xref: /openbmc/linux/drivers/pci/pci.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3hot_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3hot_delay;
68 
69 	if (delay < pci_pm_d3hot_delay)
70 		delay = pci_pm_d3hot_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 	return dev->reset_methods[0] != 0;
79 }
80 
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84 
85 #define DEFAULT_CARDBUS_IO_SIZE		(256)
86 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90 
91 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99  * pci=hpmemsize=nnM overrides both
100  */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103 
104 #define DEFAULT_HOTPLUG_BUS_SIZE	1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106 
107 
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120 
121 /*
122  * The default CLS is used if arch didn't set CLS explicitly and not
123  * all pci devices agree on the same value.  Arch can override either
124  * the dfl or actual value as it sees fit.  Don't forget this is
125  * measured in 32-bit words, not bytes.
126  */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129 
130 /*
131  * If we set up a device for bus mastering, we need to check the latency
132  * timer as certain BIOSes forget to set it properly.
133  */
134 unsigned int pcibios_max_latency = 255;
135 
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138 
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141 
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144 
145 bool pci_ats_disabled(void)
146 {
147 	return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150 
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155 
156 static int __init pcie_port_pm_setup(char *str)
157 {
158 	if (!strcmp(str, "off"))
159 		pci_bridge_d3_disable = true;
160 	else if (!strcmp(str, "force"))
161 		pci_bridge_d3_force = true;
162 	return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165 
166 /* Time to wait after a reset for device to become responsive */
167 #define PCIE_RESET_READY_POLL_MS 60000
168 
169 /**
170  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
171  * @bus: pointer to PCI bus structure to search
172  *
173  * Given a PCI bus, returns the highest PCI bus number present in the set
174  * including the given PCI bus and its list of child PCI buses.
175  */
176 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
177 {
178 	struct pci_bus *tmp;
179 	unsigned char max, n;
180 
181 	max = bus->busn_res.end;
182 	list_for_each_entry(tmp, &bus->children, node) {
183 		n = pci_bus_max_busnr(tmp);
184 		if (n > max)
185 			max = n;
186 	}
187 	return max;
188 }
189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
190 
191 /**
192  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
193  * @pdev: the PCI device
194  *
195  * Returns error bits set in PCI_STATUS and clears them.
196  */
197 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
198 {
199 	u16 status;
200 	int ret;
201 
202 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
203 	if (ret != PCIBIOS_SUCCESSFUL)
204 		return -EIO;
205 
206 	status &= PCI_STATUS_ERROR_BITS;
207 	if (status)
208 		pci_write_config_word(pdev, PCI_STATUS, status);
209 
210 	return status;
211 }
212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
213 
214 #ifdef CONFIG_HAS_IOMEM
215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
216 					    bool write_combine)
217 {
218 	struct resource *res = &pdev->resource[bar];
219 	resource_size_t start = res->start;
220 	resource_size_t size = resource_size(res);
221 
222 	/*
223 	 * Make sure the BAR is actually a memory resource, not an IO resource
224 	 */
225 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
226 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
227 		return NULL;
228 	}
229 
230 	if (write_combine)
231 		return ioremap_wc(start, size);
232 
233 	return ioremap(start, size);
234 }
235 
236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
237 {
238 	return __pci_ioremap_resource(pdev, bar, false);
239 }
240 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
241 
242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
243 {
244 	return __pci_ioremap_resource(pdev, bar, true);
245 }
246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
247 #endif
248 
249 /**
250  * pci_dev_str_match_path - test if a path string matches a device
251  * @dev: the PCI device to test
252  * @path: string to match the device against
253  * @endptr: pointer to the string after the match
254  *
255  * Test if a string (typically from a kernel parameter) formatted as a
256  * path of device/function addresses matches a PCI device. The string must
257  * be of the form:
258  *
259  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
260  *
261  * A path for a device can be obtained using 'lspci -t'.  Using a path
262  * is more robust against bus renumbering than using only a single bus,
263  * device and function address.
264  *
265  * Returns 1 if the string matches the device, 0 if it does not and
266  * a negative error code if it fails to parse the string.
267  */
268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
269 				  const char **endptr)
270 {
271 	int ret;
272 	int seg, bus, slot, func;
273 	char *wpath, *p;
274 	char end;
275 
276 	*endptr = strchrnul(path, ';');
277 
278 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
279 	if (!wpath)
280 		return -ENOMEM;
281 
282 	while (1) {
283 		p = strrchr(wpath, '/');
284 		if (!p)
285 			break;
286 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
287 		if (ret != 2) {
288 			ret = -EINVAL;
289 			goto free_and_exit;
290 		}
291 
292 		if (dev->devfn != PCI_DEVFN(slot, func)) {
293 			ret = 0;
294 			goto free_and_exit;
295 		}
296 
297 		/*
298 		 * Note: we don't need to get a reference to the upstream
299 		 * bridge because we hold a reference to the top level
300 		 * device which should hold a reference to the bridge,
301 		 * and so on.
302 		 */
303 		dev = pci_upstream_bridge(dev);
304 		if (!dev) {
305 			ret = 0;
306 			goto free_and_exit;
307 		}
308 
309 		*p = 0;
310 	}
311 
312 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
313 		     &func, &end);
314 	if (ret != 4) {
315 		seg = 0;
316 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
317 		if (ret != 3) {
318 			ret = -EINVAL;
319 			goto free_and_exit;
320 		}
321 	}
322 
323 	ret = (seg == pci_domain_nr(dev->bus) &&
324 	       bus == dev->bus->number &&
325 	       dev->devfn == PCI_DEVFN(slot, func));
326 
327 free_and_exit:
328 	kfree(wpath);
329 	return ret;
330 }
331 
332 /**
333  * pci_dev_str_match - test if a string matches a device
334  * @dev: the PCI device to test
335  * @p: string to match the device against
336  * @endptr: pointer to the string after the match
337  *
338  * Test if a string (typically from a kernel parameter) matches a specified
339  * PCI device. The string may be of one of the following formats:
340  *
341  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
342  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
343  *
344  * The first format specifies a PCI bus/device/function address which
345  * may change if new hardware is inserted, if motherboard firmware changes,
346  * or due to changes caused in kernel parameters. If the domain is
347  * left unspecified, it is taken to be 0.  In order to be robust against
348  * bus renumbering issues, a path of PCI device/function numbers may be used
349  * to address the specific device.  The path for a device can be determined
350  * through the use of 'lspci -t'.
351  *
352  * The second format matches devices using IDs in the configuration
353  * space which may match multiple devices in the system. A value of 0
354  * for any field will match all devices. (Note: this differs from
355  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
356  * legacy reasons and convenience so users don't have to specify
357  * FFFFFFFFs on the command line.)
358  *
359  * Returns 1 if the string matches the device, 0 if it does not and
360  * a negative error code if the string cannot be parsed.
361  */
362 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
363 			     const char **endptr)
364 {
365 	int ret;
366 	int count;
367 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
368 
369 	if (strncmp(p, "pci:", 4) == 0) {
370 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
371 		p += 4;
372 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
373 			     &subsystem_vendor, &subsystem_device, &count);
374 		if (ret != 4) {
375 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
376 			if (ret != 2)
377 				return -EINVAL;
378 
379 			subsystem_vendor = 0;
380 			subsystem_device = 0;
381 		}
382 
383 		p += count;
384 
385 		if ((!vendor || vendor == dev->vendor) &&
386 		    (!device || device == dev->device) &&
387 		    (!subsystem_vendor ||
388 			    subsystem_vendor == dev->subsystem_vendor) &&
389 		    (!subsystem_device ||
390 			    subsystem_device == dev->subsystem_device))
391 			goto found;
392 	} else {
393 		/*
394 		 * PCI Bus, Device, Function IDs are specified
395 		 * (optionally, may include a path of devfns following it)
396 		 */
397 		ret = pci_dev_str_match_path(dev, p, &p);
398 		if (ret < 0)
399 			return ret;
400 		else if (ret)
401 			goto found;
402 	}
403 
404 	*endptr = p;
405 	return 0;
406 
407 found:
408 	*endptr = p;
409 	return 1;
410 }
411 
412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
413 				  u8 pos, int cap, int *ttl)
414 {
415 	u8 id;
416 	u16 ent;
417 
418 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
419 
420 	while ((*ttl)--) {
421 		if (pos < 0x40)
422 			break;
423 		pos &= ~3;
424 		pci_bus_read_config_word(bus, devfn, pos, &ent);
425 
426 		id = ent & 0xff;
427 		if (id == 0xff)
428 			break;
429 		if (id == cap)
430 			return pos;
431 		pos = (ent >> 8);
432 	}
433 	return 0;
434 }
435 
436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
437 			      u8 pos, int cap)
438 {
439 	int ttl = PCI_FIND_CAP_TTL;
440 
441 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
442 }
443 
444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
445 {
446 	return __pci_find_next_cap(dev->bus, dev->devfn,
447 				   pos + PCI_CAP_LIST_NEXT, cap);
448 }
449 EXPORT_SYMBOL_GPL(pci_find_next_capability);
450 
451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
452 				    unsigned int devfn, u8 hdr_type)
453 {
454 	u16 status;
455 
456 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
457 	if (!(status & PCI_STATUS_CAP_LIST))
458 		return 0;
459 
460 	switch (hdr_type) {
461 	case PCI_HEADER_TYPE_NORMAL:
462 	case PCI_HEADER_TYPE_BRIDGE:
463 		return PCI_CAPABILITY_LIST;
464 	case PCI_HEADER_TYPE_CARDBUS:
465 		return PCI_CB_CAPABILITY_LIST;
466 	}
467 
468 	return 0;
469 }
470 
471 /**
472  * pci_find_capability - query for devices' capabilities
473  * @dev: PCI device to query
474  * @cap: capability code
475  *
476  * Tell if a device supports a given PCI capability.
477  * Returns the address of the requested capability structure within the
478  * device's PCI configuration space or 0 in case the device does not
479  * support it.  Possible values for @cap include:
480  *
481  *  %PCI_CAP_ID_PM           Power Management
482  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
483  *  %PCI_CAP_ID_VPD          Vital Product Data
484  *  %PCI_CAP_ID_SLOTID       Slot Identification
485  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
486  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
487  *  %PCI_CAP_ID_PCIX         PCI-X
488  *  %PCI_CAP_ID_EXP          PCI Express
489  */
490 u8 pci_find_capability(struct pci_dev *dev, int cap)
491 {
492 	u8 pos;
493 
494 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
495 	if (pos)
496 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
497 
498 	return pos;
499 }
500 EXPORT_SYMBOL(pci_find_capability);
501 
502 /**
503  * pci_bus_find_capability - query for devices' capabilities
504  * @bus: the PCI bus to query
505  * @devfn: PCI device to query
506  * @cap: capability code
507  *
508  * Like pci_find_capability() but works for PCI devices that do not have a
509  * pci_dev structure set up yet.
510  *
511  * Returns the address of the requested capability structure within the
512  * device's PCI configuration space or 0 in case the device does not
513  * support it.
514  */
515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
516 {
517 	u8 hdr_type, pos;
518 
519 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
520 
521 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
522 	if (pos)
523 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
524 
525 	return pos;
526 }
527 EXPORT_SYMBOL(pci_bus_find_capability);
528 
529 /**
530  * pci_find_next_ext_capability - Find an extended capability
531  * @dev: PCI device to query
532  * @start: address at which to start looking (0 to start at beginning of list)
533  * @cap: capability code
534  *
535  * Returns the address of the next matching extended capability structure
536  * within the device's PCI configuration space or 0 if the device does
537  * not support it.  Some capabilities can occur several times, e.g., the
538  * vendor-specific capability, and this provides a way to find them all.
539  */
540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
541 {
542 	u32 header;
543 	int ttl;
544 	u16 pos = PCI_CFG_SPACE_SIZE;
545 
546 	/* minimum 8 bytes per capability */
547 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
548 
549 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
550 		return 0;
551 
552 	if (start)
553 		pos = start;
554 
555 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 		return 0;
557 
558 	/*
559 	 * If we have no capabilities, this is indicated by cap ID,
560 	 * cap version and next pointer all being 0.
561 	 */
562 	if (header == 0)
563 		return 0;
564 
565 	while (ttl-- > 0) {
566 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
567 			return pos;
568 
569 		pos = PCI_EXT_CAP_NEXT(header);
570 		if (pos < PCI_CFG_SPACE_SIZE)
571 			break;
572 
573 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
574 			break;
575 	}
576 
577 	return 0;
578 }
579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
580 
581 /**
582  * pci_find_ext_capability - Find an extended capability
583  * @dev: PCI device to query
584  * @cap: capability code
585  *
586  * Returns the address of the requested extended capability structure
587  * within the device's PCI configuration space or 0 if the device does
588  * not support it.  Possible values for @cap include:
589  *
590  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
591  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
592  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
593  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
594  */
595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
596 {
597 	return pci_find_next_ext_capability(dev, 0, cap);
598 }
599 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
600 
601 /**
602  * pci_get_dsn - Read and return the 8-byte Device Serial Number
603  * @dev: PCI device to query
604  *
605  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
606  * Number.
607  *
608  * Returns the DSN, or zero if the capability does not exist.
609  */
610 u64 pci_get_dsn(struct pci_dev *dev)
611 {
612 	u32 dword;
613 	u64 dsn;
614 	int pos;
615 
616 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
617 	if (!pos)
618 		return 0;
619 
620 	/*
621 	 * The Device Serial Number is two dwords offset 4 bytes from the
622 	 * capability position. The specification says that the first dword is
623 	 * the lower half, and the second dword is the upper half.
624 	 */
625 	pos += 4;
626 	pci_read_config_dword(dev, pos, &dword);
627 	dsn = (u64)dword;
628 	pci_read_config_dword(dev, pos + 4, &dword);
629 	dsn |= ((u64)dword) << 32;
630 
631 	return dsn;
632 }
633 EXPORT_SYMBOL_GPL(pci_get_dsn);
634 
635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
636 {
637 	int rc, ttl = PCI_FIND_CAP_TTL;
638 	u8 cap, mask;
639 
640 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
641 		mask = HT_3BIT_CAP_MASK;
642 	else
643 		mask = HT_5BIT_CAP_MASK;
644 
645 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
646 				      PCI_CAP_ID_HT, &ttl);
647 	while (pos) {
648 		rc = pci_read_config_byte(dev, pos + 3, &cap);
649 		if (rc != PCIBIOS_SUCCESSFUL)
650 			return 0;
651 
652 		if ((cap & mask) == ht_cap)
653 			return pos;
654 
655 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
656 					      pos + PCI_CAP_LIST_NEXT,
657 					      PCI_CAP_ID_HT, &ttl);
658 	}
659 
660 	return 0;
661 }
662 
663 /**
664  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
665  * @dev: PCI device to query
666  * @pos: Position from which to continue searching
667  * @ht_cap: HyperTransport capability code
668  *
669  * To be used in conjunction with pci_find_ht_capability() to search for
670  * all capabilities matching @ht_cap. @pos should always be a value returned
671  * from pci_find_ht_capability().
672  *
673  * NB. To be 100% safe against broken PCI devices, the caller should take
674  * steps to avoid an infinite loop.
675  */
676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
677 {
678 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
679 }
680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
681 
682 /**
683  * pci_find_ht_capability - query a device's HyperTransport capabilities
684  * @dev: PCI device to query
685  * @ht_cap: HyperTransport capability code
686  *
687  * Tell if a device supports a given HyperTransport capability.
688  * Returns an address within the device's PCI configuration space
689  * or 0 in case the device does not support the request capability.
690  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
691  * which has a HyperTransport capability matching @ht_cap.
692  */
693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
694 {
695 	u8 pos;
696 
697 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
698 	if (pos)
699 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
700 
701 	return pos;
702 }
703 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
704 
705 /**
706  * pci_find_vsec_capability - Find a vendor-specific extended capability
707  * @dev: PCI device to query
708  * @vendor: Vendor ID for which capability is defined
709  * @cap: Vendor-specific capability ID
710  *
711  * If @dev has Vendor ID @vendor, search for a VSEC capability with
712  * VSEC ID @cap. If found, return the capability offset in
713  * config space; otherwise return 0.
714  */
715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
716 {
717 	u16 vsec = 0;
718 	u32 header;
719 
720 	if (vendor != dev->vendor)
721 		return 0;
722 
723 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
724 						     PCI_EXT_CAP_ID_VNDR))) {
725 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
726 					  &header) == PCIBIOS_SUCCESSFUL &&
727 		    PCI_VNDR_HEADER_ID(header) == cap)
728 			return vsec;
729 	}
730 
731 	return 0;
732 }
733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
734 
735 /**
736  * pci_find_parent_resource - return resource region of parent bus of given
737  *			      region
738  * @dev: PCI device structure contains resources to be searched
739  * @res: child resource record for which parent is sought
740  *
741  * For given resource region of given device, return the resource region of
742  * parent bus the given region is contained in.
743  */
744 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
745 					  struct resource *res)
746 {
747 	const struct pci_bus *bus = dev->bus;
748 	struct resource *r;
749 	int i;
750 
751 	pci_bus_for_each_resource(bus, r, i) {
752 		if (!r)
753 			continue;
754 		if (resource_contains(r, res)) {
755 
756 			/*
757 			 * If the window is prefetchable but the BAR is
758 			 * not, the allocator made a mistake.
759 			 */
760 			if (r->flags & IORESOURCE_PREFETCH &&
761 			    !(res->flags & IORESOURCE_PREFETCH))
762 				return NULL;
763 
764 			/*
765 			 * If we're below a transparent bridge, there may
766 			 * be both a positively-decoded aperture and a
767 			 * subtractively-decoded region that contain the BAR.
768 			 * We want the positively-decoded one, so this depends
769 			 * on pci_bus_for_each_resource() giving us those
770 			 * first.
771 			 */
772 			return r;
773 		}
774 	}
775 	return NULL;
776 }
777 EXPORT_SYMBOL(pci_find_parent_resource);
778 
779 /**
780  * pci_find_resource - Return matching PCI device resource
781  * @dev: PCI device to query
782  * @res: Resource to look for
783  *
784  * Goes over standard PCI resources (BARs) and checks if the given resource
785  * is partially or fully contained in any of them. In that case the
786  * matching resource is returned, %NULL otherwise.
787  */
788 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
789 {
790 	int i;
791 
792 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
793 		struct resource *r = &dev->resource[i];
794 
795 		if (r->start && resource_contains(r, res))
796 			return r;
797 	}
798 
799 	return NULL;
800 }
801 EXPORT_SYMBOL(pci_find_resource);
802 
803 /**
804  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
805  * @dev: the PCI device to operate on
806  * @pos: config space offset of status word
807  * @mask: mask of bit(s) to care about in status word
808  *
809  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
810  */
811 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
812 {
813 	int i;
814 
815 	/* Wait for Transaction Pending bit clean */
816 	for (i = 0; i < 4; i++) {
817 		u16 status;
818 		if (i)
819 			msleep((1 << (i - 1)) * 100);
820 
821 		pci_read_config_word(dev, pos, &status);
822 		if (!(status & mask))
823 			return 1;
824 	}
825 
826 	return 0;
827 }
828 
829 static int pci_acs_enable;
830 
831 /**
832  * pci_request_acs - ask for ACS to be enabled if supported
833  */
834 void pci_request_acs(void)
835 {
836 	pci_acs_enable = 1;
837 }
838 
839 static const char *disable_acs_redir_param;
840 
841 /**
842  * pci_disable_acs_redir - disable ACS redirect capabilities
843  * @dev: the PCI device
844  *
845  * For only devices specified in the disable_acs_redir parameter.
846  */
847 static void pci_disable_acs_redir(struct pci_dev *dev)
848 {
849 	int ret = 0;
850 	const char *p;
851 	int pos;
852 	u16 ctrl;
853 
854 	if (!disable_acs_redir_param)
855 		return;
856 
857 	p = disable_acs_redir_param;
858 	while (*p) {
859 		ret = pci_dev_str_match(dev, p, &p);
860 		if (ret < 0) {
861 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
862 				     disable_acs_redir_param);
863 
864 			break;
865 		} else if (ret == 1) {
866 			/* Found a match */
867 			break;
868 		}
869 
870 		if (*p != ';' && *p != ',') {
871 			/* End of param or invalid format */
872 			break;
873 		}
874 		p++;
875 	}
876 
877 	if (ret != 1)
878 		return;
879 
880 	if (!pci_dev_specific_disable_acs_redir(dev))
881 		return;
882 
883 	pos = dev->acs_cap;
884 	if (!pos) {
885 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
886 		return;
887 	}
888 
889 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
890 
891 	/* P2P Request & Completion Redirect */
892 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
893 
894 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
895 
896 	pci_info(dev, "disabled ACS redirect\n");
897 }
898 
899 /**
900  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
901  * @dev: the PCI device
902  */
903 static void pci_std_enable_acs(struct pci_dev *dev)
904 {
905 	int pos;
906 	u16 cap;
907 	u16 ctrl;
908 
909 	pos = dev->acs_cap;
910 	if (!pos)
911 		return;
912 
913 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
914 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
915 
916 	/* Source Validation */
917 	ctrl |= (cap & PCI_ACS_SV);
918 
919 	/* P2P Request Redirect */
920 	ctrl |= (cap & PCI_ACS_RR);
921 
922 	/* P2P Completion Redirect */
923 	ctrl |= (cap & PCI_ACS_CR);
924 
925 	/* Upstream Forwarding */
926 	ctrl |= (cap & PCI_ACS_UF);
927 
928 	/* Enable Translation Blocking for external devices and noats */
929 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
930 		ctrl |= (cap & PCI_ACS_TB);
931 
932 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
933 }
934 
935 /**
936  * pci_enable_acs - enable ACS if hardware support it
937  * @dev: the PCI device
938  */
939 static void pci_enable_acs(struct pci_dev *dev)
940 {
941 	if (!pci_acs_enable)
942 		goto disable_acs_redir;
943 
944 	if (!pci_dev_specific_enable_acs(dev))
945 		goto disable_acs_redir;
946 
947 	pci_std_enable_acs(dev);
948 
949 disable_acs_redir:
950 	/*
951 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
952 	 * enabled by the kernel because it may have been enabled by
953 	 * platform firmware.  So if we are told to disable it, we should
954 	 * always disable it after setting the kernel's default
955 	 * preferences.
956 	 */
957 	pci_disable_acs_redir(dev);
958 }
959 
960 /**
961  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
962  * @dev: PCI device to have its BARs restored
963  *
964  * Restore the BAR values for a given device, so as to make it
965  * accessible by its driver.
966  */
967 static void pci_restore_bars(struct pci_dev *dev)
968 {
969 	int i;
970 
971 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
972 		pci_update_resource(dev, i);
973 }
974 
975 static const struct pci_platform_pm_ops *pci_platform_pm;
976 
977 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
978 {
979 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
980 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
981 		return -EINVAL;
982 	pci_platform_pm = ops;
983 	return 0;
984 }
985 
986 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
987 {
988 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
989 }
990 
991 static inline int platform_pci_set_power_state(struct pci_dev *dev,
992 					       pci_power_t t)
993 {
994 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
995 }
996 
997 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
998 {
999 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
1000 }
1001 
1002 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1003 {
1004 	if (pci_platform_pm && pci_platform_pm->refresh_state)
1005 		pci_platform_pm->refresh_state(dev);
1006 }
1007 
1008 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1009 {
1010 	return pci_platform_pm ?
1011 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1012 }
1013 
1014 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1015 {
1016 	return pci_platform_pm ?
1017 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1018 }
1019 
1020 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1021 {
1022 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1023 }
1024 
1025 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1026 {
1027 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
1028 		return pci_platform_pm->bridge_d3(dev);
1029 	return false;
1030 }
1031 
1032 /**
1033  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1034  *			     given PCI device
1035  * @dev: PCI device to handle.
1036  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1037  *
1038  * RETURN VALUE:
1039  * -EINVAL if the requested state is invalid.
1040  * -EIO if device does not support PCI PM or its PM capabilities register has a
1041  * wrong version, or device doesn't support the requested state.
1042  * 0 if device already is in the requested state.
1043  * 0 if device's power state has been successfully changed.
