xref: /openbmc/linux/drivers/pci/vc.c (revision e6c81cce)
1 /*
2  * PCI Virtual Channel support
3  *
4  * Copyright (C) 2013 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/pci_regs.h>
17 #include <linux/types.h>
18 
19 /**
20  * pci_vc_save_restore_dwords - Save or restore a series of dwords
21  * @dev: device
22  * @pos: starting config space position
23  * @buf: buffer to save to or restore from
24  * @dwords: number of dwords to save/restore
25  * @save: whether to save or restore
26  */
27 static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
28 				       u32 *buf, int dwords, bool save)
29 {
30 	int i;
31 
32 	for (i = 0; i < dwords; i++, buf++) {
33 		if (save)
34 			pci_read_config_dword(dev, pos + (i * 4), buf);
35 		else
36 			pci_write_config_dword(dev, pos + (i * 4), *buf);
37 	}
38 }
39 
40 /**
41  * pci_vc_load_arb_table - load and wait for VC arbitration table
42  * @dev: device
43  * @pos: starting position of VC capability (VC/VC9/MFVC)
44  *
45  * Set Load VC Arbitration Table bit requesting hardware to apply the VC
46  * Arbitration Table (previously loaded).  When the VC Arbitration Table
47  * Status clears, hardware has latched the table into VC arbitration logic.
48  */
49 static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
50 {
51 	u16 ctrl;
52 
53 	pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
54 	pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
55 			      ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
56 	if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
57 				 PCI_VC_PORT_STATUS_TABLE))
58 		return;
59 
60 	dev_err(&dev->dev, "VC arbitration table failed to load\n");
61 }
62 
63 /**
64  * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
65  * @dev: device
66  * @pos: starting position of VC capability (VC/VC9/MFVC)
67  * @res: VC resource number, ie. VCn (0-7)
68  *
69  * Set Load Port Arbitration Table bit requesting hardware to apply the Port
70  * Arbitration Table (previously loaded).  When the Port Arbitration Table
71  * Status clears, hardware has latched the table into port arbitration logic.
72  */
73 static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
74 {
75 	int ctrl_pos, status_pos;
76 	u32 ctrl;
77 
78 	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
79 	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
80 
81 	pci_read_config_dword(dev, ctrl_pos, &ctrl);
82 	pci_write_config_dword(dev, ctrl_pos,
83 			       ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
84 
85 	if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
86 		return;
87 
88 	dev_err(&dev->dev, "VC%d port arbitration table failed to load\n", res);
89 }
90 
91 /**
92  * pci_vc_enable - Enable virtual channel
93  * @dev: device
94  * @pos: starting position of VC capability (VC/VC9/MFVC)
95  * @res: VC res number, ie. VCn (0-7)
96  *
97  * A VC is enabled by setting the enable bit in matching resource control
98  * registers on both sides of a link.  We therefore need to find the opposite
99  * end of the link.  To keep this simple we enable from the downstream device.
100  * RC devices do not have an upstream device, nor does it seem that VC9 do
101  * (spec is unclear).  Once we find the upstream device, match the VC ID to
102  * get the correct resource, disable and enable on both ends.
103  */
104 static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
105 {
106 	int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
107 	u32 ctrl, header, cap1, ctrl2;
108 	struct pci_dev *link = NULL;
109 
110 	/* Enable VCs from the downstream device */
111 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT ||
112 	    pci_pcie_type(dev) == PCI_EXP_TYPE_DOWNSTREAM)
113 		return;
114 
115 	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
116 	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
117 
118 	pci_read_config_dword(dev, ctrl_pos, &ctrl);
119 	id = ctrl & PCI_VC_RES_CTRL_ID;
120 
121 	pci_read_config_dword(dev, pos, &header);
122 
123 	/* If there is no opposite end of the link, skip to enable */
124 	if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
125 	    pci_is_root_bus(dev->bus))
126 		goto enable;
127 
128 	pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
129 	if (!pos2)
130 		goto enable;
131 
132 	pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
133 	evcc = cap1 & PCI_VC_CAP1_EVCC;
134 
135 	/* VC0 is hardwired enabled, so we can start with 1 */
136 	for (i = 1; i < evcc + 1; i++) {
137 		ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
138 				(i * PCI_CAP_VC_PER_VC_SIZEOF);
139 		status_pos2 = pos2 + PCI_VC_RES_STATUS +
140 				(i * PCI_CAP_VC_PER_VC_SIZEOF);
141 		pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
142 		if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
143 			link = dev->bus->self;
144 			break;
145 		}
146 	}
147 
148 	if (!link)
149 		goto enable;
150 
151 	/* Disable if enabled */
152 	if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
153 		ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
154 		pci_write_config_dword(link, ctrl_pos2, ctrl2);
155 	}
156 
157 	/* Enable on both ends */
158 	ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
159 	pci_write_config_dword(link, ctrl_pos2, ctrl2);
160 enable:
161 	ctrl |= PCI_VC_RES_CTRL_ENABLE;
162 	pci_write_config_dword(dev, ctrl_pos, ctrl);
163 
164 	if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
165 		dev_err(&dev->dev, "VC%d negotiation stuck pending\n", id);
166 
167 	if (link && !pci_wait_for_pending(link, status_pos2,
168 					  PCI_VC_RES_STATUS_NEGO))
169 		dev_err(&link->dev, "VC%d negotiation stuck pending\n", id);
170 }
171 
172 /**
173  * pci_vc_do_save_buffer - Size, save, or restore VC state
174  * @dev: device
175  * @pos: starting position of VC capability (VC/VC9/MFVC)
176  * @save_state: buffer for save/restore
177  * @name: for error message
178  * @save: if provided a buffer, this indicates what to do with it
179  *
180  * Walking Virtual Channel config space to size, save, or restore it
181  * is complicated, so we do it all from one function to reduce code and
182  * guarantee ordering matches in the buffer.  When called with NULL
183  * @save_state, return the size of the necessary save buffer.  When called
184  * with a non-NULL @save_state, @save determines whether we save to the
185  * buffer or restore from it.
