1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3hot_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 static void pci_dev_d3_sleep(struct pci_dev *dev) 66 { 67 unsigned int delay = dev->d3hot_delay; 68 69 if (delay < pci_pm_d3hot_delay) 70 delay = pci_pm_d3hot_delay; 71 72 if (delay) 73 msleep(delay); 74 } 75 76 bool pci_reset_supported(struct pci_dev *dev) 77 { 78 return dev->reset_methods[0] != 0; 79 } 80 81 #ifdef CONFIG_PCI_DOMAINS 82 int pci_domains_supported = 1; 83 #endif 84 85 #define DEFAULT_CARDBUS_IO_SIZE (256) 86 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 90 91 #define DEFAULT_HOTPLUG_IO_SIZE (256) 92 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 94 /* hpiosize=nn can override this */ 95 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 96 /* 97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 99 * pci=hpmemsize=nnM overrides both 100 */ 101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 103 104 #define DEFAULT_HOTPLUG_BUS_SIZE 1 105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 106 107 108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 111 #elif defined CONFIG_PCIE_BUS_SAFE 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 115 #elif defined CONFIG_PCIE_BUS_PEER2PEER 116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 117 #else 118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 119 #endif 120 121 /* 122 * The default CLS is used if arch didn't set CLS explicitly and not 123 * all pci devices agree on the same value. Arch can override either 124 * the dfl or actual value as it sees fit. Don't forget this is 125 * measured in 32-bit words, not bytes. 126 */ 127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 128 u8 pci_cache_line_size; 129 130 /* 131 * If we set up a device for bus mastering, we need to check the latency 132 * timer as certain BIOSes forget to set it properly. 133 */ 134 unsigned int pcibios_max_latency = 255; 135 136 /* If set, the PCIe ARI capability will not be used. */ 137 static bool pcie_ari_disabled; 138 139 /* If set, the PCIe ATS capability will not be used. */ 140 static bool pcie_ats_disabled; 141 142 /* If set, the PCI config space of each device is printed during boot. */ 143 bool pci_early_dump; 144 145 bool pci_ats_disabled(void) 146 { 147 return pcie_ats_disabled; 148 } 149 EXPORT_SYMBOL_GPL(pci_ats_disabled); 150 151 /* Disable bridge_d3 for all PCIe ports */ 152 static bool pci_bridge_d3_disable; 153 /* Force bridge_d3 for all PCIe ports */ 154 static bool pci_bridge_d3_force; 155 156 static int __init pcie_port_pm_setup(char *str) 157 { 158 if (!strcmp(str, "off")) 159 pci_bridge_d3_disable = true; 160 else if (!strcmp(str, "force")) 161 pci_bridge_d3_force = true; 162 return 1; 163 } 164 __setup("pcie_port_pm=", pcie_port_pm_setup); 165 166 /* Time to wait after a reset for device to become responsive */ 167 #define PCIE_RESET_READY_POLL_MS 60000 168 169 /** 170 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 171 * @bus: pointer to PCI bus structure to search 172 * 173 * Given a PCI bus, returns the highest PCI bus number present in the set 174 * including the given PCI bus and its list of child PCI buses. 175 */ 176 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 177 { 178 struct pci_bus *tmp; 179 unsigned char max, n; 180 181 max = bus->busn_res.end; 182 list_for_each_entry(tmp, &bus->children, node) { 183 n = pci_bus_max_busnr(tmp); 184 if (n > max) 185 max = n; 186 } 187 return max; 188 } 189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 190 191 /** 192 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 193 * @pdev: the PCI device 194 * 195 * Returns error bits set in PCI_STATUS and clears them. 196 */ 197 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 198 { 199 u16 status; 200 int ret; 201 202 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 203 if (ret != PCIBIOS_SUCCESSFUL) 204 return -EIO; 205 206 status &= PCI_STATUS_ERROR_BITS; 207 if (status) 208 pci_write_config_word(pdev, PCI_STATUS, status); 209 210 return status; 211 } 212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 213 214 #ifdef CONFIG_HAS_IOMEM 215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 216 bool write_combine) 217 { 218 struct resource *res = &pdev->resource[bar]; 219 resource_size_t start = res->start; 220 resource_size_t size = resource_size(res); 221 222 /* 223 * Make sure the BAR is actually a memory resource, not an IO resource 224 */ 225 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 226 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 227 return NULL; 228 } 229 230 if (write_combine) 231 return ioremap_wc(start, size); 232 233 return ioremap(start, size); 234 } 235 236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 237 { 238 return __pci_ioremap_resource(pdev, bar, false); 239 } 240 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 241 242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 243 { 244 return __pci_ioremap_resource(pdev, bar, true); 245 } 246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 247 #endif 248 249 /** 250 * pci_dev_str_match_path - test if a path string matches a device 251 * @dev: the PCI device to test 252 * @path: string to match the device against 253 * @endptr: pointer to the string after the match 254 * 255 * Test if a string (typically from a kernel parameter) formatted as a 256 * path of device/function addresses matches a PCI device. The string must 257 * be of the form: 258 * 259 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 260 * 261 * A path for a device can be obtained using 'lspci -t'. Using a path 262 * is more robust against bus renumbering than using only a single bus, 263 * device and function address. 264 * 265 * Returns 1 if the string matches the device, 0 if it does not and 266 * a negative error code if it fails to parse the string. 267 */ 268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 269 const char **endptr) 270 { 271 int ret; 272 unsigned int seg, bus, slot, func; 273 char *wpath, *p; 274 char end; 275 276 *endptr = strchrnul(path, ';'); 277 278 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 279 if (!wpath) 280 return -ENOMEM; 281 282 while (1) { 283 p = strrchr(wpath, '/'); 284 if (!p) 285 break; 286 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 287 if (ret != 2) { 288 ret = -EINVAL; 289 goto free_and_exit; 290 } 291 292 if (dev->devfn != PCI_DEVFN(slot, func)) { 293 ret = 0; 294 goto free_and_exit; 295 } 296 297 /* 298 * Note: we don't need to get a reference to the upstream 299 * bridge because we hold a reference to the top level 300 * device which should hold a reference to the bridge, 301 * and so on. 302 */ 303 dev = pci_upstream_bridge(dev); 304 if (!dev) { 305 ret = 0; 306 goto free_and_exit; 307 } 308 309 *p = 0; 310 } 311 312 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 313 &func, &end); 314 if (ret != 4) { 315 seg = 0; 316 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 317 if (ret != 3) { 318 ret = -EINVAL; 319 goto free_and_exit; 320 } 321 } 322 323 ret = (seg == pci_domain_nr(dev->bus) && 324 bus == dev->bus->number && 325 dev->devfn == PCI_DEVFN(slot, func)); 326 327 free_and_exit: 328 kfree(wpath); 329 return ret; 330 } 331 332 /** 333 * pci_dev_str_match - test if a string matches a device 334 * @dev: the PCI device to test 335 * @p: string to match the device against 336 * @endptr: pointer to the string after the match 337 * 338 * Test if a string (typically from a kernel parameter) matches a specified 339 * PCI device. The string may be of one of the following formats: 340 * 341 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 342 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 343 * 344 * The first format specifies a PCI bus/device/function address which 345 * may change if new hardware is inserted, if motherboard firmware changes, 346 * or due to changes caused in kernel parameters. If the domain is 347 * left unspecified, it is taken to be 0. In order to be robust against 348 * bus renumbering issues, a path of PCI device/function numbers may be used 349 * to address the specific device. The path for a device can be determined 350 * through the use of 'lspci -t'. 351 * 352 * The second format matches devices using IDs in the configuration 353 * space which may match multiple devices in the system. A value of 0 354 * for any field will match all devices. (Note: this differs from 355 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 356 * legacy reasons and convenience so users don't have to specify 357 * FFFFFFFFs on the command line.) 358 * 359 * Returns 1 if the string matches the device, 0 if it does not and 360 * a negative error code if the string cannot be parsed. 361 */ 362 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 363 const char **endptr) 364 { 365 int ret; 366 int count; 367 unsigned short vendor, device, subsystem_vendor, subsystem_device; 368 369 if (strncmp(p, "pci:", 4) == 0) { 370 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 371 p += 4; 372 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 373 &subsystem_vendor, &subsystem_device, &count); 374 if (ret != 4) { 375 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 376 if (ret != 2) 377 return -EINVAL; 378 379 subsystem_vendor = 0; 380 subsystem_device = 0; 381 } 382 383 p += count; 384 385 if ((!vendor || vendor == dev->vendor) && 386 (!device || device == dev->device) && 387 (!subsystem_vendor || 388 subsystem_vendor == dev->subsystem_vendor) && 389 (!subsystem_device || 390 subsystem_device == dev->subsystem_device)) 391 goto found; 392 } else { 393 /* 394 * PCI Bus, Device, Function IDs are specified 395 * (optionally, may include a path of devfns following it) 396 */ 397 ret = pci_dev_str_match_path(dev, p, &p); 398 if (ret < 0) 399 return ret; 400 else if (ret) 401 goto found; 402 } 403 404 *endptr = p; 405 return 0; 406 407 found: 408 *endptr = p; 409 return 1; 410 } 411 412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 413 u8 pos, int cap, int *ttl) 414 { 415 u8 id; 416 u16 ent; 417 418 pci_bus_read_config_byte(bus, devfn, pos, &pos); 419 420 while ((*ttl)--) { 421 if (pos < 0x40) 422 break; 423 pos &= ~3; 424 pci_bus_read_config_word(bus, devfn, pos, &ent); 425 426 id = ent & 0xff; 427 if (id == 0xff) 428 break; 429 if (id == cap) 430 return pos; 431 pos = (ent >> 8); 432 } 433 return 0; 434 } 435 436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 437 u8 pos, int cap) 438 { 439 int ttl = PCI_FIND_CAP_TTL; 440 441 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 442 } 443 444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 445 { 446 return __pci_find_next_cap(dev->bus, dev->devfn, 447 pos + PCI_CAP_LIST_NEXT, cap); 448 } 449 EXPORT_SYMBOL_GPL(pci_find_next_capability); 450 451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 452 unsigned int devfn, u8 hdr_type) 453 { 454 u16 status; 455 456 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 457 if (!(status & PCI_STATUS_CAP_LIST)) 458 return 0; 459 460 switch (hdr_type) { 461 case PCI_HEADER_TYPE_NORMAL: 462 case PCI_HEADER_TYPE_BRIDGE: 463 return PCI_CAPABILITY_LIST; 464 case PCI_HEADER_TYPE_CARDBUS: 465 return PCI_CB_CAPABILITY_LIST; 466 } 467 468 return 0; 469 } 470 471 /** 472 * pci_find_capability - query for devices' capabilities 473 * @dev: PCI device to query 474 * @cap: capability code 475 * 476 * Tell if a device supports a given PCI capability. 477 * Returns the address of the requested capability structure within the 478 * device's PCI configuration space or 0 in case the device does not 479 * support it. Possible values for @cap include: 480 * 481 * %PCI_CAP_ID_PM Power Management 482 * %PCI_CAP_ID_AGP Accelerated Graphics Port 483 * %PCI_CAP_ID_VPD Vital Product Data 484 * %PCI_CAP_ID_SLOTID Slot Identification 485 * %PCI_CAP_ID_MSI Message Signalled Interrupts 486 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 487 * %PCI_CAP_ID_PCIX PCI-X 488 * %PCI_CAP_ID_EXP PCI Express 489 */ 490 u8 pci_find_capability(struct pci_dev *dev, int cap) 491 { 492 u8 pos; 493 494 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 495 if (pos) 496 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 497 498 return pos; 499 } 500 EXPORT_SYMBOL(pci_find_capability); 501 502 /** 503 * pci_bus_find_capability - query for devices' capabilities 504 * @bus: the PCI bus to query 505 * @devfn: PCI device to query 506 * @cap: capability code 507 * 508 * Like pci_find_capability() but works for PCI devices that do not have a 509 * pci_dev structure set up yet. 510 * 511 * Returns the address of the requested capability structure within the 512 * device's PCI configuration space or 0 in case the device does not 513 * support it. 514 */ 515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 516 { 517 u8 hdr_type, pos; 518 519 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 520 521 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 522 if (pos) 523 pos = __pci_find_next_cap(bus, devfn, pos, cap); 524 525 return pos; 526 } 527 EXPORT_SYMBOL(pci_bus_find_capability); 528 529 /** 530 * pci_find_next_ext_capability - Find an extended capability 531 * @dev: PCI device to query 532 * @start: address at which to start looking (0 to start at beginning of list) 533 * @cap: capability code 534 * 535 * Returns the address of the next matching extended capability structure 536 * within the device's PCI configuration space or 0 if the device does 537 * not support it. Some capabilities can occur several times, e.g., the 538 * vendor-specific capability, and this provides a way to find them all. 539 */ 540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 541 { 542 u32 header; 543 int ttl; 544 u16 pos = PCI_CFG_SPACE_SIZE; 545 546 /* minimum 8 bytes per capability */ 547 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 548 549 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 550 return 0; 551 552 if (start) 553 pos = start; 554 555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 556 return 0; 557 558 /* 559 * If we have no capabilities, this is indicated by cap ID, 560 * cap version and next pointer all being 0. 561 */ 562 if (header == 0) 563 return 0; 564 565 while (ttl-- > 0) { 566 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 567 return pos; 568 569 pos = PCI_EXT_CAP_NEXT(header); 570 if (pos < PCI_CFG_SPACE_SIZE) 571 break; 572 573 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 574 break; 575 } 576 577 return 0; 578 } 579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 580 581 /** 582 * pci_find_ext_capability - Find an extended capability 583 * @dev: PCI device to query 584 * @cap: capability code 585 * 586 * Returns the address of the requested extended capability structure 587 * within the device's PCI configuration space or 0 if the device does 588 * not support it. Possible values for @cap include: 589 * 590 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 591 * %PCI_EXT_CAP_ID_VC Virtual Channel 592 * %PCI_EXT_CAP_ID_DSN Device Serial Number 593 * %PCI_EXT_CAP_ID_PWR Power Budgeting 594 */ 595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 596 { 597 return pci_find_next_ext_capability(dev, 0, cap); 598 } 599 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 600 601 /** 602 * pci_get_dsn - Read and return the 8-byte Device Serial Number 603 * @dev: PCI device to query 604 * 605 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 606 * Number. 607 * 608 * Returns the DSN, or zero if the capability does not exist. 609 */ 610 u64 pci_get_dsn(struct pci_dev *dev) 611 { 612 u32 dword; 613 u64 dsn; 614 int pos; 615 616 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 617 if (!pos) 618 return 0; 619 620 /* 621 * The Device Serial Number is two dwords offset 4 bytes from the 622 * capability position. The specification says that the first dword is 623 * the lower half, and the second dword is the upper half. 624 */ 625 pos += 4; 626 pci_read_config_dword(dev, pos, &dword); 627 dsn = (u64)dword; 628 pci_read_config_dword(dev, pos + 4, &dword); 629 dsn |= ((u64)dword) << 32; 630 631 return dsn; 632 } 633 EXPORT_SYMBOL_GPL(pci_get_dsn); 634 635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 636 { 637 int rc, ttl = PCI_FIND_CAP_TTL; 638 u8 cap, mask; 639 640 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 641 mask = HT_3BIT_CAP_MASK; 642 else 643 mask = HT_5BIT_CAP_MASK; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 646 PCI_CAP_ID_HT, &ttl); 647 while (pos) { 648 rc = pci_read_config_byte(dev, pos + 3, &cap); 649 if (rc != PCIBIOS_SUCCESSFUL) 650 return 0; 651 652 if ((cap & mask) == ht_cap) 653 return pos; 654 655 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 656 pos + PCI_CAP_LIST_NEXT, 657 PCI_CAP_ID_HT, &ttl); 658 } 659 660 return 0; 661 } 662 663 /** 664 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 665 * @dev: PCI device to query 666 * @pos: Position from which to continue searching 667 * @ht_cap: HyperTransport capability code 668 * 669 * To be used in conjunction with pci_find_ht_capability() to search for 670 * all capabilities matching @ht_cap. @pos should always be a value returned 671 * from pci_find_ht_capability(). 672 * 673 * NB. To be 100% safe against broken PCI devices, the caller should take 674 * steps to avoid an infinite loop. 675 */ 676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 677 { 678 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 679 } 680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 681 682 /** 683 * pci_find_ht_capability - query a device's HyperTransport capabilities 684 * @dev: PCI device to query 685 * @ht_cap: HyperTransport capability code 686 * 687 * Tell if a device supports a given HyperTransport capability. 688 * Returns an address within the device's PCI configuration space 689 * or 0 in case the device does not support the request capability. 690 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 691 * which has a HyperTransport capability matching @ht_cap. 692 */ 693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 694 { 695 u8 pos; 696 697 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 698 if (pos) 699 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 700 701 return pos; 702 } 703 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 704 705 /** 706 * pci_find_vsec_capability - Find a vendor-specific extended capability 707 * @dev: PCI device to query 708 * @vendor: Vendor ID for which capability is defined 709 * @cap: Vendor-specific capability ID 710 * 711 * If @dev has Vendor ID @vendor, search for a VSEC capability with 712 * VSEC ID @cap. If found, return the capability offset in 713 * config space; otherwise return 0. 714 */ 715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 716 { 717 u16 vsec = 0; 718 u32 header; 719 720 if (vendor != dev->vendor) 721 return 0; 722 723 while ((vsec = pci_find_next_ext_capability(dev, vsec, 724 PCI_EXT_CAP_ID_VNDR))) { 725 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 726 &header) == PCIBIOS_SUCCESSFUL && 727 PCI_VNDR_HEADER_ID(header) == cap) 728 return vsec; 729 } 730 731 return 0; 732 } 733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 734 735 /** 736 * pci_find_dvsec_capability - Find DVSEC for vendor 737 * @dev: PCI device to query 738 * @vendor: Vendor ID to match for the DVSEC 739 * @dvsec: Designated Vendor-specific capability ID 740 * 741 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 742 * offset in config space; otherwise return 0. 743 */ 744 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 745 { 746 int pos; 747 748 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 749 if (!pos) 750 return 0; 751 752 while (pos) { 753 u16 v, id; 754 755 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 756 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 757 if (vendor == v && dvsec == id) 758 return pos; 759 760 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 761 } 762 763 return 0; 764 } 765 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 766 767 /** 768 * pci_find_parent_resource - return resource region of parent bus of given 769 * region 770 * @dev: PCI device structure contains resources to be searched 771 * @res: child resource record for which parent is sought 772 * 773 * For given resource region of given device, return the resource region of 774 * parent bus the given region is contained in. 775 */ 776 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 777 struct resource *res) 778 { 779 const struct pci_bus *bus = dev->bus; 780 struct resource *r; 781 int i; 782 783 pci_bus_for_each_resource(bus, r, i) { 784 if (!r) 785 continue; 786 if (resource_contains(r, res)) { 787 788 /* 789 * If the window is prefetchable but the BAR is 790 * not, the allocator made a mistake. 791 */ 792 if (r->flags & IORESOURCE_PREFETCH && 793 !(res->flags & IORESOURCE_PREFETCH)) 794 return NULL; 795 796 /* 797 * If we're below a transparent bridge, there may 798 * be both a positively-decoded aperture and a 799 * subtractively-decoded region that contain the BAR. 800 * We want the positively-decoded one, so this depends 801 * on pci_bus_for_each_resource() giving us those 802 * first. 803 */ 804 return r; 805 } 806 } 807 return NULL; 808 } 809 EXPORT_SYMBOL(pci_find_parent_resource); 810 811 /** 812 * pci_find_resource - Return matching PCI device resource 813 * @dev: PCI device to query 814 * @res: Resource to look for 815 * 816 * Goes over standard PCI resources (BARs) and checks if the given resource 817 * is partially or fully contained in any of them. In that case the 818 * matching resource is returned, %NULL otherwise. 819 */ 820 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 821 { 822 int i; 823 824 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 825 struct resource *r = &dev->resource[i]; 826 827 if (r->start && resource_contains(r, res)) 828 return r; 829 } 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(pci_find_resource); 834 835 /** 836 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 837 * @dev: the PCI device to operate on 838 * @pos: config space offset of status word 839 * @mask: mask of bit(s) to care about in status word 840 * 841 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 842 */ 843 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 844 { 845 int i; 846 847 /* Wait for Transaction Pending bit clean */ 848 for (i = 0; i < 4; i++) { 849 u16 status; 850 if (i) 851 msleep((1 << (i - 1)) * 100); 852 853 pci_read_config_word(dev, pos, &status); 854 if (!(status & mask)) 855 return 1; 856 } 857 858 return 0; 859 } 860 861 static int pci_acs_enable; 862 863 /** 864 * pci_request_acs - ask for ACS to be enabled if supported 865 */ 866 void pci_request_acs(void) 867 { 868 pci_acs_enable = 1; 869 } 870 871 static const char *disable_acs_redir_param; 872 873 /** 874 * pci_disable_acs_redir - disable ACS redirect capabilities 875 * @dev: the PCI device 876 * 877 * For only devices specified in the disable_acs_redir parameter. 878 */ 879 static void pci_disable_acs_redir(struct pci_dev *dev) 880 { 881 int ret = 0; 882 const char *p; 883 int pos; 884 u16 ctrl; 885 886 if (!disable_acs_redir_param) 887 return; 888 889 p = disable_acs_redir_param; 890 while (*p) { 891 ret = pci_dev_str_match(dev, p, &p); 892 if (ret < 0) { 893 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 894 disable_acs_redir_param); 895 896 break; 897 } else if (ret == 1) { 898 /* Found a match */ 899 break; 900 } 901 902 if (*p != ';' && *p != ',') { 903 /* End of param or invalid format */ 904 break; 905 } 906 p++; 907 } 908 909 if (ret != 1) 910 return; 911 912 if (!pci_dev_specific_disable_acs_redir(dev)) 913 return; 914 915 pos = dev->acs_cap; 916 if (!pos) { 917 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 918 return; 919 } 920 921 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 922 923 /* P2P Request & Completion Redirect */ 924 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 925 926 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 927 928 pci_info(dev, "disabled ACS redirect\n"); 929 } 930 931 /** 932 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 933 * @dev: the PCI device 934 */ 935 static void pci_std_enable_acs(struct pci_dev *dev) 936 { 937 int pos; 938 u16 cap; 939 u16 ctrl; 940 941 pos = dev->acs_cap; 942 if (!pos) 943 return; 944 945 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 946 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 947 948 /* Source Validation */ 949 ctrl |= (cap & PCI_ACS_SV); 950 951 /* P2P Request Redirect */ 952 ctrl |= (cap & PCI_ACS_RR); 953 954 /* P2P Completion Redirect */ 955 ctrl |= (cap & PCI_ACS_CR); 956 957 /* Upstream Forwarding */ 958 ctrl |= (cap & PCI_ACS_UF); 959 960 /* Enable Translation Blocking for external devices and noats */ 961 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 962 ctrl |= (cap & PCI_ACS_TB); 963 964 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 965 } 966 967 /** 968 * pci_enable_acs - enable ACS if hardware support it 969 * @dev: the PCI device 970 */ 971 static void pci_enable_acs(struct pci_dev *dev) 972 { 973 if (!pci_acs_enable) 974 goto disable_acs_redir; 975 976 if (!pci_dev_specific_enable_acs(dev)) 977 goto disable_acs_redir; 978 979 pci_std_enable_acs(dev); 980 981 disable_acs_redir: 982 /* 983 * Note: pci_disable_acs_redir() must be called even if ACS was not 984 * enabled by the kernel because it may have been enabled by 985 * platform firmware. So if we are told to disable it, we should 986 * always disable it after setting the kernel's default 987 * preferences. 