xref: /openbmc/linux/drivers/pci/pci.c (revision e5c86679)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 const char *pci_power_names[] = {
37 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38 };
39 EXPORT_SYMBOL_GPL(pci_power_names);
40 
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
43 
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
46 
47 unsigned int pci_pm_d3_delay;
48 
49 static void pci_pme_list_scan(struct work_struct *work);
50 
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54 
55 struct pci_pme_device {
56 	struct list_head list;
57 	struct pci_dev *dev;
58 };
59 
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
61 
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
63 {
64 	unsigned int delay = dev->d3_delay;
65 
66 	if (delay < pci_pm_d3_delay)
67 		delay = pci_pm_d3_delay;
68 
69 	msleep(delay);
70 }
71 
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported = 1;
74 #endif
75 
76 #define DEFAULT_CARDBUS_IO_SIZE		(256)
77 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
81 
82 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
87 
88 #define DEFAULT_HOTPLUG_BUS_SIZE	1
89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
90 
91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
92 
93 /*
94  * The default CLS is used if arch didn't set CLS explicitly and not
95  * all pci devices agree on the same value.  Arch can override either
96  * the dfl or actual value as it sees fit.  Don't forget this is
97  * measured in 32-bit words, not bytes.
98  */
99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100 u8 pci_cache_line_size;
101 
102 /*
103  * If we set up a device for bus mastering, we need to check the latency
104  * timer as certain BIOSes forget to set it properly.
105  */
106 unsigned int pcibios_max_latency = 255;
107 
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled;
110 
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force;
115 
116 static int __init pcie_port_pm_setup(char *str)
117 {
118 	if (!strcmp(str, "off"))
119 		pci_bridge_d3_disable = true;
120 	else if (!strcmp(str, "force"))
121 		pci_bridge_d3_force = true;
122 	return 1;
123 }
124 __setup("pcie_port_pm=", pcie_port_pm_setup);
125 
126 /**
127  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128  * @bus: pointer to PCI bus structure to search
129  *
130  * Given a PCI bus, returns the highest PCI bus number present in the set
131  * including the given PCI bus and its list of child PCI buses.
132  */
133 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
134 {
135 	struct pci_bus *tmp;
136 	unsigned char max, n;
137 
138 	max = bus->busn_res.end;
139 	list_for_each_entry(tmp, &bus->children, node) {
140 		n = pci_bus_max_busnr(tmp);
141 		if (n > max)
142 			max = n;
143 	}
144 	return max;
145 }
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
147 
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
150 {
151 	struct resource *res = &pdev->resource[bar];
152 
153 	/*
154 	 * Make sure the BAR is actually a memory resource, not an IO resource
155 	 */
156 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 		return NULL;
159 	}
160 	return ioremap_nocache(res->start, resource_size(res));
161 }
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
163 
164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
165 {
166 	/*
167 	 * Make sure the BAR is actually a memory resource, not an IO resource
168 	 */
169 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 		WARN_ON(1);
171 		return NULL;
172 	}
173 	return ioremap_wc(pci_resource_start(pdev, bar),
174 			  pci_resource_len(pdev, bar));
175 }
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177 #endif
178 
179 
180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 				   u8 pos, int cap, int *ttl)
182 {
183 	u8 id;
184 	u16 ent;
185 
186 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
187 
188 	while ((*ttl)--) {
189 		if (pos < 0x40)
190 			break;
191 		pos &= ~3;
192 		pci_bus_read_config_word(bus, devfn, pos, &ent);
193 
194 		id = ent & 0xff;
195 		if (id == 0xff)
196 			break;
197 		if (id == cap)
198 			return pos;
199 		pos = (ent >> 8);
200 	}
201 	return 0;
202 }
203 
204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 			       u8 pos, int cap)
206 {
207 	int ttl = PCI_FIND_CAP_TTL;
208 
209 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
210 }
211 
212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
213 {
214 	return __pci_find_next_cap(dev->bus, dev->devfn,
215 				   pos + PCI_CAP_LIST_NEXT, cap);
216 }
217 EXPORT_SYMBOL_GPL(pci_find_next_capability);
218 
219 static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 				    unsigned int devfn, u8 hdr_type)
221 {
222 	u16 status;
223 
224 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 	if (!(status & PCI_STATUS_CAP_LIST))
226 		return 0;
227 
228 	switch (hdr_type) {
229 	case PCI_HEADER_TYPE_NORMAL:
230 	case PCI_HEADER_TYPE_BRIDGE:
231 		return PCI_CAPABILITY_LIST;
232 	case PCI_HEADER_TYPE_CARDBUS:
233 		return PCI_CB_CAPABILITY_LIST;
234 	}
235 
236 	return 0;
237 }
238 
239 /**
240  * pci_find_capability - query for devices' capabilities
241  * @dev: PCI device to query
242  * @cap: capability code
243  *
244  * Tell if a device supports a given PCI capability.
245  * Returns the address of the requested capability structure within the
246  * device's PCI configuration space or 0 in case the device does not
247  * support it.  Possible values for @cap:
248  *
249  *  %PCI_CAP_ID_PM           Power Management
250  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
251  *  %PCI_CAP_ID_VPD          Vital Product Data
252  *  %PCI_CAP_ID_SLOTID       Slot Identification
253  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
254  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
255  *  %PCI_CAP_ID_PCIX         PCI-X
256  *  %PCI_CAP_ID_EXP          PCI Express
257  */
258 int pci_find_capability(struct pci_dev *dev, int cap)
259 {
260 	int pos;
261 
262 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 	if (pos)
264 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
265 
266 	return pos;
267 }
268 EXPORT_SYMBOL(pci_find_capability);
269 
270 /**
271  * pci_bus_find_capability - query for devices' capabilities
272  * @bus:   the PCI bus to query
273  * @devfn: PCI device to query
274  * @cap:   capability code
275  *
276  * Like pci_find_capability() but works for pci devices that do not have a
277  * pci_dev structure set up yet.
278  *
279  * Returns the address of the requested capability structure within the
280  * device's PCI configuration space or 0 in case the device does not
281  * support it.
282  */
283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
284 {
285 	int pos;
286 	u8 hdr_type;
287 
288 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
289 
290 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 	if (pos)
292 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
293 
294 	return pos;
295 }
296 EXPORT_SYMBOL(pci_bus_find_capability);
297 
298 /**
299  * pci_find_next_ext_capability - Find an extended capability
300  * @dev: PCI device to query
301  * @start: address at which to start looking (0 to start at beginning of list)
302  * @cap: capability code
303  *
304  * Returns the address of the next matching extended capability structure
305  * within the device's PCI configuration space or 0 if the device does
306  * not support it.  Some capabilities can occur several times, e.g., the
307  * vendor-specific capability, and this provides a way to find them all.
308  */
309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
310 {
311 	u32 header;
312 	int ttl;
313 	int pos = PCI_CFG_SPACE_SIZE;
314 
315 	/* minimum 8 bytes per capability */
316 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
317 
318 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 		return 0;
320 
321 	if (start)
322 		pos = start;
323 
324 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 		return 0;
326 
327 	/*
328 	 * If we have no capabilities, this is indicated by cap ID,
329 	 * cap version and next pointer all being 0.
330 	 */
331 	if (header == 0)
332 		return 0;
333 
334 	while (ttl-- > 0) {
335 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 			return pos;
337 
338 		pos = PCI_EXT_CAP_NEXT(header);
339 		if (pos < PCI_CFG_SPACE_SIZE)
340 			break;
341 
342 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 			break;
344 	}
345 
346 	return 0;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
349 
350 /**
351  * pci_find_ext_capability - Find an extended capability
352  * @dev: PCI device to query
353  * @cap: capability code
354  *
355  * Returns the address of the requested extended capability structure
356  * within the device's PCI configuration space or 0 if the device does
357  * not support it.  Possible values for @cap:
358  *
359  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
360  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
361  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
362  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
363  */
364 int pci_find_ext_capability(struct pci_dev *dev, int cap)
365 {
366 	return pci_find_next_ext_capability(dev, 0, cap);
367 }
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
369 
370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
371 {
372 	int rc, ttl = PCI_FIND_CAP_TTL;
373 	u8 cap, mask;
374 
375 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 		mask = HT_3BIT_CAP_MASK;
377 	else
378 		mask = HT_5BIT_CAP_MASK;
379 
380 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 				      PCI_CAP_ID_HT, &ttl);
382 	while (pos) {
383 		rc = pci_read_config_byte(dev, pos + 3, &cap);
384 		if (rc != PCIBIOS_SUCCESSFUL)
385 			return 0;
386 
387 		if ((cap & mask) == ht_cap)
388 			return pos;
389 
390 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 					      pos + PCI_CAP_LIST_NEXT,
392 					      PCI_CAP_ID_HT, &ttl);
393 	}
394 
395 	return 0;
396 }
397 /**
398  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399  * @dev: PCI device to query
400  * @pos: Position from which to continue searching
401  * @ht_cap: Hypertransport capability code
402  *
403  * To be used in conjunction with pci_find_ht_capability() to search for
404  * all capabilities matching @ht_cap. @pos should always be a value returned
405  * from pci_find_ht_capability().
406  *
407  * NB. To be 100% safe against broken PCI devices, the caller should take
408  * steps to avoid an infinite loop.
409  */
410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
411 {
412 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
413 }
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
415 
416 /**
417  * pci_find_ht_capability - query a device's Hypertransport capabilities
418  * @dev: PCI device to query
419  * @ht_cap: Hypertransport capability code
420  *
421  * Tell if a device supports a given Hypertransport capability.
422  * Returns an address within the device's PCI configuration space
423  * or 0 in case the device does not support the request capability.
424  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425  * which has a Hypertransport capability matching @ht_cap.
426  */
427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
428 {
429 	int pos;
430 
431 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 	if (pos)
433 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
434 
435 	return pos;
436 }
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
438 
439 /**
440  * pci_find_parent_resource - return resource region of parent bus of given region
441  * @dev: PCI device structure contains resources to be searched
442  * @res: child resource record for which parent is sought
443  *
444  *  For given resource region of given device, return the resource
445  *  region of parent bus the given region is contained in.
446  */
447 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 					  struct resource *res)
449 {
450 	const struct pci_bus *bus = dev->bus;
451 	struct resource *r;
452 	int i;
453 
454 	pci_bus_for_each_resource(bus, r, i) {
455 		if (!r)
456 			continue;
457 		if (res->start && resource_contains(r, res)) {
458 
459 			/*
460 			 * If the window is prefetchable but the BAR is
461 			 * not, the allocator made a mistake.
462 			 */
463 			if (r->flags & IORESOURCE_PREFETCH &&
464 			    !(res->flags & IORESOURCE_PREFETCH))
465 				return NULL;
466 
467 			/*
468 			 * If we're below a transparent bridge, there may
469 			 * be both a positively-decoded aperture and a
470 			 * subtractively-decoded region that contain the BAR.
471 			 * We want the positively-decoded one, so this depends
472 			 * on pci_bus_for_each_resource() giving us those
473 			 * first.
474 			 */
475 			return r;
476 		}
477 	}
478 	return NULL;
479 }
480 EXPORT_SYMBOL(pci_find_parent_resource);
481 
482 /**
483  * pci_find_resource - Return matching PCI device resource
484  * @dev: PCI device to query
485  * @res: Resource to look for
486  *
487  * Goes over standard PCI resources (BARs) and checks if the given resource
488  * is partially or fully contained in any of them. In that case the
489  * matching resource is returned, %NULL otherwise.
490  */
491 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
492 {
493 	int i;
494 
495 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
496 		struct resource *r = &dev->resource[i];
497 
498 		if (r->start && resource_contains(r, res))
499 			return r;
500 	}
501 
502 	return NULL;
503 }
504 EXPORT_SYMBOL(pci_find_resource);
505 
506 /**
507  * pci_find_pcie_root_port - return PCIe Root Port
508  * @dev: PCI device to query
509  *
510  * Traverse up the parent chain and return the PCIe Root Port PCI Device
511  * for a given PCI Device.
512  */
513 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
514 {
515 	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
516 
517 	bridge = pci_upstream_bridge(dev);
518 	while (bridge && pci_is_pcie(bridge)) {
519 		highest_pcie_bridge = bridge;
520 		bridge = pci_upstream_bridge(bridge);
521 	}
522 
523 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
524 		return NULL;
525 
526 	return highest_pcie_bridge;
527 }
528 EXPORT_SYMBOL(pci_find_pcie_root_port);
529 
530 /**
531  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
532  * @dev: the PCI device to operate on
533  * @pos: config space offset of status word
534  * @mask: mask of bit(s) to care about in status word
535  *
536  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
537  */
538 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
539 {
540 	int i;
541 
542 	/* Wait for Transaction Pending bit clean */
543 	for (i = 0; i < 4; i++) {
544 		u16 status;
545 		if (i)
546 			msleep((1 << (i - 1)) * 100);
547 
548 		pci_read_config_word(dev, pos, &status);
549 		if (!(status & mask))
550 			return 1;
551 	}
552 
553 	return 0;
554 }
555 
556 /**
557  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
558  * @dev: PCI device to have its BARs restored
559  *
560  * Restore the BAR values for a given device, so as to make it
561  * accessible by its driver.
562  */
563 static void pci_restore_bars(struct pci_dev *dev)
564 {
565 	int i;
566 
567 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
568 		pci_update_resource(dev, i);
569 }
570 
571 static const struct pci_platform_pm_ops *pci_platform_pm;
572 
573 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
574 {
575 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
576 	    !ops->choose_state  || !ops->sleep_wake || !ops->run_wake  ||
577 	    !ops->need_resume)
578 		return -EINVAL;
579 	pci_platform_pm = ops;
580 	return 0;
581 }
582 
583 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
584 {
585 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
586 }
587 
588 static inline int platform_pci_set_power_state(struct pci_dev *dev,
589 					       pci_power_t t)
590 {
591 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
592 }
593 
594 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
595 {
596 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
597 }
598 
599 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
600 {
601 	return pci_platform_pm ?
602 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
603 }
604 
605 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
606 {
607 	return pci_platform_pm ?
608 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
609 }
610 
611 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
612 {
613 	return pci_platform_pm ?
614 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
615 }
616 
617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
618 {
619 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
620 }
621 
622 /**
623  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
624  *                           given PCI device
625  * @dev: PCI device to handle.
626  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
627  *
628  * RETURN VALUE:
629  * -EINVAL if the requested state is invalid.
630  * -EIO if device does not support PCI PM or its PM capabilities register has a
631  * wrong version, or device doesn't support the requested state.
632  * 0 if device already is in the requested state.
633  * 0 if device's power state has been successfully changed.
634  */
635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
636 {
637 	u16 pmcsr;
638 	bool need_restore = false;
639 
640 	/* Check if we're already there */
641 	if (dev->current_state == state)
642 		return 0;
643 
644 	if (!dev->pm_cap)
645 		return -EIO;
646 
647 	if (state < PCI_D0 || state > PCI_D3hot)
648 		return -EINVAL;
649 
650 	/* Validate current state:
651 	 * Can enter D0 from any state, but if we can only go deeper
652 	 * to sleep if we're already in a low power state
653 	 */
654 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 	    && dev->current_state > state) {
656 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
657 			dev->current_state, state);
658 		return -EINVAL;
659 	}
660 
661 	/* check if this device supports the desired state */
662 	if ((state == PCI_D1 && !dev->d1_support)
663 	   || (state == PCI_D2 && !dev->d2_support))
664 		return -EIO;
665 
666 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
667 
668 	/* If we're (effectively) in D3, force entire word to 0.
669 	 * This doesn't affect PME_Status, disables PME_En, and
670 	 * sets PowerState to 0.
671 	 */
672 	switch (dev->current_state) {
673 	case PCI_D0:
674 	case PCI_D1:
675 	case PCI_D2:
676 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 		pmcsr |= state;
678 		break;
679 	case PCI_D3hot:
680 	case PCI_D3cold:
681 	case PCI_UNKNOWN: /* Boot-up */
682 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
684 			need_restore = true;
685 		/* Fall-through: force to D0 */
686 	default:
687 		pmcsr = 0;
688 		break;
689 	}
690 
691 	/* enter specified state */
692 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
693 
694 	/* Mandatory power management transition delays */
695 	/* see PCI PM 1.1 5.6.1 table 18 */
696 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 		pci_dev_d3_sleep(dev);
698 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 		udelay(PCI_PM_D2_DELAY);
700 
701 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 	if (dev->current_state != state && printk_ratelimit())
704 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
705 			 dev->current_state);
706 
707 	/*
708 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 	 * from D3hot to D0 _may_ perform an internal reset, thereby
711 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 	 * For example, at least some versions of the 3c905B and the
713 	 * 3c556B exhibit this behaviour.
714 	 *
715 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 	 * devices in a D3hot state at boot.  Consequently, we need to
717 	 * restore at least the BARs so that the device will be
718 	 * accessible to its driver.
719 	 */
720 	if (need_restore)
721 		pci_restore_bars(dev);
722 
723 	if (dev->bus->self)
724 		pcie_aspm_pm_state_change(dev->bus->self);
725 
726 	return 0;
727 }
728 
729 /**
730  * pci_update_current_state - Read power state of given device and cache it
731  * @dev: PCI device to handle.
732  * @state: State to cache in case the device doesn't have the PM capability
733  *
734  * The power state is read from the PMCSR register, which however is
735  * inaccessible in D3cold.  The platform firmware is therefore queried first
736  * to detect accessibility of the register.  In case the platform firmware
737  * reports an incorrect state or the device isn't power manageable by the
738  * platform at all, we try to detect D3cold by testing accessibility of the
739  * vendor ID in config space.
740  */
741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
742 {
743 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 	    !pci_device_is_present(dev)) {
745 		dev->current_state = PCI_D3cold;
746 	} else if (dev->pm_cap) {
747 		u16 pmcsr;
748 
749 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
751 	} else {
752 		dev->current_state = state;
753 	}
754 }
755 
756 /**
757  * pci_power_up - Put the given device into D0 forcibly
758  * @dev: PCI device to power up
759  */
760 void pci_power_up(struct pci_dev *dev)
761 {
762 	if (platform_pci_power_manageable(dev))
763 		platform_pci_set_power_state(dev, PCI_D0);
764 
765 	pci_raw_set_power_state(dev, PCI_D0);
766 	pci_update_current_state(dev, PCI_D0);
767 }
768 
769 /**
770  * pci_platform_power_transition - Use platform to change device power state
771  * @dev: PCI device to handle.
772  * @state: State to put the device into.
773  */
774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
775 {
776 	int error;
777 
778 	if (platform_pci_power_manageable(dev)) {
779 		error = platform_pci_set_power_state(dev, state);
780 		if (!error)
781 			pci_update_current_state(dev, state);
782 	} else
783 		error = -ENODEV;
784 
785 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 		dev->current_state = PCI_D0;
787 
788 	return error;
789 }
790 
791 /**
792  * pci_wakeup - Wake up a PCI device
793  * @pci_dev: Device to handle.
