1 /* 2 * probe.c - PCI detection and setup code 3 */ 4 5 #include <linux/kernel.h> 6 #include <linux/delay.h> 7 #include <linux/init.h> 8 #include <linux/pci.h> 9 #include <linux/slab.h> 10 #include <linux/module.h> 11 #include <linux/cpumask.h> 12 #include "pci.h" 13 14 #define CARDBUS_LATENCY_TIMER 176 /* secondary latency timer */ 15 #define CARDBUS_RESERVE_BUSNR 3 16 #define PCI_CFG_SPACE_SIZE 256 17 #define PCI_CFG_SPACE_EXP_SIZE 4096 18 19 /* Ugh. Need to stop exporting this to modules. */ 20 LIST_HEAD(pci_root_buses); 21 EXPORT_SYMBOL(pci_root_buses); 22 23 LIST_HEAD(pci_devices); 24 25 /* 26 * Some device drivers need know if pci is initiated. 27 * Basically, we think pci is not initiated when there 28 * is no device in list of pci_devices. 29 */ 30 int no_pci_devices(void) 31 { 32 return list_empty(&pci_devices); 33 } 34 35 EXPORT_SYMBOL(no_pci_devices); 36 37 #ifdef HAVE_PCI_LEGACY 38 /** 39 * pci_create_legacy_files - create legacy I/O port and memory files 40 * @b: bus to create files under 41 * 42 * Some platforms allow access to legacy I/O port and ISA memory space on 43 * a per-bus basis. This routine creates the files and ties them into 44 * their associated read, write and mmap files from pci-sysfs.c 45 */ 46 static void pci_create_legacy_files(struct pci_bus *b) 47 { 48 b->legacy_io = kzalloc(sizeof(struct bin_attribute) * 2, 49 GFP_ATOMIC); 50 if (b->legacy_io) { 51 b->legacy_io->attr.name = "legacy_io"; 52 b->legacy_io->size = 0xffff; 53 b->legacy_io->attr.mode = S_IRUSR | S_IWUSR; 54 b->legacy_io->read = pci_read_legacy_io; 55 b->legacy_io->write = pci_write_legacy_io; 56 device_create_bin_file(&b->dev, b->legacy_io); 57 58 /* Allocated above after the legacy_io struct */ 59 b->legacy_mem = b->legacy_io + 1; 60 b->legacy_mem->attr.name = "legacy_mem"; 61 b->legacy_mem->size = 1024*1024; 62 b->legacy_mem->attr.mode = S_IRUSR | S_IWUSR; 63 b->legacy_mem->mmap = pci_mmap_legacy_mem; 64 device_create_bin_file(&b->dev, b->legacy_mem); 65 } 66 } 67 68 void pci_remove_legacy_files(struct pci_bus *b) 69 { 70 if (b->legacy_io) { 71 device_remove_bin_file(&b->dev, b->legacy_io); 72 device_remove_bin_file(&b->dev, b->legacy_mem); 73 kfree(b->legacy_io); /* both are allocated here */ 74 } 75 } 76 #else /* !HAVE_PCI_LEGACY */ 77 static inline void pci_create_legacy_files(struct pci_bus *bus) { return; } 78 void pci_remove_legacy_files(struct pci_bus *bus) { return; } 79 #endif /* HAVE_PCI_LEGACY */ 80 81 /* 82 * PCI Bus Class Devices 83 */ 84 static ssize_t pci_bus_show_cpuaffinity(struct device *dev, 85 struct device_attribute *attr, 86 char *buf) 87 { 88 int ret; 89 cpumask_t cpumask; 90 91 cpumask = pcibus_to_cpumask(to_pci_bus(dev)); 92 ret = cpumask_scnprintf(buf, PAGE_SIZE, cpumask); 93 if (ret < PAGE_SIZE) 94 buf[ret++] = '\n'; 95 return ret; 96 } 97 DEVICE_ATTR(cpuaffinity, S_IRUGO, pci_bus_show_cpuaffinity, NULL); 98 99 /* 100 * PCI Bus Class 101 */ 102 static void release_pcibus_dev(struct device *dev) 103 { 104 struct pci_bus *pci_bus = to_pci_bus(dev); 105 106 if (pci_bus->bridge) 107 put_device(pci_bus->bridge); 108 kfree(pci_bus); 109 } 110 111 static struct class pcibus_class = { 112 .name = "pci_bus", 113 .dev_release = &release_pcibus_dev, 114 }; 115 116 static int __init pcibus_class_init(void) 117 { 118 return class_register(&pcibus_class); 119 } 120 postcore_initcall(pcibus_class_init); 121 122 /* 123 * Translate the low bits of the PCI base 124 * to the resource type 125 */ 126 static inline unsigned int pci_calc_resource_flags(unsigned int flags) 127 { 128 if (flags & PCI_BASE_ADDRESS_SPACE_IO) 129 return IORESOURCE_IO; 130 131 if (flags & PCI_BASE_ADDRESS_MEM_PREFETCH) 132 return IORESOURCE_MEM | IORESOURCE_PREFETCH; 133 134 return IORESOURCE_MEM; 135 } 136 137 /* 138 * Find the extent of a PCI decode.. 139 */ 140 static u32 pci_size(u32 base, u32 maxbase, u32 mask) 141 { 142 u32 size = mask & maxbase; /* Find the significant bits */ 143 if (!size) 144 return 0; 145 146 /* Get the lowest of them to find the decode size, and 147 from that the extent. */ 148 size = (size & ~(size-1)) - 1; 149 150 /* base == maxbase can be valid only if the BAR has 151 already been programmed with all 1s. */ 152 if (base == maxbase && ((base | size) & mask) != mask) 153 return 0; 154 155 return size; 156 } 157 158 static u64 pci_size64(u64 base, u64 maxbase, u64 mask) 159 { 160 u64 size = mask & maxbase; /* Find the significant bits */ 161 if (!size) 162 return 0; 163 164 /* Get the lowest of them to find the decode size, and 165 from that the extent. */ 