988 */ 989 pci_disable_acs_redir(dev); 990 } 991 992 /** 993 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 994 * @dev: PCI device to have its BARs restored 995 * 996 * Restore the BAR values for a given device, so as to make it 997 * accessible by its driver. 998 */ 999 static void pci_restore_bars(struct pci_dev *dev) 1000 { 1001 int i; 1002 1003 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1004 pci_update_resource(dev, i); 1005 } 1006 1007 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1008 { 1009 if (pci_use_mid_pm()) 1010 return true; 1011 1012 return acpi_pci_power_manageable(dev); 1013 } 1014 1015 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1016 pci_power_t t) 1017 { 1018 if (pci_use_mid_pm()) 1019 return mid_pci_set_power_state(dev, t); 1020 1021 return acpi_pci_set_power_state(dev, t); 1022 } 1023 1024 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1025 { 1026 if (pci_use_mid_pm()) 1027 return mid_pci_get_power_state(dev); 1028 1029 return acpi_pci_get_power_state(dev); 1030 } 1031 1032 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1033 { 1034 if (!pci_use_mid_pm()) 1035 acpi_pci_refresh_power_state(dev); 1036 } 1037 1038 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1039 { 1040 if (pci_use_mid_pm()) 1041 return PCI_POWER_ERROR; 1042 1043 return acpi_pci_choose_state(dev); 1044 } 1045 1046 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1047 { 1048 if (pci_use_mid_pm()) 1049 return PCI_POWER_ERROR; 1050 1051 return acpi_pci_wakeup(dev, enable); 1052 } 1053 1054 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1055 { 1056 if (pci_use_mid_pm()) 1057 return false; 1058 1059 return acpi_pci_need_resume(dev); 1060 } 1061 1062 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1063 { 1064 if (pci_use_mid_pm()) 1065 return false; 1066 1067 return acpi_pci_bridge_d3(dev); 1068 } 1069 1070 /** 1071 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 1072 * given PCI device 1073 * @dev: PCI device to handle. 1074 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1075 * 1076 * RETURN VALUE: 1077 * -EINVAL if the requested state is invalid. 1078 * -EIO if device does not support PCI PM or its PM capabilities register has a 1079 * wrong version, or device doesn't support the requested state. 1080 * 0 if device already is in the requested state. 1081 * 0 if device's power state has been successfully changed. 1082 */ 1083 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1084 { 1085 u16 pmcsr; 1086 bool need_restore = false; 1087 1088 /* Check if we're already there */ 1089 if (dev->current_state == state) 1090 return 0; 1091 1092 if (!dev->pm_cap) 1093 return -EIO; 1094 1095 if (state < PCI_D0 || state > PCI_D3hot) 1096 return -EINVAL; 1097 1098 /* 1099 * Validate transition: We can enter D0 from any state, but if 1100 * we're already in a low-power state, we can only go deeper. E.g., 1101 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1102 * we'd have to go from D3 to D0, then to D1. 1103 */ 1104 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1105 && dev->current_state > state) { 1106 pci_err(dev, "invalid power transition (from %s to %s)\n", 1107 pci_power_name(dev->current_state), 1108 pci_power_name(state)); 1109 return -EINVAL; 1110 } 1111 1112 /* Check if this device supports the desired state */ 1113 if ((state == PCI_D1 && !dev->d1_support) 1114 || (state == PCI_D2 && !dev->d2_support)) 1115 return -EIO; 1116 1117 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1118 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1119 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1120 pci_power_name(dev->current_state), 1121 pci_power_name(state)); 1122 return -EIO; 1123 } 1124 1125 /* 1126 * If we're (effectively) in D3, force entire word to 0. 1127 * This doesn't affect PME_Status, disables PME_En, and 1128 * sets PowerState to 0. 1129 */ 1130 switch (dev->current_state) { 1131 case PCI_D0: 1132 case PCI_D1: 1133 case PCI_D2: 1134 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1135 pmcsr |= state; 1136 break; 1137 case PCI_D3hot: 1138 case PCI_D3cold: 1139 case PCI_UNKNOWN: /* Boot-up */ 1140 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1141 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1142 need_restore = true; 1143 fallthrough; /* force to D0 */ 1144 default: 1145 pmcsr = 0; 1146 break; 1147 } 1148 1149 /* Enter specified state */ 1150 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1151 1152 /* 1153 * Mandatory power management transition delays; see PCI PM 1.1 1154 * 5.6.1 table 18 1155 */ 1156 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1157 pci_dev_d3_sleep(dev); 1158 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1159 udelay(PCI_PM_D2_DELAY); 1160 1161 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1162 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1163 if (dev->current_state != state) 1164 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1165 pci_power_name(dev->current_state), 1166 pci_power_name(state)); 1167 1168 /* 1169 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1170 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1171 * from D3hot to D0 _may_ perform an internal reset, thereby 1172 * going to "D0 Uninitialized" rather than "D0 Initialized". 1173 * For example, at least some versions of the 3c905B and the 1174 * 3c556B exhibit this behaviour. 1175 * 1176 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1177 * devices in a D3hot state at boot. Consequently, we need to 1178 * restore at least the BARs so that the device will be 1179 * accessible to its driver. 1180 */ 1181 if (need_restore) 1182 pci_restore_bars(dev); 1183 1184 if (dev->bus->self) 1185 pcie_aspm_pm_state_change(dev->bus->self); 1186 1187 return 0; 1188 } 1189 1190 /** 1191 * pci_update_current_state - Read power state of given device and cache it 1192 * @dev: PCI device to handle. 1193 * @state: State to cache in case the device doesn't have the PM capability 1194 * 1195 * The power state is read from the PMCSR register, which however is 1196 * inaccessible in D3cold. The platform firmware is therefore queried first 1197 * to detect accessibility of the register. In case the platform firmware 1198 * reports an incorrect state or the device isn't power manageable by the 1199 * platform at all, we try to detect D3cold by testing accessibility of the 1200 * vendor ID in config space. 1201 */ 1202 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1203 { 1204 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1205 !pci_device_is_present(dev)) { 1206 dev->current_state = PCI_D3cold; 1207 } else if (dev->pm_cap) { 1208 u16 pmcsr; 1209 1210 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1211 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1212 } else { 1213 dev->current_state = state; 1214 } 1215 } 1216 1217 /** 1218 * pci_refresh_power_state - Refresh the given device's power state data 1219 * @dev: Target PCI device. 1220 * 1221 * Ask the platform to refresh the devices power state information and invoke 1222 * pci_update_current_state() to update its current PCI power state. 1223 */ 1224 void pci_refresh_power_state(struct pci_dev *dev) 1225 { 1226 platform_pci_refresh_power_state(dev); 1227 pci_update_current_state(dev, dev->current_state); 1228 } 1229 1230 /** 1231 * pci_platform_power_transition - Use platform to change device power state 1232 * @dev: PCI device to handle. 1233 * @state: State to put the device into. 1234 */ 1235 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1236 { 1237 int error; 1238 1239 error = platform_pci_set_power_state(dev, state); 1240 if (!error) 1241 pci_update_current_state(dev, state); 1242 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1243 dev->current_state = PCI_D0; 1244 1245 return error; 1246 } 1247 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1248 1249 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1250 { 1251 pm_request_resume(&pci_dev->dev); 1252 return 0; 1253 } 1254 1255 /** 1256 * pci_resume_bus - Walk given bus and runtime resume devices on it 1257 * @bus: Top bus of the subtree to walk. 1258 */ 1259 void pci_resume_bus(struct pci_bus *bus) 1260 { 1261 if (bus) 1262 pci_walk_bus(bus, pci_resume_one, NULL); 1263 } 1264 1265 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1266 { 1267 int delay = 1; 1268 u32 id; 1269 1270 /* 1271 * After reset, the device should not silently discard config 1272 * requests, but it may still indicate that it needs more time by 1273 * responding to them with CRS completions. The Root Port will 1274 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1275 * the read (except when CRS SV is enabled and the read was for the 1276 * Vendor ID; in that case it synthesizes 0x0001 data). 1277 * 1278 * Wait for the device to return a non-CRS completion. Read the 1279 * Command register instead of Vendor ID so we don't have to 1280 * contend with the CRS SV value. 1281 */ 1282 pci_read_config_dword(dev, PCI_COMMAND, &id); 1283 while (PCI_POSSIBLE_ERROR(id)) { 1284 if (delay > timeout) { 1285 pci_warn(dev, "not ready %dms after %s; giving up\n", 1286 delay - 1, reset_type); 1287 return -ENOTTY; 1288 } 1289 1290 if (delay > 1000) 1291 pci_info(dev, "not ready %dms after %s; waiting\n", 1292 delay - 1, reset_type); 1293 1294 msleep(delay); 1295 delay *= 2; 1296 pci_read_config_dword(dev, PCI_COMMAND, &id); 1297 } 1298 1299 if (delay > 1000) 1300 pci_info(dev, "ready %dms after %s\n", delay - 1, 1301 reset_type); 1302 1303 return 0; 1304 } 1305 1306 /** 1307 * pci_power_up - Put the given device into D0 1308 * @dev: PCI device to power up 1309 */ 1310 int pci_power_up(struct pci_dev *dev) 1311 { 1312 pci_platform_power_transition(dev, PCI_D0); 1313 1314 /* 1315 * Mandatory power management transition delays are handled in 1316 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1317 * corresponding bridge. 1318 */ 1319 if (dev->runtime_d3cold) { 1320 /* 1321 * When powering on a bridge from D3cold, the whole hierarchy 1322 * may be powered on into D0uninitialized state, resume them to 1323 * give them a chance to suspend again 1324 */ 1325 pci_resume_bus(dev->subordinate); 1326 } 1327 1328 return pci_raw_set_power_state(dev, PCI_D0); 1329 } 1330 1331 /** 1332 * __pci_dev_set_current_state - Set current state of a PCI device 1333 * @dev: Device to handle 1334 * @data: pointer to state to be set 1335 */ 1336 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1337 { 1338 pci_power_t state = *(pci_power_t *)data; 1339 1340 dev->current_state = state; 1341 return 0; 1342 } 1343 1344 /** 1345 * pci_bus_set_current_state - Walk given bus and set current state of devices 1346 * @bus: Top bus of the subtree to walk. 1347 * @state: state to be set 1348 */ 1349 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1350 { 1351 if (bus) 1352 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1353 } 1354 1355 /** 1356 * pci_set_power_state - Set the power state of a PCI device 1357 * @dev: PCI device to handle. 1358 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1359 * 1360 * Transition a device to a new power state, using the platform firmware and/or 1361 * the device's PCI PM registers. 1362 * 1363 * RETURN VALUE: 1364 * -EINVAL if the requested state is invalid. 1365 * -EIO if device does not support PCI PM or its PM capabilities register has a 1366 * wrong version, or device doesn't support the requested state. 1367 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1368 * 0 if device already is in the requested state. 1369 * 0 if the transition is to D3 but D3 is not supported. 1370 * 0 if device's power state has been successfully changed. 1371 */ 1372 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1373 { 1374 int error; 1375 1376 /* Bound the state we're entering */ 1377 if (state > PCI_D3cold) 1378 state = PCI_D3cold; 1379 else if (state < PCI_D0) 1380 state = PCI_D0; 1381 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1382 1383 /* 1384 * If the device or the parent bridge do not support PCI 1385 * PM, ignore the request if we're doing anything other 1386 * than putting it into D0 (which would only happen on 1387 * boot). 1388 */ 1389 return 0; 1390 1391 /* Check if we're already there */ 1392 if (dev->current_state == state) 1393 return 0; 1394 1395 if (state == PCI_D0) 1396 return pci_power_up(dev); 1397 1398 /* 1399 * This device is quirked not to be put into D3, so don't put it in 1400 * D3 1401 */ 1402 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1403 return 0; 1404 1405 /* 1406 * To put device in D3cold, we put device into D3hot in native 1407 * way, then put device into D3cold with platform ops 1408 */ 1409 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1410 PCI_D3hot : state); 1411 1412 if (pci_platform_power_transition(dev, state)) 1413 return error; 1414 1415 /* Powering off a bridge may power off the whole hierarchy */ 1416 if (state == PCI_D3cold) 1417 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1418 1419 return 0; 1420 } 1421 EXPORT_SYMBOL(pci_set_power_state); 1422 1423 #define PCI_EXP_SAVE_REGS 7 1424 1425 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1426 u16 cap, bool extended) 1427 { 1428 struct pci_cap_saved_state *tmp; 1429 1430 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1431 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1432 return tmp; 1433 } 1434 return NULL; 1435 } 1436 1437 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1438 { 1439 return _pci_find_saved_cap(dev, cap, false); 1440 } 1441 1442 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1443 { 1444 return _pci_find_saved_cap(dev, cap, true); 1445 } 1446 1447 static int pci_save_pcie_state(struct pci_dev *dev) 1448 { 1449 int i = 0; 1450 struct pci_cap_saved_state *save_state; 1451 u16 *cap; 1452 1453 if (!pci_is_pcie(dev)) 1454 return 0; 1455 1456 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1457 if (!save_state) { 1458 pci_err(dev, "buffer not found in %s\n", __func__); 1459 return -ENOMEM; 1460 } 1461 1462 cap = (u16 *)&save_state->cap.data[0]; 1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1466 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1467 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1468 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1469 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1470 1471 return 0; 1472 } 1473 1474 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1475 { 1476 #ifdef CONFIG_PCIEASPM 1477 struct pci_dev *bridge; 1478 u32 ctl; 1479 1480 bridge = pci_upstream_bridge(dev); 1481 if (bridge && bridge->ltr_path) { 1482 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1483 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1484 pci_dbg(bridge, "re-enabling LTR\n"); 1485 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1486 PCI_EXP_DEVCTL2_LTR_EN); 1487 } 1488 } 1489 #endif 1490 } 1491 1492 static void pci_restore_pcie_state(struct pci_dev *dev) 1493 { 1494 int i = 0; 1495 struct pci_cap_saved_state *save_state; 1496 u16 *cap; 1497 1498 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1499 if (!save_state) 1500 return; 1501 1502 /* 1503 * Downstream ports reset the LTR enable bit when link goes down. 1504 * Check and re-configure the bit here before restoring device. 1505 * PCIe r5.0, sec 7.5.3.16. 1506 */ 1507 pci_bridge_reconfigure_ltr(dev); 1508 1509 cap = (u16 *)&save_state->cap.data[0]; 1510 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1511 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1512 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1513 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1514 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1515 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1516 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1517 } 1518 1519 static int pci_save_pcix_state(struct pci_dev *dev) 1520 { 1521 int pos; 1522 struct pci_cap_saved_state *save_state; 1523 1524 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1525 if (!pos) 1526 return 0; 1527 1528 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1529 if (!save_state) { 1530 pci_err(dev, "buffer not found in %s\n", __func__); 1531 return -ENOMEM; 1532 } 1533 1534 pci_read_config_word(dev, pos + PCI_X_CMD, 1535 (u16 *)save_state->cap.data); 1536 1537 return 0; 1538 } 1539 1540 static void pci_restore_pcix_state(struct pci_dev *dev) 1541 { 1542 int i = 0, pos; 1543 struct pci_cap_saved_state *save_state; 1544 u16 *cap; 1545 1546 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1547 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1548 if (!save_state || !pos) 1549 return; 1550 cap = (u16 *)&save_state->cap.data[0]; 1551 1552 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1553 } 1554 1555 static void pci_save_ltr_state(struct pci_dev *dev) 1556 { 1557 int ltr; 1558 struct pci_cap_saved_state *save_state; 1559 u32 *cap; 1560 1561 if (!pci_is_pcie(dev)) 1562 return; 1563 1564 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1565 if (!ltr) 1566 return; 1567 1568 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1569 if (!save_state) { 1570 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1571 return; 1572 } 1573 1574 /* Some broken devices only support dword access to LTR */ 1575 cap = &save_state->cap.data[0]; 1576 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1577 } 1578 1579 static void pci_restore_ltr_state(struct pci_dev *dev) 1580 { 1581 struct pci_cap_saved_state *save_state; 1582 int ltr; 1583 u32 *cap; 1584 1585 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1586 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1587 if (!save_state || !ltr) 1588 return; 1589 1590 /* Some broken devices only support dword access to LTR */ 1591 cap = &save_state->cap.data[0]; 1592 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1593 } 1594 1595 /** 1596 * pci_save_state - save the PCI configuration space of a device before 1597 * suspending 1598 * @dev: PCI device that we're dealing with 1599 */ 1600 int pci_save_state(struct pci_dev *dev) 1601 { 1602 int i; 1603 /* XXX: 100% dword access ok here? */ 1604 for (i = 0; i < 16; i++) { 1605 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1606 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1607 i * 4, dev->saved_config_space[i]); 1608 } 1609 dev->state_saved = true; 1610 1611 i = pci_save_pcie_state(dev); 1612 if (i != 0) 1613 return i; 1614 1615 i = pci_save_pcix_state(dev); 1616 if (i != 0) 1617 return i; 1618 1619 pci_save_ltr_state(dev); 1620 pci_save_dpc_state(dev); 1621 pci_save_aer_state(dev); 1622 pci_save_ptm_state(dev); 1623 return pci_save_vc_state(dev); 1624 } 1625 EXPORT_SYMBOL(pci_save_state); 1626 1627 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1628 u32 saved_val, int retry, bool force) 1629 { 1630 u32 val; 1631 1632 pci_read_config_dword(pdev, offset, &val); 1633 if (!force && val == saved_val) 1634 return; 1635 1636 for (;;) { 1637 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1638 offset, val, saved_val); 1639 pci_write_config_dword(pdev, offset, saved_val); 1640 if (retry-- <= 0) 1641 return; 1642 1643 pci_read_config_dword(pdev, offset, &val); 1644 if (val == saved_val) 1645 return; 1646 1647 mdelay(1); 1648 } 1649 } 1650 1651 static void pci_restore_config_space_range(struct pci_dev *pdev, 1652 int start, int end, int retry, 1653 bool force) 1654 { 1655 int index; 1656 1657 for (index = end; index >= start; index--) 1658 pci_restore_config_dword(pdev, 4 * index, 1659 pdev->saved_config_space[index], 1660 retry, force); 1661 } 1662 1663 static void pci_restore_config_space(struct pci_dev *pdev) 1664 { 1665 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1666 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1667 /* Restore BARs before the command register. */ 1668 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1669 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1670 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1671 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1672 1673 /* 1674 * Force rewriting of prefetch registers to avoid S3 resume 1675 * issues on Intel PCI bridges that occur when these 1676 * registers are not explicitly written. 1677 */ 1678 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1679 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1680 } else { 1681 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1682 } 1683 } 1684 1685 static void pci_restore_rebar_state(struct pci_dev *pdev) 1686 { 1687 unsigned int pos, nbars, i; 1688 u32 ctrl; 1689 1690 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1691 if (!pos) 1692 return; 1693 1694 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1695 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1696 PCI_REBAR_CTRL_NBAR_SHIFT; 1697 1698 for (i = 0; i < nbars; i++, pos += 8) { 1699 struct resource *res; 1700 int bar_idx, size; 1701 1702 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1703 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1704 res = pdev->resource + bar_idx; 1705 size = pci_rebar_bytes_to_size(resource_size(res)); 1706 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1707 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1708 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1709 } 1710 } 1711 1712 /** 1713 * pci_restore_state - Restore the saved state of a PCI device 1714 * @dev: PCI device that we're dealing with 1715 */ 1716 void pci_restore_state(struct pci_dev *dev) 1717 { 1718 if (!dev->state_saved) 1719 return; 1720 1721 /* 1722 * Restore max latencies (in the LTR capability) before enabling 1723 * LTR itself (in the PCIe capability). 1724 */ 1725 pci_restore_ltr_state(dev); 1726 1727 pci_restore_pcie_state(dev); 1728 pci_restore_pasid_state(dev); 1729 pci_restore_pri_state(dev); 1730 pci_restore_ats_state(dev); 1731 pci_restore_vc_state(dev); 1732 pci_restore_rebar_state(dev); 1733 pci_restore_dpc_state(dev); 1734 pci_restore_ptm_state(dev); 1735 1736 pci_aer_clear_status(dev); 1737 pci_restore_aer_state(dev); 1738 1739 pci_restore_config_space(dev); 1740 1741 pci_restore_pcix_state(dev); 1742 pci_restore_msi_state(dev); 1743 1744 /* Restore ACS and IOV configuration state */ 1745 pci_enable_acs(dev); 1746 pci_restore_iov_state(dev); 1747 1748 dev->state_saved = false; 1749 } 1750 EXPORT_SYMBOL(pci_restore_state); 1751 1752 struct pci_saved_state { 1753 u32 config_space[16]; 1754 struct pci_cap_saved_data cap[]; 1755 }; 1756 1757 /** 1758 * pci_store_saved_state - Allocate and return an opaque struct containing 1759 * the device saved state. 1760 * @dev: PCI device that we're dealing with 1761 * 1762 * Return NULL if no state or error. 1763 */ 1764 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1765 { 1766 struct pci_saved_state *state; 1767 struct pci_cap_saved_state *tmp; 1768 struct pci_cap_saved_data *cap; 1769 size_t size; 1770 1771 if (!dev->state_saved) 1772 return NULL; 1773 1774 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1775 1776 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1777 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1778 1779 state = kzalloc(size, GFP_KERNEL); 1780 if (!state) 1781 return NULL; 1782 1783 memcpy(state->config_space, dev->saved_config_space, 1784 sizeof(state->config_space)); 1785 1786 cap = state->cap; 1787 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1788 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1789 memcpy(cap, &tmp->cap, len); 1790 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1791 } 1792 /* Empty cap_save terminates list */ 1793 1794 return state; 1795 } 1796 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1797 1798 /** 1799 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1800 * @dev: PCI device that we're dealing with 1801 * @state: Saved state returned from pci_store_saved_state() 1802 */ 1803 int pci_load_saved_state(struct pci_dev *dev, 1804 struct pci_saved_state *state) 1805 { 1806 struct pci_cap_saved_data *cap; 1807 1808 dev->state_saved = false; 1809 1810 if (!state) 1811 return 0; 1812 1813 memcpy(dev->saved_config_space, state->config_space, 1814 sizeof(state->config_space)); 1815 1816 cap = state->cap; 1817 while (cap->size) { 1818 struct pci_cap_saved_state *tmp; 1819 1820 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1821 if (!tmp || tmp->cap.size != cap->size) 1822 return -EINVAL; 1823 1824 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1825 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1826 sizeof(struct pci_cap_saved_data) + cap->size); 1827 } 1828 1829 dev->state_saved = true; 1830 return 0; 1831 } 1832 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1833 1834 /** 1835 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1836 * and free the memory allocated for it. 1837 * @dev: PCI device that we're dealing with 1838 * @state: Pointer to saved state returned from pci_store_saved_state() 1839 */ 1840 int pci_load_and_free_saved_state(struct pci_dev *dev, 1841 struct pci_saved_state **state) 1842 { 1843 int ret = pci_load_saved_state(dev, *state); 1844 kfree(*state); 1845 *state = NULL; 1846 return ret; 1847 } 1848 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1849 1850 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1851 { 1852 return pci_enable_resources(dev, bars); 1853 } 1854 1855 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1856 { 1857 int err; 1858 struct pci_dev *bridge; 1859 u16 cmd; 1860 u8 pin; 1861 1862 err = pci_set_power_state(dev, PCI_D0); 1863 if (err < 0 && err != -EIO) 1864 return err; 1865 1866 bridge = pci_upstream_bridge(dev); 1867 if (bridge) 1868 pcie_aspm_powersave_config_link(bridge); 1869 1870 err = pcibios_enable_device(dev, bars); 1871 if (err < 0) 1872 return err; 1873 pci_fixup_device(pci_fixup_enable, dev); 1874 1875 if (dev->msi_enabled || dev->msix_enabled) 1876 return 0; 1877 1878 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1879 if (pin) { 1880 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1881 if (cmd & PCI_COMMAND_INTX_DISABLE) 1882 pci_write_config_word(dev, PCI_COMMAND, 1883 cmd & ~PCI_COMMAND_INTX_DISABLE); 1884 } 1885 1886 return 0; 1887 } 1888 1889 /** 1890 * pci_reenable_device - Resume abandoned device 1891 * @dev: PCI device to be resumed 1892 * 1893 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1894 * to be called by normal code, write proper resume handler and use it instead. 