xref: /openbmc/linux/drivers/pci/vpd.c (revision dd1431e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI VPD support
4  *
5  * Copyright (C) 2010 Broadcom Corporation.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/export.h>
11 #include <linux/sched/signal.h>
12 #include "pci.h"
13 
14 /* VPD access through PCI 2.2+ VPD capability */
15 
16 struct pci_vpd_ops {
17 	ssize_t (*read)(struct pci_dev *dev, loff_t pos, size_t count, void *buf);
18 	ssize_t (*write)(struct pci_dev *dev, loff_t pos, size_t count, const void *buf);
19 };
20 
21 struct pci_vpd {
22 	const struct pci_vpd_ops *ops;
23 	struct mutex	lock;
24 	unsigned int	len;
25 	u16		flag;
26 	u8		cap;
27 	unsigned int	busy:1;
28 	unsigned int	valid:1;
29 };
30 
31 static struct pci_dev *pci_get_func0_dev(struct pci_dev *dev)
32 {
33 	return pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
34 }
35 
36 /**
37  * pci_read_vpd - Read one entry from Vital Product Data
38  * @dev:	pci device struct
39  * @pos:	offset in vpd space
40  * @count:	number of bytes to read
41  * @buf:	pointer to where to store result
42  */
43 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
44 {
45 	if (!dev->vpd || !dev->vpd->ops)
46 		return -ENODEV;
47 	return dev->vpd->ops->read(dev, pos, count, buf);
48 }
49 EXPORT_SYMBOL(pci_read_vpd);
50 
51 /**
52  * pci_write_vpd - Write entry to Vital Product Data
53  * @dev:	pci device struct
54  * @pos:	offset in vpd space
55  * @count:	number of bytes to write
56  * @buf:	buffer containing write data
57  */
58 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
59 {
60 	if (!dev->vpd || !dev->vpd->ops)
61 		return -ENODEV;
62 	return dev->vpd->ops->write(dev, pos, count, buf);
63 }
64 EXPORT_SYMBOL(pci_write_vpd);
65 
66 #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
67 
68 /**
69  * pci_vpd_size - determine actual size of Vital Product Data
70  * @dev:	pci device struct
71  * @old_size:	current assumed size, also maximum allowed size
72  */
73 static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
74 {
75 	size_t off = 0;
76 	unsigned char header[1+2];	/* 1 byte tag, 2 bytes length */
77 
78 	while (off < old_size && pci_read_vpd(dev, off, 1, header) == 1) {
79 		unsigned char tag;
80 
81 		if (!header[0] && !off) {
82 			pci_info(dev, "Invalid VPD tag 00, assume missing optional VPD EPROM\n");
83 			return 0;
84 		}
85 
86 		if (header[0] & PCI_VPD_LRDT) {
87 			/* Large Resource Data Type Tag */
88 			tag = pci_vpd_lrdt_tag(header);
89 			/* Only read length from known tag items */
90 			if ((tag == PCI_VPD_LTIN_ID_STRING) ||
91 			    (tag == PCI_VPD_LTIN_RO_DATA) ||
92 			    (tag == PCI_VPD_LTIN_RW_DATA)) {
93 				if (pci_read_vpd(dev, off+1, 2,
94 						 &header[1]) != 2) {
95 					pci_warn(dev, "invalid large VPD tag %02x size at offset %zu",
96 						 tag, off + 1);
97 					return 0;
98 				}
99 				off += PCI_VPD_LRDT_TAG_SIZE +
100 					pci_vpd_lrdt_size(header);
101 			}
102 		} else {
103 			/* Short Resource Data Type Tag */
104 			off += PCI_VPD_SRDT_TAG_SIZE +
105 				pci_vpd_srdt_size(header);
106 			tag = pci_vpd_srdt_tag(header);
107 		}
108 
109 		if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */
110 			return off;
111 
112 		if ((tag != PCI_VPD_LTIN_ID_STRING) &&
113 		    (tag != PCI_VPD_LTIN_RO_DATA) &&
114 		    (tag != PCI_VPD_LTIN_RW_DATA)) {
115 			pci_warn(dev, "invalid %s VPD tag %02x at offset %zu",
116 				 (header[0] & PCI_VPD_LRDT) ? "large" : "short",
117 				 tag, off);
118 			return 0;
119 		}
120 	}
121 	return 0;
122 }
123 
124 /*
125  * Wait for last operation to complete.
126  * This code has to spin since there is no other notification from the PCI
127  * hardware. Since the VPD is often implemented by serial attachment to an
128  * EEPROM, it may take many milliseconds to complete.