1044  */
1045 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1046 {
1047 	u16 pmcsr;
1048 	bool need_restore = false;
1049 
1050 	/* Check if we're already there */
1051 	if (dev->current_state == state)
1052 		return 0;
1053 
1054 	if (!dev->pm_cap)
1055 		return -EIO;
1056 
1057 	if (state < PCI_D0 || state > PCI_D3hot)
1058 		return -EINVAL;
1059 
1060 	/*
1061 	 * Validate transition: We can enter D0 from any state, but if
1062 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1063 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1064 	 * we'd have to go from D3 to D0, then to D1.
1065 	 */
1066 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1067 	    && dev->current_state > state) {
1068 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1069 			pci_power_name(dev->current_state),
1070 			pci_power_name(state));
1071 		return -EINVAL;
1072 	}
1073 
1074 	/* Check if this device supports the desired state */
1075 	if ((state == PCI_D1 && !dev->d1_support)
1076 	   || (state == PCI_D2 && !dev->d2_support))
1077 		return -EIO;
1078 
1079 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1080 	if (pmcsr == (u16) ~0) {
1081 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1082 			pci_power_name(dev->current_state),
1083 			pci_power_name(state));
1084 		return -EIO;
1085 	}
1086 
1087 	/*
1088 	 * If we're (effectively) in D3, force entire word to 0.
1089 	 * This doesn't affect PME_Status, disables PME_En, and
1090 	 * sets PowerState to 0.
1091 	 */
1092 	switch (dev->current_state) {
1093 	case PCI_D0:
1094 	case PCI_D1:
1095 	case PCI_D2:
1096 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1097 		pmcsr |= state;
1098 		break;
1099 	case PCI_D3hot:
1100 	case PCI_D3cold:
1101 	case PCI_UNKNOWN: /* Boot-up */
1102 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1103 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1104 			need_restore = true;
1105 		fallthrough;	/* force to D0 */
1106 	default:
1107 		pmcsr = 0;
1108 		break;
1109 	}
1110 
1111 	/* Enter specified state */
1112 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1113 
1114 	/*
1115 	 * Mandatory power management transition delays; see PCI PM 1.1
1116 	 * 5.6.1 table 18
1117 	 */
1118 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1119 		pci_dev_d3_sleep(dev);
1120 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1121 		udelay(PCI_PM_D2_DELAY);
1122 
1123 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1124 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1125 	if (dev->current_state != state)
1126 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1127 			 pci_power_name(dev->current_state),
1128 			 pci_power_name(state));
1129 
1130 	/*
1131 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1132 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1133 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1134 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1135 	 * For example, at least some versions of the 3c905B and the
1136 	 * 3c556B exhibit this behaviour.
1137 	 *
1138 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1139 	 * devices in a D3hot state at boot.  Consequently, we need to
1140 	 * restore at least the BARs so that the device will be
1141 	 * accessible to its driver.
1142 	 */
1143 	if (need_restore)
1144 		pci_restore_bars(dev);
1145 
1146 	if (dev->bus->self)
1147 		pcie_aspm_pm_state_change(dev->bus->self);
1148 
1149 	return 0;
1150 }
1151 
1152 /**
1153  * pci_update_current_state - Read power state of given device and cache it
1154  * @dev: PCI device to handle.
1155  * @state: State to cache in case the device doesn't have the PM capability
1156  *
1157  * The power state is read from the PMCSR register, which however is
1158  * inaccessible in D3cold.  The platform firmware is therefore queried first
1159  * to detect accessibility of the register.  In case the platform firmware
1160  * reports an incorrect state or the device isn't power manageable by the
1161  * platform at all, we try to detect D3cold by testing accessibility of the
1162  * vendor ID in config space.
1163  */
1164 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1165 {
1166 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1167 	    !pci_device_is_present(dev)) {
1168 		dev->current_state = PCI_D3cold;
1169 	} else if (dev->pm_cap) {
1170 		u16 pmcsr;
1171 
1172 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1173 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1174 	} else {
1175 		dev->current_state = state;
1176 	}
1177 }
1178 
1179 /**
1180  * pci_refresh_power_state - Refresh the given device's power state data
1181  * @dev: Target PCI device.
1182  *
1183  * Ask the platform to refresh the devices power state information and invoke
1184  * pci_update_current_state() to update its current PCI power state.
1185  */
1186 void pci_refresh_power_state(struct pci_dev *dev)
1187 {
1188 	if (platform_pci_power_manageable(dev))
1189 		platform_pci_refresh_power_state(dev);
1190 
1191 	pci_update_current_state(dev, dev->current_state);
1192 }
1193 
1194 /**
1195  * pci_platform_power_transition - Use platform to change device power state
1196  * @dev: PCI device to handle.
1197  * @state: State to put the device into.
1198  */
1199 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1200 {
1201 	int error;
1202 
1203 	if (platform_pci_power_manageable(dev)) {
1204 		error = platform_pci_set_power_state(dev, state);
1205 		if (!error)
1206 			pci_update_current_state(dev, state);
1207 	} else
1208 		error = -ENODEV;
1209 
1210 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1211 		dev->current_state = PCI_D0;
1212 
1213 	return error;
1214 }
1215 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1216 
1217 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1218 {
1219 	pm_request_resume(&pci_dev->dev);
1220 	return 0;
1221 }
1222 
1223 /**
1224  * pci_resume_bus - Walk given bus and runtime resume devices on it
1225  * @bus: Top bus of the subtree to walk.
1226  */
1227 void pci_resume_bus(struct pci_bus *bus)
1228 {
1229 	if (bus)
1230 		pci_walk_bus(bus, pci_resume_one, NULL);
1231 }
1232 
1233 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1234 {
1235 	int delay = 1;
1236 	u32 id;
1237 
1238 	/*
1239 	 * After reset, the device should not silently discard config
1240 	 * requests, but it may still indicate that it needs more time by
1241 	 * responding to them with CRS completions.  The Root Port will
1242 	 * generally synthesize ~0 data to complete the read (except when
1243 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1244 	 * case it synthesizes 0x0001 data).
1245 	 *
1246 	 * Wait for the device to return a non-CRS completion.  Read the
1247 	 * Command register instead of Vendor ID so we don't have to
1248 	 * contend with the CRS SV value.
1249 	 */
1250 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1251 	while (id == ~0) {
1252 		if (delay > timeout) {
1253 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1254 				 delay - 1, reset_type);
1255 			return -ENOTTY;
1256 		}
1257 
1258 		if (delay > 1000)
1259 			pci_info(dev, "not ready %dms after %s; waiting\n",
1260 				 delay - 1, reset_type);
1261 
1262 		msleep(delay);
1263 		delay *= 2;
1264 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1265 	}
1266 
1267 	if (delay > 1000)
1268 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1269 			 reset_type);
1270 
1271 	return 0;
1272 }
1273 
1274 /**
1275  * pci_power_up - Put the given device into D0
1276  * @dev: PCI device to power up
1277  */
1278 int pci_power_up(struct pci_dev *dev)
1279 {
1280 	pci_platform_power_transition(dev, PCI_D0);
1281 
1282 	/*
1283 	 * Mandatory power management transition delays are handled in
1284 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1285 	 * corresponding bridge.
1286 	 */
1287 	if (dev->runtime_d3cold) {
1288 		/*
1289 		 * When powering on a bridge from D3cold, the whole hierarchy
1290 		 * may be powered on into D0uninitialized state, resume them to
1291 		 * give them a chance to suspend again
1292 		 */
1293 		pci_resume_bus(dev->subordinate);
1294 	}
1295 
1296 	return pci_raw_set_power_state(dev, PCI_D0);
1297 }
1298 
1299 /**
1300  * __pci_dev_set_current_state - Set current state of a PCI device
1301  * @dev: Device to handle
1302  * @data: pointer to state to be set
1303  */
1304 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1305 {
1306 	pci_power_t state = *(pci_power_t *)data;
1307 
1308 	dev->current_state = state;
1309 	return 0;
1310 }
1311 
1312 /**
1313  * pci_bus_set_current_state - Walk given bus and set current state of devices
1314  * @bus: Top bus of the subtree to walk.
1315  * @state: state to be set
1316  */
1317 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1318 {
1319 	if (bus)
1320 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1321 }
1322 
1323 /**
1324  * pci_set_power_state - Set the power state of a PCI device
1325  * @dev: PCI device to handle.
1326  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1327  *
1328  * Transition a device to a new power state, using the platform firmware and/or
1329  * the device's PCI PM registers.
1330  *
1331  * RETURN VALUE:
1332  * -EINVAL if the requested state is invalid.
1333  * -EIO if device does not support PCI PM or its PM capabilities register has a
1334  * wrong version, or device doesn't support the requested state.
1335  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1336  * 0 if device already is in the requested state.
1337  * 0 if the transition is to D3 but D3 is not supported.
1338  * 0 if device's power state has been successfully changed.
1339  */
1340 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1341 {
1342 	int error;
1343 
1344 	/* Bound the state we're entering */
1345 	if (state > PCI_D3cold)
1346 		state = PCI_D3cold;
1347 	else if (state < PCI_D0)
1348 		state = PCI_D0;
1349 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1350 
1351 		/*
1352 		 * If the device or the parent bridge do not support PCI
1353 		 * PM, ignore the request if we're doing anything other
1354 		 * than putting it into D0 (which would only happen on
1355 		 * boot).
1356 		 */
1357 		return 0;
1358 
1359 	/* Check if we're already there */
1360 	if (dev->current_state == state)
1361 		return 0;
1362 
1363 	if (state == PCI_D0)
1364 		return pci_power_up(dev);
1365 
1366 	/*
1367 	 * This device is quirked not to be put into D3, so don't put it in
1368 	 * D3
1369 	 */
1370 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1371 		return 0;
1372 
1373 	/*
1374 	 * To put device in D3cold, we put device into D3hot in native
1375 	 * way, then put device into D3cold with platform ops
1376 	 */
1377 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1378 					PCI_D3hot : state);
1379 
1380 	if (pci_platform_power_transition(dev, state))
1381 		return error;
1382 
1383 	/* Powering off a bridge may power off the whole hierarchy */
1384 	if (state == PCI_D3cold)
1385 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1386 
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL(pci_set_power_state);
1390 
1391 /**
1392  * pci_choose_state - Choose the power state of a PCI device
1393  * @dev: PCI device to be suspended
1394  * @state: target sleep state for the whole system. This is the value
1395  *	   that is passed to suspend() function.
1396  *
1397  * Returns PCI power state suitable for given device and given system
1398  * message.
1399  */
1400 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1401 {
1402 	pci_power_t ret;
1403 
1404 	if (!dev->pm_cap)
1405 		return PCI_D0;
1406 
1407 	ret = platform_pci_choose_state(dev);
1408 	if (ret != PCI_POWER_ERROR)
1409 		return ret;
1410 
1411 	switch (state.event) {
1412 	case PM_EVENT_ON:
1413 		return PCI_D0;
1414 	case PM_EVENT_FREEZE:
1415 	case PM_EVENT_PRETHAW:
1416 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1417 	case PM_EVENT_SUSPEND:
1418 	case PM_EVENT_HIBERNATE:
1419 		return PCI_D3hot;
1420 	default:
1421 		pci_info(dev, "unrecognized suspend event %d\n",
1422 			 state.event);
1423 		BUG();
1424 	}
1425 	return PCI_D0;
1426 }
1427 EXPORT_SYMBOL(pci_choose_state);
1428 
1429 #define PCI_EXP_SAVE_REGS	7
1430 
1431 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1432 						       u16 cap, bool extended)
1433 {
1434 	struct pci_cap_saved_state *tmp;
1435 
1436 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1437 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1438 			return tmp;
1439 	}
1440 	return NULL;
1441 }
1442 
1443 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1444 {
1445 	return _pci_find_saved_cap(dev, cap, false);
1446 }
1447 
1448 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1449 {
1450 	return _pci_find_saved_cap(dev, cap, true);
1451 }
1452 
1453 static int pci_save_pcie_state(struct pci_dev *dev)
1454 {
1455 	int i = 0;
1456 	struct pci_cap_saved_state *save_state;
1457 	u16 *cap;
1458 
1459 	if (!pci_is_pcie(dev))
1460 		return 0;
1461 
1462 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1463 	if (!save_state) {
1464 		pci_err(dev, "buffer not found in %s\n", __func__);
1465 		return -ENOMEM;
1466 	}
1467 
1468 	cap = (u16 *)&save_state->cap.data[0];
1469 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1470 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1471 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1472 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1473 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1474 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1475 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1476 
1477 	return 0;
1478 }
1479 
1480 static void pci_restore_pcie_state(struct pci_dev *dev)
1481 {
1482 	int i = 0;
1483 	struct pci_cap_saved_state *save_state;
1484 	u16 *cap;
1485 
1486 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1487 	if (!save_state)
1488 		return;
1489 
1490 	cap = (u16 *)&save_state->cap.data[0];
1491 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1492 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1493 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1494 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1495 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1496 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1497 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1498 }
1499 
1500 static int pci_save_pcix_state(struct pci_dev *dev)
1501 {
1502 	int pos;
1503 	struct pci_cap_saved_state *save_state;
1504 
1505 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1506 	if (!pos)
1507 		return 0;
1508 
1509 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1510 	if (!save_state) {
1511 		pci_err(dev, "buffer not found in %s\n", __func__);
1512 		return -ENOMEM;
1513 	}
1514 
1515 	pci_read_config_word(dev, pos + PCI_X_CMD,
1516 			     (u16 *)save_state->cap.data);
1517 
1518 	return 0;
1519 }
1520 
1521 static void pci_restore_pcix_state(struct pci_dev *dev)
1522 {
1523 	int i = 0, pos;
1524 	struct pci_cap_saved_state *save_state;
1525 	u16 *cap;
1526 
1527 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1528 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1529 	if (!save_state || !pos)
1530 		return;
1531 	cap = (u16 *)&save_state->cap.data[0];
1532 
1533 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1534 }
1535 
1536 static void pci_save_ltr_state(struct pci_dev *dev)
1537 {
1538 	int ltr;
1539 	struct pci_cap_saved_state *save_state;
1540 	u16 *cap;
1541 
1542 	if (!pci_is_pcie(dev))
1543 		return;
1544 
1545 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1546 	if (!ltr)
1547 		return;
1548 
1549 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1550 	if (!save_state) {
1551 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1552 		return;
1553 	}
1554 
1555 	cap = (u16 *)&save_state->cap.data[0];
1556 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1557 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1558 }
1559 
1560 static void pci_restore_ltr_state(struct pci_dev *dev)
1561 {
1562 	struct pci_cap_saved_state *save_state;
1563 	int ltr;
1564 	u16 *cap;
1565 
1566 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1567 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1568 	if (!save_state || !ltr)
1569 		return;
1570 
1571 	cap = (u16 *)&save_state->cap.data[0];
1572 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1573 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1574 }
1575 
1576 /**
1577  * pci_save_state - save the PCI configuration space of a device before
1578  *		    suspending
1579  * @dev: PCI device that we're dealing with
1580  */
1581 int pci_save_state(struct pci_dev *dev)
1582 {
1583 	int i;
1584 	/* XXX: 100% dword access ok here? */
1585 	for (i = 0; i < 16; i++) {
1586 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1587 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1588 			i * 4, dev->saved_config_space[i]);
1589 	}
1590 	dev->state_saved = true;
1591 
1592 	i = pci_save_pcie_state(dev);
1593 	if (i != 0)
1594 		return i;
1595 
1596 	i = pci_save_pcix_state(dev);
1597 	if (i != 0)
1598 		return i;
1599 
1600 	pci_save_ltr_state(dev);
1601 	pci_save_dpc_state(dev);
1602 	pci_save_aer_state(dev);
1603 	pci_save_ptm_state(dev);
1604 	return pci_save_vc_state(dev);
1605 }
1606 EXPORT_SYMBOL(pci_save_state);
1607 
1608 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1609 				     u32 saved_val, int retry, bool force)
1610 {
1611 	u32 val;
1612 
1613 	pci_read_config_dword(pdev, offset, &val);
1614 	if (!force && val == saved_val)
1615 		return;
1616 
1617 	for (;;) {
1618 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1619 			offset, val, saved_val);
1620 		pci_write_config_dword(pdev, offset, saved_val);
1621 		if (retry-- <= 0)
1622 			return;
1623 
1624 		pci_read_config_dword(pdev, offset, &val);
1625 		if (val == saved_val)
1626 			return;
1627 
1628 		mdelay(1);
1629 	}
1630 }
1631 
1632 static void pci_restore_config_space_range(struct pci_dev *pdev,
1633 					   int start, int end, int retry,
1634 					   bool force)
1635 {
1636 	int index;
1637 
1638 	for (index = end; index >= start; index--)
1639 		pci_restore_config_dword(pdev, 4 * index,
1640 					 pdev->saved_config_space[index],
1641 					 retry, force);
1642 }
1643 
1644 static void pci_restore_config_space(struct pci_dev *pdev)
1645 {
1646 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1647 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1648 		/* Restore BARs before the command register. */
1649 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1650 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1651 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1652 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1653 
1654 		/*
1655 		 * Force rewriting of prefetch registers to avoid S3 resume
1656 		 * issues on Intel PCI bridges that occur when these
1657 		 * registers are not explicitly written.
1658 		 */
1659 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1660 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1661 	} else {
1662 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1663 	}
1664 }
1665 
1666 static void pci_restore_rebar_state(struct pci_dev *pdev)
1667 {
1668 	unsigned int pos, nbars, i;
1669 	u32 ctrl;
1670 
1671 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1672 	if (!pos)
1673 		return;
1674 
1675 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1676 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1677 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1678 
1679 	for (i = 0; i < nbars; i++, pos += 8) {
1680 		struct resource *res;
1681 		int bar_idx, size;
1682 
1683 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1684 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1685 		res = pdev->resource + bar_idx;
1686 		size = pci_rebar_bytes_to_size(resource_size(res));
1687 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1688 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1689 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1690 	}
1691 }
1692 
1693 /**
1694  * pci_restore_state - Restore the saved state of a PCI device
1695  * @dev: PCI device that we're dealing with
1696  */
1697 void pci_restore_state(struct pci_dev *dev)
1698 {
1699 	if (!dev->state_saved)
1700 		return;
1701 
1702 	/*
1703 	 * Restore max latencies (in the LTR capability) before enabling
1704 	 * LTR itself (in the PCIe capability).
1705 	 */
1706 	pci_restore_ltr_state(dev);
1707 
1708 	pci_restore_pcie_state(dev);
1709 	pci_restore_pasid_state(dev);
1710 	pci_restore_pri_state(dev);
1711 	pci_restore_ats_state(dev);
1712 	pci_restore_vc_state(dev);
1713 	pci_restore_rebar_state(dev);
1714 	pci_restore_dpc_state(dev);
1715 	pci_restore_ptm_state(dev);
1716 
1717 	pci_aer_clear_status(dev);
1718 	pci_restore_aer_state(dev);
1719 
1720 	pci_restore_config_space(dev);
1721 
1722 	pci_restore_pcix_state(dev);
1723 	pci_restore_msi_state(dev);
1724 
1725 	/* Restore ACS and IOV configuration state */
1726 	pci_enable_acs(dev);
1727 	pci_restore_iov_state(dev);
1728 
1729 	dev->state_saved = false;
1730 }
1731 EXPORT_SYMBOL(pci_restore_state);
1732 
1733 struct pci_saved_state {
1734 	u32 config_space[16];
1735 	struct pci_cap_saved_data cap[];
1736 };
1737 
1738 /**
1739  * pci_store_saved_state - Allocate and return an opaque struct containing
1740  *			   the device saved state.
1741  * @dev: PCI device that we're dealing with
1742  *
1743  * Return NULL if no state or error.
1744  */
1745 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1746 {
1747 	struct pci_saved_state *state;
1748 	struct pci_cap_saved_state *tmp;
1749 	struct pci_cap_saved_data *cap;
1750 	size_t size;
1751 
1752 	if (!dev->state_saved)
1753 		return NULL;
1754 
1755 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1756 
1757 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1758 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1759 
1760 	state = kzalloc(size, GFP_KERNEL);
1761 	if (!state)
1762 		return NULL;
1763 
1764 	memcpy(state->config_space, dev->saved_config_space,
1765 	       sizeof(state->config_space));
1766 
1767 	cap = state->cap;
1768 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1769 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1770 		memcpy(cap, &tmp->cap, len);
1771 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1772 	}
1773 	/* Empty cap_save terminates list */
1774 
1775 	return state;
1776 }
1777 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1778 
1779 /**
1780  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1781  * @dev: PCI device that we're dealing with
1782  * @state: Saved state returned from pci_store_saved_state()
1783  */
1784 int pci_load_saved_state(struct pci_dev *dev,
1785 			 struct pci_saved_state *state)
1786 {
1787 	struct pci_cap_saved_data *cap;
1788 
1789 	dev->state_saved = false;
1790 
1791 	if (!state)
1792 		return 0;
1793 
1794 	memcpy(dev->saved_config_space, state->config_space,
1795 	       sizeof(state->config_space));
1796 
1797 	cap = state->cap;
1798 	while (cap->size) {
1799 		struct pci_cap_saved_state *tmp;
1800 
1801 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1802 		if (!tmp || tmp->cap.size != cap->size)
1803 			return -EINVAL;
1804 
1805 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1806 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1807 		       sizeof(struct pci_cap_saved_data) + cap->size);
1808 	}
1809 
1810 	dev->state_saved = true;
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1814 
1815 /**
1816  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1817  *				   and free the memory allocated for it.
1818  * @dev: PCI device that we're dealing with
1819  * @state: Pointer to saved state returned from pci_store_saved_state()
1820  */
1821 int pci_load_and_free_saved_state(struct pci_dev *dev,
1822 				  struct pci_saved_state **state)
1823 {
1824 	int ret = pci_load_saved_state(dev, *state);
1825 	kfree(*state);
1826 	*state = NULL;
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1830 
1831 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1832 {
1833 	return pci_enable_resources(dev, bars);
1834 }
1835 
1836 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1837 {
1838 	int err;
1839 	struct pci_dev *bridge;
1840 	u16 cmd;
1841 	u8 pin;
1842 
1843 	err = pci_set_power_state(dev, PCI_D0);
1844 	if (err < 0 && err != -EIO)
1845 		return err;
1846 
1847 	bridge = pci_upstream_bridge(dev);
1848 	if (bridge)
1849 		pcie_aspm_powersave_config_link(bridge);
1850 
1851 	err = pcibios_enable_device(dev, bars);
1852 	if (err < 0)
1853 		return err;
1854 	pci_fixup_device(pci_fixup_enable, dev);
1855 
1856 	if (dev->msi_enabled || dev->msix_enabled)
1857 		return 0;
1858 
1859 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1860 	if (pin) {
1861 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1862 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1863 			pci_write_config_word(dev, PCI_COMMAND,
1864 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 /**
1871  * pci_reenable_device - Resume abandoned device
1872  * @dev: PCI device to be resumed
1873  *
1874  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1875  * to be called by normal code, write proper resume handler and use it instead.
1876  */
1877 int pci_reenable_device(struct pci_dev *dev)
1878 {
1879 	if (pci_is_enabled(dev))
1880 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1881 	return 0;
1882 }
1883 EXPORT_SYMBOL(pci_reenable_device);
1884 
1885 static void pci_enable_bridge(struct pci_dev *dev)
1886 {
1887 	struct pci_dev *bridge;
1888 	int retval;
1889 
1890 	bridge = pci_upstream_bridge(dev);
1891 	if (bridge)
1892 		pci_enable_bridge(bridge);
1893 
1894 	if (pci_is_enabled(dev)) {
1895 		if (!dev->is_busmaster)
1896 			pci_set_master(dev);
1897 		return;
1898 	}
1899 
1900 	retval = pci_enable_device(dev);
1901 	if (retval)
1902 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1903 			retval);
1904 	pci_set_master(dev);
1905 }
1906 
1907 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1908 {
1909 	struct pci_dev *bridge;
1910 	int err;
1911 	int i, bars = 0;
1912 
1913 	/*
1914 	 * Power state could be unknown at this point, either due to a fresh
1915 	 * boot or a device removal call.  So get the current power state
1916 	 * so that things like MSI message writing will behave as expected
1917 	 * (e.g. if the device really is in D0 at enable time).