1895 */ 1896 int pci_reenable_device(struct pci_dev *dev) 1897 { 1898 if (pci_is_enabled(dev)) 1899 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1900 return 0; 1901 } 1902 EXPORT_SYMBOL(pci_reenable_device); 1903 1904 static void pci_enable_bridge(struct pci_dev *dev) 1905 { 1906 struct pci_dev *bridge; 1907 int retval; 1908 1909 bridge = pci_upstream_bridge(dev); 1910 if (bridge) 1911 pci_enable_bridge(bridge); 1912 1913 if (pci_is_enabled(dev)) { 1914 if (!dev->is_busmaster) 1915 pci_set_master(dev); 1916 return; 1917 } 1918 1919 retval = pci_enable_device(dev); 1920 if (retval) 1921 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1922 retval); 1923 pci_set_master(dev); 1924 } 1925 1926 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1927 { 1928 struct pci_dev *bridge; 1929 int err; 1930 int i, bars = 0; 1931 1932 /* 1933 * Power state could be unknown at this point, either due to a fresh 1934 * boot or a device removal call. So get the current power state 1935 * so that things like MSI message writing will behave as expected 1936 * (e.g. if the device really is in D0 at enable time). 1937 */ 1938 pci_update_current_state(dev, dev->current_state); 1939 1940 if (atomic_inc_return(&dev->enable_cnt) > 1) 1941 return 0; /* already enabled */ 1942 1943 bridge = pci_upstream_bridge(dev); 1944 if (bridge) 1945 pci_enable_bridge(bridge); 1946 1947 /* only skip sriov related */ 1948 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1949 if (dev->resource[i].flags & flags) 1950 bars |= (1 << i); 1951 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1952 if (dev->resource[i].flags & flags) 1953 bars |= (1 << i); 1954 1955 err = do_pci_enable_device(dev, bars); 1956 if (err < 0) 1957 atomic_dec(&dev->enable_cnt); 1958 return err; 1959 } 1960 1961 /** 1962 * pci_enable_device_io - Initialize a device for use with IO space 1963 * @dev: PCI device to be initialized 1964 * 1965 * Initialize device before it's used by a driver. Ask low-level code 1966 * to enable I/O resources. Wake up the device if it was suspended. 1967 * Beware, this function can fail. 1968 */ 1969 int pci_enable_device_io(struct pci_dev *dev) 1970 { 1971 return pci_enable_device_flags(dev, IORESOURCE_IO); 1972 } 1973 EXPORT_SYMBOL(pci_enable_device_io); 1974 1975 /** 1976 * pci_enable_device_mem - Initialize a device for use with Memory space 1977 * @dev: PCI device to be initialized 1978 * 1979 * Initialize device before it's used by a driver. Ask low-level code 1980 * to enable Memory resources. Wake up the device if it was suspended. 1981 * Beware, this function can fail. 1982 */ 1983 int pci_enable_device_mem(struct pci_dev *dev) 1984 { 1985 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1986 } 1987 EXPORT_SYMBOL(pci_enable_device_mem); 1988 1989 /** 1990 * pci_enable_device - Initialize device before it's used by a driver. 1991 * @dev: PCI device to be initialized 1992 * 1993 * Initialize device before it's used by a driver. Ask low-level code 1994 * to enable I/O and memory. Wake up the device if it was suspended. 1995 * Beware, this function can fail. 1996 * 1997 * Note we don't actually enable the device many times if we call 1998 * this function repeatedly (we just increment the count). 1999 */ 2000 int pci_enable_device(struct pci_dev *dev) 2001 { 2002 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2003 } 2004 EXPORT_SYMBOL(pci_enable_device); 2005 2006 /* 2007 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2008 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2009 * there's no need to track it separately. pci_devres is initialized 2010 * when a device is enabled using managed PCI device enable interface. 2011 */ 2012 struct pci_devres { 2013 unsigned int enabled:1; 2014 unsigned int pinned:1; 2015 unsigned int orig_intx:1; 2016 unsigned int restore_intx:1; 2017 unsigned int mwi:1; 2018 u32 region_mask; 2019 }; 2020 2021 static void pcim_release(struct device *gendev, void *res) 2022 { 2023 struct pci_dev *dev = to_pci_dev(gendev); 2024 struct pci_devres *this = res; 2025 int i; 2026 2027 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2028 if (this->region_mask & (1 << i)) 2029 pci_release_region(dev, i); 2030 2031 if (this->mwi) 2032 pci_clear_mwi(dev); 2033 2034 if (this->restore_intx) 2035 pci_intx(dev, this->orig_intx); 2036 2037 if (this->enabled && !this->pinned) 2038 pci_disable_device(dev); 2039 } 2040 2041 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2042 { 2043 struct pci_devres *dr, *new_dr; 2044 2045 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2046 if (dr) 2047 return dr; 2048 2049 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2050 if (!new_dr) 2051 return NULL; 2052 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2053 } 2054 2055 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2056 { 2057 if (pci_is_managed(pdev)) 2058 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2059 return NULL; 2060 } 2061 2062 /** 2063 * pcim_enable_device - Managed pci_enable_device() 2064 * @pdev: PCI device to be initialized 2065 * 2066 * Managed pci_enable_device(). 2067 */ 2068 int pcim_enable_device(struct pci_dev *pdev) 2069 { 2070 struct pci_devres *dr; 2071 int rc; 2072 2073 dr = get_pci_dr(pdev); 2074 if (unlikely(!dr)) 2075 return -ENOMEM; 2076 if (dr->enabled) 2077 return 0; 2078 2079 rc = pci_enable_device(pdev); 2080 if (!rc) { 2081 pdev->is_managed = 1; 2082 dr->enabled = 1; 2083 } 2084 return rc; 2085 } 2086 EXPORT_SYMBOL(pcim_enable_device); 2087 2088 /** 2089 * pcim_pin_device - Pin managed PCI device 2090 * @pdev: PCI device to pin 2091 * 2092 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2093 * driver detach. @pdev must have been enabled with 2094 * pcim_enable_device(). 2095 */ 2096 void pcim_pin_device(struct pci_dev *pdev) 2097 { 2098 struct pci_devres *dr; 2099 2100 dr = find_pci_dr(pdev); 2101 WARN_ON(!dr || !dr->enabled); 2102 if (dr) 2103 dr->pinned = 1; 2104 } 2105 EXPORT_SYMBOL(pcim_pin_device); 2106 2107 /* 2108 * pcibios_device_add - provide arch specific hooks when adding device dev 2109 * @dev: the PCI device being added 2110 * 2111 * Permits the platform to provide architecture specific functionality when 2112 * devices are added. This is the default implementation. Architecture 2113 * implementations can override this. 2114 */ 2115 int __weak pcibios_device_add(struct pci_dev *dev) 2116 { 2117 return 0; 2118 } 2119 2120 /** 2121 * pcibios_release_device - provide arch specific hooks when releasing 2122 * device dev 2123 * @dev: the PCI device being released 2124 * 2125 * Permits the platform to provide architecture specific functionality when 2126 * devices are released. This is the default implementation. Architecture 2127 * implementations can override this. 2128 */ 2129 void __weak pcibios_release_device(struct pci_dev *dev) {} 2130 2131 /** 2132 * pcibios_disable_device - disable arch specific PCI resources for device dev 2133 * @dev: the PCI device to disable 2134 * 2135 * Disables architecture specific PCI resources for the device. This 2136 * is the default implementation. Architecture implementations can 2137 * override this. 2138 */ 2139 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2140 2141 /** 2142 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2143 * @irq: ISA IRQ to penalize 2144 * @active: IRQ active or not 2145 * 2146 * Permits the platform to provide architecture-specific functionality when 2147 * penalizing ISA IRQs. This is the default implementation. Architecture 2148 * implementations can override this. 2149 */ 2150 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2151 2152 static void do_pci_disable_device(struct pci_dev *dev) 2153 { 2154 u16 pci_command; 2155 2156 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2157 if (pci_command & PCI_COMMAND_MASTER) { 2158 pci_command &= ~PCI_COMMAND_MASTER; 2159 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2160 } 2161 2162 pcibios_disable_device(dev); 2163 } 2164 2165 /** 2166 * pci_disable_enabled_device - Disable device without updating enable_cnt 2167 * @dev: PCI device to disable 2168 * 2169 * NOTE: This function is a backend of PCI power management routines and is 2170 * not supposed to be called drivers. 2171 */ 2172 void pci_disable_enabled_device(struct pci_dev *dev) 2173 { 2174 if (pci_is_enabled(dev)) 2175 do_pci_disable_device(dev); 2176 } 2177 2178 /** 2179 * pci_disable_device - Disable PCI device after use 2180 * @dev: PCI device to be disabled 2181 * 2182 * Signal to the system that the PCI device is not in use by the system 2183 * anymore. This only involves disabling PCI bus-mastering, if active. 2184 * 2185 * Note we don't actually disable the device until all callers of 2186 * pci_enable_device() have called pci_disable_device(). 2187 */ 2188 void pci_disable_device(struct pci_dev *dev) 2189 { 2190 struct pci_devres *dr; 2191 2192 dr = find_pci_dr(dev); 2193 if (dr) 2194 dr->enabled = 0; 2195 2196 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2197 "disabling already-disabled device"); 2198 2199 if (atomic_dec_return(&dev->enable_cnt) != 0) 2200 return; 2201 2202 do_pci_disable_device(dev); 2203 2204 dev->is_busmaster = 0; 2205 } 2206 EXPORT_SYMBOL(pci_disable_device); 2207 2208 /** 2209 * pcibios_set_pcie_reset_state - set reset state for device dev 2210 * @dev: the PCIe device reset 2211 * @state: Reset state to enter into 2212 * 2213 * Set the PCIe reset state for the device. This is the default 2214 * implementation. Architecture implementations can override this. 2215 */ 2216 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2217 enum pcie_reset_state state) 2218 { 2219 return -EINVAL; 2220 } 2221 2222 /** 2223 * pci_set_pcie_reset_state - set reset state for device dev 2224 * @dev: the PCIe device reset 2225 * @state: Reset state to enter into 2226 * 2227 * Sets the PCI reset state for the device. 2228 */ 2229 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2230 { 2231 return pcibios_set_pcie_reset_state(dev, state); 2232 } 2233 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2234 2235 #ifdef CONFIG_PCIEAER 2236 void pcie_clear_device_status(struct pci_dev *dev) 2237 { 2238 u16 sta; 2239 2240 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2241 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2242 } 2243 #endif 2244 2245 /** 2246 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2247 * @dev: PCIe root port or event collector. 2248 */ 2249 void pcie_clear_root_pme_status(struct pci_dev *dev) 2250 { 2251 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2252 } 2253 2254 /** 2255 * pci_check_pme_status - Check if given device has generated PME. 2256 * @dev: Device to check. 2257 * 2258 * Check the PME status of the device and if set, clear it and clear PME enable 2259 * (if set). Return 'true' if PME status and PME enable were both set or 2260 * 'false' otherwise. 2261 */ 2262 bool pci_check_pme_status(struct pci_dev *dev) 2263 { 2264 int pmcsr_pos; 2265 u16 pmcsr; 2266 bool ret = false; 2267 2268 if (!dev->pm_cap) 2269 return false; 2270 2271 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2272 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2273 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2274 return false; 2275 2276 /* Clear PME status. */ 2277 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2278 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2279 /* Disable PME to avoid interrupt flood. */ 2280 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2281 ret = true; 2282 } 2283 2284 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2285 2286 return ret; 2287 } 2288 2289 /** 2290 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2291 * @dev: Device to handle. 2292 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2293 * 2294 * Check if @dev has generated PME and queue a resume request for it in that 2295 * case. 2296 */ 2297 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2298 { 2299 if (pme_poll_reset && dev->pme_poll) 2300 dev->pme_poll = false; 2301 2302 if (pci_check_pme_status(dev)) { 2303 pci_wakeup_event(dev); 2304 pm_request_resume(&dev->dev); 2305 } 2306 return 0; 2307 } 2308 2309 /** 2310 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2311 * @bus: Top bus of the subtree to walk. 2312 */ 2313 void pci_pme_wakeup_bus(struct pci_bus *bus) 2314 { 2315 if (bus) 2316 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2317 } 2318 2319 2320 /** 2321 * pci_pme_capable - check the capability of PCI device to generate PME# 2322 * @dev: PCI device to handle. 2323 * @state: PCI state from which device will issue PME#. 2324 */ 2325 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2326 { 2327 if (!dev->pm_cap) 2328 return false; 2329 2330 return !!(dev->pme_support & (1 << state)); 2331 } 2332 EXPORT_SYMBOL(pci_pme_capable); 2333 2334 static void pci_pme_list_scan(struct work_struct *work) 2335 { 2336 struct pci_pme_device *pme_dev, *n; 2337 2338 mutex_lock(&pci_pme_list_mutex); 2339 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2340 if (pme_dev->dev->pme_poll) { 2341 struct pci_dev *bridge; 2342 2343 bridge = pme_dev->dev->bus->self; 2344 /* 2345 * If bridge is in low power state, the 2346 * configuration space of subordinate devices 2347 * may be not accessible 2348 */ 2349 if (bridge && bridge->current_state != PCI_D0) 2350 continue; 2351 /* 2352 * If the device is in D3cold it should not be 2353 * polled either. 2354 */ 2355 if (pme_dev->dev->current_state == PCI_D3cold) 2356 continue; 2357 2358 pci_pme_wakeup(pme_dev->dev, NULL); 2359 } else { 2360 list_del(&pme_dev->list); 2361 kfree(pme_dev); 2362 } 2363 } 2364 if (!list_empty(&pci_pme_list)) 2365 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2366 msecs_to_jiffies(PME_TIMEOUT)); 2367 mutex_unlock(&pci_pme_list_mutex); 2368 } 2369 2370 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2371 { 2372 u16 pmcsr; 2373 2374 if (!dev->pme_support) 2375 return; 2376 2377 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2378 /* Clear PME_Status by writing 1 to it and enable PME# */ 2379 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2380 if (!enable) 2381 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2382 2383 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2384 } 2385 2386 /** 2387 * pci_pme_restore - Restore PME configuration after config space restore. 2388 * @dev: PCI device to update. 2389 */ 2390 void pci_pme_restore(struct pci_dev *dev) 2391 { 2392 u16 pmcsr; 2393 2394 if (!dev->pme_support) 2395 return; 2396 2397 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2398 if (dev->wakeup_prepared) { 2399 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2400 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2401 } else { 2402 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2403 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2404 } 2405 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2406 } 2407 2408 /** 2409 * pci_pme_active - enable or disable PCI device's PME# function 2410 * @dev: PCI device to handle. 2411 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2412 * 2413 * The caller must verify that the device is capable of generating PME# before 2414 * calling this function with @enable equal to 'true'. 2415 */ 2416 void pci_pme_active(struct pci_dev *dev, bool enable) 2417 { 2418 __pci_pme_active(dev, enable); 2419 2420 /* 2421 * PCI (as opposed to PCIe) PME requires that the device have 2422 * its PME# line hooked up correctly. Not all hardware vendors 2423 * do this, so the PME never gets delivered and the device 2424 * remains asleep. The easiest way around this is to 2425 * periodically walk the list of suspended devices and check 2426 * whether any have their PME flag set. The assumption is that 2427 * we'll wake up often enough anyway that this won't be a huge 2428 * hit, and the power savings from the devices will still be a 2429 * win. 2430 * 2431 * Although PCIe uses in-band PME message instead of PME# line 2432 * to report PME, PME does not work for some PCIe devices in 2433 * reality. For example, there are devices that set their PME 2434 * status bits, but don't really bother to send a PME message; 2435 * there are PCI Express Root Ports that don't bother to 2436 * trigger interrupts when they receive PME messages from the 2437 * devices below. So PME poll is used for PCIe devices too. 2438 */ 2439 2440 if (dev->pme_poll) { 2441 struct pci_pme_device *pme_dev; 2442 if (enable) { 2443 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2444 GFP_KERNEL); 2445 if (!pme_dev) { 2446 pci_warn(dev, "can't enable PME#\n"); 2447 return; 2448 } 2449 pme_dev->dev = dev; 2450 mutex_lock(&pci_pme_list_mutex); 2451 list_add(&pme_dev->list, &pci_pme_list); 2452 if (list_is_singular(&pci_pme_list)) 2453 queue_delayed_work(system_freezable_wq, 2454 &pci_pme_work, 2455 msecs_to_jiffies(PME_TIMEOUT)); 2456 mutex_unlock(&pci_pme_list_mutex); 2457 } else { 2458 mutex_lock(&pci_pme_list_mutex); 2459 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2460 if (pme_dev->dev == dev) { 2461 list_del(&pme_dev->list); 2462 kfree(pme_dev); 2463 break; 2464 } 2465 } 2466 mutex_unlock(&pci_pme_list_mutex); 2467 } 2468 } 2469 2470 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2471 } 2472 EXPORT_SYMBOL(pci_pme_active); 2473 2474 /** 2475 * __pci_enable_wake - enable PCI device as wakeup event source 2476 * @dev: PCI device affected 2477 * @state: PCI state from which device will issue wakeup events 2478 * @enable: True to enable event generation; false to disable 2479 * 2480 * This enables the device as a wakeup event source, or disables it. 2481 * When such events involves platform-specific hooks, those hooks are 2482 * called automatically by this routine. 2483 * 2484 * Devices with legacy power management (no standard PCI PM capabilities) 2485 * always require such platform hooks. 2486 * 2487 * RETURN VALUE: 2488 * 0 is returned on success 2489 * -EINVAL is returned if device is not supposed to wake up the system 2490 * Error code depending on the platform is returned if both the platform and 2491 * the native mechanism fail to enable the generation of wake-up events 2492 */ 2493 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2494 { 2495 int ret = 0; 2496 2497 /* 2498 * Bridges that are not power-manageable directly only signal 2499 * wakeup on behalf of subordinate devices which is set up 2500 * elsewhere, so skip them. However, bridges that are 2501 * power-manageable may signal wakeup for themselves (for example, 2502 * on a hotplug event) and they need to be covered here. 2503 */ 2504 if (!pci_power_manageable(dev)) 2505 return 0; 2506 2507 /* Don't do the same thing twice in a row for one device. */ 2508 if (!!enable == !!dev->wakeup_prepared) 2509 return 0; 2510 2511 /* 2512 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2513 * Anderson we should be doing PME# wake enable followed by ACPI wake 2514 * enable. To disable wake-up we call the platform first, for symmetry. 2515 */ 2516 2517 if (enable) { 2518 int error; 2519 2520 /* 2521 * Enable PME signaling if the device can signal PME from 2522 * D3cold regardless of whether or not it can signal PME from 2523 * the current target state, because that will allow it to 2524 * signal PME when the hierarchy above it goes into D3cold and 2525 * the device itself ends up in D3cold as a result of that. 2526 */ 2527 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2528 pci_pme_active(dev, true); 2529 else 2530 ret = 1; 2531 error = platform_pci_set_wakeup(dev, true); 2532 if (ret) 2533 ret = error; 2534 if (!ret) 2535 dev->wakeup_prepared = true; 2536 } else { 2537 platform_pci_set_wakeup(dev, false); 2538 pci_pme_active(dev, false); 2539 dev->wakeup_prepared = false; 2540 } 2541 2542 return ret; 2543 } 2544 2545 /** 2546 * pci_enable_wake - change wakeup settings for a PCI device 2547 * @pci_dev: Target device 2548 * @state: PCI state from which device will issue wakeup events 2549 * @enable: Whether or not to enable event generation 2550 * 2551 * If @enable is set, check device_may_wakeup() for the device before calling 2552 * __pci_enable_wake() for it. 2553 */ 2554 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2555 { 2556 if (enable && !device_may_wakeup(&pci_dev->dev)) 2557 return -EINVAL; 2558 2559 return __pci_enable_wake(pci_dev, state, enable); 2560 } 2561 EXPORT_SYMBOL(pci_enable_wake); 2562 2563 /** 2564 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2565 * @dev: PCI device to prepare 2566 * @enable: True to enable wake-up event generation; false to disable 2567 * 2568 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2569 * and this function allows them to set that up cleanly - pci_enable_wake() 2570 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2571 * ordering constraints. 2572 * 2573 * This function only returns error code if the device is not allowed to wake 2574 * up the system from sleep or it is not capable of generating PME# from both 2575 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2576 */ 2577 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2578 { 2579 return pci_pme_capable(dev, PCI_D3cold) ? 2580 pci_enable_wake(dev, PCI_D3cold, enable) : 2581 pci_enable_wake(dev, PCI_D3hot, enable); 2582 } 2583 EXPORT_SYMBOL(pci_wake_from_d3); 2584 2585 /** 2586 * pci_target_state - find an appropriate low power state for a given PCI dev 2587 * @dev: PCI device 2588 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2589 * 2590 * Use underlying platform code to find a supported low power state for @dev. 2591 * If the platform can't manage @dev, return the deepest state from which it 2592 * can generate wake events, based on any available PME info. 2593 */ 2594 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2595 { 2596 if (platform_pci_power_manageable(dev)) { 2597 /* 2598 * Call the platform to find the target state for the device. 2599 */ 2600 pci_power_t state = platform_pci_choose_state(dev); 2601 2602 switch (state) { 2603 case PCI_POWER_ERROR: 2604 case PCI_UNKNOWN: 2605 return PCI_D3hot; 2606 2607 case PCI_D1: 2608 case PCI_D2: 2609 if (pci_no_d1d2(dev)) 2610 return PCI_D3hot; 2611 } 2612 2613 return state; 2614 } 2615 2616 /* 2617 * If the device is in D3cold even though it's not power-manageable by 2618 * the platform, it may have been powered down by non-standard means. 2619 * Best to let it slumber. 2620 */ 2621 if (dev->current_state == PCI_D3cold) 2622 return PCI_D3cold; 2623 else if (!dev->pm_cap) 2624 return PCI_D0; 2625 2626 if (wakeup && dev->pme_support) { 2627 pci_power_t state = PCI_D3hot; 2628 2629 /* 2630 * Find the deepest state from which the device can generate 2631 * PME#. 2632 */ 2633 while (state && !(dev->pme_support & (1 << state))) 2634 state--; 2635 2636 if (state) 2637 return state; 2638 else if (dev->pme_support & 1) 2639 return PCI_D0; 2640 } 2641 2642 return PCI_D3hot; 2643 } 2644 2645 /** 2646 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2647 * into a sleep state 2648 * @dev: Device to handle. 2649 * 2650 * Choose the power state appropriate for the device depending on whether 2651 * it can wake up the system and/or is power manageable by the platform 2652 * (PCI_D3hot is the default) and put the device into that state. 