794  * @ign: ignored parameter
795  */
796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
797 {
798 	pci_wakeup_event(pci_dev);
799 	pm_request_resume(&pci_dev->dev);
800 	return 0;
801 }
802 
803 /**
804  * pci_wakeup_bus - Walk given bus and wake up devices on it
805  * @bus: Top bus of the subtree to walk.
806  */
807 static void pci_wakeup_bus(struct pci_bus *bus)
808 {
809 	if (bus)
810 		pci_walk_bus(bus, pci_wakeup, NULL);
811 }
812 
813 /**
814  * __pci_start_power_transition - Start power transition of a PCI device
815  * @dev: PCI device to handle.
816  * @state: State to put the device into.
817  */
818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
819 {
820 	if (state == PCI_D0) {
821 		pci_platform_power_transition(dev, PCI_D0);
822 		/*
823 		 * Mandatory power management transition delays, see
824 		 * PCI Express Base Specification Revision 2.0 Section
825 		 * 6.6.1: Conventional Reset.  Do not delay for
826 		 * devices powered on/off by corresponding bridge,
827 		 * because have already delayed for the bridge.
828 		 */
829 		if (dev->runtime_d3cold) {
830 			msleep(dev->d3cold_delay);
831 			/*
832 			 * When powering on a bridge from D3cold, the
833 			 * whole hierarchy may be powered on into
834 			 * D0uninitialized state, resume them to give
835 			 * them a chance to suspend again
836 			 */
837 			pci_wakeup_bus(dev->subordinate);
838 		}
839 	}
840 }
841 
842 /**
843  * __pci_dev_set_current_state - Set current state of a PCI device
844  * @dev: Device to handle
845  * @data: pointer to state to be set
846  */
847 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
848 {
849 	pci_power_t state = *(pci_power_t *)data;
850 
851 	dev->current_state = state;
852 	return 0;
853 }
854 
855 /**
856  * __pci_bus_set_current_state - Walk given bus and set current state of devices
857  * @bus: Top bus of the subtree to walk.
858  * @state: state to be set
859  */
860 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
861 {
862 	if (bus)
863 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
864 }
865 
866 /**
867  * __pci_complete_power_transition - Complete power transition of a PCI device
868  * @dev: PCI device to handle.
869  * @state: State to put the device into.
870  *
871  * This function should not be called directly by device drivers.
872  */
873 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
874 {
875 	int ret;
876 
877 	if (state <= PCI_D0)
878 		return -EINVAL;
879 	ret = pci_platform_power_transition(dev, state);
880 	/* Power off the bridge may power off the whole hierarchy */
881 	if (!ret && state == PCI_D3cold)
882 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
883 	return ret;
884 }
885 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
886 
887 /**
888  * pci_set_power_state - Set the power state of a PCI device
889  * @dev: PCI device to handle.
890  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
891  *
892  * Transition a device to a new power state, using the platform firmware and/or
893  * the device's PCI PM registers.
894  *
895  * RETURN VALUE:
896  * -EINVAL if the requested state is invalid.
897  * -EIO if device does not support PCI PM or its PM capabilities register has a
898  * wrong version, or device doesn't support the requested state.
899  * 0 if device already is in the requested state.
900  * 0 if device's power state has been successfully changed.
901  */
902 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
903 {
904 	int error;
905 
906 	/* bound the state we're entering */
907 	if (state > PCI_D3cold)
908 		state = PCI_D3cold;
909 	else if (state < PCI_D0)
910 		state = PCI_D0;
911 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
912 		/*
913 		 * If the device or the parent bridge do not support PCI PM,
914 		 * ignore the request if we're doing anything other than putting
915 		 * it into D0 (which would only happen on boot).
916 		 */
917 		return 0;
918 
919 	/* Check if we're already there */
920 	if (dev->current_state == state)
921 		return 0;
922 
923 	__pci_start_power_transition(dev, state);
924 
925 	/* This device is quirked not to be put into D3, so
926 	   don't put it in D3 */
927 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
928 		return 0;
929 
930 	/*
931 	 * To put device in D3cold, we put device into D3hot in native
932 	 * way, then put device into D3cold with platform ops
933 	 */
934 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
935 					PCI_D3hot : state);
936 
937 	if (!__pci_complete_power_transition(dev, state))
938 		error = 0;
939 
940 	return error;
941 }
942 EXPORT_SYMBOL(pci_set_power_state);
943 
944 /**
945  * pci_choose_state - Choose the power state of a PCI device
946  * @dev: PCI device to be suspended
947  * @state: target sleep state for the whole system. This is the value
948  *	that is passed to suspend() function.
949  *
950  * Returns PCI power state suitable for given device and given system
951  * message.
952  */
953 
954 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
955 {
956 	pci_power_t ret;
957 
958 	if (!dev->pm_cap)
959 		return PCI_D0;
960 
961 	ret = platform_pci_choose_state(dev);
962 	if (ret != PCI_POWER_ERROR)
963 		return ret;
964 
965 	switch (state.event) {
966 	case PM_EVENT_ON:
967 		return PCI_D0;
968 	case PM_EVENT_FREEZE:
969 	case PM_EVENT_PRETHAW:
970 		/* REVISIT both freeze and pre-thaw "should" use D0 */
971 	case PM_EVENT_SUSPEND:
972 	case PM_EVENT_HIBERNATE:
973 		return PCI_D3hot;
974 	default:
975 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
976 			 state.event);
977 		BUG();
978 	}
979 	return PCI_D0;
980 }
981 EXPORT_SYMBOL(pci_choose_state);
982 
983 #define PCI_EXP_SAVE_REGS	7
984 
985 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
986 						       u16 cap, bool extended)
987 {
988 	struct pci_cap_saved_state *tmp;
989 
990 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
991 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
992 			return tmp;
993 	}
994 	return NULL;
995 }
996 
997 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
998 {
999 	return _pci_find_saved_cap(dev, cap, false);
1000 }
1001 
1002 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1003 {
1004 	return _pci_find_saved_cap(dev, cap, true);
1005 }
1006 
1007 static int pci_save_pcie_state(struct pci_dev *dev)
1008 {
1009 	int i = 0;
1010 	struct pci_cap_saved_state *save_state;
1011 	u16 *cap;
1012 
1013 	if (!pci_is_pcie(dev))
1014 		return 0;
1015 
1016 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1017 	if (!save_state) {
1018 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1019 		return -ENOMEM;
1020 	}
1021 
1022 	cap = (u16 *)&save_state->cap.data[0];
1023 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1024 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1025 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1026 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1027 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1028 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1029 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1030 
1031 	return 0;
1032 }
1033 
1034 static void pci_restore_pcie_state(struct pci_dev *dev)
1035 {
1036 	int i = 0;
1037 	struct pci_cap_saved_state *save_state;
1038 	u16 *cap;
1039 
1040 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1041 	if (!save_state)
1042 		return;
1043 
1044 	cap = (u16 *)&save_state->cap.data[0];
1045 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1046 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1047 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1048 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1049 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1050 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1051 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1052 }
1053 
1054 
1055 static int pci_save_pcix_state(struct pci_dev *dev)
1056 {
1057 	int pos;
1058 	struct pci_cap_saved_state *save_state;
1059 
1060 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1061 	if (!pos)
1062 		return 0;
1063 
1064 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1065 	if (!save_state) {
1066 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1067 		return -ENOMEM;
1068 	}
1069 
1070 	pci_read_config_word(dev, pos + PCI_X_CMD,
1071 			     (u16 *)save_state->cap.data);
1072 
1073 	return 0;
1074 }
1075 
1076 static void pci_restore_pcix_state(struct pci_dev *dev)
1077 {
1078 	int i = 0, pos;
1079 	struct pci_cap_saved_state *save_state;
1080 	u16 *cap;
1081 
1082 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1083 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1084 	if (!save_state || !pos)
1085 		return;
1086 	cap = (u16 *)&save_state->cap.data[0];
1087 
1088 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1089 }
1090 
1091 
1092 /**
1093  * pci_save_state - save the PCI configuration space of a device before suspending
1094  * @dev: - PCI device that we're dealing with
1095  */
1096 int pci_save_state(struct pci_dev *dev)
1097 {
1098 	int i;
1099 	/* XXX: 100% dword access ok here? */
1100 	for (i = 0; i < 16; i++)
1101 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1102 	dev->state_saved = true;
1103 
1104 	i = pci_save_pcie_state(dev);
1105 	if (i != 0)
1106 		return i;
1107 
1108 	i = pci_save_pcix_state(dev);
1109 	if (i != 0)
1110 		return i;
1111 
1112 	return pci_save_vc_state(dev);
1113 }
1114 EXPORT_SYMBOL(pci_save_state);
1115 
1116 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1117 				     u32 saved_val, int retry)
1118 {
1119 	u32 val;
1120 
1121 	pci_read_config_dword(pdev, offset, &val);
1122 	if (val == saved_val)
1123 		return;
1124 
1125 	for (;;) {
1126 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1127 			offset, val, saved_val);
1128 		pci_write_config_dword(pdev, offset, saved_val);
1129 		if (retry-- <= 0)
1130 			return;
1131 
1132 		pci_read_config_dword(pdev, offset, &val);
1133 		if (val == saved_val)
1134 			return;
1135 
1136 		mdelay(1);
1137 	}
1138 }
1139 
1140 static void pci_restore_config_space_range(struct pci_dev *pdev,
1141 					   int start, int end, int retry)
1142 {
1143 	int index;
1144 
1145 	for (index = end; index >= start; index--)
1146 		pci_restore_config_dword(pdev, 4 * index,
1147 					 pdev->saved_config_space[index],
1148 					 retry);
1149 }
1150 
1151 static void pci_restore_config_space(struct pci_dev *pdev)
1152 {
1153 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1154 		pci_restore_config_space_range(pdev, 10, 15, 0);
1155 		/* Restore BARs before the command register. */
1156 		pci_restore_config_space_range(pdev, 4, 9, 10);
1157 		pci_restore_config_space_range(pdev, 0, 3, 0);
1158 	} else {
1159 		pci_restore_config_space_range(pdev, 0, 15, 0);
1160 	}
1161 }
1162 
1163 /**
1164  * pci_restore_state - Restore the saved state of a PCI device
1165  * @dev: - PCI device that we're dealing with
1166  */
1167 void pci_restore_state(struct pci_dev *dev)
1168 {
1169 	if (!dev->state_saved)
1170 		return;
1171 
1172 	/* PCI Express register must be restored first */
1173 	pci_restore_pcie_state(dev);
1174 	pci_restore_ats_state(dev);
1175 	pci_restore_vc_state(dev);
1176 
1177 	pci_cleanup_aer_error_status_regs(dev);
1178 
1179 	pci_restore_config_space(dev);
1180 
1181 	pci_restore_pcix_state(dev);
1182 	pci_restore_msi_state(dev);
1183 
1184 	/* Restore ACS and IOV configuration state */
1185 	pci_enable_acs(dev);
1186 	pci_restore_iov_state(dev);
1187 
1188 	dev->state_saved = false;
1189 }
1190 EXPORT_SYMBOL(pci_restore_state);
1191 
1192 struct pci_saved_state {
1193 	u32 config_space[16];
1194 	struct pci_cap_saved_data cap[0];
1195 };
1196 
1197 /**
1198  * pci_store_saved_state - Allocate and return an opaque struct containing
1199  *			   the device saved state.
1200  * @dev: PCI device that we're dealing with
1201  *
1202  * Return NULL if no state or error.
1203  */
1204 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1205 {
1206 	struct pci_saved_state *state;
1207 	struct pci_cap_saved_state *tmp;
1208 	struct pci_cap_saved_data *cap;
1209 	size_t size;
1210 
1211 	if (!dev->state_saved)
1212 		return NULL;
1213 
1214 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1215 
1216 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1217 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1218 
1219 	state = kzalloc(size, GFP_KERNEL);
1220 	if (!state)
1221 		return NULL;
1222 
1223 	memcpy(state->config_space, dev->saved_config_space,
1224 	       sizeof(state->config_space));
1225 
1226 	cap = state->cap;
1227 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1228 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1229 		memcpy(cap, &tmp->cap, len);
1230 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1231 	}
1232 	/* Empty cap_save terminates list */
1233 
1234 	return state;
1235 }
1236 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1237 
1238 /**
1239  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1240  * @dev: PCI device that we're dealing with
1241  * @state: Saved state returned from pci_store_saved_state()
1242  */
1243 int pci_load_saved_state(struct pci_dev *dev,
1244 			 struct pci_saved_state *state)
1245 {
1246 	struct pci_cap_saved_data *cap;
1247 
1248 	dev->state_saved = false;
1249 
1250 	if (!state)
1251 		return 0;
1252 
1253 	memcpy(dev->saved_config_space, state->config_space,
1254 	       sizeof(state->config_space));
1255 
1256 	cap = state->cap;
1257 	while (cap->size) {
1258 		struct pci_cap_saved_state *tmp;
1259 
1260 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1261 		if (!tmp || tmp->cap.size != cap->size)
1262 			return -EINVAL;
1263 
1264 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1265 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1266 		       sizeof(struct pci_cap_saved_data) + cap->size);
1267 	}
1268 
1269 	dev->state_saved = true;
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1273 
1274 /**
1275  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1276  *				   and free the memory allocated for it.
1277  * @dev: PCI device that we're dealing with
1278  * @state: Pointer to saved state returned from pci_store_saved_state()
1279  */
1280 int pci_load_and_free_saved_state(struct pci_dev *dev,
1281 				  struct pci_saved_state **state)
1282 {
1283 	int ret = pci_load_saved_state(dev, *state);
1284 	kfree(*state);
1285 	*state = NULL;
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1289 
1290 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1291 {
1292 	return pci_enable_resources(dev, bars);
1293 }
1294 
1295 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1296 {
1297 	int err;
1298 	struct pci_dev *bridge;
1299 	u16 cmd;
1300 	u8 pin;
1301 
1302 	err = pci_set_power_state(dev, PCI_D0);
1303 	if (err < 0 && err != -EIO)
1304 		return err;
1305 
1306 	bridge = pci_upstream_bridge(dev);
1307 	if (bridge)
1308 		pcie_aspm_powersave_config_link(bridge);
1309 
1310 	err = pcibios_enable_device(dev, bars);
1311 	if (err < 0)
1312 		return err;
1313 	pci_fixup_device(pci_fixup_enable, dev);
1314 
1315 	if (dev->msi_enabled || dev->msix_enabled)
1316 		return 0;
1317 
1318 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1319 	if (pin) {
1320 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1321 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1322 			pci_write_config_word(dev, PCI_COMMAND,
1323 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * pci_reenable_device - Resume abandoned device
1331  * @dev: PCI device to be resumed
1332  *
1333  *  Note this function is a backend of pci_default_resume and is not supposed
1334  *  to be called by normal code, write proper resume handler and use it instead.
1335  */
1336 int pci_reenable_device(struct pci_dev *dev)
1337 {
1338 	if (pci_is_enabled(dev))
1339 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL(pci_reenable_device);
1343 
1344 static void pci_enable_bridge(struct pci_dev *dev)
1345 {
1346 	struct pci_dev *bridge;
1347 	int retval;
1348 
1349 	bridge = pci_upstream_bridge(dev);
1350 	if (bridge)
1351 		pci_enable_bridge(bridge);
1352 
1353 	if (pci_is_enabled(dev)) {
1354 		if (!dev->is_busmaster)
1355 			pci_set_master(dev);
1356 		return;
1357 	}
1358 
1359 	retval = pci_enable_device(dev);
1360 	if (retval)
1361 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1362 			retval);
1363 	pci_set_master(dev);
1364 }
1365 
1366 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1367 {
1368 	struct pci_dev *bridge;
1369 	int err;
1370 	int i, bars = 0;
1371 
1372 	/*
1373 	 * Power state could be unknown at this point, either due to a fresh
1374 	 * boot or a device removal call.  So get the current power state
1375 	 * so that things like MSI message writing will behave as expected
1376 	 * (e.g. if the device really is in D0 at enable time).
1377 	 */
1378 	if (dev->pm_cap) {
1379 		u16 pmcsr;
1380 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1382 	}
1383 
1384 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1385 		return 0;		/* already enabled */
1386 
1387 	bridge = pci_upstream_bridge(dev);
1388 	if (bridge)
1389 		pci_enable_bridge(bridge);
1390 
1391 	/* only skip sriov related */
1392 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1393 		if (dev->resource[i].flags & flags)
1394 			bars |= (1 << i);
1395 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1396 		if (dev->resource[i].flags & flags)
1397 			bars |= (1 << i);
1398 
1399 	err = do_pci_enable_device(dev, bars);
1400 	if (err < 0)
1401 		atomic_dec(&dev->enable_cnt);
1402 	return err;
1403 }
1404 
1405 /**
1406  * pci_enable_device_io - Initialize a device for use with IO space
1407  * @dev: PCI device to be initialized
1408  *
1409  *  Initialize device before it's used by a driver. Ask low-level code
1410  *  to enable I/O resources. Wake up the device if it was suspended.
1411  *  Beware, this function can fail.
1412  */
1413 int pci_enable_device_io(struct pci_dev *dev)
1414 {
1415 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1416 }
1417 EXPORT_SYMBOL(pci_enable_device_io);
1418 
1419 /**
1420  * pci_enable_device_mem - Initialize a device for use with Memory space
1421  * @dev: PCI device to be initialized
1422  *
1423  *  Initialize device before it's used by a driver. Ask low-level code
1424  *  to enable Memory resources. Wake up the device if it was suspended.
1425  *  Beware, this function can fail.
1426  */
1427 int pci_enable_device_mem(struct pci_dev *dev)
1428 {
1429 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1430 }
1431 EXPORT_SYMBOL(pci_enable_device_mem);
1432 
1433 /**
1434  * pci_enable_device - Initialize device before it's used by a driver.
1435  * @dev: PCI device to be initialized
1436  *
1437  *  Initialize device before it's used by a driver. Ask low-level code
1438  *  to enable I/O and memory. Wake up the device if it was suspended.
1439  *  Beware, this function can fail.
1440  *
1441  *  Note we don't actually enable the device many times if we call
1442  *  this function repeatedly (we just increment the count).
1443  */
1444 int pci_enable_device(struct pci_dev *dev)
1445 {
1446 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1447 }
1448 EXPORT_SYMBOL(pci_enable_device);
1449 
1450 /*
1451  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1452  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1453  * there's no need to track it separately.  pci_devres is initialized
1454  * when a device is enabled using managed PCI device enable interface.
