xref: /openbmc/linux/drivers/pci/pci.c (revision f47a3ca2)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28 
29 const char *pci_power_names[] = {
30 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33 
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36 
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39 
40 unsigned int pci_pm_d3_delay;
41 
42 static void pci_pme_list_scan(struct work_struct *work);
43 
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47 
48 struct pci_pme_device {
49 	struct list_head list;
50 	struct pci_dev *dev;
51 };
52 
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54 
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 	unsigned int delay = dev->d3_delay;
58 
59 	if (delay < pci_pm_d3_delay)
60 		delay = pci_pm_d3_delay;
61 
62 	msleep(delay);
63 }
64 
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68 
69 #define DEFAULT_CARDBUS_IO_SIZE		(256)
70 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74 
75 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80 
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82 
83 /*
84  * The default CLS is used if arch didn't set CLS explicitly and not
85  * all pci devices agree on the same value.  Arch can override either
86  * the dfl or actual value as it sees fit.  Don't forget this is
87  * measured in 32-bit words, not bytes.
88  */
89 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91 
92 /*
93  * If we set up a device for bus mastering, we need to check the latency
94  * timer as certain BIOSes forget to set it properly.
95  */
96 unsigned int pcibios_max_latency = 255;
97 
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100 
101 /**
102  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103  * @bus: pointer to PCI bus structure to search
104  *
105  * Given a PCI bus, returns the highest PCI bus number present in the set
106  * including the given PCI bus and its list of child PCI buses.
107  */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 	struct list_head *tmp;
111 	unsigned char max, n;
112 
113 	max = bus->busn_res.end;
114 	list_for_each(tmp, &bus->children) {
115 		n = pci_bus_max_busnr(pci_bus_b(tmp));
116 		if(n > max)
117 			max = n;
118 	}
119 	return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122 
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 	/*
127 	 * Make sure the BAR is actually a memory resource, not an IO resource
128 	 */
129 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 		WARN_ON(1);
131 		return NULL;
132 	}
133 	return ioremap_nocache(pci_resource_start(pdev, bar),
134 				     pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138 
139 #define PCI_FIND_CAP_TTL	48
140 
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142 				   u8 pos, int cap, int *ttl)
143 {
144 	u8 id;
145 
146 	while ((*ttl)--) {
147 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
148 		if (pos < 0x40)
149 			break;
150 		pos &= ~3;
151 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152 					 &id);
153 		if (id == 0xff)
154 			break;
155 		if (id == cap)
156 			return pos;
157 		pos += PCI_CAP_LIST_NEXT;
158 	}
159 	return 0;
160 }
161 
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163 			       u8 pos, int cap)
164 {
165 	int ttl = PCI_FIND_CAP_TTL;
166 
167 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169 
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172 	return __pci_find_next_cap(dev->bus, dev->devfn,
173 				   pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176 
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178 				    unsigned int devfn, u8 hdr_type)
179 {
180 	u16 status;
181 
182 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183 	if (!(status & PCI_STATUS_CAP_LIST))
184 		return 0;
185 
186 	switch (hdr_type) {
187 	case PCI_HEADER_TYPE_NORMAL:
188 	case PCI_HEADER_TYPE_BRIDGE:
189 		return PCI_CAPABILITY_LIST;
190 	case PCI_HEADER_TYPE_CARDBUS:
191 		return PCI_CB_CAPABILITY_LIST;
192 	default:
193 		return 0;
194 	}
195 
196 	return 0;
197 }
198 
199 /**
200  * pci_find_capability - query for devices' capabilities
201  * @dev: PCI device to query
202  * @cap: capability code
203  *
204  * Tell if a device supports a given PCI capability.
205  * Returns the address of the requested capability structure within the
206  * device's PCI configuration space or 0 in case the device does not
207  * support it.  Possible values for @cap:
208  *
209  *  %PCI_CAP_ID_PM           Power Management
210  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
211  *  %PCI_CAP_ID_VPD          Vital Product Data
212  *  %PCI_CAP_ID_SLOTID       Slot Identification
213  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
214  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
215  *  %PCI_CAP_ID_PCIX         PCI-X
216  *  %PCI_CAP_ID_EXP          PCI Express
217  */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220 	int pos;
221 
222 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223 	if (pos)
224 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225 
226 	return pos;
227 }
228 
229 /**
230  * pci_bus_find_capability - query for devices' capabilities
231  * @bus:   the PCI bus to query
232  * @devfn: PCI device to query
233  * @cap:   capability code
234  *
235  * Like pci_find_capability() but works for pci devices that do not have a
236  * pci_dev structure set up yet.
237  *
238  * Returns the address of the requested capability structure within the
239  * device's PCI configuration space or 0 in case the device does not
240  * support it.
241  */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244 	int pos;
245 	u8 hdr_type;
246 
247 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248 
249 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250 	if (pos)
251 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
252 
253 	return pos;
254 }
255 
256 /**
257  * pci_find_next_ext_capability - Find an extended capability
258  * @dev: PCI device to query
259  * @start: address at which to start looking (0 to start at beginning of list)
260  * @cap: capability code
261  *
262  * Returns the address of the next matching extended capability structure
263  * within the device's PCI configuration space or 0 if the device does
264  * not support it.  Some capabilities can occur several times, e.g., the
265  * vendor-specific capability, and this provides a way to find them all.
266  */
267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
268 {
269 	u32 header;
270 	int ttl;
271 	int pos = PCI_CFG_SPACE_SIZE;
272 
273 	/* minimum 8 bytes per capability */
274 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
275 
276 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
277 		return 0;
278 
279 	if (start)
280 		pos = start;
281 
282 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 		return 0;
284 
285 	/*
286 	 * If we have no capabilities, this is indicated by cap ID,
287 	 * cap version and next pointer all being 0.
288 	 */
289 	if (header == 0)
290 		return 0;
291 
292 	while (ttl-- > 0) {
293 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
294 			return pos;
295 
296 		pos = PCI_EXT_CAP_NEXT(header);
297 		if (pos < PCI_CFG_SPACE_SIZE)
298 			break;
299 
300 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
301 			break;
302 	}
303 
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
307 
308 /**
309  * pci_find_ext_capability - Find an extended capability
310  * @dev: PCI device to query
311  * @cap: capability code
312  *
313  * Returns the address of the requested extended capability structure
314  * within the device's PCI configuration space or 0 if the device does
315  * not support it.  Possible values for @cap:
316  *
317  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
318  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
319  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
320  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
321  */
322 int pci_find_ext_capability(struct pci_dev *dev, int cap)
323 {
324 	return pci_find_next_ext_capability(dev, 0, cap);
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327 
328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
329 {
330 	int rc, ttl = PCI_FIND_CAP_TTL;
331 	u8 cap, mask;
332 
333 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
334 		mask = HT_3BIT_CAP_MASK;
335 	else
336 		mask = HT_5BIT_CAP_MASK;
337 
338 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
339 				      PCI_CAP_ID_HT, &ttl);
340 	while (pos) {
341 		rc = pci_read_config_byte(dev, pos + 3, &cap);
342 		if (rc != PCIBIOS_SUCCESSFUL)
343 			return 0;
344 
345 		if ((cap & mask) == ht_cap)
346 			return pos;
347 
348 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
349 					      pos + PCI_CAP_LIST_NEXT,
350 					      PCI_CAP_ID_HT, &ttl);
351 	}
352 
353 	return 0;
354 }
355 /**
356  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357  * @dev: PCI device to query
358  * @pos: Position from which to continue searching
359  * @ht_cap: Hypertransport capability code
360  *
361  * To be used in conjunction with pci_find_ht_capability() to search for
362  * all capabilities matching @ht_cap. @pos should always be a value returned
363  * from pci_find_ht_capability().
364  *
365  * NB. To be 100% safe against broken PCI devices, the caller should take
366  * steps to avoid an infinite loop.
367  */
368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
369 {
370 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
371 }
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
373 
374 /**
375  * pci_find_ht_capability - query a device's Hypertransport capabilities
376  * @dev: PCI device to query
377  * @ht_cap: Hypertransport capability code
378  *
379  * Tell if a device supports a given Hypertransport capability.
380  * Returns an address within the device's PCI configuration space
381  * or 0 in case the device does not support the request capability.
382  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383  * which has a Hypertransport capability matching @ht_cap.
384  */
385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
386 {
387 	int pos;
388 
389 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
390 	if (pos)
391 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
392 
393 	return pos;
394 }
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
396 
397 /**
398  * pci_find_parent_resource - return resource region of parent bus of given region
399  * @dev: PCI device structure contains resources to be searched
400  * @res: child resource record for which parent is sought
401  *
402  *  For given resource region of given device, return the resource
403  *  region of parent bus the given region is contained in or where
404  *  it should be allocated from.
405  */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 	const struct pci_bus *bus = dev->bus;
410 	int i;
411 	struct resource *best = NULL, *r;
412 
413 	pci_bus_for_each_resource(bus, r, i) {
414 		if (!r)
415 			continue;
416 		if (res->start && !(res->start >= r->start && res->end <= r->end))
417 			continue;	/* Not contained */
418 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
419 			continue;	/* Wrong type */
420 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
421 			return r;	/* Exact match */
422 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423 		if (r->flags & IORESOURCE_PREFETCH)
424 			continue;
425 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
426 		if (!best)
427 			best = r;
428 	}
429 	return best;
430 }
431 
432 /**
433  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434  * @dev: PCI device to have its BARs restored
435  *
436  * Restore the BAR values for a given device, so as to make it
437  * accessible by its driver.
438  */
439 static void
440 pci_restore_bars(struct pci_dev *dev)
441 {
442 	int i;
443 
444 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
445 		pci_update_resource(dev, i);
446 }
447 
448 static struct pci_platform_pm_ops *pci_platform_pm;
449 
450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
451 {
452 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
453 	    || !ops->sleep_wake)
454 		return -EINVAL;
455 	pci_platform_pm = ops;
456 	return 0;
457 }
458 
459 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
460 {
461 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
462 }
463 
464 static inline int platform_pci_set_power_state(struct pci_dev *dev,
465                                                 pci_power_t t)
466 {
467 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
468 }
469 
470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
471 {
472 	return pci_platform_pm ?
473 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
474 }
475 
476 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
477 {
478 	return pci_platform_pm ?
479 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
480 }
481 
482 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
483 {
484 	return pci_platform_pm ?
485 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
486 }
487 
488 /**
489  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
490  *                           given PCI device
491  * @dev: PCI device to handle.
492  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
493  *
494  * RETURN VALUE:
495  * -EINVAL if the requested state is invalid.
496  * -EIO if device does not support PCI PM or its PM capabilities register has a
497  * wrong version, or device doesn't support the requested state.
498  * 0 if device already is in the requested state.
499  * 0 if device's power state has been successfully changed.
500  */
501 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
502 {
503 	u16 pmcsr;
504 	bool need_restore = false;
505 
506 	/* Check if we're already there */
507 	if (dev->current_state == state)
508 		return 0;
509 
510 	if (!dev->pm_cap)
511 		return -EIO;
512 
513 	if (state < PCI_D0 || state > PCI_D3hot)
514 		return -EINVAL;
515 
516 	/* Validate current state:
517 	 * Can enter D0 from any state, but if we can only go deeper
518 	 * to sleep if we're already in a low power state
519 	 */
520 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
521 	    && dev->current_state > state) {
522 		dev_err(&dev->dev, "invalid power transition "
523 			"(from state %d to %d)\n", dev->current_state, state);
524 		return -EINVAL;
525 	}
526 
527 	/* check if this device supports the desired state */
528 	if ((state == PCI_D1 && !dev->d1_support)
529 	   || (state == PCI_D2 && !dev->d2_support))
530 		return -EIO;
531 
532 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
533 
534 	/* If we're (effectively) in D3, force entire word to 0.
535 	 * This doesn't affect PME_Status, disables PME_En, and
536 	 * sets PowerState to 0.
537 	 */
538 	switch (dev->current_state) {
539 	case PCI_D0:
540 	case PCI_D1:
541 	case PCI_D2:
542 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
543 		pmcsr |= state;
544 		break;
545 	case PCI_D3hot:
546 	case PCI_D3cold:
547 	case PCI_UNKNOWN: /* Boot-up */
548 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
549 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
550 			need_restore = true;
551 		/* Fall-through: force to D0 */
552 	default:
553 		pmcsr = 0;
554 		break;
555 	}
556 
557 	/* enter specified state */
558 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
559 
560 	/* Mandatory power management transition delays */
561 	/* see PCI PM 1.1 5.6.1 table 18 */
562 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
563 		pci_dev_d3_sleep(dev);
564 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
565 		udelay(PCI_PM_D2_DELAY);
566 
567 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
568 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
569 	if (dev->current_state != state && printk_ratelimit())
570 		dev_info(&dev->dev, "Refused to change power state, "
571 			"currently in D%d\n", dev->current_state);
572 
573 	/*
574 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
575 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
576 	 * from D3hot to D0 _may_ perform an internal reset, thereby
577 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
578 	 * For example, at least some versions of the 3c905B and the
579 	 * 3c556B exhibit this behaviour.
580 	 *
581 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
582 	 * devices in a D3hot state at boot.  Consequently, we need to
583 	 * restore at least the BARs so that the device will be
584 	 * accessible to its driver.
585 	 */
586 	if (need_restore)
587 		pci_restore_bars(dev);
588 
589 	if (dev->bus->self)
590 		pcie_aspm_pm_state_change(dev->bus->self);
591 
592 	return 0;
593 }
594 
595 /**
596  * pci_update_current_state - Read PCI power state of given device from its
597  *                            PCI PM registers and cache it
598  * @dev: PCI device to handle.