2653 */ 2654 int pci_prepare_to_sleep(struct pci_dev *dev) 2655 { 2656 bool wakeup = device_may_wakeup(&dev->dev); 2657 pci_power_t target_state = pci_target_state(dev, wakeup); 2658 int error; 2659 2660 if (target_state == PCI_POWER_ERROR) 2661 return -EIO; 2662 2663 /* 2664 * There are systems (for example, Intel mobile chips since Coffee 2665 * Lake) where the power drawn while suspended can be significantly 2666 * reduced by disabling PTM on PCIe root ports as this allows the 2667 * port to enter a lower-power PM state and the SoC to reach a 2668 * lower-power idle state as a whole. 2669 */ 2670 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2671 pci_disable_ptm(dev); 2672 2673 pci_enable_wake(dev, target_state, wakeup); 2674 2675 error = pci_set_power_state(dev, target_state); 2676 2677 if (error) { 2678 pci_enable_wake(dev, target_state, false); 2679 pci_restore_ptm_state(dev); 2680 } 2681 2682 return error; 2683 } 2684 EXPORT_SYMBOL(pci_prepare_to_sleep); 2685 2686 /** 2687 * pci_back_from_sleep - turn PCI device on during system-wide transition 2688 * into working state 2689 * @dev: Device to handle. 2690 * 2691 * Disable device's system wake-up capability and put it into D0. 2692 */ 2693 int pci_back_from_sleep(struct pci_dev *dev) 2694 { 2695 int ret = pci_set_power_state(dev, PCI_D0); 2696 2697 if (ret) 2698 return ret; 2699 2700 pci_enable_wake(dev, PCI_D0, false); 2701 return 0; 2702 } 2703 EXPORT_SYMBOL(pci_back_from_sleep); 2704 2705 /** 2706 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2707 * @dev: PCI device being suspended. 2708 * 2709 * Prepare @dev to generate wake-up events at run time and put it into a low 2710 * power state. 2711 */ 2712 int pci_finish_runtime_suspend(struct pci_dev *dev) 2713 { 2714 pci_power_t target_state; 2715 int error; 2716 2717 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2718 if (target_state == PCI_POWER_ERROR) 2719 return -EIO; 2720 2721 dev->runtime_d3cold = target_state == PCI_D3cold; 2722 2723 /* 2724 * There are systems (for example, Intel mobile chips since Coffee 2725 * Lake) where the power drawn while suspended can be significantly 2726 * reduced by disabling PTM on PCIe root ports as this allows the 2727 * port to enter a lower-power PM state and the SoC to reach a 2728 * lower-power idle state as a whole. 2729 */ 2730 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2731 pci_disable_ptm(dev); 2732 2733 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2734 2735 error = pci_set_power_state(dev, target_state); 2736 2737 if (error) { 2738 pci_enable_wake(dev, target_state, false); 2739 pci_restore_ptm_state(dev); 2740 dev->runtime_d3cold = false; 2741 } 2742 2743 return error; 2744 } 2745 2746 /** 2747 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2748 * @dev: Device to check. 2749 * 2750 * Return true if the device itself is capable of generating wake-up events 2751 * (through the platform or using the native PCIe PME) or if the device supports 2752 * PME and one of its upstream bridges can generate wake-up events. 2753 */ 2754 bool pci_dev_run_wake(struct pci_dev *dev) 2755 { 2756 struct pci_bus *bus = dev->bus; 2757 2758 if (!dev->pme_support) 2759 return false; 2760 2761 /* PME-capable in principle, but not from the target power state */ 2762 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2763 return false; 2764 2765 if (device_can_wakeup(&dev->dev)) 2766 return true; 2767 2768 while (bus->parent) { 2769 struct pci_dev *bridge = bus->self; 2770 2771 if (device_can_wakeup(&bridge->dev)) 2772 return true; 2773 2774 bus = bus->parent; 2775 } 2776 2777 /* We have reached the root bus. */ 2778 if (bus->bridge) 2779 return device_can_wakeup(bus->bridge); 2780 2781 return false; 2782 } 2783 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2784 2785 /** 2786 * pci_dev_need_resume - Check if it is necessary to resume the device. 2787 * @pci_dev: Device to check. 2788 * 2789 * Return 'true' if the device is not runtime-suspended or it has to be 2790 * reconfigured due to wakeup settings difference between system and runtime 2791 * suspend, or the current power state of it is not suitable for the upcoming 2792 * (system-wide) transition. 2793 */ 2794 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2795 { 2796 struct device *dev = &pci_dev->dev; 2797 pci_power_t target_state; 2798 2799 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2800 return true; 2801 2802 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2803 2804 /* 2805 * If the earlier platform check has not triggered, D3cold is just power 2806 * removal on top of D3hot, so no need to resume the device in that 2807 * case. 2808 */ 2809 return target_state != pci_dev->current_state && 2810 target_state != PCI_D3cold && 2811 pci_dev->current_state != PCI_D3hot; 2812 } 2813 2814 /** 2815 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2816 * @pci_dev: Device to check. 2817 * 2818 * If the device is suspended and it is not configured for system wakeup, 2819 * disable PME for it to prevent it from waking up the system unnecessarily. 2820 * 2821 * Note that if the device's power state is D3cold and the platform check in 2822 * pci_dev_need_resume() has not triggered, the device's configuration need not 2823 * be changed. 2824 */ 2825 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2826 { 2827 struct device *dev = &pci_dev->dev; 2828 2829 spin_lock_irq(&dev->power.lock); 2830 2831 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2832 pci_dev->current_state < PCI_D3cold) 2833 __pci_pme_active(pci_dev, false); 2834 2835 spin_unlock_irq(&dev->power.lock); 2836 } 2837 2838 /** 2839 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2840 * @pci_dev: Device to handle. 2841 * 2842 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2843 * it might have been disabled during the prepare phase of system suspend if 2844 * the device was not configured for system wakeup. 2845 */ 2846 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2847 { 2848 struct device *dev = &pci_dev->dev; 2849 2850 if (!pci_dev_run_wake(pci_dev)) 2851 return; 2852 2853 spin_lock_irq(&dev->power.lock); 2854 2855 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2856 __pci_pme_active(pci_dev, true); 2857 2858 spin_unlock_irq(&dev->power.lock); 2859 } 2860 2861 /** 2862 * pci_choose_state - Choose the power state of a PCI device. 2863 * @dev: Target PCI device. 2864 * @state: Target state for the whole system. 2865 * 2866 * Returns PCI power state suitable for @dev and @state. 2867 */ 2868 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2869 { 2870 if (state.event == PM_EVENT_ON) 2871 return PCI_D0; 2872 2873 return pci_target_state(dev, false); 2874 } 2875 EXPORT_SYMBOL(pci_choose_state); 2876 2877 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2878 { 2879 struct device *dev = &pdev->dev; 2880 struct device *parent = dev->parent; 2881 2882 if (parent) 2883 pm_runtime_get_sync(parent); 2884 pm_runtime_get_noresume(dev); 2885 /* 2886 * pdev->current_state is set to PCI_D3cold during suspending, 2887 * so wait until suspending completes 2888 */ 2889 pm_runtime_barrier(dev); 2890 /* 2891 * Only need to resume devices in D3cold, because config 2892 * registers are still accessible for devices suspended but 2893 * not in D3cold. 2894 */ 2895 if (pdev->current_state == PCI_D3cold) 2896 pm_runtime_resume(dev); 2897 } 2898 2899 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2900 { 2901 struct device *dev = &pdev->dev; 2902 struct device *parent = dev->parent; 2903 2904 pm_runtime_put(dev); 2905 if (parent) 2906 pm_runtime_put_sync(parent); 2907 } 2908 2909 static const struct dmi_system_id bridge_d3_blacklist[] = { 2910 #ifdef CONFIG_X86 2911 { 2912 /* 2913 * Gigabyte X299 root port is not marked as hotplug capable 2914 * which allows Linux to power manage it. However, this 2915 * confuses the BIOS SMI handler so don't power manage root 2916 * ports on that system. 2917 */ 2918 .ident = "X299 DESIGNARE EX-CF", 2919 .matches = { 2920 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2921 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2922 }, 2923 /* 2924 * Downstream device is not accessible after putting a root port 2925 * into D3cold and back into D0 on Elo i2. 2926 */ 2927 .ident = "Elo i2", 2928 .matches = { 2929 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"), 2930 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"), 2931 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"), 2932 }, 2933 }, 2934 #endif 2935 { } 2936 }; 2937 2938 /** 2939 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2940 * @bridge: Bridge to check 2941 * 2942 * This function checks if it is possible to move the bridge to D3. 2943 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2944 */ 2945 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2946 { 2947 if (!pci_is_pcie(bridge)) 2948 return false; 2949 2950 switch (pci_pcie_type(bridge)) { 2951 case PCI_EXP_TYPE_ROOT_PORT: 2952 case PCI_EXP_TYPE_UPSTREAM: 2953 case PCI_EXP_TYPE_DOWNSTREAM: 2954 if (pci_bridge_d3_disable) 2955 return false; 2956 2957 /* 2958 * Hotplug ports handled by firmware in System Management Mode 2959 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2960 */ 2961 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2962 return false; 2963 2964 if (pci_bridge_d3_force) 2965 return true; 2966 2967 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2968 if (bridge->is_thunderbolt) 2969 return true; 2970 2971 /* Platform might know better if the bridge supports D3 */ 2972 if (platform_pci_bridge_d3(bridge)) 2973 return true; 2974 2975 /* 2976 * Hotplug ports handled natively by the OS were not validated 2977 * by vendors for runtime D3 at least until 2018 because there 2978 * was no OS support. 2979 */ 2980 if (bridge->is_hotplug_bridge) 2981 return false; 2982 2983 if (dmi_check_system(bridge_d3_blacklist)) 2984 return false; 2985 2986 /* 2987 * It should be safe to put PCIe ports from 2015 or newer 2988 * to D3. 2989 */ 2990 if (dmi_get_bios_year() >= 2015) 2991 return true; 2992 break; 2993 } 2994 2995 return false; 2996 } 2997 2998 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2999 { 3000 bool *d3cold_ok = data; 3001 3002 if (/* The device needs to be allowed to go D3cold ... */ 3003 dev->no_d3cold || !dev->d3cold_allowed || 3004 3005 /* ... and if it is wakeup capable to do so from D3cold. */ 3006 (device_may_wakeup(&dev->dev) && 3007 !pci_pme_capable(dev, PCI_D3cold)) || 3008 3009 /* If it is a bridge it must be allowed to go to D3. */ 3010 !pci_power_manageable(dev)) 3011 3012 *d3cold_ok = false; 3013 3014 return !*d3cold_ok; 3015 } 3016 3017 /* 3018 * pci_bridge_d3_update - Update bridge D3 capabilities 3019 * @dev: PCI device which is changed 3020 * 3021 * Update upstream bridge PM capabilities accordingly depending on if the 3022 * device PM configuration was changed or the device is being removed. The 3023 * change is also propagated upstream. 3024 */ 3025 void pci_bridge_d3_update(struct pci_dev *dev) 3026 { 3027 bool remove = !device_is_registered(&dev->dev); 3028 struct pci_dev *bridge; 3029 bool d3cold_ok = true; 3030 3031 bridge = pci_upstream_bridge(dev); 3032 if (!bridge || !pci_bridge_d3_possible(bridge)) 3033 return; 3034 3035 /* 3036 * If D3 is currently allowed for the bridge, removing one of its 3037 * children won't change that. 3038 */ 3039 if (remove && bridge->bridge_d3) 3040 return; 3041 3042 /* 3043 * If D3 is currently allowed for the bridge and a child is added or 3044 * changed, disallowance of D3 can only be caused by that child, so 3045 * we only need to check that single device, not any of its siblings. 3046 * 3047 * If D3 is currently not allowed for the bridge, checking the device 3048 * first may allow us to skip checking its siblings. 3049 */ 3050 if (!remove) 3051 pci_dev_check_d3cold(dev, &d3cold_ok); 3052 3053 /* 3054 * If D3 is currently not allowed for the bridge, this may be caused 3055 * either by the device being changed/removed or any of its siblings, 3056 * so we need to go through all children to find out if one of them 3057 * continues to block D3. 3058 */ 3059 if (d3cold_ok && !bridge->bridge_d3) 3060 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3061 &d3cold_ok); 3062 3063 if (bridge->bridge_d3 != d3cold_ok) { 3064 bridge->bridge_d3 = d3cold_ok; 3065 /* Propagate change to upstream bridges */ 3066 pci_bridge_d3_update(bridge); 3067 } 3068 } 3069 3070 /** 3071 * pci_d3cold_enable - Enable D3cold for device 3072 * @dev: PCI device to handle 3073 * 3074 * This function can be used in drivers to enable D3cold from the device 3075 * they handle. It also updates upstream PCI bridge PM capabilities 3076 * accordingly. 3077 */ 3078 void pci_d3cold_enable(struct pci_dev *dev) 3079 { 3080 if (dev->no_d3cold) { 3081 dev->no_d3cold = false; 3082 pci_bridge_d3_update(dev); 3083 } 3084 } 3085 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3086 3087 /** 3088 * pci_d3cold_disable - Disable D3cold for device 3089 * @dev: PCI device to handle 3090 * 3091 * This function can be used in drivers to disable D3cold from the device 3092 * they handle. It also updates upstream PCI bridge PM capabilities 3093 * accordingly. 3094 */ 3095 void pci_d3cold_disable(struct pci_dev *dev) 3096 { 3097 if (!dev->no_d3cold) { 3098 dev->no_d3cold = true; 3099 pci_bridge_d3_update(dev); 3100 } 3101 } 3102 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3103 3104 /** 3105 * pci_pm_init - Initialize PM functions of given PCI device 3106 * @dev: PCI device to handle. 3107 */ 3108 void pci_pm_init(struct pci_dev *dev) 3109 { 3110 int pm; 3111 u16 status; 3112 u16 pmc; 3113 3114 pm_runtime_forbid(&dev->dev); 3115 pm_runtime_set_active(&dev->dev); 3116 pm_runtime_enable(&dev->dev); 3117 device_enable_async_suspend(&dev->dev); 3118 dev->wakeup_prepared = false; 3119 3120 dev->pm_cap = 0; 3121 dev->pme_support = 0; 3122 3123 /* find PCI PM capability in list */ 3124 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3125 if (!pm) 3126 return; 3127 /* Check device's ability to generate PME# */ 3128 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3129 3130 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3131 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3132 pmc & PCI_PM_CAP_VER_MASK); 3133 return; 3134 } 3135 3136 dev->pm_cap = pm; 3137 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3138 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3139 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3140 dev->d3cold_allowed = true; 3141 3142 dev->d1_support = false; 3143 dev->d2_support = false; 3144 if (!pci_no_d1d2(dev)) { 3145 if (pmc & PCI_PM_CAP_D1) 3146 dev->d1_support = true; 3147 if (pmc & PCI_PM_CAP_D2) 3148 dev->d2_support = true; 3149 3150 if (dev->d1_support || dev->d2_support) 3151 pci_info(dev, "supports%s%s\n", 3152 dev->d1_support ? " D1" : "", 3153 dev->d2_support ? " D2" : ""); 3154 } 3155 3156 pmc &= PCI_PM_CAP_PME_MASK; 3157 if (pmc) { 3158 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3159 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3160 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3161 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3162 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3163 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3164 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3165 dev->pme_poll = true; 3166 /* 3167 * Make device's PM flags reflect the wake-up capability, but 3168 * let the user space enable it to wake up the system as needed. 3169 */ 3170 device_set_wakeup_capable(&dev->dev, true); 3171 /* Disable the PME# generation functionality */ 3172 pci_pme_active(dev, false); 3173 } 3174 3175 pci_read_config_word(dev, PCI_STATUS, &status); 3176 if (status & PCI_STATUS_IMM_READY) 3177 dev->imm_ready = 1; 3178 } 3179 3180 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3181 { 3182 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3183 3184 switch (prop) { 3185 case PCI_EA_P_MEM: 3186 case PCI_EA_P_VF_MEM: 3187 flags |= IORESOURCE_MEM; 3188 break; 3189 case PCI_EA_P_MEM_PREFETCH: 3190 case PCI_EA_P_VF_MEM_PREFETCH: 3191 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3192 break; 3193 case PCI_EA_P_IO: 3194 flags |= IORESOURCE_IO; 3195 break; 3196 default: 3197 return 0; 3198 } 3199 3200 return flags; 3201 } 3202 3203 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3204 u8 prop) 3205 { 3206 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3207 return &dev->resource[bei]; 3208 #ifdef CONFIG_PCI_IOV 3209 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3210 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3211 return &dev->resource[PCI_IOV_RESOURCES + 3212 bei - PCI_EA_BEI_VF_BAR0]; 3213 #endif 3214 else if (bei == PCI_EA_BEI_ROM) 3215 return &dev->resource[PCI_ROM_RESOURCE]; 3216 else 3217 return NULL; 3218 } 3219 3220 /* Read an Enhanced Allocation (EA) entry */ 3221 static int pci_ea_read(struct pci_dev *dev, int offset) 3222 { 3223 struct resource *res; 3224 int ent_size, ent_offset = offset; 3225 resource_size_t start, end; 3226 unsigned long flags; 3227 u32 dw0, bei, base, max_offset; 3228 u8 prop; 3229 bool support_64 = (sizeof(resource_size_t) >= 8); 3230 3231 pci_read_config_dword(dev, ent_offset, &dw0); 3232 ent_offset += 4; 3233 3234 /* Entry size field indicates DWORDs after 1st */ 3235 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3236 3237 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3238 goto out; 3239 3240 bei = (dw0 & PCI_EA_BEI) >> 4; 3241 prop = (dw0 & PCI_EA_PP) >> 8; 3242 3243 /* 3244 * If the Property is in the reserved range, try the Secondary 3245 * Property instead. 3246 */ 3247 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3248 prop = (dw0 & PCI_EA_SP) >> 16; 3249 if (prop > PCI_EA_P_BRIDGE_IO) 3250 goto out; 3251 3252 res = pci_ea_get_resource(dev, bei, prop); 3253 if (!res) { 3254 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3255 goto out; 3256 } 3257 3258 flags = pci_ea_flags(dev, prop); 3259 if (!flags) { 3260 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3261 goto out; 3262 } 3263 3264 /* Read Base */ 3265 pci_read_config_dword(dev, ent_offset, &base); 3266 start = (base & PCI_EA_FIELD_MASK); 3267 ent_offset += 4; 3268 3269 /* Read MaxOffset */ 3270 pci_read_config_dword(dev, ent_offset, &max_offset); 3271 ent_offset += 4; 3272 3273 /* Read Base MSBs (if 64-bit entry) */ 3274 if (base & PCI_EA_IS_64) { 3275 u32 base_upper; 3276 3277 pci_read_config_dword(dev, ent_offset, &base_upper); 3278 ent_offset += 4; 3279 3280 flags |= IORESOURCE_MEM_64; 3281 3282 /* entry starts above 32-bit boundary, can't use */ 3283 if (!support_64 && base_upper) 3284 goto out; 3285 3286 if (support_64) 3287 start |= ((u64)base_upper << 32); 3288 } 3289 3290 end = start + (max_offset | 0x03); 3291 3292 /* Read MaxOffset MSBs (if 64-bit entry) */ 3293 if (max_offset & PCI_EA_IS_64) { 3294 u32 max_offset_upper; 3295 3296 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3297 ent_offset += 4; 3298 3299 flags |= IORESOURCE_MEM_64; 3300 3301 /* entry too big, can't use */ 3302 if (!support_64 && max_offset_upper) 3303 goto out; 3304 3305 if (support_64) 3306 end += ((u64)max_offset_upper << 32); 3307 } 3308 3309 if (end < start) { 3310 pci_err(dev, "EA Entry crosses address boundary\n"); 3311 goto out; 3312 } 3313 3314 if (ent_size != ent_offset - offset) { 3315 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3316 ent_size, ent_offset - offset); 3317 goto out; 3318 } 3319 3320 res->name = pci_name(dev); 3321 res->start = start; 3322 res->end = end; 3323 res->flags = flags; 3324 3325 if (bei <= PCI_EA_BEI_BAR5) 3326 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3327 bei, res, prop); 3328 else if (bei == PCI_EA_BEI_ROM) 3329 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3330 res, prop); 3331 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3332 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3333 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3334 else 3335 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3336 bei, res, prop); 3337 3338 out: 3339 return offset + ent_size; 3340 } 3341 3342 /* Enhanced Allocation Initialization */ 3343 void pci_ea_init(struct pci_dev *dev) 3344 { 3345 int ea; 3346 u8 num_ent; 3347 int offset; 3348 int i; 3349 3350 /* find PCI EA capability in list */ 3351 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3352 if (!ea) 3353 return; 3354 3355 /* determine the number of entries */ 3356 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3357 &num_ent); 3358 num_ent &= PCI_EA_NUM_ENT_MASK; 3359 3360 offset = ea + PCI_EA_FIRST_ENT; 3361 3362 /* Skip DWORD 2 for type 1 functions */ 3363 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3364 offset += 4; 3365 3366 /* parse each EA entry */ 3367 for (i = 0; i < num_ent; ++i) 3368 offset = pci_ea_read(dev, offset); 3369 } 3370 3371 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3372 struct pci_cap_saved_state *new_cap) 3373 { 3374 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3375 } 3376 3377 /** 3378 * _pci_add_cap_save_buffer - allocate buffer for saving given 3379 * capability registers 3380 * @dev: the PCI device 3381 * @cap: the capability to allocate the buffer for 3382 * @extended: Standard or Extended capability ID 3383 * @size: requested size of the buffer 3384 */ 3385 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3386 bool extended, unsigned int size) 3387 { 3388 int pos; 3389 struct pci_cap_saved_state *save_state; 3390 3391 if (extended) 3392 pos = pci_find_ext_capability(dev, cap); 3393 else 3394 pos = pci_find_capability(dev, cap); 3395 3396 if (!pos) 3397 return 0; 3398 3399 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3400 if (!save_state) 3401 return -ENOMEM; 3402 3403 save_state->cap.cap_nr = cap; 3404 save_state->cap.cap_extended = extended; 3405 save_state->cap.size = size; 3406 pci_add_saved_cap(dev, save_state); 3407 3408 return 0; 3409 } 3410 3411 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3412 { 3413 return _pci_add_cap_save_buffer(dev, cap, false, size); 3414 } 3415 3416 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3417 { 3418 return _pci_add_cap_save_buffer(dev, cap, true, size); 3419 } 3420 3421 /** 3422 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3423 * @dev: the PCI device 3424 */ 3425 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3426 { 3427 int error; 3428 3429 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3430 PCI_EXP_SAVE_REGS * sizeof(u16)); 3431 if (error) 3432 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3433 3434 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3435 if (error) 3436 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3437 3438 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3439 2 * sizeof(u16)); 3440 if (error) 3441 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3442 3443 pci_allocate_vc_save_buffers(dev); 3444 } 3445 3446 void pci_free_cap_save_buffers(struct pci_dev *dev) 3447 { 3448 struct pci_cap_saved_state *tmp; 3449 struct hlist_node *n; 3450 3451 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3452 kfree(tmp); 3453 } 3454 3455 /** 3456 * pci_configure_ari - enable or disable ARI forwarding 3457 * @dev: the PCI device 3458 * 3459 * If @dev and its upstream bridge both support ARI, enable ARI in the 3460 * bridge. Otherwise, disable ARI in the bridge. 3461 */ 3462 void pci_configure_ari(struct pci_dev *dev) 3463 { 3464 u32 cap; 3465 struct pci_dev *bridge; 3466 3467 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3468 return; 3469 3470 bridge = dev->bus->self; 3471 if (!bridge) 3472 return; 3473 3474 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3475 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3476 return; 3477 3478 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3479 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3480 PCI_EXP_DEVCTL2_ARI); 3481 bridge->ari_enabled = 1; 3482 } else { 3483 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3484 PCI_EXP_DEVCTL2_ARI); 3485 bridge->ari_enabled = 0; 3486 } 3487 } 3488 3489 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3490 { 3491 int pos; 3492 u16 cap, ctrl; 3493 3494 pos = pdev->acs_cap; 3495 if (!pos) 3496 return false; 3497 3498 /* 3499 * Except for egress control, capabilities are either required 3500 * or only required if controllable. Features missing from the 3501 * capability field can therefore be assumed as hard-wired enabled. 3502 */ 3503 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3504 acs_flags &= (cap | PCI_ACS_EC); 3505 3506 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3507 return (ctrl & acs_flags) == acs_flags; 3508 } 3509 3510 /** 3511 * pci_acs_enabled - test ACS against required flags for a given device 3512 * @pdev: device to test 3513 * @acs_flags: required PCI ACS flags 3514 * 3515 * Return true if the device supports the provided flags. Automatically 3516 * filters out flags that are not implemented on multifunction devices. 