1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 855 * @dev: the PCI device to operate on 856 * @pos: config space offset of status word 857 * @mask: mask of bit(s) to care about in status word 858 * 859 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 860 */ 861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 862 { 863 int i; 864 865 /* Wait for Transaction Pending bit clean */ 866 for (i = 0; i < 4; i++) { 867 u16 status; 868 if (i) 869 msleep((1 << (i - 1)) * 100); 870 871 pci_read_config_word(dev, pos, &status); 872 if (!(status & mask)) 873 return 1; 874 } 875 876 return 0; 877 } 878 879 static int pci_acs_enable; 880 881 /** 882 * pci_request_acs - ask for ACS to be enabled if supported 883 */ 884 void pci_request_acs(void) 885 { 886 pci_acs_enable = 1; 887 } 888 889 static const char *disable_acs_redir_param; 890 891 /** 892 * pci_disable_acs_redir - disable ACS redirect capabilities 893 * @dev: the PCI device 894 * 895 * For only devices specified in the disable_acs_redir parameter. 896 */ 897 static void pci_disable_acs_redir(struct pci_dev *dev) 898 { 899 int ret = 0; 900 const char *p; 901 int pos; 902 u16 ctrl; 903 904 if (!disable_acs_redir_param) 905 return; 906 907 p = disable_acs_redir_param; 908 while (*p) { 909 ret = pci_dev_str_match(dev, p, &p); 910 if (ret < 0) { 911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 912 disable_acs_redir_param); 913 914 break; 915 } else if (ret == 1) { 916 /* Found a match */ 917 break; 918 } 919 920 if (*p != ';' && *p != ',') { 921 /* End of param or invalid format */ 922 break; 923 } 924 p++; 925 } 926 927 if (ret != 1) 928 return; 929 930 if (!pci_dev_specific_disable_acs_redir(dev)) 931 return; 932 933 pos = dev->acs_cap; 934 if (!pos) { 935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 936 return; 937 } 938 939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 940 941 /* P2P Request & Completion Redirect */ 942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 943 944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 945 946 pci_info(dev, "disabled ACS redirect\n"); 947 } 948 949 /** 950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 951 * @dev: the PCI device 952 */ 953 static void pci_std_enable_acs(struct pci_dev *dev) 954 { 955 int pos; 956 u16 cap; 957 u16 ctrl; 958 959 pos = dev->acs_cap; 960 if (!pos) 961 return; 962 963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 965 966 /* Source Validation */ 967 ctrl |= (cap & PCI_ACS_SV); 968 969 /* P2P Request Redirect */ 970 ctrl |= (cap & PCI_ACS_RR); 971 972 /* P2P Completion Redirect */ 973 ctrl |= (cap & PCI_ACS_CR); 974 975 /* Upstream Forwarding */ 976 ctrl |= (cap & PCI_ACS_UF); 977 978 /* Enable Translation Blocking for external devices and noats */ 979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 980 ctrl |= (cap & PCI_ACS_TB); 981 982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 983 } 984 985 /** 986 * pci_enable_acs - enable ACS if hardware support it 987 * @dev: the PCI device 988 */ 989 static void pci_enable_acs(struct pci_dev *dev) 990 { 991 if (!pci_acs_enable) 992 goto disable_acs_redir; 993 994 if (!pci_dev_specific_enable_acs(dev)) 995 goto disable_acs_redir; 996 997 pci_std_enable_acs(dev); 998 999 disable_acs_redir: 1000 /* 1001 * Note: pci_disable_acs_redir() must be called even if ACS was not 1002 * enabled by the kernel because it may have been enabled by 1003 * platform firmware. So if we are told to disable it, we should 1004 * always disable it after setting the kernel's default 1005 * preferences. 1006 */ 1007 pci_disable_acs_redir(dev); 1008 } 1009 1010 /** 1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1012 * @dev: PCI device to have its BARs restored 1013 * 1014 * Restore the BAR values for a given device, so as to make it 1015 * accessible by its driver. 1016 */ 1017 static void pci_restore_bars(struct pci_dev *dev) 1018 { 1019 int i; 1020 1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1022 pci_update_resource(dev, i); 1023 } 1024 1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1026 { 1027 if (pci_use_mid_pm()) 1028 return true; 1029 1030 return acpi_pci_power_manageable(dev); 1031 } 1032 1033 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1034 pci_power_t t) 1035 { 1036 if (pci_use_mid_pm()) 1037 return mid_pci_set_power_state(dev, t); 1038 1039 return acpi_pci_set_power_state(dev, t); 1040 } 1041 1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1043 { 1044 if (pci_use_mid_pm()) 1045 return mid_pci_get_power_state(dev); 1046 1047 return acpi_pci_get_power_state(dev); 1048 } 1049 1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1051 { 1052 if (!pci_use_mid_pm()) 1053 acpi_pci_refresh_power_state(dev); 1054 } 1055 1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1057 { 1058 if (pci_use_mid_pm()) 1059 return PCI_POWER_ERROR; 1060 1061 return acpi_pci_choose_state(dev); 1062 } 1063 1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1065 { 1066 if (pci_use_mid_pm()) 1067 return PCI_POWER_ERROR; 1068 1069 return acpi_pci_wakeup(dev, enable); 1070 } 1071 1072 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1073 { 1074 if (pci_use_mid_pm()) 1075 return false; 1076 1077 return acpi_pci_need_resume(dev); 1078 } 1079 1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1081 { 1082 if (pci_use_mid_pm()) 1083 return false; 1084 1085 return acpi_pci_bridge_d3(dev); 1086 } 1087 1088 /** 1089 * pci_update_current_state - Read power state of given device and cache it 1090 * @dev: PCI device to handle. 1091 * @state: State to cache in case the device doesn't have the PM capability 1092 * 1093 * The power state is read from the PMCSR register, which however is 1094 * inaccessible in D3cold. The platform firmware is therefore queried first 1095 * to detect accessibility of the register. In case the platform firmware 1096 * reports an incorrect state or the device isn't power manageable by the 1097 * platform at all, we try to detect D3cold by testing accessibility of the 1098 * vendor ID in config space. 1099 */ 1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1101 { 1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1103 dev->current_state = PCI_D3cold; 1104 } else if (dev->pm_cap) { 1105 u16 pmcsr; 1106 1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1108 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1109 dev->current_state = PCI_D3cold; 1110 return; 1111 } 1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1113 } else { 1114 dev->current_state = state; 1115 } 1116 } 1117 1118 /** 1119 * pci_refresh_power_state - Refresh the given device's power state data 1120 * @dev: Target PCI device. 1121 * 1122 * Ask the platform to refresh the devices power state information and invoke 1123 * pci_update_current_state() to update its current PCI power state. 1124 */ 1125 void pci_refresh_power_state(struct pci_dev *dev) 1126 { 1127 platform_pci_refresh_power_state(dev); 1128 pci_update_current_state(dev, dev->current_state); 1129 } 1130 1131 /** 1132 * pci_platform_power_transition - Use platform to change device power state 1133 * @dev: PCI device to handle. 1134 * @state: State to put the device into. 1135 */ 1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1137 { 1138 int error; 1139 1140 error = platform_pci_set_power_state(dev, state); 1141 if (!error) 1142 pci_update_current_state(dev, state); 1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1144 dev->current_state = PCI_D0; 1145 1146 return error; 1147 } 1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1149 1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1151 { 1152 pm_request_resume(&pci_dev->dev); 1153 return 0; 1154 } 1155 1156 /** 1157 * pci_resume_bus - Walk given bus and runtime resume devices on it 1158 * @bus: Top bus of the subtree to walk. 1159 */ 1160 void pci_resume_bus(struct pci_bus *bus) 1161 { 1162 if (bus) 1163 pci_walk_bus(bus, pci_resume_one, NULL); 1164 } 1165 1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1167 { 1168 int delay = 1; 1169 bool retrain = false; 1170 struct pci_dev *bridge; 1171 1172 if (pci_is_pcie(dev)) { 1173 bridge = pci_upstream_bridge(dev); 1174 if (bridge) 1175 retrain = true; 1176 } 1177 1178 /* 1179 * After reset, the device should not silently discard config 1180 * requests, but it may still indicate that it needs more time by 1181 * responding to them with CRS completions. The Root Port will 1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1183 * the read (except when CRS SV is enabled and the read was for the 1184 * Vendor ID; in that case it synthesizes 0x0001 data). 1185 * 1186 * Wait for the device to return a non-CRS completion. Read the 1187 * Command register instead of Vendor ID so we don't have to 1188 * contend with the CRS SV value. 1189 */ 1190 for (;;) { 1191 u32 id; 1192 1193 if (pci_dev_is_disconnected(dev)) { 1194 pci_dbg(dev, "disconnected; not waiting\n"); 1195 return -ENOTTY; 1196 } 1197 1198 pci_read_config_dword(dev, PCI_COMMAND, &id); 1199 if (!PCI_POSSIBLE_ERROR(id)) 1200 break; 1201 1202 if (delay > timeout) { 1203 pci_warn(dev, "not ready %dms after %s; giving up\n", 1204 delay - 1, reset_type); 1205 return -ENOTTY; 1206 } 1207 1208 if (delay > PCI_RESET_WAIT) { 1209 if (retrain) { 1210 retrain = false; 1211 if (pcie_failed_link_retrain(bridge) == 0) { 1212 delay = 1; 1213 continue; 1214 } 1215 } 1216 pci_info(dev, "not ready %dms after %s; waiting\n", 1217 delay - 1, reset_type); 1218 } 1219 1220 msleep(delay); 1221 delay *= 2; 1222 } 1223 1224 if (delay > PCI_RESET_WAIT) 1225 pci_info(dev, "ready %dms after %s\n", delay - 1, 1226 reset_type); 1227 1228 return 0; 1229 } 1230 1231 /** 1232 * pci_power_up - Put the given device into D0 1233 * @dev: PCI device to power up 1234 * 1235 * On success, return 0 or 1, depending on whether or not it is necessary to 1236 * restore the device's BARs subsequently (1 is returned in that case). 1237 * 1238 * On failure, return a negative error code. Always return failure if @dev 1239 * lacks a Power Management Capability, even if the platform was able to 1240 * put the device in D0 via non-PCI means. 1241 */ 1242 int pci_power_up(struct pci_dev *dev) 1243 { 1244 bool need_restore; 1245 pci_power_t state; 1246 u16 pmcsr; 1247 1248 platform_pci_set_power_state(dev, PCI_D0); 1249 1250 if (!dev->pm_cap) { 1251 state = platform_pci_get_power_state(dev); 1252 if (state == PCI_UNKNOWN) 1253 dev->current_state = PCI_D0; 1254 else 1255 dev->current_state = state; 1256 1257 return -EIO; 1258 } 1259 1260 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1261 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1262 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1263 pci_power_name(dev->current_state)); 1264 dev->current_state = PCI_D3cold; 1265 return -EIO; 1266 } 1267 1268 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1269 1270 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1271 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1272 1273 if (state == PCI_D0) 1274 goto end; 1275 1276 /* 1277 * Force the entire word to 0. This doesn't affect PME_Status, disables 1278 * PME_En, and sets PowerState to 0. 1279 */ 1280 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1281 1282 /* Mandatory transition delays; see PCI PM 1.2. */ 1283 if (state == PCI_D3hot) 1284 pci_dev_d3_sleep(dev); 1285 else if (state == PCI_D2) 1286 udelay(PCI_PM_D2_DELAY); 1287 1288 end: 1289 dev->current_state = PCI_D0; 1290 if (need_restore) 1291 return 1; 1292 1293 return 0; 1294 } 1295 1296 /** 1297 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1298 * @dev: PCI device to power up 1299 * @locked: whether pci_bus_sem is held 1300 * 1301 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1302 * to confirm the state change, restore its BARs if they might be lost and 1303 * reconfigure ASPM in accordance with the new power state. 1304 * 1305 * If pci_restore_state() is going to be called right after a power state change 1306 * to D0, it is more efficient to use pci_power_up() directly instead of this 1307 * function. 1308 */ 1309 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1310 { 1311 u16 pmcsr; 1312 int ret; 1313 1314 ret = pci_power_up(dev); 1315 if (ret < 0) { 1316 if (dev->current_state == PCI_D0) 1317 return 0; 1318 1319 return ret; 1320 } 1321 1322 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1323 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1324 if (dev->current_state != PCI_D0) { 1325 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1326 pci_power_name(dev->current_state)); 1327 } else if (ret > 0) { 1328 /* 1329 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1330 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1331 * from D3hot to D0 _may_ perform an internal reset, thereby 1332 * going to "D0 Uninitialized" rather than "D0 Initialized". 1333 * For example, at least some versions of the 3c905B and the 1334 * 3c556B exhibit this behaviour. 1335 * 1336 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1337 * devices in a D3hot state at boot. Consequently, we need to 1338 * restore at least the BARs so that the device will be 1339 * accessible to its driver. 1340 */ 1341 pci_restore_bars(dev); 1342 } 1343 1344 if (dev->bus->self) 1345 pcie_aspm_pm_state_change(dev->bus->self, locked); 1346 1347 return 0; 1348 } 1349 1350 /** 1351 * __pci_dev_set_current_state - Set current state of a PCI device 1352 * @dev: Device to handle 1353 * @data: pointer to state to be set 1354 */ 1355 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1356 { 1357 pci_power_t state = *(pci_power_t *)data; 1358 1359 dev->current_state = state; 1360 return 0; 1361 } 1362 1363 /** 1364 * pci_bus_set_current_state - Walk given bus and set current state of devices 1365 * @bus: Top bus of the subtree to walk. 1366 * @state: state to be set 1367 */ 1368 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1369 { 1370 if (bus) 1371 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1372 } 1373 1374 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1375 { 1376 if (!bus) 1377 return; 1378 1379 if (locked) 1380 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1381 else 1382 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1383 } 1384 1385 /** 1386 * pci_set_low_power_state - Put a PCI device into a low-power state. 1387 * @dev: PCI device to handle. 1388 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1389 * @locked: whether pci_bus_sem is held 1390 * 1391 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1392 * 1393 * RETURN VALUE: 1394 * -EINVAL if the requested state is invalid. 1395 * -EIO if device does not support PCI PM or its PM capabilities register has a 1396 * wrong version, or device doesn't support the requested state. 1397 * 0 if device already is in the requested state. 1398 * 0 if device's power state has been successfully changed. 1399 */ 1400 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1401 { 1402 u16 pmcsr; 1403 1404 if (!dev->pm_cap) 1405 return -EIO; 1406 1407 /* 1408 * Validate transition: We can enter D0 from any state, but if 1409 * we're already in a low-power state, we can only go deeper. E.g., 1410 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1411 * we'd have to go from D3 to D0, then to D1. 1412 */ 1413 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1414 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1415 pci_power_name(dev->current_state), 1416 pci_power_name(state)); 1417 return -EINVAL; 1418 } 1419 1420 /* Check if this device supports the desired state */ 1421 if ((state == PCI_D1 && !dev->d1_support) 1422 || (state == PCI_D2 && !dev->d2_support)) 1423 return -EIO; 1424 1425 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1426 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1427 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1428 pci_power_name(dev->current_state), 1429 pci_power_name(state)); 1430 dev->current_state = PCI_D3cold; 1431 return -EIO; 1432 } 1433 1434 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1435 pmcsr |= state; 1436 1437 /* Enter specified state */ 1438 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1439 1440 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1441 if (state == PCI_D3hot) 1442 pci_dev_d3_sleep(dev); 1443 else if (state == PCI_D2) 1444 udelay(PCI_PM_D2_DELAY); 1445 1446 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1447 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1448 if (dev->current_state != state) 1449 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1450 pci_power_name(dev->current_state), 1451 pci_power_name(state)); 1452 1453 if (dev->bus->self) 1454 pcie_aspm_pm_state_change(dev->bus->self, locked); 1455 1456 return 0; 1457 } 1458 1459 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1460 { 1461 int error; 1462 1463 /* Bound the state we're entering */ 1464 if (state > PCI_D3cold) 1465 state = PCI_D3cold; 1466 else if (state < PCI_D0) 1467 state = PCI_D0; 1468 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1469 1470 /* 1471 * If the device or the parent bridge do not support PCI 1472 * PM, ignore the request if we're doing anything other 1473 * than putting it into D0 (which would only happen on 1474 * boot). 1475 */ 1476 return 0; 1477 1478 /* Check if we're already there */ 1479 if (dev->current_state == state) 1480 return 0; 1481 1482 if (state == PCI_D0) 1483 return pci_set_full_power_state(dev, locked); 1484 1485 /* 1486 * This device is quirked not to be put into D3, so don't put it in 1487 * D3 1488 */ 1489 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1490 return 0; 1491 1492 if (state == PCI_D3cold) { 1493 /* 1494 * To put the device in D3cold, put it into D3hot in the native 1495 * way, then put it into D3cold using platform ops. 1496 */ 1497 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1498 1499 if (pci_platform_power_transition(dev, PCI_D3cold)) 1500 return error; 1501 1502 /* Powering off a bridge may power off the whole hierarchy */ 1503 if (dev->current_state == PCI_D3cold) 1504 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1505 } else { 1506 error = pci_set_low_power_state(dev, state, locked); 1507 1508 if (pci_platform_power_transition(dev, state)) 1509 return error; 1510 } 1511 1512 return 0; 1513 } 1514 1515 /** 1516 * pci_set_power_state - Set the power state of a PCI device 1517 * @dev: PCI device to handle. 1518 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1519 * 1520 * Transition a device to a new power state, using the platform firmware and/or 1521 * the device's PCI PM registers. 1522 * 1523 * RETURN VALUE: 1524 * -EINVAL if the requested state is invalid. 1525 * -EIO if device does not support PCI PM or its PM capabilities register has a 1526 * wrong version, or device doesn't support the requested state. 1527 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1528 * 0 if device already is in the requested state. 1529 * 0 if the transition is to D3 but D3 is not supported. 1530 * 0 if device's power state has been successfully changed. 1531 */ 1532 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1533 { 1534 return __pci_set_power_state(dev, state, false); 1535 } 1536 EXPORT_SYMBOL(pci_set_power_state); 1537 1538 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1539 { 1540 lockdep_assert_held(&pci_bus_sem); 1541 1542 return __pci_set_power_state(dev, state, true); 1543 } 1544 EXPORT_SYMBOL(pci_set_power_state_locked); 1545 1546 #define PCI_EXP_SAVE_REGS 7 1547 1548 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1549 u16 cap, bool extended) 1550 { 1551 struct pci_cap_saved_state *tmp; 1552 1553 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1554 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1555 return tmp; 1556 } 1557 return NULL; 1558 } 1559 1560 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1561 { 1562 return _pci_find_saved_cap(dev, cap, false); 1563 } 1564 1565 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1566 { 1567 return _pci_find_saved_cap(dev, cap, true); 1568 } 1569 1570 static int pci_save_pcie_state(struct pci_dev *dev) 1571 { 1572 int i = 0; 1573 struct pci_cap_saved_state *save_state; 1574 u16 *cap; 1575 1576 if (!pci_is_pcie(dev)) 1577 return 0; 1578 1579 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1580 if (!save_state) { 1581 pci_err(dev, "buffer not found in %s\n", __func__); 1582 return -ENOMEM; 1583 } 1584 1585 cap = (u16 *)&save_state->cap.data[0]; 1586 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1587 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1588 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1589 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1590 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1591 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1592 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1593 1594 return 0; 1595 } 1596 1597 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1598 { 1599 #ifdef CONFIG_PCIEASPM 1600 struct pci_dev *bridge; 1601 u32 ctl; 1602 1603 bridge = pci_upstream_bridge(dev); 1604 if (bridge && bridge->ltr_path) { 1605 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1606 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1607 pci_dbg(bridge, "re-enabling LTR\n"); 1608 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1609 PCI_EXP_DEVCTL2_LTR_EN); 1610 } 1611 } 1612 #endif 1613 } 1614 1615 static void pci_restore_pcie_state(struct pci_dev *dev) 1616 { 1617 int i = 0; 1618 struct pci_cap_saved_state *save_state; 1619 u16 *cap; 1620 1621 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1622 if (!save_state) 1623 return; 1624 1625 /* 1626 * Downstream ports reset the LTR enable bit when link goes down. 1627 * Check and re-configure the bit here before restoring device. 