1918 	 */
1919 	pci_update_current_state(dev, dev->current_state);
1920 
1921 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1922 		return 0;		/* already enabled */
1923 
1924 	bridge = pci_upstream_bridge(dev);
1925 	if (bridge)
1926 		pci_enable_bridge(bridge);
1927 
1928 	/* only skip sriov related */
1929 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1930 		if (dev->resource[i].flags & flags)
1931 			bars |= (1 << i);
1932 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1933 		if (dev->resource[i].flags & flags)
1934 			bars |= (1 << i);
1935 
1936 	err = do_pci_enable_device(dev, bars);
1937 	if (err < 0)
1938 		atomic_dec(&dev->enable_cnt);
1939 	return err;
1940 }
1941 
1942 /**
1943  * pci_enable_device_io - Initialize a device for use with IO space
1944  * @dev: PCI device to be initialized
1945  *
1946  * Initialize device before it's used by a driver. Ask low-level code
1947  * to enable I/O resources. Wake up the device if it was suspended.
1948  * Beware, this function can fail.
1949  */
1950 int pci_enable_device_io(struct pci_dev *dev)
1951 {
1952 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1953 }
1954 EXPORT_SYMBOL(pci_enable_device_io);
1955 
1956 /**
1957  * pci_enable_device_mem - Initialize a device for use with Memory space
1958  * @dev: PCI device to be initialized
1959  *
1960  * Initialize device before it's used by a driver. Ask low-level code
1961  * to enable Memory resources. Wake up the device if it was suspended.
1962  * Beware, this function can fail.
1963  */
1964 int pci_enable_device_mem(struct pci_dev *dev)
1965 {
1966 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1967 }
1968 EXPORT_SYMBOL(pci_enable_device_mem);
1969 
1970 /**
1971  * pci_enable_device - Initialize device before it's used by a driver.
1972  * @dev: PCI device to be initialized
1973  *
1974  * Initialize device before it's used by a driver. Ask low-level code
1975  * to enable I/O and memory. Wake up the device if it was suspended.
1976  * Beware, this function can fail.
1977  *
1978  * Note we don't actually enable the device many times if we call
1979  * this function repeatedly (we just increment the count).
1980  */
1981 int pci_enable_device(struct pci_dev *dev)
1982 {
1983 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1984 }
1985 EXPORT_SYMBOL(pci_enable_device);
1986 
1987 /*
1988  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1989  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1990  * there's no need to track it separately.  pci_devres is initialized
1991  * when a device is enabled using managed PCI device enable interface.
1992  */
1993 struct pci_devres {
1994 	unsigned int enabled:1;
1995 	unsigned int pinned:1;
1996 	unsigned int orig_intx:1;
1997 	unsigned int restore_intx:1;
1998 	unsigned int mwi:1;
1999 	u32 region_mask;
2000 };
2001 
2002 static void pcim_release(struct device *gendev, void *res)
2003 {
2004 	struct pci_dev *dev = to_pci_dev(gendev);
2005 	struct pci_devres *this = res;
2006 	int i;
2007 
2008 	if (dev->msi_enabled)
2009 		pci_disable_msi(dev);
2010 	if (dev->msix_enabled)
2011 		pci_disable_msix(dev);
2012 
2013 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2014 		if (this->region_mask & (1 << i))
2015 			pci_release_region(dev, i);
2016 
2017 	if (this->mwi)
2018 		pci_clear_mwi(dev);
2019 
2020 	if (this->restore_intx)
2021 		pci_intx(dev, this->orig_intx);
2022 
2023 	if (this->enabled && !this->pinned)
2024 		pci_disable_device(dev);
2025 }
2026 
2027 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2028 {
2029 	struct pci_devres *dr, *new_dr;
2030 
2031 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2032 	if (dr)
2033 		return dr;
2034 
2035 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2036 	if (!new_dr)
2037 		return NULL;
2038 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2039 }
2040 
2041 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2042 {
2043 	if (pci_is_managed(pdev))
2044 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2045 	return NULL;
2046 }
2047 
2048 /**
2049  * pcim_enable_device - Managed pci_enable_device()
2050  * @pdev: PCI device to be initialized
2051  *
2052  * Managed pci_enable_device().
2053  */
2054 int pcim_enable_device(struct pci_dev *pdev)
2055 {
2056 	struct pci_devres *dr;
2057 	int rc;
2058 
2059 	dr = get_pci_dr(pdev);
2060 	if (unlikely(!dr))
2061 		return -ENOMEM;
2062 	if (dr->enabled)
2063 		return 0;
2064 
2065 	rc = pci_enable_device(pdev);
2066 	if (!rc) {
2067 		pdev->is_managed = 1;
2068 		dr->enabled = 1;
2069 	}
2070 	return rc;
2071 }
2072 EXPORT_SYMBOL(pcim_enable_device);
2073 
2074 /**
2075  * pcim_pin_device - Pin managed PCI device
2076  * @pdev: PCI device to pin
2077  *
2078  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2079  * driver detach.  @pdev must have been enabled with
2080  * pcim_enable_device().
2081  */
2082 void pcim_pin_device(struct pci_dev *pdev)
2083 {
2084 	struct pci_devres *dr;
2085 
2086 	dr = find_pci_dr(pdev);
2087 	WARN_ON(!dr || !dr->enabled);
2088 	if (dr)
2089 		dr->pinned = 1;
2090 }
2091 EXPORT_SYMBOL(pcim_pin_device);
2092 
2093 /*
2094  * pcibios_add_device - provide arch specific hooks when adding device dev
2095  * @dev: the PCI device being added
2096  *
2097  * Permits the platform to provide architecture specific functionality when
2098  * devices are added. This is the default implementation. Architecture
2099  * implementations can override this.
2100  */
2101 int __weak pcibios_add_device(struct pci_dev *dev)
2102 {
2103 	return 0;
2104 }
2105 
2106 /**
2107  * pcibios_release_device - provide arch specific hooks when releasing
2108  *			    device dev
2109  * @dev: the PCI device being released
2110  *
2111  * Permits the platform to provide architecture specific functionality when
2112  * devices are released. This is the default implementation. Architecture
2113  * implementations can override this.
2114  */
2115 void __weak pcibios_release_device(struct pci_dev *dev) {}
2116 
2117 /**
2118  * pcibios_disable_device - disable arch specific PCI resources for device dev
2119  * @dev: the PCI device to disable
2120  *
2121  * Disables architecture specific PCI resources for the device. This
2122  * is the default implementation. Architecture implementations can
2123  * override this.
2124  */
2125 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2126 
2127 /**
2128  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2129  * @irq: ISA IRQ to penalize
2130  * @active: IRQ active or not
2131  *
2132  * Permits the platform to provide architecture-specific functionality when
2133  * penalizing ISA IRQs. This is the default implementation. Architecture
2134  * implementations can override this.
2135  */
2136 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2137 
2138 static void do_pci_disable_device(struct pci_dev *dev)
2139 {
2140 	u16 pci_command;
2141 
2142 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2143 	if (pci_command & PCI_COMMAND_MASTER) {
2144 		pci_command &= ~PCI_COMMAND_MASTER;
2145 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2146 	}
2147 
2148 	pcibios_disable_device(dev);
2149 }
2150 
2151 /**
2152  * pci_disable_enabled_device - Disable device without updating enable_cnt
2153  * @dev: PCI device to disable
2154  *
2155  * NOTE: This function is a backend of PCI power management routines and is
2156  * not supposed to be called drivers.
2157  */
2158 void pci_disable_enabled_device(struct pci_dev *dev)
2159 {
2160 	if (pci_is_enabled(dev))
2161 		do_pci_disable_device(dev);
2162 }
2163 
2164 /**
2165  * pci_disable_device - Disable PCI device after use
2166  * @dev: PCI device to be disabled
2167  *
2168  * Signal to the system that the PCI device is not in use by the system
2169  * anymore.  This only involves disabling PCI bus-mastering, if active.
2170  *
2171  * Note we don't actually disable the device until all callers of
2172  * pci_enable_device() have called pci_disable_device().
2173  */
2174 void pci_disable_device(struct pci_dev *dev)
2175 {
2176 	struct pci_devres *dr;
2177 
2178 	dr = find_pci_dr(dev);
2179 	if (dr)
2180 		dr->enabled = 0;
2181 
2182 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2183 		      "disabling already-disabled device");
2184 
2185 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2186 		return;
2187 
2188 	do_pci_disable_device(dev);
2189 
2190 	dev->is_busmaster = 0;
2191 }
2192 EXPORT_SYMBOL(pci_disable_device);
2193 
2194 /**
2195  * pcibios_set_pcie_reset_state - set reset state for device dev
2196  * @dev: the PCIe device reset
2197  * @state: Reset state to enter into
2198  *
2199  * Set the PCIe reset state for the device. This is the default
2200  * implementation. Architecture implementations can override this.
2201  */
2202 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2203 					enum pcie_reset_state state)
2204 {
2205 	return -EINVAL;
2206 }
2207 
2208 /**
2209  * pci_set_pcie_reset_state - set reset state for device dev
2210  * @dev: the PCIe device reset
2211  * @state: Reset state to enter into
2212  *
2213  * Sets the PCI reset state for the device.
2214  */
2215 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2216 {
2217 	return pcibios_set_pcie_reset_state(dev, state);
2218 }
2219 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2220 
2221 void pcie_clear_device_status(struct pci_dev *dev)
2222 {
2223 	u16 sta;
2224 
2225 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2226 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2227 }
2228 
2229 /**
2230  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2231  * @dev: PCIe root port or event collector.
2232  */
2233 void pcie_clear_root_pme_status(struct pci_dev *dev)
2234 {
2235 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2236 }
2237 
2238 /**
2239  * pci_check_pme_status - Check if given device has generated PME.
2240  * @dev: Device to check.
2241  *
2242  * Check the PME status of the device and if set, clear it and clear PME enable
2243  * (if set).  Return 'true' if PME status and PME enable were both set or
2244  * 'false' otherwise.
2245  */
2246 bool pci_check_pme_status(struct pci_dev *dev)
2247 {
2248 	int pmcsr_pos;
2249 	u16 pmcsr;
2250 	bool ret = false;
2251 
2252 	if (!dev->pm_cap)
2253 		return false;
2254 
2255 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2256 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2257 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2258 		return false;
2259 
2260 	/* Clear PME status. */
2261 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2262 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2263 		/* Disable PME to avoid interrupt flood. */
2264 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2265 		ret = true;
2266 	}
2267 
2268 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2269 
2270 	return ret;
2271 }
2272 
2273 /**
2274  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2275  * @dev: Device to handle.
2276  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2277  *
2278  * Check if @dev has generated PME and queue a resume request for it in that
2279  * case.
2280  */
2281 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2282 {
2283 	if (pme_poll_reset && dev->pme_poll)
2284 		dev->pme_poll = false;
2285 
2286 	if (pci_check_pme_status(dev)) {
2287 		pci_wakeup_event(dev);
2288 		pm_request_resume(&dev->dev);
2289 	}
2290 	return 0;
2291 }
2292 
2293 /**
2294  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2295  * @bus: Top bus of the subtree to walk.
2296  */
2297 void pci_pme_wakeup_bus(struct pci_bus *bus)
2298 {
2299 	if (bus)
2300 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2301 }
2302 
2303 
2304 /**
2305  * pci_pme_capable - check the capability of PCI device to generate PME#
2306  * @dev: PCI device to handle.
2307  * @state: PCI state from which device will issue PME#.
2308  */
2309 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2310 {
2311 	if (!dev->pm_cap)
2312 		return false;
2313 
2314 	return !!(dev->pme_support & (1 << state));
2315 }
2316 EXPORT_SYMBOL(pci_pme_capable);
2317 
2318 static void pci_pme_list_scan(struct work_struct *work)
2319 {
2320 	struct pci_pme_device *pme_dev, *n;
2321 
2322 	mutex_lock(&pci_pme_list_mutex);
2323 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2324 		if (pme_dev->dev->pme_poll) {
2325 			struct pci_dev *bridge;
2326 
2327 			bridge = pme_dev->dev->bus->self;
2328 			/*
2329 			 * If bridge is in low power state, the
2330 			 * configuration space of subordinate devices
2331 			 * may be not accessible
2332 			 */
2333 			if (bridge && bridge->current_state != PCI_D0)
2334 				continue;
2335 			/*
2336 			 * If the device is in D3cold it should not be
2337 			 * polled either.
2338 			 */
2339 			if (pme_dev->dev->current_state == PCI_D3cold)
2340 				continue;
2341 
2342 			pci_pme_wakeup(pme_dev->dev, NULL);
2343 		} else {
2344 			list_del(&pme_dev->list);
2345 			kfree(pme_dev);
2346 		}
2347 	}
2348 	if (!list_empty(&pci_pme_list))
2349 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2350 				   msecs_to_jiffies(PME_TIMEOUT));
2351 	mutex_unlock(&pci_pme_list_mutex);
2352 }
2353 
2354 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2355 {
2356 	u16 pmcsr;
2357 
2358 	if (!dev->pme_support)
2359 		return;
2360 
2361 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2362 	/* Clear PME_Status by writing 1 to it and enable PME# */
2363 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2364 	if (!enable)
2365 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2366 
2367 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2368 }
2369 
2370 /**
2371  * pci_pme_restore - Restore PME configuration after config space restore.
2372  * @dev: PCI device to update.
2373  */
2374 void pci_pme_restore(struct pci_dev *dev)
2375 {
2376 	u16 pmcsr;
2377 
2378 	if (!dev->pme_support)
2379 		return;
2380 
2381 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2382 	if (dev->wakeup_prepared) {
2383 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2384 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2385 	} else {
2386 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2387 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2388 	}
2389 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2390 }
2391 
2392 /**
2393  * pci_pme_active - enable or disable PCI device's PME# function
2394  * @dev: PCI device to handle.
2395  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2396  *
2397  * The caller must verify that the device is capable of generating PME# before
2398  * calling this function with @enable equal to 'true'.
2399  */
2400 void pci_pme_active(struct pci_dev *dev, bool enable)
2401 {
2402 	__pci_pme_active(dev, enable);
2403 
2404 	/*
2405 	 * PCI (as opposed to PCIe) PME requires that the device have
2406 	 * its PME# line hooked up correctly. Not all hardware vendors
2407 	 * do this, so the PME never gets delivered and the device
2408 	 * remains asleep. The easiest way around this is to
2409 	 * periodically walk the list of suspended devices and check
2410 	 * whether any have their PME flag set. The assumption is that
2411 	 * we'll wake up often enough anyway that this won't be a huge
2412 	 * hit, and the power savings from the devices will still be a
2413 	 * win.
2414 	 *
2415 	 * Although PCIe uses in-band PME message instead of PME# line
2416 	 * to report PME, PME does not work for some PCIe devices in
2417 	 * reality.  For example, there are devices that set their PME
2418 	 * status bits, but don't really bother to send a PME message;
2419 	 * there are PCI Express Root Ports that don't bother to
2420 	 * trigger interrupts when they receive PME messages from the
2421 	 * devices below.  So PME poll is used for PCIe devices too.
2422 	 */
2423 
2424 	if (dev->pme_poll) {
2425 		struct pci_pme_device *pme_dev;
2426 		if (enable) {
2427 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2428 					  GFP_KERNEL);
2429 			if (!pme_dev) {
2430 				pci_warn(dev, "can't enable PME#\n");
2431 				return;
2432 			}
2433 			pme_dev->dev = dev;
2434 			mutex_lock(&pci_pme_list_mutex);
2435 			list_add(&pme_dev->list, &pci_pme_list);
2436 			if (list_is_singular(&pci_pme_list))
2437 				queue_delayed_work(system_freezable_wq,
2438 						   &pci_pme_work,
2439 						   msecs_to_jiffies(PME_TIMEOUT));
2440 			mutex_unlock(&pci_pme_list_mutex);
2441 		} else {
2442 			mutex_lock(&pci_pme_list_mutex);
2443 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2444 				if (pme_dev->dev == dev) {
2445 					list_del(&pme_dev->list);
2446 					kfree(pme_dev);
2447 					break;
2448 				}
2449 			}
2450 			mutex_unlock(&pci_pme_list_mutex);
2451 		}
2452 	}
2453 
2454 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2455 }
2456 EXPORT_SYMBOL(pci_pme_active);
2457 
2458 /**
2459  * __pci_enable_wake - enable PCI device as wakeup event source
2460  * @dev: PCI device affected
2461  * @state: PCI state from which device will issue wakeup events
2462  * @enable: True to enable event generation; false to disable
2463  *
2464  * This enables the device as a wakeup event source, or disables it.
2465  * When such events involves platform-specific hooks, those hooks are
2466  * called automatically by this routine.
2467  *
2468  * Devices with legacy power management (no standard PCI PM capabilities)
2469  * always require such platform hooks.
2470  *
2471  * RETURN VALUE:
2472  * 0 is returned on success
2473  * -EINVAL is returned if device is not supposed to wake up the system
2474  * Error code depending on the platform is returned if both the platform and
2475  * the native mechanism fail to enable the generation of wake-up events
2476  */
2477 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2478 {
2479 	int ret = 0;
2480 
2481 	/*
2482 	 * Bridges that are not power-manageable directly only signal
2483 	 * wakeup on behalf of subordinate devices which is set up
2484 	 * elsewhere, so skip them. However, bridges that are
2485 	 * power-manageable may signal wakeup for themselves (for example,
2486 	 * on a hotplug event) and they need to be covered here.
2487 	 */
2488 	if (!pci_power_manageable(dev))
2489 		return 0;
2490 
2491 	/* Don't do the same thing twice in a row for one device. */
2492 	if (!!enable == !!dev->wakeup_prepared)
2493 		return 0;
2494 
2495 	/*
2496 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2497 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2498 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2499 	 */
2500 
2501 	if (enable) {
2502 		int error;
2503 
2504 		/*
2505 		 * Enable PME signaling if the device can signal PME from
2506 		 * D3cold regardless of whether or not it can signal PME from
2507 		 * the current target state, because that will allow it to
2508 		 * signal PME when the hierarchy above it goes into D3cold and
2509 		 * the device itself ends up in D3cold as a result of that.
2510 		 */
2511 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2512 			pci_pme_active(dev, true);
2513 		else
2514 			ret = 1;
2515 		error = platform_pci_set_wakeup(dev, true);
2516 		if (ret)
2517 			ret = error;
2518 		if (!ret)
2519 			dev->wakeup_prepared = true;
2520 	} else {
2521 		platform_pci_set_wakeup(dev, false);
2522 		pci_pme_active(dev, false);
2523 		dev->wakeup_prepared = false;
2524 	}
2525 
2526 	return ret;
2527 }
2528 
2529 /**
2530  * pci_enable_wake - change wakeup settings for a PCI device
2531  * @pci_dev: Target device
2532  * @state: PCI state from which device will issue wakeup events
2533  * @enable: Whether or not to enable event generation
2534  *
2535  * If @enable is set, check device_may_wakeup() for the device before calling
2536  * __pci_enable_wake() for it.
2537  */
2538 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2539 {
2540 	if (enable && !device_may_wakeup(&pci_dev->dev))
2541 		return -EINVAL;
2542 
2543 	return __pci_enable_wake(pci_dev, state, enable);
2544 }
2545 EXPORT_SYMBOL(pci_enable_wake);
2546 
2547 /**
2548  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2549  * @dev: PCI device to prepare
2550  * @enable: True to enable wake-up event generation; false to disable
2551  *
2552  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2553  * and this function allows them to set that up cleanly - pci_enable_wake()
2554  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2555  * ordering constraints.
2556  *
2557  * This function only returns error code if the device is not allowed to wake
2558  * up the system from sleep or it is not capable of generating PME# from both
2559  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2560  */
2561 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2562 {
2563 	return pci_pme_capable(dev, PCI_D3cold) ?
2564 			pci_enable_wake(dev, PCI_D3cold, enable) :
2565 			pci_enable_wake(dev, PCI_D3hot, enable);
2566 }
2567 EXPORT_SYMBOL(pci_wake_from_d3);
2568 
2569 /**
2570  * pci_target_state - find an appropriate low power state for a given PCI dev
2571  * @dev: PCI device
2572  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2573  *
2574  * Use underlying platform code to find a supported low power state for @dev.
2575  * If the platform can't manage @dev, return the deepest state from which it
2576  * can generate wake events, based on any available PME info.
2577  */
2578 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2579 {
2580 	pci_power_t target_state = PCI_D3hot;
2581 
2582 	if (platform_pci_power_manageable(dev)) {
2583 		/*
2584 		 * Call the platform to find the target state for the device.
2585 		 */
2586 		pci_power_t state = platform_pci_choose_state(dev);
2587 
2588 		switch (state) {
2589 		case PCI_POWER_ERROR:
2590 		case PCI_UNKNOWN:
2591 			break;
2592 		case PCI_D1:
2593 		case PCI_D2:
2594 			if (pci_no_d1d2(dev))
2595 				break;
2596 			fallthrough;
2597 		default:
2598 			target_state = state;
2599 		}
2600 
2601 		return target_state;
2602 	}
2603 
2604 	if (!dev->pm_cap)
2605 		target_state = PCI_D0;
2606 
2607 	/*
2608 	 * If the device is in D3cold even though it's not power-manageable by
2609 	 * the platform, it may have been powered down by non-standard means.
2610 	 * Best to let it slumber.
2611 	 */
2612 	if (dev->current_state == PCI_D3cold)
2613 		target_state = PCI_D3cold;
2614 
2615 	if (wakeup && dev->pme_support) {
2616 		pci_power_t state = target_state;
2617 
2618 		/*
2619 		 * Find the deepest state from which the device can generate
2620 		 * PME#.
2621 		 */
2622 		while (state && !(dev->pme_support & (1 << state)))
2623 			state--;
2624 
2625 		if (state)
2626 			return state;
2627 		else if (dev->pme_support & 1)
2628 			return PCI_D0;
2629 	}
2630 
2631 	return target_state;
2632 }
2633 
2634 /**
2635  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2636  *			  into a sleep state
2637  * @dev: Device to handle.
2638  *
2639  * Choose the power state appropriate for the device depending on whether
2640  * it can wake up the system and/or is power manageable by the platform
2641  * (PCI_D3hot is the default) and put the device into that state.
2642  */
2643 int pci_prepare_to_sleep(struct pci_dev *dev)
2644 {
2645 	bool wakeup = device_may_wakeup(&dev->dev);
2646 	pci_power_t target_state = pci_target_state(dev, wakeup);
2647 	int error;
2648 
2649 	if (target_state == PCI_POWER_ERROR)
2650 		return -EIO;
2651 
2652 	/*
2653 	 * There are systems (for example, Intel mobile chips since Coffee
2654 	 * Lake) where the power drawn while suspended can be significantly
2655 	 * reduced by disabling PTM on PCIe root ports as this allows the
2656 	 * port to enter a lower-power PM state and the SoC to reach a
2657 	 * lower-power idle state as a whole.
2658 	 */
2659 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2660 		pci_disable_ptm(dev);
2661 
2662 	pci_enable_wake(dev, target_state, wakeup);
2663 
2664 	error = pci_set_power_state(dev, target_state);
2665 
2666 	if (error) {
2667 		pci_enable_wake(dev, target_state, false);
2668 		pci_restore_ptm_state(dev);
2669 	}
2670 
2671 	return error;
2672 }
2673 EXPORT_SYMBOL(pci_prepare_to_sleep);
2674 
2675 /**
2676  * pci_back_from_sleep - turn PCI device on during system-wide transition
2677  *			 into working state
2678  * @dev: Device to handle.
2679  *
2680  * Disable device's system wake-up capability and put it into D0.
2681  */
2682 int pci_back_from_sleep(struct pci_dev *dev)
2683 {
2684 	pci_enable_wake(dev, PCI_D0, false);
2685 	return pci_set_power_state(dev, PCI_D0);
2686 }
2687 EXPORT_SYMBOL(pci_back_from_sleep);
2688 
2689 /**
2690  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2691  * @dev: PCI device being suspended.