3517 * 3518 * Note that this interface checks the effective ACS capabilities of the 3519 * device rather than the actual capabilities. For instance, most single 3520 * function endpoints are not required to support ACS because they have no 3521 * opportunity for peer-to-peer access. We therefore return 'true' 3522 * regardless of whether the device exposes an ACS capability. This makes 3523 * it much easier for callers of this function to ignore the actual type 3524 * or topology of the device when testing ACS support. 3525 */ 3526 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3527 { 3528 int ret; 3529 3530 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3531 if (ret >= 0) 3532 return ret > 0; 3533 3534 /* 3535 * Conventional PCI and PCI-X devices never support ACS, either 3536 * effectively or actually. The shared bus topology implies that 3537 * any device on the bus can receive or snoop DMA. 3538 */ 3539 if (!pci_is_pcie(pdev)) 3540 return false; 3541 3542 switch (pci_pcie_type(pdev)) { 3543 /* 3544 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3545 * but since their primary interface is PCI/X, we conservatively 3546 * handle them as we would a non-PCIe device. 3547 */ 3548 case PCI_EXP_TYPE_PCIE_BRIDGE: 3549 /* 3550 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3551 * applicable... must never implement an ACS Extended Capability...". 3552 * This seems arbitrary, but we take a conservative interpretation 3553 * of this statement. 3554 */ 3555 case PCI_EXP_TYPE_PCI_BRIDGE: 3556 case PCI_EXP_TYPE_RC_EC: 3557 return false; 3558 /* 3559 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3560 * implement ACS in order to indicate their peer-to-peer capabilities, 3561 * regardless of whether they are single- or multi-function devices. 3562 */ 3563 case PCI_EXP_TYPE_DOWNSTREAM: 3564 case PCI_EXP_TYPE_ROOT_PORT: 3565 return pci_acs_flags_enabled(pdev, acs_flags); 3566 /* 3567 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3568 * implemented by the remaining PCIe types to indicate peer-to-peer 3569 * capabilities, but only when they are part of a multifunction 3570 * device. The footnote for section 6.12 indicates the specific 3571 * PCIe types included here. 3572 */ 3573 case PCI_EXP_TYPE_ENDPOINT: 3574 case PCI_EXP_TYPE_UPSTREAM: 3575 case PCI_EXP_TYPE_LEG_END: 3576 case PCI_EXP_TYPE_RC_END: 3577 if (!pdev->multifunction) 3578 break; 3579 3580 return pci_acs_flags_enabled(pdev, acs_flags); 3581 } 3582 3583 /* 3584 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3585 * to single function devices with the exception of downstream ports. 3586 */ 3587 return true; 3588 } 3589 3590 /** 3591 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3592 * @start: starting downstream device 3593 * @end: ending upstream device or NULL to search to the root bus 3594 * @acs_flags: required flags 3595 * 3596 * Walk up a device tree from start to end testing PCI ACS support. If 3597 * any step along the way does not support the required flags, return false. 3598 */ 3599 bool pci_acs_path_enabled(struct pci_dev *start, 3600 struct pci_dev *end, u16 acs_flags) 3601 { 3602 struct pci_dev *pdev, *parent = start; 3603 3604 do { 3605 pdev = parent; 3606 3607 if (!pci_acs_enabled(pdev, acs_flags)) 3608 return false; 3609 3610 if (pci_is_root_bus(pdev->bus)) 3611 return (end == NULL); 3612 3613 parent = pdev->bus->self; 3614 } while (pdev != end); 3615 3616 return true; 3617 } 3618 3619 /** 3620 * pci_acs_init - Initialize ACS if hardware supports it 3621 * @dev: the PCI device 3622 */ 3623 void pci_acs_init(struct pci_dev *dev) 3624 { 3625 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3626 3627 /* 3628 * Attempt to enable ACS regardless of capability because some Root 3629 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3630 * the standard ACS capability but still support ACS via those 3631 * quirks. 3632 */ 3633 pci_enable_acs(dev); 3634 } 3635 3636 /** 3637 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3638 * @pdev: PCI device 3639 * @bar: BAR to find 3640 * 3641 * Helper to find the position of the ctrl register for a BAR. 3642 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3643 * Returns -ENOENT if no ctrl register for the BAR could be found. 3644 */ 3645 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3646 { 3647 unsigned int pos, nbars, i; 3648 u32 ctrl; 3649 3650 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3651 if (!pos) 3652 return -ENOTSUPP; 3653 3654 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3655 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3656 PCI_REBAR_CTRL_NBAR_SHIFT; 3657 3658 for (i = 0; i < nbars; i++, pos += 8) { 3659 int bar_idx; 3660 3661 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3662 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3663 if (bar_idx == bar) 3664 return pos; 3665 } 3666 3667 return -ENOENT; 3668 } 3669 3670 /** 3671 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3672 * @pdev: PCI device 3673 * @bar: BAR to query 3674 * 3675 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3676 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3677 */ 3678 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3679 { 3680 int pos; 3681 u32 cap; 3682 3683 pos = pci_rebar_find_pos(pdev, bar); 3684 if (pos < 0) 3685 return 0; 3686 3687 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3688 cap &= PCI_REBAR_CAP_SIZES; 3689 3690 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3691 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3692 bar == 0 && cap == 0x7000) 3693 cap = 0x3f000; 3694 3695 return cap >> 4; 3696 } 3697 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3698 3699 /** 3700 * pci_rebar_get_current_size - get the current size of a BAR 3701 * @pdev: PCI device 3702 * @bar: BAR to set size to 3703 * 3704 * Read the size of a BAR from the resizable BAR config. 3705 * Returns size if found or negative error code. 3706 */ 3707 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3708 { 3709 int pos; 3710 u32 ctrl; 3711 3712 pos = pci_rebar_find_pos(pdev, bar); 3713 if (pos < 0) 3714 return pos; 3715 3716 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3717 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3718 } 3719 3720 /** 3721 * pci_rebar_set_size - set a new size for a BAR 3722 * @pdev: PCI device 3723 * @bar: BAR to set size to 3724 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3725 * 3726 * Set the new size of a BAR as defined in the spec. 3727 * Returns zero if resizing was successful, error code otherwise. 3728 */ 3729 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3730 { 3731 int pos; 3732 u32 ctrl; 3733 3734 pos = pci_rebar_find_pos(pdev, bar); 3735 if (pos < 0) 3736 return pos; 3737 3738 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3739 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3740 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3741 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3742 return 0; 3743 } 3744 3745 /** 3746 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3747 * @dev: the PCI device 3748 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3749 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3750 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3751 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3752 * 3753 * Return 0 if all upstream bridges support AtomicOp routing, egress 3754 * blocking is disabled on all upstream ports, and the root port supports 3755 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3756 * AtomicOp completion), or negative otherwise. 3757 */ 3758 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3759 { 3760 struct pci_bus *bus = dev->bus; 3761 struct pci_dev *bridge; 3762 u32 cap, ctl2; 3763 3764 /* 3765 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3766 * in Device Control 2 is reserved in VFs and the PF value applies 3767 * to all associated VFs. 3768 */ 3769 if (dev->is_virtfn) 3770 return -EINVAL; 3771 3772 if (!pci_is_pcie(dev)) 3773 return -EINVAL; 3774 3775 /* 3776 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3777 * AtomicOp requesters. For now, we only support endpoints as 3778 * requesters and root ports as completers. No endpoints as 3779 * completers, and no peer-to-peer. 3780 */ 3781 3782 switch (pci_pcie_type(dev)) { 3783 case PCI_EXP_TYPE_ENDPOINT: 3784 case PCI_EXP_TYPE_LEG_END: 3785 case PCI_EXP_TYPE_RC_END: 3786 break; 3787 default: 3788 return -EINVAL; 3789 } 3790 3791 while (bus->parent) { 3792 bridge = bus->self; 3793 3794 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3795 3796 switch (pci_pcie_type(bridge)) { 3797 /* Ensure switch ports support AtomicOp routing */ 3798 case PCI_EXP_TYPE_UPSTREAM: 3799 case PCI_EXP_TYPE_DOWNSTREAM: 3800 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3801 return -EINVAL; 3802 break; 3803 3804 /* Ensure root port supports all the sizes we care about */ 3805 case PCI_EXP_TYPE_ROOT_PORT: 3806 if ((cap & cap_mask) != cap_mask) 3807 return -EINVAL; 3808 break; 3809 } 3810 3811 /* Ensure upstream ports don't block AtomicOps on egress */ 3812 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3813 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3814 &ctl2); 3815 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3816 return -EINVAL; 3817 } 3818 3819 bus = bus->parent; 3820 } 3821 3822 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3823 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3824 return 0; 3825 } 3826 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3827 3828 /** 3829 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3830 * @dev: the PCI device 3831 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3832 * 3833 * Perform INTx swizzling for a device behind one level of bridge. This is 3834 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3835 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3836 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3837 * the PCI Express Base Specification, Revision 2.1) 3838 */ 3839 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3840 { 3841 int slot; 3842 3843 if (pci_ari_enabled(dev->bus)) 3844 slot = 0; 3845 else 3846 slot = PCI_SLOT(dev->devfn); 3847 3848 return (((pin - 1) + slot) % 4) + 1; 3849 } 3850 3851 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3852 { 3853 u8 pin; 3854 3855 pin = dev->pin; 3856 if (!pin) 3857 return -1; 3858 3859 while (!pci_is_root_bus(dev->bus)) { 3860 pin = pci_swizzle_interrupt_pin(dev, pin); 3861 dev = dev->bus->self; 3862 } 3863 *bridge = dev; 3864 return pin; 3865 } 3866 3867 /** 3868 * pci_common_swizzle - swizzle INTx all the way to root bridge 3869 * @dev: the PCI device 3870 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3871 * 3872 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3873 * bridges all the way up to a PCI root bus. 3874 */ 3875 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3876 { 3877 u8 pin = *pinp; 3878 3879 while (!pci_is_root_bus(dev->bus)) { 3880 pin = pci_swizzle_interrupt_pin(dev, pin); 3881 dev = dev->bus->self; 3882 } 3883 *pinp = pin; 3884 return PCI_SLOT(dev->devfn); 3885 } 3886 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3887 3888 /** 3889 * pci_release_region - Release a PCI bar 3890 * @pdev: PCI device whose resources were previously reserved by 3891 * pci_request_region() 3892 * @bar: BAR to release 3893 * 3894 * Releases the PCI I/O and memory resources previously reserved by a 3895 * successful call to pci_request_region(). Call this function only 3896 * after all use of the PCI regions has ceased. 3897 */ 3898 void pci_release_region(struct pci_dev *pdev, int bar) 3899 { 3900 struct pci_devres *dr; 3901 3902 if (pci_resource_len(pdev, bar) == 0) 3903 return; 3904 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3905 release_region(pci_resource_start(pdev, bar), 3906 pci_resource_len(pdev, bar)); 3907 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3908 release_mem_region(pci_resource_start(pdev, bar), 3909 pci_resource_len(pdev, bar)); 3910 3911 dr = find_pci_dr(pdev); 3912 if (dr) 3913 dr->region_mask &= ~(1 << bar); 3914 } 3915 EXPORT_SYMBOL(pci_release_region); 3916 3917 /** 3918 * __pci_request_region - Reserved PCI I/O and memory resource 3919 * @pdev: PCI device whose resources are to be reserved 3920 * @bar: BAR to be reserved 3921 * @res_name: Name to be associated with resource. 3922 * @exclusive: whether the region access is exclusive or not 3923 * 3924 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3925 * being reserved by owner @res_name. Do not access any 3926 * address inside the PCI regions unless this call returns 3927 * successfully. 3928 * 3929 * If @exclusive is set, then the region is marked so that userspace 3930 * is explicitly not allowed to map the resource via /dev/mem or 3931 * sysfs MMIO access. 3932 * 3933 * Returns 0 on success, or %EBUSY on error. A warning 3934 * message is also printed on failure. 3935 */ 3936 static int __pci_request_region(struct pci_dev *pdev, int bar, 3937 const char *res_name, int exclusive) 3938 { 3939 struct pci_devres *dr; 3940 3941 if (pci_resource_len(pdev, bar) == 0) 3942 return 0; 3943 3944 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3945 if (!request_region(pci_resource_start(pdev, bar), 3946 pci_resource_len(pdev, bar), res_name)) 3947 goto err_out; 3948 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3949 if (!__request_mem_region(pci_resource_start(pdev, bar), 3950 pci_resource_len(pdev, bar), res_name, 3951 exclusive)) 3952 goto err_out; 3953 } 3954 3955 dr = find_pci_dr(pdev); 3956 if (dr) 3957 dr->region_mask |= 1 << bar; 3958 3959 return 0; 3960 3961 err_out: 3962 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3963 &pdev->resource[bar]); 3964 return -EBUSY; 3965 } 3966 3967 /** 3968 * pci_request_region - Reserve PCI I/O and memory resource 3969 * @pdev: PCI device whose resources are to be reserved 3970 * @bar: BAR to be reserved 3971 * @res_name: Name to be associated with resource 3972 * 3973 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3974 * being reserved by owner @res_name. Do not access any 3975 * address inside the PCI regions unless this call returns 3976 * successfully. 3977 * 3978 * Returns 0 on success, or %EBUSY on error. A warning 3979 * message is also printed on failure. 3980 */ 3981 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3982 { 3983 return __pci_request_region(pdev, bar, res_name, 0); 3984 } 3985 EXPORT_SYMBOL(pci_request_region); 3986 3987 /** 3988 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3989 * @pdev: PCI device whose resources were previously reserved 3990 * @bars: Bitmask of BARs to be released 3991 * 3992 * Release selected PCI I/O and memory resources previously reserved. 3993 * Call this function only after all use of the PCI regions has ceased. 3994 */ 3995 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3996 { 3997 int i; 3998 3999 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4000 if (bars & (1 << i)) 4001 pci_release_region(pdev, i); 4002 } 4003 EXPORT_SYMBOL(pci_release_selected_regions); 4004 4005 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4006 const char *res_name, int excl) 4007 { 4008 int i; 4009 4010 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4011 if (bars & (1 << i)) 4012 if (__pci_request_region(pdev, i, res_name, excl)) 4013 goto err_out; 4014 return 0; 4015 4016 err_out: 4017 while (--i >= 0) 4018 if (bars & (1 << i)) 4019 pci_release_region(pdev, i); 4020 4021 return -EBUSY; 4022 } 4023 4024 4025 /** 4026 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4027 * @pdev: PCI device whose resources are to be reserved 4028 * @bars: Bitmask of BARs to be requested 4029 * @res_name: Name to be associated with resource 4030 */ 4031 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4032 const char *res_name) 4033 { 4034 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4035 } 4036 EXPORT_SYMBOL(pci_request_selected_regions); 4037 4038 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4039 const char *res_name) 4040 { 4041 return __pci_request_selected_regions(pdev, bars, res_name, 4042 IORESOURCE_EXCLUSIVE); 4043 } 4044 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4045 4046 /** 4047 * pci_release_regions - Release reserved PCI I/O and memory resources 4048 * @pdev: PCI device whose resources were previously reserved by 4049 * pci_request_regions() 4050 * 4051 * Releases all PCI I/O and memory resources previously reserved by a 4052 * successful call to pci_request_regions(). Call this function only 4053 * after all use of the PCI regions has ceased. 4054 */ 4055 4056 void pci_release_regions(struct pci_dev *pdev) 4057 { 4058 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4059 } 4060 EXPORT_SYMBOL(pci_release_regions); 4061 4062 /** 4063 * pci_request_regions - Reserve PCI I/O and memory resources 4064 * @pdev: PCI device whose resources are to be reserved 4065 * @res_name: Name to be associated with resource. 4066 * 4067 * Mark all PCI regions associated with PCI device @pdev as 4068 * being reserved by owner @res_name. Do not access any 4069 * address inside the PCI regions unless this call returns 4070 * successfully. 4071 * 4072 * Returns 0 on success, or %EBUSY on error. A warning 4073 * message is also printed on failure. 4074 */ 4075 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4076 { 4077 return pci_request_selected_regions(pdev, 4078 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4079 } 4080 EXPORT_SYMBOL(pci_request_regions); 4081 4082 /** 4083 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4084 * @pdev: PCI device whose resources are to be reserved 4085 * @res_name: Name to be associated with resource. 4086 * 4087 * Mark all PCI regions associated with PCI device @pdev as being reserved 4088 * by owner @res_name. Do not access any address inside the PCI regions 4089 * unless this call returns successfully. 4090 * 4091 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4092 * and the sysfs MMIO access will not be allowed. 4093 * 4094 * Returns 0 on success, or %EBUSY on error. A warning message is also 4095 * printed on failure. 4096 */ 4097 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4098 { 4099 return pci_request_selected_regions_exclusive(pdev, 4100 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4101 } 4102 EXPORT_SYMBOL(pci_request_regions_exclusive); 4103 4104 /* 4105 * Record the PCI IO range (expressed as CPU physical address + size). 4106 * Return a negative value if an error has occurred, zero otherwise 4107 */ 4108 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4109 resource_size_t size) 4110 { 4111 int ret = 0; 4112 #ifdef PCI_IOBASE 4113 struct logic_pio_hwaddr *range; 4114 4115 if (!size || addr + size < addr) 4116 return -EINVAL; 4117 4118 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4119 if (!range) 4120 return -ENOMEM; 4121 4122 range->fwnode = fwnode; 4123 range->size = size; 4124 range->hw_start = addr; 4125 range->flags = LOGIC_PIO_CPU_MMIO; 4126 4127 ret = logic_pio_register_range(range); 4128 if (ret) 4129 kfree(range); 4130 4131 /* Ignore duplicates due to deferred probing */ 4132 if (ret == -EEXIST) 4133 ret = 0; 4134 #endif 4135 4136 return ret; 4137 } 4138 4139 phys_addr_t pci_pio_to_address(unsigned long pio) 4140 { 4141 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4142 4143 #ifdef PCI_IOBASE 4144 if (pio >= MMIO_UPPER_LIMIT) 4145 return address; 4146 4147 address = logic_pio_to_hwaddr(pio); 4148 #endif 4149 4150 return address; 4151 } 4152 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4153 4154 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4155 { 4156 #ifdef PCI_IOBASE 4157 return logic_pio_trans_cpuaddr(address); 4158 #else 4159 if (address > IO_SPACE_LIMIT) 4160 return (unsigned long)-1; 4161 4162 return (unsigned long) address; 4163 #endif 4164 } 4165 4166 /** 4167 * pci_remap_iospace - Remap the memory mapped I/O space 4168 * @res: Resource describing the I/O space 4169 * @phys_addr: physical address of range to be mapped 4170 * 4171 * Remap the memory mapped I/O space described by the @res and the CPU 4172 * physical address @phys_addr into virtual address space. Only 4173 * architectures that have memory mapped IO functions defined (and the 4174 * PCI_IOBASE value defined) should call this function. 4175 */ 4176 #ifndef pci_remap_iospace 4177 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4178 { 4179 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4180 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4181 4182 if (!(res->flags & IORESOURCE_IO)) 4183 return -EINVAL; 4184 4185 if (res->end > IO_SPACE_LIMIT) 4186 return -EINVAL; 4187 4188 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4189 pgprot_device(PAGE_KERNEL)); 4190 #else 4191 /* 4192 * This architecture does not have memory mapped I/O space, 4193 * so this function should never be called 4194 */ 4195 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4196 return -ENODEV; 4197 #endif 4198 } 4199 EXPORT_SYMBOL(pci_remap_iospace); 4200 #endif 4201 4202 /** 4203 * pci_unmap_iospace - Unmap the memory mapped I/O space 4204 * @res: resource to be unmapped 4205 * 4206 * Unmap the CPU virtual address @res from virtual address space. Only 4207 * architectures that have memory mapped IO functions defined (and the 4208 * PCI_IOBASE value defined) should call this function. 4209 */ 4210 void pci_unmap_iospace(struct resource *res) 4211 { 4212 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4213 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4214 4215 vunmap_range(vaddr, vaddr + resource_size(res)); 4216 #endif 4217 } 4218 EXPORT_SYMBOL(pci_unmap_iospace); 4219 4220 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4221 { 4222 struct resource **res = ptr; 4223 4224 pci_unmap_iospace(*res); 4225 } 4226 4227 /** 4228 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4229 * @dev: Generic device to remap IO address for 4230 * @res: Resource describing the I/O space 4231 * @phys_addr: physical address of range to be mapped 4232 * 4233 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4234 * detach. 4235 */ 4236 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4237 phys_addr_t phys_addr) 4238 { 4239 const struct resource **ptr; 4240 int error; 4241 4242 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4243 if (!ptr) 4244 return -ENOMEM; 4245 4246 error = pci_remap_iospace(res, phys_addr); 4247 if (error) { 4248 devres_free(ptr); 4249 } else { 4250 *ptr = res; 4251 devres_add(dev, ptr); 4252 } 4253 4254 return error; 4255 } 4256 EXPORT_SYMBOL(devm_pci_remap_iospace); 4257 4258 /** 4259 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4260 * @dev: Generic device to remap IO address for 4261 * @offset: Resource address to map 4262 * @size: Size of map 4263 * 4264 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4265 * detach. 4266 */ 4267 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4268 resource_size_t offset, 4269 resource_size_t size) 4270 { 4271 void __iomem **ptr, *addr; 4272 4273 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4274 if (!ptr) 4275 return NULL; 4276 4277 addr = pci_remap_cfgspace(offset, size); 4278 if (addr) { 4279 *ptr = addr; 4280 devres_add(dev, ptr); 4281 } else 4282 devres_free(ptr); 4283 4284 return addr; 4285 } 4286 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4287 4288 /** 4289 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4290 * @dev: generic device to handle the resource for 4291 * @res: configuration space resource to be handled 4292 * 4293 * Checks that a resource is a valid memory region, requests the memory 4294 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4295 * proper PCI configuration space memory attributes are guaranteed. 4296 * 4297 * All operations are managed and will be undone on driver detach. 4298 * 4299 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4300 * on failure. Usage example:: 4301 * 4302 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4303 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4304 * if (IS_ERR(base)) 4305 * return PTR_ERR(base); 4306 */ 4307 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4308 struct resource *res) 4309 { 4310 resource_size_t size; 4311 const char *name; 4312 void __iomem *dest_ptr; 4313 4314 BUG_ON(!dev); 4315 4316 if (!res || resource_type(res) != IORESOURCE_MEM) { 4317 dev_err(dev, "invalid resource\n"); 4318 return IOMEM_ERR_PTR(-EINVAL); 4319 } 4320 4321 size = resource_size(res); 4322 4323 if (res->name) 4324 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4325 res->name); 4326 else 4327 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4328 if (!name) 4329 return IOMEM_ERR_PTR(-ENOMEM); 4330 4331 if (!devm_request_mem_region(dev, res->start, size, name)) { 4332 dev_err(dev, "can't request region for resource %pR\n", res); 4333 return IOMEM_ERR_PTR(-EBUSY); 4334 } 4335 4336 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4337 if (!dest_ptr) { 4338 dev_err(dev, "ioremap failed for resource %pR\n", res); 4339 devm_release_mem_region(dev, res->start, size); 4340 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4341 } 4342 4343 return dest_ptr; 4344 } 4345 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4346 4347 static void __pci_set_master(struct pci_dev *dev, bool enable) 4348 { 4349 u16 old_cmd, cmd; 4350 4351 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4352 if (enable) 4353 cmd = old_cmd | PCI_COMMAND_MASTER; 4354 else 4355 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4356 if (cmd != old_cmd) { 4357 pci_dbg(dev, "%s bus mastering\n", 4358 enable ? "enabling" : "disabling"); 4359 pci_write_config_word(dev, PCI_COMMAND, cmd); 4360 } 4361 dev->is_busmaster = enable; 4362 } 4363 4364 /** 4365 * pcibios_setup - process "pci=" kernel boot arguments 4366 * @str: string used to pass in "pci=" kernel boot arguments 4367 * 4368 * Process kernel boot arguments. This is the default implementation. 