1628 * PCIe r5.0, sec 7.5.3.16. 1629 */ 1630 pci_bridge_reconfigure_ltr(dev); 1631 1632 cap = (u16 *)&save_state->cap.data[0]; 1633 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1634 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1635 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1636 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1637 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1638 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1639 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1640 } 1641 1642 static int pci_save_pcix_state(struct pci_dev *dev) 1643 { 1644 int pos; 1645 struct pci_cap_saved_state *save_state; 1646 1647 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1648 if (!pos) 1649 return 0; 1650 1651 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1652 if (!save_state) { 1653 pci_err(dev, "buffer not found in %s\n", __func__); 1654 return -ENOMEM; 1655 } 1656 1657 pci_read_config_word(dev, pos + PCI_X_CMD, 1658 (u16 *)save_state->cap.data); 1659 1660 return 0; 1661 } 1662 1663 static void pci_restore_pcix_state(struct pci_dev *dev) 1664 { 1665 int i = 0, pos; 1666 struct pci_cap_saved_state *save_state; 1667 u16 *cap; 1668 1669 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1670 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1671 if (!save_state || !pos) 1672 return; 1673 cap = (u16 *)&save_state->cap.data[0]; 1674 1675 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1676 } 1677 1678 static void pci_save_ltr_state(struct pci_dev *dev) 1679 { 1680 int ltr; 1681 struct pci_cap_saved_state *save_state; 1682 u32 *cap; 1683 1684 if (!pci_is_pcie(dev)) 1685 return; 1686 1687 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1688 if (!ltr) 1689 return; 1690 1691 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1692 if (!save_state) { 1693 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1694 return; 1695 } 1696 1697 /* Some broken devices only support dword access to LTR */ 1698 cap = &save_state->cap.data[0]; 1699 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1700 } 1701 1702 static void pci_restore_ltr_state(struct pci_dev *dev) 1703 { 1704 struct pci_cap_saved_state *save_state; 1705 int ltr; 1706 u32 *cap; 1707 1708 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1709 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1710 if (!save_state || !ltr) 1711 return; 1712 1713 /* Some broken devices only support dword access to LTR */ 1714 cap = &save_state->cap.data[0]; 1715 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1716 } 1717 1718 /** 1719 * pci_save_state - save the PCI configuration space of a device before 1720 * suspending 1721 * @dev: PCI device that we're dealing with 1722 */ 1723 int pci_save_state(struct pci_dev *dev) 1724 { 1725 int i; 1726 /* XXX: 100% dword access ok here? */ 1727 for (i = 0; i < 16; i++) { 1728 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1729 pci_dbg(dev, "save config %#04x: %#010x\n", 1730 i * 4, dev->saved_config_space[i]); 1731 } 1732 dev->state_saved = true; 1733 1734 i = pci_save_pcie_state(dev); 1735 if (i != 0) 1736 return i; 1737 1738 i = pci_save_pcix_state(dev); 1739 if (i != 0) 1740 return i; 1741 1742 pci_save_ltr_state(dev); 1743 pci_save_dpc_state(dev); 1744 pci_save_aer_state(dev); 1745 pci_save_ptm_state(dev); 1746 return pci_save_vc_state(dev); 1747 } 1748 EXPORT_SYMBOL(pci_save_state); 1749 1750 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1751 u32 saved_val, int retry, bool force) 1752 { 1753 u32 val; 1754 1755 pci_read_config_dword(pdev, offset, &val); 1756 if (!force && val == saved_val) 1757 return; 1758 1759 for (;;) { 1760 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1761 offset, val, saved_val); 1762 pci_write_config_dword(pdev, offset, saved_val); 1763 if (retry-- <= 0) 1764 return; 1765 1766 pci_read_config_dword(pdev, offset, &val); 1767 if (val == saved_val) 1768 return; 1769 1770 mdelay(1); 1771 } 1772 } 1773 1774 static void pci_restore_config_space_range(struct pci_dev *pdev, 1775 int start, int end, int retry, 1776 bool force) 1777 { 1778 int index; 1779 1780 for (index = end; index >= start; index--) 1781 pci_restore_config_dword(pdev, 4 * index, 1782 pdev->saved_config_space[index], 1783 retry, force); 1784 } 1785 1786 static void pci_restore_config_space(struct pci_dev *pdev) 1787 { 1788 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1789 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1790 /* Restore BARs before the command register. */ 1791 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1792 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1793 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1794 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1795 1796 /* 1797 * Force rewriting of prefetch registers to avoid S3 resume 1798 * issues on Intel PCI bridges that occur when these 1799 * registers are not explicitly written. 1800 */ 1801 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1802 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1803 } else { 1804 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1805 } 1806 } 1807 1808 static void pci_restore_rebar_state(struct pci_dev *pdev) 1809 { 1810 unsigned int pos, nbars, i; 1811 u32 ctrl; 1812 1813 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1814 if (!pos) 1815 return; 1816 1817 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1818 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1819 PCI_REBAR_CTRL_NBAR_SHIFT; 1820 1821 for (i = 0; i < nbars; i++, pos += 8) { 1822 struct resource *res; 1823 int bar_idx, size; 1824 1825 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1826 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1827 res = pdev->resource + bar_idx; 1828 size = pci_rebar_bytes_to_size(resource_size(res)); 1829 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1830 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1831 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1832 } 1833 } 1834 1835 /** 1836 * pci_restore_state - Restore the saved state of a PCI device 1837 * @dev: PCI device that we're dealing with 1838 */ 1839 void pci_restore_state(struct pci_dev *dev) 1840 { 1841 if (!dev->state_saved) 1842 return; 1843 1844 /* 1845 * Restore max latencies (in the LTR capability) before enabling 1846 * LTR itself (in the PCIe capability). 1847 */ 1848 pci_restore_ltr_state(dev); 1849 1850 pci_restore_pcie_state(dev); 1851 pci_restore_pasid_state(dev); 1852 pci_restore_pri_state(dev); 1853 pci_restore_ats_state(dev); 1854 pci_restore_vc_state(dev); 1855 pci_restore_rebar_state(dev); 1856 pci_restore_dpc_state(dev); 1857 pci_restore_ptm_state(dev); 1858 1859 pci_aer_clear_status(dev); 1860 pci_restore_aer_state(dev); 1861 1862 pci_restore_config_space(dev); 1863 1864 pci_restore_pcix_state(dev); 1865 pci_restore_msi_state(dev); 1866 1867 /* Restore ACS and IOV configuration state */ 1868 pci_enable_acs(dev); 1869 pci_restore_iov_state(dev); 1870 1871 dev->state_saved = false; 1872 } 1873 EXPORT_SYMBOL(pci_restore_state); 1874 1875 struct pci_saved_state { 1876 u32 config_space[16]; 1877 struct pci_cap_saved_data cap[]; 1878 }; 1879 1880 /** 1881 * pci_store_saved_state - Allocate and return an opaque struct containing 1882 * the device saved state. 1883 * @dev: PCI device that we're dealing with 1884 * 1885 * Return NULL if no state or error. 1886 */ 1887 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1888 { 1889 struct pci_saved_state *state; 1890 struct pci_cap_saved_state *tmp; 1891 struct pci_cap_saved_data *cap; 1892 size_t size; 1893 1894 if (!dev->state_saved) 1895 return NULL; 1896 1897 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1898 1899 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1900 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1901 1902 state = kzalloc(size, GFP_KERNEL); 1903 if (!state) 1904 return NULL; 1905 1906 memcpy(state->config_space, dev->saved_config_space, 1907 sizeof(state->config_space)); 1908 1909 cap = state->cap; 1910 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1911 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1912 memcpy(cap, &tmp->cap, len); 1913 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1914 } 1915 /* Empty cap_save terminates list */ 1916 1917 return state; 1918 } 1919 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1920 1921 /** 1922 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1923 * @dev: PCI device that we're dealing with 1924 * @state: Saved state returned from pci_store_saved_state() 1925 */ 1926 int pci_load_saved_state(struct pci_dev *dev, 1927 struct pci_saved_state *state) 1928 { 1929 struct pci_cap_saved_data *cap; 1930 1931 dev->state_saved = false; 1932 1933 if (!state) 1934 return 0; 1935 1936 memcpy(dev->saved_config_space, state->config_space, 1937 sizeof(state->config_space)); 1938 1939 cap = state->cap; 1940 while (cap->size) { 1941 struct pci_cap_saved_state *tmp; 1942 1943 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1944 if (!tmp || tmp->cap.size != cap->size) 1945 return -EINVAL; 1946 1947 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1948 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1949 sizeof(struct pci_cap_saved_data) + cap->size); 1950 } 1951 1952 dev->state_saved = true; 1953 return 0; 1954 } 1955 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1956 1957 /** 1958 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1959 * and free the memory allocated for it. 1960 * @dev: PCI device that we're dealing with 1961 * @state: Pointer to saved state returned from pci_store_saved_state() 1962 */ 1963 int pci_load_and_free_saved_state(struct pci_dev *dev, 1964 struct pci_saved_state **state) 1965 { 1966 int ret = pci_load_saved_state(dev, *state); 1967 kfree(*state); 1968 *state = NULL; 1969 return ret; 1970 } 1971 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1972 1973 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1974 { 1975 return pci_enable_resources(dev, bars); 1976 } 1977 1978 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1979 { 1980 int err; 1981 struct pci_dev *bridge; 1982 u16 cmd; 1983 u8 pin; 1984 1985 err = pci_set_power_state(dev, PCI_D0); 1986 if (err < 0 && err != -EIO) 1987 return err; 1988 1989 bridge = pci_upstream_bridge(dev); 1990 if (bridge) 1991 pcie_aspm_powersave_config_link(bridge); 1992 1993 err = pcibios_enable_device(dev, bars); 1994 if (err < 0) 1995 return err; 1996 pci_fixup_device(pci_fixup_enable, dev); 1997 1998 if (dev->msi_enabled || dev->msix_enabled) 1999 return 0; 2000 2001 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 2002 if (pin) { 2003 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2004 if (cmd & PCI_COMMAND_INTX_DISABLE) 2005 pci_write_config_word(dev, PCI_COMMAND, 2006 cmd & ~PCI_COMMAND_INTX_DISABLE); 2007 } 2008 2009 return 0; 2010 } 2011 2012 /** 2013 * pci_reenable_device - Resume abandoned device 2014 * @dev: PCI device to be resumed 2015 * 2016 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2017 * to be called by normal code, write proper resume handler and use it instead. 2018 */ 2019 int pci_reenable_device(struct pci_dev *dev) 2020 { 2021 if (pci_is_enabled(dev)) 2022 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2023 return 0; 2024 } 2025 EXPORT_SYMBOL(pci_reenable_device); 2026 2027 static void pci_enable_bridge(struct pci_dev *dev) 2028 { 2029 struct pci_dev *bridge; 2030 int retval; 2031 2032 bridge = pci_upstream_bridge(dev); 2033 if (bridge) 2034 pci_enable_bridge(bridge); 2035 2036 if (pci_is_enabled(dev)) { 2037 if (!dev->is_busmaster) 2038 pci_set_master(dev); 2039 return; 2040 } 2041 2042 retval = pci_enable_device(dev); 2043 if (retval) 2044 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2045 retval); 2046 pci_set_master(dev); 2047 } 2048 2049 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2050 { 2051 struct pci_dev *bridge; 2052 int err; 2053 int i, bars = 0; 2054 2055 /* 2056 * Power state could be unknown at this point, either due to a fresh 2057 * boot or a device removal call. So get the current power state 2058 * so that things like MSI message writing will behave as expected 2059 * (e.g. if the device really is in D0 at enable time). 2060 */ 2061 pci_update_current_state(dev, dev->current_state); 2062 2063 if (atomic_inc_return(&dev->enable_cnt) > 1) 2064 return 0; /* already enabled */ 2065 2066 bridge = pci_upstream_bridge(dev); 2067 if (bridge) 2068 pci_enable_bridge(bridge); 2069 2070 /* only skip sriov related */ 2071 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2072 if (dev->resource[i].flags & flags) 2073 bars |= (1 << i); 2074 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2075 if (dev->resource[i].flags & flags) 2076 bars |= (1 << i); 2077 2078 err = do_pci_enable_device(dev, bars); 2079 if (err < 0) 2080 atomic_dec(&dev->enable_cnt); 2081 return err; 2082 } 2083 2084 /** 2085 * pci_enable_device_io - Initialize a device for use with IO space 2086 * @dev: PCI device to be initialized 2087 * 2088 * Initialize device before it's used by a driver. Ask low-level code 2089 * to enable I/O resources. Wake up the device if it was suspended. 2090 * Beware, this function can fail. 2091 */ 2092 int pci_enable_device_io(struct pci_dev *dev) 2093 { 2094 return pci_enable_device_flags(dev, IORESOURCE_IO); 2095 } 2096 EXPORT_SYMBOL(pci_enable_device_io); 2097 2098 /** 2099 * pci_enable_device_mem - Initialize a device for use with Memory space 2100 * @dev: PCI device to be initialized 2101 * 2102 * Initialize device before it's used by a driver. Ask low-level code 2103 * to enable Memory resources. Wake up the device if it was suspended. 2104 * Beware, this function can fail. 2105 */ 2106 int pci_enable_device_mem(struct pci_dev *dev) 2107 { 2108 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2109 } 2110 EXPORT_SYMBOL(pci_enable_device_mem); 2111 2112 /** 2113 * pci_enable_device - Initialize device before it's used by a driver. 2114 * @dev: PCI device to be initialized 2115 * 2116 * Initialize device before it's used by a driver. Ask low-level code 2117 * to enable I/O and memory. Wake up the device if it was suspended. 2118 * Beware, this function can fail. 2119 * 2120 * Note we don't actually enable the device many times if we call 2121 * this function repeatedly (we just increment the count). 2122 */ 2123 int pci_enable_device(struct pci_dev *dev) 2124 { 2125 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2126 } 2127 EXPORT_SYMBOL(pci_enable_device); 2128 2129 /* 2130 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2131 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2132 * there's no need to track it separately. pci_devres is initialized 2133 * when a device is enabled using managed PCI device enable interface. 2134 */ 2135 struct pci_devres { 2136 unsigned int enabled:1; 2137 unsigned int pinned:1; 2138 unsigned int orig_intx:1; 2139 unsigned int restore_intx:1; 2140 unsigned int mwi:1; 2141 u32 region_mask; 2142 }; 2143 2144 static void pcim_release(struct device *gendev, void *res) 2145 { 2146 struct pci_dev *dev = to_pci_dev(gendev); 2147 struct pci_devres *this = res; 2148 int i; 2149 2150 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2151 if (this->region_mask & (1 << i)) 2152 pci_release_region(dev, i); 2153 2154 if (this->mwi) 2155 pci_clear_mwi(dev); 2156 2157 if (this->restore_intx) 2158 pci_intx(dev, this->orig_intx); 2159 2160 if (this->enabled && !this->pinned) 2161 pci_disable_device(dev); 2162 } 2163 2164 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2165 { 2166 struct pci_devres *dr, *new_dr; 2167 2168 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2169 if (dr) 2170 return dr; 2171 2172 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2173 if (!new_dr) 2174 return NULL; 2175 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2176 } 2177 2178 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2179 { 2180 if (pci_is_managed(pdev)) 2181 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2182 return NULL; 2183 } 2184 2185 /** 2186 * pcim_enable_device - Managed pci_enable_device() 2187 * @pdev: PCI device to be initialized 2188 * 2189 * Managed pci_enable_device(). 2190 */ 2191 int pcim_enable_device(struct pci_dev *pdev) 2192 { 2193 struct pci_devres *dr; 2194 int rc; 2195 2196 dr = get_pci_dr(pdev); 2197 if (unlikely(!dr)) 2198 return -ENOMEM; 2199 if (dr->enabled) 2200 return 0; 2201 2202 rc = pci_enable_device(pdev); 2203 if (!rc) { 2204 pdev->is_managed = 1; 2205 dr->enabled = 1; 2206 } 2207 return rc; 2208 } 2209 EXPORT_SYMBOL(pcim_enable_device); 2210 2211 /** 2212 * pcim_pin_device - Pin managed PCI device 2213 * @pdev: PCI device to pin 2214 * 2215 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2216 * driver detach. @pdev must have been enabled with 2217 * pcim_enable_device(). 2218 */ 2219 void pcim_pin_device(struct pci_dev *pdev) 2220 { 2221 struct pci_devres *dr; 2222 2223 dr = find_pci_dr(pdev); 2224 WARN_ON(!dr || !dr->enabled); 2225 if (dr) 2226 dr->pinned = 1; 2227 } 2228 EXPORT_SYMBOL(pcim_pin_device); 2229 2230 /* 2231 * pcibios_device_add - provide arch specific hooks when adding device dev 2232 * @dev: the PCI device being added 2233 * 2234 * Permits the platform to provide architecture specific functionality when 2235 * devices are added. This is the default implementation. Architecture 2236 * implementations can override this. 2237 */ 2238 int __weak pcibios_device_add(struct pci_dev *dev) 2239 { 2240 return 0; 2241 } 2242 2243 /** 2244 * pcibios_release_device - provide arch specific hooks when releasing 2245 * device dev 2246 * @dev: the PCI device being released 2247 * 2248 * Permits the platform to provide architecture specific functionality when 2249 * devices are released. This is the default implementation. Architecture 2250 * implementations can override this. 2251 */ 2252 void __weak pcibios_release_device(struct pci_dev *dev) {} 2253 2254 /** 2255 * pcibios_disable_device - disable arch specific PCI resources for device dev 2256 * @dev: the PCI device to disable 2257 * 2258 * Disables architecture specific PCI resources for the device. This 2259 * is the default implementation. Architecture implementations can 2260 * override this. 2261 */ 2262 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2263 2264 /** 2265 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2266 * @irq: ISA IRQ to penalize 2267 * @active: IRQ active or not 2268 * 2269 * Permits the platform to provide architecture-specific functionality when 2270 * penalizing ISA IRQs. This is the default implementation. Architecture 2271 * implementations can override this. 2272 */ 2273 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2274 2275 static void do_pci_disable_device(struct pci_dev *dev) 2276 { 2277 u16 pci_command; 2278 2279 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2280 if (pci_command & PCI_COMMAND_MASTER) { 2281 pci_command &= ~PCI_COMMAND_MASTER; 2282 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2283 } 2284 2285 pcibios_disable_device(dev); 2286 } 2287 2288 /** 2289 * pci_disable_enabled_device - Disable device without updating enable_cnt 2290 * @dev: PCI device to disable 2291 * 2292 * NOTE: This function is a backend of PCI power management routines and is 2293 * not supposed to be called drivers. 2294 */ 2295 void pci_disable_enabled_device(struct pci_dev *dev) 2296 { 2297 if (pci_is_enabled(dev)) 2298 do_pci_disable_device(dev); 2299 } 2300 2301 /** 2302 * pci_disable_device - Disable PCI device after use 2303 * @dev: PCI device to be disabled 2304 * 2305 * Signal to the system that the PCI device is not in use by the system 2306 * anymore. This only involves disabling PCI bus-mastering, if active. 