166 size = (size & ~(size-1)) - 1; 167 168 /* base == maxbase can be valid only if the BAR has 169 already been programmed with all 1s. */ 170 if (base == maxbase && ((base | size) & mask) != mask) 171 return 0; 172 173 return size; 174 } 175 176 static inline int is_64bit_memory(u32 mask) 177 { 178 if ((mask & (PCI_BASE_ADDRESS_SPACE|PCI_BASE_ADDRESS_MEM_TYPE_MASK)) == 179 (PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64)) 180 return 1; 181 return 0; 182 } 183 184 static void pci_read_bases(struct pci_dev *dev, unsigned int howmany, int rom) 185 { 186 unsigned int pos, reg, next; 187 u32 l, sz; 188 struct resource *res; 189 190 for(pos=0; pos<howmany; pos = next) { 191 u64 l64; 192 u64 sz64; 193 u32 raw_sz; 194 195 next = pos+1; 196 res = &dev->resource[pos]; 197 res->name = pci_name(dev); 198 reg = PCI_BASE_ADDRESS_0 + (pos << 2); 199 pci_read_config_dword(dev, reg, &l); 200 pci_write_config_dword(dev, reg, ~0); 201 pci_read_config_dword(dev, reg, &sz); 202 pci_write_config_dword(dev, reg, l); 203 if (!sz || sz == 0xffffffff) 204 continue; 205 if (l == 0xffffffff) 206 l = 0; 207 raw_sz = sz; 208 if ((l & PCI_BASE_ADDRESS_SPACE) == 209 PCI_BASE_ADDRESS_SPACE_MEMORY) { 210 sz = pci_size(l, sz, (u32)PCI_BASE_ADDRESS_MEM_MASK); 211 /* 212 * For 64bit prefetchable memory sz could be 0, if the 213 * real size is bigger than 4G, so we need to check 214 * szhi for that. 215 */ 216 if (!is_64bit_memory(l) && !sz) 217 continue; 218 res->start = l & PCI_BASE_ADDRESS_MEM_MASK; 219 res->flags |= l & ~PCI_BASE_ADDRESS_MEM_MASK; 220 } else { 221 sz = pci_size(l, sz, PCI_BASE_ADDRESS_IO_MASK & 0xffff); 222 if (!sz) 223 continue; 224 res->start = l & PCI_BASE_ADDRESS_IO_MASK; 225 res->flags |= l & ~PCI_BASE_ADDRESS_IO_MASK; 226 } 227 res->end = res->start + (unsigned long) sz; 228 res->flags |= pci_calc_resource_flags(l); 229 if (is_64bit_memory(l)) { 230 u32 szhi, lhi; 231 232 pci_read_config_dword(dev, reg+4, &lhi); 233 pci_write_config_dword(dev, reg+4, ~0); 234 pci_read_config_dword(dev, reg+4, &szhi); 235 pci_write_config_dword(dev, reg+4, lhi); 236 sz64 = ((u64)szhi << 32) | raw_sz; 237 l64 = ((u64)lhi << 32) | l; 238 sz64 = pci_size64(l64, sz64, PCI_BASE_ADDRESS_MEM_MASK); 239 next++; 240 #if BITS_PER_LONG == 64 241 if (!sz64) { 242 res->start = 0; 243 res->end = 0; 244 res->flags = 0; 245 continue; 246 } 247 res->start = l64 & PCI_BASE_ADDRESS_MEM_MASK; 248 res->end = res->start + sz64; 249 #else 250 if (sz64 > 0x100000000ULL) { 251 printk(KERN_ERR "PCI: Unable to handle 64-bit " 252 "BAR for device %s\n", pci_name(dev)); 253 res->start = 0; 254 res->flags = 0; 255 } else if (lhi) { 256 /* 64-bit wide address, treat as disabled */ 257 pci_write_config_dword(dev, reg, 258 l & ~(u32)PCI_BASE_ADDRESS_MEM_MASK); 259 pci_write_config_dword(dev, reg+4, 0); 260 res->start = 0; 261 res->end = sz; 262 } 263 #endif 264 } 265 } 266 if (rom) { 267 dev->rom_base_reg = rom; 268 res = &dev->resource[PCI_ROM_RESOURCE]; 269 res->name = pci_name(dev); 270 pci_read_config_dword(dev, rom, &l); 271 pci_write_config_dword(dev, rom, ~PCI_ROM_ADDRESS_ENABLE); 272 pci_read_config_dword(dev, rom, &sz); 273 pci_write_config_dword(dev, rom, l); 274 if (l == 0xffffffff) 275 l = 0; 276 if (sz && sz != 0xffffffff) { 277 sz = pci_size(l, sz, (u32)PCI_ROM_ADDRESS_MASK); 278 if (sz) { 279 res->flags = (l & IORESOURCE_ROM_ENABLE) | 280 IORESOURCE_MEM | IORESOURCE_PREFETCH | 281 IORESOURCE_READONLY | IORESOURCE_CACHEABLE; 282 res->start = l & PCI_ROM_ADDRESS_MASK; 283 res->end = res->start + (unsigned long) sz; 284 } 285 } 286 } 287 } 288 289 void __devinit pci_read_bridge_bases(struct pci_bus *child) 290 { 291 struct pci_dev *dev = child->self; 292 u8 io_base_lo, io_limit_lo; 293 u16 mem_base_lo, mem_limit_lo; 294 unsigned long base, limit; 295 struct resource *res; 296 int i; 297 298 if (!dev) /* It's a host bus, nothing to read */ 299 return; 300 301 if (dev->transparent) { 302 printk(KERN_INFO "PCI: Transparent bridge - %s\n", pci_name(dev)); 303 for(i = 3; i < PCI_BUS_NUM_RESOURCES; i++) 304 child->resource[i] = child->parent->resource[i - 3]; 305 } 306 307 for(i=0; i<3; i++) 308 child->resource[i] = &dev->resource[PCI_BRIDGE_RESOURCES+i]; 309 310 res = child->resource[0]; 311 pci_read_config_byte(dev, PCI_IO_BASE, &io_base_lo); 312 pci_read_config_byte(dev, PCI_IO_LIMIT, &io_limit_lo); 313 base = (io_base_lo & PCI_IO_RANGE_MASK) << 8; 314 limit = (io_limit_lo & PCI_IO_RANGE_MASK) << 8; 315 316 if ((io_base_lo & PCI_IO_RANGE_TYPE_MASK) == PCI_IO_RANGE_TYPE_32) { 317 u16 io_base_hi, io_limit_hi; 