2692  *
2693  * Prepare @dev to generate wake-up events at run time and put it into a low
2694  * power state.
2695  */
2696 int pci_finish_runtime_suspend(struct pci_dev *dev)
2697 {
2698 	pci_power_t target_state;
2699 	int error;
2700 
2701 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2702 	if (target_state == PCI_POWER_ERROR)
2703 		return -EIO;
2704 
2705 	dev->runtime_d3cold = target_state == PCI_D3cold;
2706 
2707 	/*
2708 	 * There are systems (for example, Intel mobile chips since Coffee
2709 	 * Lake) where the power drawn while suspended can be significantly
2710 	 * reduced by disabling PTM on PCIe root ports as this allows the
2711 	 * port to enter a lower-power PM state and the SoC to reach a
2712 	 * lower-power idle state as a whole.
2713 	 */
2714 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2715 		pci_disable_ptm(dev);
2716 
2717 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2718 
2719 	error = pci_set_power_state(dev, target_state);
2720 
2721 	if (error) {
2722 		pci_enable_wake(dev, target_state, false);
2723 		pci_restore_ptm_state(dev);
2724 		dev->runtime_d3cold = false;
2725 	}
2726 
2727 	return error;
2728 }
2729 
2730 /**
2731  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2732  * @dev: Device to check.
2733  *
2734  * Return true if the device itself is capable of generating wake-up events
2735  * (through the platform or using the native PCIe PME) or if the device supports
2736  * PME and one of its upstream bridges can generate wake-up events.
2737  */
2738 bool pci_dev_run_wake(struct pci_dev *dev)
2739 {
2740 	struct pci_bus *bus = dev->bus;
2741 
2742 	if (!dev->pme_support)
2743 		return false;
2744 
2745 	/* PME-capable in principle, but not from the target power state */
2746 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2747 		return false;
2748 
2749 	if (device_can_wakeup(&dev->dev))
2750 		return true;
2751 
2752 	while (bus->parent) {
2753 		struct pci_dev *bridge = bus->self;
2754 
2755 		if (device_can_wakeup(&bridge->dev))
2756 			return true;
2757 
2758 		bus = bus->parent;
2759 	}
2760 
2761 	/* We have reached the root bus. */
2762 	if (bus->bridge)
2763 		return device_can_wakeup(bus->bridge);
2764 
2765 	return false;
2766 }
2767 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2768 
2769 /**
2770  * pci_dev_need_resume - Check if it is necessary to resume the device.
2771  * @pci_dev: Device to check.
2772  *
2773  * Return 'true' if the device is not runtime-suspended or it has to be
2774  * reconfigured due to wakeup settings difference between system and runtime
2775  * suspend, or the current power state of it is not suitable for the upcoming
2776  * (system-wide) transition.
2777  */
2778 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2779 {
2780 	struct device *dev = &pci_dev->dev;
2781 	pci_power_t target_state;
2782 
2783 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2784 		return true;
2785 
2786 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2787 
2788 	/*
2789 	 * If the earlier platform check has not triggered, D3cold is just power
2790 	 * removal on top of D3hot, so no need to resume the device in that
2791 	 * case.
2792 	 */
2793 	return target_state != pci_dev->current_state &&
2794 		target_state != PCI_D3cold &&
2795 		pci_dev->current_state != PCI_D3hot;
2796 }
2797 
2798 /**
2799  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2800  * @pci_dev: Device to check.
2801  *
2802  * If the device is suspended and it is not configured for system wakeup,
2803  * disable PME for it to prevent it from waking up the system unnecessarily.
2804  *
2805  * Note that if the device's power state is D3cold and the platform check in
2806  * pci_dev_need_resume() has not triggered, the device's configuration need not
2807  * be changed.
2808  */
2809 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2810 {
2811 	struct device *dev = &pci_dev->dev;
2812 
2813 	spin_lock_irq(&dev->power.lock);
2814 
2815 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2816 	    pci_dev->current_state < PCI_D3cold)
2817 		__pci_pme_active(pci_dev, false);
2818 
2819 	spin_unlock_irq(&dev->power.lock);
2820 }
2821 
2822 /**
2823  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2824  * @pci_dev: Device to handle.
2825  *
2826  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2827  * it might have been disabled during the prepare phase of system suspend if
2828  * the device was not configured for system wakeup.
2829  */
2830 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2831 {
2832 	struct device *dev = &pci_dev->dev;
2833 
2834 	if (!pci_dev_run_wake(pci_dev))
2835 		return;
2836 
2837 	spin_lock_irq(&dev->power.lock);
2838 
2839 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2840 		__pci_pme_active(pci_dev, true);
2841 
2842 	spin_unlock_irq(&dev->power.lock);
2843 }
2844 
2845 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2846 {
2847 	struct device *dev = &pdev->dev;
2848 	struct device *parent = dev->parent;
2849 
2850 	if (parent)
2851 		pm_runtime_get_sync(parent);
2852 	pm_runtime_get_noresume(dev);
2853 	/*
2854 	 * pdev->current_state is set to PCI_D3cold during suspending,
2855 	 * so wait until suspending completes
2856 	 */
2857 	pm_runtime_barrier(dev);
2858 	/*
2859 	 * Only need to resume devices in D3cold, because config
2860 	 * registers are still accessible for devices suspended but
2861 	 * not in D3cold.
2862 	 */
2863 	if (pdev->current_state == PCI_D3cold)
2864 		pm_runtime_resume(dev);
2865 }
2866 
2867 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2868 {
2869 	struct device *dev = &pdev->dev;
2870 	struct device *parent = dev->parent;
2871 
2872 	pm_runtime_put(dev);
2873 	if (parent)
2874 		pm_runtime_put_sync(parent);
2875 }
2876 
2877 static const struct dmi_system_id bridge_d3_blacklist[] = {
2878 #ifdef CONFIG_X86
2879 	{
2880 		/*
2881 		 * Gigabyte X299 root port is not marked as hotplug capable
2882 		 * which allows Linux to power manage it.  However, this
2883 		 * confuses the BIOS SMI handler so don't power manage root
2884 		 * ports on that system.
2885 		 */
2886 		.ident = "X299 DESIGNARE EX-CF",
2887 		.matches = {
2888 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2889 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2890 		},
2891 	},
2892 #endif
2893 	{ }
2894 };
2895 
2896 /**
2897  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2898  * @bridge: Bridge to check
2899  *
2900  * This function checks if it is possible to move the bridge to D3.
2901  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2902  */
2903 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2904 {
2905 	if (!pci_is_pcie(bridge))
2906 		return false;
2907 
2908 	switch (pci_pcie_type(bridge)) {
2909 	case PCI_EXP_TYPE_ROOT_PORT:
2910 	case PCI_EXP_TYPE_UPSTREAM:
2911 	case PCI_EXP_TYPE_DOWNSTREAM:
2912 		if (pci_bridge_d3_disable)
2913 			return false;
2914 
2915 		/*
2916 		 * Hotplug ports handled by firmware in System Management Mode
2917 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2918 		 */
2919 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2920 			return false;
2921 
2922 		if (pci_bridge_d3_force)
2923 			return true;
2924 
2925 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2926 		if (bridge->is_thunderbolt)
2927 			return true;
2928 
2929 		/* Platform might know better if the bridge supports D3 */
2930 		if (platform_pci_bridge_d3(bridge))
2931 			return true;
2932 
2933 		/*
2934 		 * Hotplug ports handled natively by the OS were not validated
2935 		 * by vendors for runtime D3 at least until 2018 because there
2936 		 * was no OS support.
2937 		 */
2938 		if (bridge->is_hotplug_bridge)
2939 			return false;
2940 
2941 		if (dmi_check_system(bridge_d3_blacklist))
2942 			return false;
2943 
2944 		/*
2945 		 * It should be safe to put PCIe ports from 2015 or newer
2946 		 * to D3.
2947 		 */
2948 		if (dmi_get_bios_year() >= 2015)
2949 			return true;
2950 		break;
2951 	}
2952 
2953 	return false;
2954 }
2955 
2956 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2957 {
2958 	bool *d3cold_ok = data;
2959 
2960 	if (/* The device needs to be allowed to go D3cold ... */
2961 	    dev->no_d3cold || !dev->d3cold_allowed ||
2962 
2963 	    /* ... and if it is wakeup capable to do so from D3cold. */
2964 	    (device_may_wakeup(&dev->dev) &&
2965 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2966 
2967 	    /* If it is a bridge it must be allowed to go to D3. */
2968 	    !pci_power_manageable(dev))
2969 
2970 		*d3cold_ok = false;
2971 
2972 	return !*d3cold_ok;
2973 }
2974 
2975 /*
2976  * pci_bridge_d3_update - Update bridge D3 capabilities
2977  * @dev: PCI device which is changed
2978  *
2979  * Update upstream bridge PM capabilities accordingly depending on if the
2980  * device PM configuration was changed or the device is being removed.  The
2981  * change is also propagated upstream.
2982  */
2983 void pci_bridge_d3_update(struct pci_dev *dev)
2984 {
2985 	bool remove = !device_is_registered(&dev->dev);
2986 	struct pci_dev *bridge;
2987 	bool d3cold_ok = true;
2988 
2989 	bridge = pci_upstream_bridge(dev);
2990 	if (!bridge || !pci_bridge_d3_possible(bridge))
2991 		return;
2992 
2993 	/*
2994 	 * If D3 is currently allowed for the bridge, removing one of its
2995 	 * children won't change that.
2996 	 */
2997 	if (remove && bridge->bridge_d3)
2998 		return;
2999 
3000 	/*
3001 	 * If D3 is currently allowed for the bridge and a child is added or
3002 	 * changed, disallowance of D3 can only be caused by that child, so
3003 	 * we only need to check that single device, not any of its siblings.
3004 	 *
3005 	 * If D3 is currently not allowed for the bridge, checking the device
3006 	 * first may allow us to skip checking its siblings.
3007 	 */
3008 	if (!remove)
3009 		pci_dev_check_d3cold(dev, &d3cold_ok);
3010 
3011 	/*
3012 	 * If D3 is currently not allowed for the bridge, this may be caused
3013 	 * either by the device being changed/removed or any of its siblings,
3014 	 * so we need to go through all children to find out if one of them
3015 	 * continues to block D3.
3016 	 */
3017 	if (d3cold_ok && !bridge->bridge_d3)
3018 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3019 			     &d3cold_ok);
3020 
3021 	if (bridge->bridge_d3 != d3cold_ok) {
3022 		bridge->bridge_d3 = d3cold_ok;
3023 		/* Propagate change to upstream bridges */
3024 		pci_bridge_d3_update(bridge);
3025 	}
3026 }
3027 
3028 /**
3029  * pci_d3cold_enable - Enable D3cold for device
3030  * @dev: PCI device to handle
3031  *
3032  * This function can be used in drivers to enable D3cold from the device
3033  * they handle.  It also updates upstream PCI bridge PM capabilities
3034  * accordingly.
3035  */
3036 void pci_d3cold_enable(struct pci_dev *dev)
3037 {
3038 	if (dev->no_d3cold) {
3039 		dev->no_d3cold = false;
3040 		pci_bridge_d3_update(dev);
3041 	}
3042 }
3043 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3044 
3045 /**
3046  * pci_d3cold_disable - Disable D3cold for device
3047  * @dev: PCI device to handle
3048  *
3049  * This function can be used in drivers to disable D3cold from the device
3050  * they handle.  It also updates upstream PCI bridge PM capabilities
3051  * accordingly.
3052  */
3053 void pci_d3cold_disable(struct pci_dev *dev)
3054 {
3055 	if (!dev->no_d3cold) {
3056 		dev->no_d3cold = true;
3057 		pci_bridge_d3_update(dev);
3058 	}
3059 }
3060 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3061 
3062 /**
3063  * pci_pm_init - Initialize PM functions of given PCI device
3064  * @dev: PCI device to handle.
3065  */
3066 void pci_pm_init(struct pci_dev *dev)
3067 {
3068 	int pm;
3069 	u16 status;
3070 	u16 pmc;
3071 
3072 	pm_runtime_forbid(&dev->dev);
3073 	pm_runtime_set_active(&dev->dev);
3074 	pm_runtime_enable(&dev->dev);
3075 	device_enable_async_suspend(&dev->dev);
3076 	dev->wakeup_prepared = false;
3077 
3078 	dev->pm_cap = 0;
3079 	dev->pme_support = 0;
3080 
3081 	/* find PCI PM capability in list */
3082 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3083 	if (!pm)
3084 		return;
3085 	/* Check device's ability to generate PME# */
3086 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3087 
3088 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3089 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3090 			pmc & PCI_PM_CAP_VER_MASK);
3091 		return;
3092 	}
3093 
3094 	dev->pm_cap = pm;
3095 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3096 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3097 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3098 	dev->d3cold_allowed = true;
3099 
3100 	dev->d1_support = false;
3101 	dev->d2_support = false;
3102 	if (!pci_no_d1d2(dev)) {
3103 		if (pmc & PCI_PM_CAP_D1)
3104 			dev->d1_support = true;
3105 		if (pmc & PCI_PM_CAP_D2)
3106 			dev->d2_support = true;
3107 
3108 		if (dev->d1_support || dev->d2_support)
3109 			pci_info(dev, "supports%s%s\n",
3110 				   dev->d1_support ? " D1" : "",
3111 				   dev->d2_support ? " D2" : "");
3112 	}
3113 
3114 	pmc &= PCI_PM_CAP_PME_MASK;
3115 	if (pmc) {
3116 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3117 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3118 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3119 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3120 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3121 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3122 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3123 		dev->pme_poll = true;
3124 		/*
3125 		 * Make device's PM flags reflect the wake-up capability, but
3126 		 * let the user space enable it to wake up the system as needed.
3127 		 */
3128 		device_set_wakeup_capable(&dev->dev, true);
3129 		/* Disable the PME# generation functionality */
3130 		pci_pme_active(dev, false);
3131 	}
3132 
3133 	pci_read_config_word(dev, PCI_STATUS, &status);
3134 	if (status & PCI_STATUS_IMM_READY)
3135 		dev->imm_ready = 1;
3136 }
3137 
3138 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3139 {
3140 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3141 
3142 	switch (prop) {
3143 	case PCI_EA_P_MEM:
3144 	case PCI_EA_P_VF_MEM:
3145 		flags |= IORESOURCE_MEM;
3146 		break;
3147 	case PCI_EA_P_MEM_PREFETCH:
3148 	case PCI_EA_P_VF_MEM_PREFETCH:
3149 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3150 		break;
3151 	case PCI_EA_P_IO:
3152 		flags |= IORESOURCE_IO;
3153 		break;
3154 	default:
3155 		return 0;
3156 	}
3157 
3158 	return flags;
3159 }
3160 
3161 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3162 					    u8 prop)
3163 {
3164 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3165 		return &dev->resource[bei];
3166 #ifdef CONFIG_PCI_IOV
3167 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3168 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3169 		return &dev->resource[PCI_IOV_RESOURCES +
3170 				      bei - PCI_EA_BEI_VF_BAR0];
3171 #endif
3172 	else if (bei == PCI_EA_BEI_ROM)
3173 		return &dev->resource[PCI_ROM_RESOURCE];
3174 	else
3175 		return NULL;
3176 }
3177 
3178 /* Read an Enhanced Allocation (EA) entry */
3179 static int pci_ea_read(struct pci_dev *dev, int offset)
3180 {
3181 	struct resource *res;
3182 	int ent_size, ent_offset = offset;
3183 	resource_size_t start, end;
3184 	unsigned long flags;
3185 	u32 dw0, bei, base, max_offset;
3186 	u8 prop;
3187 	bool support_64 = (sizeof(resource_size_t) >= 8);
3188 
3189 	pci_read_config_dword(dev, ent_offset, &dw0);
3190 	ent_offset += 4;
3191 
3192 	/* Entry size field indicates DWORDs after 1st */
3193 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3194 
3195 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3196 		goto out;
3197 
3198 	bei = (dw0 & PCI_EA_BEI) >> 4;
3199 	prop = (dw0 & PCI_EA_PP) >> 8;
3200 
3201 	/*
3202 	 * If the Property is in the reserved range, try the Secondary
3203 	 * Property instead.
3204 	 */
3205 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3206 		prop = (dw0 & PCI_EA_SP) >> 16;
3207 	if (prop > PCI_EA_P_BRIDGE_IO)
3208 		goto out;
3209 
3210 	res = pci_ea_get_resource(dev, bei, prop);
3211 	if (!res) {
3212 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3213 		goto out;
3214 	}
3215 
3216 	flags = pci_ea_flags(dev, prop);
3217 	if (!flags) {
3218 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3219 		goto out;
3220 	}
3221 
3222 	/* Read Base */
3223 	pci_read_config_dword(dev, ent_offset, &base);
3224 	start = (base & PCI_EA_FIELD_MASK);
3225 	ent_offset += 4;
3226 
3227 	/* Read MaxOffset */
3228 	pci_read_config_dword(dev, ent_offset, &max_offset);
3229 	ent_offset += 4;
3230 
3231 	/* Read Base MSBs (if 64-bit entry) */
3232 	if (base & PCI_EA_IS_64) {
3233 		u32 base_upper;
3234 
3235 		pci_read_config_dword(dev, ent_offset, &base_upper);
3236 		ent_offset += 4;
3237 
3238 		flags |= IORESOURCE_MEM_64;
3239 
3240 		/* entry starts above 32-bit boundary, can't use */
3241 		if (!support_64 && base_upper)
3242 			goto out;
3243 
3244 		if (support_64)
3245 			start |= ((u64)base_upper << 32);
3246 	}
3247 
3248 	end = start + (max_offset | 0x03);
3249 
3250 	/* Read MaxOffset MSBs (if 64-bit entry) */
3251 	if (max_offset & PCI_EA_IS_64) {
3252 		u32 max_offset_upper;
3253 
3254 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3255 		ent_offset += 4;
3256 
3257 		flags |= IORESOURCE_MEM_64;
3258 
3259 		/* entry too big, can't use */
3260 		if (!support_64 && max_offset_upper)
3261 			goto out;
3262 
3263 		if (support_64)
3264 			end += ((u64)max_offset_upper << 32);
3265 	}
3266 
3267 	if (end < start) {
3268 		pci_err(dev, "EA Entry crosses address boundary\n");
3269 		goto out;
3270 	}
3271 
3272 	if (ent_size != ent_offset - offset) {
3273 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3274 			ent_size, ent_offset - offset);
3275 		goto out;
3276 	}
3277 
3278 	res->name = pci_name(dev);
3279 	res->start = start;
3280 	res->end = end;
3281 	res->flags = flags;
3282 
3283 	if (bei <= PCI_EA_BEI_BAR5)
3284 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3285 			   bei, res, prop);
3286 	else if (bei == PCI_EA_BEI_ROM)
3287 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3288 			   res, prop);
3289 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3290 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3291 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3292 	else
3293 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3294 			   bei, res, prop);
3295 
3296 out:
3297 	return offset + ent_size;
3298 }
3299 
3300 /* Enhanced Allocation Initialization */
3301 void pci_ea_init(struct pci_dev *dev)
3302 {
3303 	int ea;
3304 	u8 num_ent;
3305 	int offset;
3306 	int i;
3307 
3308 	/* find PCI EA capability in list */
3309 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3310 	if (!ea)
3311 		return;
3312 
3313 	/* determine the number of entries */
3314 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3315 					&num_ent);
3316 	num_ent &= PCI_EA_NUM_ENT_MASK;
3317 
3318 	offset = ea + PCI_EA_FIRST_ENT;
3319 
3320 	/* Skip DWORD 2 for type 1 functions */
3321 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3322 		offset += 4;
3323 
3324 	/* parse each EA entry */
3325 	for (i = 0; i < num_ent; ++i)
3326 		offset = pci_ea_read(dev, offset);
3327 }
3328 
3329 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3330 	struct pci_cap_saved_state *new_cap)
3331 {
3332 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3333 }
3334 
3335 /**
3336  * _pci_add_cap_save_buffer - allocate buffer for saving given
3337  *			      capability registers
3338  * @dev: the PCI device
3339  * @cap: the capability to allocate the buffer for
3340  * @extended: Standard or Extended capability ID
3341  * @size: requested size of the buffer
3342  */
3343 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3344 				    bool extended, unsigned int size)
3345 {
3346 	int pos;
3347 	struct pci_cap_saved_state *save_state;
3348 
3349 	if (extended)
3350 		pos = pci_find_ext_capability(dev, cap);
3351 	else
3352 		pos = pci_find_capability(dev, cap);
3353 
3354 	if (!pos)
3355 		return 0;
3356 
3357 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3358 	if (!save_state)
3359 		return -ENOMEM;
3360 
3361 	save_state->cap.cap_nr = cap;
3362 	save_state->cap.cap_extended = extended;
3363 	save_state->cap.size = size;
3364 	pci_add_saved_cap(dev, save_state);
3365 
3366 	return 0;
3367 }
3368 
3369 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3370 {
3371 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3372 }
3373 
3374 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3375 {
3376 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3377 }
3378 
3379 /**
3380  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3381  * @dev: the PCI device
3382  */
3383 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3384 {
3385 	int error;
3386 
3387 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3388 					PCI_EXP_SAVE_REGS * sizeof(u16));
3389 	if (error)
3390 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3391 
3392 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3393 	if (error)
3394 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3395 
3396 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3397 					    2 * sizeof(u16));
3398 	if (error)
3399 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3400 
3401 	pci_allocate_vc_save_buffers(dev);
3402 }
3403 
3404 void pci_free_cap_save_buffers(struct pci_dev *dev)
3405 {
3406 	struct pci_cap_saved_state *tmp;
3407 	struct hlist_node *n;
3408 
3409 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3410 		kfree(tmp);
3411 }
3412 
3413 /**
3414  * pci_configure_ari - enable or disable ARI forwarding
3415  * @dev: the PCI device
3416  *
3417  * If @dev and its upstream bridge both support ARI, enable ARI in the
3418  * bridge.  Otherwise, disable ARI in the bridge.
3419  */
3420 void pci_configure_ari(struct pci_dev *dev)
3421 {
3422 	u32 cap;
3423 	struct pci_dev *bridge;
3424 
3425 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3426 		return;
3427 
3428 	bridge = dev->bus->self;
3429 	if (!bridge)
3430 		return;
3431 
3432 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3433 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3434 		return;
3435 
3436 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3437 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3438 					 PCI_EXP_DEVCTL2_ARI);
3439 		bridge->ari_enabled = 1;
3440 	} else {
3441 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3442 					   PCI_EXP_DEVCTL2_ARI);
3443 		bridge->ari_enabled = 0;
3444 	}
3445 }
3446 
3447 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3448 {
3449 	int pos;
3450 	u16 cap, ctrl;
3451 
3452 	pos = pdev->acs_cap;
3453 	if (!pos)
3454 		return false;
3455 
3456 	/*
3457 	 * Except for egress control, capabilities are either required
3458 	 * or only required if controllable.  Features missing from the
3459 	 * capability field can therefore be assumed as hard-wired enabled.
3460 	 */
3461 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3462 	acs_flags &= (cap | PCI_ACS_EC);
3463 
3464 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3465 	return (ctrl & acs_flags) == acs_flags;
3466 }
3467 
3468 /**
3469  * pci_acs_enabled - test ACS against required flags for a given device
3470  * @pdev: device to test
3471  * @acs_flags: required PCI ACS flags
3472  *
3473  * Return true if the device supports the provided flags.  Automatically
3474  * filters out flags that are not implemented on multifunction devices.
3475  *
3476  * Note that this interface checks the effective ACS capabilities of the
3477  * device rather than the actual capabilities.  For instance, most single
3478  * function endpoints are not required to support ACS because they have no
3479  * opportunity for peer-to-peer access.  We therefore return 'true'
3480  * regardless of whether the device exposes an ACS capability.  This makes
3481  * it much easier for callers of this function to ignore the actual type
3482  * or topology of the device when testing ACS support.
3483  */
3484 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3485 {
3486 	int ret;
3487 
3488 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3489 	if (ret >= 0)
3490 		return ret > 0;
3491 
3492 	/*
3493 	 * Conventional PCI and PCI-X devices never support ACS, either
3494 	 * effectively or actually.  The shared bus topology implies that
3495 	 * any device on the bus can receive or snoop DMA.