2307 * 2308 * Note we don't actually disable the device until all callers of 2309 * pci_enable_device() have called pci_disable_device(). 2310 */ 2311 void pci_disable_device(struct pci_dev *dev) 2312 { 2313 struct pci_devres *dr; 2314 2315 dr = find_pci_dr(dev); 2316 if (dr) 2317 dr->enabled = 0; 2318 2319 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2320 "disabling already-disabled device"); 2321 2322 if (atomic_dec_return(&dev->enable_cnt) != 0) 2323 return; 2324 2325 do_pci_disable_device(dev); 2326 2327 dev->is_busmaster = 0; 2328 } 2329 EXPORT_SYMBOL(pci_disable_device); 2330 2331 /** 2332 * pcibios_set_pcie_reset_state - set reset state for device dev 2333 * @dev: the PCIe device reset 2334 * @state: Reset state to enter into 2335 * 2336 * Set the PCIe reset state for the device. This is the default 2337 * implementation. Architecture implementations can override this. 2338 */ 2339 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2340 enum pcie_reset_state state) 2341 { 2342 return -EINVAL; 2343 } 2344 2345 /** 2346 * pci_set_pcie_reset_state - set reset state for device dev 2347 * @dev: the PCIe device reset 2348 * @state: Reset state to enter into 2349 * 2350 * Sets the PCI reset state for the device. 2351 */ 2352 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2353 { 2354 return pcibios_set_pcie_reset_state(dev, state); 2355 } 2356 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2357 2358 #ifdef CONFIG_PCIEAER 2359 void pcie_clear_device_status(struct pci_dev *dev) 2360 { 2361 u16 sta; 2362 2363 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2364 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2365 } 2366 #endif 2367 2368 /** 2369 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2370 * @dev: PCIe root port or event collector. 2371 */ 2372 void pcie_clear_root_pme_status(struct pci_dev *dev) 2373 { 2374 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2375 } 2376 2377 /** 2378 * pci_check_pme_status - Check if given device has generated PME. 2379 * @dev: Device to check. 2380 * 2381 * Check the PME status of the device and if set, clear it and clear PME enable 2382 * (if set). Return 'true' if PME status and PME enable were both set or 2383 * 'false' otherwise. 2384 */ 2385 bool pci_check_pme_status(struct pci_dev *dev) 2386 { 2387 int pmcsr_pos; 2388 u16 pmcsr; 2389 bool ret = false; 2390 2391 if (!dev->pm_cap) 2392 return false; 2393 2394 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2395 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2396 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2397 return false; 2398 2399 /* Clear PME status. */ 2400 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2401 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2402 /* Disable PME to avoid interrupt flood. */ 2403 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2404 ret = true; 2405 } 2406 2407 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2408 2409 return ret; 2410 } 2411 2412 /** 2413 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2414 * @dev: Device to handle. 2415 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2416 * 2417 * Check if @dev has generated PME and queue a resume request for it in that 2418 * case. 2419 */ 2420 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2421 { 2422 if (pme_poll_reset && dev->pme_poll) 2423 dev->pme_poll = false; 2424 2425 if (pci_check_pme_status(dev)) { 2426 pci_wakeup_event(dev); 2427 pm_request_resume(&dev->dev); 2428 } 2429 return 0; 2430 } 2431 2432 /** 2433 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2434 * @bus: Top bus of the subtree to walk. 2435 */ 2436 void pci_pme_wakeup_bus(struct pci_bus *bus) 2437 { 2438 if (bus) 2439 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2440 } 2441 2442 2443 /** 2444 * pci_pme_capable - check the capability of PCI device to generate PME# 2445 * @dev: PCI device to handle. 2446 * @state: PCI state from which device will issue PME#. 2447 */ 2448 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2449 { 2450 if (!dev->pm_cap) 2451 return false; 2452 2453 return !!(dev->pme_support & (1 << state)); 2454 } 2455 EXPORT_SYMBOL(pci_pme_capable); 2456 2457 static void pci_pme_list_scan(struct work_struct *work) 2458 { 2459 struct pci_pme_device *pme_dev, *n; 2460 2461 mutex_lock(&pci_pme_list_mutex); 2462 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2463 struct pci_dev *pdev = pme_dev->dev; 2464 2465 if (pdev->pme_poll) { 2466 struct pci_dev *bridge = pdev->bus->self; 2467 struct device *dev = &pdev->dev; 2468 struct device *bdev = bridge ? &bridge->dev : NULL; 2469 int bref = 0; 2470 2471 /* 2472 * If we have a bridge, it should be in an active/D0 2473 * state or the configuration space of subordinate 2474 * devices may not be accessible or stable over the 2475 * course of the call. 2476 */ 2477 if (bdev) { 2478 bref = pm_runtime_get_if_active(bdev, true); 2479 if (!bref) 2480 continue; 2481 2482 if (bridge->current_state != PCI_D0) 2483 goto put_bridge; 2484 } 2485 2486 /* 2487 * The device itself should be suspended but config 2488 * space must be accessible, therefore it cannot be in 2489 * D3cold. 2490 */ 2491 if (pm_runtime_suspended(dev) && 2492 pdev->current_state != PCI_D3cold) 2493 pci_pme_wakeup(pdev, NULL); 2494 2495 put_bridge: 2496 if (bref > 0) 2497 pm_runtime_put(bdev); 2498 } else { 2499 list_del(&pme_dev->list); 2500 kfree(pme_dev); 2501 } 2502 } 2503 if (!list_empty(&pci_pme_list)) 2504 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2505 msecs_to_jiffies(PME_TIMEOUT)); 2506 mutex_unlock(&pci_pme_list_mutex); 2507 } 2508 2509 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2510 { 2511 u16 pmcsr; 2512 2513 if (!dev->pme_support) 2514 return; 2515 2516 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2517 /* Clear PME_Status by writing 1 to it and enable PME# */ 2518 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2519 if (!enable) 2520 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2521 2522 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2523 } 2524 2525 /** 2526 * pci_pme_restore - Restore PME configuration after config space restore. 2527 * @dev: PCI device to update. 2528 */ 2529 void pci_pme_restore(struct pci_dev *dev) 2530 { 2531 u16 pmcsr; 2532 2533 if (!dev->pme_support) 2534 return; 2535 2536 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2537 if (dev->wakeup_prepared) { 2538 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2539 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2540 } else { 2541 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2542 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2543 } 2544 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2545 } 2546 2547 /** 2548 * pci_pme_active - enable or disable PCI device's PME# function 2549 * @dev: PCI device to handle. 2550 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2551 * 2552 * The caller must verify that the device is capable of generating PME# before 2553 * calling this function with @enable equal to 'true'. 2554 */ 2555 void pci_pme_active(struct pci_dev *dev, bool enable) 2556 { 2557 __pci_pme_active(dev, enable); 2558 2559 /* 2560 * PCI (as opposed to PCIe) PME requires that the device have 2561 * its PME# line hooked up correctly. Not all hardware vendors 2562 * do this, so the PME never gets delivered and the device 2563 * remains asleep. The easiest way around this is to 2564 * periodically walk the list of suspended devices and check 2565 * whether any have their PME flag set. The assumption is that 2566 * we'll wake up often enough anyway that this won't be a huge 2567 * hit, and the power savings from the devices will still be a 2568 * win. 2569 * 2570 * Although PCIe uses in-band PME message instead of PME# line 2571 * to report PME, PME does not work for some PCIe devices in 2572 * reality. For example, there are devices that set their PME 2573 * status bits, but don't really bother to send a PME message; 2574 * there are PCI Express Root Ports that don't bother to 2575 * trigger interrupts when they receive PME messages from the 2576 * devices below. So PME poll is used for PCIe devices too. 2577 */ 2578 2579 if (dev->pme_poll) { 2580 struct pci_pme_device *pme_dev; 2581 if (enable) { 2582 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2583 GFP_KERNEL); 2584 if (!pme_dev) { 2585 pci_warn(dev, "can't enable PME#\n"); 2586 return; 2587 } 2588 pme_dev->dev = dev; 2589 mutex_lock(&pci_pme_list_mutex); 2590 list_add(&pme_dev->list, &pci_pme_list); 2591 if (list_is_singular(&pci_pme_list)) 2592 queue_delayed_work(system_freezable_wq, 2593 &pci_pme_work, 2594 msecs_to_jiffies(PME_TIMEOUT)); 2595 mutex_unlock(&pci_pme_list_mutex); 2596 } else { 2597 mutex_lock(&pci_pme_list_mutex); 2598 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2599 if (pme_dev->dev == dev) { 2600 list_del(&pme_dev->list); 2601 kfree(pme_dev); 2602 break; 2603 } 2604 } 2605 mutex_unlock(&pci_pme_list_mutex); 2606 } 2607 } 2608 2609 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2610 } 2611 EXPORT_SYMBOL(pci_pme_active); 2612 2613 /** 2614 * __pci_enable_wake - enable PCI device as wakeup event source 2615 * @dev: PCI device affected 2616 * @state: PCI state from which device will issue wakeup events 2617 * @enable: True to enable event generation; false to disable 2618 * 2619 * This enables the device as a wakeup event source, or disables it. 2620 * When such events involves platform-specific hooks, those hooks are 2621 * called automatically by this routine. 2622 * 2623 * Devices with legacy power management (no standard PCI PM capabilities) 2624 * always require such platform hooks. 2625 * 2626 * RETURN VALUE: 2627 * 0 is returned on success 2628 * -EINVAL is returned if device is not supposed to wake up the system 2629 * Error code depending on the platform is returned if both the platform and 2630 * the native mechanism fail to enable the generation of wake-up events 2631 */ 2632 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2633 { 2634 int ret = 0; 2635 2636 /* 2637 * Bridges that are not power-manageable directly only signal 2638 * wakeup on behalf of subordinate devices which is set up 2639 * elsewhere, so skip them. However, bridges that are 2640 * power-manageable may signal wakeup for themselves (for example, 2641 * on a hotplug event) and they need to be covered here. 2642 */ 2643 if (!pci_power_manageable(dev)) 2644 return 0; 2645 2646 /* Don't do the same thing twice in a row for one device. */ 2647 if (!!enable == !!dev->wakeup_prepared) 2648 return 0; 2649 2650 /* 2651 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2652 * Anderson we should be doing PME# wake enable followed by ACPI wake 2653 * enable. To disable wake-up we call the platform first, for symmetry. 2654 */ 2655 2656 if (enable) { 2657 int error; 2658 2659 /* 2660 * Enable PME signaling if the device can signal PME from 2661 * D3cold regardless of whether or not it can signal PME from 2662 * the current target state, because that will allow it to 2663 * signal PME when the hierarchy above it goes into D3cold and 2664 * the device itself ends up in D3cold as a result of that. 2665 */ 2666 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2667 pci_pme_active(dev, true); 2668 else 2669 ret = 1; 2670 error = platform_pci_set_wakeup(dev, true); 2671 if (ret) 2672 ret = error; 2673 if (!ret) 2674 dev->wakeup_prepared = true; 2675 } else { 2676 platform_pci_set_wakeup(dev, false); 2677 pci_pme_active(dev, false); 2678 dev->wakeup_prepared = false; 2679 } 2680 2681 return ret; 2682 } 2683 2684 /** 2685 * pci_enable_wake - change wakeup settings for a PCI device 2686 * @pci_dev: Target device 2687 * @state: PCI state from which device will issue wakeup events 2688 * @enable: Whether or not to enable event generation 2689 * 2690 * If @enable is set, check device_may_wakeup() for the device before calling 2691 * __pci_enable_wake() for it. 2692 */ 2693 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2694 { 2695 if (enable && !device_may_wakeup(&pci_dev->dev)) 2696 return -EINVAL; 2697 2698 return __pci_enable_wake(pci_dev, state, enable); 2699 } 2700 EXPORT_SYMBOL(pci_enable_wake); 2701 2702 /** 2703 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2704 * @dev: PCI device to prepare 2705 * @enable: True to enable wake-up event generation; false to disable 2706 * 2707 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2708 * and this function allows them to set that up cleanly - pci_enable_wake() 2709 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2710 * ordering constraints. 2711 * 2712 * This function only returns error code if the device is not allowed to wake 2713 * up the system from sleep or it is not capable of generating PME# from both 2714 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2715 */ 2716 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2717 { 2718 return pci_pme_capable(dev, PCI_D3cold) ? 2719 pci_enable_wake(dev, PCI_D3cold, enable) : 2720 pci_enable_wake(dev, PCI_D3hot, enable); 2721 } 2722 EXPORT_SYMBOL(pci_wake_from_d3); 2723 2724 /** 2725 * pci_target_state - find an appropriate low power state for a given PCI dev 2726 * @dev: PCI device 2727 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2728 * 2729 * Use underlying platform code to find a supported low power state for @dev. 2730 * If the platform can't manage @dev, return the deepest state from which it 2731 * can generate wake events, based on any available PME info. 2732 */ 2733 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2734 { 2735 if (platform_pci_power_manageable(dev)) { 2736 /* 2737 * Call the platform to find the target state for the device. 2738 */ 2739 pci_power_t state = platform_pci_choose_state(dev); 2740 2741 switch (state) { 2742 case PCI_POWER_ERROR: 2743 case PCI_UNKNOWN: 2744 return PCI_D3hot; 2745 2746 case PCI_D1: 2747 case PCI_D2: 2748 if (pci_no_d1d2(dev)) 2749 return PCI_D3hot; 2750 } 2751 2752 return state; 2753 } 2754 2755 /* 2756 * If the device is in D3cold even though it's not power-manageable by 2757 * the platform, it may have been powered down by non-standard means. 2758 * Best to let it slumber. 2759 */ 2760 if (dev->current_state == PCI_D3cold) 2761 return PCI_D3cold; 2762 else if (!dev->pm_cap) 2763 return PCI_D0; 2764 2765 if (wakeup && dev->pme_support) { 2766 pci_power_t state = PCI_D3hot; 2767 2768 /* 2769 * Find the deepest state from which the device can generate 2770 * PME#. 2771 */ 2772 while (state && !(dev->pme_support & (1 << state))) 2773 state--; 2774 2775 if (state) 2776 return state; 2777 else if (dev->pme_support & 1) 2778 return PCI_D0; 2779 } 2780 2781 return PCI_D3hot; 2782 } 2783 2784 /** 2785 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2786 * into a sleep state 2787 * @dev: Device to handle. 2788 * 2789 * Choose the power state appropriate for the device depending on whether 2790 * it can wake up the system and/or is power manageable by the platform 2791 * (PCI_D3hot is the default) and put the device into that state. 2792 */ 2793 int pci_prepare_to_sleep(struct pci_dev *dev) 2794 { 2795 bool wakeup = device_may_wakeup(&dev->dev); 2796 pci_power_t target_state = pci_target_state(dev, wakeup); 2797 int error; 2798 2799 if (target_state == PCI_POWER_ERROR) 2800 return -EIO; 2801 2802 pci_enable_wake(dev, target_state, wakeup); 2803 2804 error = pci_set_power_state(dev, target_state); 2805 2806 if (error) 2807 pci_enable_wake(dev, target_state, false); 2808 2809 return error; 2810 } 2811 EXPORT_SYMBOL(pci_prepare_to_sleep); 2812 2813 /** 2814 * pci_back_from_sleep - turn PCI device on during system-wide transition 2815 * into working state 2816 * @dev: Device to handle. 2817 * 2818 * Disable device's system wake-up capability and put it into D0. 2819 */ 2820 int pci_back_from_sleep(struct pci_dev *dev) 2821 { 2822 int ret = pci_set_power_state(dev, PCI_D0); 2823 2824 if (ret) 2825 return ret; 2826 2827 pci_enable_wake(dev, PCI_D0, false); 2828 return 0; 2829 } 2830 EXPORT_SYMBOL(pci_back_from_sleep); 2831 2832 /** 2833 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2834 * @dev: PCI device being suspended. 2835 * 2836 * Prepare @dev to generate wake-up events at run time and put it into a low 2837 * power state. 2838 */ 2839 int pci_finish_runtime_suspend(struct pci_dev *dev) 2840 { 2841 pci_power_t target_state; 2842 int error; 2843 2844 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2845 if (target_state == PCI_POWER_ERROR) 2846 return -EIO; 2847 2848 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2849 2850 error = pci_set_power_state(dev, target_state); 2851 2852 if (error) 2853 pci_enable_wake(dev, target_state, false); 2854 2855 return error; 2856 } 2857 2858 /** 2859 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2860 * @dev: Device to check. 2861 * 2862 * Return true if the device itself is capable of generating wake-up events 2863 * (through the platform or using the native PCIe PME) or if the device supports 2864 * PME and one of its upstream bridges can generate wake-up events. 2865 */ 2866 bool pci_dev_run_wake(struct pci_dev *dev) 2867 { 2868 struct pci_bus *bus = dev->bus; 2869 2870 if (!dev->pme_support) 2871 return false; 2872 2873 /* PME-capable in principle, but not from the target power state */ 2874 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2875 return false; 2876 2877 if (device_can_wakeup(&dev->dev)) 2878 return true; 2879 2880 while (bus->parent) { 2881 struct pci_dev *bridge = bus->self; 2882 2883 if (device_can_wakeup(&bridge->dev)) 2884 return true; 2885 2886 bus = bus->parent; 2887 } 2888 2889 /* We have reached the root bus. */ 2890 if (bus->bridge) 2891 return device_can_wakeup(bus->bridge); 2892 2893 return false; 2894 } 2895 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2896 2897 /** 2898 * pci_dev_need_resume - Check if it is necessary to resume the device. 2899 * @pci_dev: Device to check. 2900 * 2901 * Return 'true' if the device is not runtime-suspended or it has to be 2902 * reconfigured due to wakeup settings difference between system and runtime 2903 * suspend, or the current power state of it is not suitable for the upcoming 2904 * (system-wide) transition. 2905 */ 2906 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2907 { 2908 struct device *dev = &pci_dev->dev; 2909 pci_power_t target_state; 2910 2911 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2912 return true; 2913 2914 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2915 2916 /* 2917 * If the earlier platform check has not triggered, D3cold is just power 2918 * removal on top of D3hot, so no need to resume the device in that 2919 * case. 2920 */ 2921 return target_state != pci_dev->current_state && 2922 target_state != PCI_D3cold && 2923 pci_dev->current_state != PCI_D3hot; 2924 } 2925 2926 /** 2927 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2928 * @pci_dev: Device to check. 2929 * 2930 * If the device is suspended and it is not configured for system wakeup, 2931 * disable PME for it to prevent it from waking up the system unnecessarily. 2932 * 2933 * Note that if the device's power state is D3cold and the platform check in 2934 * pci_dev_need_resume() has not triggered, the device's configuration need not 2935 * be changed. 2936 */ 2937 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2938 { 2939 struct device *dev = &pci_dev->dev; 2940 2941 spin_lock_irq(&dev->power.lock); 2942 2943 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2944 pci_dev->current_state < PCI_D3cold) 2945 __pci_pme_active(pci_dev, false); 2946 2947 spin_unlock_irq(&dev->power.lock); 2948 } 2949 2950 /** 2951 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2952 * @pci_dev: Device to handle. 2953 * 2954 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2955 * it might have been disabled during the prepare phase of system suspend if 2956 * the device was not configured for system wakeup. 2957 */ 2958 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2959 { 2960 struct device *dev = &pci_dev->dev; 2961 2962 if (!pci_dev_run_wake(pci_dev)) 2963 return; 2964 2965 spin_lock_irq(&dev->power.lock); 2966 2967 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2968 __pci_pme_active(pci_dev, true); 2969 2970 spin_unlock_irq(&dev->power.lock); 2971 } 2972 2973 /** 2974 * pci_choose_state - Choose the power state of a PCI device. 2975 * @dev: Target PCI device. 2976 * @state: Target state for the whole system. 2977 * 2978 * Returns PCI power state suitable for @dev and @state. 