318 pci_read_config_word(dev, PCI_IO_BASE_UPPER16, &io_base_hi); 319 pci_read_config_word(dev, PCI_IO_LIMIT_UPPER16, &io_limit_hi); 320 base |= (io_base_hi << 16); 321 limit |= (io_limit_hi << 16); 322 } 323 324 if (base <= limit) { 325 res->flags = (io_base_lo & PCI_IO_RANGE_TYPE_MASK) | IORESOURCE_IO; 326 if (!res->start) 327 res->start = base; 328 if (!res->end) 329 res->end = limit + 0xfff; 330 } 331 332 res = child->resource[1]; 333 pci_read_config_word(dev, PCI_MEMORY_BASE, &mem_base_lo); 334 pci_read_config_word(dev, PCI_MEMORY_LIMIT, &mem_limit_lo); 335 base = (mem_base_lo & PCI_MEMORY_RANGE_MASK) << 16; 336 limit = (mem_limit_lo & PCI_MEMORY_RANGE_MASK) << 16; 337 if (base <= limit) { 338 res->flags = (mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) | IORESOURCE_MEM; 339 res->start = base; 340 res->end = limit + 0xfffff; 341 } 342 343 res = child->resource[2]; 344 pci_read_config_word(dev, PCI_PREF_MEMORY_BASE, &mem_base_lo); 345 pci_read_config_word(dev, PCI_PREF_MEMORY_LIMIT, &mem_limit_lo); 346 base = (mem_base_lo & PCI_PREF_RANGE_MASK) << 16; 347 limit = (mem_limit_lo & PCI_PREF_RANGE_MASK) << 16; 348 349 if ((mem_base_lo & PCI_PREF_RANGE_TYPE_MASK) == PCI_PREF_RANGE_TYPE_64) { 350 u32 mem_base_hi, mem_limit_hi; 351 pci_read_config_dword(dev, PCI_PREF_BASE_UPPER32, &mem_base_hi); 352 pci_read_config_dword(dev, PCI_PREF_LIMIT_UPPER32, &mem_limit_hi); 353 354 /* 355 * Some bridges set the base > limit by default, and some 356 * (broken) BIOSes do not initialize them. If we find 357 * this, just assume they are not being used. 358 */ 359 if (mem_base_hi <= mem_limit_hi) { 360 #if BITS_PER_LONG == 64 361 base |= ((long) mem_base_hi) << 32; 362 limit |= ((long) mem_limit_hi) << 32; 363 #else 364 if (mem_base_hi || mem_limit_hi) { 365 printk(KERN_ERR "PCI: Unable to handle 64-bit address space for bridge %s\n", pci_name(dev)); 366 return; 367 } 368 #endif 369 } 370 } 371 if (base <= limit) { 372 res->flags = (mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) | IORESOURCE_MEM | IORESOURCE_PREFETCH; 373 res->start = base; 374 res->end = limit + 0xfffff; 375 } 376 } 377 378 static struct pci_bus * pci_alloc_bus(void) 379 { 380 struct pci_bus *b; 381 382 b = kzalloc(sizeof(*b), GFP_KERNEL); 383 if (b) { 384 INIT_LIST_HEAD(&b->node); 385 INIT_LIST_HEAD(&b->children); 386 INIT_LIST_HEAD(&b->devices); 387 } 388 return b; 389 } 390 391 static struct pci_bus * __devinit 392 pci_alloc_child_bus(struct pci_bus *parent, struct pci_dev *bridge, int busnr) 393 { 394 struct pci_bus *child; 395 int i; 396 397 /* 398 * Allocate a new bus, and inherit stuff from the parent.. 399 */ 400 child = pci_alloc_bus(); 401 if (!child) 402 return NULL; 403 404 child->self = bridge; 405 child->parent = parent; 406 child->ops = parent->ops; 407 child->sysdata = parent->sysdata; 408 child->bus_flags = parent->bus_flags; 409 child->bridge = get_device(&bridge->dev); 410 411 /* initialize some portions of the bus device, but don't register it 412 * now as the parent is not properly set up yet. This device will get 413 * registered later in pci_bus_add_devices() 414 */ 415 child->dev.class = &pcibus_class; 416 sprintf(child->dev.bus_id, "%04x:%02x", pci_domain_nr(child), busnr); 417 418 /* 419 * Set up the primary, secondary and subordinate 420 * bus numbers. 421 */ 422 child->number = child->secondary = busnr; 423 child->primary = parent->secondary; 424 child->subordinate = 0xff; 425 426 /* Set up default resource pointers and names.. */ 427 for (i = 0; i < 4; i++) { 428 child->resource[i] = &bridge->resource[PCI_BRIDGE_RESOURCES+i]; 429 child->resource[i]->name = child->name; 430 } 431 bridge->subordinate = child; 432 433 return child; 434 } 435 436 struct pci_bus *__ref pci_add_new_bus(struct pci_bus *parent, struct pci_dev *dev, int busnr) 437 { 438 struct pci_bus *child; 439 440 child = pci_alloc_child_bus(parent, dev, busnr); 441 if (child) { 442 down_write(&pci_bus_sem); 443 list_add_tail(&child->node, &parent->children); 444 up_write(&pci_bus_sem); 445 } 446 return child; 447 } 448 449 static void pci_fixup_parent_subordinate_busnr(struct pci_bus *child, int max) 450 { 451 struct pci_bus *parent = child->parent; 452 453 /* Attempts to fix that up are really dangerous unless 454 we're going to re-assign all bus numbers. */ 455 if (!pcibios_assign_all_busses()) 456 return; 457 458 while (parent->parent && parent->subordinate < max) { 459 parent->subordinate = max; 460 pci_write_config_byte(parent->self, PCI_SUBORDINATE_BUS, max); 461 parent = parent->parent; 462 } 463 } 464 465 /* 466 * If it's a bridge, configure it and scan the bus behind it. 467 * For CardBus bridges, we don't scan behind as the devices will 468 * be handled by the bridge driver itself. 