599  * @state: State to cache in case the device doesn't have the PM capability
600  */
601 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
602 {
603 	if (dev->pm_cap) {
604 		u16 pmcsr;
605 
606 		/*
607 		 * Configuration space is not accessible for device in
608 		 * D3cold, so just keep or set D3cold for safety
609 		 */
610 		if (dev->current_state == PCI_D3cold)
611 			return;
612 		if (state == PCI_D3cold) {
613 			dev->current_state = PCI_D3cold;
614 			return;
615 		}
616 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
617 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
618 	} else {
619 		dev->current_state = state;
620 	}
621 }
622 
623 /**
624  * pci_power_up - Put the given device into D0 forcibly
625  * @dev: PCI device to power up
626  */
627 void pci_power_up(struct pci_dev *dev)
628 {
629 	if (platform_pci_power_manageable(dev))
630 		platform_pci_set_power_state(dev, PCI_D0);
631 
632 	pci_raw_set_power_state(dev, PCI_D0);
633 	pci_update_current_state(dev, PCI_D0);
634 }
635 
636 /**
637  * pci_platform_power_transition - Use platform to change device power state
638  * @dev: PCI device to handle.
639  * @state: State to put the device into.
640  */
641 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
642 {
643 	int error;
644 
645 	if (platform_pci_power_manageable(dev)) {
646 		error = platform_pci_set_power_state(dev, state);
647 		if (!error)
648 			pci_update_current_state(dev, state);
649 	} else
650 		error = -ENODEV;
651 
652 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
653 		dev->current_state = PCI_D0;
654 
655 	return error;
656 }
657 
658 /**
659  * __pci_start_power_transition - Start power transition of a PCI device
660  * @dev: PCI device to handle.
661  * @state: State to put the device into.
662  */
663 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
664 {
665 	if (state == PCI_D0) {
666 		pci_platform_power_transition(dev, PCI_D0);
667 		/*
668 		 * Mandatory power management transition delays, see
669 		 * PCI Express Base Specification Revision 2.0 Section
670 		 * 6.6.1: Conventional Reset.  Do not delay for
671 		 * devices powered on/off by corresponding bridge,
672 		 * because have already delayed for the bridge.
673 		 */
674 		if (dev->runtime_d3cold) {
675 			msleep(dev->d3cold_delay);
676 			/*
677 			 * When powering on a bridge from D3cold, the
678 			 * whole hierarchy may be powered on into
679 			 * D0uninitialized state, resume them to give
680 			 * them a chance to suspend again
681 			 */
682 			pci_wakeup_bus(dev->subordinate);
683 		}
684 	}
685 }
686 
687 /**
688  * __pci_dev_set_current_state - Set current state of a PCI device
689  * @dev: Device to handle
690  * @data: pointer to state to be set
691  */
692 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
693 {
694 	pci_power_t state = *(pci_power_t *)data;
695 
696 	dev->current_state = state;
697 	return 0;
698 }
699 
700 /**
701  * __pci_bus_set_current_state - Walk given bus and set current state of devices
702  * @bus: Top bus of the subtree to walk.
703  * @state: state to be set
704  */
705 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
706 {
707 	if (bus)
708 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
709 }
710 
711 /**
712  * __pci_complete_power_transition - Complete power transition of a PCI device
713  * @dev: PCI device to handle.
714  * @state: State to put the device into.
715  *
716  * This function should not be called directly by device drivers.
717  */
718 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
719 {
720 	int ret;
721 
722 	if (state <= PCI_D0)
723 		return -EINVAL;
724 	ret = pci_platform_power_transition(dev, state);
725 	/* Power off the bridge may power off the whole hierarchy */
726 	if (!ret && state == PCI_D3cold)
727 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
728 	return ret;
729 }
730 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
731 
732 /**
733  * pci_set_power_state - Set the power state of a PCI device
734  * @dev: PCI device to handle.
735  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
736  *
737  * Transition a device to a new power state, using the platform firmware and/or
738  * the device's PCI PM registers.
739  *
740  * RETURN VALUE:
741  * -EINVAL if the requested state is invalid.
742  * -EIO if device does not support PCI PM or its PM capabilities register has a
743  * wrong version, or device doesn't support the requested state.
744  * 0 if device already is in the requested state.
745  * 0 if device's power state has been successfully changed.
746  */
747 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
748 {
749 	int error;
750 
751 	/* bound the state we're entering */
752 	if (state > PCI_D3cold)
753 		state = PCI_D3cold;
754 	else if (state < PCI_D0)
755 		state = PCI_D0;
756 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
757 		/*
758 		 * If the device or the parent bridge do not support PCI PM,
759 		 * ignore the request if we're doing anything other than putting
760 		 * it into D0 (which would only happen on boot).
761 		 */
762 		return 0;
763 
764 	/* Check if we're already there */
765 	if (dev->current_state == state)
766 		return 0;
767 
768 	__pci_start_power_transition(dev, state);
769 
770 	/* This device is quirked not to be put into D3, so
771 	   don't put it in D3 */
772 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
773 		return 0;
774 
775 	/*
776 	 * To put device in D3cold, we put device into D3hot in native
777 	 * way, then put device into D3cold with platform ops
778 	 */
779 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
780 					PCI_D3hot : state);
781 
782 	if (!__pci_complete_power_transition(dev, state))
783 		error = 0;
784 	/*
785 	 * When aspm_policy is "powersave" this call ensures
786 	 * that ASPM is configured.
787 	 */
788 	if (!error && dev->bus->self)
789 		pcie_aspm_powersave_config_link(dev->bus->self);
790 
791 	return error;
792 }
793 
794 /**
795  * pci_choose_state - Choose the power state of a PCI device
796  * @dev: PCI device to be suspended
797  * @state: target sleep state for the whole system. This is the value
798  *	that is passed to suspend() function.
799  *
800  * Returns PCI power state suitable for given device and given system
801  * message.
802  */
803 
804 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
805 {
806 	pci_power_t ret;
807 
808 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
809 		return PCI_D0;
810 
811 	ret = platform_pci_choose_state(dev);
812 	if (ret != PCI_POWER_ERROR)
813 		return ret;
814 
815 	switch (state.event) {
816 	case PM_EVENT_ON:
817 		return PCI_D0;
818 	case PM_EVENT_FREEZE:
819 	case PM_EVENT_PRETHAW:
820 		/* REVISIT both freeze and pre-thaw "should" use D0 */
821 	case PM_EVENT_SUSPEND:
822 	case PM_EVENT_HIBERNATE:
823 		return PCI_D3hot;
824 	default:
825 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
826 			 state.event);
827 		BUG();
828 	}
829 	return PCI_D0;
830 }
831 
832 EXPORT_SYMBOL(pci_choose_state);
833 
834 #define PCI_EXP_SAVE_REGS	7
835 
836 
837 static struct pci_cap_saved_state *pci_find_saved_cap(
838 	struct pci_dev *pci_dev, char cap)
839 {
840 	struct pci_cap_saved_state *tmp;
841 
842 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
843 		if (tmp->cap.cap_nr == cap)
844 			return tmp;
845 	}
846 	return NULL;
847 }
848 
849 static int pci_save_pcie_state(struct pci_dev *dev)
850 {
851 	int i = 0;
852 	struct pci_cap_saved_state *save_state;
853 	u16 *cap;
854 
855 	if (!pci_is_pcie(dev))
856 		return 0;
857 
858 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
859 	if (!save_state) {
860 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
861 		return -ENOMEM;
862 	}
863 
864 	cap = (u16 *)&save_state->cap.data[0];
865 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
866 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
867 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
868 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
869 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
870 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
871 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
872 
873 	return 0;
874 }
875 
876 static void pci_restore_pcie_state(struct pci_dev *dev)
877 {
878 	int i = 0;
879 	struct pci_cap_saved_state *save_state;
880 	u16 *cap;
881 
882 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
883 	if (!save_state)
884 		return;
885 
886 	cap = (u16 *)&save_state->cap.data[0];
887 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
888 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
889 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
890 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
891 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
892 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
893 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
894 }
895 
896 
897 static int pci_save_pcix_state(struct pci_dev *dev)
898 {
899 	int pos;
900 	struct pci_cap_saved_state *save_state;
901 
902 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
903 	if (pos <= 0)
904 		return 0;
905 
906 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
907 	if (!save_state) {
908 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
909 		return -ENOMEM;
910 	}
911 
912 	pci_read_config_word(dev, pos + PCI_X_CMD,
913 			     (u16 *)save_state->cap.data);
914 
915 	return 0;
916 }
917 
918 static void pci_restore_pcix_state(struct pci_dev *dev)
919 {
920 	int i = 0, pos;
921 	struct pci_cap_saved_state *save_state;
922 	u16 *cap;
923 
924 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
925 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
926 	if (!save_state || pos <= 0)
927 		return;
928 	cap = (u16 *)&save_state->cap.data[0];
929 
930 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
931 }
932 
933 
934 /**
935  * pci_save_state - save the PCI configuration space of a device before suspending
936  * @dev: - PCI device that we're dealing with
937  */
938 int
939 pci_save_state(struct pci_dev *dev)
940 {
941 	int i;
942 	/* XXX: 100% dword access ok here? */
943 	for (i = 0; i < 16; i++)
944 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
945 	dev->state_saved = true;
946 	if ((i = pci_save_pcie_state(dev)) != 0)
947 		return i;
948 	if ((i = pci_save_pcix_state(dev)) != 0)
949 		return i;
950 	return 0;
951 }
952 
953 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
954 				     u32 saved_val, int retry)
955 {
956 	u32 val;
957 
958 	pci_read_config_dword(pdev, offset, &val);
959 	if (val == saved_val)
960 		return;
961 
962 	for (;;) {
963 		dev_dbg(&pdev->dev, "restoring config space at offset "
964 			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
965 		pci_write_config_dword(pdev, offset, saved_val);
966 		if (retry-- <= 0)
967 			return;
968 
969 		pci_read_config_dword(pdev, offset, &val);
970 		if (val == saved_val)
971 			return;
972 
973 		mdelay(1);
974 	}
975 }
976 
977 static void pci_restore_config_space_range(struct pci_dev *pdev,
978 					   int start, int end, int retry)
979 {
980 	int index;
981 
982 	for (index = end; index >= start; index--)
983 		pci_restore_config_dword(pdev, 4 * index,
984 					 pdev->saved_config_space[index],
985 					 retry);
986 }
987 
988 static void pci_restore_config_space(struct pci_dev *pdev)
989 {
990 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
991 		pci_restore_config_space_range(pdev, 10, 15, 0);
992 		/* Restore BARs before the command register. */
993 		pci_restore_config_space_range(pdev, 4, 9, 10);
994 		pci_restore_config_space_range(pdev, 0, 3, 0);
995 	} else {
996 		pci_restore_config_space_range(pdev, 0, 15, 0);
997 	}
998 }
999 
1000 /**
1001  * pci_restore_state - Restore the saved state of a PCI device
1002  * @dev: - PCI device that we're dealing with
1003  */
1004 void pci_restore_state(struct pci_dev *dev)
1005 {
1006 	if (!dev->state_saved)
1007 		return;
1008 
1009 	/* PCI Express register must be restored first */
1010 	pci_restore_pcie_state(dev);
1011 	pci_restore_ats_state(dev);
1012 
1013 	pci_restore_config_space(dev);
1014 
1015 	pci_restore_pcix_state(dev);
1016 	pci_restore_msi_state(dev);
1017 	pci_restore_iov_state(dev);
1018 
1019 	dev->state_saved = false;
1020 }
1021 
1022 struct pci_saved_state {
1023 	u32 config_space[16];
1024 	struct pci_cap_saved_data cap[0];
1025 };
1026 
1027 /**
1028  * pci_store_saved_state - Allocate and return an opaque struct containing
1029  *			   the device saved state.
1030  * @dev: PCI device that we're dealing with
1031  *
1032  * Rerturn NULL if no state or error.
1033  */
1034 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1035 {
1036 	struct pci_saved_state *state;
1037 	struct pci_cap_saved_state *tmp;
1038 	struct pci_cap_saved_data *cap;
1039 	size_t size;
1040 
1041 	if (!dev->state_saved)
1042 		return NULL;
1043 
1044 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1045 
1046 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1047 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1048 
1049 	state = kzalloc(size, GFP_KERNEL);
1050 	if (!state)
1051 		return NULL;
1052 
1053 	memcpy(state->config_space, dev->saved_config_space,
1054 	       sizeof(state->config_space));
1055 
1056 	cap = state->cap;
1057 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1058 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1059 		memcpy(cap, &tmp->cap, len);
1060 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1061 	}
1062 	/* Empty cap_save terminates list */
1063 
1064 	return state;
1065 }
1066 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1067 
1068 /**
1069  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1070  * @dev: PCI device that we're dealing with
1071  * @state: Saved state returned from pci_store_saved_state()
1072  */
1073 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1074 {
1075 	struct pci_cap_saved_data *cap;
1076 
1077 	dev->state_saved = false;
1078 
1079 	if (!state)
1080 		return 0;
1081 
1082 	memcpy(dev->saved_config_space, state->config_space,
1083 	       sizeof(state->config_space));
1084 
1085 	cap = state->cap;
1086 	while (cap->size) {
1087 		struct pci_cap_saved_state *tmp;
1088 
1089 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1090 		if (!tmp || tmp->cap.size != cap->size)
1091 			return -EINVAL;
1092 
1093 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1094 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1095 		       sizeof(struct pci_cap_saved_data) + cap->size);
1096 	}
1097 
1098 	dev->state_saved = true;
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1102 
1103 /**
1104  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1105  *				   and free the memory allocated for it.
1106  * @dev: PCI device that we're dealing with
1107  * @state: Pointer to saved state returned from pci_store_saved_state()
1108  */
1109 int pci_load_and_free_saved_state(struct pci_dev *dev,
1110 				  struct pci_saved_state **state)
1111 {
1112 	int ret = pci_load_saved_state(dev, *state);
1113 	kfree(*state);
1114 	*state = NULL;
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1118 
1119 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1120 {
1121 	int err;
1122 
1123 	err = pci_set_power_state(dev, PCI_D0);
1124 	if (err < 0 && err != -EIO)
1125 		return err;
1126 	err = pcibios_enable_device(dev, bars);
1127 	if (err < 0)
1128 		return err;
1129 	pci_fixup_device(pci_fixup_enable, dev);
1130 
1131 	return 0;
1132 }
1133 
1134 /**
1135  * pci_reenable_device - Resume abandoned device
1136  * @dev: PCI device to be resumed
1137  *
1138  *  Note this function is a backend of pci_default_resume and is not supposed
1139  *  to be called by normal code, write proper resume handler and use it instead.