2979 */ 2980 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2981 { 2982 if (state.event == PM_EVENT_ON) 2983 return PCI_D0; 2984 2985 return pci_target_state(dev, false); 2986 } 2987 EXPORT_SYMBOL(pci_choose_state); 2988 2989 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2990 { 2991 struct device *dev = &pdev->dev; 2992 struct device *parent = dev->parent; 2993 2994 if (parent) 2995 pm_runtime_get_sync(parent); 2996 pm_runtime_get_noresume(dev); 2997 /* 2998 * pdev->current_state is set to PCI_D3cold during suspending, 2999 * so wait until suspending completes 3000 */ 3001 pm_runtime_barrier(dev); 3002 /* 3003 * Only need to resume devices in D3cold, because config 3004 * registers are still accessible for devices suspended but 3005 * not in D3cold. 3006 */ 3007 if (pdev->current_state == PCI_D3cold) 3008 pm_runtime_resume(dev); 3009 } 3010 3011 void pci_config_pm_runtime_put(struct pci_dev *pdev) 3012 { 3013 struct device *dev = &pdev->dev; 3014 struct device *parent = dev->parent; 3015 3016 pm_runtime_put(dev); 3017 if (parent) 3018 pm_runtime_put_sync(parent); 3019 } 3020 3021 static const struct dmi_system_id bridge_d3_blacklist[] = { 3022 #ifdef CONFIG_X86 3023 { 3024 /* 3025 * Gigabyte X299 root port is not marked as hotplug capable 3026 * which allows Linux to power manage it. However, this 3027 * confuses the BIOS SMI handler so don't power manage root 3028 * ports on that system. 3029 */ 3030 .ident = "X299 DESIGNARE EX-CF", 3031 .matches = { 3032 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 3033 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 3034 }, 3035 }, 3036 { 3037 /* 3038 * Downstream device is not accessible after putting a root port 3039 * into D3cold and back into D0 on Elo Continental Z2 board 3040 */ 3041 .ident = "Elo Continental Z2", 3042 .matches = { 3043 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3044 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3045 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3046 }, 3047 }, 3048 { 3049 /* 3050 * Changing power state of root port dGPU is connected fails 3051 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229 3052 */ 3053 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972", 3054 .matches = { 3055 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"), 3056 DMI_MATCH(DMI_BOARD_NAME, "1972"), 3057 DMI_MATCH(DMI_BOARD_VERSION, "95.33"), 3058 }, 3059 }, 3060 #endif 3061 { } 3062 }; 3063 3064 /** 3065 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3066 * @bridge: Bridge to check 3067 * 3068 * This function checks if it is possible to move the bridge to D3. 3069 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3070 */ 3071 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3072 { 3073 if (!pci_is_pcie(bridge)) 3074 return false; 3075 3076 switch (pci_pcie_type(bridge)) { 3077 case PCI_EXP_TYPE_ROOT_PORT: 3078 case PCI_EXP_TYPE_UPSTREAM: 3079 case PCI_EXP_TYPE_DOWNSTREAM: 3080 if (pci_bridge_d3_disable) 3081 return false; 3082 3083 /* 3084 * Hotplug ports handled by firmware in System Management Mode 3085 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3086 */ 3087 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3088 return false; 3089 3090 if (pci_bridge_d3_force) 3091 return true; 3092 3093 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3094 if (bridge->is_thunderbolt) 3095 return true; 3096 3097 /* Platform might know better if the bridge supports D3 */ 3098 if (platform_pci_bridge_d3(bridge)) 3099 return true; 3100 3101 /* 3102 * Hotplug ports handled natively by the OS were not validated 3103 * by vendors for runtime D3 at least until 2018 because there 3104 * was no OS support. 3105 */ 3106 if (bridge->is_hotplug_bridge) 3107 return false; 3108 3109 if (dmi_check_system(bridge_d3_blacklist)) 3110 return false; 3111 3112 /* 3113 * It should be safe to put PCIe ports from 2015 or newer 3114 * to D3. 3115 */ 3116 if (dmi_get_bios_year() >= 2015) 3117 return true; 3118 break; 3119 } 3120 3121 return false; 3122 } 3123 3124 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3125 { 3126 bool *d3cold_ok = data; 3127 3128 if (/* The device needs to be allowed to go D3cold ... */ 3129 dev->no_d3cold || !dev->d3cold_allowed || 3130 3131 /* ... and if it is wakeup capable to do so from D3cold. */ 3132 (device_may_wakeup(&dev->dev) && 3133 !pci_pme_capable(dev, PCI_D3cold)) || 3134 3135 /* If it is a bridge it must be allowed to go to D3. */ 3136 !pci_power_manageable(dev)) 3137 3138 *d3cold_ok = false; 3139 3140 return !*d3cold_ok; 3141 } 3142 3143 /* 3144 * pci_bridge_d3_update - Update bridge D3 capabilities 3145 * @dev: PCI device which is changed 3146 * 3147 * Update upstream bridge PM capabilities accordingly depending on if the 3148 * device PM configuration was changed or the device is being removed. The 3149 * change is also propagated upstream. 3150 */ 3151 void pci_bridge_d3_update(struct pci_dev *dev) 3152 { 3153 bool remove = !device_is_registered(&dev->dev); 3154 struct pci_dev *bridge; 3155 bool d3cold_ok = true; 3156 3157 bridge = pci_upstream_bridge(dev); 3158 if (!bridge || !pci_bridge_d3_possible(bridge)) 3159 return; 3160 3161 /* 3162 * If D3 is currently allowed for the bridge, removing one of its 3163 * children won't change that. 3164 */ 3165 if (remove && bridge->bridge_d3) 3166 return; 3167 3168 /* 3169 * If D3 is currently allowed for the bridge and a child is added or 3170 * changed, disallowance of D3 can only be caused by that child, so 3171 * we only need to check that single device, not any of its siblings. 3172 * 3173 * If D3 is currently not allowed for the bridge, checking the device 3174 * first may allow us to skip checking its siblings. 3175 */ 3176 if (!remove) 3177 pci_dev_check_d3cold(dev, &d3cold_ok); 3178 3179 /* 3180 * If D3 is currently not allowed for the bridge, this may be caused 3181 * either by the device being changed/removed or any of its siblings, 3182 * so we need to go through all children to find out if one of them 3183 * continues to block D3. 3184 */ 3185 if (d3cold_ok && !bridge->bridge_d3) 3186 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3187 &d3cold_ok); 3188 3189 if (bridge->bridge_d3 != d3cold_ok) { 3190 bridge->bridge_d3 = d3cold_ok; 3191 /* Propagate change to upstream bridges */ 3192 pci_bridge_d3_update(bridge); 3193 } 3194 } 3195 3196 /** 3197 * pci_d3cold_enable - Enable D3cold for device 3198 * @dev: PCI device to handle 3199 * 3200 * This function can be used in drivers to enable D3cold from the device 3201 * they handle. It also updates upstream PCI bridge PM capabilities 3202 * accordingly. 3203 */ 3204 void pci_d3cold_enable(struct pci_dev *dev) 3205 { 3206 if (dev->no_d3cold) { 3207 dev->no_d3cold = false; 3208 pci_bridge_d3_update(dev); 3209 } 3210 } 3211 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3212 3213 /** 3214 * pci_d3cold_disable - Disable D3cold for device 3215 * @dev: PCI device to handle 3216 * 3217 * This function can be used in drivers to disable D3cold from the device 3218 * they handle. It also updates upstream PCI bridge PM capabilities 3219 * accordingly. 3220 */ 3221 void pci_d3cold_disable(struct pci_dev *dev) 3222 { 3223 if (!dev->no_d3cold) { 3224 dev->no_d3cold = true; 3225 pci_bridge_d3_update(dev); 3226 } 3227 } 3228 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3229 3230 /** 3231 * pci_pm_init - Initialize PM functions of given PCI device 3232 * @dev: PCI device to handle. 3233 */ 3234 void pci_pm_init(struct pci_dev *dev) 3235 { 3236 int pm; 3237 u16 status; 3238 u16 pmc; 3239 3240 pm_runtime_forbid(&dev->dev); 3241 pm_runtime_set_active(&dev->dev); 3242 pm_runtime_enable(&dev->dev); 3243 device_enable_async_suspend(&dev->dev); 3244 dev->wakeup_prepared = false; 3245 3246 dev->pm_cap = 0; 3247 dev->pme_support = 0; 3248 3249 /* find PCI PM capability in list */ 3250 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3251 if (!pm) 3252 return; 3253 /* Check device's ability to generate PME# */ 3254 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3255 3256 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3257 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3258 pmc & PCI_PM_CAP_VER_MASK); 3259 return; 3260 } 3261 3262 dev->pm_cap = pm; 3263 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3264 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3265 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3266 dev->d3cold_allowed = true; 3267 3268 dev->d1_support = false; 3269 dev->d2_support = false; 3270 if (!pci_no_d1d2(dev)) { 3271 if (pmc & PCI_PM_CAP_D1) 3272 dev->d1_support = true; 3273 if (pmc & PCI_PM_CAP_D2) 3274 dev->d2_support = true; 3275 3276 if (dev->d1_support || dev->d2_support) 3277 pci_info(dev, "supports%s%s\n", 3278 dev->d1_support ? " D1" : "", 3279 dev->d2_support ? " D2" : ""); 3280 } 3281 3282 pmc &= PCI_PM_CAP_PME_MASK; 3283 if (pmc) { 3284 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3285 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3286 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3287 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3288 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3289 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3290 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3291 dev->pme_poll = true; 3292 /* 3293 * Make device's PM flags reflect the wake-up capability, but 3294 * let the user space enable it to wake up the system as needed. 3295 */ 3296 device_set_wakeup_capable(&dev->dev, true); 3297 /* Disable the PME# generation functionality */ 3298 pci_pme_active(dev, false); 3299 } 3300 3301 pci_read_config_word(dev, PCI_STATUS, &status); 3302 if (status & PCI_STATUS_IMM_READY) 3303 dev->imm_ready = 1; 3304 } 3305 3306 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3307 { 3308 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3309 3310 switch (prop) { 3311 case PCI_EA_P_MEM: 3312 case PCI_EA_P_VF_MEM: 3313 flags |= IORESOURCE_MEM; 3314 break; 3315 case PCI_EA_P_MEM_PREFETCH: 3316 case PCI_EA_P_VF_MEM_PREFETCH: 3317 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3318 break; 3319 case PCI_EA_P_IO: 3320 flags |= IORESOURCE_IO; 3321 break; 3322 default: 3323 return 0; 3324 } 3325 3326 return flags; 3327 } 3328 3329 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3330 u8 prop) 3331 { 3332 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3333 return &dev->resource[bei]; 3334 #ifdef CONFIG_PCI_IOV 3335 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3336 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3337 return &dev->resource[PCI_IOV_RESOURCES + 3338 bei - PCI_EA_BEI_VF_BAR0]; 3339 #endif 3340 else if (bei == PCI_EA_BEI_ROM) 3341 return &dev->resource[PCI_ROM_RESOURCE]; 3342 else 3343 return NULL; 3344 } 3345 3346 /* Read an Enhanced Allocation (EA) entry */ 3347 static int pci_ea_read(struct pci_dev *dev, int offset) 3348 { 3349 struct resource *res; 3350 int ent_size, ent_offset = offset; 3351 resource_size_t start, end; 3352 unsigned long flags; 3353 u32 dw0, bei, base, max_offset; 3354 u8 prop; 3355 bool support_64 = (sizeof(resource_size_t) >= 8); 3356 3357 pci_read_config_dword(dev, ent_offset, &dw0); 3358 ent_offset += 4; 3359 3360 /* Entry size field indicates DWORDs after 1st */ 3361 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3362 3363 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3364 goto out; 3365 3366 bei = (dw0 & PCI_EA_BEI) >> 4; 3367 prop = (dw0 & PCI_EA_PP) >> 8; 3368 3369 /* 3370 * If the Property is in the reserved range, try the Secondary 3371 * Property instead. 3372 */ 3373 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3374 prop = (dw0 & PCI_EA_SP) >> 16; 3375 if (prop > PCI_EA_P_BRIDGE_IO) 3376 goto out; 3377 3378 res = pci_ea_get_resource(dev, bei, prop); 3379 if (!res) { 3380 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3381 goto out; 3382 } 3383 3384 flags = pci_ea_flags(dev, prop); 3385 if (!flags) { 3386 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3387 goto out; 3388 } 3389 3390 /* Read Base */ 3391 pci_read_config_dword(dev, ent_offset, &base); 3392 start = (base & PCI_EA_FIELD_MASK); 3393 ent_offset += 4; 3394 3395 /* Read MaxOffset */ 3396 pci_read_config_dword(dev, ent_offset, &max_offset); 3397 ent_offset += 4; 3398 3399 /* Read Base MSBs (if 64-bit entry) */ 3400 if (base & PCI_EA_IS_64) { 3401 u32 base_upper; 3402 3403 pci_read_config_dword(dev, ent_offset, &base_upper); 3404 ent_offset += 4; 3405 3406 flags |= IORESOURCE_MEM_64; 3407 3408 /* entry starts above 32-bit boundary, can't use */ 3409 if (!support_64 && base_upper) 3410 goto out; 3411 3412 if (support_64) 3413 start |= ((u64)base_upper << 32); 3414 } 3415 3416 end = start + (max_offset | 0x03); 3417 3418 /* Read MaxOffset MSBs (if 64-bit entry) */ 3419 if (max_offset & PCI_EA_IS_64) { 3420 u32 max_offset_upper; 3421 3422 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3423 ent_offset += 4; 3424 3425 flags |= IORESOURCE_MEM_64; 3426 3427 /* entry too big, can't use */ 3428 if (!support_64 && max_offset_upper) 3429 goto out; 3430 3431 if (support_64) 3432 end += ((u64)max_offset_upper << 32); 3433 } 3434 3435 if (end < start) { 3436 pci_err(dev, "EA Entry crosses address boundary\n"); 3437 goto out; 3438 } 3439 3440 if (ent_size != ent_offset - offset) { 3441 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3442 ent_size, ent_offset - offset); 3443 goto out; 3444 } 3445 3446 res->name = pci_name(dev); 3447 res->start = start; 3448 res->end = end; 3449 res->flags = flags; 3450 3451 if (bei <= PCI_EA_BEI_BAR5) 3452 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3453 bei, res, prop); 3454 else if (bei == PCI_EA_BEI_ROM) 3455 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3456 res, prop); 3457 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3458 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3459 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3460 else 3461 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3462 bei, res, prop); 3463 3464 out: 3465 return offset + ent_size; 3466 } 3467 3468 /* Enhanced Allocation Initialization */ 3469 void pci_ea_init(struct pci_dev *dev) 3470 { 3471 int ea; 3472 u8 num_ent; 3473 int offset; 3474 int i; 3475 3476 /* find PCI EA capability in list */ 3477 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3478 if (!ea) 3479 return; 3480 3481 /* determine the number of entries */ 3482 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3483 &num_ent); 3484 num_ent &= PCI_EA_NUM_ENT_MASK; 3485 3486 offset = ea + PCI_EA_FIRST_ENT; 3487 3488 /* Skip DWORD 2 for type 1 functions */ 3489 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3490 offset += 4; 3491 3492 /* parse each EA entry */ 3493 for (i = 0; i < num_ent; ++i) 3494 offset = pci_ea_read(dev, offset); 3495 } 3496 3497 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3498 struct pci_cap_saved_state *new_cap) 3499 { 3500 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3501 } 3502 3503 /** 3504 * _pci_add_cap_save_buffer - allocate buffer for saving given 3505 * capability registers 3506 * @dev: the PCI device 3507 * @cap: the capability to allocate the buffer for 3508 * @extended: Standard or Extended capability ID 3509 * @size: requested size of the buffer 3510 */ 3511 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3512 bool extended, unsigned int size) 3513 { 3514 int pos; 3515 struct pci_cap_saved_state *save_state; 3516 3517 if (extended) 3518 pos = pci_find_ext_capability(dev, cap); 3519 else 3520 pos = pci_find_capability(dev, cap); 3521 3522 if (!pos) 3523 return 0; 3524 3525 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3526 if (!save_state) 3527 return -ENOMEM; 3528 3529 save_state->cap.cap_nr = cap; 3530 save_state->cap.cap_extended = extended; 3531 save_state->cap.size = size; 3532 pci_add_saved_cap(dev, save_state); 3533 3534 return 0; 3535 } 3536 3537 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3538 { 3539 return _pci_add_cap_save_buffer(dev, cap, false, size); 3540 } 3541 3542 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3543 { 3544 return _pci_add_cap_save_buffer(dev, cap, true, size); 3545 } 3546 3547 /** 3548 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3549 * @dev: the PCI device 3550 */ 3551 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3552 { 3553 int error; 3554 3555 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3556 PCI_EXP_SAVE_REGS * sizeof(u16)); 3557 if (error) 3558 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3559 3560 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3561 if (error) 3562 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3563 3564 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3565 2 * sizeof(u16)); 3566 if (error) 3567 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3568 3569 pci_allocate_vc_save_buffers(dev); 3570 } 3571 3572 void pci_free_cap_save_buffers(struct pci_dev *dev) 3573 { 3574 struct pci_cap_saved_state *tmp; 3575 struct hlist_node *n; 3576 3577 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3578 kfree(tmp); 3579 } 3580 3581 /** 3582 * pci_configure_ari - enable or disable ARI forwarding 3583 * @dev: the PCI device 3584 * 3585 * If @dev and its upstream bridge both support ARI, enable ARI in the 3586 * bridge. Otherwise, disable ARI in the bridge. 3587 */ 3588 void pci_configure_ari(struct pci_dev *dev) 3589 { 3590 u32 cap; 3591 struct pci_dev *bridge; 3592 3593 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3594 return; 3595 3596 bridge = dev->bus->self; 3597 if (!bridge) 3598 return; 3599 3600 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3601 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3602 return; 3603 3604 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3605 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3606 PCI_EXP_DEVCTL2_ARI); 3607 bridge->ari_enabled = 1; 3608 } else { 3609 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3610 PCI_EXP_DEVCTL2_ARI); 3611 bridge->ari_enabled = 0; 3612 } 3613 } 3614 3615 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3616 { 3617 int pos; 3618 u16 cap, ctrl; 3619 3620 pos = pdev->acs_cap; 3621 if (!pos) 3622 return false; 3623 3624 /* 3625 * Except for egress control, capabilities are either required 3626 * or only required if controllable. Features missing from the 3627 * capability field can therefore be assumed as hard-wired enabled. 3628 */ 3629 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3630 acs_flags &= (cap | PCI_ACS_EC); 3631 3632 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3633 return (ctrl & acs_flags) == acs_flags; 3634 } 3635 3636 /** 3637 * pci_acs_enabled - test ACS against required flags for a given device 3638 * @pdev: device to test 3639 * @acs_flags: required PCI ACS flags 3640 * 3641 * Return true if the device supports the provided flags. Automatically 3642 * filters out flags that are not implemented on multifunction devices. 3643 * 3644 * Note that this interface checks the effective ACS capabilities of the 3645 * device rather than the actual capabilities. For instance, most single 3646 * function endpoints are not required to support ACS because they have no 3647 * opportunity for peer-to-peer access. We therefore return 'true' 3648 * regardless of whether the device exposes an ACS capability. This makes 3649 * it much easier for callers of this function to ignore the actual type 3650 * or topology of the device when testing ACS support. 3651 */ 3652 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3653 { 3654 int ret; 3655 3656 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3657 if (ret >= 0) 3658 return ret > 0; 3659 3660 /* 3661 * Conventional PCI and PCI-X devices never support ACS, either 3662 * effectively or actually. The shared bus topology implies that 3663 * any device on the bus can receive or snoop DMA. 3664 */ 3665 if (!pci_is_pcie(pdev)) 3666 return false; 3667 3668 switch (pci_pcie_type(pdev)) { 3669 /* 3670 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3671 * but since their primary interface is PCI/X, we conservatively 3672 * handle them as we would a non-PCIe device. 3673 */ 3674 case PCI_EXP_TYPE_PCIE_BRIDGE: 3675 /* 3676 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3677 * applicable... must never implement an ACS Extended Capability...". 3678 * This seems arbitrary, but we take a conservative interpretation 3679 * of this statement. 3680 */ 3681 case PCI_EXP_TYPE_PCI_BRIDGE: 3682 case PCI_EXP_TYPE_RC_EC: 3683 return false; 3684 /* 3685 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3686 * implement ACS in order to indicate their peer-to-peer capabilities, 3687 * regardless of whether they are single- or multi-function devices. 