469 * 470 * We need to process bridges in two passes -- first we scan those 471 * already configured by the BIOS and after we are done with all of 472 * them, we proceed to assigning numbers to the remaining buses in 473 * order to avoid overlaps between old and new bus numbers. 474 */ 475 int __devinit pci_scan_bridge(struct pci_bus *bus, struct pci_dev *dev, int max, int pass) 476 { 477 struct pci_bus *child; 478 int is_cardbus = (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS); 479 u32 buses, i, j = 0; 480 u16 bctl; 481 482 pci_read_config_dword(dev, PCI_PRIMARY_BUS, &buses); 483 484 pr_debug("PCI: Scanning behind PCI bridge %s, config %06x, pass %d\n", 485 pci_name(dev), buses & 0xffffff, pass); 486 487 /* Disable MasterAbortMode during probing to avoid reporting 488 of bus errors (in some architectures) */ 489 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &bctl); 490 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, 491 bctl & ~PCI_BRIDGE_CTL_MASTER_ABORT); 492 493 if ((buses & 0xffff00) && !pcibios_assign_all_busses() && !is_cardbus) { 494 unsigned int cmax, busnr; 495 /* 496 * Bus already configured by firmware, process it in the first 497 * pass and just note the configuration. 498 */ 499 if (pass) 500 goto out; 501 busnr = (buses >> 8) & 0xFF; 502 503 /* 504 * If we already got to this bus through a different bridge, 505 * ignore it. This can happen with the i450NX chipset. 506 */ 507 if (pci_find_bus(pci_domain_nr(bus), busnr)) { 508 printk(KERN_INFO "PCI: Bus %04x:%02x already known\n", 509 pci_domain_nr(bus), busnr); 510 goto out; 511 } 512 513 child = pci_add_new_bus(bus, dev, busnr); 514 if (!child) 515 goto out; 516 child->primary = buses & 0xFF; 517 child->subordinate = (buses >> 16) & 0xFF; 518 child->bridge_ctl = bctl; 519 520 cmax = pci_scan_child_bus(child); 521 if (cmax > max) 522 max = cmax; 523 if (child->subordinate > max) 524 max = child->subordinate; 525 } else { 526 /* 527 * We need to assign a number to this bus which we always 528 * do in the second pass. 529 */ 530 if (!pass) { 531 if (pcibios_assign_all_busses()) 532 /* Temporarily disable forwarding of the 533 configuration cycles on all bridges in 534 this bus segment to avoid possible 535 conflicts in the second pass between two 536 bridges programmed with overlapping 537 bus ranges. */ 538 pci_write_config_dword(dev, PCI_PRIMARY_BUS, 539 buses & ~0xffffff); 540 goto out; 541 } 542 543 /* Clear errors */ 544 pci_write_config_word(dev, PCI_STATUS, 0xffff); 545 546 /* Prevent assigning a bus number that already exists. 547 * This can happen when a bridge is hot-plugged */ 548 if (pci_find_bus(pci_domain_nr(bus), max+1)) 549 goto out; 550 child = pci_add_new_bus(bus, dev, ++max); 551 buses = (buses & 0xff000000) 552 | ((unsigned int)(child->primary) << 0) 553 | ((unsigned int)(child->secondary) << 8) 554 | ((unsigned int)(child->subordinate) << 16); 555 556 /* 557 * yenta.c forces a secondary latency timer of 176. 558 * Copy that behaviour here. 559 */ 560 if (is_cardbus) { 561 buses &= ~0xff000000; 562 buses |= CARDBUS_LATENCY_TIMER << 24; 563 } 564 565 /* 566 * We need to blast all three values with a single write. 567 */ 568 pci_write_config_dword(dev, PCI_PRIMARY_BUS, buses); 569 570 if (!is_cardbus) { 571 child->bridge_ctl = bctl; 572 /* 573 * Adjust subordinate busnr in parent buses. 574 * We do this before scanning for children because 575 * some devices may not be detected if the bios 576 * was lazy. 577 */ 578 pci_fixup_parent_subordinate_busnr(child, max); 579 /* Now we can scan all subordinate buses... */ 580 max = pci_scan_child_bus(child); 581 /* 582 * now fix it up again since we have found 583 * the real value of max. 584 */ 585 pci_fixup_parent_subordinate_busnr(child, max); 586 } else { 587 /* 588 * For CardBus bridges, we leave 4 bus numbers 589 * as cards with a PCI-to-PCI bridge can be 590 * inserted later. 591 */ 592 for (i=0; i<CARDBUS_RESERVE_BUSNR; i++) { 593 struct pci_bus *parent = bus; 594 if (pci_find_bus(pci_domain_nr(bus), 595 max+i+1)) 596 break; 597 while (parent->parent) { 598 if ((!pcibios_assign_all_busses()) && 599 (parent->subordinate > max) && 600 (parent->subordinate <= max+i)) { 601 j = 1; 602 } 603 parent = parent->parent; 604 } 605 if (j) { 606 /* 607 * Often, there are two cardbus bridges 608 * -- try to leave one valid bus number 609 * for each one. 610 */ 611 i /= 2; 612 break; 613 } 614 } 615 max += i; 616 pci_fixup_parent_subordinate_busnr(child, max); 617 } 618 /* 619 * Set the subordinate bus number to its real value. 