3496 	 */
3497 	if (!pci_is_pcie(pdev))
3498 		return false;
3499 
3500 	switch (pci_pcie_type(pdev)) {
3501 	/*
3502 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3503 	 * but since their primary interface is PCI/X, we conservatively
3504 	 * handle them as we would a non-PCIe device.
3505 	 */
3506 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3507 	/*
3508 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3509 	 * applicable... must never implement an ACS Extended Capability...".
3510 	 * This seems arbitrary, but we take a conservative interpretation
3511 	 * of this statement.
3512 	 */
3513 	case PCI_EXP_TYPE_PCI_BRIDGE:
3514 	case PCI_EXP_TYPE_RC_EC:
3515 		return false;
3516 	/*
3517 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3518 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3519 	 * regardless of whether they are single- or multi-function devices.
3520 	 */
3521 	case PCI_EXP_TYPE_DOWNSTREAM:
3522 	case PCI_EXP_TYPE_ROOT_PORT:
3523 		return pci_acs_flags_enabled(pdev, acs_flags);
3524 	/*
3525 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3526 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3527 	 * capabilities, but only when they are part of a multifunction
3528 	 * device.  The footnote for section 6.12 indicates the specific
3529 	 * PCIe types included here.
3530 	 */
3531 	case PCI_EXP_TYPE_ENDPOINT:
3532 	case PCI_EXP_TYPE_UPSTREAM:
3533 	case PCI_EXP_TYPE_LEG_END:
3534 	case PCI_EXP_TYPE_RC_END:
3535 		if (!pdev->multifunction)
3536 			break;
3537 
3538 		return pci_acs_flags_enabled(pdev, acs_flags);
3539 	}
3540 
3541 	/*
3542 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3543 	 * to single function devices with the exception of downstream ports.
3544 	 */
3545 	return true;
3546 }
3547 
3548 /**
3549  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3550  * @start: starting downstream device
3551  * @end: ending upstream device or NULL to search to the root bus
3552  * @acs_flags: required flags
3553  *
3554  * Walk up a device tree from start to end testing PCI ACS support.  If
3555  * any step along the way does not support the required flags, return false.
3556  */
3557 bool pci_acs_path_enabled(struct pci_dev *start,
3558 			  struct pci_dev *end, u16 acs_flags)
3559 {
3560 	struct pci_dev *pdev, *parent = start;
3561 
3562 	do {
3563 		pdev = parent;
3564 
3565 		if (!pci_acs_enabled(pdev, acs_flags))
3566 			return false;
3567 
3568 		if (pci_is_root_bus(pdev->bus))
3569 			return (end == NULL);
3570 
3571 		parent = pdev->bus->self;
3572 	} while (pdev != end);
3573 
3574 	return true;
3575 }
3576 
3577 /**
3578  * pci_acs_init - Initialize ACS if hardware supports it
3579  * @dev: the PCI device
3580  */
3581 void pci_acs_init(struct pci_dev *dev)
3582 {
3583 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3584 
3585 	/*
3586 	 * Attempt to enable ACS regardless of capability because some Root
3587 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3588 	 * the standard ACS capability but still support ACS via those
3589 	 * quirks.
3590 	 */
3591 	pci_enable_acs(dev);
3592 }
3593 
3594 /**
3595  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3596  * @pdev: PCI device
3597  * @bar: BAR to find
3598  *
3599  * Helper to find the position of the ctrl register for a BAR.
3600  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3601  * Returns -ENOENT if no ctrl register for the BAR could be found.
3602  */
3603 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3604 {
3605 	unsigned int pos, nbars, i;
3606 	u32 ctrl;
3607 
3608 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3609 	if (!pos)
3610 		return -ENOTSUPP;
3611 
3612 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3613 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3614 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3615 
3616 	for (i = 0; i < nbars; i++, pos += 8) {
3617 		int bar_idx;
3618 
3619 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3620 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3621 		if (bar_idx == bar)
3622 			return pos;
3623 	}
3624 
3625 	return -ENOENT;
3626 }
3627 
3628 /**
3629  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3630  * @pdev: PCI device
3631  * @bar: BAR to query
3632  *
3633  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3634  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3635  */
3636 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3637 {
3638 	int pos;
3639 	u32 cap;
3640 
3641 	pos = pci_rebar_find_pos(pdev, bar);
3642 	if (pos < 0)
3643 		return 0;
3644 
3645 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3646 	cap &= PCI_REBAR_CAP_SIZES;
3647 
3648 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3649 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3650 	    bar == 0 && cap == 0x7000)
3651 		cap = 0x3f000;
3652 
3653 	return cap >> 4;
3654 }
3655 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3656 
3657 /**
3658  * pci_rebar_get_current_size - get the current size of a BAR
3659  * @pdev: PCI device
3660  * @bar: BAR to set size to
3661  *
3662  * Read the size of a BAR from the resizable BAR config.
3663  * Returns size if found or negative error code.
3664  */
3665 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3666 {
3667 	int pos;
3668 	u32 ctrl;
3669 
3670 	pos = pci_rebar_find_pos(pdev, bar);
3671 	if (pos < 0)
3672 		return pos;
3673 
3674 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3675 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3676 }
3677 
3678 /**
3679  * pci_rebar_set_size - set a new size for a BAR
3680  * @pdev: PCI device
3681  * @bar: BAR to set size to
3682  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3683  *
3684  * Set the new size of a BAR as defined in the spec.
3685  * Returns zero if resizing was successful, error code otherwise.
3686  */
3687 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3688 {
3689 	int pos;
3690 	u32 ctrl;
3691 
3692 	pos = pci_rebar_find_pos(pdev, bar);
3693 	if (pos < 0)
3694 		return pos;
3695 
3696 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3697 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3698 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3699 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3700 	return 0;
3701 }
3702 
3703 /**
3704  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3705  * @dev: the PCI device
3706  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3707  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3708  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3709  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3710  *
3711  * Return 0 if all upstream bridges support AtomicOp routing, egress
3712  * blocking is disabled on all upstream ports, and the root port supports
3713  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3714  * AtomicOp completion), or negative otherwise.
3715  */
3716 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3717 {
3718 	struct pci_bus *bus = dev->bus;
3719 	struct pci_dev *bridge;
3720 	u32 cap, ctl2;
3721 
3722 	if (!pci_is_pcie(dev))
3723 		return -EINVAL;
3724 
3725 	/*
3726 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3727 	 * AtomicOp requesters.  For now, we only support endpoints as
3728 	 * requesters and root ports as completers.  No endpoints as
3729 	 * completers, and no peer-to-peer.
3730 	 */
3731 
3732 	switch (pci_pcie_type(dev)) {
3733 	case PCI_EXP_TYPE_ENDPOINT:
3734 	case PCI_EXP_TYPE_LEG_END:
3735 	case PCI_EXP_TYPE_RC_END:
3736 		break;
3737 	default:
3738 		return -EINVAL;
3739 	}
3740 
3741 	while (bus->parent) {
3742 		bridge = bus->self;
3743 
3744 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3745 
3746 		switch (pci_pcie_type(bridge)) {
3747 		/* Ensure switch ports support AtomicOp routing */
3748 		case PCI_EXP_TYPE_UPSTREAM:
3749 		case PCI_EXP_TYPE_DOWNSTREAM:
3750 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3751 				return -EINVAL;
3752 			break;
3753 
3754 		/* Ensure root port supports all the sizes we care about */
3755 		case PCI_EXP_TYPE_ROOT_PORT:
3756 			if ((cap & cap_mask) != cap_mask)
3757 				return -EINVAL;
3758 			break;
3759 		}
3760 
3761 		/* Ensure upstream ports don't block AtomicOps on egress */
3762 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3763 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3764 						   &ctl2);
3765 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3766 				return -EINVAL;
3767 		}
3768 
3769 		bus = bus->parent;
3770 	}
3771 
3772 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3773 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3774 	return 0;
3775 }
3776 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3777 
3778 /**
3779  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3780  * @dev: the PCI device
3781  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3782  *
3783  * Perform INTx swizzling for a device behind one level of bridge.  This is
3784  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3785  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3786  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3787  * the PCI Express Base Specification, Revision 2.1)
3788  */
3789 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3790 {
3791 	int slot;
3792 
3793 	if (pci_ari_enabled(dev->bus))
3794 		slot = 0;
3795 	else
3796 		slot = PCI_SLOT(dev->devfn);
3797 
3798 	return (((pin - 1) + slot) % 4) + 1;
3799 }
3800 
3801 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3802 {
3803 	u8 pin;
3804 
3805 	pin = dev->pin;
3806 	if (!pin)
3807 		return -1;
3808 
3809 	while (!pci_is_root_bus(dev->bus)) {
3810 		pin = pci_swizzle_interrupt_pin(dev, pin);
3811 		dev = dev->bus->self;
3812 	}
3813 	*bridge = dev;
3814 	return pin;
3815 }
3816 
3817 /**
3818  * pci_common_swizzle - swizzle INTx all the way to root bridge
3819  * @dev: the PCI device
3820  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3821  *
3822  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3823  * bridges all the way up to a PCI root bus.
3824  */
3825 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3826 {
3827 	u8 pin = *pinp;
3828 
3829 	while (!pci_is_root_bus(dev->bus)) {
3830 		pin = pci_swizzle_interrupt_pin(dev, pin);
3831 		dev = dev->bus->self;
3832 	}
3833 	*pinp = pin;
3834 	return PCI_SLOT(dev->devfn);
3835 }
3836 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3837 
3838 /**
3839  * pci_release_region - Release a PCI bar
3840  * @pdev: PCI device whose resources were previously reserved by
3841  *	  pci_request_region()
3842  * @bar: BAR to release
3843  *
3844  * Releases the PCI I/O and memory resources previously reserved by a
3845  * successful call to pci_request_region().  Call this function only
3846  * after all use of the PCI regions has ceased.
3847  */
3848 void pci_release_region(struct pci_dev *pdev, int bar)
3849 {
3850 	struct pci_devres *dr;
3851 
3852 	if (pci_resource_len(pdev, bar) == 0)
3853 		return;
3854 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3855 		release_region(pci_resource_start(pdev, bar),
3856 				pci_resource_len(pdev, bar));
3857 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3858 		release_mem_region(pci_resource_start(pdev, bar),
3859 				pci_resource_len(pdev, bar));
3860 
3861 	dr = find_pci_dr(pdev);
3862 	if (dr)
3863 		dr->region_mask &= ~(1 << bar);
3864 }
3865 EXPORT_SYMBOL(pci_release_region);
3866 
3867 /**
3868  * __pci_request_region - Reserved PCI I/O and memory resource
3869  * @pdev: PCI device whose resources are to be reserved
3870  * @bar: BAR to be reserved
3871  * @res_name: Name to be associated with resource.
3872  * @exclusive: whether the region access is exclusive or not
3873  *
3874  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3875  * being reserved by owner @res_name.  Do not access any
3876  * address inside the PCI regions unless this call returns
3877  * successfully.
3878  *
3879  * If @exclusive is set, then the region is marked so that userspace
3880  * is explicitly not allowed to map the resource via /dev/mem or
3881  * sysfs MMIO access.
3882  *
3883  * Returns 0 on success, or %EBUSY on error.  A warning
3884  * message is also printed on failure.
3885  */
3886 static int __pci_request_region(struct pci_dev *pdev, int bar,
3887 				const char *res_name, int exclusive)
3888 {
3889 	struct pci_devres *dr;
3890 
3891 	if (pci_resource_len(pdev, bar) == 0)
3892 		return 0;
3893 
3894 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3895 		if (!request_region(pci_resource_start(pdev, bar),
3896 			    pci_resource_len(pdev, bar), res_name))
3897 			goto err_out;
3898 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3899 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3900 					pci_resource_len(pdev, bar), res_name,
3901 					exclusive))
3902 			goto err_out;
3903 	}
3904 
3905 	dr = find_pci_dr(pdev);
3906 	if (dr)
3907 		dr->region_mask |= 1 << bar;
3908 
3909 	return 0;
3910 
3911 err_out:
3912 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3913 		 &pdev->resource[bar]);
3914 	return -EBUSY;
3915 }
3916 
3917 /**
3918  * pci_request_region - Reserve PCI I/O and memory resource
3919  * @pdev: PCI device whose resources are to be reserved
3920  * @bar: BAR to be reserved
3921  * @res_name: Name to be associated with resource
3922  *
3923  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3924  * being reserved by owner @res_name.  Do not access any
3925  * address inside the PCI regions unless this call returns
3926  * successfully.
3927  *
3928  * Returns 0 on success, or %EBUSY on error.  A warning
3929  * message is also printed on failure.
3930  */
3931 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3932 {
3933 	return __pci_request_region(pdev, bar, res_name, 0);
3934 }
3935 EXPORT_SYMBOL(pci_request_region);
3936 
3937 /**
3938  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3939  * @pdev: PCI device whose resources were previously reserved
3940  * @bars: Bitmask of BARs to be released
3941  *
3942  * Release selected PCI I/O and memory resources previously reserved.
3943  * Call this function only after all use of the PCI regions has ceased.
3944  */
3945 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3946 {
3947 	int i;
3948 
3949 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3950 		if (bars & (1 << i))
3951 			pci_release_region(pdev, i);
3952 }
3953 EXPORT_SYMBOL(pci_release_selected_regions);
3954 
3955 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3956 					  const char *res_name, int excl)
3957 {
3958 	int i;
3959 
3960 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3961 		if (bars & (1 << i))
3962 			if (__pci_request_region(pdev, i, res_name, excl))
3963 				goto err_out;
3964 	return 0;
3965 
3966 err_out:
3967 	while (--i >= 0)
3968 		if (bars & (1 << i))
3969 			pci_release_region(pdev, i);
3970 
3971 	return -EBUSY;
3972 }
3973 
3974 
3975 /**
3976  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3977  * @pdev: PCI device whose resources are to be reserved
3978  * @bars: Bitmask of BARs to be requested
3979  * @res_name: Name to be associated with resource
3980  */
3981 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3982 				 const char *res_name)
3983 {
3984 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3985 }
3986 EXPORT_SYMBOL(pci_request_selected_regions);
3987 
3988 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3989 					   const char *res_name)
3990 {
3991 	return __pci_request_selected_regions(pdev, bars, res_name,
3992 			IORESOURCE_EXCLUSIVE);
3993 }
3994 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3995 
3996 /**
3997  * pci_release_regions - Release reserved PCI I/O and memory resources
3998  * @pdev: PCI device whose resources were previously reserved by
3999  *	  pci_request_regions()
4000  *
4001  * Releases all PCI I/O and memory resources previously reserved by a
4002  * successful call to pci_request_regions().  Call this function only
4003  * after all use of the PCI regions has ceased.
4004  */
4005 
4006 void pci_release_regions(struct pci_dev *pdev)
4007 {
4008 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4009 }
4010 EXPORT_SYMBOL(pci_release_regions);
4011 
4012 /**
4013  * pci_request_regions - Reserve PCI I/O and memory resources
4014  * @pdev: PCI device whose resources are to be reserved
4015  * @res_name: Name to be associated with resource.
4016  *
4017  * Mark all PCI regions associated with PCI device @pdev as
4018  * being reserved by owner @res_name.  Do not access any
4019  * address inside the PCI regions unless this call returns
4020  * successfully.
4021  *
4022  * Returns 0 on success, or %EBUSY on error.  A warning
4023  * message is also printed on failure.
4024  */
4025 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4026 {
4027 	return pci_request_selected_regions(pdev,
4028 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4029 }
4030 EXPORT_SYMBOL(pci_request_regions);
4031 
4032 /**
4033  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4034  * @pdev: PCI device whose resources are to be reserved
4035  * @res_name: Name to be associated with resource.
4036  *
4037  * Mark all PCI regions associated with PCI device @pdev as being reserved
4038  * by owner @res_name.  Do not access any address inside the PCI regions
4039  * unless this call returns successfully.
4040  *
4041  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4042  * and the sysfs MMIO access will not be allowed.
4043  *
4044  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4045  * printed on failure.
4046  */
4047 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4048 {
4049 	return pci_request_selected_regions_exclusive(pdev,
4050 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4051 }
4052 EXPORT_SYMBOL(pci_request_regions_exclusive);
4053 
4054 /*
4055  * Record the PCI IO range (expressed as CPU physical address + size).
4056  * Return a negative value if an error has occurred, zero otherwise
4057  */
4058 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4059 			resource_size_t	size)
4060 {
4061 	int ret = 0;
4062 #ifdef PCI_IOBASE
4063 	struct logic_pio_hwaddr *range;
4064 
4065 	if (!size || addr + size < addr)
4066 		return -EINVAL;
4067 
4068 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4069 	if (!range)
4070 		return -ENOMEM;
4071 
4072 	range->fwnode = fwnode;
4073 	range->size = size;
4074 	range->hw_start = addr;
4075 	range->flags = LOGIC_PIO_CPU_MMIO;
4076 
4077 	ret = logic_pio_register_range(range);
4078 	if (ret)
4079 		kfree(range);
4080 
4081 	/* Ignore duplicates due to deferred probing */
4082 	if (ret == -EEXIST)
4083 		ret = 0;
4084 #endif
4085 
4086 	return ret;
4087 }
4088 
4089 phys_addr_t pci_pio_to_address(unsigned long pio)
4090 {
4091 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4092 
4093 #ifdef PCI_IOBASE
4094 	if (pio >= MMIO_UPPER_LIMIT)
4095 		return address;
4096 
4097 	address = logic_pio_to_hwaddr(pio);
4098 #endif
4099 
4100 	return address;
4101 }
4102 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4103 
4104 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4105 {
4106 #ifdef PCI_IOBASE
4107 	return logic_pio_trans_cpuaddr(address);
4108 #else
4109 	if (address > IO_SPACE_LIMIT)
4110 		return (unsigned long)-1;
4111 
4112 	return (unsigned long) address;
4113 #endif
4114 }
4115 
4116 /**
4117  * pci_remap_iospace - Remap the memory mapped I/O space
4118  * @res: Resource describing the I/O space
4119  * @phys_addr: physical address of range to be mapped
4120  *
4121  * Remap the memory mapped I/O space described by the @res and the CPU
4122  * physical address @phys_addr into virtual address space.  Only
4123  * architectures that have memory mapped IO functions defined (and the
4124  * PCI_IOBASE value defined) should call this function.
4125  */
4126 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4127 {
4128 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4129 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4130 
4131 	if (!(res->flags & IORESOURCE_IO))
4132 		return -EINVAL;
4133 
4134 	if (res->end > IO_SPACE_LIMIT)
4135 		return -EINVAL;
4136 
4137 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4138 				  pgprot_device(PAGE_KERNEL));
4139 #else
4140 	/*
4141 	 * This architecture does not have memory mapped I/O space,
4142 	 * so this function should never be called
4143 	 */
4144 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4145 	return -ENODEV;
4146 #endif
4147 }
4148 EXPORT_SYMBOL(pci_remap_iospace);
4149 
4150 /**
4151  * pci_unmap_iospace - Unmap the memory mapped I/O space
4152  * @res: resource to be unmapped
4153  *
4154  * Unmap the CPU virtual address @res from virtual address space.  Only
4155  * architectures that have memory mapped IO functions defined (and the
4156  * PCI_IOBASE value defined) should call this function.
4157  */
4158 void pci_unmap_iospace(struct resource *res)
4159 {
4160 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4161 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4162 
4163 	vunmap_range(vaddr, vaddr + resource_size(res));
4164 #endif
4165 }
4166 EXPORT_SYMBOL(pci_unmap_iospace);
4167 
4168 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4169 {
4170 	struct resource **res = ptr;
4171 
4172 	pci_unmap_iospace(*res);
4173 }
4174 
4175 /**
4176  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4177  * @dev: Generic device to remap IO address for
4178  * @res: Resource describing the I/O space
4179  * @phys_addr: physical address of range to be mapped
4180  *
4181  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4182  * detach.
4183  */
4184 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4185 			   phys_addr_t phys_addr)
4186 {
4187 	const struct resource **ptr;
4188 	int error;
4189 
4190 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4191 	if (!ptr)
4192 		return -ENOMEM;
4193 
4194 	error = pci_remap_iospace(res, phys_addr);
4195 	if (error) {
4196 		devres_free(ptr);
4197 	} else	{
4198 		*ptr = res;
4199 		devres_add(dev, ptr);
4200 	}
4201 
4202 	return error;
4203 }
4204 EXPORT_SYMBOL(devm_pci_remap_iospace);
4205 
4206 /**
4207  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4208  * @dev: Generic device to remap IO address for
4209  * @offset: Resource address to map
4210  * @size: Size of map
4211  *
4212  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4213  * detach.
4214  */
4215 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4216 				      resource_size_t offset,
4217 				      resource_size_t size)
4218 {
4219 	void __iomem **ptr, *addr;
4220 
4221 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4222 	if (!ptr)
4223 		return NULL;
4224 
4225 	addr = pci_remap_cfgspace(offset, size);
4226 	if (addr) {
4227 		*ptr = addr;
4228 		devres_add(dev, ptr);
4229 	} else
4230 		devres_free(ptr);
4231 
4232 	return addr;
4233 }
4234 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4235 
4236 /**
4237  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4238  * @dev: generic device to handle the resource for
4239  * @res: configuration space resource to be handled
4240  *
4241  * Checks that a resource is a valid memory region, requests the memory
4242  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4243  * proper PCI configuration space memory attributes are guaranteed.
4244  *
4245  * All operations are managed and will be undone on driver detach.
4246  *
4247  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4248  * on failure. Usage example::
4249  *
4250  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4251  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4252  *	if (IS_ERR(base))
4253  *		return PTR_ERR(base);
4254  */
4255 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4256 					  struct resource *res)
4257 {
4258 	resource_size_t size;
4259 	const char *name;
4260 	void __iomem *dest_ptr;
4261 
4262 	BUG_ON(!dev);
4263 
4264 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4265 		dev_err(dev, "invalid resource\n");
4266 		return IOMEM_ERR_PTR(-EINVAL);
4267 	}
4268 
4269 	size = resource_size(res);
4270 
4271 	if (res->name)
4272 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4273 				      res->name);
4274 	else
4275 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4276 	if (!name)
4277 		return IOMEM_ERR_PTR(-ENOMEM);
4278 
4279 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4280 		dev_err(dev, "can't request region for resource %pR\n", res);
4281 		return IOMEM_ERR_PTR(-EBUSY);
4282 	}
4283 
4284 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4285 	if (!dest_ptr) {
4286 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4287 		devm_release_mem_region(dev, res->start, size);
4288 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4289 	}
4290 
4291 	return dest_ptr;
4292 }
4293 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4294 
4295 static void __pci_set_master(struct pci_dev *dev, bool enable)
4296 {
4297 	u16 old_cmd, cmd;
4298 
4299 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4300 	if (enable)
4301 		cmd = old_cmd | PCI_COMMAND_MASTER;
4302 	else
4303 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4304 	if (cmd != old_cmd) {
4305 		pci_dbg(dev, "%s bus mastering\n",
4306 			enable ? "enabling" : "disabling");
4307 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4308 	}
4309 	dev->is_busmaster = enable;
4310 }
4311 
4312 /**
4313  * pcibios_setup - process "pci=" kernel boot arguments
4314  * @str: string used to pass in "pci=" kernel boot arguments
4315  *
4316  * Process kernel boot arguments.  This is the default implementation.
4317  * Architecture specific implementations can override this as necessary.
4318  */
4319 char * __weak __init pcibios_setup(char *str)
4320 {
4321 	return str;
4322 }
4323 
4324 /**
4325  * pcibios_set_master - enable PCI bus-mastering for device dev
4326  * @dev: the PCI device to enable
4327  *
4328  * Enables PCI bus-mastering for the device.  This is the default
4329  * implementation.  Architecture specific implementations can override
4330  * this if necessary.