186  */
187 static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
188 				 struct pci_cap_saved_state *save_state,
189 				 bool save)
190 {
191 	u32 cap1;
192 	char evcc, lpevcc, parb_size;
193 	int i, len = 0;
194 	u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
195 
196 	/* Sanity check buffer size for save/restore */
197 	if (buf && save_state->cap.size !=
198 	    pci_vc_do_save_buffer(dev, pos, NULL, save)) {
199 		dev_err(&dev->dev,
200 			"VC save buffer size does not match @0x%x\n", pos);
201 		return -ENOMEM;
202 	}
203 
204 	pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
205 	/* Extended VC Count (not counting VC0) */
206 	evcc = cap1 & PCI_VC_CAP1_EVCC;
207 	/* Low Priority Extended VC Count (not counting VC0) */
208 	lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
209 	/* Port Arbitration Table Entry Size (bits) */
210 	parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
211 
212 	/*
213 	 * Port VC Control Register contains VC Arbitration Select, which
214 	 * cannot be modified when more than one LPVC is in operation.  We
215 	 * therefore save/restore it first, as only VC0 should be enabled
216 	 * after device reset.
217 	 */
218 	if (buf) {
219 		if (save)
220 			pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
221 					     (u16 *)buf);
222 		else
223 			pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
224 					      *(u16 *)buf);
225 		buf += 2;
226 	}
227 	len += 2;
228 
229 	/*
230 	 * If we have any Low Priority VCs and a VC Arbitration Table Offset
231 	 * in Port VC Capability Register 2 then save/restore it next.
232 	 */
233 	if (lpevcc) {
234 		u32 cap2;
235 		int vcarb_offset;
236 
237 		pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
238 		vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
239 
240 		if (vcarb_offset) {
241 			int size, vcarb_phases = 0;
242 
243 			if (cap2 & PCI_VC_CAP2_128_PHASE)
244 				vcarb_phases = 128;
245 			else if (cap2 & PCI_VC_CAP2_64_PHASE)
246 				vcarb_phases = 64;
247 			else if (cap2 & PCI_VC_CAP2_32_PHASE)
248 				vcarb_phases = 32;
249 
250 			/* Fixed 4 bits per phase per lpevcc (plus VC0) */
251 			size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
252 
253 			if (size && buf) {
254 				pci_vc_save_restore_dwords(dev,
255 							   pos + vcarb_offset,
256 							   (u32 *)buf,
257 							   size / 4, save);
258 				/*
259 				 * On restore, we need to signal hardware to
260 				 * re-load the VC Arbitration Table.
261 				 */
262 				if (!save)
263 					pci_vc_load_arb_table(dev, pos);
264 
265 				buf += size;
266 			}
267 			len += size;
268 		}
269 	}
270 
271 	/*
272 	 * In addition to each VC Resource Control Register, we may have a
273 	 * Port Arbitration Table attached to each VC.  The Port Arbitration
274 	 * Table Offset in each VC Resource Capability Register tells us if
275 	 * it exists.  The entry size is global from the Port VC Capability
276 	 * Register1 above.  The number of phases is determined per VC.