620 */ 621 child->subordinate = max; 622 pci_write_config_byte(dev, PCI_SUBORDINATE_BUS, max); 623 } 624 625 sprintf(child->name, (is_cardbus ? "PCI CardBus #%02x" : "PCI Bus #%02x"), child->number); 626 627 /* Has only triggered on CardBus, fixup is in yenta_socket */ 628 while (bus->parent) { 629 if ((child->subordinate > bus->subordinate) || 630 (child->number > bus->subordinate) || 631 (child->number < bus->number) || 632 (child->subordinate < bus->number)) { 633 pr_debug("PCI: Bus #%02x (-#%02x) is %s " 634 "hidden behind%s bridge #%02x (-#%02x)\n", 635 child->number, child->subordinate, 636 (bus->number > child->subordinate && 637 bus->subordinate < child->number) ? 638 "wholly" : "partially", 639 bus->self->transparent ? " transparent" : "", 640 bus->number, bus->subordinate); 641 } 642 bus = bus->parent; 643 } 644 645 out: 646 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, bctl); 647 648 return max; 649 } 650 651 /* 652 * Read interrupt line and base address registers. 653 * The architecture-dependent code can tweak these, of course. 654 */ 655 static void pci_read_irq(struct pci_dev *dev) 656 { 657 unsigned char irq; 658 659 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq); 660 dev->pin = irq; 661 if (irq) 662 pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq); 663 dev->irq = irq; 664 } 665 666 #define LEGACY_IO_RESOURCE (IORESOURCE_IO | IORESOURCE_PCI_FIXED) 667 668 /** 669 * pci_setup_device - fill in class and map information of a device 670 * @dev: the device structure to fill 671 * 672 * Initialize the device structure with information about the device's 673 * vendor,class,memory and IO-space addresses,IRQ lines etc. 674 * Called at initialisation of the PCI subsystem and by CardBus services. 675 * Returns 0 on success and -1 if unknown type of device (not normal, bridge 676 * or CardBus). 677 */ 678 static int pci_setup_device(struct pci_dev * dev) 679 { 680 u32 class; 681 682 sprintf(pci_name(dev), "%04x:%02x:%02x.%d", pci_domain_nr(dev->bus), 683 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn)); 684 685 pci_read_config_dword(dev, PCI_CLASS_REVISION, &class); 686 dev->revision = class & 0xff; 687 class >>= 8; /* upper 3 bytes */ 688 dev->class = class; 689 class >>= 8; 690 691 pr_debug("PCI: Found %s [%04x/%04x] %06x %02x\n", pci_name(dev), 692 dev->vendor, dev->device, class, dev->hdr_type); 693 694 /* "Unknown power state" */ 695 dev->current_state = PCI_UNKNOWN; 696 697 /* Early fixups, before probing the BARs */ 698 pci_fixup_device(pci_fixup_early, dev); 699 class = dev->class >> 8; 700 701 switch (dev->hdr_type) { /* header type */ 702 case PCI_HEADER_TYPE_NORMAL: /* standard header */ 703 if (class == PCI_CLASS_BRIDGE_PCI) 704 goto bad; 705 pci_read_irq(dev); 706 pci_read_bases(dev, 6, PCI_ROM_ADDRESS); 707 pci_read_config_word(dev, PCI_SUBSYSTEM_VENDOR_ID, &dev->subsystem_vendor); 708 pci_read_config_word(dev, PCI_SUBSYSTEM_ID, &dev->subsystem_device); 709 710 /* 711 * Do the ugly legacy mode stuff here rather than broken chip 712 * quirk code. Legacy mode ATA controllers have fixed 713 * addresses. These are not always echoed in BAR0-3, and 714 * BAR0-3 in a few cases contain junk! 715 */ 716 if (class == PCI_CLASS_STORAGE_IDE) { 717 u8 progif; 718 pci_read_config_byte(dev, PCI_CLASS_PROG, &progif); 719 if ((progif & 1) == 0) { 720 dev->resource[0].start = 0x1F0; 721 dev->resource[0].end = 0x1F7; 722 dev->resource[0].flags = LEGACY_IO_RESOURCE; 723 dev->resource[1].start = 0x3F6; 724 dev->resource[1].end = 0x3F6; 725 dev->resource[1].flags = LEGACY_IO_RESOURCE; 726 } 727 if ((progif & 4) == 0) { 728 dev->resource[2].start = 0x170; 729 dev->resource[2].end = 0x177; 730 dev->resource[2].flags = LEGACY_IO_RESOURCE; 731 dev->resource[3].start = 0x376; 732 dev->resource[3].end = 0x376; 733 dev->resource[3].flags = LEGACY_IO_RESOURCE; 734 } 735 } 736 break; 737 738 case PCI_HEADER_TYPE_BRIDGE: /* bridge header */ 739 if (class != PCI_CLASS_BRIDGE_PCI) 740 goto bad; 741 /* The PCI-to-PCI bridge spec requires that subtractive 742 decoding (i.e. transparent) bridge must have programming 743 interface code of 0x01. */ 744 pci_read_irq(dev); 745 dev->transparent = ((dev->class & 0xff) == 1); 746 pci_read_bases(dev, 2, PCI_ROM_ADDRESS1); 747 break; 748 749 case PCI_HEADER_TYPE_CARDBUS: /* CardBus bridge header */ 750 if (class != PCI_CLASS_BRIDGE_CARDBUS) 751 goto bad; 752 pci_read_irq(dev); 753 pci_read_bases(dev, 1, 0); 754 pci_read_config_word(dev, PCI_CB_SUBSYSTEM_VENDOR_ID, &dev->subsystem_vendor); 755 pci_read_config_word(dev, PCI_CB_SUBSYSTEM_ID, &dev->subsystem_device); 756 break; 757 758 default: /* unknown header */ 759 printk(KERN_ERR "PCI: device %s has unknown header type %02x, ignoring.