4331  */
4332 void __weak pcibios_set_master(struct pci_dev *dev)
4333 {
4334 	u8 lat;
4335 
4336 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4337 	if (pci_is_pcie(dev))
4338 		return;
4339 
4340 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4341 	if (lat < 16)
4342 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4343 	else if (lat > pcibios_max_latency)
4344 		lat = pcibios_max_latency;
4345 	else
4346 		return;
4347 
4348 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4349 }
4350 
4351 /**
4352  * pci_set_master - enables bus-mastering for device dev
4353  * @dev: the PCI device to enable
4354  *
4355  * Enables bus-mastering on the device and calls pcibios_set_master()
4356  * to do the needed arch specific settings.
4357  */
4358 void pci_set_master(struct pci_dev *dev)
4359 {
4360 	__pci_set_master(dev, true);
4361 	pcibios_set_master(dev);
4362 }
4363 EXPORT_SYMBOL(pci_set_master);
4364 
4365 /**
4366  * pci_clear_master - disables bus-mastering for device dev
4367  * @dev: the PCI device to disable
4368  */
4369 void pci_clear_master(struct pci_dev *dev)
4370 {
4371 	__pci_set_master(dev, false);
4372 }
4373 EXPORT_SYMBOL(pci_clear_master);
4374 
4375 /**
4376  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4377  * @dev: the PCI device for which MWI is to be enabled
4378  *
4379  * Helper function for pci_set_mwi.
4380  * Originally copied from drivers/net/acenic.c.
4381  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4382  *
4383  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4384  */
4385 int pci_set_cacheline_size(struct pci_dev *dev)
4386 {
4387 	u8 cacheline_size;
4388 
4389 	if (!pci_cache_line_size)
4390 		return -EINVAL;
4391 
4392 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4393 	   equal to or multiple of the right value. */
4394 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4395 	if (cacheline_size >= pci_cache_line_size &&
4396 	    (cacheline_size % pci_cache_line_size) == 0)
4397 		return 0;
4398 
4399 	/* Write the correct value. */
4400 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4401 	/* Read it back. */
4402 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4403 	if (cacheline_size == pci_cache_line_size)
4404 		return 0;
4405 
4406 	pci_dbg(dev, "cache line size of %d is not supported\n",
4407 		   pci_cache_line_size << 2);
4408 
4409 	return -EINVAL;
4410 }
4411 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4412 
4413 /**
4414  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4415  * @dev: the PCI device for which MWI is enabled
4416  *
4417  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4418  *
4419  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4420  */
4421 int pci_set_mwi(struct pci_dev *dev)
4422 {
4423 #ifdef PCI_DISABLE_MWI
4424 	return 0;
4425 #else
4426 	int rc;
4427 	u16 cmd;
4428 
4429 	rc = pci_set_cacheline_size(dev);
4430 	if (rc)
4431 		return rc;
4432 
4433 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4434 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4435 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4436 		cmd |= PCI_COMMAND_INVALIDATE;
4437 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4438 	}
4439 	return 0;
4440 #endif
4441 }
4442 EXPORT_SYMBOL(pci_set_mwi);
4443 
4444 /**
4445  * pcim_set_mwi - a device-managed pci_set_mwi()
4446  * @dev: the PCI device for which MWI is enabled
4447  *
4448  * Managed pci_set_mwi().
4449  *
4450  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4451  */
4452 int pcim_set_mwi(struct pci_dev *dev)
4453 {
4454 	struct pci_devres *dr;
4455 
4456 	dr = find_pci_dr(dev);
4457 	if (!dr)
4458 		return -ENOMEM;
4459 
4460 	dr->mwi = 1;
4461 	return pci_set_mwi(dev);
4462 }
4463 EXPORT_SYMBOL(pcim_set_mwi);
4464 
4465 /**
4466  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4467  * @dev: the PCI device for which MWI is enabled
4468  *
4469  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4470  * Callers are not required to check the return value.
4471  *
4472  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4473  */
4474 int pci_try_set_mwi(struct pci_dev *dev)
4475 {
4476 #ifdef PCI_DISABLE_MWI
4477 	return 0;
4478 #else
4479 	return pci_set_mwi(dev);
4480 #endif
4481 }
4482 EXPORT_SYMBOL(pci_try_set_mwi);
4483 
4484 /**
4485  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4486  * @dev: the PCI device to disable
4487  *
4488  * Disables PCI Memory-Write-Invalidate transaction on the device
4489  */
4490 void pci_clear_mwi(struct pci_dev *dev)
4491 {
4492 #ifndef PCI_DISABLE_MWI
4493 	u16 cmd;
4494 
4495 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4496 	if (cmd & PCI_COMMAND_INVALIDATE) {
4497 		cmd &= ~PCI_COMMAND_INVALIDATE;
4498 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4499 	}
4500 #endif
4501 }
4502 EXPORT_SYMBOL(pci_clear_mwi);
4503 
4504 /**
4505  * pci_disable_parity - disable parity checking for device
4506  * @dev: the PCI device to operate on
4507  *
4508  * Disable parity checking for device @dev
4509  */
4510 void pci_disable_parity(struct pci_dev *dev)
4511 {
4512 	u16 cmd;
4513 
4514 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4515 	if (cmd & PCI_COMMAND_PARITY) {
4516 		cmd &= ~PCI_COMMAND_PARITY;
4517 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4518 	}
4519 }
4520 
4521 /**
4522  * pci_intx - enables/disables PCI INTx for device dev
4523  * @pdev: the PCI device to operate on
4524  * @enable: boolean: whether to enable or disable PCI INTx
4525  *
4526  * Enables/disables PCI INTx for device @pdev
4527  */
4528 void pci_intx(struct pci_dev *pdev, int enable)
4529 {
4530 	u16 pci_command, new;
4531 
4532 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4533 
4534 	if (enable)
4535 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4536 	else
4537 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4538 
4539 	if (new != pci_command) {
4540 		struct pci_devres *dr;
4541 
4542 		pci_write_config_word(pdev, PCI_COMMAND, new);
4543 
4544 		dr = find_pci_dr(pdev);
4545 		if (dr && !dr->restore_intx) {
4546 			dr->restore_intx = 1;
4547 			dr->orig_intx = !enable;
4548 		}
4549 	}
4550 }
4551 EXPORT_SYMBOL_GPL(pci_intx);
4552 
4553 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4554 {
4555 	struct pci_bus *bus = dev->bus;
4556 	bool mask_updated = true;
4557 	u32 cmd_status_dword;
4558 	u16 origcmd, newcmd;
4559 	unsigned long flags;
4560 	bool irq_pending;
4561 
4562 	/*
4563 	 * We do a single dword read to retrieve both command and status.
4564 	 * Document assumptions that make this possible.
4565 	 */
4566 	BUILD_BUG_ON(PCI_COMMAND % 4);
4567 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4568 
4569 	raw_spin_lock_irqsave(&pci_lock, flags);
4570 
4571 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4572 
4573 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4574 
4575 	/*
4576 	 * Check interrupt status register to see whether our device
4577 	 * triggered the interrupt (when masking) or the next IRQ is
4578 	 * already pending (when unmasking).
4579 	 */
4580 	if (mask != irq_pending) {
4581 		mask_updated = false;
4582 		goto done;
4583 	}
4584 
4585 	origcmd = cmd_status_dword;
4586 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4587 	if (mask)
4588 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4589 	if (newcmd != origcmd)
4590 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4591 
4592 done:
4593 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4594 
4595 	return mask_updated;
4596 }
4597 
4598 /**
4599  * pci_check_and_mask_intx - mask INTx on pending interrupt
4600  * @dev: the PCI device to operate on
4601  *
4602  * Check if the device dev has its INTx line asserted, mask it and return
4603  * true in that case. False is returned if no interrupt was pending.
4604  */
4605 bool pci_check_and_mask_intx(struct pci_dev *dev)
4606 {
4607 	return pci_check_and_set_intx_mask(dev, true);
4608 }
4609 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4610 
4611 /**
4612  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4613  * @dev: the PCI device to operate on
4614  *
4615  * Check if the device dev has its INTx line asserted, unmask it if not and
4616  * return true. False is returned and the mask remains active if there was
4617  * still an interrupt pending.
4618  */
4619 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4620 {
4621 	return pci_check_and_set_intx_mask(dev, false);
4622 }
4623 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4624 
4625 /**
4626  * pci_wait_for_pending_transaction - wait for pending transaction
4627  * @dev: the PCI device to operate on
4628  *
4629  * Return 0 if transaction is pending 1 otherwise.
4630  */
4631 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4632 {
4633 	if (!pci_is_pcie(dev))
4634 		return 1;
4635 
4636 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4637 				    PCI_EXP_DEVSTA_TRPND);
4638 }
4639 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4640 
4641 /**
4642  * pcie_flr - initiate a PCIe function level reset
4643  * @dev: device to reset
4644  *
4645  * Initiate a function level reset unconditionally on @dev without
4646  * checking any flags and DEVCAP
4647  */
4648 int pcie_flr(struct pci_dev *dev)
4649 {
4650 	if (!pci_wait_for_pending_transaction(dev))
4651 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4652 
4653 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4654 
4655 	if (dev->imm_ready)
4656 		return 0;
4657 
4658 	/*
4659 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4660 	 * 100ms, but may silently discard requests while the FLR is in
4661 	 * progress.  Wait 100ms before trying to access the device.
4662 	 */
4663 	msleep(100);
4664 
4665 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4666 }
4667 EXPORT_SYMBOL_GPL(pcie_flr);
4668 
4669 /**
4670  * pcie_reset_flr - initiate a PCIe function level reset
4671  * @dev: device to reset
4672  * @probe: if true, return 0 if device can be reset this way
4673  *
4674  * Initiate a function level reset on @dev.
4675  */
4676 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4677 {
4678 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4679 		return -ENOTTY;
4680 
4681 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4682 		return -ENOTTY;
4683 
4684 	if (probe)
4685 		return 0;
4686 
4687 	return pcie_flr(dev);
4688 }
4689 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4690 
4691 static int pci_af_flr(struct pci_dev *dev, bool probe)
4692 {
4693 	int pos;
4694 	u8 cap;
4695 
4696 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4697 	if (!pos)
4698 		return -ENOTTY;
4699 
4700 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4701 		return -ENOTTY;
4702 
4703 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4704 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4705 		return -ENOTTY;
4706 
4707 	if (probe)
4708 		return 0;
4709 
4710 	/*
4711 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4712 	 * is used, so we use the control offset rather than status and shift
4713 	 * the test bit to match.
4714 	 */
4715 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4716 				 PCI_AF_STATUS_TP << 8))
4717 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4718 
4719 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4720 
4721 	if (dev->imm_ready)
4722 		return 0;
4723 
4724 	/*
4725 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4726 	 * updated 27 July 2006; a device must complete an FLR within
4727 	 * 100ms, but may silently discard requests while the FLR is in
4728 	 * progress.  Wait 100ms before trying to access the device.
4729 	 */
4730 	msleep(100);
4731 
4732 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4733 }
4734 
4735 /**
4736  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4737  * @dev: Device to reset.
4738  * @probe: if true, return 0 if the device can be reset this way.
4739  *
4740  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4741  * unset, it will be reinitialized internally when going from PCI_D3hot to
4742  * PCI_D0.  If that's the case and the device is not in a low-power state
4743  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4744  *
4745  * NOTE: This causes the caller to sleep for twice the device power transition
4746  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4747  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4748  * Moreover, only devices in D0 can be reset by this function.
4749  */
4750 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4751 {
4752 	u16 csr;
4753 
4754 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4755 		return -ENOTTY;
4756 
4757 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4758 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4759 		return -ENOTTY;
4760 
4761 	if (probe)
4762 		return 0;
4763 
4764 	if (dev->current_state != PCI_D0)
4765 		return -EINVAL;
4766 
4767 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4768 	csr |= PCI_D3hot;
4769 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4770 	pci_dev_d3_sleep(dev);
4771 
4772 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4773 	csr |= PCI_D0;
4774 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4775 	pci_dev_d3_sleep(dev);
4776 
4777 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4778 }
4779 
4780 /**
4781  * pcie_wait_for_link_delay - Wait until link is active or inactive
4782  * @pdev: Bridge device
4783  * @active: waiting for active or inactive?
4784  * @delay: Delay to wait after link has become active (in ms)
4785  *
4786  * Use this to wait till link becomes active or inactive.
4787  */
4788 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4789 				     int delay)
4790 {
4791 	int timeout = 1000;
4792 	bool ret;
4793 	u16 lnk_status;
4794 
4795 	/*
4796 	 * Some controllers might not implement link active reporting. In this
4797 	 * case, we wait for 1000 ms + any delay requested by the caller.
4798 	 */
4799 	if (!pdev->link_active_reporting) {
4800 		msleep(timeout + delay);
4801 		return true;
4802 	}
4803 
4804 	/*
4805 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4806 	 * after which we should expect an link active if the reset was
4807 	 * successful. If so, software must wait a minimum 100ms before sending
4808 	 * configuration requests to devices downstream this port.
4809 	 *
4810 	 * If the link fails to activate, either the device was physically
4811 	 * removed or the link is permanently failed.
4812 	 */
4813 	if (active)
4814 		msleep(20);
4815 	for (;;) {
4816 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4817 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4818 		if (ret == active)
4819 			break;
4820 		if (timeout <= 0)
4821 			break;
4822 		msleep(10);
4823 		timeout -= 10;
4824 	}
4825 	if (active && ret)
4826 		msleep(delay);
4827 
4828 	return ret == active;
4829 }
4830 
4831 /**
4832  * pcie_wait_for_link - Wait until link is active or inactive
4833  * @pdev: Bridge device
4834  * @active: waiting for active or inactive?
4835  *
4836  * Use this to wait till link becomes active or inactive.
4837  */
4838 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4839 {
4840 	return pcie_wait_for_link_delay(pdev, active, 100);
4841 }
4842 
4843 /*
4844  * Find maximum D3cold delay required by all the devices on the bus.  The
4845  * spec says 100 ms, but firmware can lower it and we allow drivers to
4846  * increase it as well.
4847  *
4848  * Called with @pci_bus_sem locked for reading.
4849  */
4850 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4851 {
4852 	const struct pci_dev *pdev;
4853 	int min_delay = 100;
4854 	int max_delay = 0;
4855 
4856 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4857 		if (pdev->d3cold_delay < min_delay)
4858 			min_delay = pdev->d3cold_delay;
4859 		if (pdev->d3cold_delay > max_delay)
4860 			max_delay = pdev->d3cold_delay;
4861 	}
4862 
4863 	return max(min_delay, max_delay);
4864 }
4865 
4866 /**
4867  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4868  * @dev: PCI bridge
4869  *
4870  * Handle necessary delays before access to the devices on the secondary
4871  * side of the bridge are permitted after D3cold to D0 transition.
4872  *
4873  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4874  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4875  * 4.3.2.
4876  */
4877 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4878 {
4879 	struct pci_dev *child;
4880 	int delay;
4881 
4882 	if (pci_dev_is_disconnected(dev))
4883 		return;
4884 
4885 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4886 		return;
4887 
4888 	down_read(&pci_bus_sem);
4889 
4890 	/*
4891 	 * We only deal with devices that are present currently on the bus.
4892 	 * For any hot-added devices the access delay is handled in pciehp
4893 	 * board_added(). In case of ACPI hotplug the firmware is expected
4894 	 * to configure the devices before OS is notified.
4895 	 */
4896 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4897 		up_read(&pci_bus_sem);
4898 		return;
4899 	}
4900 
4901 	/* Take d3cold_delay requirements into account */
4902 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4903 	if (!delay) {
4904 		up_read(&pci_bus_sem);
4905 		return;
4906 	}
4907 
4908 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4909 				 bus_list);
4910 	up_read(&pci_bus_sem);
4911 
4912 	/*
4913 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4914 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4915 	 * practice this should not be needed because we don't do power
4916 	 * management for them (see pci_bridge_d3_possible()).
4917 	 */
4918 	if (!pci_is_pcie(dev)) {
4919 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4920 		msleep(1000 + delay);
4921 		return;
4922 	}
4923 
4924 	/*
4925 	 * For PCIe downstream and root ports that do not support speeds
4926 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4927 	 * speeds (gen3) we need to wait first for the data link layer to
4928 	 * become active.
4929 	 *
4930 	 * However, 100 ms is the minimum and the PCIe spec says the
4931 	 * software must allow at least 1s before it can determine that the
4932 	 * device that did not respond is a broken device. There is
4933 	 * evidence that 100 ms is not always enough, for example certain
4934 	 * Titan Ridge xHCI controller does not always respond to
4935 	 * configuration requests if we only wait for 100 ms (see
4936 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4937 	 *
4938 	 * Therefore we wait for 100 ms and check for the device presence.
4939 	 * If it is still not present give it an additional 100 ms.
4940 	 */
4941 	if (!pcie_downstream_port(dev))
4942 		return;
4943 
4944 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4945 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4946 		msleep(delay);
4947 	} else {
4948 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4949 			delay);
4950 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4951 			/* Did not train, no need to wait any further */
4952 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4953 			return;
4954 		}
4955 	}
4956 
4957 	if (!pci_device_is_present(child)) {
4958 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4959 		msleep(delay);
4960 	}
4961 }
4962 
4963 void pci_reset_secondary_bus(struct pci_dev *dev)
4964 {
4965 	u16 ctrl;
4966 
4967 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4968 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4969 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4970 
4971 	/*
4972 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4973 	 * this to 2ms to ensure that we meet the minimum requirement.
4974 	 */
4975 	msleep(2);
4976 
4977 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4978 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4979 
4980 	/*
4981 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4982 	 * Assuming a minimum 33MHz clock this results in a 1s
4983 	 * delay before we can consider subordinate devices to
4984 	 * be re-initialized.  PCIe has some ways to shorten this,
4985 	 * but we don't make use of them yet.
4986 	 */
4987 	ssleep(1);
4988 }
4989 
4990 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4991 {
4992 	pci_reset_secondary_bus(dev);
4993 }
4994 
4995 /**
4996  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4997  * @dev: Bridge device
4998  *
4999  * Use the bridge control register to assert reset on the secondary bus.
5000  * Devices on the secondary bus are left in power-on state.
5001  */
5002 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5003 {
5004 	pcibios_reset_secondary_bus(dev);
5005 
5006 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5007 }
5008 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5009 
5010 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5011 {
5012 	struct pci_dev *pdev;
5013 
5014 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5015 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5016 		return -ENOTTY;
5017 
5018 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5019 		if (pdev != dev)
5020 			return -ENOTTY;
5021 
5022 	if (probe)
5023 		return 0;
5024 
5025 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5026 }
5027 
5028 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5029 {
5030 	int rc = -ENOTTY;
5031 
5032 	if (!hotplug || !try_module_get(hotplug->owner))
5033 		return rc;
5034 
5035 	if (hotplug->ops->reset_slot)
5036 		rc = hotplug->ops->reset_slot(hotplug, probe);
5037 
5038 	module_put(hotplug->owner);
5039 
5040 	return rc;
5041 }
5042 
5043 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5044 {
5045 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5046 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5047 		return -ENOTTY;
5048 
5049 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5050 }
5051 
5052 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5053 {
5054 	int rc;
5055 
5056 	rc = pci_dev_reset_slot_function(dev, probe);
5057 	if (rc != -ENOTTY)
5058 		return rc;
5059 	return pci_parent_bus_reset(dev, probe);
5060 }
5061 
5062 static void pci_dev_lock(struct pci_dev *dev)
5063 {
5064 	pci_cfg_access_lock(dev);
5065 	/* block PM suspend, driver probe, etc. */
5066 	device_lock(&dev->dev);
5067 }
5068 
5069 /* Return 1 on successful lock, 0 on contention */
5070 int pci_dev_trylock(struct pci_dev *dev)
5071 {
5072 	if (pci_cfg_access_trylock(dev)) {
5073 		if (device_trylock(&dev->dev))
5074 			return 1;
5075 		pci_cfg_access_unlock(dev);
5076 	}
5077 
5078 	return 0;
5079 }
5080 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5081 
5082 void pci_dev_unlock(struct pci_dev *dev)
5083 {
5084 	device_unlock(&dev->dev);
5085 	pci_cfg_access_unlock(dev);
5086 }
5087 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5088 
5089 static void pci_dev_save_and_disable(struct pci_dev *dev)
5090 {
5091 	const struct pci_error_handlers *err_handler =
5092 			dev->driver ? dev->driver->err_handler : NULL;
5093 
5094 	/*
5095 	 * dev->driver->err_handler->reset_prepare() is protected against
5096 	 * races with ->remove() by the device lock, which must be held by
5097 	 * the caller.
5098 	 */
5099 	if (err_handler && err_handler->reset_prepare)
5100 		err_handler->reset_prepare(dev);
5101 
5102 	/*
5103 	 * Wake-up device prior to save.  PM registers default to D0 after
5104 	 * reset and a simple register restore doesn't reliably return
5105 	 * to a non-D0 state anyway.
5106 	 */
5107 	pci_set_power_state(dev, PCI_D0);
5108 
5109 	pci_save_state(dev);
5110 	/*
5111 	 * Disable the device by clearing the Command register, except for
5112 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5113 	 * BARs, but also prevents the device from being Bus Master, preventing
5114 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5115 	 * compliant devices, INTx-disable prevents legacy interrupts.
5116 	 */
5117 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5118 }
5119 
5120 static void pci_dev_restore(struct pci_dev *dev)
5121 {
5122 	const struct pci_error_handlers *err_handler =
5123 			dev->driver ? dev->driver->err_handler : NULL;
5124 
5125 	pci_restore_state(dev);
5126 
5127 	/*
5128 	 * dev->driver->err_handler->reset_done() is protected against
5129 	 * races with ->remove() by the device lock, which must be held by
5130 	 * the caller.
5131 	 */
5132 	if (err_handler && err_handler->reset_done)
5133 		err_handler->reset_done(dev);
5134 }
5135 
5136 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5137 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5138 	{ },
5139 	{ pci_dev_specific_reset, .name = "device_specific" },
5140 	{ pci_dev_acpi_reset, .name = "acpi" },
5141 	{ pcie_reset_flr, .name = "flr" },
5142 	{ pci_af_flr, .name = "af_flr" },
5143 	{ pci_pm_reset, .name = "pm" },
5144 	{ pci_reset_bus_function, .name = "bus" },
5145 };
5146 
5147 static ssize_t reset_method_show(struct device *dev,
5148 				 struct device_attribute *attr, char *buf)
5149 {
5150 	struct pci_dev *pdev = to_pci_dev(dev);
5151 	ssize_t len = 0;
5152 	int i, m;
5153 
5154 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5155 		m = pdev->reset_methods[i];
5156 		if (!m)
5157 			break;
5158 
5159 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5160 				     pci_reset_fn_methods[m].name);
5161 	}
5162 
5163 	if (len)
5164 		len += sysfs_emit_at(buf, len, "\n");
5165 
5166 	return len;
5167 }
5168 
5169 static int reset_method_lookup(const char *name)
5170 {
5171 	int m;
5172 
5173 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5174 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5175 			return m;
5176 	}
5177 
5178 	return 0;	/* not found */
5179 }
5180 
5181 static ssize_t reset_method_store(struct device *dev,
5182 				  struct device_attribute *attr,
5183 				  const char *buf, size_t count)
5184 {
5185 	struct pci_dev *pdev = to_pci_dev(dev);
5186 	char *options, *name;
5187 	int m, n;
5188 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5189 
5190 	if (sysfs_streq(buf, "")) {
5191 		pdev->reset_methods[0] = 0;
5192 		pci_warn(pdev, "All device reset methods disabled by user");
5193 		return count;
5194 	}
5195 
5196 	if (sysfs_streq(buf, "default")) {
5197 		pci_init_reset_methods(pdev);
5198 		return count;
5199 	}
5200 
5201 	options = kstrndup(buf, count, GFP_KERNEL);
5202 	if (!options)
5203 		return -ENOMEM;
5204 
5205 	n = 0;
5206 	while ((name = strsep(&options, " ")) != NULL) {
5207 		if (sysfs_streq(name, ""))
5208 			continue;
5209 
5210 		name = strim(name);
5211 
5212 		m = reset_method_lookup(name);
5213 		if (!m) {
5214 			pci_err(pdev, "Invalid reset method '%s'", name);
5215 			goto error;
5216 		}
5217 
5218 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5219 			pci_err(pdev, "Unsupported reset method '%s'", name);
5220 			goto error;
5221 		}
5222 
5223 		if (n == PCI_NUM_RESET_METHODS - 1) {
5224 			pci_err(pdev, "Too many reset methods\n");
5225 			goto error;
5226 		}
5227 
5228 		reset_methods[n++] = m;
5229 	}
5230 
5231 	reset_methods[n] = 0;
5232 
5233 	/* Warn if dev-specific supported but not highest priority */
5234 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5235 	    reset_methods[0] != 1)
5236 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5237 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5238 	kfree(options);
5239 	return count;
5240 
5241 error:
5242 	/* Leave previous methods unchanged */
5243 	kfree(options);
5244 	return -EINVAL;
5245 }
5246 static DEVICE_ATTR_RW(reset_method);
5247 
5248 static struct attribute *pci_dev_reset_method_attrs[] = {
5249 	&dev_attr_reset_method.attr,
5250 	NULL,
5251 };
5252 
5253 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5254 						    struct attribute *a, int n)
5255 {
5256 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5257 
5258 	if (!pci_reset_supported(pdev))
5259 		return 0;
5260 
5261 	return a->mode;
5262 }
5263 
5264 const struct attribute_group pci_dev_reset_method_attr_group = {
5265 	.attrs = pci_dev_reset_method_attrs,
5266 	.is_visible = pci_dev_reset_method_attr_is_visible,
5267 };
5268 
5269 /**
5270  * __pci_reset_function_locked - reset a PCI device function while holding
5271  * the @dev mutex lock.
