1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Virtual Channel support
4 *
5 * Copyright (C) 2013 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/pci_regs.h>
14 #include <linux/types.h>
15
16 #include "pci.h"
17
18 /**
19 * pci_vc_save_restore_dwords - Save or restore a series of dwords
20 * @dev: device
21 * @pos: starting config space position
22 * @buf: buffer to save to or restore from
23 * @dwords: number of dwords to save/restore
24 * @save: whether to save or restore
25 */
pci_vc_save_restore_dwords(struct pci_dev * dev,int pos,u32 * buf,int dwords,bool save)26 static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
27 u32 *buf, int dwords, bool save)
28 {
29 int i;
30
31 for (i = 0; i < dwords; i++, buf++) {
32 if (save)
33 pci_read_config_dword(dev, pos + (i * 4), buf);
34 else
35 pci_write_config_dword(dev, pos + (i * 4), *buf);
36 }
37 }
38
39 /**
40 * pci_vc_load_arb_table - load and wait for VC arbitration table
41 * @dev: device
42 * @pos: starting position of VC capability (VC/VC9/MFVC)
43 *
44 * Set Load VC Arbitration Table bit requesting hardware to apply the VC
45 * Arbitration Table (previously loaded). When the VC Arbitration Table
46 * Status clears, hardware has latched the table into VC arbitration logic.
47 */
pci_vc_load_arb_table(struct pci_dev * dev,int pos)48 static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
49 {
50 u16 ctrl;
51
52 pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
53 pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
54 ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
55 if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
56 PCI_VC_PORT_STATUS_TABLE))
57 return;
58
59 pci_err(dev, "VC arbitration table failed to load\n");
60 }
61
62 /**
63 * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
64 * @dev: device
65 * @pos: starting position of VC capability (VC/VC9/MFVC)
66 * @res: VC resource number, ie. VCn (0-7)
67 *
68 * Set Load Port Arbitration Table bit requesting hardware to apply the Port
69 * Arbitration Table (previously loaded). When the Port Arbitration Table
70 * Status clears, hardware has latched the table into port arbitration logic.
71 */
pci_vc_load_port_arb_table(struct pci_dev * dev,int pos,int res)72 static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
73 {
74 int ctrl_pos, status_pos;
75 u32 ctrl;
76
77 ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
78 status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
79
80 pci_read_config_dword(dev, ctrl_pos, &ctrl);
81 pci_write_config_dword(dev, ctrl_pos,
82 ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
83
84 if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
85 return;
86
87 pci_err(dev, "VC%d port arbitration table failed to load\n", res);
88 }
89
90 /**
91 * pci_vc_enable - Enable virtual channel
92 * @dev: device
93 * @pos: starting position of VC capability (VC/VC9/MFVC)
94 * @res: VC res number, ie. VCn (0-7)
95 *
96 * A VC is enabled by setting the enable bit in matching resource control
97 * registers on both sides of a link. We therefore need to find the opposite
98 * end of the link. To keep this simple we enable from the downstream device.
99 * RC devices do not have an upstream device, nor does it seem that VC9 do
100 * (spec is unclear). Once we find the upstream device, match the VC ID to
101 * get the correct resource, disable and enable on both ends.