1140  */
1141 int pci_reenable_device(struct pci_dev *dev)
1142 {
1143 	if (pci_is_enabled(dev))
1144 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1145 	return 0;
1146 }
1147 
1148 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1149 {
1150 	int err;
1151 	int i, bars = 0;
1152 
1153 	/*
1154 	 * Power state could be unknown at this point, either due to a fresh
1155 	 * boot or a device removal call.  So get the current power state
1156 	 * so that things like MSI message writing will behave as expected
1157 	 * (e.g. if the device really is in D0 at enable time).
1158 	 */
1159 	if (dev->pm_cap) {
1160 		u16 pmcsr;
1161 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1162 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1163 	}
1164 
1165 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1166 		return 0;		/* already enabled */
1167 
1168 	/* only skip sriov related */
1169 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1170 		if (dev->resource[i].flags & flags)
1171 			bars |= (1 << i);
1172 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1173 		if (dev->resource[i].flags & flags)
1174 			bars |= (1 << i);
1175 
1176 	err = do_pci_enable_device(dev, bars);
1177 	if (err < 0)
1178 		atomic_dec(&dev->enable_cnt);
1179 	return err;
1180 }
1181 
1182 /**
1183  * pci_enable_device_io - Initialize a device for use with IO space
1184  * @dev: PCI device to be initialized
1185  *
1186  *  Initialize device before it's used by a driver. Ask low-level code
1187  *  to enable I/O resources. Wake up the device if it was suspended.
1188  *  Beware, this function can fail.
1189  */
1190 int pci_enable_device_io(struct pci_dev *dev)
1191 {
1192 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1193 }
1194 
1195 /**
1196  * pci_enable_device_mem - Initialize a device for use with Memory space
1197  * @dev: PCI device to be initialized
1198  *
1199  *  Initialize device before it's used by a driver. Ask low-level code
1200  *  to enable Memory resources. Wake up the device if it was suspended.
1201  *  Beware, this function can fail.
1202  */
1203 int pci_enable_device_mem(struct pci_dev *dev)
1204 {
1205 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1206 }
1207 
1208 /**
1209  * pci_enable_device - Initialize device before it's used by a driver.
1210  * @dev: PCI device to be initialized
1211  *
1212  *  Initialize device before it's used by a driver. Ask low-level code
1213  *  to enable I/O and memory. Wake up the device if it was suspended.
1214  *  Beware, this function can fail.
1215  *
1216  *  Note we don't actually enable the device many times if we call
1217  *  this function repeatedly (we just increment the count).
1218  */
1219 int pci_enable_device(struct pci_dev *dev)
1220 {
1221 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1222 }
1223 
1224 /*
1225  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1226  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1227  * there's no need to track it separately.  pci_devres is initialized
1228  * when a device is enabled using managed PCI device enable interface.
1229  */
1230 struct pci_devres {
1231 	unsigned int enabled:1;
1232 	unsigned int pinned:1;
1233 	unsigned int orig_intx:1;
1234 	unsigned int restore_intx:1;
1235 	u32 region_mask;
1236 };
1237 
1238 static void pcim_release(struct device *gendev, void *res)
1239 {
1240 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1241 	struct pci_devres *this = res;
1242 	int i;
1243 
1244 	if (dev->msi_enabled)
1245 		pci_disable_msi(dev);
1246 	if (dev->msix_enabled)
1247 		pci_disable_msix(dev);
1248 
1249 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1250 		if (this->region_mask & (1 << i))
1251 			pci_release_region(dev, i);
1252 
1253 	if (this->restore_intx)
1254 		pci_intx(dev, this->orig_intx);
1255 
1256 	if (this->enabled && !this->pinned)
1257 		pci_disable_device(dev);
1258 }
1259 
1260 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1261 {
1262 	struct pci_devres *dr, *new_dr;
1263 
1264 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1265 	if (dr)
1266 		return dr;
1267 
1268 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1269 	if (!new_dr)
1270 		return NULL;
1271 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1272 }
1273 
1274 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1275 {
1276 	if (pci_is_managed(pdev))
1277 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1278 	return NULL;
1279 }
1280 
1281 /**
1282  * pcim_enable_device - Managed pci_enable_device()
1283  * @pdev: PCI device to be initialized
1284  *
1285  * Managed pci_enable_device().
1286  */
1287 int pcim_enable_device(struct pci_dev *pdev)
1288 {
1289 	struct pci_devres *dr;
1290 	int rc;
1291 
1292 	dr = get_pci_dr(pdev);
1293 	if (unlikely(!dr))
1294 		return -ENOMEM;
1295 	if (dr->enabled)
1296 		return 0;
1297 
1298 	rc = pci_enable_device(pdev);
1299 	if (!rc) {
1300 		pdev->is_managed = 1;
1301 		dr->enabled = 1;
1302 	}
1303 	return rc;
1304 }
1305 
1306 /**
1307  * pcim_pin_device - Pin managed PCI device
1308  * @pdev: PCI device to pin
1309  *
1310  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1311  * driver detach.  @pdev must have been enabled with
1312  * pcim_enable_device().
1313  */
1314 void pcim_pin_device(struct pci_dev *pdev)
1315 {
1316 	struct pci_devres *dr;
1317 
1318 	dr = find_pci_dr(pdev);
1319 	WARN_ON(!dr || !dr->enabled);
1320 	if (dr)
1321 		dr->pinned = 1;
1322 }
1323 
1324 /*
1325  * pcibios_add_device - provide arch specific hooks when adding device dev
1326  * @dev: the PCI device being added
1327  *
1328  * Permits the platform to provide architecture specific functionality when
1329  * devices are added. This is the default implementation. Architecture
1330  * implementations can override this.
1331  */
1332 int __weak pcibios_add_device (struct pci_dev *dev)
1333 {
1334 	return 0;
1335 }
1336 
1337 /**
1338  * pcibios_disable_device - disable arch specific PCI resources for device dev
1339  * @dev: the PCI device to disable
1340  *
1341  * Disables architecture specific PCI resources for the device. This
1342  * is the default implementation. Architecture implementations can
1343  * override this.
1344  */
1345 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1346 
1347 static void do_pci_disable_device(struct pci_dev *dev)
1348 {
1349 	u16 pci_command;
1350 
1351 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1352 	if (pci_command & PCI_COMMAND_MASTER) {
1353 		pci_command &= ~PCI_COMMAND_MASTER;
1354 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1355 	}
1356 
1357 	pcibios_disable_device(dev);
1358 }
1359 
1360 /**
1361  * pci_disable_enabled_device - Disable device without updating enable_cnt
1362  * @dev: PCI device to disable
1363  *
1364  * NOTE: This function is a backend of PCI power management routines and is
1365  * not supposed to be called drivers.
1366  */
1367 void pci_disable_enabled_device(struct pci_dev *dev)
1368 {
1369 	if (pci_is_enabled(dev))
1370 		do_pci_disable_device(dev);
1371 }
1372 
1373 /**
1374  * pci_disable_device - Disable PCI device after use
1375  * @dev: PCI device to be disabled
1376  *
1377  * Signal to the system that the PCI device is not in use by the system
1378  * anymore.  This only involves disabling PCI bus-mastering, if active.
1379  *
1380  * Note we don't actually disable the device until all callers of
1381  * pci_enable_device() have called pci_disable_device().
1382  */
1383 void
1384 pci_disable_device(struct pci_dev *dev)
1385 {
1386 	struct pci_devres *dr;
1387 
1388 	dr = find_pci_dr(dev);
1389 	if (dr)
1390 		dr->enabled = 0;
1391 
1392 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1393 		      "disabling already-disabled device");
1394 
1395 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1396 		return;
1397 
1398 	do_pci_disable_device(dev);
1399 
1400 	dev->is_busmaster = 0;
1401 }
1402 
1403 /**
1404  * pcibios_set_pcie_reset_state - set reset state for device dev
1405  * @dev: the PCIe device reset
1406  * @state: Reset state to enter into
1407  *
1408  *
1409  * Sets the PCIe reset state for the device. This is the default
1410  * implementation. Architecture implementations can override this.
1411  */
1412 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1413 					enum pcie_reset_state state)
1414 {
1415 	return -EINVAL;
1416 }
1417 
1418 /**
1419  * pci_set_pcie_reset_state - set reset state for device dev
1420  * @dev: the PCIe device reset
1421  * @state: Reset state to enter into
1422  *
1423  *
1424  * Sets the PCI reset state for the device.
1425  */
1426 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1427 {
1428 	return pcibios_set_pcie_reset_state(dev, state);
1429 }
1430 
1431 /**
1432  * pci_check_pme_status - Check if given device has generated PME.
1433  * @dev: Device to check.
1434  *
1435  * Check the PME status of the device and if set, clear it and clear PME enable
1436  * (if set).  Return 'true' if PME status and PME enable were both set or
1437  * 'false' otherwise.
1438  */
1439 bool pci_check_pme_status(struct pci_dev *dev)
1440 {
1441 	int pmcsr_pos;
1442 	u16 pmcsr;
1443 	bool ret = false;
1444 
1445 	if (!dev->pm_cap)
1446 		return false;
1447 
1448 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1449 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1450 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1451 		return false;
1452 
1453 	/* Clear PME status. */
1454 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1455 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1456 		/* Disable PME to avoid interrupt flood. */
1457 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1458 		ret = true;
1459 	}
1460 
1461 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1462 
1463 	return ret;
1464 }
1465 
1466 /**
1467  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1468  * @dev: Device to handle.
1469  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1470  *
1471  * Check if @dev has generated PME and queue a resume request for it in that
1472  * case.
1473  */
1474 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1475 {
1476 	if (pme_poll_reset && dev->pme_poll)
1477 		dev->pme_poll = false;
1478 
1479 	if (pci_check_pme_status(dev)) {
1480 		pci_wakeup_event(dev);
1481 		pm_request_resume(&dev->dev);
1482 	}
1483 	return 0;
1484 }
1485 
1486 /**
1487  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1488  * @bus: Top bus of the subtree to walk.
1489  */
1490 void pci_pme_wakeup_bus(struct pci_bus *bus)
1491 {
1492 	if (bus)
1493 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1494 }
1495 
1496 /**
1497  * pci_wakeup - Wake up a PCI device
1498  * @pci_dev: Device to handle.
1499  * @ign: ignored parameter
1500  */
1501 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1502 {
1503 	pci_wakeup_event(pci_dev);
1504 	pm_request_resume(&pci_dev->dev);
1505 	return 0;
1506 }
1507 
1508 /**
1509  * pci_wakeup_bus - Walk given bus and wake up devices on it
1510  * @bus: Top bus of the subtree to walk.
1511  */
1512 void pci_wakeup_bus(struct pci_bus *bus)
1513 {
1514 	if (bus)
1515 		pci_walk_bus(bus, pci_wakeup, NULL);
1516 }
1517 
1518 /**
1519  * pci_pme_capable - check the capability of PCI device to generate PME#
1520  * @dev: PCI device to handle.
1521  * @state: PCI state from which device will issue PME#.
1522  */
1523 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1524 {
1525 	if (!dev->pm_cap)
1526 		return false;
1527 
1528 	return !!(dev->pme_support & (1 << state));
1529 }
1530 
1531 static void pci_pme_list_scan(struct work_struct *work)
1532 {
1533 	struct pci_pme_device *pme_dev, *n;
1534 
1535 	mutex_lock(&pci_pme_list_mutex);
1536 	if (!list_empty(&pci_pme_list)) {
1537 		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1538 			if (pme_dev->dev->pme_poll) {
1539 				struct pci_dev *bridge;
1540 
1541 				bridge = pme_dev->dev->bus->self;
1542 				/*
1543 				 * If bridge is in low power state, the
1544 				 * configuration space of subordinate devices
1545 				 * may be not accessible
1546 				 */
1547 				if (bridge && bridge->current_state != PCI_D0)
1548 					continue;
1549 				pci_pme_wakeup(pme_dev->dev, NULL);
1550 			} else {
1551 				list_del(&pme_dev->list);
1552 				kfree(pme_dev);
1553 			}
1554 		}
1555 		if (!list_empty(&pci_pme_list))
1556 			schedule_delayed_work(&pci_pme_work,
1557 					      msecs_to_jiffies(PME_TIMEOUT));
1558 	}
1559 	mutex_unlock(&pci_pme_list_mutex);
1560 }
1561 
1562 /**
1563  * pci_pme_active - enable or disable PCI device's PME# function
1564  * @dev: PCI device to handle.
1565  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1566  *
1567  * The caller must verify that the device is capable of generating PME# before
1568  * calling this function with @enable equal to 'true'.
1569  */
1570 void pci_pme_active(struct pci_dev *dev, bool enable)
1571 {
1572 	u16 pmcsr;
1573 
1574 	if (!dev->pme_support)
1575 		return;
1576 
1577 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1578 	/* Clear PME_Status by writing 1 to it and enable PME# */
1579 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1580 	if (!enable)
1581 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582 
1583 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1584 
1585 	/*
1586 	 * PCI (as opposed to PCIe) PME requires that the device have
1587 	 * its PME# line hooked up correctly. Not all hardware vendors
1588 	 * do this, so the PME never gets delivered and the device
1589 	 * remains asleep. The easiest way around this is to
1590 	 * periodically walk the list of suspended devices and check
1591 	 * whether any have their PME flag set. The assumption is that
1592 	 * we'll wake up often enough anyway that this won't be a huge
1593 	 * hit, and the power savings from the devices will still be a
1594 	 * win.
1595 	 *
1596 	 * Although PCIe uses in-band PME message instead of PME# line
1597 	 * to report PME, PME does not work for some PCIe devices in
1598 	 * reality.  For example, there are devices that set their PME
1599 	 * status bits, but don't really bother to send a PME message;
1600 	 * there are PCI Express Root Ports that don't bother to
1601 	 * trigger interrupts when they receive PME messages from the
1602 	 * devices below.  So PME poll is used for PCIe devices too.