3688 */ 3689 case PCI_EXP_TYPE_DOWNSTREAM: 3690 case PCI_EXP_TYPE_ROOT_PORT: 3691 return pci_acs_flags_enabled(pdev, acs_flags); 3692 /* 3693 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3694 * implemented by the remaining PCIe types to indicate peer-to-peer 3695 * capabilities, but only when they are part of a multifunction 3696 * device. The footnote for section 6.12 indicates the specific 3697 * PCIe types included here. 3698 */ 3699 case PCI_EXP_TYPE_ENDPOINT: 3700 case PCI_EXP_TYPE_UPSTREAM: 3701 case PCI_EXP_TYPE_LEG_END: 3702 case PCI_EXP_TYPE_RC_END: 3703 if (!pdev->multifunction) 3704 break; 3705 3706 return pci_acs_flags_enabled(pdev, acs_flags); 3707 } 3708 3709 /* 3710 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3711 * to single function devices with the exception of downstream ports. 3712 */ 3713 return true; 3714 } 3715 3716 /** 3717 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3718 * @start: starting downstream device 3719 * @end: ending upstream device or NULL to search to the root bus 3720 * @acs_flags: required flags 3721 * 3722 * Walk up a device tree from start to end testing PCI ACS support. If 3723 * any step along the way does not support the required flags, return false. 3724 */ 3725 bool pci_acs_path_enabled(struct pci_dev *start, 3726 struct pci_dev *end, u16 acs_flags) 3727 { 3728 struct pci_dev *pdev, *parent = start; 3729 3730 do { 3731 pdev = parent; 3732 3733 if (!pci_acs_enabled(pdev, acs_flags)) 3734 return false; 3735 3736 if (pci_is_root_bus(pdev->bus)) 3737 return (end == NULL); 3738 3739 parent = pdev->bus->self; 3740 } while (pdev != end); 3741 3742 return true; 3743 } 3744 3745 /** 3746 * pci_acs_init - Initialize ACS if hardware supports it 3747 * @dev: the PCI device 3748 */ 3749 void pci_acs_init(struct pci_dev *dev) 3750 { 3751 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3752 3753 /* 3754 * Attempt to enable ACS regardless of capability because some Root 3755 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3756 * the standard ACS capability but still support ACS via those 3757 * quirks. 3758 */ 3759 pci_enable_acs(dev); 3760 } 3761 3762 /** 3763 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3764 * @pdev: PCI device 3765 * @bar: BAR to find 3766 * 3767 * Helper to find the position of the ctrl register for a BAR. 3768 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3769 * Returns -ENOENT if no ctrl register for the BAR could be found. 3770 */ 3771 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3772 { 3773 unsigned int pos, nbars, i; 3774 u32 ctrl; 3775 3776 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3777 if (!pos) 3778 return -ENOTSUPP; 3779 3780 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3781 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3782 PCI_REBAR_CTRL_NBAR_SHIFT; 3783 3784 for (i = 0; i < nbars; i++, pos += 8) { 3785 int bar_idx; 3786 3787 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3788 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3789 if (bar_idx == bar) 3790 return pos; 3791 } 3792 3793 return -ENOENT; 3794 } 3795 3796 /** 3797 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3798 * @pdev: PCI device 3799 * @bar: BAR to query 3800 * 3801 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3802 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3803 */ 3804 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3805 { 3806 int pos; 3807 u32 cap; 3808 3809 pos = pci_rebar_find_pos(pdev, bar); 3810 if (pos < 0) 3811 return 0; 3812 3813 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3814 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3815 3816 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3817 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3818 bar == 0 && cap == 0x700) 3819 return 0x3f00; 3820 3821 return cap; 3822 } 3823 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3824 3825 /** 3826 * pci_rebar_get_current_size - get the current size of a BAR 3827 * @pdev: PCI device 3828 * @bar: BAR to set size to 3829 * 3830 * Read the size of a BAR from the resizable BAR config. 3831 * Returns size if found or negative error code. 3832 */ 3833 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3834 { 3835 int pos; 3836 u32 ctrl; 3837 3838 pos = pci_rebar_find_pos(pdev, bar); 3839 if (pos < 0) 3840 return pos; 3841 3842 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3843 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3844 } 3845 3846 /** 3847 * pci_rebar_set_size - set a new size for a BAR 3848 * @pdev: PCI device 3849 * @bar: BAR to set size to 3850 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3851 * 3852 * Set the new size of a BAR as defined in the spec. 3853 * Returns zero if resizing was successful, error code otherwise. 3854 */ 3855 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3856 { 3857 int pos; 3858 u32 ctrl; 3859 3860 pos = pci_rebar_find_pos(pdev, bar); 3861 if (pos < 0) 3862 return pos; 3863 3864 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3865 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3866 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3867 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3868 return 0; 3869 } 3870 3871 /** 3872 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3873 * @dev: the PCI device 3874 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3875 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3876 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3877 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3878 * 3879 * Return 0 if all upstream bridges support AtomicOp routing, egress 3880 * blocking is disabled on all upstream ports, and the root port supports 3881 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3882 * AtomicOp completion), or negative otherwise. 3883 */ 3884 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3885 { 3886 struct pci_bus *bus = dev->bus; 3887 struct pci_dev *bridge; 3888 u32 cap, ctl2; 3889 3890 /* 3891 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3892 * in Device Control 2 is reserved in VFs and the PF value applies 3893 * to all associated VFs. 3894 */ 3895 if (dev->is_virtfn) 3896 return -EINVAL; 3897 3898 if (!pci_is_pcie(dev)) 3899 return -EINVAL; 3900 3901 /* 3902 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3903 * AtomicOp requesters. For now, we only support endpoints as 3904 * requesters and root ports as completers. No endpoints as 3905 * completers, and no peer-to-peer. 3906 */ 3907 3908 switch (pci_pcie_type(dev)) { 3909 case PCI_EXP_TYPE_ENDPOINT: 3910 case PCI_EXP_TYPE_LEG_END: 3911 case PCI_EXP_TYPE_RC_END: 3912 break; 3913 default: 3914 return -EINVAL; 3915 } 3916 3917 while (bus->parent) { 3918 bridge = bus->self; 3919 3920 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3921 3922 switch (pci_pcie_type(bridge)) { 3923 /* Ensure switch ports support AtomicOp routing */ 3924 case PCI_EXP_TYPE_UPSTREAM: 3925 case PCI_EXP_TYPE_DOWNSTREAM: 3926 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3927 return -EINVAL; 3928 break; 3929 3930 /* Ensure root port supports all the sizes we care about */ 3931 case PCI_EXP_TYPE_ROOT_PORT: 3932 if ((cap & cap_mask) != cap_mask) 3933 return -EINVAL; 3934 break; 3935 } 3936 3937 /* Ensure upstream ports don't block AtomicOps on egress */ 3938 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3939 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3940 &ctl2); 3941 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3942 return -EINVAL; 3943 } 3944 3945 bus = bus->parent; 3946 } 3947 3948 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3949 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3950 return 0; 3951 } 3952 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3953 3954 /** 3955 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3956 * @dev: the PCI device 3957 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3958 * 3959 * Perform INTx swizzling for a device behind one level of bridge. This is 3960 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3961 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3962 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3963 * the PCI Express Base Specification, Revision 2.1) 3964 */ 3965 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3966 { 3967 int slot; 3968 3969 if (pci_ari_enabled(dev->bus)) 3970 slot = 0; 3971 else 3972 slot = PCI_SLOT(dev->devfn); 3973 3974 return (((pin - 1) + slot) % 4) + 1; 3975 } 3976 3977 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3978 { 3979 u8 pin; 3980 3981 pin = dev->pin; 3982 if (!pin) 3983 return -1; 3984 3985 while (!pci_is_root_bus(dev->bus)) { 3986 pin = pci_swizzle_interrupt_pin(dev, pin); 3987 dev = dev->bus->self; 3988 } 3989 *bridge = dev; 3990 return pin; 3991 } 3992 3993 /** 3994 * pci_common_swizzle - swizzle INTx all the way to root bridge 3995 * @dev: the PCI device 3996 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3997 * 3998 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3999 * bridges all the way up to a PCI root bus. 4000 */ 4001 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 4002 { 4003 u8 pin = *pinp; 4004 4005 while (!pci_is_root_bus(dev->bus)) { 4006 pin = pci_swizzle_interrupt_pin(dev, pin); 4007 dev = dev->bus->self; 4008 } 4009 *pinp = pin; 4010 return PCI_SLOT(dev->devfn); 4011 } 4012 EXPORT_SYMBOL_GPL(pci_common_swizzle); 4013 4014 /** 4015 * pci_release_region - Release a PCI bar 4016 * @pdev: PCI device whose resources were previously reserved by 4017 * pci_request_region() 4018 * @bar: BAR to release 4019 * 4020 * Releases the PCI I/O and memory resources previously reserved by a 4021 * successful call to pci_request_region(). Call this function only 4022 * after all use of the PCI regions has ceased. 4023 */ 4024 void pci_release_region(struct pci_dev *pdev, int bar) 4025 { 4026 struct pci_devres *dr; 4027 4028 if (pci_resource_len(pdev, bar) == 0) 4029 return; 4030 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 4031 release_region(pci_resource_start(pdev, bar), 4032 pci_resource_len(pdev, bar)); 4033 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 4034 release_mem_region(pci_resource_start(pdev, bar), 4035 pci_resource_len(pdev, bar)); 4036 4037 dr = find_pci_dr(pdev); 4038 if (dr) 4039 dr->region_mask &= ~(1 << bar); 4040 } 4041 EXPORT_SYMBOL(pci_release_region); 4042 4043 /** 4044 * __pci_request_region - Reserved PCI I/O and memory resource 4045 * @pdev: PCI device whose resources are to be reserved 4046 * @bar: BAR to be reserved 4047 * @res_name: Name to be associated with resource. 4048 * @exclusive: whether the region access is exclusive or not 4049 * 4050 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4051 * being reserved by owner @res_name. Do not access any 4052 * address inside the PCI regions unless this call returns 4053 * successfully. 4054 * 4055 * If @exclusive is set, then the region is marked so that userspace 4056 * is explicitly not allowed to map the resource via /dev/mem or 4057 * sysfs MMIO access. 4058 * 4059 * Returns 0 on success, or %EBUSY on error. A warning 4060 * message is also printed on failure. 4061 */ 4062 static int __pci_request_region(struct pci_dev *pdev, int bar, 4063 const char *res_name, int exclusive) 4064 { 4065 struct pci_devres *dr; 4066 4067 if (pci_resource_len(pdev, bar) == 0) 4068 return 0; 4069 4070 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4071 if (!request_region(pci_resource_start(pdev, bar), 4072 pci_resource_len(pdev, bar), res_name)) 4073 goto err_out; 4074 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4075 if (!__request_mem_region(pci_resource_start(pdev, bar), 4076 pci_resource_len(pdev, bar), res_name, 4077 exclusive)) 4078 goto err_out; 4079 } 4080 4081 dr = find_pci_dr(pdev); 4082 if (dr) 4083 dr->region_mask |= 1 << bar; 4084 4085 return 0; 4086 4087 err_out: 4088 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4089 &pdev->resource[bar]); 4090 return -EBUSY; 4091 } 4092 4093 /** 4094 * pci_request_region - Reserve PCI I/O and memory resource 4095 * @pdev: PCI device whose resources are to be reserved 4096 * @bar: BAR to be reserved 4097 * @res_name: Name to be associated with resource 4098 * 4099 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4100 * being reserved by owner @res_name. Do not access any 4101 * address inside the PCI regions unless this call returns 4102 * successfully. 4103 * 4104 * Returns 0 on success, or %EBUSY on error. A warning 4105 * message is also printed on failure. 4106 */ 4107 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4108 { 4109 return __pci_request_region(pdev, bar, res_name, 0); 4110 } 4111 EXPORT_SYMBOL(pci_request_region); 4112 4113 /** 4114 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4115 * @pdev: PCI device whose resources were previously reserved 4116 * @bars: Bitmask of BARs to be released 4117 * 4118 * Release selected PCI I/O and memory resources previously reserved. 4119 * Call this function only after all use of the PCI regions has ceased. 4120 */ 4121 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4122 { 4123 int i; 4124 4125 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4126 if (bars & (1 << i)) 4127 pci_release_region(pdev, i); 4128 } 4129 EXPORT_SYMBOL(pci_release_selected_regions); 4130 4131 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4132 const char *res_name, int excl) 4133 { 4134 int i; 4135 4136 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4137 if (bars & (1 << i)) 4138 if (__pci_request_region(pdev, i, res_name, excl)) 4139 goto err_out; 4140 return 0; 4141 4142 err_out: 4143 while (--i >= 0) 4144 if (bars & (1 << i)) 4145 pci_release_region(pdev, i); 4146 4147 return -EBUSY; 4148 } 4149 4150 4151 /** 4152 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4153 * @pdev: PCI device whose resources are to be reserved 4154 * @bars: Bitmask of BARs to be requested 4155 * @res_name: Name to be associated with resource 4156 */ 4157 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4158 const char *res_name) 4159 { 4160 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4161 } 4162 EXPORT_SYMBOL(pci_request_selected_regions); 4163 4164 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4165 const char *res_name) 4166 { 4167 return __pci_request_selected_regions(pdev, bars, res_name, 4168 IORESOURCE_EXCLUSIVE); 4169 } 4170 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4171 4172 /** 4173 * pci_release_regions - Release reserved PCI I/O and memory resources 4174 * @pdev: PCI device whose resources were previously reserved by 4175 * pci_request_regions() 4176 * 4177 * Releases all PCI I/O and memory resources previously reserved by a 4178 * successful call to pci_request_regions(). Call this function only 4179 * after all use of the PCI regions has ceased. 4180 */ 4181 4182 void pci_release_regions(struct pci_dev *pdev) 4183 { 4184 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4185 } 4186 EXPORT_SYMBOL(pci_release_regions); 4187 4188 /** 4189 * pci_request_regions - Reserve PCI I/O and memory resources 4190 * @pdev: PCI device whose resources are to be reserved 4191 * @res_name: Name to be associated with resource. 4192 * 4193 * Mark all PCI regions associated with PCI device @pdev as 4194 * being reserved by owner @res_name. Do not access any 4195 * address inside the PCI regions unless this call returns 4196 * successfully. 4197 * 4198 * Returns 0 on success, or %EBUSY on error. A warning 4199 * message is also printed on failure. 4200 */ 4201 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4202 { 4203 return pci_request_selected_regions(pdev, 4204 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4205 } 4206 EXPORT_SYMBOL(pci_request_regions); 4207 4208 /** 4209 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4210 * @pdev: PCI device whose resources are to be reserved 4211 * @res_name: Name to be associated with resource. 4212 * 4213 * Mark all PCI regions associated with PCI device @pdev as being reserved 4214 * by owner @res_name. Do not access any address inside the PCI regions 4215 * unless this call returns successfully. 4216 * 4217 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4218 * and the sysfs MMIO access will not be allowed. 4219 * 4220 * Returns 0 on success, or %EBUSY on error. A warning message is also 4221 * printed on failure. 4222 */ 4223 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4224 { 4225 return pci_request_selected_regions_exclusive(pdev, 4226 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4227 } 4228 EXPORT_SYMBOL(pci_request_regions_exclusive); 4229 4230 /* 4231 * Record the PCI IO range (expressed as CPU physical address + size). 4232 * Return a negative value if an error has occurred, zero otherwise 4233 */ 4234 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4235 resource_size_t size) 4236 { 4237 int ret = 0; 4238 #ifdef PCI_IOBASE 4239 struct logic_pio_hwaddr *range; 4240 4241 if (!size || addr + size < addr) 4242 return -EINVAL; 4243 4244 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4245 if (!range) 4246 return -ENOMEM; 4247 4248 range->fwnode = fwnode; 4249 range->size = size; 4250 range->hw_start = addr; 4251 range->flags = LOGIC_PIO_CPU_MMIO; 4252 4253 ret = logic_pio_register_range(range); 4254 if (ret) 4255 kfree(range); 4256 4257 /* Ignore duplicates due to deferred probing */ 4258 if (ret == -EEXIST) 4259 ret = 0; 4260 #endif 4261 4262 return ret; 4263 } 4264 4265 phys_addr_t pci_pio_to_address(unsigned long pio) 4266 { 4267 #ifdef PCI_IOBASE 4268 if (pio < MMIO_UPPER_LIMIT) 4269 return logic_pio_to_hwaddr(pio); 4270 #endif 4271 4272 return (phys_addr_t) OF_BAD_ADDR; 4273 } 4274 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4275 4276 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4277 { 4278 #ifdef PCI_IOBASE 4279 return logic_pio_trans_cpuaddr(address); 4280 #else 4281 if (address > IO_SPACE_LIMIT) 4282 return (unsigned long)-1; 4283 4284 return (unsigned long) address; 4285 #endif 4286 } 4287 4288 /** 4289 * pci_remap_iospace - Remap the memory mapped I/O space 4290 * @res: Resource describing the I/O space 4291 * @phys_addr: physical address of range to be mapped 4292 * 4293 * Remap the memory mapped I/O space described by the @res and the CPU 4294 * physical address @phys_addr into virtual address space. Only 4295 * architectures that have memory mapped IO functions defined (and the 4296 * PCI_IOBASE value defined) should call this function. 4297 */ 4298 #ifndef pci_remap_iospace 4299 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4300 { 4301 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4302 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4303 4304 if (!(res->flags & IORESOURCE_IO)) 4305 return -EINVAL; 4306 4307 if (res->end > IO_SPACE_LIMIT) 4308 return -EINVAL; 4309 4310 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4311 pgprot_device(PAGE_KERNEL)); 4312 #else 4313 /* 4314 * This architecture does not have memory mapped I/O space, 4315 * so this function should never be called 4316 */ 4317 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4318 return -ENODEV; 4319 #endif 4320 } 4321 EXPORT_SYMBOL(pci_remap_iospace); 4322 #endif 4323 4324 /** 4325 * pci_unmap_iospace - Unmap the memory mapped I/O space 4326 * @res: resource to be unmapped 4327 * 4328 * Unmap the CPU virtual address @res from virtual address space. Only 4329 * architectures that have memory mapped IO functions defined (and the 4330 * PCI_IOBASE value defined) should call this function. 4331 */ 4332 void pci_unmap_iospace(struct resource *res) 4333 { 4334 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4335 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4336 4337 vunmap_range(vaddr, vaddr + resource_size(res)); 4338 #endif 4339 } 4340 EXPORT_SYMBOL(pci_unmap_iospace); 4341 4342 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4343 { 4344 struct resource **res = ptr; 4345 4346 pci_unmap_iospace(*res); 4347 } 4348 4349 /** 4350 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4351 * @dev: Generic device to remap IO address for 4352 * @res: Resource describing the I/O space 4353 * @phys_addr: physical address of range to be mapped 4354 * 4355 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4356 * detach. 4357 */ 4358 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4359 phys_addr_t phys_addr) 4360 { 4361 const struct resource **ptr; 4362 int error; 4363 4364 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4365 if (!ptr) 4366 return -ENOMEM; 4367 4368 error = pci_remap_iospace(res, phys_addr); 4369 if (error) { 4370 devres_free(ptr); 4371 } else { 4372 *ptr = res; 4373 devres_add(dev, ptr); 4374 } 4375 4376 return error; 4377 } 4378 EXPORT_SYMBOL(devm_pci_remap_iospace); 4379 4380 /** 4381 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4382 * @dev: Generic device to remap IO address for 4383 * @offset: Resource address to map 4384 * @size: Size of map 4385 * 4386 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4387 * detach. 