1455  */
1456 struct pci_devres {
1457 	unsigned int enabled:1;
1458 	unsigned int pinned:1;
1459 	unsigned int orig_intx:1;
1460 	unsigned int restore_intx:1;
1461 	u32 region_mask;
1462 };
1463 
1464 static void pcim_release(struct device *gendev, void *res)
1465 {
1466 	struct pci_dev *dev = to_pci_dev(gendev);
1467 	struct pci_devres *this = res;
1468 	int i;
1469 
1470 	if (dev->msi_enabled)
1471 		pci_disable_msi(dev);
1472 	if (dev->msix_enabled)
1473 		pci_disable_msix(dev);
1474 
1475 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1476 		if (this->region_mask & (1 << i))
1477 			pci_release_region(dev, i);
1478 
1479 	if (this->restore_intx)
1480 		pci_intx(dev, this->orig_intx);
1481 
1482 	if (this->enabled && !this->pinned)
1483 		pci_disable_device(dev);
1484 }
1485 
1486 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1487 {
1488 	struct pci_devres *dr, *new_dr;
1489 
1490 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1491 	if (dr)
1492 		return dr;
1493 
1494 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1495 	if (!new_dr)
1496 		return NULL;
1497 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1498 }
1499 
1500 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1501 {
1502 	if (pci_is_managed(pdev))
1503 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1504 	return NULL;
1505 }
1506 
1507 /**
1508  * pcim_enable_device - Managed pci_enable_device()
1509  * @pdev: PCI device to be initialized
1510  *
1511  * Managed pci_enable_device().
1512  */
1513 int pcim_enable_device(struct pci_dev *pdev)
1514 {
1515 	struct pci_devres *dr;
1516 	int rc;
1517 
1518 	dr = get_pci_dr(pdev);
1519 	if (unlikely(!dr))
1520 		return -ENOMEM;
1521 	if (dr->enabled)
1522 		return 0;
1523 
1524 	rc = pci_enable_device(pdev);
1525 	if (!rc) {
1526 		pdev->is_managed = 1;
1527 		dr->enabled = 1;
1528 	}
1529 	return rc;
1530 }
1531 EXPORT_SYMBOL(pcim_enable_device);
1532 
1533 /**
1534  * pcim_pin_device - Pin managed PCI device
1535  * @pdev: PCI device to pin
1536  *
1537  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1538  * driver detach.  @pdev must have been enabled with
1539  * pcim_enable_device().
1540  */
1541 void pcim_pin_device(struct pci_dev *pdev)
1542 {
1543 	struct pci_devres *dr;
1544 
1545 	dr = find_pci_dr(pdev);
1546 	WARN_ON(!dr || !dr->enabled);
1547 	if (dr)
1548 		dr->pinned = 1;
1549 }
1550 EXPORT_SYMBOL(pcim_pin_device);
1551 
1552 /*
1553  * pcibios_add_device - provide arch specific hooks when adding device dev
1554  * @dev: the PCI device being added
1555  *
1556  * Permits the platform to provide architecture specific functionality when
1557  * devices are added. This is the default implementation. Architecture
1558  * implementations can override this.
1559  */
1560 int __weak pcibios_add_device(struct pci_dev *dev)
1561 {
1562 	return 0;
1563 }
1564 
1565 /**
1566  * pcibios_release_device - provide arch specific hooks when releasing device dev
1567  * @dev: the PCI device being released
1568  *
1569  * Permits the platform to provide architecture specific functionality when
1570  * devices are released. This is the default implementation. Architecture
1571  * implementations can override this.
1572  */
1573 void __weak pcibios_release_device(struct pci_dev *dev) {}
1574 
1575 /**
1576  * pcibios_disable_device - disable arch specific PCI resources for device dev
1577  * @dev: the PCI device to disable
1578  *
1579  * Disables architecture specific PCI resources for the device. This
1580  * is the default implementation. Architecture implementations can
1581  * override this.
1582  */
1583 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1584 
1585 /**
1586  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1587  * @irq: ISA IRQ to penalize
1588  * @active: IRQ active or not
1589  *
1590  * Permits the platform to provide architecture-specific functionality when
1591  * penalizing ISA IRQs. This is the default implementation. Architecture
1592  * implementations can override this.
1593  */
1594 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1595 
1596 static void do_pci_disable_device(struct pci_dev *dev)
1597 {
1598 	u16 pci_command;
1599 
1600 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1601 	if (pci_command & PCI_COMMAND_MASTER) {
1602 		pci_command &= ~PCI_COMMAND_MASTER;
1603 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1604 	}
1605 
1606 	pcibios_disable_device(dev);
1607 }
1608 
1609 /**
1610  * pci_disable_enabled_device - Disable device without updating enable_cnt
1611  * @dev: PCI device to disable
1612  *
1613  * NOTE: This function is a backend of PCI power management routines and is
1614  * not supposed to be called drivers.
1615  */
1616 void pci_disable_enabled_device(struct pci_dev *dev)
1617 {
1618 	if (pci_is_enabled(dev))
1619 		do_pci_disable_device(dev);
1620 }
1621 
1622 /**
1623  * pci_disable_device - Disable PCI device after use
1624  * @dev: PCI device to be disabled
1625  *
1626  * Signal to the system that the PCI device is not in use by the system
1627  * anymore.  This only involves disabling PCI bus-mastering, if active.
1628  *
1629  * Note we don't actually disable the device until all callers of
1630  * pci_enable_device() have called pci_disable_device().
1631  */
1632 void pci_disable_device(struct pci_dev *dev)
1633 {
1634 	struct pci_devres *dr;
1635 
1636 	dr = find_pci_dr(dev);
1637 	if (dr)
1638 		dr->enabled = 0;
1639 
1640 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1641 		      "disabling already-disabled device");
1642 
1643 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1644 		return;
1645 
1646 	do_pci_disable_device(dev);
1647 
1648 	dev->is_busmaster = 0;
1649 }
1650 EXPORT_SYMBOL(pci_disable_device);
1651 
1652 /**
1653  * pcibios_set_pcie_reset_state - set reset state for device dev
1654  * @dev: the PCIe device reset
1655  * @state: Reset state to enter into
1656  *
1657  *
1658  * Sets the PCIe reset state for the device. This is the default
1659  * implementation. Architecture implementations can override this.
1660  */
1661 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1662 					enum pcie_reset_state state)
1663 {
1664 	return -EINVAL;
1665 }
1666 
1667 /**
1668  * pci_set_pcie_reset_state - set reset state for device dev
1669  * @dev: the PCIe device reset
1670  * @state: Reset state to enter into
1671  *
1672  *
1673  * Sets the PCI reset state for the device.
1674  */
1675 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1676 {
1677 	return pcibios_set_pcie_reset_state(dev, state);
1678 }
1679 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1680 
1681 /**
1682  * pci_check_pme_status - Check if given device has generated PME.
1683  * @dev: Device to check.
1684  *
1685  * Check the PME status of the device and if set, clear it and clear PME enable
1686  * (if set).  Return 'true' if PME status and PME enable were both set or
1687  * 'false' otherwise.
1688  */
1689 bool pci_check_pme_status(struct pci_dev *dev)
1690 {
1691 	int pmcsr_pos;
1692 	u16 pmcsr;
1693 	bool ret = false;
1694 
1695 	if (!dev->pm_cap)
1696 		return false;
1697 
1698 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1699 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1700 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1701 		return false;
1702 
1703 	/* Clear PME status. */
1704 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1705 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1706 		/* Disable PME to avoid interrupt flood. */
1707 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708 		ret = true;
1709 	}
1710 
1711 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1712 
1713 	return ret;
1714 }
1715 
1716 /**
1717  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1718  * @dev: Device to handle.
1719  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1720  *
1721  * Check if @dev has generated PME and queue a resume request for it in that
1722  * case.
1723  */
1724 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1725 {
1726 	if (pme_poll_reset && dev->pme_poll)
1727 		dev->pme_poll = false;
1728 
1729 	if (pci_check_pme_status(dev)) {
1730 		pci_wakeup_event(dev);
1731 		pm_request_resume(&dev->dev);
1732 	}
1733 	return 0;
1734 }
1735 
1736 /**
1737  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1738  * @bus: Top bus of the subtree to walk.
1739  */
1740 void pci_pme_wakeup_bus(struct pci_bus *bus)
1741 {
1742 	if (bus)
1743 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1744 }
1745 
1746 
1747 /**
1748  * pci_pme_capable - check the capability of PCI device to generate PME#
1749  * @dev: PCI device to handle.
1750  * @state: PCI state from which device will issue PME#.
1751  */
1752 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1753 {
1754 	if (!dev->pm_cap)
1755 		return false;
1756 
1757 	return !!(dev->pme_support & (1 << state));
1758 }
1759 EXPORT_SYMBOL(pci_pme_capable);
1760 
1761 static void pci_pme_list_scan(struct work_struct *work)
1762 {
1763 	struct pci_pme_device *pme_dev, *n;
1764 
1765 	mutex_lock(&pci_pme_list_mutex);
1766 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1767 		if (pme_dev->dev->pme_poll) {
1768 			struct pci_dev *bridge;
1769 
1770 			bridge = pme_dev->dev->bus->self;
1771 			/*
1772 			 * If bridge is in low power state, the
1773 			 * configuration space of subordinate devices
1774 			 * may be not accessible
1775 			 */
1776 			if (bridge && bridge->current_state != PCI_D0)
1777 				continue;
1778 			pci_pme_wakeup(pme_dev->dev, NULL);
1779 		} else {
1780 			list_del(&pme_dev->list);
1781 			kfree(pme_dev);
1782 		}
1783 	}
1784 	if (!list_empty(&pci_pme_list))
1785 		schedule_delayed_work(&pci_pme_work,
1786 				      msecs_to_jiffies(PME_TIMEOUT));
1787 	mutex_unlock(&pci_pme_list_mutex);
1788 }
1789 
1790 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1791 {
1792 	u16 pmcsr;
1793 
1794 	if (!dev->pme_support)
1795 		return;
1796 
1797 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1798 	/* Clear PME_Status by writing 1 to it and enable PME# */
1799 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1800 	if (!enable)
1801 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1802 
1803 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1804 }
1805 
1806 /**
1807  * pci_pme_active - enable or disable PCI device's PME# function
1808  * @dev: PCI device to handle.
1809  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1810  *
1811  * The caller must verify that the device is capable of generating PME# before
1812  * calling this function with @enable equal to 'true'.
1813  */
1814 void pci_pme_active(struct pci_dev *dev, bool enable)
1815 {
1816 	__pci_pme_active(dev, enable);
1817 
1818 	/*
1819 	 * PCI (as opposed to PCIe) PME requires that the device have
1820 	 * its PME# line hooked up correctly. Not all hardware vendors
1821 	 * do this, so the PME never gets delivered and the device
1822 	 * remains asleep. The easiest way around this is to
1823 	 * periodically walk the list of suspended devices and check
1824 	 * whether any have their PME flag set. The assumption is that
1825 	 * we'll wake up often enough anyway that this won't be a huge
1826 	 * hit, and the power savings from the devices will still be a
1827 	 * win.
1828 	 *
1829 	 * Although PCIe uses in-band PME message instead of PME# line
1830 	 * to report PME, PME does not work for some PCIe devices in
1831 	 * reality.  For example, there are devices that set their PME
1832 	 * status bits, but don't really bother to send a PME message;
1833 	 * there are PCI Express Root Ports that don't bother to
1834 	 * trigger interrupts when they receive PME messages from the
1835 	 * devices below.  So PME poll is used for PCIe devices too.
1836 	 */
1837 
1838 	if (dev->pme_poll) {
1839 		struct pci_pme_device *pme_dev;
1840 		if (enable) {
1841 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1842 					  GFP_KERNEL);
1843 			if (!pme_dev) {
1844 				dev_warn(&dev->dev, "can't enable PME#\n");
1845 				return;
1846 			}
1847 			pme_dev->dev = dev;
1848 			mutex_lock(&pci_pme_list_mutex);
1849 			list_add(&pme_dev->list, &pci_pme_list);
1850 			if (list_is_singular(&pci_pme_list))
1851 				schedule_delayed_work(&pci_pme_work,
1852 						      msecs_to_jiffies(PME_TIMEOUT));
1853 			mutex_unlock(&pci_pme_list_mutex);
1854 		} else {
1855 			mutex_lock(&pci_pme_list_mutex);
1856 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1857 				if (pme_dev->dev == dev) {
1858 					list_del(&pme_dev->list);
1859 					kfree(pme_dev);
1860 					break;
1861 				}
1862 			}
1863 			mutex_unlock(&pci_pme_list_mutex);
1864 		}
1865 	}
1866 
1867 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1868 }
1869 EXPORT_SYMBOL(pci_pme_active);
1870 
1871 /**
1872  * __pci_enable_wake - enable PCI device as wakeup event source
1873  * @dev: PCI device affected
1874  * @state: PCI state from which device will issue wakeup events
1875  * @runtime: True if the events are to be generated at run time
1876  * @enable: True to enable event generation; false to disable
1877  *
1878  * This enables the device as a wakeup event source, or disables it.
1879  * When such events involves platform-specific hooks, those hooks are
1880  * called automatically by this routine.
1881  *
1882  * Devices with legacy power management (no standard PCI PM capabilities)
1883  * always require such platform hooks.
1884  *
1885  * RETURN VALUE:
1886  * 0 is returned on success
1887  * -EINVAL is returned if device is not supposed to wake up the system
1888  * Error code depending on the platform is returned if both the platform and
1889  * the native mechanism fail to enable the generation of wake-up events
1890  */
1891 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1892 		      bool runtime, bool enable)
1893 {
1894 	int ret = 0;
1895 
1896 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1897 		return -EINVAL;
1898 
1899 	/* Don't do the same thing twice in a row for one device. */
1900 	if (!!enable == !!dev->wakeup_prepared)
1901 		return 0;
1902 
1903 	/*
1904 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1905 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1906 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1907 	 */
1908 
1909 	if (enable) {
1910 		int error;
1911 
1912 		if (pci_pme_capable(dev, state))
1913 			pci_pme_active(dev, true);
1914 		else
1915 			ret = 1;
1916 		error = runtime ? platform_pci_run_wake(dev, true) :
1917 					platform_pci_sleep_wake(dev, true);
1918 		if (ret)
1919 			ret = error;
1920 		if (!ret)
1921 			dev->wakeup_prepared = true;
1922 	} else {
1923 		if (runtime)
1924 			platform_pci_run_wake(dev, false);
1925 		else
1926 			platform_pci_sleep_wake(dev, false);
1927 		pci_pme_active(dev, false);
1928 		dev->wakeup_prepared = false;
1929 	}
1930 
1931 	return ret;
1932 }
1933 EXPORT_SYMBOL(__pci_enable_wake);
1934 
1935 /**
1936  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1937  * @dev: PCI device to prepare
1938  * @enable: True to enable wake-up event generation; false to disable
1939  *
1940  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1941  * and this function allows them to set that up cleanly - pci_enable_wake()
1942  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1943  * ordering constraints.
1944  *
1945  * This function only returns error code if the device is not capable of
1946  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1947  * enable wake-up power for it.
1948  */
1949 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1950 {
1951 	return pci_pme_capable(dev, PCI_D3cold) ?
1952 			pci_enable_wake(dev, PCI_D3cold, enable) :
1953 			pci_enable_wake(dev, PCI_D3hot, enable);
1954 }
1955 EXPORT_SYMBOL(pci_wake_from_d3);
1956 
1957 /**
1958  * pci_target_state - find an appropriate low power state for a given PCI dev
1959  * @dev: PCI device
1960  *
1961  * Use underlying platform code to find a supported low power state for @dev.
1962  * If the platform can't manage @dev, return the deepest state from which it
1963  * can generate wake events, based on any available PME info.
1964  */
1965 static pci_power_t pci_target_state(struct pci_dev *dev)
1966 {
1967 	pci_power_t target_state = PCI_D3hot;
1968 
1969 	if (platform_pci_power_manageable(dev)) {
1970 		/*
1971 		 * Call the platform to choose the target state of the device
1972 		 * and enable wake-up from this state if supported.
1973 		 */
1974 		pci_power_t state = platform_pci_choose_state(dev);
1975 
1976 		switch (state) {
1977 		case PCI_POWER_ERROR:
1978 		case PCI_UNKNOWN:
1979 			break;
1980 		case PCI_D1:
1981 		case PCI_D2:
1982 			if (pci_no_d1d2(dev))
1983 				break;
1984 		default:
1985 			target_state = state;
1986 		}
1987 
1988 		return target_state;
1989 	}
1990 
1991 	if (!dev->pm_cap)
1992 		target_state = PCI_D0;
1993 
1994 	/*
1995 	 * If the device is in D3cold even though it's not power-manageable by
1996 	 * the platform, it may have been powered down by non-standard means.
1997 	 * Best to let it slumber.
1998 	 */
1999 	if (dev->current_state == PCI_D3cold)
2000 		target_state = PCI_D3cold;
2001 
2002 	if (device_may_wakeup(&dev->dev)) {
2003 		/*
2004 		 * Find the deepest state from which the device can generate
2005 		 * wake-up events, make it the target state and enable device
2006 		 * to generate PME#.
2007 		 */
2008 		if (dev->pme_support) {
2009 			while (target_state
2010 			      && !(dev->pme_support & (1 << target_state)))
2011 				target_state--;
2012 		}
2013 	}
2014 
2015 	return target_state;
2016 }
2017 
2018 /**
2019  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2020  * @dev: Device to handle.
2021  *
2022  * Choose the power state appropriate for the device depending on whether
2023  * it can wake up the system and/or is power manageable by the platform
2024  * (PCI_D3hot is the default) and put the device into that state.
2025  */
2026 int pci_prepare_to_sleep(struct pci_dev *dev)
2027 {
2028 	pci_power_t target_state = pci_target_state(dev);
2029 	int error;
2030 
2031 	if (target_state == PCI_POWER_ERROR)
2032 		return -EIO;
2033 
2034 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2035 
2036 	error = pci_set_power_state(dev, target_state);
2037 
2038 	if (error)
2039 		pci_enable_wake(dev, target_state, false);
2040 
2041 	return error;
2042 }
2043 EXPORT_SYMBOL(pci_prepare_to_sleep);
2044 
2045 /**
2046  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2047  * @dev: Device to handle.
2048  *
2049  * Disable device's system wake-up capability and put it into D0.
2050  */
2051 int pci_back_from_sleep(struct pci_dev *dev)
2052 {
2053 	pci_enable_wake(dev, PCI_D0, false);
2054 	return pci_set_power_state(dev, PCI_D0);
2055 }
2056 EXPORT_SYMBOL(pci_back_from_sleep);
2057 
2058 /**
2059  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2060  * @dev: PCI device being suspended.
2061  *
2062  * Prepare @dev to generate wake-up events at run time and put it into a low
2063  * power state.
2064  */
2065 int pci_finish_runtime_suspend(struct pci_dev *dev)
2066 {
2067 	pci_power_t target_state = pci_target_state(dev);
2068 	int error;
2069 
2070 	if (target_state == PCI_POWER_ERROR)
2071 		return -EIO;
2072 
2073 	dev->runtime_d3cold = target_state == PCI_D3cold;
2074 
2075 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2076 
2077 	error = pci_set_power_state(dev, target_state);
2078 
2079 	if (error) {
2080 		__pci_enable_wake(dev, target_state, true, false);
2081 		dev->runtime_d3cold = false;
2082 	}
2083 
2084 	return error;
2085 }
2086 
2087 /**
2088  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2089  * @dev: Device to check.
2090  *
2091  * Return true if the device itself is capable of generating wake-up events
2092  * (through the platform or using the native PCIe PME) or if the device supports
2093  * PME and one of its upstream bridges can generate wake-up events.