1603 	 */
1604 
1605 	if (dev->pme_poll) {
1606 		struct pci_pme_device *pme_dev;
1607 		if (enable) {
1608 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1609 					  GFP_KERNEL);
1610 			if (!pme_dev)
1611 				goto out;
1612 			pme_dev->dev = dev;
1613 			mutex_lock(&pci_pme_list_mutex);
1614 			list_add(&pme_dev->list, &pci_pme_list);
1615 			if (list_is_singular(&pci_pme_list))
1616 				schedule_delayed_work(&pci_pme_work,
1617 						      msecs_to_jiffies(PME_TIMEOUT));
1618 			mutex_unlock(&pci_pme_list_mutex);
1619 		} else {
1620 			mutex_lock(&pci_pme_list_mutex);
1621 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1622 				if (pme_dev->dev == dev) {
1623 					list_del(&pme_dev->list);
1624 					kfree(pme_dev);
1625 					break;
1626 				}
1627 			}
1628 			mutex_unlock(&pci_pme_list_mutex);
1629 		}
1630 	}
1631 
1632 out:
1633 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1634 }
1635 
1636 /**
1637  * __pci_enable_wake - enable PCI device as wakeup event source
1638  * @dev: PCI device affected
1639  * @state: PCI state from which device will issue wakeup events
1640  * @runtime: True if the events are to be generated at run time
1641  * @enable: True to enable event generation; false to disable
1642  *
1643  * This enables the device as a wakeup event source, or disables it.
1644  * When such events involves platform-specific hooks, those hooks are
1645  * called automatically by this routine.
1646  *
1647  * Devices with legacy power management (no standard PCI PM capabilities)
1648  * always require such platform hooks.
1649  *
1650  * RETURN VALUE:
1651  * 0 is returned on success
1652  * -EINVAL is returned if device is not supposed to wake up the system
1653  * Error code depending on the platform is returned if both the platform and
1654  * the native mechanism fail to enable the generation of wake-up events
1655  */
1656 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1657 		      bool runtime, bool enable)
1658 {
1659 	int ret = 0;
1660 
1661 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1662 		return -EINVAL;
1663 
1664 	/* Don't do the same thing twice in a row for one device. */
1665 	if (!!enable == !!dev->wakeup_prepared)
1666 		return 0;
1667 
1668 	/*
1669 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1670 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1671 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1672 	 */
1673 
1674 	if (enable) {
1675 		int error;
1676 
1677 		if (pci_pme_capable(dev, state))
1678 			pci_pme_active(dev, true);
1679 		else
1680 			ret = 1;
1681 		error = runtime ? platform_pci_run_wake(dev, true) :
1682 					platform_pci_sleep_wake(dev, true);
1683 		if (ret)
1684 			ret = error;
1685 		if (!ret)
1686 			dev->wakeup_prepared = true;
1687 	} else {
1688 		if (runtime)
1689 			platform_pci_run_wake(dev, false);
1690 		else
1691 			platform_pci_sleep_wake(dev, false);
1692 		pci_pme_active(dev, false);
1693 		dev->wakeup_prepared = false;
1694 	}
1695 
1696 	return ret;
1697 }
1698 EXPORT_SYMBOL(__pci_enable_wake);
1699 
1700 /**
1701  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1702  * @dev: PCI device to prepare
1703  * @enable: True to enable wake-up event generation; false to disable
1704  *
1705  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1706  * and this function allows them to set that up cleanly - pci_enable_wake()
1707  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1708  * ordering constraints.
1709  *
1710  * This function only returns error code if the device is not capable of
1711  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1712  * enable wake-up power for it.
1713  */
1714 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1715 {
1716 	return pci_pme_capable(dev, PCI_D3cold) ?
1717 			pci_enable_wake(dev, PCI_D3cold, enable) :
1718 			pci_enable_wake(dev, PCI_D3hot, enable);
1719 }
1720 
1721 /**
1722  * pci_target_state - find an appropriate low power state for a given PCI dev
1723  * @dev: PCI device
1724  *
1725  * Use underlying platform code to find a supported low power state for @dev.
1726  * If the platform can't manage @dev, return the deepest state from which it
1727  * can generate wake events, based on any available PME info.
1728  */
1729 pci_power_t pci_target_state(struct pci_dev *dev)
1730 {
1731 	pci_power_t target_state = PCI_D3hot;
1732 
1733 	if (platform_pci_power_manageable(dev)) {
1734 		/*
1735 		 * Call the platform to choose the target state of the device
1736 		 * and enable wake-up from this state if supported.
1737 		 */
1738 		pci_power_t state = platform_pci_choose_state(dev);
1739 
1740 		switch (state) {
1741 		case PCI_POWER_ERROR:
1742 		case PCI_UNKNOWN:
1743 			break;
1744 		case PCI_D1:
1745 		case PCI_D2:
1746 			if (pci_no_d1d2(dev))
1747 				break;
1748 		default:
1749 			target_state = state;
1750 		}
1751 	} else if (!dev->pm_cap) {
1752 		target_state = PCI_D0;
1753 	} else if (device_may_wakeup(&dev->dev)) {
1754 		/*
1755 		 * Find the deepest state from which the device can generate
1756 		 * wake-up events, make it the target state and enable device
1757 		 * to generate PME#.
1758 		 */
1759 		if (dev->pme_support) {
1760 			while (target_state
1761 			      && !(dev->pme_support & (1 << target_state)))
1762 				target_state--;
1763 		}
1764 	}
1765 
1766 	return target_state;
1767 }
1768 
1769 /**
1770  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1771  * @dev: Device to handle.
1772  *
1773  * Choose the power state appropriate for the device depending on whether
1774  * it can wake up the system and/or is power manageable by the platform
1775  * (PCI_D3hot is the default) and put the device into that state.
1776  */
1777 int pci_prepare_to_sleep(struct pci_dev *dev)
1778 {
1779 	pci_power_t target_state = pci_target_state(dev);
1780 	int error;
1781 
1782 	if (target_state == PCI_POWER_ERROR)
1783 		return -EIO;
1784 
1785 	/* D3cold during system suspend/hibernate is not supported */
1786 	if (target_state > PCI_D3hot)
1787 		target_state = PCI_D3hot;
1788 
1789 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1790 
1791 	error = pci_set_power_state(dev, target_state);
1792 
1793 	if (error)
1794 		pci_enable_wake(dev, target_state, false);
1795 
1796 	return error;
1797 }
1798 
1799 /**
1800  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1801  * @dev: Device to handle.
1802  *
1803  * Disable device's system wake-up capability and put it into D0.
1804  */
1805 int pci_back_from_sleep(struct pci_dev *dev)
1806 {
1807 	pci_enable_wake(dev, PCI_D0, false);
1808 	return pci_set_power_state(dev, PCI_D0);
1809 }
1810 
1811 /**
1812  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1813  * @dev: PCI device being suspended.
1814  *
1815  * Prepare @dev to generate wake-up events at run time and put it into a low
1816  * power state.
1817  */
1818 int pci_finish_runtime_suspend(struct pci_dev *dev)
1819 {
1820 	pci_power_t target_state = pci_target_state(dev);
1821 	int error;
1822 
1823 	if (target_state == PCI_POWER_ERROR)
1824 		return -EIO;
1825 
1826 	dev->runtime_d3cold = target_state == PCI_D3cold;
1827 
1828 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1829 
1830 	error = pci_set_power_state(dev, target_state);
1831 
1832 	if (error) {
1833 		__pci_enable_wake(dev, target_state, true, false);
1834 		dev->runtime_d3cold = false;
1835 	}
1836 
1837 	return error;
1838 }
1839 
1840 /**
1841  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1842  * @dev: Device to check.
1843  *
1844  * Return true if the device itself is cabable of generating wake-up events
1845  * (through the platform or using the native PCIe PME) or if the device supports
1846  * PME and one of its upstream bridges can generate wake-up events.
1847  */
1848 bool pci_dev_run_wake(struct pci_dev *dev)
1849 {
1850 	struct pci_bus *bus = dev->bus;
1851 
1852 	if (device_run_wake(&dev->dev))
1853 		return true;
1854 
1855 	if (!dev->pme_support)
1856 		return false;
1857 
1858 	while (bus->parent) {
1859 		struct pci_dev *bridge = bus->self;
1860 
1861 		if (device_run_wake(&bridge->dev))
1862 			return true;
1863 
1864 		bus = bus->parent;
1865 	}
1866 
1867 	/* We have reached the root bus. */
1868 	if (bus->bridge)
1869 		return device_run_wake(bus->bridge);
1870 
1871 	return false;
1872 }
1873 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1874 
1875 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1876 {
1877 	struct device *dev = &pdev->dev;
1878 	struct device *parent = dev->parent;
1879 
1880 	if (parent)
1881 		pm_runtime_get_sync(parent);
1882 	pm_runtime_get_noresume(dev);
1883 	/*
1884 	 * pdev->current_state is set to PCI_D3cold during suspending,
1885 	 * so wait until suspending completes
1886 	 */
1887 	pm_runtime_barrier(dev);
1888 	/*
1889 	 * Only need to resume devices in D3cold, because config
1890 	 * registers are still accessible for devices suspended but
1891 	 * not in D3cold.
1892 	 */
1893 	if (pdev->current_state == PCI_D3cold)
1894 		pm_runtime_resume(dev);
1895 }
1896 
1897 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1898 {
1899 	struct device *dev = &pdev->dev;
1900 	struct device *parent = dev->parent;
1901 
1902 	pm_runtime_put(dev);
1903 	if (parent)
1904 		pm_runtime_put_sync(parent);
1905 }
1906 
1907 /**
1908  * pci_pm_init - Initialize PM functions of given PCI device
1909  * @dev: PCI device to handle.
1910  */
1911 void pci_pm_init(struct pci_dev *dev)
1912 {
1913 	int pm;
1914 	u16 pmc;
1915 
1916 	pm_runtime_forbid(&dev->dev);
1917 	pm_runtime_set_active(&dev->dev);
1918 	pm_runtime_enable(&dev->dev);
1919 	device_enable_async_suspend(&dev->dev);
1920 	dev->wakeup_prepared = false;
1921 
1922 	dev->pm_cap = 0;
1923 	dev->pme_support = 0;
1924 
1925 	/* find PCI PM capability in list */
1926 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1927 	if (!pm)
1928 		return;
1929 	/* Check device's ability to generate PME# */
1930 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1931 
1932 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1933 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1934 			pmc & PCI_PM_CAP_VER_MASK);
1935 		return;
1936 	}
1937 
1938 	dev->pm_cap = pm;
1939 	dev->d3_delay = PCI_PM_D3_WAIT;
1940 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1941 	dev->d3cold_allowed = true;
1942 
1943 	dev->d1_support = false;
1944 	dev->d2_support = false;
1945 	if (!pci_no_d1d2(dev)) {
1946 		if (pmc & PCI_PM_CAP_D1)
1947 			dev->d1_support = true;
1948 		if (pmc & PCI_PM_CAP_D2)
1949 			dev->d2_support = true;
1950 
1951 		if (dev->d1_support || dev->d2_support)
1952 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1953 				   dev->d1_support ? " D1" : "",
1954 				   dev->d2_support ? " D2" : "");
1955 	}
1956 
1957 	pmc &= PCI_PM_CAP_PME_MASK;
1958 	if (pmc) {
1959 		dev_printk(KERN_DEBUG, &dev->dev,
1960 			 "PME# supported from%s%s%s%s%s\n",
1961 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1962 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1963 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1964 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1965 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1966 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1967 		dev->pme_poll = true;
1968 		/*
1969 		 * Make device's PM flags reflect the wake-up capability, but
1970 		 * let the user space enable it to wake up the system as needed.
1971 		 */
1972 		device_set_wakeup_capable(&dev->dev, true);
1973 		/* Disable the PME# generation functionality */
1974 		pci_pme_active(dev, false);
1975 	}
1976 }
1977 
1978 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1979 	struct pci_cap_saved_state *new_cap)
1980 {
1981 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1982 }
1983 
1984 /**
1985  * pci_add_save_buffer - allocate buffer for saving given capability registers
1986  * @dev: the PCI device
1987  * @cap: the capability to allocate the buffer for
1988  * @size: requested size of the buffer
1989  */
1990 static int pci_add_cap_save_buffer(
1991 	struct pci_dev *dev, char cap, unsigned int size)
1992 {
1993 	int pos;
1994 	struct pci_cap_saved_state *save_state;
1995 
1996 	pos = pci_find_capability(dev, cap);
1997 	if (pos <= 0)
1998 		return 0;
1999 
2000 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2001 	if (!save_state)
2002 		return -ENOMEM;
2003 
2004 	save_state->cap.cap_nr = cap;
2005 	save_state->cap.size = size;
2006 	pci_add_saved_cap(dev, save_state);
2007 
2008 	return 0;
2009 }
2010 
2011 /**
2012  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2013  * @dev: the PCI device
2014  */
2015 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2016 {
2017 	int error;
2018 
2019 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2020 					PCI_EXP_SAVE_REGS * sizeof(u16));
2021 	if (error)
2022 		dev_err(&dev->dev,
2023 			"unable to preallocate PCI Express save buffer\n");
2024 
2025 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2026 	if (error)
2027 		dev_err(&dev->dev,
2028 			"unable to preallocate PCI-X save buffer\n");
2029 }
2030 
2031 void pci_free_cap_save_buffers(struct pci_dev *dev)
2032 {
2033 	struct pci_cap_saved_state *tmp;
2034 	struct hlist_node *n;
2035 
2036 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2037 		kfree(tmp);
2038 }
2039 
2040 /**
2041  * pci_configure_ari - enable or disable ARI forwarding
2042  * @dev: the PCI device
2043  *
2044  * If @dev and its upstream bridge both support ARI, enable ARI in the
2045  * bridge.  Otherwise, disable ARI in the bridge.