4369 * Architecture specific implementations can override this as necessary. 4370 */ 4371 char * __weak __init pcibios_setup(char *str) 4372 { 4373 return str; 4374 } 4375 4376 /** 4377 * pcibios_set_master - enable PCI bus-mastering for device dev 4378 * @dev: the PCI device to enable 4379 * 4380 * Enables PCI bus-mastering for the device. This is the default 4381 * implementation. Architecture specific implementations can override 4382 * this if necessary. 4383 */ 4384 void __weak pcibios_set_master(struct pci_dev *dev) 4385 { 4386 u8 lat; 4387 4388 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4389 if (pci_is_pcie(dev)) 4390 return; 4391 4392 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4393 if (lat < 16) 4394 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4395 else if (lat > pcibios_max_latency) 4396 lat = pcibios_max_latency; 4397 else 4398 return; 4399 4400 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4401 } 4402 4403 /** 4404 * pci_set_master - enables bus-mastering for device dev 4405 * @dev: the PCI device to enable 4406 * 4407 * Enables bus-mastering on the device and calls pcibios_set_master() 4408 * to do the needed arch specific settings. 4409 */ 4410 void pci_set_master(struct pci_dev *dev) 4411 { 4412 __pci_set_master(dev, true); 4413 pcibios_set_master(dev); 4414 } 4415 EXPORT_SYMBOL(pci_set_master); 4416 4417 /** 4418 * pci_clear_master - disables bus-mastering for device dev 4419 * @dev: the PCI device to disable 4420 */ 4421 void pci_clear_master(struct pci_dev *dev) 4422 { 4423 __pci_set_master(dev, false); 4424 } 4425 EXPORT_SYMBOL(pci_clear_master); 4426 4427 /** 4428 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4429 * @dev: the PCI device for which MWI is to be enabled 4430 * 4431 * Helper function for pci_set_mwi. 4432 * Originally copied from drivers/net/acenic.c. 4433 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4434 * 4435 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4436 */ 4437 int pci_set_cacheline_size(struct pci_dev *dev) 4438 { 4439 u8 cacheline_size; 4440 4441 if (!pci_cache_line_size) 4442 return -EINVAL; 4443 4444 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4445 equal to or multiple of the right value. */ 4446 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4447 if (cacheline_size >= pci_cache_line_size && 4448 (cacheline_size % pci_cache_line_size) == 0) 4449 return 0; 4450 4451 /* Write the correct value. */ 4452 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4453 /* Read it back. */ 4454 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4455 if (cacheline_size == pci_cache_line_size) 4456 return 0; 4457 4458 pci_dbg(dev, "cache line size of %d is not supported\n", 4459 pci_cache_line_size << 2); 4460 4461 return -EINVAL; 4462 } 4463 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4464 4465 /** 4466 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4467 * @dev: the PCI device for which MWI is enabled 4468 * 4469 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4470 * 4471 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4472 */ 4473 int pci_set_mwi(struct pci_dev *dev) 4474 { 4475 #ifdef PCI_DISABLE_MWI 4476 return 0; 4477 #else 4478 int rc; 4479 u16 cmd; 4480 4481 rc = pci_set_cacheline_size(dev); 4482 if (rc) 4483 return rc; 4484 4485 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4486 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4487 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4488 cmd |= PCI_COMMAND_INVALIDATE; 4489 pci_write_config_word(dev, PCI_COMMAND, cmd); 4490 } 4491 return 0; 4492 #endif 4493 } 4494 EXPORT_SYMBOL(pci_set_mwi); 4495 4496 /** 4497 * pcim_set_mwi - a device-managed pci_set_mwi() 4498 * @dev: the PCI device for which MWI is enabled 4499 * 4500 * Managed pci_set_mwi(). 4501 * 4502 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4503 */ 4504 int pcim_set_mwi(struct pci_dev *dev) 4505 { 4506 struct pci_devres *dr; 4507 4508 dr = find_pci_dr(dev); 4509 if (!dr) 4510 return -ENOMEM; 4511 4512 dr->mwi = 1; 4513 return pci_set_mwi(dev); 4514 } 4515 EXPORT_SYMBOL(pcim_set_mwi); 4516 4517 /** 4518 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4519 * @dev: the PCI device for which MWI is enabled 4520 * 4521 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4522 * Callers are not required to check the return value. 4523 * 4524 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4525 */ 4526 int pci_try_set_mwi(struct pci_dev *dev) 4527 { 4528 #ifdef PCI_DISABLE_MWI 4529 return 0; 4530 #else 4531 return pci_set_mwi(dev); 4532 #endif 4533 } 4534 EXPORT_SYMBOL(pci_try_set_mwi); 4535 4536 /** 4537 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4538 * @dev: the PCI device to disable 4539 * 4540 * Disables PCI Memory-Write-Invalidate transaction on the device 4541 */ 4542 void pci_clear_mwi(struct pci_dev *dev) 4543 { 4544 #ifndef PCI_DISABLE_MWI 4545 u16 cmd; 4546 4547 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4548 if (cmd & PCI_COMMAND_INVALIDATE) { 4549 cmd &= ~PCI_COMMAND_INVALIDATE; 4550 pci_write_config_word(dev, PCI_COMMAND, cmd); 4551 } 4552 #endif 4553 } 4554 EXPORT_SYMBOL(pci_clear_mwi); 4555 4556 /** 4557 * pci_disable_parity - disable parity checking for device 4558 * @dev: the PCI device to operate on 4559 * 4560 * Disable parity checking for device @dev 4561 */ 4562 void pci_disable_parity(struct pci_dev *dev) 4563 { 4564 u16 cmd; 4565 4566 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4567 if (cmd & PCI_COMMAND_PARITY) { 4568 cmd &= ~PCI_COMMAND_PARITY; 4569 pci_write_config_word(dev, PCI_COMMAND, cmd); 4570 } 4571 } 4572 4573 /** 4574 * pci_intx - enables/disables PCI INTx for device dev 4575 * @pdev: the PCI device to operate on 4576 * @enable: boolean: whether to enable or disable PCI INTx 4577 * 4578 * Enables/disables PCI INTx for device @pdev 4579 */ 4580 void pci_intx(struct pci_dev *pdev, int enable) 4581 { 4582 u16 pci_command, new; 4583 4584 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4585 4586 if (enable) 4587 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4588 else 4589 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4590 4591 if (new != pci_command) { 4592 struct pci_devres *dr; 4593 4594 pci_write_config_word(pdev, PCI_COMMAND, new); 4595 4596 dr = find_pci_dr(pdev); 4597 if (dr && !dr->restore_intx) { 4598 dr->restore_intx = 1; 4599 dr->orig_intx = !enable; 4600 } 4601 } 4602 } 4603 EXPORT_SYMBOL_GPL(pci_intx); 4604 4605 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4606 { 4607 struct pci_bus *bus = dev->bus; 4608 bool mask_updated = true; 4609 u32 cmd_status_dword; 4610 u16 origcmd, newcmd; 4611 unsigned long flags; 4612 bool irq_pending; 4613 4614 /* 4615 * We do a single dword read to retrieve both command and status. 4616 * Document assumptions that make this possible. 4617 */ 4618 BUILD_BUG_ON(PCI_COMMAND % 4); 4619 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4620 4621 raw_spin_lock_irqsave(&pci_lock, flags); 4622 4623 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4624 4625 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4626 4627 /* 4628 * Check interrupt status register to see whether our device 4629 * triggered the interrupt (when masking) or the next IRQ is 4630 * already pending (when unmasking). 4631 */ 4632 if (mask != irq_pending) { 4633 mask_updated = false; 4634 goto done; 4635 } 4636 4637 origcmd = cmd_status_dword; 4638 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4639 if (mask) 4640 newcmd |= PCI_COMMAND_INTX_DISABLE; 4641 if (newcmd != origcmd) 4642 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4643 4644 done: 4645 raw_spin_unlock_irqrestore(&pci_lock, flags); 4646 4647 return mask_updated; 4648 } 4649 4650 /** 4651 * pci_check_and_mask_intx - mask INTx on pending interrupt 4652 * @dev: the PCI device to operate on 4653 * 4654 * Check if the device dev has its INTx line asserted, mask it and return 4655 * true in that case. False is returned if no interrupt was pending. 4656 */ 4657 bool pci_check_and_mask_intx(struct pci_dev *dev) 4658 { 4659 return pci_check_and_set_intx_mask(dev, true); 4660 } 4661 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4662 4663 /** 4664 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4665 * @dev: the PCI device to operate on 4666 * 4667 * Check if the device dev has its INTx line asserted, unmask it if not and 4668 * return true. False is returned and the mask remains active if there was 4669 * still an interrupt pending. 4670 */ 4671 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4672 { 4673 return pci_check_and_set_intx_mask(dev, false); 4674 } 4675 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4676 4677 /** 4678 * pci_wait_for_pending_transaction - wait for pending transaction 4679 * @dev: the PCI device to operate on 4680 * 4681 * Return 0 if transaction is pending 1 otherwise. 4682 */ 4683 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4684 { 4685 if (!pci_is_pcie(dev)) 4686 return 1; 4687 4688 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4689 PCI_EXP_DEVSTA_TRPND); 4690 } 4691 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4692 4693 /** 4694 * pcie_flr - initiate a PCIe function level reset 4695 * @dev: device to reset 4696 * 4697 * Initiate a function level reset unconditionally on @dev without 4698 * checking any flags and DEVCAP 4699 */ 4700 int pcie_flr(struct pci_dev *dev) 4701 { 4702 if (!pci_wait_for_pending_transaction(dev)) 4703 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4704 4705 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4706 4707 if (dev->imm_ready) 4708 return 0; 4709 4710 /* 4711 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4712 * 100ms, but may silently discard requests while the FLR is in 4713 * progress. Wait 100ms before trying to access the device. 4714 */ 4715 msleep(100); 4716 4717 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4718 } 4719 EXPORT_SYMBOL_GPL(pcie_flr); 4720 4721 /** 4722 * pcie_reset_flr - initiate a PCIe function level reset 4723 * @dev: device to reset 4724 * @probe: if true, return 0 if device can be reset this way 4725 * 4726 * Initiate a function level reset on @dev. 4727 */ 4728 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4729 { 4730 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4731 return -ENOTTY; 4732 4733 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4734 return -ENOTTY; 4735 4736 if (probe) 4737 return 0; 4738 4739 return pcie_flr(dev); 4740 } 4741 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4742 4743 static int pci_af_flr(struct pci_dev *dev, bool probe) 4744 { 4745 int pos; 4746 u8 cap; 4747 4748 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4749 if (!pos) 4750 return -ENOTTY; 4751 4752 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4753 return -ENOTTY; 4754 4755 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4756 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4757 return -ENOTTY; 4758 4759 if (probe) 4760 return 0; 4761 4762 /* 4763 * Wait for Transaction Pending bit to clear. A word-aligned test 4764 * is used, so we use the control offset rather than status and shift 4765 * the test bit to match. 4766 */ 4767 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4768 PCI_AF_STATUS_TP << 8)) 4769 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4770 4771 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4772 4773 if (dev->imm_ready) 4774 return 0; 4775 4776 /* 4777 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4778 * updated 27 July 2006; a device must complete an FLR within 4779 * 100ms, but may silently discard requests while the FLR is in 4780 * progress. Wait 100ms before trying to access the device. 4781 */ 4782 msleep(100); 4783 4784 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4785 } 4786 4787 /** 4788 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4789 * @dev: Device to reset. 4790 * @probe: if true, return 0 if the device can be reset this way. 4791 * 4792 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4793 * unset, it will be reinitialized internally when going from PCI_D3hot to 4794 * PCI_D0. If that's the case and the device is not in a low-power state 4795 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4796 * 4797 * NOTE: This causes the caller to sleep for twice the device power transition 4798 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4799 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4800 * Moreover, only devices in D0 can be reset by this function. 4801 */ 4802 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4803 { 4804 u16 csr; 4805 4806 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4807 return -ENOTTY; 4808 4809 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4810 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4811 return -ENOTTY; 4812 4813 if (probe) 4814 return 0; 4815 4816 if (dev->current_state != PCI_D0) 4817 return -EINVAL; 4818 4819 csr &= ~PCI_PM_CTRL_STATE_MASK; 4820 csr |= PCI_D3hot; 4821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4822 pci_dev_d3_sleep(dev); 4823 4824 csr &= ~PCI_PM_CTRL_STATE_MASK; 4825 csr |= PCI_D0; 4826 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4827 pci_dev_d3_sleep(dev); 4828 4829 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4830 } 4831 4832 /** 4833 * pcie_wait_for_link_delay - Wait until link is active or inactive 4834 * @pdev: Bridge device 4835 * @active: waiting for active or inactive? 4836 * @delay: Delay to wait after link has become active (in ms) 4837 * 4838 * Use this to wait till link becomes active or inactive. 4839 */ 4840 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4841 int delay) 4842 { 4843 int timeout = 1000; 4844 bool ret; 4845 u16 lnk_status; 4846 4847 /* 4848 * Some controllers might not implement link active reporting. In this 4849 * case, we wait for 1000 ms + any delay requested by the caller. 4850 */ 4851 if (!pdev->link_active_reporting) { 4852 msleep(timeout + delay); 4853 return true; 4854 } 4855 4856 /* 4857 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4858 * after which we should expect an link active if the reset was 4859 * successful. If so, software must wait a minimum 100ms before sending 4860 * configuration requests to devices downstream this port. 4861 * 4862 * If the link fails to activate, either the device was physically 4863 * removed or the link is permanently failed. 4864 */ 4865 if (active) 4866 msleep(20); 4867 for (;;) { 4868 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4869 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4870 if (ret == active) 4871 break; 4872 if (timeout <= 0) 4873 break; 4874 msleep(10); 4875 timeout -= 10; 4876 } 4877 if (active && ret) 4878 msleep(delay); 4879 4880 return ret == active; 4881 } 4882 4883 /** 4884 * pcie_wait_for_link - Wait until link is active or inactive 4885 * @pdev: Bridge device 4886 * @active: waiting for active or inactive? 4887 * 4888 * Use this to wait till link becomes active or inactive. 4889 */ 4890 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4891 { 4892 return pcie_wait_for_link_delay(pdev, active, 100); 4893 } 4894 4895 /* 4896 * Find maximum D3cold delay required by all the devices on the bus. The 4897 * spec says 100 ms, but firmware can lower it and we allow drivers to 4898 * increase it as well. 4899 * 4900 * Called with @pci_bus_sem locked for reading. 4901 */ 4902 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4903 { 4904 const struct pci_dev *pdev; 4905 int min_delay = 100; 4906 int max_delay = 0; 4907 4908 list_for_each_entry(pdev, &bus->devices, bus_list) { 4909 if (pdev->d3cold_delay < min_delay) 4910 min_delay = pdev->d3cold_delay; 4911 if (pdev->d3cold_delay > max_delay) 4912 max_delay = pdev->d3cold_delay; 4913 } 4914 4915 return max(min_delay, max_delay); 4916 } 4917 4918 /** 4919 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4920 * @dev: PCI bridge 4921 * 4922 * Handle necessary delays before access to the devices on the secondary 4923 * side of the bridge are permitted after D3cold to D0 transition. 4924 * 4925 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4926 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4927 * 4.3.2. 4928 */ 4929 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4930 { 4931 struct pci_dev *child; 4932 int delay; 4933 4934 if (pci_dev_is_disconnected(dev)) 4935 return; 4936 4937 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4938 return; 4939 4940 down_read(&pci_bus_sem); 4941 4942 /* 4943 * We only deal with devices that are present currently on the bus. 4944 * For any hot-added devices the access delay is handled in pciehp 4945 * board_added(). In case of ACPI hotplug the firmware is expected 4946 * to configure the devices before OS is notified. 4947 */ 4948 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4949 up_read(&pci_bus_sem); 4950 return; 4951 } 4952 4953 /* Take d3cold_delay requirements into account */ 4954 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4955 if (!delay) { 4956 up_read(&pci_bus_sem); 4957 return; 4958 } 4959 4960 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4961 bus_list); 4962 up_read(&pci_bus_sem); 4963 4964 /* 4965 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4966 * accessing the device after reset (that is 1000 ms + 100 ms). In 4967 * practice this should not be needed because we don't do power 4968 * management for them (see pci_bridge_d3_possible()). 4969 */ 4970 if (!pci_is_pcie(dev)) { 4971 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4972 msleep(1000 + delay); 4973 return; 4974 } 4975 4976 /* 4977 * For PCIe downstream and root ports that do not support speeds 4978 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4979 * speeds (gen3) we need to wait first for the data link layer to 4980 * become active. 4981 * 4982 * However, 100 ms is the minimum and the PCIe spec says the 4983 * software must allow at least 1s before it can determine that the 4984 * device that did not respond is a broken device. There is 4985 * evidence that 100 ms is not always enough, for example certain 4986 * Titan Ridge xHCI controller does not always respond to 4987 * configuration requests if we only wait for 100 ms (see 4988 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4989 * 4990 * Therefore we wait for 100 ms and check for the device presence. 4991 * If it is still not present give it an additional 100 ms. 4992 */ 4993 if (!pcie_downstream_port(dev)) 4994 return; 4995 4996 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4997 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4998 msleep(delay); 4999 } else { 5000 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5001 delay); 5002 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5003 /* Did not train, no need to wait any further */ 5004 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5005 return; 5006 } 5007 } 5008 5009 if (!pci_device_is_present(child)) { 5010 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 5011 msleep(delay); 5012 } 5013 } 5014 5015 void pci_reset_secondary_bus(struct pci_dev *dev) 5016 { 5017 u16 ctrl; 5018 5019 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5020 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5021 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5022 5023 /* 5024 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5025 * this to 2ms to ensure that we meet the minimum requirement. 5026 */ 5027 msleep(2); 5028 5029 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5030 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5031 5032 /* 5033 * Trhfa for conventional PCI is 2^25 clock cycles. 5034 * Assuming a minimum 33MHz clock this results in a 1s 5035 * delay before we can consider subordinate devices to 5036 * be re-initialized. PCIe has some ways to shorten this, 5037 * but we don't make use of them yet. 5038 */ 5039 ssleep(1); 5040 } 5041 5042 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5043 { 5044 pci_reset_secondary_bus(dev); 5045 } 5046 5047 /** 5048 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5049 * @dev: Bridge device 5050 * 5051 * Use the bridge control register to assert reset on the secondary bus. 5052 * Devices on the secondary bus are left in power-on state. 5053 */ 5054 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5055 { 5056 pcibios_reset_secondary_bus(dev); 5057 5058 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 5059 } 5060 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5061 5062 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5063 { 5064 struct pci_dev *pdev; 5065 5066 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5067 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5068 return -ENOTTY; 5069 5070 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5071 if (pdev != dev) 5072 return -ENOTTY; 5073 5074 if (probe) 5075 return 0; 5076 5077 return pci_bridge_secondary_bus_reset(dev->bus->self); 5078 } 5079 5080 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5081 { 5082 int rc = -ENOTTY; 5083 5084 if (!hotplug || !try_module_get(hotplug->owner)) 5085 return rc; 5086 5087 if (hotplug->ops->reset_slot) 5088 rc = hotplug->ops->reset_slot(hotplug, probe); 5089 5090 module_put(hotplug->owner); 5091 5092 return rc; 5093 } 5094 5095 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5096 { 5097 if (dev->multifunction || dev->subordinate || !dev->slot || 5098 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5099 return -ENOTTY; 5100 5101 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5102 } 5103 5104 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5105 { 5106 int rc; 5107 5108 rc = pci_dev_reset_slot_function(dev, probe); 5109 if (rc != -ENOTTY) 5110 return rc; 5111 return pci_parent_bus_reset(dev, probe); 5112 } 5113 5114 void pci_dev_lock(struct pci_dev *dev) 5115 { 5116 pci_cfg_access_lock(dev); 5117 /* block PM suspend, driver probe, etc. */ 5118 device_lock(&dev->dev); 5119 } 5120 EXPORT_SYMBOL_GPL(pci_dev_lock); 5121 5122 /* Return 1 on successful lock, 0 on contention */ 5123 int pci_dev_trylock(struct pci_dev *dev) 5124 { 5125 if (pci_cfg_access_trylock(dev)) { 5126 if (device_trylock(&dev->dev)) 5127 return 1; 5128 pci_cfg_access_unlock(dev); 5129 } 5130 5131 return 0; 5132 } 5133 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5134 5135 void pci_dev_unlock(struct pci_dev *dev) 5136 { 5137 device_unlock(&dev->dev); 5138 pci_cfg_access_unlock(dev); 5139 } 5140 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5141 5142 static void pci_dev_save_and_disable(struct pci_dev *dev) 5143 { 5144 const struct pci_error_handlers *err_handler = 5145 dev->driver ? dev->driver->err_handler : NULL; 5146 5147 /* 5148 * dev->driver->err_handler->reset_prepare() is protected against 5149 * races with ->remove() by the device lock, which must be held by 5150 * the caller. 5151 */ 5152 if (err_handler && err_handler->reset_prepare) 5153 err_handler->reset_prepare(dev); 5154 5155 /* 5156 * Wake-up device prior to save. PM registers default to D0 after 5157 * reset and a simple register restore doesn't reliably return 5158 * to a non-D0 state anyway. 5159 */ 5160 pci_set_power_state(dev, PCI_D0); 5161 5162 pci_save_state(dev); 5163 /* 5164 * Disable the device by clearing the Command register, except for 5165 * INTx-disable which is set. This not only disables MMIO and I/O port 5166 * BARs, but also prevents the device from being Bus Master, preventing 5167 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5168 * compliant devices, INTx-disable prevents legacy interrupts. 5169 */ 5170 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5171 } 5172 5173 static void pci_dev_restore(struct pci_dev *dev) 5174 { 5175 const struct pci_error_handlers *err_handler = 5176 dev->driver ? dev->driver->err_handler : NULL; 5177 5178 pci_restore_state(dev); 5179 5180 /* 5181 * dev->driver->err_handler->reset_done() is protected against 5182 * races with ->remove() by the device lock, which must be held by 5183 * the caller. 