\n", 760 pci_name(dev), dev->hdr_type); 761 return -1; 762 763 bad: 764 printk(KERN_ERR "PCI: %s: class %x doesn't match header type %02x. Ignoring class.\n", 765 pci_name(dev), class, dev->hdr_type); 766 dev->class = PCI_CLASS_NOT_DEFINED; 767 } 768 769 /* We found a fine healthy device, go go go... */ 770 return 0; 771 } 772 773 /** 774 * pci_release_dev - free a pci device structure when all users of it are finished. 775 * @dev: device that's been disconnected 776 * 777 * Will be called only by the device core when all users of this pci device are 778 * done. 779 */ 780 static void pci_release_dev(struct device *dev) 781 { 782 struct pci_dev *pci_dev; 783 784 pci_dev = to_pci_dev(dev); 785 kfree(pci_dev); 786 } 787 788 static void set_pcie_port_type(struct pci_dev *pdev) 789 { 790 int pos; 791 u16 reg16; 792 793 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); 794 if (!pos) 795 return; 796 pdev->is_pcie = 1; 797 pci_read_config_word(pdev, pos + PCI_EXP_FLAGS, ®16); 798 pdev->pcie_type = (reg16 & PCI_EXP_FLAGS_TYPE) >> 4; 799 } 800 801 /** 802 * pci_cfg_space_size - get the configuration space size of the PCI device. 803 * @dev: PCI device 804 * 805 * Regular PCI devices have 256 bytes, but PCI-X 2 and PCI Express devices 806 * have 4096 bytes. Even if the device is capable, that doesn't mean we can 807 * access it. Maybe we don't have a way to generate extended config space 808 * accesses, or the device is behind a reverse Express bridge. So we try 809 * reading the dword at 0x100 which must either be 0 or a valid extended 810 * capability header. 811 */ 812 int pci_cfg_space_size(struct pci_dev *dev) 813 { 814 int pos; 815 u32 status; 816 817 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 818 if (!pos) { 819 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 820 if (!pos) 821 goto fail; 822 823 pci_read_config_dword(dev, pos + PCI_X_STATUS, &status); 824 if (!(status & (PCI_X_STATUS_266MHZ | PCI_X_STATUS_533MHZ))) 825 goto fail; 826 } 827 828 if (pci_read_config_dword(dev, 256, &status) != PCIBIOS_SUCCESSFUL) 829 goto fail; 830 if (status == 0xffffffff) 831 goto fail; 832 833 return PCI_CFG_SPACE_EXP_SIZE; 834 835 fail: 836 return PCI_CFG_SPACE_SIZE; 837 } 838 839 static void pci_release_bus_bridge_dev(struct device *dev) 840 { 841 kfree(dev); 842 } 843 844 struct pci_dev *alloc_pci_dev(void) 845 { 846 struct pci_dev *dev; 847 848 dev = kzalloc(sizeof(struct pci_dev), GFP_KERNEL); 849 if (!dev) 850 return NULL; 851 852 INIT_LIST_HEAD(&dev->global_list); 853 INIT_LIST_HEAD(&dev->bus_list); 854 855 pci_msi_init_pci_dev(dev); 856 857 return dev; 858 } 859 EXPORT_SYMBOL(alloc_pci_dev); 860 861 /* 862 * Read the config data for a PCI device, sanity-check it 863 * and fill in the dev structure... 864 */ 865 static struct pci_dev * __devinit 866 pci_scan_device(struct pci_bus *bus, int devfn) 867 { 868 struct pci_dev *dev; 869 u32 l; 870 u8 hdr_type; 871 int delay = 1; 872 873 if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &l)) 874 return NULL; 875 876 /* some broken boards return 0 or ~0 if a slot is empty: */ 877 if (l == 0xffffffff || l == 0x00000000 || 878 l == 0x0000ffff || l == 0xffff0000) 879 return NULL; 880 881 /* Configuration request Retry Status */ 882 while (l == 0xffff0001) { 883 msleep(delay); 884 delay *= 2; 885 if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &l)) 886 return NULL; 887 /* Card hasn't responded in 60 seconds? Must be stuck. */ 888 if (delay > 60 * 1000) { 889 printk(KERN_WARNING "Device %04x:%02x:%02x.%d not " 890 "responding\n", pci_domain_nr(bus), 891 bus->number, PCI_SLOT(devfn), 892 PCI_FUNC(devfn)); 893 return NULL; 894 } 895 } 896 897 if (pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type)) 898 return NULL; 899 900 dev = alloc_pci_dev(); 901 if (!dev) 902 return NULL; 903 904 dev->bus = bus; 905 dev->sysdata = bus->sysdata; 906 dev->dev.parent = bus->bridge; 907 dev->dev.bus = &pci_bus_type; 908 dev->devfn = devfn; 909 dev->hdr_type = hdr_type & 0x7f; 910 dev->multifunction = !!