2046  */
2047 void pci_configure_ari(struct pci_dev *dev)
2048 {
2049 	u32 cap;
2050 	struct pci_dev *bridge;
2051 
2052 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2053 		return;
2054 
2055 	bridge = dev->bus->self;
2056 	if (!bridge)
2057 		return;
2058 
2059 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2060 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2061 		return;
2062 
2063 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2064 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2065 					 PCI_EXP_DEVCTL2_ARI);
2066 		bridge->ari_enabled = 1;
2067 	} else {
2068 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2069 					   PCI_EXP_DEVCTL2_ARI);
2070 		bridge->ari_enabled = 0;
2071 	}
2072 }
2073 
2074 /**
2075  * pci_enable_ido - enable ID-based Ordering on a device
2076  * @dev: the PCI device
2077  * @type: which types of IDO to enable
2078  *
2079  * Enable ID-based ordering on @dev.  @type can contain the bits
2080  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2081  * which types of transactions are allowed to be re-ordered.
2082  */
2083 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2084 {
2085 	u16 ctrl = 0;
2086 
2087 	if (type & PCI_EXP_IDO_REQUEST)
2088 		ctrl |= PCI_EXP_IDO_REQ_EN;
2089 	if (type & PCI_EXP_IDO_COMPLETION)
2090 		ctrl |= PCI_EXP_IDO_CMP_EN;
2091 	if (ctrl)
2092 		pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2093 }
2094 EXPORT_SYMBOL(pci_enable_ido);
2095 
2096 /**
2097  * pci_disable_ido - disable ID-based ordering on a device
2098  * @dev: the PCI device
2099  * @type: which types of IDO to disable
2100  */
2101 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2102 {
2103 	u16 ctrl = 0;
2104 
2105 	if (type & PCI_EXP_IDO_REQUEST)
2106 		ctrl |= PCI_EXP_IDO_REQ_EN;
2107 	if (type & PCI_EXP_IDO_COMPLETION)
2108 		ctrl |= PCI_EXP_IDO_CMP_EN;
2109 	if (ctrl)
2110 		pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2111 }
2112 EXPORT_SYMBOL(pci_disable_ido);
2113 
2114 /**
2115  * pci_enable_obff - enable optimized buffer flush/fill
2116  * @dev: PCI device
2117  * @type: type of signaling to use
2118  *
2119  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2120  * signaling if possible, falling back to message signaling only if
2121  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2122  * be brought out of L0s or L1 to send the message.  It should be either
2123  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2124  *
2125  * If your device can benefit from receiving all messages, even at the
2126  * power cost of bringing the link back up from a low power state, use
2127  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2128  * preferred type).
2129  *
2130  * RETURNS:
2131  * Zero on success, appropriate error number on failure.
2132  */
2133 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2134 {
2135 	u32 cap;
2136 	u16 ctrl;
2137 	int ret;
2138 
2139 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2140 	if (!(cap & PCI_EXP_OBFF_MASK))
2141 		return -ENOTSUPP; /* no OBFF support at all */
2142 
2143 	/* Make sure the topology supports OBFF as well */
2144 	if (dev->bus->self) {
2145 		ret = pci_enable_obff(dev->bus->self, type);
2146 		if (ret)
2147 			return ret;
2148 	}
2149 
2150 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2151 	if (cap & PCI_EXP_OBFF_WAKE)
2152 		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2153 	else {
2154 		switch (type) {
2155 		case PCI_EXP_OBFF_SIGNAL_L0:
2156 			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2157 				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2158 			break;
2159 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2160 			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2161 			ctrl |= PCI_EXP_OBFF_MSGB_EN;
2162 			break;
2163 		default:
2164 			WARN(1, "bad OBFF signal type\n");
2165 			return -ENOTSUPP;
2166 		}
2167 	}
2168 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2169 
2170 	return 0;
2171 }
2172 EXPORT_SYMBOL(pci_enable_obff);
2173 
2174 /**
2175  * pci_disable_obff - disable optimized buffer flush/fill
2176  * @dev: PCI device
2177  *
2178  * Disable OBFF on @dev.
2179  */
2180 void pci_disable_obff(struct pci_dev *dev)
2181 {
2182 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2183 }
2184 EXPORT_SYMBOL(pci_disable_obff);
2185 
2186 /**
2187  * pci_ltr_supported - check whether a device supports LTR
2188  * @dev: PCI device
2189  *
2190  * RETURNS:
2191  * True if @dev supports latency tolerance reporting, false otherwise.
2192  */
2193 static bool pci_ltr_supported(struct pci_dev *dev)
2194 {
2195 	u32 cap;
2196 
2197 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2198 
2199 	return cap & PCI_EXP_DEVCAP2_LTR;
2200 }
2201 
2202 /**
2203  * pci_enable_ltr - enable latency tolerance reporting
2204  * @dev: PCI device
2205  *
2206  * Enable LTR on @dev if possible, which means enabling it first on
2207  * upstream ports.
2208  *
2209  * RETURNS:
2210  * Zero on success, errno on failure.
2211  */
2212 int pci_enable_ltr(struct pci_dev *dev)
2213 {
2214 	int ret;
2215 
2216 	/* Only primary function can enable/disable LTR */
2217 	if (PCI_FUNC(dev->devfn) != 0)
2218 		return -EINVAL;
2219 
2220 	if (!pci_ltr_supported(dev))
2221 		return -ENOTSUPP;
2222 
2223 	/* Enable upstream ports first */
2224 	if (dev->bus->self) {
2225 		ret = pci_enable_ltr(dev->bus->self);
2226 		if (ret)
2227 			return ret;
2228 	}
2229 
2230 	return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2231 }
2232 EXPORT_SYMBOL(pci_enable_ltr);
2233 
2234 /**
2235  * pci_disable_ltr - disable latency tolerance reporting
2236  * @dev: PCI device
2237  */
2238 void pci_disable_ltr(struct pci_dev *dev)
2239 {
2240 	/* Only primary function can enable/disable LTR */
2241 	if (PCI_FUNC(dev->devfn) != 0)
2242 		return;
2243 
2244 	if (!pci_ltr_supported(dev))
2245 		return;
2246 
2247 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2248 }
2249 EXPORT_SYMBOL(pci_disable_ltr);
2250 
2251 static int __pci_ltr_scale(int *val)
2252 {
2253 	int scale = 0;
2254 
2255 	while (*val > 1023) {
2256 		*val = (*val + 31) / 32;
2257 		scale++;
2258 	}
2259 	return scale;
2260 }
2261 
2262 /**
2263  * pci_set_ltr - set LTR latency values
2264  * @dev: PCI device
2265  * @snoop_lat_ns: snoop latency in nanoseconds
2266  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2267  *
2268  * Figure out the scale and set the LTR values accordingly.
2269  */
2270 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2271 {
2272 	int pos, ret, snoop_scale, nosnoop_scale;
2273 	u16 val;
2274 
2275 	if (!pci_ltr_supported(dev))
2276 		return -ENOTSUPP;
2277 
2278 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2279 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2280 
2281 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2282 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2283 		return -EINVAL;
2284 
2285 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2286 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2287 		return -EINVAL;
2288 
2289 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2290 	if (!pos)
2291 		return -ENOTSUPP;
2292 
2293 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2294 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2295 	if (ret != 4)
2296 		return -EIO;
2297 
2298 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2299 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2300 	if (ret != 4)
2301 		return -EIO;
2302 
2303 	return 0;
2304 }
2305 EXPORT_SYMBOL(pci_set_ltr);
2306 
2307 static int pci_acs_enable;
2308 
2309 /**
2310  * pci_request_acs - ask for ACS to be enabled if supported
2311  */
2312 void pci_request_acs(void)
2313 {
2314 	pci_acs_enable = 1;
2315 }
2316 
2317 /**
2318  * pci_enable_acs - enable ACS if hardware support it
2319  * @dev: the PCI device
2320  */
2321 void pci_enable_acs(struct pci_dev *dev)
2322 {
2323 	int pos;
2324 	u16 cap;
2325 	u16 ctrl;
2326 
2327 	if (!pci_acs_enable)
2328 		return;
2329 
2330 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2331 	if (!pos)
2332 		return;
2333 
2334 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2335 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2336 
2337 	/* Source Validation */
2338 	ctrl |= (cap & PCI_ACS_SV);
2339 
2340 	/* P2P Request Redirect */
2341 	ctrl |= (cap & PCI_ACS_RR);
2342 
2343 	/* P2P Completion Redirect */
2344 	ctrl |= (cap & PCI_ACS_CR);
2345 
2346 	/* Upstream Forwarding */
2347 	ctrl |= (cap & PCI_ACS_UF);
2348 
2349 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2350 }
2351 
2352 /**
2353  * pci_acs_enabled - test ACS against required flags for a given device
2354  * @pdev: device to test
2355  * @acs_flags: required PCI ACS flags
2356  *
2357  * Return true if the device supports the provided flags.  Automatically
2358  * filters out flags that are not implemented on multifunction devices.
2359  */
2360 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2361 {
2362 	int pos, ret;
2363 	u16 ctrl;
2364 
2365 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2366 	if (ret >= 0)
2367 		return ret > 0;
2368 
2369 	if (!pci_is_pcie(pdev))
2370 		return false;
2371 
2372 	/* Filter out flags not applicable to multifunction */
2373 	if (pdev->multifunction)
2374 		acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2375 			      PCI_ACS_EC | PCI_ACS_DT);
2376 
2377 	if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2378 	    pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2379 	    pdev->multifunction) {
2380 		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2381 		if (!pos)
2382 			return false;
2383 
2384 		pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2385 		if ((ctrl & acs_flags) != acs_flags)
2386 			return false;
2387 	}
2388 
2389 	return true;
2390 }
2391 
2392 /**
2393  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2394  * @start: starting downstream device
2395  * @end: ending upstream device or NULL to search to the root bus
2396  * @acs_flags: required flags
2397  *
2398  * Walk up a device tree from start to end testing PCI ACS support.  If
2399  * any step along the way does not support the required flags, return false.
2400  */
2401 bool pci_acs_path_enabled(struct pci_dev *start,
2402 			  struct pci_dev *end, u16 acs_flags)
2403 {
2404 	struct pci_dev *pdev, *parent = start;
2405 
2406 	do {
2407 		pdev = parent;
2408 
2409 		if (!pci_acs_enabled(pdev, acs_flags))
2410 			return false;
2411 
2412 		if (pci_is_root_bus(pdev->bus))
2413 			return (end == NULL);
2414 
2415 		parent = pdev->bus->self;
2416 	} while (pdev != end);
2417 
2418 	return true;
2419 }
2420 
2421 /**
2422  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2423  * @dev: the PCI device
2424  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2425  *
2426  * Perform INTx swizzling for a device behind one level of bridge.  This is
2427  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2428  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2429  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2430  * the PCI Express Base Specification, Revision 2.1)
2431  */
2432 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2433 {
2434 	int slot;
2435 
2436 	if (pci_ari_enabled(dev->bus))
2437 		slot = 0;
2438 	else
2439 		slot = PCI_SLOT(dev->devfn);
2440 
2441 	return (((pin - 1) + slot) % 4) + 1;
2442 }
2443 
2444 int
2445 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2446 {
2447 	u8 pin;
2448 
2449 	pin = dev->pin;
2450 	if (!pin)
2451 		return -1;
2452 
2453 	while (!pci_is_root_bus(dev->bus)) {
2454 		pin = pci_swizzle_interrupt_pin(dev, pin);
2455 		dev = dev->bus->self;
2456 	}
2457 	*bridge = dev;
2458 	return pin;
2459 }
2460 
2461 /**
2462  * pci_common_swizzle - swizzle INTx all the way to root bridge
2463  * @dev: the PCI device
2464  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2465  *
2466  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2467  * bridges all the way up to a PCI root bus.
2468  */
2469 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2470 {
2471 	u8 pin = *pinp;
2472 
2473 	while (!pci_is_root_bus(dev->bus)) {
2474 		pin = pci_swizzle_interrupt_pin(dev, pin);
2475 		dev = dev->bus->self;
2476 	}
2477 	*pinp = pin;
2478 	return PCI_SLOT(dev->devfn);
2479 }
2480 
2481 /**
2482  *	pci_release_region - Release a PCI bar
2483  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2484  *	@bar: BAR to release
2485  *
2486  *	Releases the PCI I/O and memory resources previously reserved by a
2487  *	successful call to pci_request_region.  Call this function only
2488  *	after all use of the PCI regions has ceased.
2489  */
2490 void pci_release_region(struct pci_dev *pdev, int bar)
2491 {
2492 	struct pci_devres *dr;
2493 
2494 	if (pci_resource_len(pdev, bar) == 0)
2495 		return;
2496 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2497 		release_region(pci_resource_start(pdev, bar),
2498 				pci_resource_len(pdev, bar));
2499 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2500 		release_mem_region(pci_resource_start(pdev, bar),
2501 				pci_resource_len(pdev, bar));
2502 
2503 	dr = find_pci_dr(pdev);
2504 	if (dr)
2505 		dr->region_mask &= ~(1 << bar);
2506 }
2507 
2508 /**
2509  *	__pci_request_region - Reserved PCI I/O and memory resource
2510  *	@pdev: PCI device whose resources are to be reserved
2511  *	@bar: BAR to be reserved
2512  *	@res_name: Name to be associated with resource.
2513  *	@exclusive: whether the region access is exclusive or not
2514  *
2515  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2516  *	being reserved by owner @res_name.  Do not access any
2517  *	address inside the PCI regions unless this call returns
2518  *	successfully.
2519  *
2520  *	If @exclusive is set, then the region is marked so that userspace
2521  *	is explicitly not allowed to map the resource via /dev/mem or
2522  * 	sysfs MMIO access.
2523  *
2524  *	Returns 0 on success, or %EBUSY on error.  A warning
2525  *	message is also printed on failure.