2094  */
2095 bool pci_dev_run_wake(struct pci_dev *dev)
2096 {
2097 	struct pci_bus *bus = dev->bus;
2098 
2099 	if (device_run_wake(&dev->dev))
2100 		return true;
2101 
2102 	if (!dev->pme_support)
2103 		return false;
2104 
2105 	/* PME-capable in principle, but not from the intended sleep state */
2106 	if (!pci_pme_capable(dev, pci_target_state(dev)))
2107 		return false;
2108 
2109 	while (bus->parent) {
2110 		struct pci_dev *bridge = bus->self;
2111 
2112 		if (device_run_wake(&bridge->dev))
2113 			return true;
2114 
2115 		bus = bus->parent;
2116 	}
2117 
2118 	/* We have reached the root bus. */
2119 	if (bus->bridge)
2120 		return device_run_wake(bus->bridge);
2121 
2122 	return false;
2123 }
2124 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2125 
2126 /**
2127  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2128  * @pci_dev: Device to check.
2129  *
2130  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2131  * reconfigured due to wakeup settings difference between system and runtime
2132  * suspend and the current power state of it is suitable for the upcoming
2133  * (system) transition.
2134  *
2135  * If the device is not configured for system wakeup, disable PME for it before
2136  * returning 'true' to prevent it from waking up the system unnecessarily.
2137  */
2138 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2139 {
2140 	struct device *dev = &pci_dev->dev;
2141 
2142 	if (!pm_runtime_suspended(dev)
2143 	    || pci_target_state(pci_dev) != pci_dev->current_state
2144 	    || platform_pci_need_resume(pci_dev))
2145 		return false;
2146 
2147 	/*
2148 	 * At this point the device is good to go unless it's been configured
2149 	 * to generate PME at the runtime suspend time, but it is not supposed
2150 	 * to wake up the system.  In that case, simply disable PME for it
2151 	 * (it will have to be re-enabled on exit from system resume).
2152 	 *
2153 	 * If the device's power state is D3cold and the platform check above
2154 	 * hasn't triggered, the device's configuration is suitable and we don't
2155 	 * need to manipulate it at all.
2156 	 */
2157 	spin_lock_irq(&dev->power.lock);
2158 
2159 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2160 	    !device_may_wakeup(dev))
2161 		__pci_pme_active(pci_dev, false);
2162 
2163 	spin_unlock_irq(&dev->power.lock);
2164 	return true;
2165 }
2166 
2167 /**
2168  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2169  * @pci_dev: Device to handle.
2170  *
2171  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2172  * it might have been disabled during the prepare phase of system suspend if
2173  * the device was not configured for system wakeup.
2174  */
2175 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2176 {
2177 	struct device *dev = &pci_dev->dev;
2178 
2179 	if (!pci_dev_run_wake(pci_dev))
2180 		return;
2181 
2182 	spin_lock_irq(&dev->power.lock);
2183 
2184 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2185 		__pci_pme_active(pci_dev, true);
2186 
2187 	spin_unlock_irq(&dev->power.lock);
2188 }
2189 
2190 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2191 {
2192 	struct device *dev = &pdev->dev;
2193 	struct device *parent = dev->parent;
2194 
2195 	if (parent)
2196 		pm_runtime_get_sync(parent);
2197 	pm_runtime_get_noresume(dev);
2198 	/*
2199 	 * pdev->current_state is set to PCI_D3cold during suspending,
2200 	 * so wait until suspending completes
2201 	 */
2202 	pm_runtime_barrier(dev);
2203 	/*
2204 	 * Only need to resume devices in D3cold, because config
2205 	 * registers are still accessible for devices suspended but
2206 	 * not in D3cold.
2207 	 */
2208 	if (pdev->current_state == PCI_D3cold)
2209 		pm_runtime_resume(dev);
2210 }
2211 
2212 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2213 {
2214 	struct device *dev = &pdev->dev;
2215 	struct device *parent = dev->parent;
2216 
2217 	pm_runtime_put(dev);
2218 	if (parent)
2219 		pm_runtime_put_sync(parent);
2220 }
2221 
2222 /**
2223  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2224  * @bridge: Bridge to check
2225  *
2226  * This function checks if it is possible to move the bridge to D3.
2227  * Currently we only allow D3 for recent enough PCIe ports.
2228  */
2229 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2230 {
2231 	unsigned int year;
2232 
2233 	if (!pci_is_pcie(bridge))
2234 		return false;
2235 
2236 	switch (pci_pcie_type(bridge)) {
2237 	case PCI_EXP_TYPE_ROOT_PORT:
2238 	case PCI_EXP_TYPE_UPSTREAM:
2239 	case PCI_EXP_TYPE_DOWNSTREAM:
2240 		if (pci_bridge_d3_disable)
2241 			return false;
2242 
2243 		/*
2244 		 * Hotplug interrupts cannot be delivered if the link is down,
2245 		 * so parents of a hotplug port must stay awake. In addition,
2246 		 * hotplug ports handled by firmware in System Management Mode
2247 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2248 		 * For simplicity, disallow in general for now.
2249 		 */
2250 		if (bridge->is_hotplug_bridge)
2251 			return false;
2252 
2253 		if (pci_bridge_d3_force)
2254 			return true;
2255 
2256 		/*
2257 		 * It should be safe to put PCIe ports from 2015 or newer
2258 		 * to D3.
2259 		 */
2260 		if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2261 		    year >= 2015) {
2262 			return true;
2263 		}
2264 		break;
2265 	}
2266 
2267 	return false;
2268 }
2269 
2270 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2271 {
2272 	bool *d3cold_ok = data;
2273 
2274 	if (/* The device needs to be allowed to go D3cold ... */
2275 	    dev->no_d3cold || !dev->d3cold_allowed ||
2276 
2277 	    /* ... and if it is wakeup capable to do so from D3cold. */
2278 	    (device_may_wakeup(&dev->dev) &&
2279 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2280 
2281 	    /* If it is a bridge it must be allowed to go to D3. */
2282 	    !pci_power_manageable(dev))
2283 
2284 		*d3cold_ok = false;
2285 
2286 	return !*d3cold_ok;
2287 }
2288 
2289 /*
2290  * pci_bridge_d3_update - Update bridge D3 capabilities
2291  * @dev: PCI device which is changed
2292  *
2293  * Update upstream bridge PM capabilities accordingly depending on if the
2294  * device PM configuration was changed or the device is being removed.  The
2295  * change is also propagated upstream.
2296  */
2297 void pci_bridge_d3_update(struct pci_dev *dev)
2298 {
2299 	bool remove = !device_is_registered(&dev->dev);
2300 	struct pci_dev *bridge;
2301 	bool d3cold_ok = true;
2302 
2303 	bridge = pci_upstream_bridge(dev);
2304 	if (!bridge || !pci_bridge_d3_possible(bridge))
2305 		return;
2306 
2307 	/*
2308 	 * If D3 is currently allowed for the bridge, removing one of its
2309 	 * children won't change that.
2310 	 */
2311 	if (remove && bridge->bridge_d3)
2312 		return;
2313 
2314 	/*
2315 	 * If D3 is currently allowed for the bridge and a child is added or
2316 	 * changed, disallowance of D3 can only be caused by that child, so
2317 	 * we only need to check that single device, not any of its siblings.
2318 	 *
2319 	 * If D3 is currently not allowed for the bridge, checking the device
2320 	 * first may allow us to skip checking its siblings.
2321 	 */
2322 	if (!remove)
2323 		pci_dev_check_d3cold(dev, &d3cold_ok);
2324 
2325 	/*
2326 	 * If D3 is currently not allowed for the bridge, this may be caused
2327 	 * either by the device being changed/removed or any of its siblings,
2328 	 * so we need to go through all children to find out if one of them
2329 	 * continues to block D3.
2330 	 */
2331 	if (d3cold_ok && !bridge->bridge_d3)
2332 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2333 			     &d3cold_ok);
2334 
2335 	if (bridge->bridge_d3 != d3cold_ok) {
2336 		bridge->bridge_d3 = d3cold_ok;
2337 		/* Propagate change to upstream bridges */
2338 		pci_bridge_d3_update(bridge);
2339 	}
2340 }
2341 
2342 /**
2343  * pci_d3cold_enable - Enable D3cold for device
2344  * @dev: PCI device to handle
2345  *
2346  * This function can be used in drivers to enable D3cold from the device
2347  * they handle.  It also updates upstream PCI bridge PM capabilities
2348  * accordingly.
2349  */
2350 void pci_d3cold_enable(struct pci_dev *dev)
2351 {
2352 	if (dev->no_d3cold) {
2353 		dev->no_d3cold = false;
2354 		pci_bridge_d3_update(dev);
2355 	}
2356 }
2357 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2358 
2359 /**
2360  * pci_d3cold_disable - Disable D3cold for device
2361  * @dev: PCI device to handle
2362  *
2363  * This function can be used in drivers to disable D3cold from the device
2364  * they handle.  It also updates upstream PCI bridge PM capabilities
2365  * accordingly.
2366  */
2367 void pci_d3cold_disable(struct pci_dev *dev)
2368 {
2369 	if (!dev->no_d3cold) {
2370 		dev->no_d3cold = true;
2371 		pci_bridge_d3_update(dev);
2372 	}
2373 }
2374 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2375 
2376 /**
2377  * pci_pm_init - Initialize PM functions of given PCI device
2378  * @dev: PCI device to handle.
2379  */
2380 void pci_pm_init(struct pci_dev *dev)
2381 {
2382 	int pm;
2383 	u16 pmc;
2384 
2385 	pm_runtime_forbid(&dev->dev);
2386 	pm_runtime_set_active(&dev->dev);
2387 	pm_runtime_enable(&dev->dev);
2388 	device_enable_async_suspend(&dev->dev);
2389 	dev->wakeup_prepared = false;
2390 
2391 	dev->pm_cap = 0;
2392 	dev->pme_support = 0;
2393 
2394 	/* find PCI PM capability in list */
2395 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2396 	if (!pm)
2397 		return;
2398 	/* Check device's ability to generate PME# */
2399 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2400 
2401 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2402 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2403 			pmc & PCI_PM_CAP_VER_MASK);
2404 		return;
2405 	}
2406 
2407 	dev->pm_cap = pm;
2408 	dev->d3_delay = PCI_PM_D3_WAIT;
2409 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2410 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2411 	dev->d3cold_allowed = true;
2412 
2413 	dev->d1_support = false;
2414 	dev->d2_support = false;
2415 	if (!pci_no_d1d2(dev)) {
2416 		if (pmc & PCI_PM_CAP_D1)
2417 			dev->d1_support = true;
2418 		if (pmc & PCI_PM_CAP_D2)
2419 			dev->d2_support = true;
2420 
2421 		if (dev->d1_support || dev->d2_support)
2422 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2423 				   dev->d1_support ? " D1" : "",
2424 				   dev->d2_support ? " D2" : "");
2425 	}
2426 
2427 	pmc &= PCI_PM_CAP_PME_MASK;
2428 	if (pmc) {
2429 		dev_printk(KERN_DEBUG, &dev->dev,
2430 			 "PME# supported from%s%s%s%s%s\n",
2431 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2432 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2433 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2434 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2435 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2436 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2437 		dev->pme_poll = true;
2438 		/*
2439 		 * Make device's PM flags reflect the wake-up capability, but
2440 		 * let the user space enable it to wake up the system as needed.
2441 		 */
2442 		device_set_wakeup_capable(&dev->dev, true);
2443 		/* Disable the PME# generation functionality */
2444 		pci_pme_active(dev, false);
2445 	}
2446 }
2447 
2448 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2449 {
2450 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2451 
2452 	switch (prop) {
2453 	case PCI_EA_P_MEM:
2454 	case PCI_EA_P_VF_MEM:
2455 		flags |= IORESOURCE_MEM;
2456 		break;
2457 	case PCI_EA_P_MEM_PREFETCH:
2458 	case PCI_EA_P_VF_MEM_PREFETCH:
2459 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2460 		break;
2461 	case PCI_EA_P_IO:
2462 		flags |= IORESOURCE_IO;
2463 		break;
2464 	default:
2465 		return 0;
2466 	}
2467 
2468 	return flags;
2469 }
2470 
2471 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2472 					    u8 prop)
2473 {
2474 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2475 		return &dev->resource[bei];
2476 #ifdef CONFIG_PCI_IOV
2477 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2478 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2479 		return &dev->resource[PCI_IOV_RESOURCES +
2480 				      bei - PCI_EA_BEI_VF_BAR0];
2481 #endif
2482 	else if (bei == PCI_EA_BEI_ROM)
2483 		return &dev->resource[PCI_ROM_RESOURCE];
2484 	else
2485 		return NULL;
2486 }
2487 
2488 /* Read an Enhanced Allocation (EA) entry */
2489 static int pci_ea_read(struct pci_dev *dev, int offset)
2490 {
2491 	struct resource *res;
2492 	int ent_size, ent_offset = offset;
2493 	resource_size_t start, end;
2494 	unsigned long flags;
2495 	u32 dw0, bei, base, max_offset;
2496 	u8 prop;
2497 	bool support_64 = (sizeof(resource_size_t) >= 8);
2498 
2499 	pci_read_config_dword(dev, ent_offset, &dw0);
2500 	ent_offset += 4;
2501 
2502 	/* Entry size field indicates DWORDs after 1st */
2503 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2504 
2505 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2506 		goto out;
2507 
2508 	bei = (dw0 & PCI_EA_BEI) >> 4;
2509 	prop = (dw0 & PCI_EA_PP) >> 8;
2510 
2511 	/*
2512 	 * If the Property is in the reserved range, try the Secondary
2513 	 * Property instead.
2514 	 */
2515 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2516 		prop = (dw0 & PCI_EA_SP) >> 16;
2517 	if (prop > PCI_EA_P_BRIDGE_IO)
2518 		goto out;
2519 
2520 	res = pci_ea_get_resource(dev, bei, prop);
2521 	if (!res) {
2522 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2523 		goto out;
2524 	}
2525 
2526 	flags = pci_ea_flags(dev, prop);
2527 	if (!flags) {
2528 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2529 		goto out;
2530 	}
2531 
2532 	/* Read Base */
2533 	pci_read_config_dword(dev, ent_offset, &base);
2534 	start = (base & PCI_EA_FIELD_MASK);
2535 	ent_offset += 4;
2536 
2537 	/* Read MaxOffset */
2538 	pci_read_config_dword(dev, ent_offset, &max_offset);
2539 	ent_offset += 4;
2540 
2541 	/* Read Base MSBs (if 64-bit entry) */
2542 	if (base & PCI_EA_IS_64) {
2543 		u32 base_upper;
2544 
2545 		pci_read_config_dword(dev, ent_offset, &base_upper);
2546 		ent_offset += 4;
2547 
2548 		flags |= IORESOURCE_MEM_64;
2549 
2550 		/* entry starts above 32-bit boundary, can't use */
2551 		if (!support_64 && base_upper)
2552 			goto out;
2553 
2554 		if (support_64)
2555 			start |= ((u64)base_upper << 32);
2556 	}
2557 
2558 	end = start + (max_offset | 0x03);
2559 
2560 	/* Read MaxOffset MSBs (if 64-bit entry) */
2561 	if (max_offset & PCI_EA_IS_64) {
2562 		u32 max_offset_upper;
2563 
2564 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2565 		ent_offset += 4;
2566 
2567 		flags |= IORESOURCE_MEM_64;
2568 
2569 		/* entry too big, can't use */
2570 		if (!support_64 && max_offset_upper)
2571 			goto out;
2572 
2573 		if (support_64)
2574 			end += ((u64)max_offset_upper << 32);
2575 	}
2576 
2577 	if (end < start) {
2578 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2579 		goto out;
2580 	}
2581 
2582 	if (ent_size != ent_offset - offset) {
2583 		dev_err(&dev->dev,
2584 			"EA Entry Size (%d) does not match length read (%d)\n",
2585 			ent_size, ent_offset - offset);
2586 		goto out;
2587 	}
2588 
2589 	res->name = pci_name(dev);
2590 	res->start = start;
2591 	res->end = end;
2592 	res->flags = flags;
2593 
2594 	if (bei <= PCI_EA_BEI_BAR5)
2595 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2596 			   bei, res, prop);
2597 	else if (bei == PCI_EA_BEI_ROM)
2598 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2599 			   res, prop);
2600 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2601 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2602 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2603 	else
2604 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2605 			   bei, res, prop);
2606 
2607 out:
2608 	return offset + ent_size;
2609 }
2610 
2611 /* Enhanced Allocation Initialization */
2612 void pci_ea_init(struct pci_dev *dev)
2613 {
2614 	int ea;
2615 	u8 num_ent;
2616 	int offset;
2617 	int i;
2618 
2619 	/* find PCI EA capability in list */
2620 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2621 	if (!ea)
2622 		return;
2623 
2624 	/* determine the number of entries */
2625 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2626 					&num_ent);
2627 	num_ent &= PCI_EA_NUM_ENT_MASK;
2628 
2629 	offset = ea + PCI_EA_FIRST_ENT;
2630 
2631 	/* Skip DWORD 2 for type 1 functions */
2632 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2633 		offset += 4;
2634 
2635 	/* parse each EA entry */
2636 	for (i = 0; i < num_ent; ++i)
2637 		offset = pci_ea_read(dev, offset);
2638 }
2639 
2640 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2641 	struct pci_cap_saved_state *new_cap)
2642 {
2643 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2644 }
2645 
2646 /**
2647  * _pci_add_cap_save_buffer - allocate buffer for saving given
2648  *                            capability registers
2649  * @dev: the PCI device
2650  * @cap: the capability to allocate the buffer for
2651  * @extended: Standard or Extended capability ID
2652  * @size: requested size of the buffer
2653  */
2654 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2655 				    bool extended, unsigned int size)
2656 {
2657 	int pos;
2658 	struct pci_cap_saved_state *save_state;
2659 
2660 	if (extended)
2661 		pos = pci_find_ext_capability(dev, cap);
2662 	else
2663 		pos = pci_find_capability(dev, cap);
2664 
2665 	if (!pos)
2666 		return 0;
2667 
2668 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2669 	if (!save_state)
2670 		return -ENOMEM;
2671 
2672 	save_state->cap.cap_nr = cap;
2673 	save_state->cap.cap_extended = extended;
2674 	save_state->cap.size = size;
2675 	pci_add_saved_cap(dev, save_state);
2676 
2677 	return 0;
2678 }
2679 
2680 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2681 {
2682 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2683 }
2684 
2685 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2686 {
2687 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2688 }
2689 
2690 /**
2691  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2692  * @dev: the PCI device
2693  */
2694 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2695 {
2696 	int error;
2697 
2698 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2699 					PCI_EXP_SAVE_REGS * sizeof(u16));
2700 	if (error)
2701 		dev_err(&dev->dev,
2702 			"unable to preallocate PCI Express save buffer\n");
2703 
2704 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2705 	if (error)
2706 		dev_err(&dev->dev,
2707 			"unable to preallocate PCI-X save buffer\n");
2708 
2709 	pci_allocate_vc_save_buffers(dev);
2710 }
2711 
2712 void pci_free_cap_save_buffers(struct pci_dev *dev)
2713 {
2714 	struct pci_cap_saved_state *tmp;
2715 	struct hlist_node *n;
2716 
2717 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2718 		kfree(tmp);
2719 }
2720 
2721 /**
2722  * pci_configure_ari - enable or disable ARI forwarding
2723  * @dev: the PCI device
2724  *
2725  * If @dev and its upstream bridge both support ARI, enable ARI in the
2726  * bridge.  Otherwise, disable ARI in the bridge.