5184 */ 5185 if (err_handler && err_handler->reset_done) 5186 err_handler->reset_done(dev); 5187 } 5188 5189 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5190 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5191 { }, 5192 { pci_dev_specific_reset, .name = "device_specific" }, 5193 { pci_dev_acpi_reset, .name = "acpi" }, 5194 { pcie_reset_flr, .name = "flr" }, 5195 { pci_af_flr, .name = "af_flr" }, 5196 { pci_pm_reset, .name = "pm" }, 5197 { pci_reset_bus_function, .name = "bus" }, 5198 }; 5199 5200 static ssize_t reset_method_show(struct device *dev, 5201 struct device_attribute *attr, char *buf) 5202 { 5203 struct pci_dev *pdev = to_pci_dev(dev); 5204 ssize_t len = 0; 5205 int i, m; 5206 5207 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5208 m = pdev->reset_methods[i]; 5209 if (!m) 5210 break; 5211 5212 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5213 pci_reset_fn_methods[m].name); 5214 } 5215 5216 if (len) 5217 len += sysfs_emit_at(buf, len, "\n"); 5218 5219 return len; 5220 } 5221 5222 static int reset_method_lookup(const char *name) 5223 { 5224 int m; 5225 5226 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5227 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5228 return m; 5229 } 5230 5231 return 0; /* not found */ 5232 } 5233 5234 static ssize_t reset_method_store(struct device *dev, 5235 struct device_attribute *attr, 5236 const char *buf, size_t count) 5237 { 5238 struct pci_dev *pdev = to_pci_dev(dev); 5239 char *options, *name; 5240 int m, n; 5241 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5242 5243 if (sysfs_streq(buf, "")) { 5244 pdev->reset_methods[0] = 0; 5245 pci_warn(pdev, "All device reset methods disabled by user"); 5246 return count; 5247 } 5248 5249 if (sysfs_streq(buf, "default")) { 5250 pci_init_reset_methods(pdev); 5251 return count; 5252 } 5253 5254 options = kstrndup(buf, count, GFP_KERNEL); 5255 if (!options) 5256 return -ENOMEM; 5257 5258 n = 0; 5259 while ((name = strsep(&options, " ")) != NULL) { 5260 if (sysfs_streq(name, "")) 5261 continue; 5262 5263 name = strim(name); 5264 5265 m = reset_method_lookup(name); 5266 if (!m) { 5267 pci_err(pdev, "Invalid reset method '%s'", name); 5268 goto error; 5269 } 5270 5271 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5272 pci_err(pdev, "Unsupported reset method '%s'", name); 5273 goto error; 5274 } 5275 5276 if (n == PCI_NUM_RESET_METHODS - 1) { 5277 pci_err(pdev, "Too many reset methods\n"); 5278 goto error; 5279 } 5280 5281 reset_methods[n++] = m; 5282 } 5283 5284 reset_methods[n] = 0; 5285 5286 /* Warn if dev-specific supported but not highest priority */ 5287 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5288 reset_methods[0] != 1) 5289 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5290 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5291 kfree(options); 5292 return count; 5293 5294 error: 5295 /* Leave previous methods unchanged */ 5296 kfree(options); 5297 return -EINVAL; 5298 } 5299 static DEVICE_ATTR_RW(reset_method); 5300 5301 static struct attribute *pci_dev_reset_method_attrs[] = { 5302 &dev_attr_reset_method.attr, 5303 NULL, 5304 }; 5305 5306 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5307 struct attribute *a, int n) 5308 { 5309 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5310 5311 if (!pci_reset_supported(pdev)) 5312 return 0; 5313 5314 return a->mode; 5315 } 5316 5317 const struct attribute_group pci_dev_reset_method_attr_group = { 5318 .attrs = pci_dev_reset_method_attrs, 5319 .is_visible = pci_dev_reset_method_attr_is_visible, 5320 }; 5321 5322 /** 5323 * __pci_reset_function_locked - reset a PCI device function while holding 5324 * the @dev mutex lock. 5325 * @dev: PCI device to reset 5326 * 5327 * Some devices allow an individual function to be reset without affecting 5328 * other functions in the same device. The PCI device must be responsive 5329 * to PCI config space in order to use this function. 5330 * 5331 * The device function is presumed to be unused and the caller is holding 5332 * the device mutex lock when this function is called. 5333 * 5334 * Resetting the device will make the contents of PCI configuration space 5335 * random, so any caller of this must be prepared to reinitialise the 5336 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5337 * etc. 5338 * 5339 * Returns 0 if the device function was successfully reset or negative if the 5340 * device doesn't support resetting a single function. 5341 */ 5342 int __pci_reset_function_locked(struct pci_dev *dev) 5343 { 5344 int i, m, rc; 5345 5346 might_sleep(); 5347 5348 /* 5349 * A reset method returns -ENOTTY if it doesn't support this device and 5350 * we should try the next method. 5351 * 5352 * If it returns 0 (success), we're finished. If it returns any other 5353 * error, we're also finished: this indicates that further reset 5354 * mechanisms might be broken on the device. 5355 */ 5356 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5357 m = dev->reset_methods[i]; 5358 if (!m) 5359 return -ENOTTY; 5360 5361 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5362 if (!rc) 5363 return 0; 5364 if (rc != -ENOTTY) 5365 return rc; 5366 } 5367 5368 return -ENOTTY; 5369 } 5370 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5371 5372 /** 5373 * pci_init_reset_methods - check whether device can be safely reset 5374 * and store supported reset mechanisms. 5375 * @dev: PCI device to check for reset mechanisms 5376 * 5377 * Some devices allow an individual function to be reset without affecting 5378 * other functions in the same device. The PCI device must be in D0-D3hot 5379 * state. 5380 * 5381 * Stores reset mechanisms supported by device in reset_methods byte array 5382 * which is a member of struct pci_dev. 5383 */ 5384 void pci_init_reset_methods(struct pci_dev *dev) 5385 { 5386 int m, i, rc; 5387 5388 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5389 5390 might_sleep(); 5391 5392 i = 0; 5393 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5394 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5395 if (!rc) 5396 dev->reset_methods[i++] = m; 5397 else if (rc != -ENOTTY) 5398 break; 5399 } 5400 5401 dev->reset_methods[i] = 0; 5402 } 5403 5404 /** 5405 * pci_reset_function - quiesce and reset a PCI device function 5406 * @dev: PCI device to reset 5407 * 5408 * Some devices allow an individual function to be reset without affecting 5409 * other functions in the same device. The PCI device must be responsive 5410 * to PCI config space in order to use this function. 5411 * 5412 * This function does not just reset the PCI portion of a device, but 5413 * clears all the state associated with the device. This function differs 5414 * from __pci_reset_function_locked() in that it saves and restores device state 5415 * over the reset and takes the PCI device lock. 5416 * 5417 * Returns 0 if the device function was successfully reset or negative if the 5418 * device doesn't support resetting a single function. 5419 */ 5420 int pci_reset_function(struct pci_dev *dev) 5421 { 5422 int rc; 5423 5424 if (!pci_reset_supported(dev)) 5425 return -ENOTTY; 5426 5427 pci_dev_lock(dev); 5428 pci_dev_save_and_disable(dev); 5429 5430 rc = __pci_reset_function_locked(dev); 5431 5432 pci_dev_restore(dev); 5433 pci_dev_unlock(dev); 5434 5435 return rc; 5436 } 5437 EXPORT_SYMBOL_GPL(pci_reset_function); 5438 5439 /** 5440 * pci_reset_function_locked - quiesce and reset a PCI device function 5441 * @dev: PCI device to reset 5442 * 5443 * Some devices allow an individual function to be reset without affecting 5444 * other functions in the same device. The PCI device must be responsive 5445 * to PCI config space in order to use this function. 5446 * 5447 * This function does not just reset the PCI portion of a device, but 5448 * clears all the state associated with the device. This function differs 5449 * from __pci_reset_function_locked() in that it saves and restores device state 5450 * over the reset. It also differs from pci_reset_function() in that it 5451 * requires the PCI device lock to be held. 5452 * 5453 * Returns 0 if the device function was successfully reset or negative if the 5454 * device doesn't support resetting a single function. 5455 */ 5456 int pci_reset_function_locked(struct pci_dev *dev) 5457 { 5458 int rc; 5459 5460 if (!pci_reset_supported(dev)) 5461 return -ENOTTY; 5462 5463 pci_dev_save_and_disable(dev); 5464 5465 rc = __pci_reset_function_locked(dev); 5466 5467 pci_dev_restore(dev); 5468 5469 return rc; 5470 } 5471 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5472 5473 /** 5474 * pci_try_reset_function - quiesce and reset a PCI device function 5475 * @dev: PCI device to reset 5476 * 5477 * Same as above, except return -EAGAIN if unable to lock device. 5478 */ 5479 int pci_try_reset_function(struct pci_dev *dev) 5480 { 5481 int rc; 5482 5483 if (!pci_reset_supported(dev)) 5484 return -ENOTTY; 5485 5486 if (!pci_dev_trylock(dev)) 5487 return -EAGAIN; 5488 5489 pci_dev_save_and_disable(dev); 5490 rc = __pci_reset_function_locked(dev); 5491 pci_dev_restore(dev); 5492 pci_dev_unlock(dev); 5493 5494 return rc; 5495 } 5496 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5497 5498 /* Do any devices on or below this bus prevent a bus reset? */ 5499 static bool pci_bus_resetable(struct pci_bus *bus) 5500 { 5501 struct pci_dev *dev; 5502 5503 5504 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5505 return false; 5506 5507 list_for_each_entry(dev, &bus->devices, bus_list) { 5508 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5509 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5510 return false; 5511 } 5512 5513 return true; 5514 } 5515 5516 /* Lock devices from the top of the tree down */ 5517 static void pci_bus_lock(struct pci_bus *bus) 5518 { 5519 struct pci_dev *dev; 5520 5521 list_for_each_entry(dev, &bus->devices, bus_list) { 5522 pci_dev_lock(dev); 5523 if (dev->subordinate) 5524 pci_bus_lock(dev->subordinate); 5525 } 5526 } 5527 5528 /* Unlock devices from the bottom of the tree up */ 5529 static void pci_bus_unlock(struct pci_bus *bus) 5530 { 5531 struct pci_dev *dev; 5532 5533 list_for_each_entry(dev, &bus->devices, bus_list) { 5534 if (dev->subordinate) 5535 pci_bus_unlock(dev->subordinate); 5536 pci_dev_unlock(dev); 5537 } 5538 } 5539 5540 /* Return 1 on successful lock, 0 on contention */ 5541 static int pci_bus_trylock(struct pci_bus *bus) 5542 { 5543 struct pci_dev *dev; 5544 5545 list_for_each_entry(dev, &bus->devices, bus_list) { 5546 if (!pci_dev_trylock(dev)) 5547 goto unlock; 5548 if (dev->subordinate) { 5549 if (!pci_bus_trylock(dev->subordinate)) { 5550 pci_dev_unlock(dev); 5551 goto unlock; 5552 } 5553 } 5554 } 5555 return 1; 5556 5557 unlock: 5558 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5559 if (dev->subordinate) 5560 pci_bus_unlock(dev->subordinate); 5561 pci_dev_unlock(dev); 5562 } 5563 return 0; 5564 } 5565 5566 /* Do any devices on or below this slot prevent a bus reset? */ 5567 static bool pci_slot_resetable(struct pci_slot *slot) 5568 { 5569 struct pci_dev *dev; 5570 5571 if (slot->bus->self && 5572 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5573 return false; 5574 5575 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5576 if (!dev->slot || dev->slot != slot) 5577 continue; 5578 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5579 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5580 return false; 5581 } 5582 5583 return true; 5584 } 5585 5586 /* Lock devices from the top of the tree down */ 5587 static void pci_slot_lock(struct pci_slot *slot) 5588 { 5589 struct pci_dev *dev; 5590 5591 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5592 if (!dev->slot || dev->slot != slot) 5593 continue; 5594 pci_dev_lock(dev); 5595 if (dev->subordinate) 5596 pci_bus_lock(dev->subordinate); 5597 } 5598 } 5599 5600 /* Unlock devices from the bottom of the tree up */ 5601 static void pci_slot_unlock(struct pci_slot *slot) 5602 { 5603 struct pci_dev *dev; 5604 5605 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5606 if (!dev->slot || dev->slot != slot) 5607 continue; 5608 if (dev->subordinate) 5609 pci_bus_unlock(dev->subordinate); 5610 pci_dev_unlock(dev); 5611 } 5612 } 5613 5614 /* Return 1 on successful lock, 0 on contention */ 5615 static int pci_slot_trylock(struct pci_slot *slot) 5616 { 5617 struct pci_dev *dev; 5618 5619 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5620 if (!dev->slot || dev->slot != slot) 5621 continue; 5622 if (!pci_dev_trylock(dev)) 5623 goto unlock; 5624 if (dev->subordinate) { 5625 if (!pci_bus_trylock(dev->subordinate)) { 5626 pci_dev_unlock(dev); 5627 goto unlock; 5628 } 5629 } 5630 } 5631 return 1; 5632 5633 unlock: 5634 list_for_each_entry_continue_reverse(dev, 5635 &slot->bus->devices, bus_list) { 5636 if (!dev->slot || dev->slot != slot) 5637 continue; 5638 if (dev->subordinate) 5639 pci_bus_unlock(dev->subordinate); 5640 pci_dev_unlock(dev); 5641 } 5642 return 0; 5643 } 5644 5645 /* 5646 * Save and disable devices from the top of the tree down while holding 5647 * the @dev mutex lock for the entire tree. 5648 */ 5649 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5650 { 5651 struct pci_dev *dev; 5652 5653 list_for_each_entry(dev, &bus->devices, bus_list) { 5654 pci_dev_save_and_disable(dev); 5655 if (dev->subordinate) 5656 pci_bus_save_and_disable_locked(dev->subordinate); 5657 } 5658 } 5659 5660 /* 5661 * Restore devices from top of the tree down while holding @dev mutex lock 5662 * for the entire tree. Parent bridges need to be restored before we can 5663 * get to subordinate devices. 5664 */ 5665 static void pci_bus_restore_locked(struct pci_bus *bus) 5666 { 5667 struct pci_dev *dev; 5668 5669 list_for_each_entry(dev, &bus->devices, bus_list) { 5670 pci_dev_restore(dev); 5671 if (dev->subordinate) 5672 pci_bus_restore_locked(dev->subordinate); 5673 } 5674 } 5675 5676 /* 5677 * Save and disable devices from the top of the tree down while holding 5678 * the @dev mutex lock for the entire tree. 5679 */ 5680 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5681 { 5682 struct pci_dev *dev; 5683 5684 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5685 if (!dev->slot || dev->slot != slot) 5686 continue; 5687 pci_dev_save_and_disable(dev); 5688 if (dev->subordinate) 5689 pci_bus_save_and_disable_locked(dev->subordinate); 5690 } 5691 } 5692 5693 /* 5694 * Restore devices from top of the tree down while holding @dev mutex lock 5695 * for the entire tree. Parent bridges need to be restored before we can 5696 * get to subordinate devices. 5697 */ 5698 static void pci_slot_restore_locked(struct pci_slot *slot) 5699 { 5700 struct pci_dev *dev; 5701 5702 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5703 if (!dev->slot || dev->slot != slot) 5704 continue; 5705 pci_dev_restore(dev); 5706 if (dev->subordinate) 5707 pci_bus_restore_locked(dev->subordinate); 5708 } 5709 } 5710 5711 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5712 { 5713 int rc; 5714 5715 if (!slot || !pci_slot_resetable(slot)) 5716 return -ENOTTY; 5717 5718 if (!probe) 5719 pci_slot_lock(slot); 5720 5721 might_sleep(); 5722 5723 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5724 5725 if (!probe) 5726 pci_slot_unlock(slot); 5727 5728 return rc; 5729 } 5730 5731 /** 5732 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5733 * @slot: PCI slot to probe 5734 * 5735 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5736 */ 5737 int pci_probe_reset_slot(struct pci_slot *slot) 5738 { 5739 return pci_slot_reset(slot, PCI_RESET_PROBE); 5740 } 5741 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5742 5743 /** 5744 * __pci_reset_slot - Try to reset a PCI slot 5745 * @slot: PCI slot to reset 5746 * 5747 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5748 * independent of other slots. For instance, some slots may support slot power 5749 * control. In the case of a 1:1 bus to slot architecture, this function may 5750 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5751 * Generally a slot reset should be attempted before a bus reset. All of the 5752 * function of the slot and any subordinate buses behind the slot are reset 5753 * through this function. PCI config space of all devices in the slot and 5754 * behind the slot is saved before and restored after reset. 5755 * 5756 * Same as above except return -EAGAIN if the slot cannot be locked 5757 */ 5758 static int __pci_reset_slot(struct pci_slot *slot) 5759 { 5760 int rc; 5761 5762 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5763 if (rc) 5764 return rc; 5765 5766 if (pci_slot_trylock(slot)) { 5767 pci_slot_save_and_disable_locked(slot); 5768 might_sleep(); 5769 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5770 pci_slot_restore_locked(slot); 5771 pci_slot_unlock(slot); 5772 } else 5773 rc = -EAGAIN; 5774 5775 return rc; 5776 } 5777 5778 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5779 { 5780 int ret; 5781 5782 if (!bus->self || !pci_bus_resetable(bus)) 5783 return -ENOTTY; 5784 5785 if (probe) 5786 return 0; 5787 5788 pci_bus_lock(bus); 5789 5790 might_sleep(); 5791 5792 ret = pci_bridge_secondary_bus_reset(bus->self); 5793 5794 pci_bus_unlock(bus); 5795 5796 return ret; 5797 } 5798 5799 /** 5800 * pci_bus_error_reset - reset the bridge's subordinate bus 5801 * @bridge: The parent device that connects to the bus to reset 5802 * 5803 * This function will first try to reset the slots on this bus if the method is 5804 * available. If slot reset fails or is not available, this will fall back to a 5805 * secondary bus reset. 5806 */ 5807 int pci_bus_error_reset(struct pci_dev *bridge) 5808 { 5809 struct pci_bus *bus = bridge->subordinate; 5810 struct pci_slot *slot; 5811 5812 if (!bus) 5813 return -ENOTTY; 5814 5815 mutex_lock(&pci_slot_mutex); 5816 if (list_empty(&bus->slots)) 5817 goto bus_reset; 5818 5819 list_for_each_entry(slot, &bus->slots, list) 5820 if (pci_probe_reset_slot(slot)) 5821 goto bus_reset; 5822 5823 list_for_each_entry(slot, &bus->slots, list) 5824 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5825 goto bus_reset; 5826 5827 mutex_unlock(&pci_slot_mutex); 5828 return 0; 5829 bus_reset: 5830 mutex_unlock(&pci_slot_mutex); 5831 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5832 } 5833 5834 /** 5835 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5836 * @bus: PCI bus to probe 5837 * 5838 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5839 */ 5840 int pci_probe_reset_bus(struct pci_bus *bus) 5841 { 5842 return pci_bus_reset(bus, PCI_RESET_PROBE); 5843 } 5844 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5845 5846 /** 5847 * __pci_reset_bus - Try to reset a PCI bus 5848 * @bus: top level PCI bus to reset 5849 * 5850 * Same as above except return -EAGAIN if the bus cannot be locked 5851 */ 5852 static int __pci_reset_bus(struct pci_bus *bus) 5853 { 5854 int rc; 5855 5856 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5857 if (rc) 5858 return rc; 5859 5860 if (pci_bus_trylock(bus)) { 5861 pci_bus_save_and_disable_locked(bus); 5862 might_sleep(); 5863 rc = pci_bridge_secondary_bus_reset(bus->self); 5864 pci_bus_restore_locked(bus); 5865 pci_bus_unlock(bus); 5866 } else 5867 rc = -EAGAIN; 5868 5869 return rc; 5870 } 5871 5872 /** 5873 * pci_reset_bus - Try to reset a PCI bus 5874 * @pdev: top level PCI device to reset via slot/bus 5875 * 5876 * Same as above except return -EAGAIN if the bus cannot be locked 5877 */ 5878 int pci_reset_bus(struct pci_dev *pdev) 5879 { 5880 return (!pci_probe_reset_slot(pdev->slot)) ? 5881 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5882 } 5883 EXPORT_SYMBOL_GPL(pci_reset_bus); 5884 5885 /** 5886 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5887 * @dev: PCI device to query 5888 * 5889 * Returns mmrbc: maximum designed memory read count in bytes or 5890 * appropriate error value. 5891 */ 5892 int pcix_get_max_mmrbc(struct pci_dev *dev) 5893 { 5894 int cap; 5895 u32 stat; 5896 5897 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5898 if (!cap) 5899 return -EINVAL; 5900 5901 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5902 return -EINVAL; 5903 5904 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5905 } 5906 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5907 5908 /** 5909 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5910 * @dev: PCI device to query 5911 * 5912 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5913 * value. 5914 */ 5915 int pcix_get_mmrbc(struct pci_dev *dev) 5916 { 5917 int cap; 5918 u16 cmd; 5919 5920 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5921 if (!cap) 5922 return -EINVAL; 5923 5924 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5925 return -EINVAL; 5926 5927 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5928 } 5929 EXPORT_SYMBOL(pcix_get_mmrbc); 5930 5931 /** 5932 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5933 * @dev: PCI device to query 5934 * @mmrbc: maximum memory read count in bytes 5935 * valid values are 512, 1024, 2048, 4096 5936 * 5937 * If possible sets maximum memory read byte count, some bridges have errata 5938 * that prevent this. 5939 */ 5940 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5941 { 5942 int cap; 5943 u32 stat, v, o; 5944 u16 cmd; 5945 5946 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5947 return -EINVAL; 5948 5949 v = ffs(mmrbc) - 10; 5950 5951 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5952 if (!cap) 5953 return -EINVAL; 5954 5955 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5956 return -EINVAL; 5957 5958 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5959 return -E2BIG; 5960 5961 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5962 return -EINVAL; 5963 5964 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5965 if (o != v) { 5966 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5967 return -EIO; 5968 5969 cmd &= ~PCI_X_CMD_MAX_READ; 5970 cmd |= v << 2; 5971 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5972 return -EIO; 5973 } 5974 return 0; 5975 } 5976 EXPORT_SYMBOL(pcix_set_mmrbc); 5977 5978 /** 5979 * pcie_get_readrq - get PCI Express read request size 5980 * @dev: PCI device to query 5981 * 5982 * Returns maximum memory read request in bytes or appropriate error value. 5983 */ 5984 int pcie_get_readrq(struct pci_dev *dev) 5985 { 5986 u16 ctl; 5987 5988 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5989 5990 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5991 } 5992 EXPORT_SYMBOL(pcie_get_readrq); 5993 5994 /** 5995 * pcie_set_readrq - set PCI Express maximum memory read request 5996 * @dev: PCI device to query 5997 * @rq: maximum memory read count in bytes 5998 * valid values are 128, 256, 512, 1024, 2048, 4096 5999 * 6000 * If possible sets maximum memory read request in bytes 6001 */ 6002 int pcie_set_readrq(struct pci_dev *dev, int rq) 6003 { 6004 u16 v; 6005 int ret; 6006 6007 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6008 return -EINVAL; 6009 6010 /* 6011 * If using the "performance" PCIe config, we clamp the read rq 6012 * size to the max packet size to keep the host bridge from 6013 * generating requests larger than we can cope with. 6014 */ 6015 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6016 int mps = pcie_get_mps(dev); 6017 6018 if (mps < rq) 6019 rq = mps; 6020 } 6021 6022 v = (ffs(rq) - 8) << 12; 6023 6024 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6025 PCI_EXP_DEVCTL_READRQ, v); 6026 6027 return pcibios_err_to_errno(ret); 6028 } 6029 EXPORT_SYMBOL(pcie_set_readrq); 6030 6031 /** 6032 * pcie_get_mps - get PCI Express maximum payload size 6033 * @dev: PCI device to query 6034 * 6035 * Returns maximum payload size in bytes 6036 */ 6037 int pcie_get_mps(struct pci_dev *dev) 6038 { 6039 u16 ctl; 6040 6041 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6042 6043 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6044 } 6045 EXPORT_SYMBOL(pcie_get_mps); 6046 6047 /** 6048 * pcie_set_mps - set PCI Express maximum payload size 6049 * @dev: PCI device to query 6050 * @mps: maximum payload size in bytes 6051 * valid values are 128, 256, 512, 1024, 2048, 4096 6052 * 6053 * If possible sets maximum payload size 6054 */ 6055 int pcie_set_mps(struct pci_dev *dev, int mps) 6056 { 6057 u16 v; 6058 int ret; 6059 6060 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6061 return -EINVAL; 6062 6063 v = ffs(mps) - 8; 6064 if (v > dev->pcie_mpss) 6065 return -EINVAL; 6066 v <<= 5; 6067 6068 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6069 PCI_EXP_DEVCTL_PAYLOAD, v); 6070 6071 return pcibios_err_to_errno(ret); 6072 } 6073 EXPORT_SYMBOL(pcie_set_mps); 6074 6075 /** 6076 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6077 * device and its bandwidth limitation 6078 * @dev: PCI device to query 6079 * @limiting_dev: storage for device causing the bandwidth limitation 6080 * @speed: storage for speed of limiting device 6081 * @width: storage for width of limiting device 6082 * 6083 * Walk up the PCI device chain and find the point where the minimum 6084 * bandwidth is available. Return the bandwidth available there and (if 6085 * limiting_dev, speed, and width pointers are supplied) information about 6086 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6087 * raw bandwidth. 