2526  */
2527 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2528 									int exclusive)
2529 {
2530 	struct pci_devres *dr;
2531 
2532 	if (pci_resource_len(pdev, bar) == 0)
2533 		return 0;
2534 
2535 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2536 		if (!request_region(pci_resource_start(pdev, bar),
2537 			    pci_resource_len(pdev, bar), res_name))
2538 			goto err_out;
2539 	}
2540 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2541 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2542 					pci_resource_len(pdev, bar), res_name,
2543 					exclusive))
2544 			goto err_out;
2545 	}
2546 
2547 	dr = find_pci_dr(pdev);
2548 	if (dr)
2549 		dr->region_mask |= 1 << bar;
2550 
2551 	return 0;
2552 
2553 err_out:
2554 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2555 		 &pdev->resource[bar]);
2556 	return -EBUSY;
2557 }
2558 
2559 /**
2560  *	pci_request_region - Reserve PCI I/O and memory resource
2561  *	@pdev: PCI device whose resources are to be reserved
2562  *	@bar: BAR to be reserved
2563  *	@res_name: Name to be associated with resource
2564  *
2565  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2566  *	being reserved by owner @res_name.  Do not access any
2567  *	address inside the PCI regions unless this call returns
2568  *	successfully.
2569  *
2570  *	Returns 0 on success, or %EBUSY on error.  A warning
2571  *	message is also printed on failure.
2572  */
2573 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2574 {
2575 	return __pci_request_region(pdev, bar, res_name, 0);
2576 }
2577 
2578 /**
2579  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2580  *	@pdev: PCI device whose resources are to be reserved
2581  *	@bar: BAR to be reserved
2582  *	@res_name: Name to be associated with resource.
2583  *
2584  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2585  *	being reserved by owner @res_name.  Do not access any
2586  *	address inside the PCI regions unless this call returns
2587  *	successfully.
2588  *
2589  *	Returns 0 on success, or %EBUSY on error.  A warning
2590  *	message is also printed on failure.
2591  *
2592  *	The key difference that _exclusive makes it that userspace is
2593  *	explicitly not allowed to map the resource via /dev/mem or
2594  * 	sysfs.
2595  */
2596 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2597 {
2598 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2599 }
2600 /**
2601  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2602  * @pdev: PCI device whose resources were previously reserved
2603  * @bars: Bitmask of BARs to be released
2604  *
2605  * Release selected PCI I/O and memory resources previously reserved.
2606  * Call this function only after all use of the PCI regions has ceased.
2607  */
2608 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2609 {
2610 	int i;
2611 
2612 	for (i = 0; i < 6; i++)
2613 		if (bars & (1 << i))
2614 			pci_release_region(pdev, i);
2615 }
2616 
2617 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2618 				 const char *res_name, int excl)
2619 {
2620 	int i;
2621 
2622 	for (i = 0; i < 6; i++)
2623 		if (bars & (1 << i))
2624 			if (__pci_request_region(pdev, i, res_name, excl))
2625 				goto err_out;
2626 	return 0;
2627 
2628 err_out:
2629 	while(--i >= 0)
2630 		if (bars & (1 << i))
2631 			pci_release_region(pdev, i);
2632 
2633 	return -EBUSY;
2634 }
2635 
2636 
2637 /**
2638  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2639  * @pdev: PCI device whose resources are to be reserved
2640  * @bars: Bitmask of BARs to be requested
2641  * @res_name: Name to be associated with resource
2642  */
2643 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2644 				 const char *res_name)
2645 {
2646 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2647 }
2648 
2649 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2650 				 int bars, const char *res_name)
2651 {
2652 	return __pci_request_selected_regions(pdev, bars, res_name,
2653 			IORESOURCE_EXCLUSIVE);
2654 }
2655 
2656 /**
2657  *	pci_release_regions - Release reserved PCI I/O and memory resources
2658  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2659  *
2660  *	Releases all PCI I/O and memory resources previously reserved by a
2661  *	successful call to pci_request_regions.  Call this function only
2662  *	after all use of the PCI regions has ceased.
2663  */
2664 
2665 void pci_release_regions(struct pci_dev *pdev)
2666 {
2667 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2668 }
2669 
2670 /**
2671  *	pci_request_regions - Reserved PCI I/O and memory resources
2672  *	@pdev: PCI device whose resources are to be reserved
2673  *	@res_name: Name to be associated with resource.
2674  *
2675  *	Mark all PCI regions associated with PCI device @pdev as
2676  *	being reserved by owner @res_name.  Do not access any
2677  *	address inside the PCI regions unless this call returns
2678  *	successfully.
2679  *
2680  *	Returns 0 on success, or %EBUSY on error.  A warning
2681  *	message is also printed on failure.
2682  */
2683 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2684 {
2685 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2686 }
2687 
2688 /**
2689  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2690  *	@pdev: PCI device whose resources are to be reserved
2691  *	@res_name: Name to be associated with resource.
2692  *
2693  *	Mark all PCI regions associated with PCI device @pdev as
2694  *	being reserved by owner @res_name.  Do not access any
2695  *	address inside the PCI regions unless this call returns
2696  *	successfully.
2697  *
2698  *	pci_request_regions_exclusive() will mark the region so that
2699  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2700  *
2701  *	Returns 0 on success, or %EBUSY on error.  A warning
2702  *	message is also printed on failure.
2703  */
2704 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2705 {
2706 	return pci_request_selected_regions_exclusive(pdev,
2707 					((1 << 6) - 1), res_name);
2708 }
2709 
2710 static void __pci_set_master(struct pci_dev *dev, bool enable)
2711 {
2712 	u16 old_cmd, cmd;
2713 
2714 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2715 	if (enable)
2716 		cmd = old_cmd | PCI_COMMAND_MASTER;
2717 	else
2718 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2719 	if (cmd != old_cmd) {
2720 		dev_dbg(&dev->dev, "%s bus mastering\n",
2721 			enable ? "enabling" : "disabling");
2722 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2723 	}
2724 	dev->is_busmaster = enable;
2725 }
2726 
2727 /**
2728  * pcibios_setup - process "pci=" kernel boot arguments
2729  * @str: string used to pass in "pci=" kernel boot arguments
2730  *
2731  * Process kernel boot arguments.  This is the default implementation.
2732  * Architecture specific implementations can override this as necessary.
2733  */
2734 char * __weak __init pcibios_setup(char *str)
2735 {
2736 	return str;
2737 }
2738 
2739 /**
2740  * pcibios_set_master - enable PCI bus-mastering for device dev
2741  * @dev: the PCI device to enable
2742  *
2743  * Enables PCI bus-mastering for the device.  This is the default
2744  * implementation.  Architecture specific implementations can override
2745  * this if necessary.
2746  */
2747 void __weak pcibios_set_master(struct pci_dev *dev)
2748 {
2749 	u8 lat;
2750 
2751 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2752 	if (pci_is_pcie(dev))
2753 		return;
2754 
2755 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2756 	if (lat < 16)
2757 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2758 	else if (lat > pcibios_max_latency)
2759 		lat = pcibios_max_latency;
2760 	else
2761 		return;
2762 	dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2763 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2764 }
2765 
2766 /**
2767  * pci_set_master - enables bus-mastering for device dev
2768  * @dev: the PCI device to enable
2769  *
2770  * Enables bus-mastering on the device and calls pcibios_set_master()
2771  * to do the needed arch specific settings.
2772  */
2773 void pci_set_master(struct pci_dev *dev)
2774 {
2775 	__pci_set_master(dev, true);
2776 	pcibios_set_master(dev);
2777 }
2778 
2779 /**
2780  * pci_clear_master - disables bus-mastering for device dev
2781  * @dev: the PCI device to disable
2782  */
2783 void pci_clear_master(struct pci_dev *dev)
2784 {
2785 	__pci_set_master(dev, false);
2786 }
2787 
2788 /**
2789  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2790  * @dev: the PCI device for which MWI is to be enabled
2791  *
2792  * Helper function for pci_set_mwi.
2793  * Originally copied from drivers/net/acenic.c.
2794  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2795  *
2796  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2797  */
2798 int pci_set_cacheline_size(struct pci_dev *dev)
2799 {
2800 	u8 cacheline_size;
2801 
2802 	if (!pci_cache_line_size)
2803 		return -EINVAL;
2804 
2805 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2806 	   equal to or multiple of the right value. */
2807 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2808 	if (cacheline_size >= pci_cache_line_size &&
2809 	    (cacheline_size % pci_cache_line_size) == 0)
2810 		return 0;
2811 
2812 	/* Write the correct value. */
2813 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2814 	/* Read it back. */
2815 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2816 	if (cacheline_size == pci_cache_line_size)
2817 		return 0;
2818 
2819 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2820 		   "supported\n", pci_cache_line_size << 2);
2821 
2822 	return -EINVAL;
2823 }
2824 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2825 
2826 #ifdef PCI_DISABLE_MWI
2827 int pci_set_mwi(struct pci_dev *dev)
2828 {
2829 	return 0;
2830 }
2831 
2832 int pci_try_set_mwi(struct pci_dev *dev)
2833 {
2834 	return 0;
2835 }
2836 
2837 void pci_clear_mwi(struct pci_dev *dev)
2838 {
2839 }
2840 
2841 #else
2842 
2843 /**
2844  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2845  * @dev: the PCI device for which MWI is enabled
2846  *
2847  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2848  *
2849  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2850  */
2851 int
2852 pci_set_mwi(struct pci_dev *dev)
2853 {
2854 	int rc;
2855 	u16 cmd;
2856 
2857 	rc = pci_set_cacheline_size(dev);
2858 	if (rc)
2859 		return rc;
2860 
2861 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2862 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2863 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2864 		cmd |= PCI_COMMAND_INVALIDATE;
2865 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 /**
2872  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2873  * @dev: the PCI device for which MWI is enabled
2874  *
2875  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2876  * Callers are not required to check the return value.
2877  *
2878  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2879  */
2880 int pci_try_set_mwi(struct pci_dev *dev)
2881 {
2882 	int rc = pci_set_mwi(dev);
2883 	return rc;
2884 }
2885 
2886 /**
2887  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2888  * @dev: the PCI device to disable
2889  *
2890  * Disables PCI Memory-Write-Invalidate transaction on the device
2891  */
2892 void
2893 pci_clear_mwi(struct pci_dev *dev)
2894 {
2895 	u16 cmd;
2896 
2897 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2898 	if (cmd & PCI_COMMAND_INVALIDATE) {
2899 		cmd &= ~PCI_COMMAND_INVALIDATE;
2900 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2901 	}
2902 }
2903 #endif /* ! PCI_DISABLE_MWI */
2904 
2905 /**
2906  * pci_intx - enables/disables PCI INTx for device dev
2907  * @pdev: the PCI device to operate on
2908  * @enable: boolean: whether to enable or disable PCI INTx
2909  *
2910  * Enables/disables PCI INTx for device dev
2911  */
2912 void
2913 pci_intx(struct pci_dev *pdev, int enable)
2914 {
2915 	u16 pci_command, new;
2916 
2917 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2918 
2919 	if (enable) {
2920 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2921 	} else {
2922 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2923 	}
2924 
2925 	if (new != pci_command) {
2926 		struct pci_devres *dr;
2927 
2928 		pci_write_config_word(pdev, PCI_COMMAND, new);
2929 
2930 		dr = find_pci_dr(pdev);
2931 		if (dr && !dr->restore_intx) {
2932 			dr->restore_intx = 1;
2933 			dr->orig_intx = !enable;
2934 		}
2935 	}
2936 }
2937 
2938 /**
2939  * pci_intx_mask_supported - probe for INTx masking support
2940  * @dev: the PCI device to operate on
2941  *
2942  * Check if the device dev support INTx masking via the config space
2943  * command word.
2944  */
2945 bool pci_intx_mask_supported(struct pci_dev *dev)
2946 {
2947 	bool mask_supported = false;
2948 	u16 orig, new;
2949 
2950 	if (dev->broken_intx_masking)
2951 		return false;
2952 
2953 	pci_cfg_access_lock(dev);
2954 
2955 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2956 	pci_write_config_word(dev, PCI_COMMAND,
2957 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2958 	pci_read_config_word(dev, PCI_COMMAND, &new);
2959 
2960 	/*
2961 	 * There's no way to protect against hardware bugs or detect them
2962 	 * reliably, but as long as we know what the value should be, let's
2963 	 * go ahead and check it.
2964 	 */
2965 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2966 		dev_err(&dev->dev, "Command register changed from "
2967 			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2968 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2969 		mask_supported = true;
2970 		pci_write_config_word(dev, PCI_COMMAND, orig);
2971 	}
2972 
2973 	pci_cfg_access_unlock(dev);
2974 	return mask_supported;
2975 }
2976 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2977 
2978 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2979 {
2980 	struct pci_bus *bus = dev->bus;
2981 	bool mask_updated = true;
2982 	u32 cmd_status_dword;
2983 	u16 origcmd, newcmd;
2984 	unsigned long flags;
2985 	bool irq_pending;
2986 
2987 	/*
2988 	 * We do a single dword read to retrieve both command and status.
2989 	 * Document assumptions that make this possible.
2990 	 */
2991 	BUILD_BUG_ON(PCI_COMMAND % 4);
2992 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2993 
2994 	raw_spin_lock_irqsave(&pci_lock, flags);
2995 
2996 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2997 
2998 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2999 
3000 	/*
3001 	 * Check interrupt status register to see whether our device
3002 	 * triggered the interrupt (when masking) or the next IRQ is
3003 	 * already pending (when unmasking).
3004 	 */
3005 	if (mask != irq_pending) {
3006 		mask_updated = false;
3007 		goto done;
3008 	}
3009 
3010 	origcmd = cmd_status_dword;
3011 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3012 	if (mask)
3013 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3014 	if (newcmd != origcmd)
3015 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3016 
3017 done:
3018 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3019 
3020 	return mask_updated;
3021 }
3022 
3023 /**
3024  * pci_check_and_mask_intx - mask INTx on pending interrupt
3025  * @dev: the PCI device to operate on
3026  *
3027  * Check if the device dev has its INTx line asserted, mask it and
3028  * return true in that case. False is returned if not interrupt was
3029  * pending.