2727  */
2728 void pci_configure_ari(struct pci_dev *dev)
2729 {
2730 	u32 cap;
2731 	struct pci_dev *bridge;
2732 
2733 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2734 		return;
2735 
2736 	bridge = dev->bus->self;
2737 	if (!bridge)
2738 		return;
2739 
2740 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2741 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2742 		return;
2743 
2744 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2745 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2746 					 PCI_EXP_DEVCTL2_ARI);
2747 		bridge->ari_enabled = 1;
2748 	} else {
2749 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2750 					   PCI_EXP_DEVCTL2_ARI);
2751 		bridge->ari_enabled = 0;
2752 	}
2753 }
2754 
2755 static int pci_acs_enable;
2756 
2757 /**
2758  * pci_request_acs - ask for ACS to be enabled if supported
2759  */
2760 void pci_request_acs(void)
2761 {
2762 	pci_acs_enable = 1;
2763 }
2764 
2765 /**
2766  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2767  * @dev: the PCI device
2768  */
2769 static void pci_std_enable_acs(struct pci_dev *dev)
2770 {
2771 	int pos;
2772 	u16 cap;
2773 	u16 ctrl;
2774 
2775 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2776 	if (!pos)
2777 		return;
2778 
2779 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2780 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2781 
2782 	/* Source Validation */
2783 	ctrl |= (cap & PCI_ACS_SV);
2784 
2785 	/* P2P Request Redirect */
2786 	ctrl |= (cap & PCI_ACS_RR);
2787 
2788 	/* P2P Completion Redirect */
2789 	ctrl |= (cap & PCI_ACS_CR);
2790 
2791 	/* Upstream Forwarding */
2792 	ctrl |= (cap & PCI_ACS_UF);
2793 
2794 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2795 }
2796 
2797 /**
2798  * pci_enable_acs - enable ACS if hardware support it
2799  * @dev: the PCI device
2800  */
2801 void pci_enable_acs(struct pci_dev *dev)
2802 {
2803 	if (!pci_acs_enable)
2804 		return;
2805 
2806 	if (!pci_dev_specific_enable_acs(dev))
2807 		return;
2808 
2809 	pci_std_enable_acs(dev);
2810 }
2811 
2812 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2813 {
2814 	int pos;
2815 	u16 cap, ctrl;
2816 
2817 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2818 	if (!pos)
2819 		return false;
2820 
2821 	/*
2822 	 * Except for egress control, capabilities are either required
2823 	 * or only required if controllable.  Features missing from the
2824 	 * capability field can therefore be assumed as hard-wired enabled.
2825 	 */
2826 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2827 	acs_flags &= (cap | PCI_ACS_EC);
2828 
2829 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2830 	return (ctrl & acs_flags) == acs_flags;
2831 }
2832 
2833 /**
2834  * pci_acs_enabled - test ACS against required flags for a given device
2835  * @pdev: device to test
2836  * @acs_flags: required PCI ACS flags
2837  *
2838  * Return true if the device supports the provided flags.  Automatically
2839  * filters out flags that are not implemented on multifunction devices.
2840  *
2841  * Note that this interface checks the effective ACS capabilities of the
2842  * device rather than the actual capabilities.  For instance, most single
2843  * function endpoints are not required to support ACS because they have no
2844  * opportunity for peer-to-peer access.  We therefore return 'true'
2845  * regardless of whether the device exposes an ACS capability.  This makes
2846  * it much easier for callers of this function to ignore the actual type
2847  * or topology of the device when testing ACS support.
2848  */
2849 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2850 {
2851 	int ret;
2852 
2853 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2854 	if (ret >= 0)
2855 		return ret > 0;
2856 
2857 	/*
2858 	 * Conventional PCI and PCI-X devices never support ACS, either
2859 	 * effectively or actually.  The shared bus topology implies that
2860 	 * any device on the bus can receive or snoop DMA.
2861 	 */
2862 	if (!pci_is_pcie(pdev))
2863 		return false;
2864 
2865 	switch (pci_pcie_type(pdev)) {
2866 	/*
2867 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2868 	 * but since their primary interface is PCI/X, we conservatively
2869 	 * handle them as we would a non-PCIe device.
2870 	 */
2871 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2872 	/*
2873 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2874 	 * applicable... must never implement an ACS Extended Capability...".
2875 	 * This seems arbitrary, but we take a conservative interpretation
2876 	 * of this statement.
2877 	 */
2878 	case PCI_EXP_TYPE_PCI_BRIDGE:
2879 	case PCI_EXP_TYPE_RC_EC:
2880 		return false;
2881 	/*
2882 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2883 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2884 	 * regardless of whether they are single- or multi-function devices.
2885 	 */
2886 	case PCI_EXP_TYPE_DOWNSTREAM:
2887 	case PCI_EXP_TYPE_ROOT_PORT:
2888 		return pci_acs_flags_enabled(pdev, acs_flags);
2889 	/*
2890 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2891 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2892 	 * capabilities, but only when they are part of a multifunction
2893 	 * device.  The footnote for section 6.12 indicates the specific
2894 	 * PCIe types included here.
2895 	 */
2896 	case PCI_EXP_TYPE_ENDPOINT:
2897 	case PCI_EXP_TYPE_UPSTREAM:
2898 	case PCI_EXP_TYPE_LEG_END:
2899 	case PCI_EXP_TYPE_RC_END:
2900 		if (!pdev->multifunction)
2901 			break;
2902 
2903 		return pci_acs_flags_enabled(pdev, acs_flags);
2904 	}
2905 
2906 	/*
2907 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2908 	 * to single function devices with the exception of downstream ports.
2909 	 */
2910 	return true;
2911 }
2912 
2913 /**
2914  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2915  * @start: starting downstream device
2916  * @end: ending upstream device or NULL to search to the root bus
2917  * @acs_flags: required flags
2918  *
2919  * Walk up a device tree from start to end testing PCI ACS support.  If
2920  * any step along the way does not support the required flags, return false.
2921  */
2922 bool pci_acs_path_enabled(struct pci_dev *start,
2923 			  struct pci_dev *end, u16 acs_flags)
2924 {
2925 	struct pci_dev *pdev, *parent = start;
2926 
2927 	do {
2928 		pdev = parent;
2929 
2930 		if (!pci_acs_enabled(pdev, acs_flags))
2931 			return false;
2932 
2933 		if (pci_is_root_bus(pdev->bus))
2934 			return (end == NULL);
2935 
2936 		parent = pdev->bus->self;
2937 	} while (pdev != end);
2938 
2939 	return true;
2940 }
2941 
2942 /**
2943  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2944  * @dev: the PCI device
2945  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2946  *
2947  * Perform INTx swizzling for a device behind one level of bridge.  This is
2948  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2949  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2950  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2951  * the PCI Express Base Specification, Revision 2.1)
2952  */
2953 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2954 {
2955 	int slot;
2956 
2957 	if (pci_ari_enabled(dev->bus))
2958 		slot = 0;
2959 	else
2960 		slot = PCI_SLOT(dev->devfn);
2961 
2962 	return (((pin - 1) + slot) % 4) + 1;
2963 }
2964 
2965 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2966 {
2967 	u8 pin;
2968 
2969 	pin = dev->pin;
2970 	if (!pin)
2971 		return -1;
2972 
2973 	while (!pci_is_root_bus(dev->bus)) {
2974 		pin = pci_swizzle_interrupt_pin(dev, pin);
2975 		dev = dev->bus->self;
2976 	}
2977 	*bridge = dev;
2978 	return pin;
2979 }
2980 
2981 /**
2982  * pci_common_swizzle - swizzle INTx all the way to root bridge
2983  * @dev: the PCI device
2984  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2985  *
2986  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2987  * bridges all the way up to a PCI root bus.
2988  */
2989 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2990 {
2991 	u8 pin = *pinp;
2992 
2993 	while (!pci_is_root_bus(dev->bus)) {
2994 		pin = pci_swizzle_interrupt_pin(dev, pin);
2995 		dev = dev->bus->self;
2996 	}
2997 	*pinp = pin;
2998 	return PCI_SLOT(dev->devfn);
2999 }
3000 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3001 
3002 /**
3003  *	pci_release_region - Release a PCI bar
3004  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3005  *	@bar: BAR to release
3006  *
3007  *	Releases the PCI I/O and memory resources previously reserved by a
3008  *	successful call to pci_request_region.  Call this function only
3009  *	after all use of the PCI regions has ceased.
3010  */
3011 void pci_release_region(struct pci_dev *pdev, int bar)
3012 {
3013 	struct pci_devres *dr;
3014 
3015 	if (pci_resource_len(pdev, bar) == 0)
3016 		return;
3017 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3018 		release_region(pci_resource_start(pdev, bar),
3019 				pci_resource_len(pdev, bar));
3020 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3021 		release_mem_region(pci_resource_start(pdev, bar),
3022 				pci_resource_len(pdev, bar));
3023 
3024 	dr = find_pci_dr(pdev);
3025 	if (dr)
3026 		dr->region_mask &= ~(1 << bar);
3027 }
3028 EXPORT_SYMBOL(pci_release_region);
3029 
3030 /**
3031  *	__pci_request_region - Reserved PCI I/O and memory resource
3032  *	@pdev: PCI device whose resources are to be reserved
3033  *	@bar: BAR to be reserved
3034  *	@res_name: Name to be associated with resource.
3035  *	@exclusive: whether the region access is exclusive or not
3036  *
3037  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3038  *	being reserved by owner @res_name.  Do not access any
3039  *	address inside the PCI regions unless this call returns
3040  *	successfully.
3041  *
3042  *	If @exclusive is set, then the region is marked so that userspace
3043  *	is explicitly not allowed to map the resource via /dev/mem or
3044  *	sysfs MMIO access.
3045  *
3046  *	Returns 0 on success, or %EBUSY on error.  A warning
3047  *	message is also printed on failure.
3048  */
3049 static int __pci_request_region(struct pci_dev *pdev, int bar,
3050 				const char *res_name, int exclusive)
3051 {
3052 	struct pci_devres *dr;
3053 
3054 	if (pci_resource_len(pdev, bar) == 0)
3055 		return 0;
3056 
3057 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3058 		if (!request_region(pci_resource_start(pdev, bar),
3059 			    pci_resource_len(pdev, bar), res_name))
3060 			goto err_out;
3061 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3062 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3063 					pci_resource_len(pdev, bar), res_name,
3064 					exclusive))
3065 			goto err_out;
3066 	}
3067 
3068 	dr = find_pci_dr(pdev);
3069 	if (dr)
3070 		dr->region_mask |= 1 << bar;
3071 
3072 	return 0;
3073 
3074 err_out:
3075 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3076 		 &pdev->resource[bar]);
3077 	return -EBUSY;
3078 }
3079 
3080 /**
3081  *	pci_request_region - Reserve PCI I/O and memory resource
3082  *	@pdev: PCI device whose resources are to be reserved
3083  *	@bar: BAR to be reserved
3084  *	@res_name: Name to be associated with resource
3085  *
3086  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3087  *	being reserved by owner @res_name.  Do not access any
3088  *	address inside the PCI regions unless this call returns
3089  *	successfully.
3090  *
3091  *	Returns 0 on success, or %EBUSY on error.  A warning
3092  *	message is also printed on failure.
3093  */
3094 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3095 {
3096 	return __pci_request_region(pdev, bar, res_name, 0);
3097 }
3098 EXPORT_SYMBOL(pci_request_region);
3099 
3100 /**
3101  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3102  *	@pdev: PCI device whose resources are to be reserved
3103  *	@bar: BAR to be reserved
3104  *	@res_name: Name to be associated with resource.
3105  *
3106  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3107  *	being reserved by owner @res_name.  Do not access any
3108  *	address inside the PCI regions unless this call returns
3109  *	successfully.
3110  *
3111  *	Returns 0 on success, or %EBUSY on error.  A warning
3112  *	message is also printed on failure.
3113  *
3114  *	The key difference that _exclusive makes it that userspace is
3115  *	explicitly not allowed to map the resource via /dev/mem or
3116  *	sysfs.
3117  */
3118 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3119 				 const char *res_name)
3120 {
3121 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3122 }
3123 EXPORT_SYMBOL(pci_request_region_exclusive);
3124 
3125 /**
3126  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3127  * @pdev: PCI device whose resources were previously reserved
3128  * @bars: Bitmask of BARs to be released
3129  *
3130  * Release selected PCI I/O and memory resources previously reserved.
3131  * Call this function only after all use of the PCI regions has ceased.
3132  */
3133 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3134 {
3135 	int i;
3136 
3137 	for (i = 0; i < 6; i++)
3138 		if (bars & (1 << i))
3139 			pci_release_region(pdev, i);
3140 }
3141 EXPORT_SYMBOL(pci_release_selected_regions);
3142 
3143 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3144 					  const char *res_name, int excl)
3145 {
3146 	int i;
3147 
3148 	for (i = 0; i < 6; i++)
3149 		if (bars & (1 << i))
3150 			if (__pci_request_region(pdev, i, res_name, excl))
3151 				goto err_out;
3152 	return 0;
3153 
3154 err_out:
3155 	while (--i >= 0)
3156 		if (bars & (1 << i))
3157 			pci_release_region(pdev, i);
3158 
3159 	return -EBUSY;
3160 }
3161 
3162 
3163 /**
3164  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3165  * @pdev: PCI device whose resources are to be reserved
3166  * @bars: Bitmask of BARs to be requested
3167  * @res_name: Name to be associated with resource
3168  */
3169 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3170 				 const char *res_name)
3171 {
3172 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3173 }
3174 EXPORT_SYMBOL(pci_request_selected_regions);
3175 
3176 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3177 					   const char *res_name)
3178 {
3179 	return __pci_request_selected_regions(pdev, bars, res_name,
3180 			IORESOURCE_EXCLUSIVE);
3181 }
3182 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3183 
3184 /**
3185  *	pci_release_regions - Release reserved PCI I/O and memory resources
3186  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3187  *
3188  *	Releases all PCI I/O and memory resources previously reserved by a
3189  *	successful call to pci_request_regions.  Call this function only
3190  *	after all use of the PCI regions has ceased.
3191  */
3192 
3193 void pci_release_regions(struct pci_dev *pdev)
3194 {
3195 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3196 }
3197 EXPORT_SYMBOL(pci_release_regions);
3198 
3199 /**
3200  *	pci_request_regions - Reserved PCI I/O and memory resources
3201  *	@pdev: PCI device whose resources are to be reserved
3202  *	@res_name: Name to be associated with resource.
3203  *
3204  *	Mark all PCI regions associated with PCI device @pdev as
3205  *	being reserved by owner @res_name.  Do not access any
3206  *	address inside the PCI regions unless this call returns
3207  *	successfully.
3208  *
3209  *	Returns 0 on success, or %EBUSY on error.  A warning
3210  *	message is also printed on failure.
3211  */
3212 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3213 {
3214 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3215 }
3216 EXPORT_SYMBOL(pci_request_regions);
3217 
3218 /**
3219  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3220  *	@pdev: PCI device whose resources are to be reserved
3221  *	@res_name: Name to be associated with resource.
3222  *
3223  *	Mark all PCI regions associated with PCI device @pdev as
3224  *	being reserved by owner @res_name.  Do not access any
3225  *	address inside the PCI regions unless this call returns
3226  *	successfully.
3227  *
3228  *	pci_request_regions_exclusive() will mark the region so that
3229  *	/dev/mem and the sysfs MMIO access will not be allowed.
3230  *
3231  *	Returns 0 on success, or %EBUSY on error.  A warning
3232  *	message is also printed on failure.
3233  */
3234 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3235 {
3236 	return pci_request_selected_regions_exclusive(pdev,
3237 					((1 << 6) - 1), res_name);
3238 }
3239 EXPORT_SYMBOL(pci_request_regions_exclusive);
3240 
3241 #ifdef PCI_IOBASE
3242 struct io_range {
3243 	struct list_head list;
3244 	phys_addr_t start;
3245 	resource_size_t size;
3246 };
3247 
3248 static LIST_HEAD(io_range_list);
3249 static DEFINE_SPINLOCK(io_range_lock);
3250 #endif
3251 
3252 /*
3253  * Record the PCI IO range (expressed as CPU physical address + size).
3254  * Return a negative value if an error has occured, zero otherwise
3255  */
3256 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3257 {
3258 	int err = 0;
3259 
3260 #ifdef PCI_IOBASE
3261 	struct io_range *range;
3262 	resource_size_t allocated_size = 0;
3263 
3264 	/* check if the range hasn't been previously recorded */
3265 	spin_lock(&io_range_lock);
3266 	list_for_each_entry(range, &io_range_list, list) {
3267 		if (addr >= range->start && addr + size <= range->start + size) {
3268 			/* range already registered, bail out */
3269 			goto end_register;
3270 		}
3271 		allocated_size += range->size;
3272 	}
3273 
3274 	/* range not registed yet, check for available space */
3275 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3276 		/* if it's too big check if 64K space can be reserved */
3277 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3278 			err = -E2BIG;
3279 			goto end_register;
3280 		}
3281 
3282 		size = SZ_64K;
3283 		pr_warn("Requested IO range too big, new size set to 64K\n");
3284 	}
3285 
3286 	/* add the range to the list */
3287 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3288 	if (!range) {
3289 		err = -ENOMEM;
3290 		goto end_register;
3291 	}
3292 
3293 	range->start = addr;
3294 	range->size = size;
3295 
3296 	list_add_tail(&range->list, &io_range_list);
3297 
3298 end_register:
3299 	spin_unlock(&io_range_lock);
3300 #endif
3301 
3302 	return err;
3303 }
3304 
3305 phys_addr_t pci_pio_to_address(unsigned long pio)
3306 {
3307 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3308 
3309 #ifdef PCI_IOBASE
3310 	struct io_range *range;
3311 	resource_size_t allocated_size = 0;
3312 
3313 	if (pio > IO_SPACE_LIMIT)
3314 		return address;
3315 
3316 	spin_lock(&io_range_lock);
3317 	list_for_each_entry(range, &io_range_list, list) {
3318 		if (pio >= allocated_size && pio < allocated_size + range->size) {
3319 			address = range->start + pio - allocated_size;
3320 			break;
3321 		}
3322 		allocated_size += range->size;
3323 	}
3324 	spin_unlock(&io_range_lock);
3325 #endif
3326 
3327 	return address;
3328 }
3329 
3330 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3331 {
3332 #ifdef PCI_IOBASE
3333 	struct io_range *res;
3334 	resource_size_t offset = 0;
3335 	unsigned long addr = -1;
3336 
3337 	spin_lock(&io_range_lock);
3338 	list_for_each_entry(res, &io_range_list, list) {
3339 		if (address >= res->start && address < res->start + res->size) {
3340 			addr = address - res->start + offset;
3341 			break;
3342 		}
3343 		offset += res->size;
3344 	}
3345 	spin_unlock(&io_range_lock);
3346 
3347 	return addr;
3348 #else
3349 	if (address > IO_SPACE_LIMIT)
3350 		return (unsigned long)-1;
3351 
3352 	return (unsigned long) address;
3353 #endif
3354 }
3355 
3356 /**
3357  *	pci_remap_iospace - Remap the memory mapped I/O space
3358  *	@res: Resource describing the I/O space
3359  *	@phys_addr: physical address of range to be mapped
3360  *
3361  *	Remap the memory mapped I/O space described by the @res
3362  *	and the CPU physical address @phys_addr into virtual address space.