102 */
pci_vc_enable(struct pci_dev * dev,int pos,int res)103 static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
104 {
105 int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
106 u32 ctrl, header, cap1, ctrl2;
107 struct pci_dev *link = NULL;
108
109 /* Enable VCs from the downstream device */
110 if (!pci_is_pcie(dev) || !pcie_downstream_port(dev))
111 return;
112
113 ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
114 status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
115
116 pci_read_config_dword(dev, ctrl_pos, &ctrl);
117 id = ctrl & PCI_VC_RES_CTRL_ID;
118
119 pci_read_config_dword(dev, pos, &header);
120
121 /* If there is no opposite end of the link, skip to enable */
122 if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
123 pci_is_root_bus(dev->bus))
124 goto enable;
125
126 pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
127 if (!pos2)
128 goto enable;
129
130 pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
131 evcc = cap1 & PCI_VC_CAP1_EVCC;
132
133 /* VC0 is hardwired enabled, so we can start with 1 */
134 for (i = 1; i < evcc + 1; i++) {
135 ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
136 (i * PCI_CAP_VC_PER_VC_SIZEOF);
137 status_pos2 = pos2 + PCI_VC_RES_STATUS +
138 (i * PCI_CAP_VC_PER_VC_SIZEOF);
139 pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
140 if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
141 link = dev->bus->self;
142 break;
143 }
144 }
145
146 if (!link)
147 goto enable;
148
149 /* Disable if enabled */
150 if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
151 ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
152 pci_write_config_dword(link, ctrl_pos2, ctrl2);
153 }
154
155 /* Enable on both ends */
156 ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
157 pci_write_config_dword(link, ctrl_pos2, ctrl2);
158 enable:
159 ctrl |= PCI_VC_RES_CTRL_ENABLE;
160 pci_write_config_dword(dev, ctrl_pos, ctrl);
161
162 if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
163 pci_err(dev, "VC%d negotiation stuck pending\n", id);
164
165 if (link && !pci_wait_for_pending(link, status_pos2,
166 PCI_VC_RES_STATUS_NEGO))
167 pci_err(link, "VC%d negotiation stuck pending\n", id);
168 }
169
170 /**
171 * pci_vc_do_save_buffer - Size, save, or restore VC state
172 * @dev: device
173 * @pos: starting position of VC capability (VC/VC9/MFVC)
174 * @save_state: buffer for save/restore
175 * @save: if provided a buffer, this indicates what to do with it
176 *
177 * Walking Virtual Channel config space to size, save, or restore it
178 * is complicated, so we do it all from one function to reduce code and
179 * guarantee ordering matches in the buffer. When called with NULL
180 * @save_state, return the size of the necessary save buffer. When called
181 * with a non-NULL @save_state, @save determines whether we save to the
182 * buffer or restore from it.
183 */
pci_vc_do_save_buffer(struct pci_dev * dev,int pos,struct pci_cap_saved_state * save_state,bool save)184 static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
185 struct pci_cap_saved_state *save_state,
186 bool save)
187 {
188 u32 cap1;
189 char evcc, lpevcc, parb_size;
190 int i, len = 0;
191 u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
192
193 /* Sanity check buffer size for save/restore */
194 if (buf && save_state->cap.size !=
195 pci_vc_do_save_buffer(dev, pos, NULL, save)) {
196 pci_err(dev, "VC save buffer size does not match @0x%x\n", pos);
197 return -ENOMEM;
198 }
199
200 pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
201 /* Extended VC Count (not counting VC0) */
202 evcc = cap1 & PCI_VC_CAP1_EVCC;
203 /* Low Priority Extended VC Count (not counting VC0) */
204 lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
205 /* Port Arbitration Table Entry Size (bits) */
206 parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
207
208 /*
209 * Port VC Control Register contains VC Arbitration Select, which
210 * cannot be modified when more than one LPVC is in operation. We
211 * therefore save/restore it first, as only VC0 should be enabled
212 * after device reset.
213 */
214 if (buf) {
215 if (save)
216 pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
217 (u16 *)buf);
218 else
219 pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
220 *(u16 *)buf);
221 buf += 4;
222 }
223 len += 4;
224
225 /*
226 * If we have any Low Priority VCs and a VC Arbitration Table Offset
227 * in Port VC Capability Register 2 then save/restore it next.
228 */
229 if (lpevcc) {
230 u32 cap2;
231 int vcarb_offset;
232
233 pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
234 vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
235
236 if (vcarb_offset) {
237 int size, vcarb_phases = 0;
238
239 if (cap2 & PCI_VC_CAP2_128_PHASE)
240 vcarb_phases = 128;
241 else if (cap2 & PCI_VC_CAP2_64_PHASE)
242 vcarb_phases = 64;
243 else if (cap2 & PCI_VC_CAP2_32_PHASE)
244 vcarb_phases = 32;
245
246 /* Fixed 4 bits per phase per lpevcc (plus VC0) */
247 size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
248
249 if (size && buf) {
250 pci_vc_save_restore_dwords(dev,
251 pos + vcarb_offset,
252 (u32 *)buf,
253 size / 4, save);
254 /*
255 * On restore, we need to signal hardware to
256 * re-load the VC Arbitration Table.
257 */
258 if (!save)
259 pci_vc_load_arb_table(dev, pos);
260
261 buf += size;
262 }
263 len += size;
264 }
265 }
266
267 /*
268 * In addition to each VC Resource Control Register, we may have a
269 * Port Arbitration Table attached to each VC. The Port Arbitration
270 * Table Offset in each VC Resource Capability Register tells us if
271 * it exists. The entry size is global from the Port VC Capability
272 * Register1 above. The number of phases is determined per VC.