3030  */
3031 bool pci_check_and_mask_intx(struct pci_dev *dev)
3032 {
3033 	return pci_check_and_set_intx_mask(dev, true);
3034 }
3035 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3036 
3037 /**
3038  * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3039  * @dev: the PCI device to operate on
3040  *
3041  * Check if the device dev has its INTx line asserted, unmask it if not
3042  * and return true. False is returned and the mask remains active if
3043  * there was still an interrupt pending.
3044  */
3045 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3046 {
3047 	return pci_check_and_set_intx_mask(dev, false);
3048 }
3049 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3050 
3051 /**
3052  * pci_msi_off - disables any msi or msix capabilities
3053  * @dev: the PCI device to operate on
3054  *
3055  * If you want to use msi see pci_enable_msi and friends.
3056  * This is a lower level primitive that allows us to disable
3057  * msi operation at the device level.
3058  */
3059 void pci_msi_off(struct pci_dev *dev)
3060 {
3061 	int pos;
3062 	u16 control;
3063 
3064 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3065 	if (pos) {
3066 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3067 		control &= ~PCI_MSI_FLAGS_ENABLE;
3068 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3069 	}
3070 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3071 	if (pos) {
3072 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3073 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3074 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3075 	}
3076 }
3077 EXPORT_SYMBOL_GPL(pci_msi_off);
3078 
3079 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3080 {
3081 	return dma_set_max_seg_size(&dev->dev, size);
3082 }
3083 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3084 
3085 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3086 {
3087 	return dma_set_seg_boundary(&dev->dev, mask);
3088 }
3089 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3090 
3091 static int pcie_flr(struct pci_dev *dev, int probe)
3092 {
3093 	int i;
3094 	u32 cap;
3095 	u16 status;
3096 
3097 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3098 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3099 		return -ENOTTY;
3100 
3101 	if (probe)
3102 		return 0;
3103 
3104 	/* Wait for Transaction Pending bit clean */
3105 	for (i = 0; i < 4; i++) {
3106 		if (i)
3107 			msleep((1 << (i - 1)) * 100);
3108 
3109 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3110 		if (!(status & PCI_EXP_DEVSTA_TRPND))
3111 			goto clear;
3112 	}
3113 
3114 	dev_err(&dev->dev, "transaction is not cleared; "
3115 			"proceeding with reset anyway\n");
3116 
3117 clear:
3118 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3119 
3120 	msleep(100);
3121 
3122 	return 0;
3123 }
3124 
3125 static int pci_af_flr(struct pci_dev *dev, int probe)
3126 {
3127 	int i;
3128 	int pos;
3129 	u8 cap;
3130 	u8 status;
3131 
3132 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3133 	if (!pos)
3134 		return -ENOTTY;
3135 
3136 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3137 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3138 		return -ENOTTY;
3139 
3140 	if (probe)
3141 		return 0;
3142 
3143 	/* Wait for Transaction Pending bit clean */
3144 	for (i = 0; i < 4; i++) {
3145 		if (i)
3146 			msleep((1 << (i - 1)) * 100);
3147 
3148 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3149 		if (!(status & PCI_AF_STATUS_TP))
3150 			goto clear;
3151 	}
3152 
3153 	dev_err(&dev->dev, "transaction is not cleared; "
3154 			"proceeding with reset anyway\n");
3155 
3156 clear:
3157 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3158 	msleep(100);
3159 
3160 	return 0;
3161 }
3162 
3163 /**
3164  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3165  * @dev: Device to reset.
3166  * @probe: If set, only check if the device can be reset this way.
3167  *
3168  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3169  * unset, it will be reinitialized internally when going from PCI_D3hot to
3170  * PCI_D0.  If that's the case and the device is not in a low-power state
3171  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3172  *
3173  * NOTE: This causes the caller to sleep for twice the device power transition
3174  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3175  * by devault (i.e. unless the @dev's d3_delay field has a different value).
3176  * Moreover, only devices in D0 can be reset by this function.
3177  */
3178 static int pci_pm_reset(struct pci_dev *dev, int probe)
3179 {
3180 	u16 csr;
3181 
3182 	if (!dev->pm_cap)
3183 		return -ENOTTY;
3184 
3185 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3186 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3187 		return -ENOTTY;
3188 
3189 	if (probe)
3190 		return 0;
3191 
3192 	if (dev->current_state != PCI_D0)
3193 		return -EINVAL;
3194 
3195 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3196 	csr |= PCI_D3hot;
3197 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3198 	pci_dev_d3_sleep(dev);
3199 
3200 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3201 	csr |= PCI_D0;
3202 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3203 	pci_dev_d3_sleep(dev);
3204 
3205 	return 0;
3206 }
3207 
3208 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3209 {
3210 	u16 ctrl;
3211 	struct pci_dev *pdev;
3212 
3213 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3214 		return -ENOTTY;
3215 
3216 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3217 		if (pdev != dev)
3218 			return -ENOTTY;
3219 
3220 	if (probe)
3221 		return 0;
3222 
3223 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3224 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3225 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3226 	msleep(100);
3227 
3228 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3229 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3230 	msleep(100);
3231 
3232 	return 0;
3233 }
3234 
3235 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3236 {
3237 	int rc;
3238 
3239 	might_sleep();
3240 
3241 	rc = pci_dev_specific_reset(dev, probe);
3242 	if (rc != -ENOTTY)
3243 		goto done;
3244 
3245 	rc = pcie_flr(dev, probe);
3246 	if (rc != -ENOTTY)
3247 		goto done;
3248 
3249 	rc = pci_af_flr(dev, probe);
3250 	if (rc != -ENOTTY)
3251 		goto done;
3252 
3253 	rc = pci_pm_reset(dev, probe);
3254 	if (rc != -ENOTTY)
3255 		goto done;
3256 
3257 	rc = pci_parent_bus_reset(dev, probe);
3258 done:
3259 	return rc;
3260 }
3261 
3262 static int pci_dev_reset(struct pci_dev *dev, int probe)
3263 {
3264 	int rc;
3265 
3266 	if (!probe) {
3267 		pci_cfg_access_lock(dev);
3268 		/* block PM suspend, driver probe, etc. */
3269 		device_lock(&dev->dev);
3270 	}
3271 
3272 	rc = __pci_dev_reset(dev, probe);
3273 
3274 	if (!probe) {
3275 		device_unlock(&dev->dev);
3276 		pci_cfg_access_unlock(dev);
3277 	}
3278 	return rc;
3279 }
3280 /**
3281  * __pci_reset_function - reset a PCI device function
3282  * @dev: PCI device to reset
3283  *
3284  * Some devices allow an individual function to be reset without affecting
3285  * other functions in the same device.  The PCI device must be responsive
3286  * to PCI config space in order to use this function.
3287  *
3288  * The device function is presumed to be unused when this function is called.
3289  * Resetting the device will make the contents of PCI configuration space
3290  * random, so any caller of this must be prepared to reinitialise the
3291  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3292  * etc.
3293  *
3294  * Returns 0 if the device function was successfully reset or negative if the
3295  * device doesn't support resetting a single function.
3296  */
3297 int __pci_reset_function(struct pci_dev *dev)
3298 {
3299 	return pci_dev_reset(dev, 0);
3300 }
3301 EXPORT_SYMBOL_GPL(__pci_reset_function);
3302 
3303 /**
3304  * __pci_reset_function_locked - reset a PCI device function while holding
3305  * the @dev mutex lock.
3306  * @dev: PCI device to reset
3307  *
3308  * Some devices allow an individual function to be reset without affecting
3309  * other functions in the same device.  The PCI device must be responsive
3310  * to PCI config space in order to use this function.
3311  *
3312  * The device function is presumed to be unused and the caller is holding
3313  * the device mutex lock when this function is called.
3314  * Resetting the device will make the contents of PCI configuration space
3315  * random, so any caller of this must be prepared to reinitialise the
3316  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3317  * etc.
3318  *
3319  * Returns 0 if the device function was successfully reset or negative if the
3320  * device doesn't support resetting a single function.
3321  */
3322 int __pci_reset_function_locked(struct pci_dev *dev)
3323 {
3324 	return __pci_dev_reset(dev, 0);
3325 }
3326 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3327 
3328 /**
3329  * pci_probe_reset_function - check whether the device can be safely reset
3330  * @dev: PCI device to reset
3331  *
3332  * Some devices allow an individual function to be reset without affecting
3333  * other functions in the same device.  The PCI device must be responsive
3334  * to PCI config space in order to use this function.
3335  *
3336  * Returns 0 if the device function can be reset or negative if the
3337  * device doesn't support resetting a single function.
3338  */
3339 int pci_probe_reset_function(struct pci_dev *dev)
3340 {
3341 	return pci_dev_reset(dev, 1);
3342 }
3343 
3344 /**
3345  * pci_reset_function - quiesce and reset a PCI device function
3346  * @dev: PCI device to reset
3347  *
3348  * Some devices allow an individual function to be reset without affecting
3349  * other functions in the same device.  The PCI device must be responsive
3350  * to PCI config space in order to use this function.
3351  *
3352  * This function does not just reset the PCI portion of a device, but
3353  * clears all the state associated with the device.  This function differs
3354  * from __pci_reset_function in that it saves and restores device state
3355  * over the reset.
3356  *
3357  * Returns 0 if the device function was successfully reset or negative if the
3358  * device doesn't support resetting a single function.
3359  */
3360 int pci_reset_function(struct pci_dev *dev)
3361 {
3362 	int rc;
3363 
3364 	rc = pci_dev_reset(dev, 1);
3365 	if (rc)
3366 		return rc;
3367 
3368 	pci_save_state(dev);
3369 
3370 	/*
3371 	 * both INTx and MSI are disabled after the Interrupt Disable bit
3372 	 * is set and the Bus Master bit is cleared.
3373 	 */
3374 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3375 
3376 	rc = pci_dev_reset(dev, 0);
3377 
3378 	pci_restore_state(dev);
3379 
3380 	return rc;
3381 }
3382 EXPORT_SYMBOL_GPL(pci_reset_function);
3383 
3384 /**
3385  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3386  * @dev: PCI device to query
3387  *
3388  * Returns mmrbc: maximum designed memory read count in bytes
3389  *    or appropriate error value.
3390  */
3391 int pcix_get_max_mmrbc(struct pci_dev *dev)
3392 {
3393 	int cap;
3394 	u32 stat;
3395 
3396 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3397 	if (!cap)
3398 		return -EINVAL;
3399 
3400 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3401 		return -EINVAL;
3402 
3403 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3404 }
3405 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3406 
3407 /**
3408  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3409  * @dev: PCI device to query
3410  *
3411  * Returns mmrbc: maximum memory read count in bytes
3412  *    or appropriate error value.
3413  */
3414 int pcix_get_mmrbc(struct pci_dev *dev)
3415 {
3416 	int cap;
3417 	u16 cmd;
3418 
3419 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3420 	if (!cap)
3421 		return -EINVAL;
3422 
3423 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3424 		return -EINVAL;
3425 
3426 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3427 }
3428 EXPORT_SYMBOL(pcix_get_mmrbc);
3429 
3430 /**
3431  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3432  * @dev: PCI device to query
3433  * @mmrbc: maximum memory read count in bytes
3434  *    valid values are 512, 1024, 2048, 4096
3435  *
3436  * If possible sets maximum memory read byte count, some bridges have erratas
3437  * that prevent this.
3438  */
3439 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3440 {
3441 	int cap;
3442 	u32 stat, v, o;
3443 	u16 cmd;
3444 
3445 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3446 		return -EINVAL;
3447 
3448 	v = ffs(mmrbc) - 10;
3449 
3450 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3451 	if (!cap)
3452 		return -EINVAL;
3453 
3454 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3455 		return -EINVAL;
3456 
3457 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3458 		return -E2BIG;
3459 
3460 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3461 		return -EINVAL;
3462 
3463 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3464 	if (o != v) {
3465 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3466 			return -EIO;
3467 
3468 		cmd &= ~PCI_X_CMD_MAX_READ;
3469 		cmd |= v << 2;
3470 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3471 			return -EIO;
3472 	}
3473 	return 0;
3474 }
3475 EXPORT_SYMBOL(pcix_set_mmrbc);
3476 
3477 /**
3478  * pcie_get_readrq - get PCI Express read request size
3479  * @dev: PCI device to query
3480  *
3481  * Returns maximum memory read request in bytes
3482  *    or appropriate error value.
3483  */
3484 int pcie_get_readrq(struct pci_dev *dev)
3485 {
3486 	u16 ctl;
3487 
3488 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3489 
3490 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3491 }
3492 EXPORT_SYMBOL(pcie_get_readrq);
3493 
3494 /**
3495  * pcie_set_readrq - set PCI Express maximum memory read request
3496  * @dev: PCI device to query
3497  * @rq: maximum memory read count in bytes
3498  *    valid values are 128, 256, 512, 1024, 2048, 4096
3499  *
3500  * If possible sets maximum memory read request in bytes
3501  */
3502 int pcie_set_readrq(struct pci_dev *dev, int rq)
3503 {
3504 	u16 v;
3505 
3506 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3507 		return -EINVAL;
3508 
3509 	/*
3510 	 * If using the "performance" PCIe config, we clamp the
3511 	 * read rq size to the max packet size to prevent the
3512 	 * host bridge generating requests larger than we can
3513 	 * cope with
3514 	 */
3515 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3516 		int mps = pcie_get_mps(dev);
3517 
3518 		if (mps < 0)
3519 			return mps;
3520 		if (mps < rq)
3521 			rq = mps;
3522 	}
3523 
3524 	v = (ffs(rq) - 8) << 12;
3525 
3526 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3527 						  PCI_EXP_DEVCTL_READRQ, v);
3528 }
3529 EXPORT_SYMBOL(pcie_set_readrq);
3530 
3531 /**
3532  * pcie_get_mps - get PCI Express maximum payload size
3533  * @dev: PCI device to query
3534  *
3535  * Returns maximum payload size in bytes
3536  *    or appropriate error value.