3363  *	Only architectures that have memory mapped IO functions defined
3364  *	(and the PCI_IOBASE value defined) should call this function.
3365  */
3366 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3367 {
3368 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3369 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3370 
3371 	if (!(res->flags & IORESOURCE_IO))
3372 		return -EINVAL;
3373 
3374 	if (res->end > IO_SPACE_LIMIT)
3375 		return -EINVAL;
3376 
3377 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3378 				  pgprot_device(PAGE_KERNEL));
3379 #else
3380 	/* this architecture does not have memory mapped I/O space,
3381 	   so this function should never be called */
3382 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3383 	return -ENODEV;
3384 #endif
3385 }
3386 
3387 /**
3388  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3389  *	@res: resource to be unmapped
3390  *
3391  *	Unmap the CPU virtual address @res from virtual address space.
3392  *	Only architectures that have memory mapped IO functions defined
3393  *	(and the PCI_IOBASE value defined) should call this function.
3394  */
3395 void pci_unmap_iospace(struct resource *res)
3396 {
3397 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3398 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3399 
3400 	unmap_kernel_range(vaddr, resource_size(res));
3401 #endif
3402 }
3403 
3404 static void __pci_set_master(struct pci_dev *dev, bool enable)
3405 {
3406 	u16 old_cmd, cmd;
3407 
3408 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3409 	if (enable)
3410 		cmd = old_cmd | PCI_COMMAND_MASTER;
3411 	else
3412 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3413 	if (cmd != old_cmd) {
3414 		dev_dbg(&dev->dev, "%s bus mastering\n",
3415 			enable ? "enabling" : "disabling");
3416 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3417 	}
3418 	dev->is_busmaster = enable;
3419 }
3420 
3421 /**
3422  * pcibios_setup - process "pci=" kernel boot arguments
3423  * @str: string used to pass in "pci=" kernel boot arguments
3424  *
3425  * Process kernel boot arguments.  This is the default implementation.
3426  * Architecture specific implementations can override this as necessary.
3427  */
3428 char * __weak __init pcibios_setup(char *str)
3429 {
3430 	return str;
3431 }
3432 
3433 /**
3434  * pcibios_set_master - enable PCI bus-mastering for device dev
3435  * @dev: the PCI device to enable
3436  *
3437  * Enables PCI bus-mastering for the device.  This is the default
3438  * implementation.  Architecture specific implementations can override
3439  * this if necessary.
3440  */
3441 void __weak pcibios_set_master(struct pci_dev *dev)
3442 {
3443 	u8 lat;
3444 
3445 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3446 	if (pci_is_pcie(dev))
3447 		return;
3448 
3449 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3450 	if (lat < 16)
3451 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3452 	else if (lat > pcibios_max_latency)
3453 		lat = pcibios_max_latency;
3454 	else
3455 		return;
3456 
3457 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3458 }
3459 
3460 /**
3461  * pci_set_master - enables bus-mastering for device dev
3462  * @dev: the PCI device to enable
3463  *
3464  * Enables bus-mastering on the device and calls pcibios_set_master()
3465  * to do the needed arch specific settings.
3466  */
3467 void pci_set_master(struct pci_dev *dev)
3468 {
3469 	__pci_set_master(dev, true);
3470 	pcibios_set_master(dev);
3471 }
3472 EXPORT_SYMBOL(pci_set_master);
3473 
3474 /**
3475  * pci_clear_master - disables bus-mastering for device dev
3476  * @dev: the PCI device to disable
3477  */
3478 void pci_clear_master(struct pci_dev *dev)
3479 {
3480 	__pci_set_master(dev, false);
3481 }
3482 EXPORT_SYMBOL(pci_clear_master);
3483 
3484 /**
3485  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3486  * @dev: the PCI device for which MWI is to be enabled
3487  *
3488  * Helper function for pci_set_mwi.
3489  * Originally copied from drivers/net/acenic.c.
3490  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3491  *
3492  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3493  */
3494 int pci_set_cacheline_size(struct pci_dev *dev)
3495 {
3496 	u8 cacheline_size;
3497 
3498 	if (!pci_cache_line_size)
3499 		return -EINVAL;
3500 
3501 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3502 	   equal to or multiple of the right value. */
3503 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3504 	if (cacheline_size >= pci_cache_line_size &&
3505 	    (cacheline_size % pci_cache_line_size) == 0)
3506 		return 0;
3507 
3508 	/* Write the correct value. */
3509 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3510 	/* Read it back. */
3511 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3512 	if (cacheline_size == pci_cache_line_size)
3513 		return 0;
3514 
3515 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3516 		   pci_cache_line_size << 2);
3517 
3518 	return -EINVAL;
3519 }
3520 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3521 
3522 /**
3523  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3524  * @dev: the PCI device for which MWI is enabled
3525  *
3526  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3527  *
3528  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3529  */
3530 int pci_set_mwi(struct pci_dev *dev)
3531 {
3532 #ifdef PCI_DISABLE_MWI
3533 	return 0;
3534 #else
3535 	int rc;
3536 	u16 cmd;
3537 
3538 	rc = pci_set_cacheline_size(dev);
3539 	if (rc)
3540 		return rc;
3541 
3542 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3543 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3544 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3545 		cmd |= PCI_COMMAND_INVALIDATE;
3546 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3547 	}
3548 	return 0;
3549 #endif
3550 }
3551 EXPORT_SYMBOL(pci_set_mwi);
3552 
3553 /**
3554  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3555  * @dev: the PCI device for which MWI is enabled
3556  *
3557  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3558  * Callers are not required to check the return value.
3559  *
3560  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3561  */
3562 int pci_try_set_mwi(struct pci_dev *dev)
3563 {
3564 #ifdef PCI_DISABLE_MWI
3565 	return 0;
3566 #else
3567 	return pci_set_mwi(dev);
3568 #endif
3569 }
3570 EXPORT_SYMBOL(pci_try_set_mwi);
3571 
3572 /**
3573  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3574  * @dev: the PCI device to disable
3575  *
3576  * Disables PCI Memory-Write-Invalidate transaction on the device
3577  */
3578 void pci_clear_mwi(struct pci_dev *dev)
3579 {
3580 #ifndef PCI_DISABLE_MWI
3581 	u16 cmd;
3582 
3583 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3584 	if (cmd & PCI_COMMAND_INVALIDATE) {
3585 		cmd &= ~PCI_COMMAND_INVALIDATE;
3586 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3587 	}
3588 #endif
3589 }
3590 EXPORT_SYMBOL(pci_clear_mwi);
3591 
3592 /**
3593  * pci_intx - enables/disables PCI INTx for device dev
3594  * @pdev: the PCI device to operate on
3595  * @enable: boolean: whether to enable or disable PCI INTx
3596  *
3597  * Enables/disables PCI INTx for device dev
3598  */
3599 void pci_intx(struct pci_dev *pdev, int enable)
3600 {
3601 	u16 pci_command, new;
3602 
3603 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3604 
3605 	if (enable)
3606 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3607 	else
3608 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3609 
3610 	if (new != pci_command) {
3611 		struct pci_devres *dr;
3612 
3613 		pci_write_config_word(pdev, PCI_COMMAND, new);
3614 
3615 		dr = find_pci_dr(pdev);
3616 		if (dr && !dr->restore_intx) {
3617 			dr->restore_intx = 1;
3618 			dr->orig_intx = !enable;
3619 		}
3620 	}
3621 }
3622 EXPORT_SYMBOL_GPL(pci_intx);
3623 
3624 /**
3625  * pci_intx_mask_supported - probe for INTx masking support
3626  * @dev: the PCI device to operate on
3627  *
3628  * Check if the device dev support INTx masking via the config space
3629  * command word.
3630  */
3631 bool pci_intx_mask_supported(struct pci_dev *dev)
3632 {
3633 	bool mask_supported = false;
3634 	u16 orig, new;
3635 
3636 	if (dev->broken_intx_masking)
3637 		return false;
3638 
3639 	pci_cfg_access_lock(dev);
3640 
3641 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3642 	pci_write_config_word(dev, PCI_COMMAND,
3643 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3644 	pci_read_config_word(dev, PCI_COMMAND, &new);
3645 
3646 	/*
3647 	 * There's no way to protect against hardware bugs or detect them
3648 	 * reliably, but as long as we know what the value should be, let's
3649 	 * go ahead and check it.
3650 	 */
3651 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3652 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3653 			orig, new);
3654 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3655 		mask_supported = true;
3656 		pci_write_config_word(dev, PCI_COMMAND, orig);
3657 	}
3658 
3659 	pci_cfg_access_unlock(dev);
3660 	return mask_supported;
3661 }
3662 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3663 
3664 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3665 {
3666 	struct pci_bus *bus = dev->bus;
3667 	bool mask_updated = true;
3668 	u32 cmd_status_dword;
3669 	u16 origcmd, newcmd;
3670 	unsigned long flags;
3671 	bool irq_pending;
3672 
3673 	/*
3674 	 * We do a single dword read to retrieve both command and status.
3675 	 * Document assumptions that make this possible.
3676 	 */
3677 	BUILD_BUG_ON(PCI_COMMAND % 4);
3678 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3679 
3680 	raw_spin_lock_irqsave(&pci_lock, flags);
3681 
3682 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3683 
3684 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3685 
3686 	/*
3687 	 * Check interrupt status register to see whether our device
3688 	 * triggered the interrupt (when masking) or the next IRQ is
3689 	 * already pending (when unmasking).
3690 	 */
3691 	if (mask != irq_pending) {
3692 		mask_updated = false;
3693 		goto done;
3694 	}
3695 
3696 	origcmd = cmd_status_dword;
3697 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3698 	if (mask)
3699 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3700 	if (newcmd != origcmd)
3701 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3702 
3703 done:
3704 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3705 
3706 	return mask_updated;
3707 }
3708 
3709 /**
3710  * pci_check_and_mask_intx - mask INTx on pending interrupt
3711  * @dev: the PCI device to operate on
3712  *
3713  * Check if the device dev has its INTx line asserted, mask it and
3714  * return true in that case. False is returned if not interrupt was
3715  * pending.
3716  */
3717 bool pci_check_and_mask_intx(struct pci_dev *dev)
3718 {
3719 	return pci_check_and_set_intx_mask(dev, true);
3720 }
3721 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3722 
3723 /**
3724  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3725  * @dev: the PCI device to operate on
3726  *
3727  * Check if the device dev has its INTx line asserted, unmask it if not
3728  * and return true. False is returned and the mask remains active if
3729  * there was still an interrupt pending.
3730  */
3731 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3732 {
3733 	return pci_check_and_set_intx_mask(dev, false);
3734 }
3735 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3736 
3737 /**
3738  * pci_wait_for_pending_transaction - waits for pending transaction
3739  * @dev: the PCI device to operate on
3740  *
3741  * Return 0 if transaction is pending 1 otherwise.
3742  */
3743 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3744 {
3745 	if (!pci_is_pcie(dev))
3746 		return 1;
3747 
3748 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3749 				    PCI_EXP_DEVSTA_TRPND);
3750 }
3751 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3752 
3753 /*
3754  * We should only need to wait 100ms after FLR, but some devices take longer.
3755  * Wait for up to 1000ms for config space to return something other than -1.
3756  * Intel IGD requires this when an LCD panel is attached.  We read the 2nd
3757  * dword because VFs don't implement the 1st dword.
3758  */
3759 static void pci_flr_wait(struct pci_dev *dev)
3760 {
3761 	int i = 0;
3762 	u32 id;
3763 
3764 	do {
3765 		msleep(100);
3766 		pci_read_config_dword(dev, PCI_COMMAND, &id);
3767 	} while (i++ < 10 && id == ~0);
3768 
3769 	if (id == ~0)
3770 		dev_warn(&dev->dev, "Failed to return from FLR\n");
3771 	else if (i > 1)
3772 		dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3773 			 (i - 1) * 100);
3774 }
3775 
3776 static int pcie_flr(struct pci_dev *dev, int probe)
3777 {
3778 	u32 cap;
3779 
3780 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3781 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3782 		return -ENOTTY;
3783 
3784 	if (probe)
3785 		return 0;
3786 
3787 	if (!pci_wait_for_pending_transaction(dev))
3788 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3789 
3790 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3791 	pci_flr_wait(dev);
3792 	return 0;
3793 }
3794 
3795 static int pci_af_flr(struct pci_dev *dev, int probe)
3796 {
3797 	int pos;
3798 	u8 cap;
3799 
3800 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3801 	if (!pos)
3802 		return -ENOTTY;
3803 
3804 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3805 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3806 		return -ENOTTY;
3807 
3808 	if (probe)
3809 		return 0;
3810 
3811 	/*
3812 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3813 	 * is used, so we use the conrol offset rather than status and shift
3814 	 * the test bit to match.
3815 	 */
3816 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3817 				 PCI_AF_STATUS_TP << 8))
3818 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3819 
3820 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3821 	pci_flr_wait(dev);
3822 	return 0;
3823 }
3824 
3825 /**
3826  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3827  * @dev: Device to reset.
3828  * @probe: If set, only check if the device can be reset this way.
3829  *
3830  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3831  * unset, it will be reinitialized internally when going from PCI_D3hot to
3832  * PCI_D0.  If that's the case and the device is not in a low-power state
3833  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3834  *
3835  * NOTE: This causes the caller to sleep for twice the device power transition
3836  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3837  * by default (i.e. unless the @dev's d3_delay field has a different value).
3838  * Moreover, only devices in D0 can be reset by this function.
3839  */
3840 static int pci_pm_reset(struct pci_dev *dev, int probe)
3841 {
3842 	u16 csr;
3843 
3844 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3845 		return -ENOTTY;
3846 
3847 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3848 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3849 		return -ENOTTY;
3850 
3851 	if (probe)
3852 		return 0;
3853 
3854 	if (dev->current_state != PCI_D0)
3855 		return -EINVAL;
3856 
3857 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3858 	csr |= PCI_D3hot;
3859 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3860 	pci_dev_d3_sleep(dev);
3861 
3862 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3863 	csr |= PCI_D0;
3864 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3865 	pci_dev_d3_sleep(dev);
3866 
3867 	return 0;
3868 }
3869 
3870 void pci_reset_secondary_bus(struct pci_dev *dev)
3871 {
3872 	u16 ctrl;
3873 
3874 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3875 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3876 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3877 	/*
3878 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3879 	 * this to 2ms to ensure that we meet the minimum requirement.
3880 	 */
3881 	msleep(2);
3882 
3883 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3884 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3885 
3886 	/*
3887 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3888 	 * Assuming a minimum 33MHz clock this results in a 1s
3889 	 * delay before we can consider subordinate devices to
3890 	 * be re-initialized.  PCIe has some ways to shorten this,
3891 	 * but we don't make use of them yet.
3892 	 */
3893 	ssleep(1);
3894 }
3895 
3896 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3897 {
3898 	pci_reset_secondary_bus(dev);
3899 }
3900 
3901 /**
3902  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3903  * @dev: Bridge device
3904  *
3905  * Use the bridge control register to assert reset on the secondary bus.
3906  * Devices on the secondary bus are left in power-on state.
3907  */
3908 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3909 {
3910 	pcibios_reset_secondary_bus(dev);
3911 }
3912 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3913 
3914 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3915 {
3916 	struct pci_dev *pdev;
3917 
3918 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3919 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3920 		return -ENOTTY;
3921 
3922 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3923 		if (pdev != dev)
3924 			return -ENOTTY;
3925 
3926 	if (probe)
3927 		return 0;
3928 
3929 	pci_reset_bridge_secondary_bus(dev->bus->self);
3930 
3931 	return 0;
3932 }
3933 
3934 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3935 {
3936 	int rc = -ENOTTY;
3937 
3938 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3939 		return rc;
3940 
3941 	if (hotplug->ops->reset_slot)
3942 		rc = hotplug->ops->reset_slot(hotplug, probe);
3943 
3944 	module_put(hotplug->ops->owner);
3945 
3946 	return rc;
3947 }
3948 
3949 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3950 {
3951 	struct pci_dev *pdev;
3952 
3953 	if (dev->subordinate || !dev->slot ||
3954 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3955 		return -ENOTTY;
3956 
3957 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3958 		if (pdev != dev && pdev->slot == dev->slot)
3959 			return -ENOTTY;
3960 
3961 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3962 }
3963 
3964 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3965 {
3966 	int rc;
3967 
3968 	might_sleep();
3969 
3970 	rc = pci_dev_specific_reset(dev, probe);
3971 	if (rc != -ENOTTY)
3972 		goto done;
3973 
3974 	rc = pcie_flr(dev, probe);
3975 	if (rc != -ENOTTY)
3976 		goto done;
3977 
3978 	rc = pci_af_flr(dev, probe);
3979 	if (rc != -ENOTTY)
3980 		goto done;
3981 
3982 	rc = pci_pm_reset(dev, probe);
3983 	if (rc != -ENOTTY)
3984 		goto done;
3985 
3986 	rc = pci_dev_reset_slot_function(dev, probe);
3987 	if (rc != -ENOTTY)
3988 		goto done;
3989 
3990 	rc = pci_parent_bus_reset(dev, probe);
3991 done:
3992 	return rc;
3993 }
3994 
3995 static void pci_dev_lock(struct pci_dev *dev)
3996 {
3997 	pci_cfg_access_lock(dev);
3998 	/* block PM suspend, driver probe, etc. */
3999 	device_lock(&dev->dev);
4000 }
4001 
4002 /* Return 1 on successful lock, 0 on contention */
4003 static int pci_dev_trylock(struct pci_dev *dev)
4004 {
4005 	if (pci_cfg_access_trylock(dev)) {
4006 		if (device_trylock(&dev->dev))
4007 			return 1;
4008 		pci_cfg_access_unlock(dev);
4009 	}
4010 
4011 	return 0;
4012 }
4013 
4014 static void pci_dev_unlock(struct pci_dev *dev)
4015 {
4016 	device_unlock(&dev->dev);
4017 	pci_cfg_access_unlock(dev);
4018 }
4019 
4020 /**
4021  * pci_reset_notify - notify device driver of reset
4022  * @dev: device to be notified of reset
4023  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4024  *           completed
4025  *
4026  * Must be called prior to device access being disabled and after device
4027  * access is restored.