5272  * @dev: PCI device to reset
5273  *
5274  * Some devices allow an individual function to be reset without affecting
5275  * other functions in the same device.  The PCI device must be responsive
5276  * to PCI config space in order to use this function.
5277  *
5278  * The device function is presumed to be unused and the caller is holding
5279  * the device mutex lock when this function is called.
5280  *
5281  * Resetting the device will make the contents of PCI configuration space
5282  * random, so any caller of this must be prepared to reinitialise the
5283  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5284  * etc.
5285  *
5286  * Returns 0 if the device function was successfully reset or negative if the
5287  * device doesn't support resetting a single function.
5288  */
5289 int __pci_reset_function_locked(struct pci_dev *dev)
5290 {
5291 	int i, m, rc = -ENOTTY;
5292 
5293 	might_sleep();
5294 
5295 	/*
5296 	 * A reset method returns -ENOTTY if it doesn't support this device and
5297 	 * we should try the next method.
5298 	 *
5299 	 * If it returns 0 (success), we're finished.  If it returns any other
5300 	 * error, we're also finished: this indicates that further reset
5301 	 * mechanisms might be broken on the device.
5302 	 */
5303 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5304 		m = dev->reset_methods[i];
5305 		if (!m)
5306 			return -ENOTTY;
5307 
5308 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5309 		if (!rc)
5310 			return 0;
5311 		if (rc != -ENOTTY)
5312 			return rc;
5313 	}
5314 
5315 	return -ENOTTY;
5316 }
5317 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5318 
5319 /**
5320  * pci_init_reset_methods - check whether device can be safely reset
5321  * and store supported reset mechanisms.
5322  * @dev: PCI device to check for reset mechanisms
5323  *
5324  * Some devices allow an individual function to be reset without affecting
5325  * other functions in the same device.  The PCI device must be in D0-D3hot
5326  * state.
5327  *
5328  * Stores reset mechanisms supported by device in reset_methods byte array
5329  * which is a member of struct pci_dev.
5330  */
5331 void pci_init_reset_methods(struct pci_dev *dev)
5332 {
5333 	int m, i, rc;
5334 
5335 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5336 
5337 	might_sleep();
5338 
5339 	i = 0;
5340 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5341 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5342 		if (!rc)
5343 			dev->reset_methods[i++] = m;
5344 		else if (rc != -ENOTTY)
5345 			break;
5346 	}
5347 
5348 	dev->reset_methods[i] = 0;
5349 }
5350 
5351 /**
5352  * pci_reset_function - quiesce and reset a PCI device function
5353  * @dev: PCI device to reset
5354  *
5355  * Some devices allow an individual function to be reset without affecting
5356  * other functions in the same device.  The PCI device must be responsive
5357  * to PCI config space in order to use this function.
5358  *
5359  * This function does not just reset the PCI portion of a device, but
5360  * clears all the state associated with the device.  This function differs
5361  * from __pci_reset_function_locked() in that it saves and restores device state
5362  * over the reset and takes the PCI device lock.
5363  *
5364  * Returns 0 if the device function was successfully reset or negative if the
5365  * device doesn't support resetting a single function.
5366  */
5367 int pci_reset_function(struct pci_dev *dev)
5368 {
5369 	int rc;
5370 
5371 	if (!pci_reset_supported(dev))
5372 		return -ENOTTY;
5373 
5374 	pci_dev_lock(dev);
5375 	pci_dev_save_and_disable(dev);
5376 
5377 	rc = __pci_reset_function_locked(dev);
5378 
5379 	pci_dev_restore(dev);
5380 	pci_dev_unlock(dev);
5381 
5382 	return rc;
5383 }
5384 EXPORT_SYMBOL_GPL(pci_reset_function);
5385 
5386 /**
5387  * pci_reset_function_locked - quiesce and reset a PCI device function
5388  * @dev: PCI device to reset
5389  *
5390  * Some devices allow an individual function to be reset without affecting
5391  * other functions in the same device.  The PCI device must be responsive
5392  * to PCI config space in order to use this function.
5393  *
5394  * This function does not just reset the PCI portion of a device, but
5395  * clears all the state associated with the device.  This function differs
5396  * from __pci_reset_function_locked() in that it saves and restores device state
5397  * over the reset.  It also differs from pci_reset_function() in that it
5398  * requires the PCI device lock to be held.
5399  *
5400  * Returns 0 if the device function was successfully reset or negative if the
5401  * device doesn't support resetting a single function.
5402  */
5403 int pci_reset_function_locked(struct pci_dev *dev)
5404 {
5405 	int rc;
5406 
5407 	if (!pci_reset_supported(dev))
5408 		return -ENOTTY;
5409 
5410 	pci_dev_save_and_disable(dev);
5411 
5412 	rc = __pci_reset_function_locked(dev);
5413 
5414 	pci_dev_restore(dev);
5415 
5416 	return rc;
5417 }
5418 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5419 
5420 /**
5421  * pci_try_reset_function - quiesce and reset a PCI device function
5422  * @dev: PCI device to reset
5423  *
5424  * Same as above, except return -EAGAIN if unable to lock device.
5425  */
5426 int pci_try_reset_function(struct pci_dev *dev)
5427 {
5428 	int rc;
5429 
5430 	if (!pci_reset_supported(dev))
5431 		return -ENOTTY;
5432 
5433 	if (!pci_dev_trylock(dev))
5434 		return -EAGAIN;
5435 
5436 	pci_dev_save_and_disable(dev);
5437 	rc = __pci_reset_function_locked(dev);
5438 	pci_dev_restore(dev);
5439 	pci_dev_unlock(dev);
5440 
5441 	return rc;
5442 }
5443 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5444 
5445 /* Do any devices on or below this bus prevent a bus reset? */
5446 static bool pci_bus_resetable(struct pci_bus *bus)
5447 {
5448 	struct pci_dev *dev;
5449 
5450 
5451 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5452 		return false;
5453 
5454 	list_for_each_entry(dev, &bus->devices, bus_list) {
5455 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5456 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5457 			return false;
5458 	}
5459 
5460 	return true;
5461 }
5462 
5463 /* Lock devices from the top of the tree down */
5464 static void pci_bus_lock(struct pci_bus *bus)
5465 {
5466 	struct pci_dev *dev;
5467 
5468 	list_for_each_entry(dev, &bus->devices, bus_list) {
5469 		pci_dev_lock(dev);
5470 		if (dev->subordinate)
5471 			pci_bus_lock(dev->subordinate);
5472 	}
5473 }
5474 
5475 /* Unlock devices from the bottom of the tree up */
5476 static void pci_bus_unlock(struct pci_bus *bus)
5477 {
5478 	struct pci_dev *dev;
5479 
5480 	list_for_each_entry(dev, &bus->devices, bus_list) {
5481 		if (dev->subordinate)
5482 			pci_bus_unlock(dev->subordinate);
5483 		pci_dev_unlock(dev);
5484 	}
5485 }
5486 
5487 /* Return 1 on successful lock, 0 on contention */
5488 static int pci_bus_trylock(struct pci_bus *bus)
5489 {
5490 	struct pci_dev *dev;
5491 
5492 	list_for_each_entry(dev, &bus->devices, bus_list) {
5493 		if (!pci_dev_trylock(dev))
5494 			goto unlock;
5495 		if (dev->subordinate) {
5496 			if (!pci_bus_trylock(dev->subordinate)) {
5497 				pci_dev_unlock(dev);
5498 				goto unlock;
5499 			}
5500 		}
5501 	}
5502 	return 1;
5503 
5504 unlock:
5505 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5506 		if (dev->subordinate)
5507 			pci_bus_unlock(dev->subordinate);
5508 		pci_dev_unlock(dev);
5509 	}
5510 	return 0;
5511 }
5512 
5513 /* Do any devices on or below this slot prevent a bus reset? */
5514 static bool pci_slot_resetable(struct pci_slot *slot)
5515 {
5516 	struct pci_dev *dev;
5517 
5518 	if (slot->bus->self &&
5519 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5520 		return false;
5521 
5522 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5523 		if (!dev->slot || dev->slot != slot)
5524 			continue;
5525 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5526 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5527 			return false;
5528 	}
5529 
5530 	return true;
5531 }
5532 
5533 /* Lock devices from the top of the tree down */
5534 static void pci_slot_lock(struct pci_slot *slot)
5535 {
5536 	struct pci_dev *dev;
5537 
5538 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5539 		if (!dev->slot || dev->slot != slot)
5540 			continue;
5541 		pci_dev_lock(dev);
5542 		if (dev->subordinate)
5543 			pci_bus_lock(dev->subordinate);
5544 	}
5545 }
5546 
5547 /* Unlock devices from the bottom of the tree up */
5548 static void pci_slot_unlock(struct pci_slot *slot)
5549 {
5550 	struct pci_dev *dev;
5551 
5552 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5553 		if (!dev->slot || dev->slot != slot)
5554 			continue;
5555 		if (dev->subordinate)
5556 			pci_bus_unlock(dev->subordinate);
5557 		pci_dev_unlock(dev);
5558 	}
5559 }
5560 
5561 /* Return 1 on successful lock, 0 on contention */
5562 static int pci_slot_trylock(struct pci_slot *slot)
5563 {
5564 	struct pci_dev *dev;
5565 
5566 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5567 		if (!dev->slot || dev->slot != slot)
5568 			continue;
5569 		if (!pci_dev_trylock(dev))
5570 			goto unlock;
5571 		if (dev->subordinate) {
5572 			if (!pci_bus_trylock(dev->subordinate)) {
5573 				pci_dev_unlock(dev);
5574 				goto unlock;
5575 			}
5576 		}
5577 	}
5578 	return 1;
5579 
5580 unlock:
5581 	list_for_each_entry_continue_reverse(dev,
5582 					     &slot->bus->devices, bus_list) {
5583 		if (!dev->slot || dev->slot != slot)
5584 			continue;
5585 		if (dev->subordinate)
5586 			pci_bus_unlock(dev->subordinate);
5587 		pci_dev_unlock(dev);
5588 	}
5589 	return 0;
5590 }
5591 
5592 /*
5593  * Save and disable devices from the top of the tree down while holding
5594  * the @dev mutex lock for the entire tree.
5595  */
5596 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5597 {
5598 	struct pci_dev *dev;
5599 
5600 	list_for_each_entry(dev, &bus->devices, bus_list) {
5601 		pci_dev_save_and_disable(dev);
5602 		if (dev->subordinate)
5603 			pci_bus_save_and_disable_locked(dev->subordinate);
5604 	}
5605 }
5606 
5607 /*
5608  * Restore devices from top of the tree down while holding @dev mutex lock
5609  * for the entire tree.  Parent bridges need to be restored before we can
5610  * get to subordinate devices.
5611  */
5612 static void pci_bus_restore_locked(struct pci_bus *bus)
5613 {
5614 	struct pci_dev *dev;
5615 
5616 	list_for_each_entry(dev, &bus->devices, bus_list) {
5617 		pci_dev_restore(dev);
5618 		if (dev->subordinate)
5619 			pci_bus_restore_locked(dev->subordinate);
5620 	}
5621 }
5622 
5623 /*
5624  * Save and disable devices from the top of the tree down while holding
5625  * the @dev mutex lock for the entire tree.
5626  */
5627 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5628 {
5629 	struct pci_dev *dev;
5630 
5631 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5632 		if (!dev->slot || dev->slot != slot)
5633 			continue;
5634 		pci_dev_save_and_disable(dev);
5635 		if (dev->subordinate)
5636 			pci_bus_save_and_disable_locked(dev->subordinate);
5637 	}
5638 }
5639 
5640 /*
5641  * Restore devices from top of the tree down while holding @dev mutex lock
5642  * for the entire tree.  Parent bridges need to be restored before we can
5643  * get to subordinate devices.
5644  */
5645 static void pci_slot_restore_locked(struct pci_slot *slot)
5646 {
5647 	struct pci_dev *dev;
5648 
5649 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5650 		if (!dev->slot || dev->slot != slot)
5651 			continue;
5652 		pci_dev_restore(dev);
5653 		if (dev->subordinate)
5654 			pci_bus_restore_locked(dev->subordinate);
5655 	}
5656 }
5657 
5658 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5659 {
5660 	int rc;
5661 
5662 	if (!slot || !pci_slot_resetable(slot))
5663 		return -ENOTTY;
5664 
5665 	if (!probe)
5666 		pci_slot_lock(slot);
5667 
5668 	might_sleep();
5669 
5670 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5671 
5672 	if (!probe)
5673 		pci_slot_unlock(slot);
5674 
5675 	return rc;
5676 }
5677 
5678 /**
5679  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5680  * @slot: PCI slot to probe
5681  *
5682  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5683  */
5684 int pci_probe_reset_slot(struct pci_slot *slot)
5685 {
5686 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5687 }
5688 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5689 
5690 /**
5691  * __pci_reset_slot - Try to reset a PCI slot
5692  * @slot: PCI slot to reset
5693  *
5694  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5695  * independent of other slots.  For instance, some slots may support slot power
5696  * control.  In the case of a 1:1 bus to slot architecture, this function may
5697  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5698  * Generally a slot reset should be attempted before a bus reset.  All of the
5699  * function of the slot and any subordinate buses behind the slot are reset
5700  * through this function.  PCI config space of all devices in the slot and
5701  * behind the slot is saved before and restored after reset.
5702  *
5703  * Same as above except return -EAGAIN if the slot cannot be locked
5704  */
5705 static int __pci_reset_slot(struct pci_slot *slot)
5706 {
5707 	int rc;
5708 
5709 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5710 	if (rc)
5711 		return rc;
5712 
5713 	if (pci_slot_trylock(slot)) {
5714 		pci_slot_save_and_disable_locked(slot);
5715 		might_sleep();
5716 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5717 		pci_slot_restore_locked(slot);
5718 		pci_slot_unlock(slot);
5719 	} else
5720 		rc = -EAGAIN;
5721 
5722 	return rc;
5723 }
5724 
5725 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5726 {
5727 	int ret;
5728 
5729 	if (!bus->self || !pci_bus_resetable(bus))
5730 		return -ENOTTY;
5731 
5732 	if (probe)
5733 		return 0;
5734 
5735 	pci_bus_lock(bus);
5736 
5737 	might_sleep();
5738 
5739 	ret = pci_bridge_secondary_bus_reset(bus->self);
5740 
5741 	pci_bus_unlock(bus);
5742 
5743 	return ret;
5744 }
5745 
5746 /**
5747  * pci_bus_error_reset - reset the bridge's subordinate bus
5748  * @bridge: The parent device that connects to the bus to reset
5749  *
5750  * This function will first try to reset the slots on this bus if the method is
5751  * available. If slot reset fails or is not available, this will fall back to a
5752  * secondary bus reset.
5753  */
5754 int pci_bus_error_reset(struct pci_dev *bridge)
5755 {
5756 	struct pci_bus *bus = bridge->subordinate;
5757 	struct pci_slot *slot;
5758 
5759 	if (!bus)
5760 		return -ENOTTY;
5761 
5762 	mutex_lock(&pci_slot_mutex);
5763 	if (list_empty(&bus->slots))
5764 		goto bus_reset;
5765 
5766 	list_for_each_entry(slot, &bus->slots, list)
5767 		if (pci_probe_reset_slot(slot))
5768 			goto bus_reset;
5769 
5770 	list_for_each_entry(slot, &bus->slots, list)
5771 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5772 			goto bus_reset;
5773 
5774 	mutex_unlock(&pci_slot_mutex);
5775 	return 0;
5776 bus_reset:
5777 	mutex_unlock(&pci_slot_mutex);
5778 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5779 }
5780 
5781 /**
5782  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5783  * @bus: PCI bus to probe
5784  *
5785  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5786  */
5787 int pci_probe_reset_bus(struct pci_bus *bus)
5788 {
5789 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5790 }
5791 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5792 
5793 /**
5794  * __pci_reset_bus - Try to reset a PCI bus
5795  * @bus: top level PCI bus to reset
5796  *
5797  * Same as above except return -EAGAIN if the bus cannot be locked
5798  */
5799 static int __pci_reset_bus(struct pci_bus *bus)
5800 {
5801 	int rc;
5802 
5803 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5804 	if (rc)
5805 		return rc;
5806 
5807 	if (pci_bus_trylock(bus)) {
5808 		pci_bus_save_and_disable_locked(bus);
5809 		might_sleep();
5810 		rc = pci_bridge_secondary_bus_reset(bus->self);
5811 		pci_bus_restore_locked(bus);
5812 		pci_bus_unlock(bus);
5813 	} else
5814 		rc = -EAGAIN;
5815 
5816 	return rc;
5817 }
5818 
5819 /**
5820  * pci_reset_bus - Try to reset a PCI bus
5821  * @pdev: top level PCI device to reset via slot/bus
5822  *
5823  * Same as above except return -EAGAIN if the bus cannot be locked
5824  */
5825 int pci_reset_bus(struct pci_dev *pdev)
5826 {
5827 	return (!pci_probe_reset_slot(pdev->slot)) ?
5828 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5829 }
5830 EXPORT_SYMBOL_GPL(pci_reset_bus);
5831 
5832 /**
5833  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5834  * @dev: PCI device to query
5835  *
5836  * Returns mmrbc: maximum designed memory read count in bytes or
5837  * appropriate error value.
5838  */
5839 int pcix_get_max_mmrbc(struct pci_dev *dev)
5840 {
5841 	int cap;
5842 	u32 stat;
5843 
5844 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5845 	if (!cap)
5846 		return -EINVAL;
5847 
5848 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5849 		return -EINVAL;
5850 
5851 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5852 }
5853 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5854 
5855 /**
5856  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5857  * @dev: PCI device to query
5858  *
5859  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5860  * value.
5861  */
5862 int pcix_get_mmrbc(struct pci_dev *dev)
5863 {
5864 	int cap;
5865 	u16 cmd;
5866 
5867 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5868 	if (!cap)
5869 		return -EINVAL;
5870 
5871 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5872 		return -EINVAL;
5873 
5874 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5875 }
5876 EXPORT_SYMBOL(pcix_get_mmrbc);
5877 
5878 /**
5879  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5880  * @dev: PCI device to query
5881  * @mmrbc: maximum memory read count in bytes
5882  *    valid values are 512, 1024, 2048, 4096
5883  *
5884  * If possible sets maximum memory read byte count, some bridges have errata
5885  * that prevent this.
5886  */
5887 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5888 {
5889 	int cap;
5890 	u32 stat, v, o;
5891 	u16 cmd;
5892 
5893 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5894 		return -EINVAL;
5895 
5896 	v = ffs(mmrbc) - 10;
5897 
5898 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5899 	if (!cap)
5900 		return -EINVAL;
5901 
5902 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5903 		return -EINVAL;
5904 
5905 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5906 		return -E2BIG;
5907 
5908 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5909 		return -EINVAL;
5910 
5911 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5912 	if (o != v) {
5913 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5914 			return -EIO;
5915 
5916 		cmd &= ~PCI_X_CMD_MAX_READ;
5917 		cmd |= v << 2;
5918 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5919 			return -EIO;
5920 	}
5921 	return 0;
5922 }
5923 EXPORT_SYMBOL(pcix_set_mmrbc);
5924 
5925 /**
5926  * pcie_get_readrq - get PCI Express read request size
5927  * @dev: PCI device to query
5928  *
5929  * Returns maximum memory read request in bytes or appropriate error value.
5930  */
5931 int pcie_get_readrq(struct pci_dev *dev)
5932 {
5933 	u16 ctl;
5934 
5935 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5936 
5937 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5938 }
5939 EXPORT_SYMBOL(pcie_get_readrq);
5940 
5941 /**
5942  * pcie_set_readrq - set PCI Express maximum memory read request
5943  * @dev: PCI device to query
5944  * @rq: maximum memory read count in bytes
5945  *    valid values are 128, 256, 512, 1024, 2048, 4096
5946  *
5947  * If possible sets maximum memory read request in bytes
5948  */
5949 int pcie_set_readrq(struct pci_dev *dev, int rq)
5950 {
5951 	u16 v;
5952 	int ret;
5953 
5954 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5955 		return -EINVAL;
5956 
5957 	/*
5958 	 * If using the "performance" PCIe config, we clamp the read rq
5959 	 * size to the max packet size to keep the host bridge from
5960 	 * generating requests larger than we can cope with.
5961 	 */
5962 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5963 		int mps = pcie_get_mps(dev);
5964 
5965 		if (mps < rq)
5966 			rq = mps;
5967 	}
5968 
5969 	v = (ffs(rq) - 8) << 12;
5970 
5971 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5972 						  PCI_EXP_DEVCTL_READRQ, v);
5973 
5974 	return pcibios_err_to_errno(ret);
5975 }
5976 EXPORT_SYMBOL(pcie_set_readrq);
5977 
5978 /**
5979  * pcie_get_mps - get PCI Express maximum payload size
5980  * @dev: PCI device to query
5981  *
5982  * Returns maximum payload size in bytes
5983  */
5984 int pcie_get_mps(struct pci_dev *dev)
5985 {
5986 	u16 ctl;
5987 
5988 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5989 
5990 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5991 }
5992 EXPORT_SYMBOL(pcie_get_mps);
5993 
5994 /**
5995  * pcie_set_mps - set PCI Express maximum payload size
5996  * @dev: PCI device to query
5997  * @mps: maximum payload size in bytes
5998  *    valid values are 128, 256, 512, 1024, 2048, 4096
5999  *
6000  * If possible sets maximum payload size
6001  */
6002 int pcie_set_mps(struct pci_dev *dev, int mps)
6003 {
6004 	u16 v;
6005 	int ret;
6006 
6007 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6008 		return -EINVAL;
6009 
6010 	v = ffs(mps) - 8;
6011 	if (v > dev->pcie_mpss)
6012 		return -EINVAL;
6013 	v <<= 5;
6014 
6015 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6016 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6017 
6018 	return pcibios_err_to_errno(ret);
6019 }
6020 EXPORT_SYMBOL(pcie_set_mps);
6021 
6022 /**
6023  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6024  *			      device and its bandwidth limitation
6025  * @dev: PCI device to query
6026  * @limiting_dev: storage for device causing the bandwidth limitation
6027  * @speed: storage for speed of limiting device
6028  * @width: storage for width of limiting device
6029  *
6030  * Walk up the PCI device chain and find the point where the minimum
6031  * bandwidth is available.  Return the bandwidth available there and (if
6032  * limiting_dev, speed, and width pointers are supplied) information about
6033  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6034  * raw bandwidth.