129  *
130  * Returns 0 on success, negative values indicate error.
131  */
132 static int pci_vpd_wait(struct pci_dev *dev)
133 {
134 	struct pci_vpd *vpd = dev->vpd;
135 	unsigned long timeout = jiffies + msecs_to_jiffies(125);
136 	unsigned long max_sleep = 16;
137 	u16 status;
138 	int ret;
139 
140 	if (!vpd->busy)
141 		return 0;
142 
143 	do {
144 		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
145 						&status);
146 		if (ret < 0)
147 			return ret;
148 
149 		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
150 			vpd->busy = 0;
151 			return 0;
152 		}
153 
154 		if (fatal_signal_pending(current))
155 			return -EINTR;
156 
157 		if (time_after(jiffies, timeout))
158 			break;
159 
160 		usleep_range(10, max_sleep);
161 		if (max_sleep < 1024)
162 			max_sleep *= 2;
163 	} while (true);
164 
165 	pci_warn(dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n");
166 	return -ETIMEDOUT;
167 }
168 
169 static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
170 			    void *arg)
171 {
172 	struct pci_vpd *vpd = dev->vpd;
173 	int ret;
174 	loff_t end = pos + count;
175 	u8 *buf = arg;
176 
177 	if (pos < 0)
178 		return -EINVAL;
179 
180 	if (!vpd->valid) {
181 		vpd->valid = 1;
182 		vpd->len = pci_vpd_size(dev, vpd->len);
183 	}
184 
185 	if (vpd->len == 0)
186 		return -EIO;
187 
188 	if (pos > vpd->len)
189 		return 0;
190 
191 	if (end > vpd->len) {
192 		end = vpd->len;
193 		count = end - pos;
194 	}
195 
196 	if (mutex_lock_killable(&vpd->lock))
197 		return -EINTR;
198 
199 	ret = pci_vpd_wait(dev);
200 	if (ret < 0)
201 		goto out;
202 
203 	while (pos < end) {
204 		u32 val;
205 		unsigned int i, skip;
206 
207 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
208 						 pos & ~3);
209 		if (ret < 0)
210 			break;
211 		vpd->busy = 1;
212 		vpd->flag = PCI_VPD_ADDR_F;
213 		ret = pci_vpd_wait(dev);
214 		if (ret < 0)
215 			break;
216 
217 		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
218 		if (ret < 0)
219 			break;
220 
221 		skip = pos & 3;
222 		for (i = 0;  i < sizeof(u32); i++) {
223 			if (i >= skip) {
224 				*buf++ = val;
225 				if (++pos == end)
226 					break;
227 			}
228 			val >>= 8;
229 		}
230 	}
231 out:
232 	mutex_unlock(&vpd->lock);
233 	return ret ? ret : count;
234 }
235 
236 static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
237 			     const void *arg)
238 {
239 	struct pci_vpd *vpd = dev->vpd;
240 	const u8 *buf = arg;
241 	loff_t end = pos + count;
242 	int ret = 0;
243 
244 	if (pos < 0 || (pos & 3) || (count & 3))
245 		return -EINVAL;
246 
247 	if (!vpd->valid) {
248 		vpd->valid = 1;
249 		vpd->len = pci_vpd_size(dev, vpd->len);
250 	}
251 
252 	if (vpd->len == 0)
253 		return -EIO;
254 
255 	if (end > vpd->len)
256 		return -EINVAL;
257 
258 	if (mutex_lock_killable(&vpd->lock))
259 		return -EINTR;
260 
261 	ret = pci_vpd_wait(dev);
262 	if (ret < 0)
263 		goto out;
264 
265 	while (pos < end) {
266 		u32 val;
267 
268 		val = *buf++;
269 		val |= *buf++ << 8;
270 		val |= *buf++ << 16;
271 		val |= *buf++ << 24;
272 
273 		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
274 		if (ret < 0)
275 			break;
276 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
277 						 pos | PCI_VPD_ADDR_F);
278 		if (ret < 0)
279 			break;
280 
281 		vpd->busy = 1;
282 		vpd->flag = 0;
283 		ret = pci_vpd_wait(dev);
284 		if (ret < 0)
285 			break;
286 
287 		pos += sizeof(u32);
288 	}
289 out:
290 	mutex_unlock(&vpd->lock);
291 	return ret ? ret : count;
292 }
293 
294 static const struct pci_vpd_ops pci_vpd_ops = {
295 	.read = pci_vpd_read,
296 	.write = pci_vpd_write,
297 };
298 