4028  */
4029 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4030 {
4031 	const struct pci_error_handlers *err_handler =
4032 			dev->driver ? dev->driver->err_handler : NULL;
4033 	if (err_handler && err_handler->reset_notify)
4034 		err_handler->reset_notify(dev, prepare);
4035 }
4036 
4037 static void pci_dev_save_and_disable(struct pci_dev *dev)
4038 {
4039 	pci_reset_notify(dev, true);
4040 
4041 	/*
4042 	 * Wake-up device prior to save.  PM registers default to D0 after
4043 	 * reset and a simple register restore doesn't reliably return
4044 	 * to a non-D0 state anyway.
4045 	 */
4046 	pci_set_power_state(dev, PCI_D0);
4047 
4048 	pci_save_state(dev);
4049 	/*
4050 	 * Disable the device by clearing the Command register, except for
4051 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4052 	 * BARs, but also prevents the device from being Bus Master, preventing
4053 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4054 	 * compliant devices, INTx-disable prevents legacy interrupts.
4055 	 */
4056 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4057 }
4058 
4059 static void pci_dev_restore(struct pci_dev *dev)
4060 {
4061 	pci_restore_state(dev);
4062 	pci_reset_notify(dev, false);
4063 }
4064 
4065 static int pci_dev_reset(struct pci_dev *dev, int probe)
4066 {
4067 	int rc;
4068 
4069 	if (!probe)
4070 		pci_dev_lock(dev);
4071 
4072 	rc = __pci_dev_reset(dev, probe);
4073 
4074 	if (!probe)
4075 		pci_dev_unlock(dev);
4076 
4077 	return rc;
4078 }
4079 
4080 /**
4081  * __pci_reset_function - reset a PCI device function
4082  * @dev: PCI device to reset
4083  *
4084  * Some devices allow an individual function to be reset without affecting
4085  * other functions in the same device.  The PCI device must be responsive
4086  * to PCI config space in order to use this function.
4087  *
4088  * The device function is presumed to be unused when this function is called.
4089  * Resetting the device will make the contents of PCI configuration space
4090  * random, so any caller of this must be prepared to reinitialise the
4091  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4092  * etc.
4093  *
4094  * Returns 0 if the device function was successfully reset or negative if the
4095  * device doesn't support resetting a single function.
4096  */
4097 int __pci_reset_function(struct pci_dev *dev)
4098 {
4099 	return pci_dev_reset(dev, 0);
4100 }
4101 EXPORT_SYMBOL_GPL(__pci_reset_function);
4102 
4103 /**
4104  * __pci_reset_function_locked - reset a PCI device function while holding
4105  * the @dev mutex lock.
4106  * @dev: PCI device to reset
4107  *
4108  * Some devices allow an individual function to be reset without affecting
4109  * other functions in the same device.  The PCI device must be responsive
4110  * to PCI config space in order to use this function.
4111  *
4112  * The device function is presumed to be unused and the caller is holding
4113  * the device mutex lock when this function is called.
4114  * Resetting the device will make the contents of PCI configuration space
4115  * random, so any caller of this must be prepared to reinitialise the
4116  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4117  * etc.
4118  *
4119  * Returns 0 if the device function was successfully reset or negative if the
4120  * device doesn't support resetting a single function.
4121  */
4122 int __pci_reset_function_locked(struct pci_dev *dev)
4123 {
4124 	return __pci_dev_reset(dev, 0);
4125 }
4126 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4127 
4128 /**
4129  * pci_probe_reset_function - check whether the device can be safely reset
4130  * @dev: PCI device to reset
4131  *
4132  * Some devices allow an individual function to be reset without affecting
4133  * other functions in the same device.  The PCI device must be responsive
4134  * to PCI config space in order to use this function.
4135  *
4136  * Returns 0 if the device function can be reset or negative if the
4137  * device doesn't support resetting a single function.
4138  */
4139 int pci_probe_reset_function(struct pci_dev *dev)
4140 {
4141 	return pci_dev_reset(dev, 1);
4142 }
4143 
4144 /**
4145  * pci_reset_function - quiesce and reset a PCI device function
4146  * @dev: PCI device to reset
4147  *
4148  * Some devices allow an individual function to be reset without affecting
4149  * other functions in the same device.  The PCI device must be responsive
4150  * to PCI config space in order to use this function.
4151  *
4152  * This function does not just reset the PCI portion of a device, but
4153  * clears all the state associated with the device.  This function differs
4154  * from __pci_reset_function in that it saves and restores device state
4155  * over the reset.
4156  *
4157  * Returns 0 if the device function was successfully reset or negative if the
4158  * device doesn't support resetting a single function.
4159  */
4160 int pci_reset_function(struct pci_dev *dev)
4161 {
4162 	int rc;
4163 
4164 	rc = pci_dev_reset(dev, 1);
4165 	if (rc)
4166 		return rc;
4167 
4168 	pci_dev_save_and_disable(dev);
4169 
4170 	rc = pci_dev_reset(dev, 0);
4171 
4172 	pci_dev_restore(dev);
4173 
4174 	return rc;
4175 }
4176 EXPORT_SYMBOL_GPL(pci_reset_function);
4177 
4178 /**
4179  * pci_try_reset_function - quiesce and reset a PCI device function
4180  * @dev: PCI device to reset
4181  *
4182  * Same as above, except return -EAGAIN if unable to lock device.
4183  */
4184 int pci_try_reset_function(struct pci_dev *dev)
4185 {
4186 	int rc;
4187 
4188 	rc = pci_dev_reset(dev, 1);
4189 	if (rc)
4190 		return rc;
4191 
4192 	pci_dev_save_and_disable(dev);
4193 
4194 	if (pci_dev_trylock(dev)) {
4195 		rc = __pci_dev_reset(dev, 0);
4196 		pci_dev_unlock(dev);
4197 	} else
4198 		rc = -EAGAIN;
4199 
4200 	pci_dev_restore(dev);
4201 
4202 	return rc;
4203 }
4204 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4205 
4206 /* Do any devices on or below this bus prevent a bus reset? */
4207 static bool pci_bus_resetable(struct pci_bus *bus)
4208 {
4209 	struct pci_dev *dev;
4210 
4211 	list_for_each_entry(dev, &bus->devices, bus_list) {
4212 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4213 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4214 			return false;
4215 	}
4216 
4217 	return true;
4218 }
4219 
4220 /* Lock devices from the top of the tree down */
4221 static void pci_bus_lock(struct pci_bus *bus)
4222 {
4223 	struct pci_dev *dev;
4224 
4225 	list_for_each_entry(dev, &bus->devices, bus_list) {
4226 		pci_dev_lock(dev);
4227 		if (dev->subordinate)
4228 			pci_bus_lock(dev->subordinate);
4229 	}
4230 }
4231 
4232 /* Unlock devices from the bottom of the tree up */
4233 static void pci_bus_unlock(struct pci_bus *bus)
4234 {
4235 	struct pci_dev *dev;
4236 
4237 	list_for_each_entry(dev, &bus->devices, bus_list) {
4238 		if (dev->subordinate)
4239 			pci_bus_unlock(dev->subordinate);
4240 		pci_dev_unlock(dev);
4241 	}
4242 }
4243 
4244 /* Return 1 on successful lock, 0 on contention */
4245 static int pci_bus_trylock(struct pci_bus *bus)
4246 {
4247 	struct pci_dev *dev;
4248 
4249 	list_for_each_entry(dev, &bus->devices, bus_list) {
4250 		if (!pci_dev_trylock(dev))
4251 			goto unlock;
4252 		if (dev->subordinate) {
4253 			if (!pci_bus_trylock(dev->subordinate)) {
4254 				pci_dev_unlock(dev);
4255 				goto unlock;
4256 			}
4257 		}
4258 	}
4259 	return 1;
4260 
4261 unlock:
4262 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4263 		if (dev->subordinate)
4264 			pci_bus_unlock(dev->subordinate);
4265 		pci_dev_unlock(dev);
4266 	}
4267 	return 0;
4268 }
4269 
4270 /* Do any devices on or below this slot prevent a bus reset? */
4271 static bool pci_slot_resetable(struct pci_slot *slot)
4272 {
4273 	struct pci_dev *dev;
4274 
4275 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4276 		if (!dev->slot || dev->slot != slot)
4277 			continue;
4278 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4279 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4280 			return false;
4281 	}
4282 
4283 	return true;
4284 }
4285 
4286 /* Lock devices from the top of the tree down */
4287 static void pci_slot_lock(struct pci_slot *slot)
4288 {
4289 	struct pci_dev *dev;
4290 
4291 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4292 		if (!dev->slot || dev->slot != slot)
4293 			continue;
4294 		pci_dev_lock(dev);
4295 		if (dev->subordinate)
4296 			pci_bus_lock(dev->subordinate);
4297 	}
4298 }
4299 
4300 /* Unlock devices from the bottom of the tree up */
4301 static void pci_slot_unlock(struct pci_slot *slot)
4302 {
4303 	struct pci_dev *dev;
4304 
4305 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4306 		if (!dev->slot || dev->slot != slot)
4307 			continue;
4308 		if (dev->subordinate)
4309 			pci_bus_unlock(dev->subordinate);
4310 		pci_dev_unlock(dev);
4311 	}
4312 }
4313 
4314 /* Return 1 on successful lock, 0 on contention */
4315 static int pci_slot_trylock(struct pci_slot *slot)
4316 {
4317 	struct pci_dev *dev;
4318 
4319 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4320 		if (!dev->slot || dev->slot != slot)
4321 			continue;
4322 		if (!pci_dev_trylock(dev))
4323 			goto unlock;
4324 		if (dev->subordinate) {
4325 			if (!pci_bus_trylock(dev->subordinate)) {
4326 				pci_dev_unlock(dev);
4327 				goto unlock;
4328 			}
4329 		}
4330 	}
4331 	return 1;
4332 
4333 unlock:
4334 	list_for_each_entry_continue_reverse(dev,
4335 					     &slot->bus->devices, bus_list) {
4336 		if (!dev->slot || dev->slot != slot)
4337 			continue;
4338 		if (dev->subordinate)
4339 			pci_bus_unlock(dev->subordinate);
4340 		pci_dev_unlock(dev);
4341 	}
4342 	return 0;
4343 }
4344 
4345 /* Save and disable devices from the top of the tree down */
4346 static void pci_bus_save_and_disable(struct pci_bus *bus)
4347 {
4348 	struct pci_dev *dev;
4349 
4350 	list_for_each_entry(dev, &bus->devices, bus_list) {
4351 		pci_dev_save_and_disable(dev);
4352 		if (dev->subordinate)
4353 			pci_bus_save_and_disable(dev->subordinate);
4354 	}
4355 }
4356 
4357 /*
4358  * Restore devices from top of the tree down - parent bridges need to be
4359  * restored before we can get to subordinate devices.
4360  */
4361 static void pci_bus_restore(struct pci_bus *bus)
4362 {
4363 	struct pci_dev *dev;
4364 
4365 	list_for_each_entry(dev, &bus->devices, bus_list) {
4366 		pci_dev_restore(dev);
4367 		if (dev->subordinate)
4368 			pci_bus_restore(dev->subordinate);
4369 	}
4370 }
4371 
4372 /* Save and disable devices from the top of the tree down */
4373 static void pci_slot_save_and_disable(struct pci_slot *slot)
4374 {
4375 	struct pci_dev *dev;
4376 
4377 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4378 		if (!dev->slot || dev->slot != slot)
4379 			continue;
4380 		pci_dev_save_and_disable(dev);
4381 		if (dev->subordinate)
4382 			pci_bus_save_and_disable(dev->subordinate);
4383 	}
4384 }
4385 
4386 /*
4387  * Restore devices from top of the tree down - parent bridges need to be
4388  * restored before we can get to subordinate devices.
4389  */
4390 static void pci_slot_restore(struct pci_slot *slot)
4391 {
4392 	struct pci_dev *dev;
4393 
4394 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4395 		if (!dev->slot || dev->slot != slot)
4396 			continue;
4397 		pci_dev_restore(dev);
4398 		if (dev->subordinate)
4399 			pci_bus_restore(dev->subordinate);
4400 	}
4401 }
4402 
4403 static int pci_slot_reset(struct pci_slot *slot, int probe)
4404 {
4405 	int rc;
4406 
4407 	if (!slot || !pci_slot_resetable(slot))
4408 		return -ENOTTY;
4409 
4410 	if (!probe)
4411 		pci_slot_lock(slot);
4412 
4413 	might_sleep();
4414 
4415 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4416 
4417 	if (!probe)
4418 		pci_slot_unlock(slot);
4419 
4420 	return rc;
4421 }
4422 
4423 /**
4424  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4425  * @slot: PCI slot to probe
4426  *
4427  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4428  */
4429 int pci_probe_reset_slot(struct pci_slot *slot)
4430 {
4431 	return pci_slot_reset(slot, 1);
4432 }
4433 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4434 
4435 /**
4436  * pci_reset_slot - reset a PCI slot
4437  * @slot: PCI slot to reset
4438  *
4439  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4440  * independent of other slots.  For instance, some slots may support slot power
4441  * control.  In the case of a 1:1 bus to slot architecture, this function may
4442  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4443  * Generally a slot reset should be attempted before a bus reset.  All of the
4444  * function of the slot and any subordinate buses behind the slot are reset
4445  * through this function.  PCI config space of all devices in the slot and
4446  * behind the slot is saved before and restored after reset.
4447  *
4448  * Return 0 on success, non-zero on error.
4449  */
4450 int pci_reset_slot(struct pci_slot *slot)
4451 {
4452 	int rc;
4453 
4454 	rc = pci_slot_reset(slot, 1);
4455 	if (rc)
4456 		return rc;
4457 
4458 	pci_slot_save_and_disable(slot);
4459 
4460 	rc = pci_slot_reset(slot, 0);
4461 
4462 	pci_slot_restore(slot);
4463 
4464 	return rc;
4465 }
4466 EXPORT_SYMBOL_GPL(pci_reset_slot);
4467 
4468 /**
4469  * pci_try_reset_slot - Try to reset a PCI slot
4470  * @slot: PCI slot to reset
4471  *
4472  * Same as above except return -EAGAIN if the slot cannot be locked
4473  */
4474 int pci_try_reset_slot(struct pci_slot *slot)
4475 {
4476 	int rc;
4477 
4478 	rc = pci_slot_reset(slot, 1);
4479 	if (rc)
4480 		return rc;
4481 
4482 	pci_slot_save_and_disable(slot);
4483 
4484 	if (pci_slot_trylock(slot)) {
4485 		might_sleep();
4486 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4487 		pci_slot_unlock(slot);
4488 	} else
4489 		rc = -EAGAIN;
4490 
4491 	pci_slot_restore(slot);
4492 
4493 	return rc;
4494 }
4495 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4496 
4497 static int pci_bus_reset(struct pci_bus *bus, int probe)
4498 {
4499 	if (!bus->self || !pci_bus_resetable(bus))
4500 		return -ENOTTY;
4501 
4502 	if (probe)
4503 		return 0;
4504 
4505 	pci_bus_lock(bus);
4506 
4507 	might_sleep();
4508 
4509 	pci_reset_bridge_secondary_bus(bus->self);
4510 
4511 	pci_bus_unlock(bus);
4512 
4513 	return 0;
4514 }
4515 
4516 /**
4517  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4518  * @bus: PCI bus to probe
4519  *
4520  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4521  */
4522 int pci_probe_reset_bus(struct pci_bus *bus)
4523 {
4524 	return pci_bus_reset(bus, 1);
4525 }
4526 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4527 
4528 /**
4529  * pci_reset_bus - reset a PCI bus
4530  * @bus: top level PCI bus to reset
4531  *
4532  * Do a bus reset on the given bus and any subordinate buses, saving
4533  * and restoring state of all devices.
4534  *
4535  * Return 0 on success, non-zero on error.
4536  */
4537 int pci_reset_bus(struct pci_bus *bus)
4538 {
4539 	int rc;
4540 
4541 	rc = pci_bus_reset(bus, 1);
4542 	if (rc)
4543 		return rc;
4544 
4545 	pci_bus_save_and_disable(bus);
4546 
4547 	rc = pci_bus_reset(bus, 0);
4548 
4549 	pci_bus_restore(bus);
4550 
4551 	return rc;
4552 }
4553 EXPORT_SYMBOL_GPL(pci_reset_bus);
4554 
4555 /**
4556  * pci_try_reset_bus - Try to reset a PCI bus
4557  * @bus: top level PCI bus to reset
4558  *
4559  * Same as above except return -EAGAIN if the bus cannot be locked
4560  */
4561 int pci_try_reset_bus(struct pci_bus *bus)
4562 {
4563 	int rc;
4564 
4565 	rc = pci_bus_reset(bus, 1);
4566 	if (rc)
4567 		return rc;
4568 
4569 	pci_bus_save_and_disable(bus);
4570 
4571 	if (pci_bus_trylock(bus)) {
4572 		might_sleep();
4573 		pci_reset_bridge_secondary_bus(bus->self);
4574 		pci_bus_unlock(bus);
4575 	} else
4576 		rc = -EAGAIN;
4577 
4578 	pci_bus_restore(bus);
4579 
4580 	return rc;
4581 }
4582 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4583 
4584 /**
4585  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4586  * @dev: PCI device to query
4587  *
4588  * Returns mmrbc: maximum designed memory read count in bytes
4589  *    or appropriate error value.
4590  */
4591 int pcix_get_max_mmrbc(struct pci_dev *dev)
4592 {
4593 	int cap;
4594 	u32 stat;
4595 
4596 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4597 	if (!cap)
4598 		return -EINVAL;
4599 
4600 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4601 		return -EINVAL;
4602 
4603 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4604 }
4605 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4606 
4607 /**
4608  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4609  * @dev: PCI device to query
4610  *
4611  * Returns mmrbc: maximum memory read count in bytes
4612  *    or appropriate error value.
4613  */
4614 int pcix_get_mmrbc(struct pci_dev *dev)
4615 {
4616 	int cap;
4617 	u16 cmd;
4618 
4619 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4620 	if (!cap)
4621 		return -EINVAL;
4622 
4623 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4624 		return -EINVAL;
4625 
4626 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4627 }
4628 EXPORT_SYMBOL(pcix_get_mmrbc);
4629 
4630 /**
4631  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4632  * @dev: PCI device to query
4633  * @mmrbc: maximum memory read count in bytes
4634  *    valid values are 512, 1024, 2048, 4096
4635  *
4636  * If possible sets maximum memory read byte count, some bridges have erratas
4637  * that prevent this.
4638  */
4639 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4640 {
4641 	int cap;
4642 	u32 stat, v, o;
4643 	u16 cmd;
4644 
4645 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4646 		return -EINVAL;
4647 
4648 	v = ffs(mmrbc) - 10;
4649 
4650 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4651 	if (!cap)
4652 		return -EINVAL;
4653 
4654 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4655 		return -EINVAL;
4656 
4657 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4658 		return -E2BIG;
4659 
4660 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4661 		return -EINVAL;
4662 
4663 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4664 	if (o != v) {
4665 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4666 			return -EIO;
4667 
4668 		cmd &= ~PCI_X_CMD_MAX_READ;
4669 		cmd |= v << 2;
4670 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4671 			return -EIO;
4672 	}
4673 	return 0;
4674 }
4675 EXPORT_SYMBOL(pcix_set_mmrbc);
4676 
4677 /**
4678  * pcie_get_readrq - get PCI Express read request size
4679  * @dev: PCI device to query
4680  *
4681  * Returns maximum memory read request in bytes
4682  *    or appropriate error value.