273 */
274 for (i = 0; i < evcc + 1; i++) {
275 u32 cap;
276 int parb_offset;
277
278 pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
279 (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
280 parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
281 if (parb_offset) {
282 int size, parb_phases = 0;
283
284 if (cap & PCI_VC_RES_CAP_256_PHASE)
285 parb_phases = 256;
286 else if (cap & (PCI_VC_RES_CAP_128_PHASE |
287 PCI_VC_RES_CAP_128_PHASE_TB))
288 parb_phases = 128;
289 else if (cap & PCI_VC_RES_CAP_64_PHASE)
290 parb_phases = 64;
291 else if (cap & PCI_VC_RES_CAP_32_PHASE)
292 parb_phases = 32;
293
294 size = (parb_size * parb_phases) / 8;
295
296 if (size && buf) {
297 pci_vc_save_restore_dwords(dev,
298 pos + parb_offset,
299 (u32 *)buf,
300 size / 4, save);
301 buf += size;
302 }
303 len += size;
304 }
305
306 /* VC Resource Control Register */
307 if (buf) {
308 int ctrl_pos = pos + PCI_VC_RES_CTRL +
309 (i * PCI_CAP_VC_PER_VC_SIZEOF);
310 if (save)
311 pci_read_config_dword(dev, ctrl_pos,
312 (u32 *)buf);
313 else {
314 u32 tmp, ctrl = *(u32 *)buf;
315 /*
316 * For an FLR case, the VC config may remain.
317 * Preserve enable bit, restore the rest.
318 */
319 pci_read_config_dword(dev, ctrl_pos, &tmp);
320 tmp &= PCI_VC_RES_CTRL_ENABLE;
321 tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
322 pci_write_config_dword(dev, ctrl_pos, tmp);
323 /* Load port arbitration table if used */
324 if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
325 pci_vc_load_port_arb_table(dev, pos, i);
326 /* Re-enable if needed */
327 if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
328 pci_vc_enable(dev, pos, i);
329 }
330 buf += 4;
331 }
332 len += 4;
333 }
334
335 return buf ? 0 : len;
336 }
337
338 static struct {
339 u16 id;
340 const char *name;
341 } vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
342 { PCI_EXT_CAP_ID_VC, "VC" },
343 { PCI_EXT_CAP_ID_VC9, "VC9" } };
344
345 /**
346 * pci_save_vc_state - Save VC state to pre-allocate save buffer
347 * @dev: device
348 *
349 * For each type of VC capability, VC/VC9/MFVC, find the capability and
350 * save it to the pre-allocated save buffer.
351 */
pci_save_vc_state(struct pci_dev * dev)352 int pci_save_vc_state(struct pci_dev *dev)
353 {
354 int i;
355
356 for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
357 int pos, ret;
358 struct pci_cap_saved_state *save_state;
359
360 pos = pci_find_ext_capability(dev, vc_caps[i].id);
361 if (!pos)
362 continue;
363
364 save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
365 if (!save_state) {
366 pci_err(dev, "%s buffer not found in %s\n",
367 vc_caps[i].name, __func__);
368 return -ENOMEM;
369 }
370
371 ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
372 if (ret) {
373 pci_err(dev, "%s save unsuccessful %s\n",
374 vc_caps[i].name, __func__);
375 return ret;
376 }
377 }
378
379 return 0;
380 }
381
382 /**
383 * pci_restore_vc_state - Restore VC state from save buffer
384 * @dev: device
385 *
386 * For each type of VC capability, VC/VC9/MFVC, find the capability and
387 * restore it from the previously saved buffer.
388 */
pci_restore_vc_state(struct pci_dev * dev)389 void pci_restore_vc_state(struct pci_dev *dev)
390 {
391 int i;
392
393 for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
394 int pos;
395 struct pci_cap_saved_state *save_state;
396
397 pos = pci_find_ext_capability(dev, vc_caps[i].id);
398 save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
399 if (!save_state || !pos)
400 continue;
401
402 pci_vc_do_save_buffer(dev, pos, save_state, false);
403 }
404 }
405
406 /**
407 * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
408 * @dev: device
409 *
410 * For each type of VC capability, VC/VC9/MFVC, find the capability, size
411 * it, and allocate a buffer for save/restore.
412 */
pci_allocate_vc_save_buffers(struct pci_dev * dev)413 void pci_allocate_vc_save_buffers(struct pci_dev *dev)
414 {
415 int i;
416
417 for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
418 int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
419
420 if (!pos)
421 continue;
422
423 len = pci_vc_do_save_buffer(dev, pos, NULL, false);
424 if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
425 pci_err(dev, "unable to preallocate %s save buffer\n",
426 vc_caps[i].name);
427 }
428 }
429