277 	 */
278 	for (i = 0; i < evcc + 1; i++) {
279 		u32 cap;
280 		int parb_offset;
281 
282 		pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
283 				      (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
284 		parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
285 		if (parb_offset) {
286 			int size, parb_phases = 0;
287 
288 			if (cap & PCI_VC_RES_CAP_256_PHASE)
289 				parb_phases = 256;
290 			else if (cap & (PCI_VC_RES_CAP_128_PHASE |
291 					PCI_VC_RES_CAP_128_PHASE_TB))
292 				parb_phases = 128;
293 			else if (cap & PCI_VC_RES_CAP_64_PHASE)
294 				parb_phases = 64;
295 			else if (cap & PCI_VC_RES_CAP_32_PHASE)
296 				parb_phases = 32;
297 
298 			size = (parb_size * parb_phases) / 8;
299 
300 			if (size && buf) {
301 				pci_vc_save_restore_dwords(dev,
302 							   pos + parb_offset,
303 							   (u32 *)buf,
304 							   size / 4, save);
305 				buf += size;
306 			}
307 			len += size;
308 		}
309 
310 		/* VC Resource Control Register */
311 		if (buf) {
312 			int ctrl_pos = pos + PCI_VC_RES_CTRL +
313 						(i * PCI_CAP_VC_PER_VC_SIZEOF);
314 			if (save)
315 				pci_read_config_dword(dev, ctrl_pos,
316 						      (u32 *)buf);
317 			else {
318 				u32 tmp, ctrl = *(u32 *)buf;
319 				/*
320 				 * For an FLR case, the VC config may remain.
321 				 * Preserve enable bit, restore the rest.
322 				 */
323 				pci_read_config_dword(dev, ctrl_pos, &tmp);
324 				tmp &= PCI_VC_RES_CTRL_ENABLE;
325 				tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
326 				pci_write_config_dword(dev, ctrl_pos, tmp);
327 				/* Load port arbitration table if used */
328 				if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
329 					pci_vc_load_port_arb_table(dev, pos, i);
330 				/* Re-enable if needed */
331 				if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
332 					pci_vc_enable(dev, pos, i);
333 			}
334 			buf += 4;
335 		}
336 		len += 4;
337 	}
338 
339 	return buf ? 0 : len;
340 }
341 
342 static struct {
343 	u16 id;
344 	const char *name;
345 } vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
346 		{ PCI_EXT_CAP_ID_VC, "VC" },
347 		{ PCI_EXT_CAP_ID_VC9, "VC9" } };
348 
349 /**
350  * pci_save_vc_state - Save VC state to pre-allocate save buffer
351  * @dev: device
352  *
353  * For each type of VC capability, VC/VC9/MFVC, find the capability and
354  * save it to the pre-allocated save buffer.
355  */
356 int pci_save_vc_state(struct pci_dev *dev)
357 {
358 	int i;
359 
360 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
361 		int pos, ret;
362 		struct pci_cap_saved_state *save_state;
363 
364 		pos = pci_find_ext_capability(dev, vc_caps[i].id);
365 		if (!pos)
366 			continue;
367 
368 		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
369 		if (!save_state) {
370 			dev_err(&dev->dev, "%s buffer not found in %s\n",
371 				vc_caps[i].name, __func__);
372 			return -ENOMEM;
373 		}
374 
375 		ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
376 		if (ret) {
377 			dev_err(&dev->dev, "%s save unsuccessful %s\n",
378 				vc_caps[i].name, __func__);
379 			return ret;
380 		}
381 	}
382 
383 	return 0;
384 }
385 
386 /**
387  * pci_restore_vc_state - Restore VC state from save buffer
388  * @dev: device
389  *
390  * For each type of VC capability, VC/VC9/MFVC, find the capability and
391  * restore it from the previously saved buffer.
392  */
393 void pci_restore_vc_state(struct pci_dev *dev)
394 {
395 	int i;
396 
397 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
398 		int pos;
399 		struct pci_cap_saved_state *save_state;
400 
401 		pos = pci_find_ext_capability(dev, vc_caps[i].id);
402 		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
403 		if (!save_state || !pos)
404 			continue;
405 
406 		pci_vc_do_save_buffer(dev, pos, save_state, false);
407 	}
408 }
409 
410 /**
411  * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
412  * @dev: device
413  *
414  * For each type of VC capability, VC/VC9/MFVC, find the capability, size
415  * it, and allocate a buffer for save/restore.
416  */
417 
418 void pci_allocate_vc_save_buffers(struct pci_dev *dev)
419 {
420 	int i;
421 
422 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
423 		int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
424 
425 		if (!pos)
426 			continue;
427 
428 		len = pci_vc_do_save_buffer(dev, pos, NULL, false);
429 		if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
430 			dev_err(&dev->dev,
431 				"unable to preallocate %s save buffer\n",
432 				vc_caps[i].name);
433 	}
434 }
435