6088 */ 6089 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6090 enum pci_bus_speed *speed, 6091 enum pcie_link_width *width) 6092 { 6093 u16 lnksta; 6094 enum pci_bus_speed next_speed; 6095 enum pcie_link_width next_width; 6096 u32 bw, next_bw; 6097 6098 if (speed) 6099 *speed = PCI_SPEED_UNKNOWN; 6100 if (width) 6101 *width = PCIE_LNK_WIDTH_UNKNOWN; 6102 6103 bw = 0; 6104 6105 while (dev) { 6106 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6107 6108 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6109 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 6110 PCI_EXP_LNKSTA_NLW_SHIFT; 6111 6112 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6113 6114 /* Check if current device limits the total bandwidth */ 6115 if (!bw || next_bw <= bw) { 6116 bw = next_bw; 6117 6118 if (limiting_dev) 6119 *limiting_dev = dev; 6120 if (speed) 6121 *speed = next_speed; 6122 if (width) 6123 *width = next_width; 6124 } 6125 6126 dev = pci_upstream_bridge(dev); 6127 } 6128 6129 return bw; 6130 } 6131 EXPORT_SYMBOL(pcie_bandwidth_available); 6132 6133 /** 6134 * pcie_get_speed_cap - query for the PCI device's link speed capability 6135 * @dev: PCI device to query 6136 * 6137 * Query the PCI device speed capability. Return the maximum link speed 6138 * supported by the device. 6139 */ 6140 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6141 { 6142 u32 lnkcap2, lnkcap; 6143 6144 /* 6145 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6146 * implementation note there recommends using the Supported Link 6147 * Speeds Vector in Link Capabilities 2 when supported. 6148 * 6149 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6150 * should use the Supported Link Speeds field in Link Capabilities, 6151 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6152 */ 6153 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6154 6155 /* PCIe r3.0-compliant */ 6156 if (lnkcap2) 6157 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6158 6159 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6160 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6161 return PCIE_SPEED_5_0GT; 6162 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6163 return PCIE_SPEED_2_5GT; 6164 6165 return PCI_SPEED_UNKNOWN; 6166 } 6167 EXPORT_SYMBOL(pcie_get_speed_cap); 6168 6169 /** 6170 * pcie_get_width_cap - query for the PCI device's link width capability 6171 * @dev: PCI device to query 6172 * 6173 * Query the PCI device width capability. Return the maximum link width 6174 * supported by the device. 6175 */ 6176 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6177 { 6178 u32 lnkcap; 6179 6180 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6181 if (lnkcap) 6182 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 6183 6184 return PCIE_LNK_WIDTH_UNKNOWN; 6185 } 6186 EXPORT_SYMBOL(pcie_get_width_cap); 6187 6188 /** 6189 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6190 * @dev: PCI device 6191 * @speed: storage for link speed 6192 * @width: storage for link width 6193 * 6194 * Calculate a PCI device's link bandwidth by querying for its link speed 6195 * and width, multiplying them, and applying encoding overhead. The result 6196 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6197 */ 6198 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6199 enum pcie_link_width *width) 6200 { 6201 *speed = pcie_get_speed_cap(dev); 6202 *width = pcie_get_width_cap(dev); 6203 6204 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6205 return 0; 6206 6207 return *width * PCIE_SPEED2MBS_ENC(*speed); 6208 } 6209 6210 /** 6211 * __pcie_print_link_status - Report the PCI device's link speed and width 6212 * @dev: PCI device to query 6213 * @verbose: Print info even when enough bandwidth is available 6214 * 6215 * If the available bandwidth at the device is less than the device is 6216 * capable of, report the device's maximum possible bandwidth and the 6217 * upstream link that limits its performance. If @verbose, always print 6218 * the available bandwidth, even if the device isn't constrained. 6219 */ 6220 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6221 { 6222 enum pcie_link_width width, width_cap; 6223 enum pci_bus_speed speed, speed_cap; 6224 struct pci_dev *limiting_dev = NULL; 6225 u32 bw_avail, bw_cap; 6226 6227 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6228 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6229 6230 if (bw_avail >= bw_cap && verbose) 6231 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6232 bw_cap / 1000, bw_cap % 1000, 6233 pci_speed_string(speed_cap), width_cap); 6234 else if (bw_avail < bw_cap) 6235 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6236 bw_avail / 1000, bw_avail % 1000, 6237 pci_speed_string(speed), width, 6238 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6239 bw_cap / 1000, bw_cap % 1000, 6240 pci_speed_string(speed_cap), width_cap); 6241 } 6242 6243 /** 6244 * pcie_print_link_status - Report the PCI device's link speed and width 6245 * @dev: PCI device to query 6246 * 6247 * Report the available bandwidth at the device. 6248 */ 6249 void pcie_print_link_status(struct pci_dev *dev) 6250 { 6251 __pcie_print_link_status(dev, true); 6252 } 6253 EXPORT_SYMBOL(pcie_print_link_status); 6254 6255 /** 6256 * pci_select_bars - Make BAR mask from the type of resource 6257 * @dev: the PCI device for which BAR mask is made 6258 * @flags: resource type mask to be selected 6259 * 6260 * This helper routine makes bar mask from the type of resource. 6261 */ 6262 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6263 { 6264 int i, bars = 0; 6265 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6266 if (pci_resource_flags(dev, i) & flags) 6267 bars |= (1 << i); 6268 return bars; 6269 } 6270 EXPORT_SYMBOL(pci_select_bars); 6271 6272 /* Some architectures require additional programming to enable VGA */ 6273 static arch_set_vga_state_t arch_set_vga_state; 6274 6275 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6276 { 6277 arch_set_vga_state = func; /* NULL disables */ 6278 } 6279 6280 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6281 unsigned int command_bits, u32 flags) 6282 { 6283 if (arch_set_vga_state) 6284 return arch_set_vga_state(dev, decode, command_bits, 6285 flags); 6286 return 0; 6287 } 6288 6289 /** 6290 * pci_set_vga_state - set VGA decode state on device and parents if requested 6291 * @dev: the PCI device 6292 * @decode: true = enable decoding, false = disable decoding 6293 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6294 * @flags: traverse ancestors and change bridges 6295 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6296 */ 6297 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6298 unsigned int command_bits, u32 flags) 6299 { 6300 struct pci_bus *bus; 6301 struct pci_dev *bridge; 6302 u16 cmd; 6303 int rc; 6304 6305 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6306 6307 /* ARCH specific VGA enables */ 6308 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6309 if (rc) 6310 return rc; 6311 6312 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6313 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6314 if (decode) 6315 cmd |= command_bits; 6316 else 6317 cmd &= ~command_bits; 6318 pci_write_config_word(dev, PCI_COMMAND, cmd); 6319 } 6320 6321 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6322 return 0; 6323 6324 bus = dev->bus; 6325 while (bus) { 6326 bridge = bus->self; 6327 if (bridge) { 6328 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6329 &cmd); 6330 if (decode) 6331 cmd |= PCI_BRIDGE_CTL_VGA; 6332 else 6333 cmd &= ~PCI_BRIDGE_CTL_VGA; 6334 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6335 cmd); 6336 } 6337 bus = bus->parent; 6338 } 6339 return 0; 6340 } 6341 6342 #ifdef CONFIG_ACPI 6343 bool pci_pr3_present(struct pci_dev *pdev) 6344 { 6345 struct acpi_device *adev; 6346 6347 if (acpi_disabled) 6348 return false; 6349 6350 adev = ACPI_COMPANION(&pdev->dev); 6351 if (!adev) 6352 return false; 6353 6354 return adev->power.flags.power_resources && 6355 acpi_has_method(adev->handle, "_PR3"); 6356 } 6357 EXPORT_SYMBOL_GPL(pci_pr3_present); 6358 #endif 6359 6360 /** 6361 * pci_add_dma_alias - Add a DMA devfn alias for a device 6362 * @dev: the PCI device for which alias is added 6363 * @devfn_from: alias slot and function 6364 * @nr_devfns: number of subsequent devfns to alias 6365 * 6366 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6367 * which is used to program permissible bus-devfn source addresses for DMA 6368 * requests in an IOMMU. These aliases factor into IOMMU group creation 6369 * and are useful for devices generating DMA requests beyond or different 6370 * from their logical bus-devfn. Examples include device quirks where the 6371 * device simply uses the wrong devfn, as well as non-transparent bridges 6372 * where the alias may be a proxy for devices in another domain. 6373 * 6374 * IOMMU group creation is performed during device discovery or addition, 6375 * prior to any potential DMA mapping and therefore prior to driver probing 6376 * (especially for userspace assigned devices where IOMMU group definition 6377 * cannot be left as a userspace activity). DMA aliases should therefore 6378 * be configured via quirks, such as the PCI fixup header quirk. 6379 */ 6380 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6381 unsigned int nr_devfns) 6382 { 6383 int devfn_to; 6384 6385 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6386 devfn_to = devfn_from + nr_devfns - 1; 6387 6388 if (!dev->dma_alias_mask) 6389 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6390 if (!dev->dma_alias_mask) { 6391 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6392 return; 6393 } 6394 6395 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6396 6397 if (nr_devfns == 1) 6398 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6399 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6400 else if (nr_devfns > 1) 6401 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6402 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6403 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6404 } 6405 6406 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6407 { 6408 return (dev1->dma_alias_mask && 6409 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6410 (dev2->dma_alias_mask && 6411 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6412 pci_real_dma_dev(dev1) == dev2 || 6413 pci_real_dma_dev(dev2) == dev1; 6414 } 6415 6416 bool pci_device_is_present(struct pci_dev *pdev) 6417 { 6418 u32 v; 6419 6420 if (pci_dev_is_disconnected(pdev)) 6421 return false; 6422 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6423 } 6424 EXPORT_SYMBOL_GPL(pci_device_is_present); 6425 6426 void pci_ignore_hotplug(struct pci_dev *dev) 6427 { 6428 struct pci_dev *bridge = dev->bus->self; 6429 6430 dev->ignore_hotplug = 1; 6431 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6432 if (bridge) 6433 bridge->ignore_hotplug = 1; 6434 } 6435 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6436 6437 /** 6438 * pci_real_dma_dev - Get PCI DMA device for PCI device 6439 * @dev: the PCI device that may have a PCI DMA alias 6440 * 6441 * Permits the platform to provide architecture-specific functionality to 6442 * devices needing to alias DMA to another PCI device on another PCI bus. If 6443 * the PCI device is on the same bus, it is recommended to use 6444 * pci_add_dma_alias(). This is the default implementation. Architecture 6445 * implementations can override this. 6446 */ 6447 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6448 { 6449 return dev; 6450 } 6451 6452 resource_size_t __weak pcibios_default_alignment(void) 6453 { 6454 return 0; 6455 } 6456 6457 /* 6458 * Arches that don't want to expose struct resource to userland as-is in 6459 * sysfs and /proc can implement their own pci_resource_to_user(). 6460 */ 6461 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6462 const struct resource *rsrc, 6463 resource_size_t *start, resource_size_t *end) 6464 { 6465 *start = rsrc->start; 6466 *end = rsrc->end; 6467 } 6468 6469 static char *resource_alignment_param; 6470 static DEFINE_SPINLOCK(resource_alignment_lock); 6471 6472 /** 6473 * pci_specified_resource_alignment - get resource alignment specified by user. 6474 * @dev: the PCI device to get 6475 * @resize: whether or not to change resources' size when reassigning alignment 6476 * 6477 * RETURNS: Resource alignment if it is specified. 6478 * Zero if it is not specified. 6479 */ 6480 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6481 bool *resize) 6482 { 6483 int align_order, count; 6484 resource_size_t align = pcibios_default_alignment(); 6485 const char *p; 6486 int ret; 6487 6488 spin_lock(&resource_alignment_lock); 6489 p = resource_alignment_param; 6490 if (!p || !*p) 6491 goto out; 6492 if (pci_has_flag(PCI_PROBE_ONLY)) { 6493 align = 0; 6494 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6495 goto out; 6496 } 6497 6498 while (*p) { 6499 count = 0; 6500 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6501 p[count] == '@') { 6502 p += count + 1; 6503 if (align_order > 63) { 6504 pr_err("PCI: Invalid requested alignment (order %d)\n", 6505 align_order); 6506 align_order = PAGE_SHIFT; 6507 } 6508 } else { 6509 align_order = PAGE_SHIFT; 6510 } 6511 6512 ret = pci_dev_str_match(dev, p, &p); 6513 if (ret == 1) { 6514 *resize = true; 6515 align = 1ULL << align_order; 6516 break; 6517 } else if (ret < 0) { 6518 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6519 p); 6520 break; 6521 } 6522 6523 if (*p != ';' && *p != ',') { 6524 /* End of param or invalid format */ 6525 break; 6526 } 6527 p++; 6528 } 6529 out: 6530 spin_unlock(&resource_alignment_lock); 6531 return align; 6532 } 6533 6534 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6535 resource_size_t align, bool resize) 6536 { 6537 struct resource *r = &dev->resource[bar]; 6538 resource_size_t size; 6539 6540 if (!(r->flags & IORESOURCE_MEM)) 6541 return; 6542 6543 if (r->flags & IORESOURCE_PCI_FIXED) { 6544 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6545 bar, r, (unsigned long long)align); 6546 return; 6547 } 6548 6549 size = resource_size(r); 6550 if (size >= align) 6551 return; 6552 6553 /* 6554 * Increase the alignment of the resource. There are two ways we 6555 * can do this: 6556 * 6557 * 1) Increase the size of the resource. BARs are aligned on their 6558 * size, so when we reallocate space for this resource, we'll 6559 * allocate it with the larger alignment. This also prevents 6560 * assignment of any other BARs inside the alignment region, so 6561 * if we're requesting page alignment, this means no other BARs 6562 * will share the page. 6563 * 6564 * The disadvantage is that this makes the resource larger than 6565 * the hardware BAR, which may break drivers that compute things 6566 * based on the resource size, e.g., to find registers at a 6567 * fixed offset before the end of the BAR. 6568 * 6569 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6570 * set r->start to the desired alignment. By itself this 6571 * doesn't prevent other BARs being put inside the alignment 6572 * region, but if we realign *every* resource of every device in 6573 * the system, none of them will share an alignment region. 6574 * 6575 * When the user has requested alignment for only some devices via 6576 * the "pci=resource_alignment" argument, "resize" is true and we 6577 * use the first method. Otherwise we assume we're aligning all 6578 * devices and we use the second. 6579 */ 6580 6581 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6582 bar, r, (unsigned long long)align); 6583 6584 if (resize) { 6585 r->start = 0; 6586 r->end = align - 1; 6587 } else { 6588 r->flags &= ~IORESOURCE_SIZEALIGN; 6589 r->flags |= IORESOURCE_STARTALIGN; 6590 r->start = align; 6591 r->end = r->start + size - 1; 6592 } 6593 r->flags |= IORESOURCE_UNSET; 6594 } 6595 6596 /* 6597 * This function disables memory decoding and releases memory resources 6598 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6599 * It also rounds up size to specified alignment. 6600 * Later on, the kernel will assign page-aligned memory resource back 6601 * to the device. 6602 */ 6603 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6604 { 6605 int i; 6606 struct resource *r; 6607 resource_size_t align; 6608 u16 command; 6609 bool resize = false; 6610 6611 /* 6612 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6613 * 3.4.1.11. Their resources are allocated from the space 6614 * described by the VF BARx register in the PF's SR-IOV capability. 6615 * We can't influence their alignment here. 6616 */ 6617 if (dev->is_virtfn) 6618 return; 6619 6620 /* check if specified PCI is target device to reassign */ 6621 align = pci_specified_resource_alignment(dev, &resize); 6622 if (!align) 6623 return; 6624 6625 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6626 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6627 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6628 return; 6629 } 6630 6631 pci_read_config_word(dev, PCI_COMMAND, &command); 6632 command &= ~PCI_COMMAND_MEMORY; 6633 pci_write_config_word(dev, PCI_COMMAND, command); 6634 6635 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6636 pci_request_resource_alignment(dev, i, align, resize); 6637 6638 /* 6639 * Need to disable bridge's resource window, 6640 * to enable the kernel to reassign new resource 6641 * window later on. 6642 */ 6643 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6644 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6645 r = &dev->resource[i]; 6646 if (!(r->flags & IORESOURCE_MEM)) 6647 continue; 6648 r->flags |= IORESOURCE_UNSET; 6649 r->end = resource_size(r) - 1; 6650 r->start = 0; 6651 } 6652 pci_disable_bridge_window(dev); 6653 } 6654 } 6655 6656 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6657 { 6658 size_t count = 0; 6659 6660 spin_lock(&resource_alignment_lock); 6661 if (resource_alignment_param) 6662 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6663 spin_unlock(&resource_alignment_lock); 6664 6665 return count; 6666 } 6667 6668 static ssize_t resource_alignment_store(struct bus_type *bus, 6669 const char *buf, size_t count) 6670 { 6671 char *param, *old, *end; 6672 6673 if (count >= (PAGE_SIZE - 1)) 6674 return -EINVAL; 6675 6676 param = kstrndup(buf, count, GFP_KERNEL); 6677 if (!param) 6678 return -ENOMEM; 6679 6680 end = strchr(param, '\n'); 6681 if (end) 6682 *end = '\0'; 6683 6684 spin_lock(&resource_alignment_lock); 6685 old = resource_alignment_param; 6686 if (strlen(param)) { 6687 resource_alignment_param = param; 6688 } else { 6689 kfree(param); 6690 resource_alignment_param = NULL; 6691 } 6692 spin_unlock(&resource_alignment_lock); 6693 6694 kfree(old); 6695 6696 return count; 6697 } 6698 6699 static BUS_ATTR_RW(resource_alignment); 6700 6701 static int __init pci_resource_alignment_sysfs_init(void) 6702 { 6703 return bus_create_file(&pci_bus_type, 6704 &bus_attr_resource_alignment); 6705 } 6706 late_initcall(pci_resource_alignment_sysfs_init); 6707 6708 static void pci_no_domains(void) 6709 { 6710 #ifdef CONFIG_PCI_DOMAINS 6711 pci_domains_supported = 0; 6712 #endif 6713 } 6714 6715 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6716 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6717 6718 static int pci_get_new_domain_nr(void) 6719 { 6720 return atomic_inc_return(&__domain_nr); 6721 } 6722 6723 static int of_pci_bus_find_domain_nr(struct device *parent) 6724 { 6725 static int use_dt_domains = -1; 6726 int domain = -1; 6727 6728 if (parent) 6729 domain = of_get_pci_domain_nr(parent->of_node); 6730 6731 /* 6732 * Check DT domain and use_dt_domains values. 6733 * 6734 * If DT domain property is valid (domain >= 0) and 6735 * use_dt_domains != 0, the DT assignment is valid since this means 6736 * we have not previously allocated a domain number by using 6737 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6738 * 1, to indicate that we have just assigned a domain number from 6739 * DT. 6740 * 6741 * If DT domain property value is not valid (ie domain < 0), and we 6742 * have not previously assigned a domain number from DT 6743 * (use_dt_domains != 1) we should assign a domain number by 6744 * using the: 6745 * 6746 * pci_get_new_domain_nr() 6747 * 6748 * API and update the use_dt_domains value to keep track of method we 6749 * are using to assign domain numbers (use_dt_domains = 0). 6750 * 6751 * All other combinations imply we have a platform that is trying 6752 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6753 * which is a recipe for domain mishandling and it is prevented by 6754 * invalidating the domain value (domain = -1) and printing a 6755 * corresponding error. 6756 */ 6757 if (domain >= 0 && use_dt_domains) { 6758 use_dt_domains = 1; 6759 } else if (domain < 0 && use_dt_domains != 1) { 6760 use_dt_domains = 0; 6761 domain = pci_get_new_domain_nr(); 6762 } else { 6763 if (parent) 6764 pr_err("Node %pOF has ", parent->of_node); 6765 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6766 domain = -1; 6767 } 6768 6769 return domain; 6770 } 6771 6772 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6773 { 6774 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6775 acpi_pci_bus_find_domain_nr(bus); 6776 } 6777 #endif 6778 6779 /** 6780 * pci_ext_cfg_avail - can we access extended PCI config space? 6781 * 6782 * Returns 1 if we can access PCI extended config space (offsets 6783 * greater than 0xff). This is the default implementation. Architecture 6784 * implementations can override this. 6785 */ 6786 int __weak pci_ext_cfg_avail(void) 6787 { 6788 return 1; 6789 } 6790 6791 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6792 { 6793 } 6794 EXPORT_SYMBOL(pci_fixup_cardbus); 6795 6796 static int __init pci_setup(char *str) 6797 { 6798 while (str) { 6799 char *k = strchr(str, ','); 6800 if (k) 6801 *k++ = 0; 6802 if (*str && (str = pcibios_setup(str)) && *str) { 6803 if (!strcmp(str, "nomsi")) { 6804 pci_no_msi(); 6805 } else if (!strncmp(str, "noats", 5)) { 6806 pr_info("PCIe: ATS is disabled\n"); 6807 pcie_ats_disabled = true; 6808 } else if (!strcmp(str, "noaer")) { 6809 pci_no_aer(); 6810 } else if (!strcmp(str, "earlydump")) { 6811 pci_early_dump = true; 6812 } else if (!strncmp(str, "realloc=", 8)) { 6813 pci_realloc_get_opt(str + 8); 6814 } else if (!strncmp(str, "realloc", 7)) { 6815 pci_realloc_get_opt("on"); 6816 } else if (!strcmp(str, "nodomains")) { 6817 pci_no_domains(); 6818 } else if (!strncmp(str, "noari", 5)) { 6819 pcie_ari_disabled = true; 6820 } else if (!strncmp(str, "cbiosize=", 9)) { 6821 pci_cardbus_io_size = memparse(str + 9, &str); 6822 } else if (!strncmp(str, "cbmemsize=", 10)) { 6823 pci_cardbus_mem_size = memparse(str + 10, &str); 6824 } else if (!strncmp(str, "resource_alignment=", 19)) { 6825 resource_alignment_param = str + 19; 6826 } else if (!strncmp(str, "ecrc=", 5)) { 6827 pcie_ecrc_get_policy(str + 5); 6828 } else if (!strncmp(str, "hpiosize=", 9)) { 6829 pci_hotplug_io_size = memparse(str + 9, &str); 6830 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6831 pci_hotplug_mmio_size = memparse(str + 11, &str); 6832 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6833 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6834 } else if (!strncmp(str, "hpmemsize=", 10)) { 6835 pci_hotplug_mmio_size = memparse(str + 10, &str); 6836 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6837 } else if (!strncmp(str, "hpbussize=", 10)) { 6838 pci_hotplug_bus_size = 6839 simple_strtoul(str + 10, &str, 0); 6840 if (pci_hotplug_bus_size > 0xff) 6841 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6842 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6843 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6844 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6845 pcie_bus_config = PCIE_BUS_SAFE; 6846 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6847 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6848 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6849 pcie_bus_config = PCIE_BUS_PEER2PEER; 6850 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6851 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6852 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6853 disable_acs_redir_param = str + 18; 6854 } else { 6855 pr_err("PCI: Unknown option `%s'\n", str); 6856 } 6857 } 6858 str = k; 6859 } 6860 return 0; 6861 } 6862 early_param("pci", pci_setup); 6863 6864 /* 6865 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6866 * in pci_setup(), above, to point to data in the __initdata section which 6867 * will be freed after the init sequence is complete. We can't allocate memory 6868 * in pci_setup() because some architectures do not have any memory allocation 6869 * service available during an early_param() call. So we allocate memory and 6870 * copy the variable here before the init section is freed. 6871 * 6872 */ 6873 static int __init pci_realloc_setup_params(void) 6874 { 6875 resource_alignment_param = kstrdup(resource_alignment_param, 6876 GFP_KERNEL); 6877 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6878 6879 return 0; 6880 } 6881 pure_initcall(pci_realloc_setup_params); 6882