4683  */
4684 int pcie_get_readrq(struct pci_dev *dev)
4685 {
4686 	u16 ctl;
4687 
4688 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4689 
4690 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4691 }
4692 EXPORT_SYMBOL(pcie_get_readrq);
4693 
4694 /**
4695  * pcie_set_readrq - set PCI Express maximum memory read request
4696  * @dev: PCI device to query
4697  * @rq: maximum memory read count in bytes
4698  *    valid values are 128, 256, 512, 1024, 2048, 4096
4699  *
4700  * If possible sets maximum memory read request in bytes
4701  */
4702 int pcie_set_readrq(struct pci_dev *dev, int rq)
4703 {
4704 	u16 v;
4705 
4706 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4707 		return -EINVAL;
4708 
4709 	/*
4710 	 * If using the "performance" PCIe config, we clamp the
4711 	 * read rq size to the max packet size to prevent the
4712 	 * host bridge generating requests larger than we can
4713 	 * cope with
4714 	 */
4715 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4716 		int mps = pcie_get_mps(dev);
4717 
4718 		if (mps < rq)
4719 			rq = mps;
4720 	}
4721 
4722 	v = (ffs(rq) - 8) << 12;
4723 
4724 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4725 						  PCI_EXP_DEVCTL_READRQ, v);
4726 }
4727 EXPORT_SYMBOL(pcie_set_readrq);
4728 
4729 /**
4730  * pcie_get_mps - get PCI Express maximum payload size
4731  * @dev: PCI device to query
4732  *
4733  * Returns maximum payload size in bytes
4734  */
4735 int pcie_get_mps(struct pci_dev *dev)
4736 {
4737 	u16 ctl;
4738 
4739 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4740 
4741 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4742 }
4743 EXPORT_SYMBOL(pcie_get_mps);
4744 
4745 /**
4746  * pcie_set_mps - set PCI Express maximum payload size
4747  * @dev: PCI device to query
4748  * @mps: maximum payload size in bytes
4749  *    valid values are 128, 256, 512, 1024, 2048, 4096
4750  *
4751  * If possible sets maximum payload size
4752  */
4753 int pcie_set_mps(struct pci_dev *dev, int mps)
4754 {
4755 	u16 v;
4756 
4757 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4758 		return -EINVAL;
4759 
4760 	v = ffs(mps) - 8;
4761 	if (v > dev->pcie_mpss)
4762 		return -EINVAL;
4763 	v <<= 5;
4764 
4765 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4766 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4767 }
4768 EXPORT_SYMBOL(pcie_set_mps);
4769 
4770 /**
4771  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4772  * @dev: PCI device to query
4773  * @speed: storage for minimum speed
4774  * @width: storage for minimum width
4775  *
4776  * This function will walk up the PCI device chain and determine the minimum
4777  * link width and speed of the device.
4778  */
4779 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4780 			  enum pcie_link_width *width)
4781 {
4782 	int ret;
4783 
4784 	*speed = PCI_SPEED_UNKNOWN;
4785 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4786 
4787 	while (dev) {
4788 		u16 lnksta;
4789 		enum pci_bus_speed next_speed;
4790 		enum pcie_link_width next_width;
4791 
4792 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4793 		if (ret)
4794 			return ret;
4795 
4796 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4797 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4798 			PCI_EXP_LNKSTA_NLW_SHIFT;
4799 
4800 		if (next_speed < *speed)
4801 			*speed = next_speed;
4802 
4803 		if (next_width < *width)
4804 			*width = next_width;
4805 
4806 		dev = dev->bus->self;
4807 	}
4808 
4809 	return 0;
4810 }
4811 EXPORT_SYMBOL(pcie_get_minimum_link);
4812 
4813 /**
4814  * pci_select_bars - Make BAR mask from the type of resource
4815  * @dev: the PCI device for which BAR mask is made
4816  * @flags: resource type mask to be selected
4817  *
4818  * This helper routine makes bar mask from the type of resource.
4819  */
4820 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4821 {
4822 	int i, bars = 0;
4823 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4824 		if (pci_resource_flags(dev, i) & flags)
4825 			bars |= (1 << i);
4826 	return bars;
4827 }
4828 EXPORT_SYMBOL(pci_select_bars);
4829 
4830 /* Some architectures require additional programming to enable VGA */
4831 static arch_set_vga_state_t arch_set_vga_state;
4832 
4833 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4834 {
4835 	arch_set_vga_state = func;	/* NULL disables */
4836 }
4837 
4838 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4839 				  unsigned int command_bits, u32 flags)
4840 {
4841 	if (arch_set_vga_state)
4842 		return arch_set_vga_state(dev, decode, command_bits,
4843 						flags);
4844 	return 0;
4845 }
4846 
4847 /**
4848  * pci_set_vga_state - set VGA decode state on device and parents if requested
4849  * @dev: the PCI device
4850  * @decode: true = enable decoding, false = disable decoding
4851  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4852  * @flags: traverse ancestors and change bridges
4853  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4854  */
4855 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4856 		      unsigned int command_bits, u32 flags)
4857 {
4858 	struct pci_bus *bus;
4859 	struct pci_dev *bridge;
4860 	u16 cmd;
4861 	int rc;
4862 
4863 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4864 
4865 	/* ARCH specific VGA enables */
4866 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4867 	if (rc)
4868 		return rc;
4869 
4870 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4871 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4872 		if (decode == true)
4873 			cmd |= command_bits;
4874 		else
4875 			cmd &= ~command_bits;
4876 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4877 	}
4878 
4879 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4880 		return 0;
4881 
4882 	bus = dev->bus;
4883 	while (bus) {
4884 		bridge = bus->self;
4885 		if (bridge) {
4886 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4887 					     &cmd);
4888 			if (decode == true)
4889 				cmd |= PCI_BRIDGE_CTL_VGA;
4890 			else
4891 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4892 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4893 					      cmd);
4894 		}
4895 		bus = bus->parent;
4896 	}
4897 	return 0;
4898 }
4899 
4900 /**
4901  * pci_add_dma_alias - Add a DMA devfn alias for a device
4902  * @dev: the PCI device for which alias is added
4903  * @devfn: alias slot and function
4904  *
4905  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4906  * It should be called early, preferably as PCI fixup header quirk.
4907  */
4908 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4909 {
4910 	if (!dev->dma_alias_mask)
4911 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4912 					      sizeof(long), GFP_KERNEL);
4913 	if (!dev->dma_alias_mask) {
4914 		dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4915 		return;
4916 	}
4917 
4918 	set_bit(devfn, dev->dma_alias_mask);
4919 	dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4920 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
4921 }
4922 
4923 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4924 {
4925 	return (dev1->dma_alias_mask &&
4926 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4927 	       (dev2->dma_alias_mask &&
4928 		test_bit(dev1->devfn, dev2->dma_alias_mask));
4929 }
4930 
4931 bool pci_device_is_present(struct pci_dev *pdev)
4932 {
4933 	u32 v;
4934 
4935 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4936 }
4937 EXPORT_SYMBOL_GPL(pci_device_is_present);
4938 
4939 void pci_ignore_hotplug(struct pci_dev *dev)
4940 {
4941 	struct pci_dev *bridge = dev->bus->self;
4942 
4943 	dev->ignore_hotplug = 1;
4944 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4945 	if (bridge)
4946 		bridge->ignore_hotplug = 1;
4947 }
4948 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4949 
4950 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4951 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4952 static DEFINE_SPINLOCK(resource_alignment_lock);
4953 
4954 /**
4955  * pci_specified_resource_alignment - get resource alignment specified by user.
4956  * @dev: the PCI device to get
4957  *
4958  * RETURNS: Resource alignment if it is specified.
4959  *          Zero if it is not specified.
4960  */
4961 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4962 {
4963 	int seg, bus, slot, func, align_order, count;
4964 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
4965 	resource_size_t align = 0;
4966 	char *p;
4967 
4968 	spin_lock(&resource_alignment_lock);
4969 	p = resource_alignment_param;
4970 	if (!*p)
4971 		goto out;
4972 	if (pci_has_flag(PCI_PROBE_ONLY)) {
4973 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
4974 		goto out;
4975 	}
4976 
4977 	while (*p) {
4978 		count = 0;
4979 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4980 							p[count] == '@') {
4981 			p += count + 1;
4982 		} else {
4983 			align_order = -1;
4984 		}
4985 		if (strncmp(p, "pci:", 4) == 0) {
4986 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
4987 			p += 4;
4988 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
4989 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
4990 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
4991 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
4992 						p);
4993 					break;
4994 				}
4995 				subsystem_vendor = subsystem_device = 0;
4996 			}
4997 			p += count;
4998 			if ((!vendor || (vendor == dev->vendor)) &&
4999 				(!device || (device == dev->device)) &&
5000 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5001 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5002 				if (align_order == -1)
5003 					align = PAGE_SIZE;
5004 				else
5005 					align = 1 << align_order;
5006 				/* Found */
5007 				break;
5008 			}
5009 		}
5010 		else {
5011 			if (sscanf(p, "%x:%x:%x.%x%n",
5012 				&seg, &bus, &slot, &func, &count) != 4) {
5013 				seg = 0;
5014 				if (sscanf(p, "%x:%x.%x%n",
5015 						&bus, &slot, &func, &count) != 3) {
5016 					/* Invalid format */
5017 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5018 						p);
5019 					break;
5020 				}
5021 			}
5022 			p += count;
5023 			if (seg == pci_domain_nr(dev->bus) &&
5024 				bus == dev->bus->number &&
5025 				slot == PCI_SLOT(dev->devfn) &&
5026 				func == PCI_FUNC(dev->devfn)) {
5027 				if (align_order == -1)
5028 					align = PAGE_SIZE;
5029 				else
5030 					align = 1 << align_order;
5031 				/* Found */
5032 				break;
5033 			}
5034 		}
5035 		if (*p != ';' && *p != ',') {
5036 			/* End of param or invalid format */
5037 			break;
5038 		}
5039 		p++;
5040 	}
5041 out:
5042 	spin_unlock(&resource_alignment_lock);
5043 	return align;
5044 }
5045 
5046 /*
5047  * This function disables memory decoding and releases memory resources
5048  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5049  * It also rounds up size to specified alignment.
5050  * Later on, the kernel will assign page-aligned memory resource back
5051  * to the device.
5052  */
5053 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5054 {
5055 	int i;
5056 	struct resource *r;
5057 	resource_size_t align, size;
5058 	u16 command;
5059 
5060 	/*
5061 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5062 	 * 3.4.1.11.  Their resources are allocated from the space
5063 	 * described by the VF BARx register in the PF's SR-IOV capability.
5064 	 * We can't influence their alignment here.
5065 	 */
5066 	if (dev->is_virtfn)
5067 		return;
5068 
5069 	/* check if specified PCI is target device to reassign */
5070 	align = pci_specified_resource_alignment(dev);
5071 	if (!align)
5072 		return;
5073 
5074 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5075 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5076 		dev_warn(&dev->dev,
5077 			"Can't reassign resources to host bridge.\n");
5078 		return;
5079 	}
5080 
5081 	dev_info(&dev->dev,
5082 		"Disabling memory decoding and releasing memory resources.\n");
5083 	pci_read_config_word(dev, PCI_COMMAND, &command);
5084 	command &= ~PCI_COMMAND_MEMORY;
5085 	pci_write_config_word(dev, PCI_COMMAND, command);
5086 
5087 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5088 		r = &dev->resource[i];
5089 		if (!(r->flags & IORESOURCE_MEM))
5090 			continue;
5091 		if (r->flags & IORESOURCE_PCI_FIXED) {
5092 			dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5093 				i, r);
5094 			continue;
5095 		}
5096 
5097 		size = resource_size(r);
5098 		if (size < align) {
5099 			size = align;
5100 			dev_info(&dev->dev,
5101 				"Rounding up size of resource #%d to %#llx.\n",
5102 				i, (unsigned long long)size);
5103 		}
5104 		r->flags |= IORESOURCE_UNSET;
5105 		r->end = size - 1;
5106 		r->start = 0;
5107 	}
5108 	/* Need to disable bridge's resource window,
5109 	 * to enable the kernel to reassign new resource
5110 	 * window later on.
5111 	 */
5112 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5113 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5114 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5115 			r = &dev->resource[i];
5116 			if (!(r->flags & IORESOURCE_MEM))
5117 				continue;
5118 			r->flags |= IORESOURCE_UNSET;
5119 			r->end = resource_size(r) - 1;
5120 			r->start = 0;
5121 		}
5122 		pci_disable_bridge_window(dev);
5123 	}
5124 }
5125 
5126 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5127 {
5128 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5129 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5130 	spin_lock(&resource_alignment_lock);
5131 	strncpy(resource_alignment_param, buf, count);
5132 	resource_alignment_param[count] = '\0';
5133 	spin_unlock(&resource_alignment_lock);
5134 	return count;
5135 }
5136 
5137 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5138 {
5139 	size_t count;
5140 	spin_lock(&resource_alignment_lock);
5141 	count = snprintf(buf, size, "%s", resource_alignment_param);
5142 	spin_unlock(&resource_alignment_lock);
5143 	return count;
5144 }
5145 
5146 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5147 {
5148 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5149 }
5150 
5151 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5152 					const char *buf, size_t count)
5153 {
5154 	return pci_set_resource_alignment_param(buf, count);
5155 }
5156 
5157 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5158 					pci_resource_alignment_store);
5159 
5160 static int __init pci_resource_alignment_sysfs_init(void)
5161 {
5162 	return bus_create_file(&pci_bus_type,
5163 					&bus_attr_resource_alignment);
5164 }
5165 late_initcall(pci_resource_alignment_sysfs_init);
5166 
5167 static void pci_no_domains(void)
5168 {
5169 #ifdef CONFIG_PCI_DOMAINS
5170 	pci_domains_supported = 0;
5171 #endif
5172 }
5173 
5174 #ifdef CONFIG_PCI_DOMAINS
5175 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5176 
5177 int pci_get_new_domain_nr(void)
5178 {
5179 	return atomic_inc_return(&__domain_nr);
5180 }
5181 
5182 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5183 static int of_pci_bus_find_domain_nr(struct device *parent)
5184 {
5185 	static int use_dt_domains = -1;
5186 	int domain = -1;
5187 
5188 	if (parent)
5189 		domain = of_get_pci_domain_nr(parent->of_node);
5190 	/*
5191 	 * Check DT domain and use_dt_domains values.
5192 	 *
5193 	 * If DT domain property is valid (domain >= 0) and
5194 	 * use_dt_domains != 0, the DT assignment is valid since this means
5195 	 * we have not previously allocated a domain number by using
5196 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5197 	 * 1, to indicate that we have just assigned a domain number from
5198 	 * DT.
5199 	 *
5200 	 * If DT domain property value is not valid (ie domain < 0), and we
5201 	 * have not previously assigned a domain number from DT
5202 	 * (use_dt_domains != 1) we should assign a domain number by
5203 	 * using the:
5204 	 *
5205 	 * pci_get_new_domain_nr()
5206 	 *
5207 	 * API and update the use_dt_domains value to keep track of method we
5208 	 * are using to assign domain numbers (use_dt_domains = 0).
5209 	 *
5210 	 * All other combinations imply we have a platform that is trying
5211 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5212 	 * which is a recipe for domain mishandling and it is prevented by
5213 	 * invalidating the domain value (domain = -1) and printing a
5214 	 * corresponding error.
5215 	 */
5216 	if (domain >= 0 && use_dt_domains) {
5217 		use_dt_domains = 1;
5218 	} else if (domain < 0 && use_dt_domains != 1) {
5219 		use_dt_domains = 0;
5220 		domain = pci_get_new_domain_nr();
5221 	} else {
5222 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5223 			parent->of_node->full_name);
5224 		domain = -1;
5225 	}
5226 
5227 	return domain;
5228 }
5229 
5230 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5231 {
5232 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5233 			       acpi_pci_bus_find_domain_nr(bus);
5234 }
5235 #endif
5236 #endif
5237 
5238 /**
5239  * pci_ext_cfg_avail - can we access extended PCI config space?
5240  *
5241  * Returns 1 if we can access PCI extended config space (offsets
5242  * greater than 0xff). This is the default implementation. Architecture
5243  * implementations can override this.
5244  */
5245 int __weak pci_ext_cfg_avail(void)
5246 {
5247 	return 1;
5248 }
5249 
5250 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5251 {
5252 }
5253 EXPORT_SYMBOL(pci_fixup_cardbus);
5254 
5255 static int __init pci_setup(char *str)
5256 {
5257 	while (str) {
5258 		char *k = strchr(str, ',');
5259 		if (k)
5260 			*k++ = 0;
5261 		if (*str && (str = pcibios_setup(str)) && *str) {
5262 			if (!strcmp(str, "nomsi")) {
5263 				pci_no_msi();
5264 			} else if (!strcmp(str, "noaer")) {
5265 				pci_no_aer();
5266 			} else if (!strncmp(str, "realloc=", 8)) {
5267 				pci_realloc_get_opt(str + 8);
5268 			} else if (!strncmp(str, "realloc", 7)) {
5269 				pci_realloc_get_opt("on");
5270 			} else if (!strcmp(str, "nodomains")) {
5271 				pci_no_domains();
5272 			} else if (!strncmp(str, "noari", 5)) {
5273 				pcie_ari_disabled = true;
5274 			} else if (!strncmp(str, "cbiosize=", 9)) {
5275 				pci_cardbus_io_size = memparse(str + 9, &str);
5276 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5277 				pci_cardbus_mem_size = memparse(str + 10, &str);
5278 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5279 				pci_set_resource_alignment_param(str + 19,
5280 							strlen(str + 19));
5281 			} else if (!strncmp(str, "ecrc=", 5)) {
5282 				pcie_ecrc_get_policy(str + 5);
5283 			} else if (!strncmp(str, "hpiosize=", 9)) {
5284 				pci_hotplug_io_size = memparse(str + 9, &str);
5285 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5286 				pci_hotplug_mem_size = memparse(str + 10, &str);
5287 			} else if (!strncmp(str, "hpbussize=", 10)) {
5288 				pci_hotplug_bus_size =
5289 					simple_strtoul(str + 10, &str, 0);
5290 				if (pci_hotplug_bus_size > 0xff)
5291 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5292 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5293 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5294 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5295 				pcie_bus_config = PCIE_BUS_SAFE;
5296 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5297 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5298 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5299 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5300 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5301 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5302 			} else {
5303 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5304 						str);
5305 			}
5306 		}
5307 		str = k;
5308 	}
5309 	return 0;
5310 }
5311 early_param("pci", pci_setup);
5312