(hdr_type & 0x80); 911 dev->vendor = l & 0xffff; 912 dev->device = (l >> 16) & 0xffff; 913 dev->cfg_size = pci_cfg_space_size(dev); 914 dev->error_state = pci_channel_io_normal; 915 set_pcie_port_type(dev); 916 917 /* Assume 32-bit PCI; let 64-bit PCI cards (which are far rarer) 918 set this higher, assuming the system even supports it. */ 919 dev->dma_mask = 0xffffffff; 920 if (pci_setup_device(dev) < 0) { 921 kfree(dev); 922 return NULL; 923 } 924 925 return dev; 926 } 927 928 void pci_device_add(struct pci_dev *dev, struct pci_bus *bus) 929 { 930 device_initialize(&dev->dev); 931 dev->dev.release = pci_release_dev; 932 pci_dev_get(dev); 933 934 set_dev_node(&dev->dev, pcibus_to_node(bus)); 935 dev->dev.dma_mask = &dev->dma_mask; 936 dev->dev.dma_parms = &dev->dma_parms; 937 dev->dev.coherent_dma_mask = 0xffffffffull; 938 939 pci_set_dma_max_seg_size(dev, 65536); 940 pci_set_dma_seg_boundary(dev, 0xffffffff); 941 942 /* Fix up broken headers */ 943 pci_fixup_device(pci_fixup_header, dev); 944 945 /* 946 * Add the device to our list of discovered devices 947 * and the bus list for fixup functions, etc. 948 */ 949 INIT_LIST_HEAD(&dev->global_list); 950 down_write(&pci_bus_sem); 951 list_add_tail(&dev->bus_list, &bus->devices); 952 up_write(&pci_bus_sem); 953 } 954 955 struct pci_dev *__ref pci_scan_single_device(struct pci_bus *bus, int devfn) 956 { 957 struct pci_dev *dev; 958 959 dev = pci_scan_device(bus, devfn); 960 if (!dev) 961 return NULL; 962 963 pci_device_add(dev, bus); 964 965 return dev; 966 } 967 EXPORT_SYMBOL(pci_scan_single_device); 968 969 /** 970 * pci_scan_slot - scan a PCI slot on a bus for devices. 971 * @bus: PCI bus to scan 972 * @devfn: slot number to scan (must have zero function.) 973 * 974 * Scan a PCI slot on the specified PCI bus for devices, adding 975 * discovered devices to the @bus->devices list. New devices 976 * will have an empty dev->global_list head. 977 */ 978 int pci_scan_slot(struct pci_bus *bus, int devfn) 979 { 980 int func, nr = 0; 981 int scan_all_fns; 982 983 scan_all_fns = pcibios_scan_all_fns(bus, devfn); 984 985 for (func = 0; func < 8; func++, devfn++) { 986 struct pci_dev *dev; 987 988 dev = pci_scan_single_device(bus, devfn); 989 if (dev) { 990 nr++; 991 992 /* 993 * If this is a single function device, 994 * don't scan past the first function. 995 */ 996 if (!dev->multifunction) { 997 if (func > 0) { 998 dev->multifunction = 1; 999 } else { 1000 break; 1001 } 1002 } 1003 } else { 1004 if (func == 0 && !scan_all_fns) 1005 break; 1006 } 1007 } 1008 return nr; 1009 } 1010 1011 unsigned int __devinit pci_scan_child_bus(struct pci_bus *bus) 1012 { 1013 unsigned int devfn, pass, max = bus->secondary; 1014 struct pci_dev *dev; 1015 1016 pr_debug("PCI: Scanning bus %04x:%02x\n", pci_domain_nr(bus), bus->number); 1017 1018 /* Go find them, Rover! */ 1019 for (devfn = 0; devfn < 0x100; devfn += 8) 1020 pci_scan_slot(bus, devfn); 1021 1022 /* 1023 * After performing arch-dependent fixup of the bus, look behind 1024 * all PCI-to-PCI bridges on this bus. 1025 */ 1026 pr_debug("PCI: Fixups for bus %04x:%02x\n", pci_domain_nr(bus), bus->number); 1027 pcibios_fixup_bus(bus); 1028 for (pass=0; pass < 2; pass++) 1029 list_for_each_entry(dev, &bus->devices, bus_list) { 1030 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE || 1031 dev->hdr_type == PCI_HEADER_TYPE_CARDBUS) 1032 max = pci_scan_bridge(bus, dev, max, pass); 1033 } 1034 1035 /* 1036 * We've scanned the bus and so we know all about what's on 1037 * the other side of any bridges that may be on this bus plus 1038 * any devices. 1039 * 1040 * Return how far we've got finding sub-buses. 1041 */ 1042 pr_debug("PCI: Bus scan for %04x:%02x returning with max=%02x\n", 1043 pci_domain_nr(bus), bus->number, max); 1044 return max; 1045 } 1046 1047 struct pci_bus * pci_create_bus(struct device *parent, 1048 int bus, struct pci_ops *ops, void *sysdata) 1049 { 1050 int error; 1051 struct pci_bus *b; 1052 struct device *dev; 1053 1054 b = pci_alloc_bus(); 1055 if (!b) 1056 return NULL; 1057 1058 dev = kmalloc(sizeof(*dev), GFP_KERNEL); 1059 if (!dev){ 1060 kfree(b); 1061 return NULL; 1062 } 1063 1064 b->sysdata = sysdata; 1065 b->ops = ops; 1066 1067 if (pci_find_bus(pci_domain_nr(b), bus)) { 1068 /* If we already got to this bus through a different bridge, ignore it */ 1069 pr_debug("PCI: Bus %04x:%02x already known\n", pci_domain_nr(b), bus); 1070 goto err_out; 1071 } 1072 1073 down_write(&pci_bus_sem); 1074 list_add_tail(&b->node, &pci_root_buses); 1075 up_write(&pci_bus_sem); 1076 1077 memset(dev, 0, sizeof(*dev)); 1078 dev->parent = parent; 1079 dev->release = pci_release_bus_bridge_dev; 1080 