299 static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
300 			       void *arg)
301 {
302 	struct pci_dev *tdev = pci_get_func0_dev(dev);
303 	ssize_t ret;
304 
305 	if (!tdev)
306 		return -ENODEV;
307 
308 	ret = pci_read_vpd(tdev, pos, count, arg);
309 	pci_dev_put(tdev);
310 	return ret;
311 }
312 
313 static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
314 				const void *arg)
315 {
316 	struct pci_dev *tdev = pci_get_func0_dev(dev);
317 	ssize_t ret;
318 
319 	if (!tdev)
320 		return -ENODEV;
321 
322 	ret = pci_write_vpd(tdev, pos, count, arg);
323 	pci_dev_put(tdev);
324 	return ret;
325 }
326 
327 static const struct pci_vpd_ops pci_vpd_f0_ops = {
328 	.read = pci_vpd_f0_read,
329 	.write = pci_vpd_f0_write,
330 };
331 
332 void pci_vpd_init(struct pci_dev *dev)
333 {
334 	struct pci_vpd *vpd;
335 	u8 cap;
336 
337 	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
338 	if (!cap)
339 		return;
340 
341 	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
342 	if (!vpd)
343 		return;
344 
345 	vpd->len = PCI_VPD_MAX_SIZE;
346 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
347 		vpd->ops = &pci_vpd_f0_ops;
348 	else
349 		vpd->ops = &pci_vpd_ops;
350 	mutex_init(&vpd->lock);
351 	vpd->cap = cap;
352 	vpd->busy = 0;
353 	vpd->valid = 0;
354 	dev->vpd = vpd;
355 }
356 
357 void pci_vpd_release(struct pci_dev *dev)
358 {
359 	kfree(dev->vpd);
360 }
361 
362 static ssize_t vpd_read(struct file *filp, struct kobject *kobj,
363 			struct bin_attribute *bin_attr, char *buf, loff_t off,
364 			size_t count)
365 {
366 	struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj));
367 
368 	return pci_read_vpd(dev, off, count, buf);
369 }
370 
371 static ssize_t vpd_write(struct file *filp, struct kobject *kobj,
372 			 struct bin_attribute *bin_attr, char *buf, loff_t off,
373 			 size_t count)
374 {
375 	struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj));
376 
377 	return pci_write_vpd(dev, off, count, buf);
378 }
379 static BIN_ATTR(vpd, 0600, vpd_read, vpd_write, 0);
380 
381 static struct bin_attribute *vpd_attrs[] = {
382 	&bin_attr_vpd,
383 	NULL,
384 };
385 
386 static umode_t vpd_attr_is_visible(struct kobject *kobj,
387 				   struct bin_attribute *a, int n)
388 {
389 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
390 
391 	if (!pdev->vpd)
392 		return 0;
393 
394 	return a->attr.mode;
395 }
396 
397 const struct attribute_group pci_dev_vpd_attr_group = {
398 	.bin_attrs = vpd_attrs,
399 	.is_bin_visible = vpd_attr_is_visible,
400 };
401 
402 int pci_vpd_find_tag(const u8 *buf, unsigned int len, u8 rdt)
403 {
404 	int i = 0;
405 
406 	/* look for LRDT tags only, end tag is the only SRDT tag */
407 	while (i + PCI_VPD_LRDT_TAG_SIZE <= len && buf[i] & PCI_VPD_LRDT) {
408 		if (buf[i] == rdt)
409 			return i;
410 
411 		i += PCI_VPD_LRDT_TAG_SIZE + pci_vpd_lrdt_size(buf + i);
412 	}
413 
414 	return -ENOENT;
415 }
416 EXPORT_SYMBOL_GPL(pci_vpd_find_tag);
417 
418 int pci_vpd_find_info_keyword(const u8 *buf, unsigned int off,
419 			      unsigned int len, const char *kw)
420 {
421 	int i;
422 
423 	for (i = off; i + PCI_VPD_INFO_FLD_HDR_SIZE <= off + len;) {
424 		if (buf[i + 0] == kw[0] &&
425 		    buf[i + 1] == kw[1])
426 			return i;
427 
428 		i += PCI_VPD_INFO_FLD_HDR_SIZE +
429 		     pci_vpd_info_field_size(&buf[i]);
430 	}
431 
432 	return -ENOENT;
433 }
434 EXPORT_SYMBOL_GPL(pci_vpd_find_info_keyword);
435 
436 #ifdef CONFIG_PCI_QUIRKS
437 /*
438  * Quirk non-zero PCI functions to route VPD access through function 0 for
439  * devices that share VPD resources between functions.  The functions are
440  * expected to be identical devices.