4388 */ 4389 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4390 resource_size_t offset, 4391 resource_size_t size) 4392 { 4393 void __iomem **ptr, *addr; 4394 4395 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4396 if (!ptr) 4397 return NULL; 4398 4399 addr = pci_remap_cfgspace(offset, size); 4400 if (addr) { 4401 *ptr = addr; 4402 devres_add(dev, ptr); 4403 } else 4404 devres_free(ptr); 4405 4406 return addr; 4407 } 4408 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4409 4410 /** 4411 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4412 * @dev: generic device to handle the resource for 4413 * @res: configuration space resource to be handled 4414 * 4415 * Checks that a resource is a valid memory region, requests the memory 4416 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4417 * proper PCI configuration space memory attributes are guaranteed. 4418 * 4419 * All operations are managed and will be undone on driver detach. 4420 * 4421 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4422 * on failure. Usage example:: 4423 * 4424 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4425 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4426 * if (IS_ERR(base)) 4427 * return PTR_ERR(base); 4428 */ 4429 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4430 struct resource *res) 4431 { 4432 resource_size_t size; 4433 const char *name; 4434 void __iomem *dest_ptr; 4435 4436 BUG_ON(!dev); 4437 4438 if (!res || resource_type(res) != IORESOURCE_MEM) { 4439 dev_err(dev, "invalid resource\n"); 4440 return IOMEM_ERR_PTR(-EINVAL); 4441 } 4442 4443 size = resource_size(res); 4444 4445 if (res->name) 4446 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4447 res->name); 4448 else 4449 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4450 if (!name) 4451 return IOMEM_ERR_PTR(-ENOMEM); 4452 4453 if (!devm_request_mem_region(dev, res->start, size, name)) { 4454 dev_err(dev, "can't request region for resource %pR\n", res); 4455 return IOMEM_ERR_PTR(-EBUSY); 4456 } 4457 4458 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4459 if (!dest_ptr) { 4460 dev_err(dev, "ioremap failed for resource %pR\n", res); 4461 devm_release_mem_region(dev, res->start, size); 4462 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4463 } 4464 4465 return dest_ptr; 4466 } 4467 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4468 4469 static void __pci_set_master(struct pci_dev *dev, bool enable) 4470 { 4471 u16 old_cmd, cmd; 4472 4473 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4474 if (enable) 4475 cmd = old_cmd | PCI_COMMAND_MASTER; 4476 else 4477 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4478 if (cmd != old_cmd) { 4479 pci_dbg(dev, "%s bus mastering\n", 4480 enable ? "enabling" : "disabling"); 4481 pci_write_config_word(dev, PCI_COMMAND, cmd); 4482 } 4483 dev->is_busmaster = enable; 4484 } 4485 4486 /** 4487 * pcibios_setup - process "pci=" kernel boot arguments 4488 * @str: string used to pass in "pci=" kernel boot arguments 4489 * 4490 * Process kernel boot arguments. This is the default implementation. 4491 * Architecture specific implementations can override this as necessary. 4492 */ 4493 char * __weak __init pcibios_setup(char *str) 4494 { 4495 return str; 4496 } 4497 4498 /** 4499 * pcibios_set_master - enable PCI bus-mastering for device dev 4500 * @dev: the PCI device to enable 4501 * 4502 * Enables PCI bus-mastering for the device. This is the default 4503 * implementation. Architecture specific implementations can override 4504 * this if necessary. 4505 */ 4506 void __weak pcibios_set_master(struct pci_dev *dev) 4507 { 4508 u8 lat; 4509 4510 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4511 if (pci_is_pcie(dev)) 4512 return; 4513 4514 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4515 if (lat < 16) 4516 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4517 else if (lat > pcibios_max_latency) 4518 lat = pcibios_max_latency; 4519 else 4520 return; 4521 4522 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4523 } 4524 4525 /** 4526 * pci_set_master - enables bus-mastering for device dev 4527 * @dev: the PCI device to enable 4528 * 4529 * Enables bus-mastering on the device and calls pcibios_set_master() 4530 * to do the needed arch specific settings. 4531 */ 4532 void pci_set_master(struct pci_dev *dev) 4533 { 4534 __pci_set_master(dev, true); 4535 pcibios_set_master(dev); 4536 } 4537 EXPORT_SYMBOL(pci_set_master); 4538 4539 /** 4540 * pci_clear_master - disables bus-mastering for device dev 4541 * @dev: the PCI device to disable 4542 */ 4543 void pci_clear_master(struct pci_dev *dev) 4544 { 4545 __pci_set_master(dev, false); 4546 } 4547 EXPORT_SYMBOL(pci_clear_master); 4548 4549 /** 4550 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4551 * @dev: the PCI device for which MWI is to be enabled 4552 * 4553 * Helper function for pci_set_mwi. 4554 * Originally copied from drivers/net/acenic.c. 4555 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4556 * 4557 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4558 */ 4559 int pci_set_cacheline_size(struct pci_dev *dev) 4560 { 4561 u8 cacheline_size; 4562 4563 if (!pci_cache_line_size) 4564 return -EINVAL; 4565 4566 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4567 equal to or multiple of the right value. */ 4568 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4569 if (cacheline_size >= pci_cache_line_size && 4570 (cacheline_size % pci_cache_line_size) == 0) 4571 return 0; 4572 4573 /* Write the correct value. */ 4574 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4575 /* Read it back. */ 4576 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4577 if (cacheline_size == pci_cache_line_size) 4578 return 0; 4579 4580 pci_dbg(dev, "cache line size of %d is not supported\n", 4581 pci_cache_line_size << 2); 4582 4583 return -EINVAL; 4584 } 4585 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4586 4587 /** 4588 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4589 * @dev: the PCI device for which MWI is enabled 4590 * 4591 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4592 * 4593 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4594 */ 4595 int pci_set_mwi(struct pci_dev *dev) 4596 { 4597 #ifdef PCI_DISABLE_MWI 4598 return 0; 4599 #else 4600 int rc; 4601 u16 cmd; 4602 4603 rc = pci_set_cacheline_size(dev); 4604 if (rc) 4605 return rc; 4606 4607 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4608 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4609 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4610 cmd |= PCI_COMMAND_INVALIDATE; 4611 pci_write_config_word(dev, PCI_COMMAND, cmd); 4612 } 4613 return 0; 4614 #endif 4615 } 4616 EXPORT_SYMBOL(pci_set_mwi); 4617 4618 /** 4619 * pcim_set_mwi - a device-managed pci_set_mwi() 4620 * @dev: the PCI device for which MWI is enabled 4621 * 4622 * Managed pci_set_mwi(). 4623 * 4624 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4625 */ 4626 int pcim_set_mwi(struct pci_dev *dev) 4627 { 4628 struct pci_devres *dr; 4629 4630 dr = find_pci_dr(dev); 4631 if (!dr) 4632 return -ENOMEM; 4633 4634 dr->mwi = 1; 4635 return pci_set_mwi(dev); 4636 } 4637 EXPORT_SYMBOL(pcim_set_mwi); 4638 4639 /** 4640 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4641 * @dev: the PCI device for which MWI is enabled 4642 * 4643 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4644 * Callers are not required to check the return value. 4645 * 4646 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4647 */ 4648 int pci_try_set_mwi(struct pci_dev *dev) 4649 { 4650 #ifdef PCI_DISABLE_MWI 4651 return 0; 4652 #else 4653 return pci_set_mwi(dev); 4654 #endif 4655 } 4656 EXPORT_SYMBOL(pci_try_set_mwi); 4657 4658 /** 4659 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4660 * @dev: the PCI device to disable 4661 * 4662 * Disables PCI Memory-Write-Invalidate transaction on the device 4663 */ 4664 void pci_clear_mwi(struct pci_dev *dev) 4665 { 4666 #ifndef PCI_DISABLE_MWI 4667 u16 cmd; 4668 4669 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4670 if (cmd & PCI_COMMAND_INVALIDATE) { 4671 cmd &= ~PCI_COMMAND_INVALIDATE; 4672 pci_write_config_word(dev, PCI_COMMAND, cmd); 4673 } 4674 #endif 4675 } 4676 EXPORT_SYMBOL(pci_clear_mwi); 4677 4678 /** 4679 * pci_disable_parity - disable parity checking for device 4680 * @dev: the PCI device to operate on 4681 * 4682 * Disable parity checking for device @dev 4683 */ 4684 void pci_disable_parity(struct pci_dev *dev) 4685 { 4686 u16 cmd; 4687 4688 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4689 if (cmd & PCI_COMMAND_PARITY) { 4690 cmd &= ~PCI_COMMAND_PARITY; 4691 pci_write_config_word(dev, PCI_COMMAND, cmd); 4692 } 4693 } 4694 4695 /** 4696 * pci_intx - enables/disables PCI INTx for device dev 4697 * @pdev: the PCI device to operate on 4698 * @enable: boolean: whether to enable or disable PCI INTx 4699 * 4700 * Enables/disables PCI INTx for device @pdev 4701 */ 4702 void pci_intx(struct pci_dev *pdev, int enable) 4703 { 4704 u16 pci_command, new; 4705 4706 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4707 4708 if (enable) 4709 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4710 else 4711 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4712 4713 if (new != pci_command) { 4714 struct pci_devres *dr; 4715 4716 pci_write_config_word(pdev, PCI_COMMAND, new); 4717 4718 dr = find_pci_dr(pdev); 4719 if (dr && !dr->restore_intx) { 4720 dr->restore_intx = 1; 4721 dr->orig_intx = !enable; 4722 } 4723 } 4724 } 4725 EXPORT_SYMBOL_GPL(pci_intx); 4726 4727 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4728 { 4729 struct pci_bus *bus = dev->bus; 4730 bool mask_updated = true; 4731 u32 cmd_status_dword; 4732 u16 origcmd, newcmd; 4733 unsigned long flags; 4734 bool irq_pending; 4735 4736 /* 4737 * We do a single dword read to retrieve both command and status. 4738 * Document assumptions that make this possible. 4739 */ 4740 BUILD_BUG_ON(PCI_COMMAND % 4); 4741 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4742 4743 raw_spin_lock_irqsave(&pci_lock, flags); 4744 4745 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4746 4747 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4748 4749 /* 4750 * Check interrupt status register to see whether our device 4751 * triggered the interrupt (when masking) or the next IRQ is 4752 * already pending (when unmasking). 4753 */ 4754 if (mask != irq_pending) { 4755 mask_updated = false; 4756 goto done; 4757 } 4758 4759 origcmd = cmd_status_dword; 4760 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4761 if (mask) 4762 newcmd |= PCI_COMMAND_INTX_DISABLE; 4763 if (newcmd != origcmd) 4764 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4765 4766 done: 4767 raw_spin_unlock_irqrestore(&pci_lock, flags); 4768 4769 return mask_updated; 4770 } 4771 4772 /** 4773 * pci_check_and_mask_intx - mask INTx on pending interrupt 4774 * @dev: the PCI device to operate on 4775 * 4776 * Check if the device dev has its INTx line asserted, mask it and return 4777 * true in that case. False is returned if no interrupt was pending. 4778 */ 4779 bool pci_check_and_mask_intx(struct pci_dev *dev) 4780 { 4781 return pci_check_and_set_intx_mask(dev, true); 4782 } 4783 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4784 4785 /** 4786 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4787 * @dev: the PCI device to operate on 4788 * 4789 * Check if the device dev has its INTx line asserted, unmask it if not and 4790 * return true. False is returned and the mask remains active if there was 4791 * still an interrupt pending. 4792 */ 4793 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4794 { 4795 return pci_check_and_set_intx_mask(dev, false); 4796 } 4797 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4798 4799 /** 4800 * pci_wait_for_pending_transaction - wait for pending transaction 4801 * @dev: the PCI device to operate on 4802 * 4803 * Return 0 if transaction is pending 1 otherwise. 4804 */ 4805 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4806 { 4807 if (!pci_is_pcie(dev)) 4808 return 1; 4809 4810 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4811 PCI_EXP_DEVSTA_TRPND); 4812 } 4813 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4814 4815 /** 4816 * pcie_flr - initiate a PCIe function level reset 4817 * @dev: device to reset 4818 * 4819 * Initiate a function level reset unconditionally on @dev without 4820 * checking any flags and DEVCAP 4821 */ 4822 int pcie_flr(struct pci_dev *dev) 4823 { 4824 if (!pci_wait_for_pending_transaction(dev)) 4825 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4826 4827 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4828 4829 if (dev->imm_ready) 4830 return 0; 4831 4832 /* 4833 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4834 * 100ms, but may silently discard requests while the FLR is in 4835 * progress. Wait 100ms before trying to access the device. 4836 */ 4837 msleep(100); 4838 4839 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4840 } 4841 EXPORT_SYMBOL_GPL(pcie_flr); 4842 4843 /** 4844 * pcie_reset_flr - initiate a PCIe function level reset 4845 * @dev: device to reset 4846 * @probe: if true, return 0 if device can be reset this way 4847 * 4848 * Initiate a function level reset on @dev. 4849 */ 4850 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4851 { 4852 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4853 return -ENOTTY; 4854 4855 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4856 return -ENOTTY; 4857 4858 if (probe) 4859 return 0; 4860 4861 return pcie_flr(dev); 4862 } 4863 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4864 4865 static int pci_af_flr(struct pci_dev *dev, bool probe) 4866 { 4867 int pos; 4868 u8 cap; 4869 4870 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4871 if (!pos) 4872 return -ENOTTY; 4873 4874 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4875 return -ENOTTY; 4876 4877 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4878 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4879 return -ENOTTY; 4880 4881 if (probe) 4882 return 0; 4883 4884 /* 4885 * Wait for Transaction Pending bit to clear. A word-aligned test 4886 * is used, so we use the control offset rather than status and shift 4887 * the test bit to match. 4888 */ 4889 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4890 PCI_AF_STATUS_TP << 8)) 4891 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4892 4893 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4894 4895 if (dev->imm_ready) 4896 return 0; 4897 4898 /* 4899 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4900 * updated 27 July 2006; a device must complete an FLR within 4901 * 100ms, but may silently discard requests while the FLR is in 4902 * progress. Wait 100ms before trying to access the device. 4903 */ 4904 msleep(100); 4905 4906 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4907 } 4908 4909 /** 4910 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4911 * @dev: Device to reset. 4912 * @probe: if true, return 0 if the device can be reset this way. 4913 * 4914 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4915 * unset, it will be reinitialized internally when going from PCI_D3hot to 4916 * PCI_D0. If that's the case and the device is not in a low-power state 4917 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4918 * 4919 * NOTE: This causes the caller to sleep for twice the device power transition 4920 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4921 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4922 * Moreover, only devices in D0 can be reset by this function. 4923 */ 4924 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4925 { 4926 u16 csr; 4927 4928 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4929 return -ENOTTY; 4930 4931 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4932 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4933 return -ENOTTY; 4934 4935 if (probe) 4936 return 0; 4937 4938 if (dev->current_state != PCI_D0) 4939 return -EINVAL; 4940 4941 csr &= ~PCI_PM_CTRL_STATE_MASK; 4942 csr |= PCI_D3hot; 4943 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4944 pci_dev_d3_sleep(dev); 4945 4946 csr &= ~PCI_PM_CTRL_STATE_MASK; 4947 csr |= PCI_D0; 4948 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4949 pci_dev_d3_sleep(dev); 4950 4951 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4952 } 4953 4954 /** 4955 * pcie_wait_for_link_status - Wait for link status change 4956 * @pdev: Device whose link to wait for. 4957 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4958 * @active: Waiting for active or inactive? 4959 * 4960 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4961 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4962 */ 4963 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4964 bool use_lt, bool active) 4965 { 4966 u16 lnksta_mask, lnksta_match; 4967 unsigned long end_jiffies; 4968 u16 lnksta; 4969 4970 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4971 lnksta_match = active ? lnksta_mask : 0; 4972 4973 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4974 do { 4975 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4976 if ((lnksta & lnksta_mask) == lnksta_match) 4977 return 0; 4978 msleep(1); 4979 } while (time_before(jiffies, end_jiffies)); 4980 4981 return -ETIMEDOUT; 4982 } 4983 4984 /** 4985 * pcie_retrain_link - Request a link retrain and wait for it to complete 4986 * @pdev: Device whose link to retrain. 4987 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4988 * 4989 * Retrain completion status is retrieved from the Link Status Register 4990 * according to @use_lt. It is not verified whether the use of the DLLLA 4991 * bit is valid. 4992 * 4993 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4994 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4995 */ 4996 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4997 { 4998 int rc; 4999 5000 /* 5001 * Ensure the updated LNKCTL parameters are used during link 5002 * training by checking that there is no ongoing link training to 5003 * avoid LTSSM race as recommended in Implementation Note at the 5004 * end of PCIe r6.0.1 sec 7.5.3.7. 5005 */ 5006 rc = pcie_wait_for_link_status(pdev, true, false); 5007 if (rc) 5008 return rc; 5009 5010 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 5011 if (pdev->clear_retrain_link) { 5012 /* 5013 * Due to an erratum in some devices the Retrain Link bit 5014 * needs to be cleared again manually to allow the link 5015 * training to succeed. 5016 */ 5017 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 5018 } 5019 5020 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 5021 5022 /* 5023 * Clear LBMS after a manual retrain so that the bit can be used 5024 * to track link speed or width changes made by hardware itself 5025 * in attempt to correct unreliable link operation. 5026 */ 5027 pcie_capability_write_word(pdev, PCI_EXP_LNKSTA, PCI_EXP_LNKSTA_LBMS); 5028 return rc; 5029 } 5030 5031 /** 5032 * pcie_wait_for_link_delay - Wait until link is active or inactive 5033 * @pdev: Bridge device 5034 * @active: waiting for active or inactive? 5035 * @delay: Delay to wait after link has become active (in ms) 5036 * 5037 * Use this to wait till link becomes active or inactive. 5038 */ 5039 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 5040 int delay) 5041 { 5042 int rc; 5043 5044 /* 5045 * Some controllers might not implement link active reporting. In this 5046 * case, we wait for 1000 ms + any delay requested by the caller. 5047 */ 5048 if (!pdev->link_active_reporting) { 5049 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 5050 return true; 5051 } 5052 5053 /* 5054 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 5055 * after which we should expect an link active if the reset was 5056 * successful. If so, software must wait a minimum 100ms before sending 5057 * configuration requests to devices downstream this port. 5058 * 5059 * If the link fails to activate, either the device was physically 5060 * removed or the link is permanently failed. 5061 */ 5062 if (active) 5063 msleep(20); 5064 rc = pcie_wait_for_link_status(pdev, false, active); 5065 if (active) { 5066 if (rc) 5067 rc = pcie_failed_link_retrain(pdev); 5068 if (rc) 5069 return false; 5070 5071 msleep(delay); 5072 return true; 5073 } 5074 5075 if (rc) 5076 return false; 5077 5078 return true; 5079 } 5080 5081 /** 5082 * pcie_wait_for_link - Wait until link is active or inactive 5083 * @pdev: Bridge device 5084 * @active: waiting for active or inactive? 5085 * 5086 * Use this to wait till link becomes active or inactive. 