
539 	return csum ? -EILSEQ : 0;
540 }
541 EXPORT_SYMBOL_GPL(pci_vpd_check_csum);
542 
543 #ifdef CONFIG_PCI_QUIRKS
544 /*
545  * Quirk non-zero PCI functions to route VPD access through function 0 for
546  * devices that share VPD resources between functions.  The functions are
547  * expected to be identical devices.
548  */
549 static void quirk_f0_vpd_link(struct pci_dev *dev)
550 {
551 	struct pci_dev *f0;
552 
553 	if (!PCI_FUNC(dev->devfn))
554 		return;
555 
556 	f0 = pci_get_func0_dev(dev);
557 	if (!f0)
558 		return;
559 
560 	if (f0->vpd.cap && dev->class == f0->class &&
561 	    dev->vendor == f0->vendor && dev->device == f0->device)
562 		dev->dev_flags |= PCI_DEV_FLAGS_VPD_REF_F0;
563 
564 	pci_dev_put(f0);
565 }
566 DECLARE_PCI_FIXUP_CLASS_EARLY(PCI_VENDOR_ID_INTEL, PCI_ANY_ID,
567 			      PCI_CLASS_NETWORK_ETHERNET, 8, quirk_f0_vpd_link);
568 
569 /*
570  * If a device follows the VPD format spec, the PCI core will not read or
571  * write past the VPD End Tag.  But some vendors do not follow the VPD
572  * format spec, so we can't tell how much data is safe to access.  Devices
573  * may behave unpredictably if we access too much.  Blacklist these devices
574  * so we don't touch VPD at all.
575  */
576 static void quirk_blacklist_vpd(struct pci_dev *dev)
577 {
578 	dev->vpd.len = PCI_VPD_SZ_INVALID;
579 	pci_warn(dev, FW_BUG "disabling VPD access (can't determine size of non-standard VPD format)\n");
580 }
581 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0060, quirk_blacklist_vpd);
582 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x007c, quirk_blacklist_vpd);
583 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0413, quirk_blacklist_vpd);
584 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0078, quirk_blacklist_vpd);
585 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0079, quirk_blacklist_vpd);
586 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0073, quirk_blacklist_vpd);
587 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0071, quirk_blacklist_vpd);
588 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005b, quirk_blacklist_vpd);
589 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x002f, quirk_blacklist_vpd);
590 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005d, quirk_blacklist_vpd);
591 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005f, quirk_blacklist_vpd);
592 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_ATTANSIC, PCI_ANY_ID, quirk_blacklist_vpd);
593 /*
594  * The Amazon Annapurna Labs 0x0031 device id is reused for other non Root Port
595  * device types, so the quirk is registered for the PCI_CLASS_BRIDGE_PCI class.
596  */
597 DECLARE_PCI_FIXUP_CLASS_HEADER(PCI_VENDOR_ID_AMAZON_ANNAPURNA_LABS, 0x0031,
598 			       PCI_CLASS_BRIDGE_PCI, 8, quirk_blacklist_vpd);
599 
600 static void quirk_chelsio_extend_vpd(struct pci_dev *dev)
601 {
602 	int chip = (dev->device & 0xf000) >> 12;
603 	int func = (dev->device & 0x0f00) >>  8;
604 	int prod = (dev->device & 0x00ff) >>  0;
605 
606 	/*
607 	 * If this is a T3-based adapter, there's a 1KB VPD area at offset
608 	 * 0xc00 which contains the preferred VPD values.  If this is a T4 or
609 	 * later based adapter, the special VPD is at offset 0x400 for the
610 	 * Physical Functions (the SR-IOV Virtual Functions have no VPD
611 	 * Capabilities).  The PCI VPD Access core routines will normally
612 	 * compute the size of the VPD by parsing the VPD Data Structure at
613 	 * offset 0x000.  This will result in silent failures when attempting
614 	 * to accesses these other VPD areas which are beyond those computed
615 	 * limits.
616 	 */
617 	if (chip == 0x0 && prod >= 0x20)
618 		dev->vpd.len = 8192;
619 	else if (chip >= 0x4 && func < 0x8)
620 		dev->vpd.len = 2048;
621 }
622 
623 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_CHELSIO, PCI_ANY_ID,
624 			 quirk_chelsio_extend_vpd);
625 
626 #endif
627