6035  */
6036 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6037 			     enum pci_bus_speed *speed,
6038 			     enum pcie_link_width *width)
6039 {
6040 	u16 lnksta;
6041 	enum pci_bus_speed next_speed;
6042 	enum pcie_link_width next_width;
6043 	u32 bw, next_bw;
6044 
6045 	if (speed)
6046 		*speed = PCI_SPEED_UNKNOWN;
6047 	if (width)
6048 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6049 
6050 	bw = 0;
6051 
6052 	while (dev) {
6053 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6054 
6055 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6056 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6057 			PCI_EXP_LNKSTA_NLW_SHIFT;
6058 
6059 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6060 
6061 		/* Check if current device limits the total bandwidth */
6062 		if (!bw || next_bw <= bw) {
6063 			bw = next_bw;
6064 
6065 			if (limiting_dev)
6066 				*limiting_dev = dev;
6067 			if (speed)
6068 				*speed = next_speed;
6069 			if (width)
6070 				*width = next_width;
6071 		}
6072 
6073 		dev = pci_upstream_bridge(dev);
6074 	}
6075 
6076 	return bw;
6077 }
6078 EXPORT_SYMBOL(pcie_bandwidth_available);
6079 
6080 /**
6081  * pcie_get_speed_cap - query for the PCI device's link speed capability
6082  * @dev: PCI device to query
6083  *
6084  * Query the PCI device speed capability.  Return the maximum link speed
6085  * supported by the device.
6086  */
6087 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6088 {
6089 	u32 lnkcap2, lnkcap;
6090 
6091 	/*
6092 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6093 	 * implementation note there recommends using the Supported Link
6094 	 * Speeds Vector in Link Capabilities 2 when supported.
6095 	 *
6096 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6097 	 * should use the Supported Link Speeds field in Link Capabilities,
6098 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6099 	 */
6100 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6101 
6102 	/* PCIe r3.0-compliant */
6103 	if (lnkcap2)
6104 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6105 
6106 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6107 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6108 		return PCIE_SPEED_5_0GT;
6109 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6110 		return PCIE_SPEED_2_5GT;
6111 
6112 	return PCI_SPEED_UNKNOWN;
6113 }
6114 EXPORT_SYMBOL(pcie_get_speed_cap);
6115 
6116 /**
6117  * pcie_get_width_cap - query for the PCI device's link width capability
6118  * @dev: PCI device to query
6119  *
6120  * Query the PCI device width capability.  Return the maximum link width
6121  * supported by the device.
6122  */
6123 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6124 {
6125 	u32 lnkcap;
6126 
6127 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6128 	if (lnkcap)
6129 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6130 
6131 	return PCIE_LNK_WIDTH_UNKNOWN;
6132 }
6133 EXPORT_SYMBOL(pcie_get_width_cap);
6134 
6135 /**
6136  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6137  * @dev: PCI device
6138  * @speed: storage for link speed
6139  * @width: storage for link width
6140  *
6141  * Calculate a PCI device's link bandwidth by querying for its link speed
6142  * and width, multiplying them, and applying encoding overhead.  The result
6143  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6144  */
6145 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6146 			   enum pcie_link_width *width)
6147 {
6148 	*speed = pcie_get_speed_cap(dev);
6149 	*width = pcie_get_width_cap(dev);
6150 
6151 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6152 		return 0;
6153 
6154 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6155 }
6156 
6157 /**
6158  * __pcie_print_link_status - Report the PCI device's link speed and width
6159  * @dev: PCI device to query
6160  * @verbose: Print info even when enough bandwidth is available
6161  *
6162  * If the available bandwidth at the device is less than the device is
6163  * capable of, report the device's maximum possible bandwidth and the
6164  * upstream link that limits its performance.  If @verbose, always print
6165  * the available bandwidth, even if the device isn't constrained.
6166  */
6167 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6168 {
6169 	enum pcie_link_width width, width_cap;
6170 	enum pci_bus_speed speed, speed_cap;
6171 	struct pci_dev *limiting_dev = NULL;
6172 	u32 bw_avail, bw_cap;
6173 
6174 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6175 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6176 
6177 	if (bw_avail >= bw_cap && verbose)
6178 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6179 			 bw_cap / 1000, bw_cap % 1000,
6180 			 pci_speed_string(speed_cap), width_cap);
6181 	else if (bw_avail < bw_cap)
6182 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6183 			 bw_avail / 1000, bw_avail % 1000,
6184 			 pci_speed_string(speed), width,
6185 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6186 			 bw_cap / 1000, bw_cap % 1000,
6187 			 pci_speed_string(speed_cap), width_cap);
6188 }
6189 
6190 /**
6191  * pcie_print_link_status - Report the PCI device's link speed and width
6192  * @dev: PCI device to query
6193  *
6194  * Report the available bandwidth at the device.
6195  */
6196 void pcie_print_link_status(struct pci_dev *dev)
6197 {
6198 	__pcie_print_link_status(dev, true);
6199 }
6200 EXPORT_SYMBOL(pcie_print_link_status);
6201 
6202 /**
6203  * pci_select_bars - Make BAR mask from the type of resource
6204  * @dev: the PCI device for which BAR mask is made
6205  * @flags: resource type mask to be selected
6206  *
6207  * This helper routine makes bar mask from the type of resource.
6208  */
6209 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6210 {
6211 	int i, bars = 0;
6212 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6213 		if (pci_resource_flags(dev, i) & flags)
6214 			bars |= (1 << i);
6215 	return bars;
6216 }
6217 EXPORT_SYMBOL(pci_select_bars);
6218 
6219 /* Some architectures require additional programming to enable VGA */
6220 static arch_set_vga_state_t arch_set_vga_state;
6221 
6222 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6223 {
6224 	arch_set_vga_state = func;	/* NULL disables */
6225 }
6226 
6227 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6228 				  unsigned int command_bits, u32 flags)
6229 {
6230 	if (arch_set_vga_state)
6231 		return arch_set_vga_state(dev, decode, command_bits,
6232 						flags);
6233 	return 0;
6234 }
6235 
6236 /**
6237  * pci_set_vga_state - set VGA decode state on device and parents if requested
6238  * @dev: the PCI device
6239  * @decode: true = enable decoding, false = disable decoding
6240  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6241  * @flags: traverse ancestors and change bridges
6242  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6243  */
6244 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6245 		      unsigned int command_bits, u32 flags)
6246 {
6247 	struct pci_bus *bus;
6248 	struct pci_dev *bridge;
6249 	u16 cmd;
6250 	int rc;
6251 
6252 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6253 
6254 	/* ARCH specific VGA enables */
6255 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6256 	if (rc)
6257 		return rc;
6258 
6259 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6260 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6261 		if (decode)
6262 			cmd |= command_bits;
6263 		else
6264 			cmd &= ~command_bits;
6265 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6266 	}
6267 
6268 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6269 		return 0;
6270 
6271 	bus = dev->bus;
6272 	while (bus) {
6273 		bridge = bus->self;
6274 		if (bridge) {
6275 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6276 					     &cmd);
6277 			if (decode)
6278 				cmd |= PCI_BRIDGE_CTL_VGA;
6279 			else
6280 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6281 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6282 					      cmd);
6283 		}
6284 		bus = bus->parent;
6285 	}
6286 	return 0;
6287 }
6288 
6289 #ifdef CONFIG_ACPI
6290 bool pci_pr3_present(struct pci_dev *pdev)
6291 {
6292 	struct acpi_device *adev;
6293 
6294 	if (acpi_disabled)
6295 		return false;
6296 
6297 	adev = ACPI_COMPANION(&pdev->dev);
6298 	if (!adev)
6299 		return false;
6300 
6301 	return adev->power.flags.power_resources &&
6302 		acpi_has_method(adev->handle, "_PR3");
6303 }
6304 EXPORT_SYMBOL_GPL(pci_pr3_present);
6305 #endif
6306 
6307 /**
6308  * pci_add_dma_alias - Add a DMA devfn alias for a device
6309  * @dev: the PCI device for which alias is added
6310  * @devfn_from: alias slot and function
6311  * @nr_devfns: number of subsequent devfns to alias
6312  *
6313  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6314  * which is used to program permissible bus-devfn source addresses for DMA
6315  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6316  * and are useful for devices generating DMA requests beyond or different
6317  * from their logical bus-devfn.  Examples include device quirks where the
6318  * device simply uses the wrong devfn, as well as non-transparent bridges
6319  * where the alias may be a proxy for devices in another domain.
6320  *
6321  * IOMMU group creation is performed during device discovery or addition,
6322  * prior to any potential DMA mapping and therefore prior to driver probing
6323  * (especially for userspace assigned devices where IOMMU group definition
6324  * cannot be left as a userspace activity).  DMA aliases should therefore
6325  * be configured via quirks, such as the PCI fixup header quirk.
6326  */
6327 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6328 {
6329 	int devfn_to;
6330 
6331 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6332 	devfn_to = devfn_from + nr_devfns - 1;
6333 
6334 	if (!dev->dma_alias_mask)
6335 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6336 	if (!dev->dma_alias_mask) {
6337 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6338 		return;
6339 	}
6340 
6341 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6342 
6343 	if (nr_devfns == 1)
6344 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6345 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6346 	else if (nr_devfns > 1)
6347 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6348 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6349 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6350 }
6351 
6352 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6353 {
6354 	return (dev1->dma_alias_mask &&
6355 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6356 	       (dev2->dma_alias_mask &&
6357 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6358 	       pci_real_dma_dev(dev1) == dev2 ||
6359 	       pci_real_dma_dev(dev2) == dev1;
6360 }
6361 
6362 bool pci_device_is_present(struct pci_dev *pdev)
6363 {
6364 	u32 v;
6365 
6366 	if (pci_dev_is_disconnected(pdev))
6367 		return false;
6368 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6369 }
6370 EXPORT_SYMBOL_GPL(pci_device_is_present);
6371 
6372 void pci_ignore_hotplug(struct pci_dev *dev)
6373 {
6374 	struct pci_dev *bridge = dev->bus->self;
6375 
6376 	dev->ignore_hotplug = 1;
6377 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6378 	if (bridge)
6379 		bridge->ignore_hotplug = 1;
6380 }
6381 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6382 
6383 /**
6384  * pci_real_dma_dev - Get PCI DMA device for PCI device
6385  * @dev: the PCI device that may have a PCI DMA alias
6386  *
6387  * Permits the platform to provide architecture-specific functionality to
6388  * devices needing to alias DMA to another PCI device on another PCI bus. If
6389  * the PCI device is on the same bus, it is recommended to use
6390  * pci_add_dma_alias(). This is the default implementation. Architecture
6391  * implementations can override this.
6392  */
6393 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6394 {
6395 	return dev;
6396 }
6397 
6398 resource_size_t __weak pcibios_default_alignment(void)
6399 {
6400 	return 0;
6401 }
6402 
6403 /*
6404  * Arches that don't want to expose struct resource to userland as-is in
6405  * sysfs and /proc can implement their own pci_resource_to_user().
6406  */
6407 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6408 				 const struct resource *rsrc,
6409 				 resource_size_t *start, resource_size_t *end)
6410 {
6411 	*start = rsrc->start;
6412 	*end = rsrc->end;
6413 }
6414 
6415 static char *resource_alignment_param;
6416 static DEFINE_SPINLOCK(resource_alignment_lock);
6417 
6418 /**
6419  * pci_specified_resource_alignment - get resource alignment specified by user.
6420  * @dev: the PCI device to get
6421  * @resize: whether or not to change resources' size when reassigning alignment
6422  *
6423  * RETURNS: Resource alignment if it is specified.
6424  *          Zero if it is not specified.
6425  */
6426 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6427 							bool *resize)
6428 {
6429 	int align_order, count;
6430 	resource_size_t align = pcibios_default_alignment();
6431 	const char *p;
6432 	int ret;
6433 
6434 	spin_lock(&resource_alignment_lock);
6435 	p = resource_alignment_param;
6436 	if (!p || !*p)
6437 		goto out;
6438 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6439 		align = 0;
6440 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6441 		goto out;
6442 	}
6443 
6444 	while (*p) {
6445 		count = 0;
6446 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6447 		    p[count] == '@') {
6448 			p += count + 1;
6449 			if (align_order > 63) {
6450 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6451 				       align_order);
6452 				align_order = PAGE_SHIFT;
6453 			}
6454 		} else {
6455 			align_order = PAGE_SHIFT;
6456 		}
6457 
6458 		ret = pci_dev_str_match(dev, p, &p);
6459 		if (ret == 1) {
6460 			*resize = true;
6461 			align = 1ULL << align_order;
6462 			break;
6463 		} else if (ret < 0) {
6464 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6465 			       p);
6466 			break;
6467 		}
6468 
6469 		if (*p != ';' && *p != ',') {
6470 			/* End of param or invalid format */
6471 			break;
6472 		}
6473 		p++;
6474 	}
6475 out:
6476 	spin_unlock(&resource_alignment_lock);
6477 	return align;
6478 }
6479 
6480 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6481 					   resource_size_t align, bool resize)
6482 {
6483 	struct resource *r = &dev->resource[bar];
6484 	resource_size_t size;
6485 
6486 	if (!(r->flags & IORESOURCE_MEM))
6487 		return;
6488 
6489 	if (r->flags & IORESOURCE_PCI_FIXED) {
6490 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6491 			 bar, r, (unsigned long long)align);
6492 		return;
6493 	}
6494 
6495 	size = resource_size(r);
6496 	if (size >= align)
6497 		return;
6498 
6499 	/*
6500 	 * Increase the alignment of the resource.  There are two ways we
6501 	 * can do this:
6502 	 *
6503 	 * 1) Increase the size of the resource.  BARs are aligned on their
6504 	 *    size, so when we reallocate space for this resource, we'll
6505 	 *    allocate it with the larger alignment.  This also prevents
6506 	 *    assignment of any other BARs inside the alignment region, so
6507 	 *    if we're requesting page alignment, this means no other BARs
6508 	 *    will share the page.
6509 	 *
6510 	 *    The disadvantage is that this makes the resource larger than
6511 	 *    the hardware BAR, which may break drivers that compute things
6512 	 *    based on the resource size, e.g., to find registers at a
6513 	 *    fixed offset before the end of the BAR.
6514 	 *
6515 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6516 	 *    set r->start to the desired alignment.  By itself this
6517 	 *    doesn't prevent other BARs being put inside the alignment
6518 	 *    region, but if we realign *every* resource of every device in
6519 	 *    the system, none of them will share an alignment region.
6520 	 *
6521 	 * When the user has requested alignment for only some devices via
6522 	 * the "pci=resource_alignment" argument, "resize" is true and we
6523 	 * use the first method.  Otherwise we assume we're aligning all
6524 	 * devices and we use the second.
6525 	 */
6526 
6527 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6528 		 bar, r, (unsigned long long)align);
6529 
6530 	if (resize) {
6531 		r->start = 0;
6532 		r->end = align - 1;
6533 	} else {
6534 		r->flags &= ~IORESOURCE_SIZEALIGN;
6535 		r->flags |= IORESOURCE_STARTALIGN;
6536 		r->start = align;
6537 		r->end = r->start + size - 1;
6538 	}
6539 	r->flags |= IORESOURCE_UNSET;
6540 }
6541 
6542 /*
6543  * This function disables memory decoding and releases memory resources
6544  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6545  * It also rounds up size to specified alignment.
6546  * Later on, the kernel will assign page-aligned memory resource back
6547  * to the device.
6548  */
6549 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6550 {
6551 	int i;
6552 	struct resource *r;
6553 	resource_size_t align;
6554 	u16 command;
6555 	bool resize = false;
6556 
6557 	/*
6558 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6559 	 * 3.4.1.11.  Their resources are allocated from the space
6560 	 * described by the VF BARx register in the PF's SR-IOV capability.
6561 	 * We can't influence their alignment here.
6562 	 */
6563 	if (dev->is_virtfn)
6564 		return;
6565 
6566 	/* check if specified PCI is target device to reassign */
6567 	align = pci_specified_resource_alignment(dev, &resize);
6568 	if (!align)
6569 		return;
6570 
6571 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6572 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6573 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6574 		return;
6575 	}
6576 
6577 	pci_read_config_word(dev, PCI_COMMAND, &command);
6578 	command &= ~PCI_COMMAND_MEMORY;
6579 	pci_write_config_word(dev, PCI_COMMAND, command);
6580 
6581 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6582 		pci_request_resource_alignment(dev, i, align, resize);
6583 
6584 	/*
6585 	 * Need to disable bridge's resource window,
6586 	 * to enable the kernel to reassign new resource
6587 	 * window later on.
6588 	 */
6589 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6590 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6591 			r = &dev->resource[i];
6592 			if (!(r->flags & IORESOURCE_MEM))
6593 				continue;
6594 			r->flags |= IORESOURCE_UNSET;
6595 			r->end = resource_size(r) - 1;
6596 			r->start = 0;
6597 		}
6598 		pci_disable_bridge_window(dev);
6599 	}
6600 }
6601 
6602 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6603 {
6604 	size_t count = 0;
6605 
6606 	spin_lock(&resource_alignment_lock);
6607 	if (resource_alignment_param)
6608 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6609 	spin_unlock(&resource_alignment_lock);
6610 
6611 	return count;
6612 }
6613 
6614 static ssize_t resource_alignment_store(struct bus_type *bus,
6615 					const char *buf, size_t count)
6616 {
6617 	char *param, *old, *end;
6618 
6619 	if (count >= (PAGE_SIZE - 1))
6620 		return -EINVAL;
6621 
6622 	param = kstrndup(buf, count, GFP_KERNEL);
6623 	if (!param)
6624 		return -ENOMEM;
6625 
6626 	end = strchr(param, '\n');
6627 	if (end)
6628 		*end = '\0';
6629 
6630 	spin_lock(&resource_alignment_lock);
6631 	old = resource_alignment_param;
6632 	if (strlen(param)) {
6633 		resource_alignment_param = param;
6634 	} else {
6635 		kfree(param);
6636 		resource_alignment_param = NULL;
6637 	}
6638 	spin_unlock(&resource_alignment_lock);
6639 
6640 	kfree(old);
6641 
6642 	return count;
6643 }
6644 
6645 static BUS_ATTR_RW(resource_alignment);
6646 
6647 static int __init pci_resource_alignment_sysfs_init(void)
6648 {
6649 	return bus_create_file(&pci_bus_type,
6650 					&bus_attr_resource_alignment);
6651 }
6652 late_initcall(pci_resource_alignment_sysfs_init);
6653 
6654 static void pci_no_domains(void)
6655 {
6656 #ifdef CONFIG_PCI_DOMAINS
6657 	pci_domains_supported = 0;
6658 #endif
6659 }
6660 
6661 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6662 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6663 
6664 static int pci_get_new_domain_nr(void)
6665 {
6666 	return atomic_inc_return(&__domain_nr);
6667 }
6668 
6669 static int of_pci_bus_find_domain_nr(struct device *parent)
6670 {
6671 	static int use_dt_domains = -1;
6672 	int domain = -1;
6673 
6674 	if (parent)
6675 		domain = of_get_pci_domain_nr(parent->of_node);
6676 
6677 	/*
6678 	 * Check DT domain and use_dt_domains values.
6679 	 *
6680 	 * If DT domain property is valid (domain >= 0) and
6681 	 * use_dt_domains != 0, the DT assignment is valid since this means
6682 	 * we have not previously allocated a domain number by using
6683 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6684 	 * 1, to indicate that we have just assigned a domain number from
6685 	 * DT.
6686 	 *
6687 	 * If DT domain property value is not valid (ie domain < 0), and we
6688 	 * have not previously assigned a domain number from DT
6689 	 * (use_dt_domains != 1) we should assign a domain number by
6690 	 * using the:
6691 	 *
6692 	 * pci_get_new_domain_nr()
6693 	 *
6694 	 * API and update the use_dt_domains value to keep track of method we
6695 	 * are using to assign domain numbers (use_dt_domains = 0).
6696 	 *
6697 	 * All other combinations imply we have a platform that is trying
6698 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6699 	 * which is a recipe for domain mishandling and it is prevented by
6700 	 * invalidating the domain value (domain = -1) and printing a
6701 	 * corresponding error.
6702 	 */
6703 	if (domain >= 0 && use_dt_domains) {
6704 		use_dt_domains = 1;
6705 	} else if (domain < 0 && use_dt_domains != 1) {
6706 		use_dt_domains = 0;
6707 		domain = pci_get_new_domain_nr();
6708 	} else {
6709 		if (parent)
6710 			pr_err("Node %pOF has ", parent->of_node);
6711 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6712 		domain = -1;
6713 	}
6714 
6715 	return domain;
6716 }
6717 
6718 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6719 {
6720 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6721 			       acpi_pci_bus_find_domain_nr(bus);
6722 }
6723 #endif
6724 
6725 /**
6726  * pci_ext_cfg_avail - can we access extended PCI config space?
6727  *
6728  * Returns 1 if we can access PCI extended config space (offsets
6729  * greater than 0xff). This is the default implementation. Architecture
6730  * implementations can override this.
6731  */
6732 int __weak pci_ext_cfg_avail(void)
6733 {
6734 	return 1;
6735 }
6736 
6737 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6738 {
6739 }
6740 EXPORT_SYMBOL(pci_fixup_cardbus);
6741 
6742 static int __init pci_setup(char *str)
6743 {
6744 	while (str) {
6745 		char *k = strchr(str, ',');
6746 		if (k)
6747 			*k++ = 0;
6748 		if (*str && (str = pcibios_setup(str)) && *str) {
6749 			if (!strcmp(str, "nomsi")) {
6750 				pci_no_msi();
6751 			} else if (!strncmp(str, "noats", 5)) {
6752 				pr_info("PCIe: ATS is disabled\n");
6753 				pcie_ats_disabled = true;
6754 			} else if (!strcmp(str, "noaer")) {
6755 				pci_no_aer();
6756 			} else if (!strcmp(str, "earlydump")) {
6757 				pci_early_dump = true;
6758 			} else if (!strncmp(str, "realloc=", 8)) {
6759 				pci_realloc_get_opt(str + 8);
6760 			} else if (!strncmp(str, "realloc", 7)) {
6761 				pci_realloc_get_opt("on");
6762 			} else if (!strcmp(str, "nodomains")) {
6763 				pci_no_domains();
6764 			} else if (!strncmp(str, "noari", 5)) {
6765 				pcie_ari_disabled = true;
6766 			} else if (!strncmp(str, "cbiosize=", 9)) {
6767 				pci_cardbus_io_size = memparse(str + 9, &str);
6768 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6769 				pci_cardbus_mem_size = memparse(str + 10, &str);
6770 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6771 				resource_alignment_param = str + 19;
6772 			} else if (!strncmp(str, "ecrc=", 5)) {
6773 				pcie_ecrc_get_policy(str + 5);
6774 			} else if (!strncmp(str, "hpiosize=", 9)) {
6775 				pci_hotplug_io_size = memparse(str + 9, &str);
6776 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6777 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6778 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6779 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6780 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6781 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6782 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6783 			} else if (!strncmp(str, "hpbussize=", 10)) {
6784 				pci_hotplug_bus_size =
6785 					simple_strtoul(str + 10, &str, 0);
6786 				if (pci_hotplug_bus_size > 0xff)
6787 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6788 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6789 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6790 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6791 				pcie_bus_config = PCIE_BUS_SAFE;
6792 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6793 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6794 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6795 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6796 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6797 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6798 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6799 				disable_acs_redir_param = str + 18;
6800 			} else {
6801 				pr_err("PCI: Unknown option `%s'\n", str);
6802 			}
6803 		}
6804 		str = k;
6805 	}
6806 	return 0;
6807 }
6808 early_param("pci", pci_setup);
6809 
6810 /*
6811  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6812  * in pci_setup(), above, to point to data in the __initdata section which
6813  * will be freed after the init sequence is complete. We can't allocate memory
6814  * in pci_setup() because some architectures do not have any memory allocation
6815  * service available during an early_param() call. So we allocate memory and
6816  * copy the variable here before the init section is freed.
6817  *
6818  */
6819 static int __init pci_realloc_setup_params(void)
6820 {
6821 	resource_alignment_param = kstrdup(resource_alignment_param,
6822 					   GFP_KERNEL);
6823 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6824 
6825 	return 0;
6826 }
6827 pure_initcall(pci_realloc_setup_params);
6828