5087 */ 5088 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5089 { 5090 return pcie_wait_for_link_delay(pdev, active, 100); 5091 } 5092 5093 /* 5094 * Find maximum D3cold delay required by all the devices on the bus. The 5095 * spec says 100 ms, but firmware can lower it and we allow drivers to 5096 * increase it as well. 5097 * 5098 * Called with @pci_bus_sem locked for reading. 5099 */ 5100 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5101 { 5102 const struct pci_dev *pdev; 5103 int min_delay = 100; 5104 int max_delay = 0; 5105 5106 list_for_each_entry(pdev, &bus->devices, bus_list) { 5107 if (pdev->d3cold_delay < min_delay) 5108 min_delay = pdev->d3cold_delay; 5109 if (pdev->d3cold_delay > max_delay) 5110 max_delay = pdev->d3cold_delay; 5111 } 5112 5113 return max(min_delay, max_delay); 5114 } 5115 5116 /** 5117 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5118 * @dev: PCI bridge 5119 * @reset_type: reset type in human-readable form 5120 * 5121 * Handle necessary delays before access to the devices on the secondary 5122 * side of the bridge are permitted after D3cold to D0 transition 5123 * or Conventional Reset. 5124 * 5125 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5126 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5127 * 4.3.2. 5128 * 5129 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5130 * failed to become accessible. 5131 */ 5132 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5133 { 5134 struct pci_dev *child __free(pci_dev_put) = NULL; 5135 int delay; 5136 5137 if (pci_dev_is_disconnected(dev)) 5138 return 0; 5139 5140 if (!pci_is_bridge(dev)) 5141 return 0; 5142 5143 down_read(&pci_bus_sem); 5144 5145 /* 5146 * We only deal with devices that are present currently on the bus. 5147 * For any hot-added devices the access delay is handled in pciehp 5148 * board_added(). In case of ACPI hotplug the firmware is expected 5149 * to configure the devices before OS is notified. 5150 */ 5151 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5152 up_read(&pci_bus_sem); 5153 return 0; 5154 } 5155 5156 /* Take d3cold_delay requirements into account */ 5157 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5158 if (!delay) { 5159 up_read(&pci_bus_sem); 5160 return 0; 5161 } 5162 5163 child = pci_dev_get(list_first_entry(&dev->subordinate->devices, 5164 struct pci_dev, bus_list)); 5165 up_read(&pci_bus_sem); 5166 5167 /* 5168 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5169 * accessing the device after reset (that is 1000 ms + 100 ms). 5170 */ 5171 if (!pci_is_pcie(dev)) { 5172 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5173 msleep(1000 + delay); 5174 return 0; 5175 } 5176 5177 /* 5178 * For PCIe downstream and root ports that do not support speeds 5179 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5180 * speeds (gen3) we need to wait first for the data link layer to 5181 * become active. 5182 * 5183 * However, 100 ms is the minimum and the PCIe spec says the 5184 * software must allow at least 1s before it can determine that the 5185 * device that did not respond is a broken device. Also device can 5186 * take longer than that to respond if it indicates so through Request 5187 * Retry Status completions. 5188 * 5189 * Therefore we wait for 100 ms and check for the device presence 5190 * until the timeout expires. 5191 */ 5192 if (!pcie_downstream_port(dev)) 5193 return 0; 5194 5195 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5196 u16 status; 5197 5198 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5199 msleep(delay); 5200 5201 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5202 return 0; 5203 5204 /* 5205 * If the port supports active link reporting we now check 5206 * whether the link is active and if not bail out early with 5207 * the assumption that the device is not present anymore. 5208 */ 5209 if (!dev->link_active_reporting) 5210 return -ENOTTY; 5211 5212 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5213 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5214 return -ENOTTY; 5215 5216 return pci_dev_wait(child, reset_type, 5217 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5218 } 5219 5220 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5221 delay); 5222 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5223 /* Did not train, no need to wait any further */ 5224 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5225 return -ENOTTY; 5226 } 5227 5228 return pci_dev_wait(child, reset_type, 5229 PCIE_RESET_READY_POLL_MS - delay); 5230 } 5231 5232 void pci_reset_secondary_bus(struct pci_dev *dev) 5233 { 5234 u16 ctrl; 5235 5236 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5237 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5238 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5239 5240 /* 5241 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5242 * this to 2ms to ensure that we meet the minimum requirement. 5243 */ 5244 msleep(2); 5245 5246 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5247 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5248 } 5249 5250 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5251 { 5252 pci_reset_secondary_bus(dev); 5253 } 5254 5255 /** 5256 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5257 * @dev: Bridge device 5258 * 5259 * Use the bridge control register to assert reset on the secondary bus. 5260 * Devices on the secondary bus are left in power-on state. 5261 */ 5262 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5263 { 5264 pcibios_reset_secondary_bus(dev); 5265 5266 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5267 } 5268 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5269 5270 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5271 { 5272 struct pci_dev *pdev; 5273 5274 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5275 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5276 return -ENOTTY; 5277 5278 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5279 if (pdev != dev) 5280 return -ENOTTY; 5281 5282 if (probe) 5283 return 0; 5284 5285 return pci_bridge_secondary_bus_reset(dev->bus->self); 5286 } 5287 5288 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5289 { 5290 int rc = -ENOTTY; 5291 5292 if (!hotplug || !try_module_get(hotplug->owner)) 5293 return rc; 5294 5295 if (hotplug->ops->reset_slot) 5296 rc = hotplug->ops->reset_slot(hotplug, probe); 5297 5298 module_put(hotplug->owner); 5299 5300 return rc; 5301 } 5302 5303 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5304 { 5305 if (dev->multifunction || dev->subordinate || !dev->slot || 5306 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5307 return -ENOTTY; 5308 5309 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5310 } 5311 5312 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5313 { 5314 int rc; 5315 5316 rc = pci_dev_reset_slot_function(dev, probe); 5317 if (rc != -ENOTTY) 5318 return rc; 5319 return pci_parent_bus_reset(dev, probe); 5320 } 5321 5322 void pci_dev_lock(struct pci_dev *dev) 5323 { 5324 /* block PM suspend, driver probe, etc. */ 5325 device_lock(&dev->dev); 5326 pci_cfg_access_lock(dev); 5327 } 5328 EXPORT_SYMBOL_GPL(pci_dev_lock); 5329 5330 /* Return 1 on successful lock, 0 on contention */ 5331 int pci_dev_trylock(struct pci_dev *dev) 5332 { 5333 if (device_trylock(&dev->dev)) { 5334 if (pci_cfg_access_trylock(dev)) 5335 return 1; 5336 device_unlock(&dev->dev); 5337 } 5338 5339 return 0; 5340 } 5341 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5342 5343 void pci_dev_unlock(struct pci_dev *dev) 5344 { 5345 pci_cfg_access_unlock(dev); 5346 device_unlock(&dev->dev); 5347 } 5348 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5349 5350 static void pci_dev_save_and_disable(struct pci_dev *dev) 5351 { 5352 const struct pci_error_handlers *err_handler = 5353 dev->driver ? dev->driver->err_handler : NULL; 5354 5355 /* 5356 * dev->driver->err_handler->reset_prepare() is protected against 5357 * races with ->remove() by the device lock, which must be held by 5358 * the caller. 5359 */ 5360 if (err_handler && err_handler->reset_prepare) 5361 err_handler->reset_prepare(dev); 5362 5363 /* 5364 * Wake-up device prior to save. PM registers default to D0 after 5365 * reset and a simple register restore doesn't reliably return 5366 * to a non-D0 state anyway. 5367 */ 5368 pci_set_power_state(dev, PCI_D0); 5369 5370 pci_save_state(dev); 5371 /* 5372 * Disable the device by clearing the Command register, except for 5373 * INTx-disable which is set. This not only disables MMIO and I/O port 5374 * BARs, but also prevents the device from being Bus Master, preventing 5375 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5376 * compliant devices, INTx-disable prevents legacy interrupts. 5377 */ 5378 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5379 } 5380 5381 static void pci_dev_restore(struct pci_dev *dev) 5382 { 5383 const struct pci_error_handlers *err_handler = 5384 dev->driver ? dev->driver->err_handler : NULL; 5385 5386 pci_restore_state(dev); 5387 5388 /* 5389 * dev->driver->err_handler->reset_done() is protected against 5390 * races with ->remove() by the device lock, which must be held by 5391 * the caller. 5392 */ 5393 if (err_handler && err_handler->reset_done) 5394 err_handler->reset_done(dev); 5395 } 5396 5397 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5398 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5399 { }, 5400 { pci_dev_specific_reset, .name = "device_specific" }, 5401 { pci_dev_acpi_reset, .name = "acpi" }, 5402 { pcie_reset_flr, .name = "flr" }, 5403 { pci_af_flr, .name = "af_flr" }, 5404 { pci_pm_reset, .name = "pm" }, 5405 { pci_reset_bus_function, .name = "bus" }, 5406 }; 5407 5408 static ssize_t reset_method_show(struct device *dev, 5409 struct device_attribute *attr, char *buf) 5410 { 5411 struct pci_dev *pdev = to_pci_dev(dev); 5412 ssize_t len = 0; 5413 int i, m; 5414 5415 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5416 m = pdev->reset_methods[i]; 5417 if (!m) 5418 break; 5419 5420 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5421 pci_reset_fn_methods[m].name); 5422 } 5423 5424 if (len) 5425 len += sysfs_emit_at(buf, len, "\n"); 5426 5427 return len; 5428 } 5429 5430 static int reset_method_lookup(const char *name) 5431 { 5432 int m; 5433 5434 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5435 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5436 return m; 5437 } 5438 5439 return 0; /* not found */ 5440 } 5441 5442 static ssize_t reset_method_store(struct device *dev, 5443 struct device_attribute *attr, 5444 const char *buf, size_t count) 5445 { 5446 struct pci_dev *pdev = to_pci_dev(dev); 5447 char *options, *tmp_options, *name; 5448 int m, n; 5449 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5450 5451 if (sysfs_streq(buf, "")) { 5452 pdev->reset_methods[0] = 0; 5453 pci_warn(pdev, "All device reset methods disabled by user"); 5454 return count; 5455 } 5456 5457 if (sysfs_streq(buf, "default")) { 5458 pci_init_reset_methods(pdev); 5459 return count; 5460 } 5461 5462 options = kstrndup(buf, count, GFP_KERNEL); 5463 if (!options) 5464 return -ENOMEM; 5465 5466 n = 0; 5467 tmp_options = options; 5468 while ((name = strsep(&tmp_options, " ")) != NULL) { 5469 if (sysfs_streq(name, "")) 5470 continue; 5471 5472 name = strim(name); 5473 5474 m = reset_method_lookup(name); 5475 if (!m) { 5476 pci_err(pdev, "Invalid reset method '%s'", name); 5477 goto error; 5478 } 5479 5480 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5481 pci_err(pdev, "Unsupported reset method '%s'", name); 5482 goto error; 5483 } 5484 5485 if (n == PCI_NUM_RESET_METHODS - 1) { 5486 pci_err(pdev, "Too many reset methods\n"); 5487 goto error; 5488 } 5489 5490 reset_methods[n++] = m; 5491 } 5492 5493 reset_methods[n] = 0; 5494 5495 /* Warn if dev-specific supported but not highest priority */ 5496 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5497 reset_methods[0] != 1) 5498 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5499 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5500 kfree(options); 5501 return count; 5502 5503 error: 5504 /* Leave previous methods unchanged */ 5505 kfree(options); 5506 return -EINVAL; 5507 } 5508 static DEVICE_ATTR_RW(reset_method); 5509 5510 static struct attribute *pci_dev_reset_method_attrs[] = { 5511 &dev_attr_reset_method.attr, 5512 NULL, 5513 }; 5514 5515 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5516 struct attribute *a, int n) 5517 { 5518 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5519 5520 if (!pci_reset_supported(pdev)) 5521 return 0; 5522 5523 return a->mode; 5524 } 5525 5526 const struct attribute_group pci_dev_reset_method_attr_group = { 5527 .attrs = pci_dev_reset_method_attrs, 5528 .is_visible = pci_dev_reset_method_attr_is_visible, 5529 }; 5530 5531 /** 5532 * __pci_reset_function_locked - reset a PCI device function while holding 5533 * the @dev mutex lock. 5534 * @dev: PCI device to reset 5535 * 5536 * Some devices allow an individual function to be reset without affecting 5537 * other functions in the same device. The PCI device must be responsive 5538 * to PCI config space in order to use this function. 5539 * 5540 * The device function is presumed to be unused and the caller is holding 5541 * the device mutex lock when this function is called. 5542 * 5543 * Resetting the device will make the contents of PCI configuration space 5544 * random, so any caller of this must be prepared to reinitialise the 5545 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5546 * etc. 5547 * 5548 * Returns 0 if the device function was successfully reset or negative if the 5549 * device doesn't support resetting a single function. 5550 */ 5551 int __pci_reset_function_locked(struct pci_dev *dev) 5552 { 5553 int i, m, rc; 5554 5555 might_sleep(); 5556 5557 /* 5558 * A reset method returns -ENOTTY if it doesn't support this device and 5559 * we should try the next method. 5560 * 5561 * If it returns 0 (success), we're finished. If it returns any other 5562 * error, we're also finished: this indicates that further reset 5563 * mechanisms might be broken on the device. 5564 */ 5565 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5566 m = dev->reset_methods[i]; 5567 if (!m) 5568 return -ENOTTY; 5569 5570 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5571 if (!rc) 5572 return 0; 5573 if (rc != -ENOTTY) 5574 return rc; 5575 } 5576 5577 return -ENOTTY; 5578 } 5579 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5580 5581 /** 5582 * pci_init_reset_methods - check whether device can be safely reset 5583 * and store supported reset mechanisms. 5584 * @dev: PCI device to check for reset mechanisms 5585 * 5586 * Some devices allow an individual function to be reset without affecting 5587 * other functions in the same device. The PCI device must be in D0-D3hot 5588 * state. 5589 * 5590 * Stores reset mechanisms supported by device in reset_methods byte array 5591 * which is a member of struct pci_dev. 5592 */ 5593 void pci_init_reset_methods(struct pci_dev *dev) 5594 { 5595 int m, i, rc; 5596 5597 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5598 5599 might_sleep(); 5600 5601 i = 0; 5602 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5603 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5604 if (!rc) 5605 dev->reset_methods[i++] = m; 5606 else if (rc != -ENOTTY) 5607 break; 5608 } 5609 5610 dev->reset_methods[i] = 0; 5611 } 5612 5613 /** 5614 * pci_reset_function - quiesce and reset a PCI device function 5615 * @dev: PCI device to reset 5616 * 5617 * Some devices allow an individual function to be reset without affecting 5618 * other functions in the same device. The PCI device must be responsive 5619 * to PCI config space in order to use this function. 5620 * 5621 * This function does not just reset the PCI portion of a device, but 5622 * clears all the state associated with the device. This function differs 5623 * from __pci_reset_function_locked() in that it saves and restores device state 5624 * over the reset and takes the PCI device lock. 5625 * 5626 * Returns 0 if the device function was successfully reset or negative if the 5627 * device doesn't support resetting a single function. 5628 */ 5629 int pci_reset_function(struct pci_dev *dev) 5630 { 5631 int rc; 5632 5633 if (!pci_reset_supported(dev)) 5634 return -ENOTTY; 5635 5636 pci_dev_lock(dev); 5637 pci_dev_save_and_disable(dev); 5638 5639 rc = __pci_reset_function_locked(dev); 5640 5641 pci_dev_restore(dev); 5642 pci_dev_unlock(dev); 5643 5644 return rc; 5645 } 5646 EXPORT_SYMBOL_GPL(pci_reset_function); 5647 5648 /** 5649 * pci_reset_function_locked - quiesce and reset a PCI device function 5650 * @dev: PCI device to reset 5651 * 5652 * Some devices allow an individual function to be reset without affecting 5653 * other functions in the same device. The PCI device must be responsive 5654 * to PCI config space in order to use this function. 5655 * 5656 * This function does not just reset the PCI portion of a device, but 5657 * clears all the state associated with the device. This function differs 5658 * from __pci_reset_function_locked() in that it saves and restores device state 5659 * over the reset. It also differs from pci_reset_function() in that it 5660 * requires the PCI device lock to be held. 5661 * 5662 * Returns 0 if the device function was successfully reset or negative if the 5663 * device doesn't support resetting a single function. 5664 */ 5665 int pci_reset_function_locked(struct pci_dev *dev) 5666 { 5667 int rc; 5668 5669 if (!pci_reset_supported(dev)) 5670 return -ENOTTY; 5671 5672 pci_dev_save_and_disable(dev); 5673 5674 rc = __pci_reset_function_locked(dev); 5675 5676 pci_dev_restore(dev); 5677 5678 return rc; 5679 } 5680 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5681 5682 /** 5683 * pci_try_reset_function - quiesce and reset a PCI device function 5684 * @dev: PCI device to reset 5685 * 5686 * Same as above, except return -EAGAIN if unable to lock device. 5687 */ 5688 int pci_try_reset_function(struct pci_dev *dev) 5689 { 5690 int rc; 5691 5692 if (!pci_reset_supported(dev)) 5693 return -ENOTTY; 5694 5695 if (!pci_dev_trylock(dev)) 5696 return -EAGAIN; 5697 5698 pci_dev_save_and_disable(dev); 5699 rc = __pci_reset_function_locked(dev); 5700 pci_dev_restore(dev); 5701 pci_dev_unlock(dev); 5702 5703 return rc; 5704 } 5705 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5706 5707 /* Do any devices on or below this bus prevent a bus reset? */ 5708 static bool pci_bus_resettable(struct pci_bus *bus) 5709 { 5710 struct pci_dev *dev; 5711 5712 5713 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5714 return false; 5715 5716 list_for_each_entry(dev, &bus->devices, bus_list) { 5717 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5718 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5719 return false; 5720 } 5721 5722 return true; 5723 } 5724 5725 /* Lock devices from the top of the tree down */ 5726 static void pci_bus_lock(struct pci_bus *bus) 5727 { 5728 struct pci_dev *dev; 5729 5730 pci_dev_lock(bus->self); 5731 list_for_each_entry(dev, &bus->devices, bus_list) { 5732 if (dev->subordinate) 5733 pci_bus_lock(dev->subordinate); 5734 else 5735 pci_dev_lock(dev); 5736 } 5737 } 5738 5739 /* Unlock devices from the bottom of the tree up */ 5740 static void pci_bus_unlock(struct pci_bus *bus) 5741 { 5742 struct pci_dev *dev; 5743 5744 list_for_each_entry(dev, &bus->devices, bus_list) { 5745 if (dev->subordinate) 5746 pci_bus_unlock(dev->subordinate); 5747 else 5748 pci_dev_unlock(dev); 5749 } 5750 pci_dev_unlock(bus->self); 5751 } 5752 5753 /* Return 1 on successful lock, 0 on contention */ 5754 static int pci_bus_trylock(struct pci_bus *bus) 5755 { 5756 struct pci_dev *dev; 5757 5758 if (!pci_dev_trylock(bus->self)) 5759 return 0; 5760 5761 list_for_each_entry(dev, &bus->devices, bus_list) { 5762 if (dev->subordinate) { 5763 if (!pci_bus_trylock(dev->subordinate)) 5764 goto unlock; 5765 } else if (!pci_dev_trylock(dev)) 5766 goto unlock; 5767 } 5768 return 1; 5769 5770 unlock: 5771 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5772 if (dev->subordinate) 5773 pci_bus_unlock(dev->subordinate); 5774 else 5775 pci_dev_unlock(dev); 5776 } 5777 pci_dev_unlock(bus->self); 5778 return 0; 5779 } 5780 5781 /* Do any devices on or below this slot prevent a bus reset? */ 5782 static bool pci_slot_resettable(struct pci_slot *slot) 5783 { 5784 struct pci_dev *dev; 5785 5786 if (slot->bus->self && 5787 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5788 return false; 5789 5790 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5791 if (!dev->slot || dev->slot != slot) 5792 continue; 5793 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5794 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5795 return false; 5796 } 5797 5798 return true; 5799 } 5800 5801 /* Lock devices from the top of the tree down */ 5802 static void pci_slot_lock(struct pci_slot *slot) 5803 { 5804 struct pci_dev *dev; 5805 5806 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5807 if (!dev->slot || dev->slot != slot) 5808 continue; 5809 if (dev->subordinate) 5810 pci_bus_lock(dev->subordinate); 5811 else 5812 pci_dev_lock(dev); 5813 } 5814 } 5815 5816 /* Unlock devices from the bottom of the tree up */ 5817 static void pci_slot_unlock(struct pci_slot *slot) 5818 { 5819 struct pci_dev *dev; 5820 5821 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5822 if (!dev->slot || dev->slot != slot) 5823 continue; 5824 if (dev->subordinate) 5825 pci_bus_unlock(dev->subordinate); 5826 pci_dev_unlock(dev); 5827 } 5828 } 5829 5830 /* Return 1 on successful lock, 0 on contention */ 5831 static int pci_slot_trylock(struct pci_slot *slot) 5832 { 5833 struct pci_dev *dev; 5834 5835 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5836 if (!dev->slot || dev->slot != slot) 5837 continue; 5838 if (dev->subordinate) { 5839 if (!pci_bus_trylock(dev->subordinate)) { 5840 pci_dev_unlock(dev); 5841 goto unlock; 5842 } 5843 } else if (!pci_dev_trylock(dev)) 5844 goto unlock; 5845 } 5846 return 1; 5847 5848 unlock: 5849 list_for_each_entry_continue_reverse(dev, 5850 &slot->bus->devices, bus_list) { 5851 if (!dev->slot || dev->slot != slot) 5852 continue; 5853 if (dev->subordinate) 5854 pci_bus_unlock(dev->subordinate); 5855 else 5856 pci_dev_unlock(dev); 5857 } 5858 return 0; 5859 } 5860 5861 /* 5862 * Save and disable devices from the top of the tree down while holding 5863 * the @dev mutex lock for the entire tree. 5864 */ 5865 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5866 { 5867 struct pci_dev *dev; 5868 5869 list_for_each_entry(dev, &bus->devices, bus_list) { 5870 pci_dev_save_and_disable(dev); 5871 if (dev->subordinate) 5872 pci_bus_save_and_disable_locked(dev->subordinate); 5873 } 5874 } 5875 5876 /* 5877 * Restore devices from top of the tree down while holding @dev mutex lock 5878 * for the entire tree. Parent bridges need to be restored before we can 5879 * get to subordinate devices. 