441  */
442 static void quirk_f0_vpd_link(struct pci_dev *dev)
443 {
444 	struct pci_dev *f0;
445 
446 	if (!PCI_FUNC(dev->devfn))
447 		return;
448 
449 	f0 = pci_get_func0_dev(dev);
450 	if (!f0)
451 		return;
452 
453 	if (f0->vpd && dev->class == f0->class &&
454 	    dev->vendor == f0->vendor && dev->device == f0->device)
455 		dev->dev_flags |= PCI_DEV_FLAGS_VPD_REF_F0;
456 
457 	pci_dev_put(f0);
458 }
459 DECLARE_PCI_FIXUP_CLASS_EARLY(PCI_VENDOR_ID_INTEL, PCI_ANY_ID,
460 			      PCI_CLASS_NETWORK_ETHERNET, 8, quirk_f0_vpd_link);
461 
462 /*
463  * If a device follows the VPD format spec, the PCI core will not read or
464  * write past the VPD End Tag.  But some vendors do not follow the VPD
465  * format spec, so we can't tell how much data is safe to access.  Devices
466  * may behave unpredictably if we access too much.  Blacklist these devices
467  * so we don't touch VPD at all.
468  */
469 static void quirk_blacklist_vpd(struct pci_dev *dev)
470 {
471 	if (dev->vpd) {
472 		dev->vpd->len = 0;
473 		pci_warn(dev, FW_BUG "disabling VPD access (can't determine size of non-standard VPD format)\n");
474 	}
475 }
476 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0060, quirk_blacklist_vpd);
477 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x007c, quirk_blacklist_vpd);
478 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0413, quirk_blacklist_vpd);
479 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0078, quirk_blacklist_vpd);
480 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0079, quirk_blacklist_vpd);
481 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0073, quirk_blacklist_vpd);
482 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0071, quirk_blacklist_vpd);
483 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x005b, quirk_blacklist_vpd);
484 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x002f, quirk_blacklist_vpd);
485 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x005d, quirk_blacklist_vpd);
486 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x005f, quirk_blacklist_vpd);
487 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_ATTANSIC, PCI_ANY_ID,
488 		quirk_blacklist_vpd);
489 /*
490  * The Amazon Annapurna Labs 0x0031 device id is reused for other non Root Port
491  * device types, so the quirk is registered for the PCI_CLASS_BRIDGE_PCI class.
492  */
493 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_VENDOR_ID_AMAZON_ANNAPURNA_LABS, 0x0031,
494 			      PCI_CLASS_BRIDGE_PCI, 8, quirk_blacklist_vpd);
495 
496 static void pci_vpd_set_size(struct pci_dev *dev, size_t len)
497 {
498 	struct pci_vpd *vpd = dev->vpd;
499 
500 	if (!vpd || len == 0 || len > PCI_VPD_MAX_SIZE)
501 		return;
502 
503 	vpd->valid = 1;
504 	vpd->len = len;
505 }
506 
507 static void quirk_chelsio_extend_vpd(struct pci_dev *dev)
508 {
509 	int chip = (dev->device & 0xf000) >> 12;
510 	int func = (dev->device & 0x0f00) >>  8;
511 	int prod = (dev->device & 0x00ff) >>  0;
512 
513 	/*
514 	 * If this is a T3-based adapter, there's a 1KB VPD area at offset
515 	 * 0xc00 which contains the preferred VPD values.  If this is a T4 or
516 	 * later based adapter, the special VPD is at offset 0x400 for the
517 	 * Physical Functions (the SR-IOV Virtual Functions have no VPD
518 	 * Capabilities).  The PCI VPD Access core routines will normally
519 	 * compute the size of the VPD by parsing the VPD Data Structure at
520 	 * offset 0x000.  This will result in silent failures when attempting
521 	 * to accesses these other VPD areas which are beyond those computed
522 	 * limits.
523 	 */
524 	if (chip == 0x0 && prod >= 0x20)
525 		pci_vpd_set_size(dev, 8192);
526 	else if (chip >= 0x4 && func < 0x8)
527 		pci_vpd_set_size(dev, 2048);
528 }
529 
530 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_CHELSIO, PCI_ANY_ID,
531 			quirk_chelsio_extend_vpd);
532 
533 #endif
534