sprintf(dev->bus_id, "pci%04x:%02x", pci_domain_nr(b), bus); 1081 error = device_register(dev); 1082 if (error) 1083 goto dev_reg_err; 1084 b->bridge = get_device(dev); 1085 1086 b->dev.class = &pcibus_class; 1087 b->dev.parent = b->bridge; 1088 sprintf(b->dev.bus_id, "%04x:%02x", pci_domain_nr(b), bus); 1089 error = device_register(&b->dev); 1090 if (error) 1091 goto class_dev_reg_err; 1092 error = device_create_file(&b->dev, &dev_attr_cpuaffinity); 1093 if (error) 1094 goto dev_create_file_err; 1095 1096 /* Create legacy_io and legacy_mem files for this bus */ 1097 pci_create_legacy_files(b); 1098 1099 b->number = b->secondary = bus; 1100 b->resource[0] = &ioport_resource; 1101 b->resource[1] = &iomem_resource; 1102 1103 return b; 1104 1105 dev_create_file_err: 1106 device_unregister(&b->dev); 1107 class_dev_reg_err: 1108 device_unregister(dev); 1109 dev_reg_err: 1110 down_write(&pci_bus_sem); 1111 list_del(&b->node); 1112 up_write(&pci_bus_sem); 1113 err_out: 1114 kfree(dev); 1115 kfree(b); 1116 return NULL; 1117 } 1118 1119 struct pci_bus * __devinit pci_scan_bus_parented(struct device *parent, 1120 int bus, struct pci_ops *ops, void *sysdata) 1121 { 1122 struct pci_bus *b; 1123 1124 b = pci_create_bus(parent, bus, ops, sysdata); 1125 if (b) 1126 b->subordinate = pci_scan_child_bus(b); 1127 return b; 1128 } 1129 EXPORT_SYMBOL(pci_scan_bus_parented); 1130 1131 #ifdef CONFIG_HOTPLUG 1132 EXPORT_SYMBOL(pci_add_new_bus); 1133 EXPORT_SYMBOL(pci_scan_slot); 1134 EXPORT_SYMBOL(pci_scan_bridge); 1135 EXPORT_SYMBOL_GPL(pci_scan_child_bus); 1136 #endif 1137 1138 static int __init pci_sort_bf_cmp(const struct pci_dev *a, const struct pci_dev *b) 1139 { 1140 if (pci_domain_nr(a->bus) < pci_domain_nr(b->bus)) return -1; 1141 else if (pci_domain_nr(a->bus) > pci_domain_nr(b->bus)) return 1; 1142 1143 if (a->bus->number < b->bus->number) return -1; 1144 else if (a->bus->number > b->bus->number) return 1; 1145 1146 if (a->devfn < b->devfn) return -1; 1147 else if (a->devfn > b->devfn) return 1; 1148 1149 return 0; 1150 } 1151 1152 /* 1153 * Yes, this forcably breaks the klist abstraction temporarily. It 1154 * just wants to sort the klist, not change reference counts and 1155 * take/drop locks rapidly in the process. It does all this while 1156 * holding the lock for the list, so objects can't otherwise be 1157 * added/removed while we're swizzling. 1158 */ 1159 static void __init pci_insertion_sort_klist(struct pci_dev *a, struct list_head *list) 1160 { 1161 struct list_head *pos; 1162 struct klist_node *n; 1163 struct device *dev; 1164 struct pci_dev *b; 1165 1166 list_for_each(pos, list) { 1167 n = container_of(pos, struct klist_node, n_node); 1168 dev = container_of(n, struct device, knode_bus); 1169 b = to_pci_dev(dev); 1170 if (pci_sort_bf_cmp(a, b) <= 0) { 1171 list_move_tail(&a->dev.knode_bus.n_node, &b->dev.knode_bus.n_node); 1172 return; 1173 } 1174 } 1175 list_move_tail(&a->dev.knode_bus.n_node, list); 1176 } 1177 1178 static void __init pci_sort_breadthfirst_klist(void) 1179 { 1180 LIST_HEAD(sorted_devices); 1181 struct list_head *pos, *tmp; 1182 struct klist_node *n; 1183 struct device *dev; 1184 struct pci_dev *pdev; 1185 struct klist *device_klist; 1186 1187 device_klist = bus_get_device_klist(&pci_bus_type); 1188 1189 spin_lock(&device_klist->k_lock); 1190 list_for_each_safe(pos, tmp, &device_klist->k_list) { 1191 n = container_of(pos, struct klist_node, n_node); 1192 dev = container_of(n, struct device, knode_bus); 1193 pdev = to_pci_dev(dev); 1194 pci_insertion_sort_klist(pdev, &sorted_devices); 1195 } 1196 list_splice(&sorted_devices, &device_klist->k_list); 1197 spin_unlock(&device_klist->k_lock); 1198 } 1199 1200 static void __init pci_insertion_sort_devices(struct pci_dev *a, struct list_head *list) 1201 { 1202 struct pci_dev *b; 1203 1204 list_for_each_entry(b, list, global_list) { 1205 if (pci_sort_bf_cmp(a, b) <= 0) { 1206 list_move_tail(&a->global_list, &b->global_list); 1207 return; 1208 } 1209 } 1210 list_move_tail(&a->global_list, list); 1211 } 1212 1213 static void __init pci_sort_breadthfirst_devices(void) 1214 { 1215 LIST_HEAD(sorted_devices); 1216 struct pci_dev *dev, *tmp; 1217 1218 down_write(&pci_bus_sem); 1219 list_for_each_entry_safe(dev, tmp, &pci_devices, global_list) { 1220 pci_insertion_sort_devices(dev, &sorted_devices); 1221 } 1222 list_splice(&sorted_devices, &pci_devices); 1223 up_write(&pci_bus_sem); 1224 } 1225 1226 void __init pci_sort_breadthfirst(void) 1227 { 1228 pci_sort_breadthfirst_devices(); 1229 pci_sort_breadthfirst_klist(); 1230 } 1231 1232