3537  */
3538 int pcie_get_mps(struct pci_dev *dev)
3539 {
3540 	u16 ctl;
3541 
3542 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3543 
3544 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3545 }
3546 
3547 /**
3548  * pcie_set_mps - set PCI Express maximum payload size
3549  * @dev: PCI device to query
3550  * @mps: maximum payload size in bytes
3551  *    valid values are 128, 256, 512, 1024, 2048, 4096
3552  *
3553  * If possible sets maximum payload size
3554  */
3555 int pcie_set_mps(struct pci_dev *dev, int mps)
3556 {
3557 	u16 v;
3558 
3559 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3560 		return -EINVAL;
3561 
3562 	v = ffs(mps) - 8;
3563 	if (v > dev->pcie_mpss)
3564 		return -EINVAL;
3565 	v <<= 5;
3566 
3567 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3568 						  PCI_EXP_DEVCTL_PAYLOAD, v);
3569 }
3570 
3571 /**
3572  * pci_select_bars - Make BAR mask from the type of resource
3573  * @dev: the PCI device for which BAR mask is made
3574  * @flags: resource type mask to be selected
3575  *
3576  * This helper routine makes bar mask from the type of resource.
3577  */
3578 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3579 {
3580 	int i, bars = 0;
3581 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3582 		if (pci_resource_flags(dev, i) & flags)
3583 			bars |= (1 << i);
3584 	return bars;
3585 }
3586 
3587 /**
3588  * pci_resource_bar - get position of the BAR associated with a resource
3589  * @dev: the PCI device
3590  * @resno: the resource number
3591  * @type: the BAR type to be filled in
3592  *
3593  * Returns BAR position in config space, or 0 if the BAR is invalid.
3594  */
3595 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3596 {
3597 	int reg;
3598 
3599 	if (resno < PCI_ROM_RESOURCE) {
3600 		*type = pci_bar_unknown;
3601 		return PCI_BASE_ADDRESS_0 + 4 * resno;
3602 	} else if (resno == PCI_ROM_RESOURCE) {
3603 		*type = pci_bar_mem32;
3604 		return dev->rom_base_reg;
3605 	} else if (resno < PCI_BRIDGE_RESOURCES) {
3606 		/* device specific resource */
3607 		reg = pci_iov_resource_bar(dev, resno, type);
3608 		if (reg)
3609 			return reg;
3610 	}
3611 
3612 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3613 	return 0;
3614 }
3615 
3616 /* Some architectures require additional programming to enable VGA */
3617 static arch_set_vga_state_t arch_set_vga_state;
3618 
3619 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3620 {
3621 	arch_set_vga_state = func;	/* NULL disables */
3622 }
3623 
3624 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3625 		      unsigned int command_bits, u32 flags)
3626 {
3627 	if (arch_set_vga_state)
3628 		return arch_set_vga_state(dev, decode, command_bits,
3629 						flags);
3630 	return 0;
3631 }
3632 
3633 /**
3634  * pci_set_vga_state - set VGA decode state on device and parents if requested
3635  * @dev: the PCI device
3636  * @decode: true = enable decoding, false = disable decoding
3637  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3638  * @flags: traverse ancestors and change bridges
3639  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3640  */
3641 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3642 		      unsigned int command_bits, u32 flags)
3643 {
3644 	struct pci_bus *bus;
3645 	struct pci_dev *bridge;
3646 	u16 cmd;
3647 	int rc;
3648 
3649 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3650 
3651 	/* ARCH specific VGA enables */
3652 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3653 	if (rc)
3654 		return rc;
3655 
3656 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3657 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3658 		if (decode == true)
3659 			cmd |= command_bits;
3660 		else
3661 			cmd &= ~command_bits;
3662 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3663 	}
3664 
3665 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3666 		return 0;
3667 
3668 	bus = dev->bus;
3669 	while (bus) {
3670 		bridge = bus->self;
3671 		if (bridge) {
3672 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3673 					     &cmd);
3674 			if (decode == true)
3675 				cmd |= PCI_BRIDGE_CTL_VGA;
3676 			else
3677 				cmd &= ~PCI_BRIDGE_CTL_VGA;
3678 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3679 					      cmd);
3680 		}
3681 		bus = bus->parent;
3682 	}
3683 	return 0;
3684 }
3685 
3686 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3687 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3688 static DEFINE_SPINLOCK(resource_alignment_lock);
3689 
3690 /**
3691  * pci_specified_resource_alignment - get resource alignment specified by user.
3692  * @dev: the PCI device to get
3693  *
3694  * RETURNS: Resource alignment if it is specified.
3695  *          Zero if it is not specified.
3696  */
3697 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3698 {
3699 	int seg, bus, slot, func, align_order, count;
3700 	resource_size_t align = 0;
3701 	char *p;
3702 
3703 	spin_lock(&resource_alignment_lock);
3704 	p = resource_alignment_param;
3705 	while (*p) {
3706 		count = 0;
3707 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3708 							p[count] == '@') {
3709 			p += count + 1;
3710 		} else {
3711 			align_order = -1;
3712 		}
3713 		if (sscanf(p, "%x:%x:%x.%x%n",
3714 			&seg, &bus, &slot, &func, &count) != 4) {
3715 			seg = 0;
3716 			if (sscanf(p, "%x:%x.%x%n",
3717 					&bus, &slot, &func, &count) != 3) {
3718 				/* Invalid format */
3719 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3720 					p);
3721 				break;
3722 			}
3723 		}
3724 		p += count;
3725 		if (seg == pci_domain_nr(dev->bus) &&
3726 			bus == dev->bus->number &&
3727 			slot == PCI_SLOT(dev->devfn) &&
3728 			func == PCI_FUNC(dev->devfn)) {
3729 			if (align_order == -1) {
3730 				align = PAGE_SIZE;
3731 			} else {
3732 				align = 1 << align_order;
3733 			}
3734 			/* Found */
3735 			break;
3736 		}
3737 		if (*p != ';' && *p != ',') {
3738 			/* End of param or invalid format */
3739 			break;
3740 		}
3741 		p++;
3742 	}
3743 	spin_unlock(&resource_alignment_lock);
3744 	return align;
3745 }
3746 
3747 /*
3748  * This function disables memory decoding and releases memory resources
3749  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3750  * It also rounds up size to specified alignment.
3751  * Later on, the kernel will assign page-aligned memory resource back
3752  * to the device.
3753  */
3754 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3755 {
3756 	int i;
3757 	struct resource *r;
3758 	resource_size_t align, size;
3759 	u16 command;
3760 
3761 	/* check if specified PCI is target device to reassign */
3762 	align = pci_specified_resource_alignment(dev);
3763 	if (!align)
3764 		return;
3765 
3766 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3767 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3768 		dev_warn(&dev->dev,
3769 			"Can't reassign resources to host bridge.\n");
3770 		return;
3771 	}
3772 
3773 	dev_info(&dev->dev,
3774 		"Disabling memory decoding and releasing memory resources.\n");
3775 	pci_read_config_word(dev, PCI_COMMAND, &command);
3776 	command &= ~PCI_COMMAND_MEMORY;
3777 	pci_write_config_word(dev, PCI_COMMAND, command);
3778 
3779 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3780 		r = &dev->resource[i];
3781 		if (!(r->flags & IORESOURCE_MEM))
3782 			continue;
3783 		size = resource_size(r);
3784 		if (size < align) {
3785 			size = align;
3786 			dev_info(&dev->dev,
3787 				"Rounding up size of resource #%d to %#llx.\n",
3788 				i, (unsigned long long)size);
3789 		}
3790 		r->end = size - 1;
3791 		r->start = 0;
3792 	}
3793 	/* Need to disable bridge's resource window,
3794 	 * to enable the kernel to reassign new resource
3795 	 * window later on.
3796 	 */
3797 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3798 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3799 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3800 			r = &dev->resource[i];
3801 			if (!(r->flags & IORESOURCE_MEM))
3802 				continue;
3803 			r->end = resource_size(r) - 1;
3804 			r->start = 0;
3805 		}
3806 		pci_disable_bridge_window(dev);
3807 	}
3808 }
3809 
3810 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3811 {
3812 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3813 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3814 	spin_lock(&resource_alignment_lock);
3815 	strncpy(resource_alignment_param, buf, count);
3816 	resource_alignment_param[count] = '\0';
3817 	spin_unlock(&resource_alignment_lock);
3818 	return count;
3819 }
3820 
3821 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3822 {
3823 	size_t count;
3824 	spin_lock(&resource_alignment_lock);
3825 	count = snprintf(buf, size, "%s", resource_alignment_param);
3826 	spin_unlock(&resource_alignment_lock);
3827 	return count;
3828 }
3829 
3830 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3831 {
3832 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3833 }
3834 
3835 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3836 					const char *buf, size_t count)
3837 {
3838 	return pci_set_resource_alignment_param(buf, count);
3839 }
3840 
3841 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3842 					pci_resource_alignment_store);
3843 
3844 static int __init pci_resource_alignment_sysfs_init(void)
3845 {
3846 	return bus_create_file(&pci_bus_type,
3847 					&bus_attr_resource_alignment);
3848 }
3849 
3850 late_initcall(pci_resource_alignment_sysfs_init);
3851 
3852 static void pci_no_domains(void)
3853 {
3854 #ifdef CONFIG_PCI_DOMAINS
3855 	pci_domains_supported = 0;
3856 #endif
3857 }
3858 
3859 /**
3860  * pci_ext_cfg_avail - can we access extended PCI config space?
3861  *
3862  * Returns 1 if we can access PCI extended config space (offsets
3863  * greater than 0xff). This is the default implementation. Architecture
3864  * implementations can override this.
3865  */
3866 int __weak pci_ext_cfg_avail(void)
3867 {
3868 	return 1;
3869 }
3870 
3871 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3872 {
3873 }
3874 EXPORT_SYMBOL(pci_fixup_cardbus);
3875 
3876 static int __init pci_setup(char *str)
3877 {
3878 	while (str) {
3879 		char *k = strchr(str, ',');
3880 		if (k)
3881 			*k++ = 0;
3882 		if (*str && (str = pcibios_setup(str)) && *str) {
3883 			if (!strcmp(str, "nomsi")) {
3884 				pci_no_msi();
3885 			} else if (!strcmp(str, "noaer")) {
3886 				pci_no_aer();
3887 			} else if (!strncmp(str, "realloc=", 8)) {
3888 				pci_realloc_get_opt(str + 8);
3889 			} else if (!strncmp(str, "realloc", 7)) {
3890 				pci_realloc_get_opt("on");
3891 			} else if (!strcmp(str, "nodomains")) {
3892 				pci_no_domains();
3893 			} else if (!strncmp(str, "noari", 5)) {
3894 				pcie_ari_disabled = true;
3895 			} else if (!strncmp(str, "cbiosize=", 9)) {
3896 				pci_cardbus_io_size = memparse(str + 9, &str);
3897 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3898 				pci_cardbus_mem_size = memparse(str + 10, &str);
3899 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3900 				pci_set_resource_alignment_param(str + 19,
3901 							strlen(str + 19));
3902 			} else if (!strncmp(str, "ecrc=", 5)) {
3903 				pcie_ecrc_get_policy(str + 5);
3904 			} else if (!strncmp(str, "hpiosize=", 9)) {
3905 				pci_hotplug_io_size = memparse(str + 9, &str);
3906 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3907 				pci_hotplug_mem_size = memparse(str + 10, &str);
3908 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3909 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
3910 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3911 				pcie_bus_config = PCIE_BUS_SAFE;
3912 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3913 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3914 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3915 				pcie_bus_config = PCIE_BUS_PEER2PEER;
3916 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
3917 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3918 			} else {
3919 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3920 						str);
3921 			}
3922 		}
3923 		str = k;
3924 	}
3925 	return 0;
3926 }
3927 early_param("pci", pci_setup);
3928 
3929 EXPORT_SYMBOL(pci_reenable_device);
3930 EXPORT_SYMBOL(pci_enable_device_io);
3931 EXPORT_SYMBOL(pci_enable_device_mem);
3932 EXPORT_SYMBOL(pci_enable_device);
3933 EXPORT_SYMBOL(pcim_enable_device);
3934 EXPORT_SYMBOL(pcim_pin_device);
3935 EXPORT_SYMBOL(pci_disable_device);
3936 EXPORT_SYMBOL(pci_find_capability);
3937 EXPORT_SYMBOL(pci_bus_find_capability);
3938 EXPORT_SYMBOL(pci_release_regions);
3939 EXPORT_SYMBOL(pci_request_regions);
3940 EXPORT_SYMBOL(pci_request_regions_exclusive);
3941 EXPORT_SYMBOL(pci_release_region);
3942 EXPORT_SYMBOL(pci_request_region);
3943 EXPORT_SYMBOL(pci_request_region_exclusive);
3944 EXPORT_SYMBOL(pci_release_selected_regions);
3945 EXPORT_SYMBOL(pci_request_selected_regions);
3946 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3947 EXPORT_SYMBOL(pci_set_master);
3948 EXPORT_SYMBOL(pci_clear_master);
3949 EXPORT_SYMBOL(pci_set_mwi);
3950 EXPORT_SYMBOL(pci_try_set_mwi);
3951 EXPORT_SYMBOL(pci_clear_mwi);
3952 EXPORT_SYMBOL_GPL(pci_intx);
3953 EXPORT_SYMBOL(pci_assign_resource);
3954 EXPORT_SYMBOL(pci_find_parent_resource);
3955 EXPORT_SYMBOL(pci_select_bars);
3956 
3957 EXPORT_SYMBOL(pci_set_power_state);
3958 EXPORT_SYMBOL(pci_save_state);
3959 EXPORT_SYMBOL(pci_restore_state);
3960 EXPORT_SYMBOL(pci_pme_capable);
3961 EXPORT_SYMBOL(pci_pme_active);
3962 EXPORT_SYMBOL(pci_wake_from_d3);
3963 EXPORT_SYMBOL(pci_target_state);
3964 EXPORT_SYMBOL(pci_prepare_to_sleep);
3965 EXPORT_SYMBOL(pci_back_from_sleep);
3966 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3967