5880 */ 5881 static void pci_bus_restore_locked(struct pci_bus *bus) 5882 { 5883 struct pci_dev *dev; 5884 5885 list_for_each_entry(dev, &bus->devices, bus_list) { 5886 pci_dev_restore(dev); 5887 if (dev->subordinate) { 5888 pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5889 pci_bus_restore_locked(dev->subordinate); 5890 } 5891 } 5892 } 5893 5894 /* 5895 * Save and disable devices from the top of the tree down while holding 5896 * the @dev mutex lock for the entire tree. 5897 */ 5898 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5899 { 5900 struct pci_dev *dev; 5901 5902 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5903 if (!dev->slot || dev->slot != slot) 5904 continue; 5905 pci_dev_save_and_disable(dev); 5906 if (dev->subordinate) 5907 pci_bus_save_and_disable_locked(dev->subordinate); 5908 } 5909 } 5910 5911 /* 5912 * Restore devices from top of the tree down while holding @dev mutex lock 5913 * for the entire tree. Parent bridges need to be restored before we can 5914 * get to subordinate devices. 5915 */ 5916 static void pci_slot_restore_locked(struct pci_slot *slot) 5917 { 5918 struct pci_dev *dev; 5919 5920 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5921 if (!dev->slot || dev->slot != slot) 5922 continue; 5923 pci_dev_restore(dev); 5924 if (dev->subordinate) { 5925 pci_bridge_wait_for_secondary_bus(dev, "slot reset"); 5926 pci_bus_restore_locked(dev->subordinate); 5927 } 5928 } 5929 } 5930 5931 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5932 { 5933 int rc; 5934 5935 if (!slot || !pci_slot_resettable(slot)) 5936 return -ENOTTY; 5937 5938 if (!probe) 5939 pci_slot_lock(slot); 5940 5941 might_sleep(); 5942 5943 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5944 5945 if (!probe) 5946 pci_slot_unlock(slot); 5947 5948 return rc; 5949 } 5950 5951 /** 5952 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5953 * @slot: PCI slot to probe 5954 * 5955 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5956 */ 5957 int pci_probe_reset_slot(struct pci_slot *slot) 5958 { 5959 return pci_slot_reset(slot, PCI_RESET_PROBE); 5960 } 5961 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5962 5963 /** 5964 * __pci_reset_slot - Try to reset a PCI slot 5965 * @slot: PCI slot to reset 5966 * 5967 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5968 * independent of other slots. For instance, some slots may support slot power 5969 * control. In the case of a 1:1 bus to slot architecture, this function may 5970 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5971 * Generally a slot reset should be attempted before a bus reset. All of the 5972 * function of the slot and any subordinate buses behind the slot are reset 5973 * through this function. PCI config space of all devices in the slot and 5974 * behind the slot is saved before and restored after reset. 5975 * 5976 * Same as above except return -EAGAIN if the slot cannot be locked 5977 */ 5978 static int __pci_reset_slot(struct pci_slot *slot) 5979 { 5980 int rc; 5981 5982 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5983 if (rc) 5984 return rc; 5985 5986 if (pci_slot_trylock(slot)) { 5987 pci_slot_save_and_disable_locked(slot); 5988 might_sleep(); 5989 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5990 pci_slot_restore_locked(slot); 5991 pci_slot_unlock(slot); 5992 } else 5993 rc = -EAGAIN; 5994 5995 return rc; 5996 } 5997 5998 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5999 { 6000 int ret; 6001 6002 if (!bus->self || !pci_bus_resettable(bus)) 6003 return -ENOTTY; 6004 6005 if (probe) 6006 return 0; 6007 6008 pci_bus_lock(bus); 6009 6010 might_sleep(); 6011 6012 ret = pci_bridge_secondary_bus_reset(bus->self); 6013 6014 pci_bus_unlock(bus); 6015 6016 return ret; 6017 } 6018 6019 /** 6020 * pci_bus_error_reset - reset the bridge's subordinate bus 6021 * @bridge: The parent device that connects to the bus to reset 6022 * 6023 * This function will first try to reset the slots on this bus if the method is 6024 * available. If slot reset fails or is not available, this will fall back to a 6025 * secondary bus reset. 6026 */ 6027 int pci_bus_error_reset(struct pci_dev *bridge) 6028 { 6029 struct pci_bus *bus = bridge->subordinate; 6030 struct pci_slot *slot; 6031 6032 if (!bus) 6033 return -ENOTTY; 6034 6035 mutex_lock(&pci_slot_mutex); 6036 if (list_empty(&bus->slots)) 6037 goto bus_reset; 6038 6039 list_for_each_entry(slot, &bus->slots, list) 6040 if (pci_probe_reset_slot(slot)) 6041 goto bus_reset; 6042 6043 list_for_each_entry(slot, &bus->slots, list) 6044 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 6045 goto bus_reset; 6046 6047 mutex_unlock(&pci_slot_mutex); 6048 return 0; 6049 bus_reset: 6050 mutex_unlock(&pci_slot_mutex); 6051 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 6052 } 6053 6054 /** 6055 * pci_probe_reset_bus - probe whether a PCI bus can be reset 6056 * @bus: PCI bus to probe 6057 * 6058 * Return 0 if bus can be reset, negative if a bus reset is not supported. 6059 */ 6060 int pci_probe_reset_bus(struct pci_bus *bus) 6061 { 6062 return pci_bus_reset(bus, PCI_RESET_PROBE); 6063 } 6064 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 6065 6066 /** 6067 * __pci_reset_bus - Try to reset a PCI bus 6068 * @bus: top level PCI bus to reset 6069 * 6070 * Same as above except return -EAGAIN if the bus cannot be locked 6071 */ 6072 static int __pci_reset_bus(struct pci_bus *bus) 6073 { 6074 int rc; 6075 6076 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6077 if (rc) 6078 return rc; 6079 6080 if (pci_bus_trylock(bus)) { 6081 pci_bus_save_and_disable_locked(bus); 6082 might_sleep(); 6083 rc = pci_bridge_secondary_bus_reset(bus->self); 6084 pci_bus_restore_locked(bus); 6085 pci_bus_unlock(bus); 6086 } else 6087 rc = -EAGAIN; 6088 6089 return rc; 6090 } 6091 6092 /** 6093 * pci_reset_bus - Try to reset a PCI bus 6094 * @pdev: top level PCI device to reset via slot/bus 6095 * 6096 * Same as above except return -EAGAIN if the bus cannot be locked 6097 */ 6098 int pci_reset_bus(struct pci_dev *pdev) 6099 { 6100 return (!pci_probe_reset_slot(pdev->slot)) ? 6101 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6102 } 6103 EXPORT_SYMBOL_GPL(pci_reset_bus); 6104 6105 /** 6106 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6107 * @dev: PCI device to query 6108 * 6109 * Returns mmrbc: maximum designed memory read count in bytes or 6110 * appropriate error value. 6111 */ 6112 int pcix_get_max_mmrbc(struct pci_dev *dev) 6113 { 6114 int cap; 6115 u32 stat; 6116 6117 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6118 if (!cap) 6119 return -EINVAL; 6120 6121 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6122 return -EINVAL; 6123 6124 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 6125 } 6126 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6127 6128 /** 6129 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6130 * @dev: PCI device to query 6131 * 6132 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6133 * value. 6134 */ 6135 int pcix_get_mmrbc(struct pci_dev *dev) 6136 { 6137 int cap; 6138 u16 cmd; 6139 6140 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6141 if (!cap) 6142 return -EINVAL; 6143 6144 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6145 return -EINVAL; 6146 6147 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 6148 } 6149 EXPORT_SYMBOL(pcix_get_mmrbc); 6150 6151 /** 6152 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6153 * @dev: PCI device to query 6154 * @mmrbc: maximum memory read count in bytes 6155 * valid values are 512, 1024, 2048, 4096 6156 * 6157 * If possible sets maximum memory read byte count, some bridges have errata 6158 * that prevent this. 6159 */ 6160 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6161 { 6162 int cap; 6163 u32 stat, v, o; 6164 u16 cmd; 6165 6166 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6167 return -EINVAL; 6168 6169 v = ffs(mmrbc) - 10; 6170 6171 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6172 if (!cap) 6173 return -EINVAL; 6174 6175 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6176 return -EINVAL; 6177 6178 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 6179 return -E2BIG; 6180 6181 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6182 return -EINVAL; 6183 6184 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 6185 if (o != v) { 6186 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6187 return -EIO; 6188 6189 cmd &= ~PCI_X_CMD_MAX_READ; 6190 cmd |= v << 2; 6191 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6192 return -EIO; 6193 } 6194 return 0; 6195 } 6196 EXPORT_SYMBOL(pcix_set_mmrbc); 6197 6198 /** 6199 * pcie_get_readrq - get PCI Express read request size 6200 * @dev: PCI device to query 6201 * 6202 * Returns maximum memory read request in bytes or appropriate error value. 6203 */ 6204 int pcie_get_readrq(struct pci_dev *dev) 6205 { 6206 u16 ctl; 6207 6208 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6209 6210 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6211 } 6212 EXPORT_SYMBOL(pcie_get_readrq); 6213 6214 /** 6215 * pcie_set_readrq - set PCI Express maximum memory read request 6216 * @dev: PCI device to query 6217 * @rq: maximum memory read count in bytes 6218 * valid values are 128, 256, 512, 1024, 2048, 4096 6219 * 6220 * If possible sets maximum memory read request in bytes 6221 */ 6222 int pcie_set_readrq(struct pci_dev *dev, int rq) 6223 { 6224 u16 v; 6225 int ret; 6226 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6227 6228 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6229 return -EINVAL; 6230 6231 /* 6232 * If using the "performance" PCIe config, we clamp the read rq 6233 * size to the max packet size to keep the host bridge from 6234 * generating requests larger than we can cope with. 6235 */ 6236 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6237 int mps = pcie_get_mps(dev); 6238 6239 if (mps < rq) 6240 rq = mps; 6241 } 6242 6243 v = (ffs(rq) - 8) << 12; 6244 6245 if (bridge->no_inc_mrrs) { 6246 int max_mrrs = pcie_get_readrq(dev); 6247 6248 if (rq > max_mrrs) { 6249 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6250 return -EINVAL; 6251 } 6252 } 6253 6254 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6255 PCI_EXP_DEVCTL_READRQ, v); 6256 6257 return pcibios_err_to_errno(ret); 6258 } 6259 EXPORT_SYMBOL(pcie_set_readrq); 6260 6261 /** 6262 * pcie_get_mps - get PCI Express maximum payload size 6263 * @dev: PCI device to query 6264 * 6265 * Returns maximum payload size in bytes 6266 */ 6267 int pcie_get_mps(struct pci_dev *dev) 6268 { 6269 u16 ctl; 6270 6271 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6272 6273 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6274 } 6275 EXPORT_SYMBOL(pcie_get_mps); 6276 6277 /** 6278 * pcie_set_mps - set PCI Express maximum payload size 6279 * @dev: PCI device to query 6280 * @mps: maximum payload size in bytes 6281 * valid values are 128, 256, 512, 1024, 2048, 4096 6282 * 6283 * If possible sets maximum payload size 6284 */ 6285 int pcie_set_mps(struct pci_dev *dev, int mps) 6286 { 6287 u16 v; 6288 int ret; 6289 6290 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6291 return -EINVAL; 6292 6293 v = ffs(mps) - 8; 6294 if (v > dev->pcie_mpss) 6295 return -EINVAL; 6296 v <<= 5; 6297 6298 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6299 PCI_EXP_DEVCTL_PAYLOAD, v); 6300 6301 return pcibios_err_to_errno(ret); 6302 } 6303 EXPORT_SYMBOL(pcie_set_mps); 6304 6305 /** 6306 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6307 * device and its bandwidth limitation 6308 * @dev: PCI device to query 6309 * @limiting_dev: storage for device causing the bandwidth limitation 6310 * @speed: storage for speed of limiting device 6311 * @width: storage for width of limiting device 6312 * 6313 * Walk up the PCI device chain and find the point where the minimum 6314 * bandwidth is available. Return the bandwidth available there and (if 6315 * limiting_dev, speed, and width pointers are supplied) information about 6316 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6317 * raw bandwidth. 6318 */ 6319 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6320 enum pci_bus_speed *speed, 6321 enum pcie_link_width *width) 6322 { 6323 u16 lnksta; 6324 enum pci_bus_speed next_speed; 6325 enum pcie_link_width next_width; 6326 u32 bw, next_bw; 6327 6328 if (speed) 6329 *speed = PCI_SPEED_UNKNOWN; 6330 if (width) 6331 *width = PCIE_LNK_WIDTH_UNKNOWN; 6332 6333 bw = 0; 6334 6335 while (dev) { 6336 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6337 6338 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6339 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6340 6341 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6342 6343 /* Check if current device limits the total bandwidth */ 6344 if (!bw || next_bw <= bw) { 6345 bw = next_bw; 6346 6347 if (limiting_dev) 6348 *limiting_dev = dev; 6349 if (speed) 6350 *speed = next_speed; 6351 if (width) 6352 *width = next_width; 6353 } 6354 6355 dev = pci_upstream_bridge(dev); 6356 } 6357 6358 return bw; 6359 } 6360 EXPORT_SYMBOL(pcie_bandwidth_available); 6361 6362 /** 6363 * pcie_get_speed_cap - query for the PCI device's link speed capability 6364 * @dev: PCI device to query 6365 * 6366 * Query the PCI device speed capability. Return the maximum link speed 6367 * supported by the device. 6368 */ 6369 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6370 { 6371 u32 lnkcap2, lnkcap; 6372 6373 /* 6374 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6375 * implementation note there recommends using the Supported Link 6376 * Speeds Vector in Link Capabilities 2 when supported. 6377 * 6378 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6379 * should use the Supported Link Speeds field in Link Capabilities, 6380 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6381 */ 6382 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6383 6384 /* PCIe r3.0-compliant */ 6385 if (lnkcap2) 6386 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6387 6388 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6389 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6390 return PCIE_SPEED_5_0GT; 6391 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6392 return PCIE_SPEED_2_5GT; 6393 6394 return PCI_SPEED_UNKNOWN; 6395 } 6396 EXPORT_SYMBOL(pcie_get_speed_cap); 6397 6398 /** 6399 * pcie_get_width_cap - query for the PCI device's link width capability 6400 * @dev: PCI device to query 6401 * 6402 * Query the PCI device width capability. Return the maximum link width 6403 * supported by the device. 6404 */ 6405 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6406 { 6407 u32 lnkcap; 6408 6409 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6410 if (lnkcap) 6411 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6412 6413 return PCIE_LNK_WIDTH_UNKNOWN; 6414 } 6415 EXPORT_SYMBOL(pcie_get_width_cap); 6416 6417 /** 6418 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6419 * @dev: PCI device 6420 * @speed: storage for link speed 6421 * @width: storage for link width 6422 * 6423 * Calculate a PCI device's link bandwidth by querying for its link speed 6424 * and width, multiplying them, and applying encoding overhead. The result 6425 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6426 */ 6427 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6428 enum pcie_link_width *width) 6429 { 6430 *speed = pcie_get_speed_cap(dev); 6431 *width = pcie_get_width_cap(dev); 6432 6433 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6434 return 0; 6435 6436 return *width * PCIE_SPEED2MBS_ENC(*speed); 6437 } 6438 6439 /** 6440 * __pcie_print_link_status - Report the PCI device's link speed and width 6441 * @dev: PCI device to query 6442 * @verbose: Print info even when enough bandwidth is available 6443 * 6444 * If the available bandwidth at the device is less than the device is 6445 * capable of, report the device's maximum possible bandwidth and the 6446 * upstream link that limits its performance. If @verbose, always print 6447 * the available bandwidth, even if the device isn't constrained. 6448 */ 6449 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6450 { 6451 enum pcie_link_width width, width_cap; 6452 enum pci_bus_speed speed, speed_cap; 6453 struct pci_dev *limiting_dev = NULL; 6454 u32 bw_avail, bw_cap; 6455 6456 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6457 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6458 6459 if (bw_avail >= bw_cap && verbose) 6460 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6461 bw_cap / 1000, bw_cap % 1000, 6462 pci_speed_string(speed_cap), width_cap); 6463 else if (bw_avail < bw_cap) 6464 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6465 bw_avail / 1000, bw_avail % 1000, 6466 pci_speed_string(speed), width, 6467 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6468 bw_cap / 1000, bw_cap % 1000, 6469 pci_speed_string(speed_cap), width_cap); 6470 } 6471 6472 /** 6473 * pcie_print_link_status - Report the PCI device's link speed and width 6474 * @dev: PCI device to query 6475 * 6476 * Report the available bandwidth at the device. 6477 */ 6478 void pcie_print_link_status(struct pci_dev *dev) 6479 { 6480 __pcie_print_link_status(dev, true); 6481 } 6482 EXPORT_SYMBOL(pcie_print_link_status); 6483 6484 /** 6485 * pci_select_bars - Make BAR mask from the type of resource 6486 * @dev: the PCI device for which BAR mask is made 6487 * @flags: resource type mask to be selected 6488 * 6489 * This helper routine makes bar mask from the type of resource. 6490 */ 6491 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6492 { 6493 int i, bars = 0; 6494 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6495 if (pci_resource_flags(dev, i) & flags) 6496 bars |= (1 << i); 6497 return bars; 6498 } 6499 EXPORT_SYMBOL(pci_select_bars); 6500 6501 /* Some architectures require additional programming to enable VGA */ 6502 static arch_set_vga_state_t arch_set_vga_state; 6503 6504 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6505 { 6506 arch_set_vga_state = func; /* NULL disables */ 6507 } 6508 6509 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6510 unsigned int command_bits, u32 flags) 6511 { 6512 if (arch_set_vga_state) 6513 return arch_set_vga_state(dev, decode, command_bits, 6514 flags); 6515 return 0; 6516 } 6517 6518 /** 6519 * pci_set_vga_state - set VGA decode state on device and parents if requested 6520 * @dev: the PCI device 6521 * @decode: true = enable decoding, false = disable decoding 6522 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6523 * @flags: traverse ancestors and change bridges 6524 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6525 */ 6526 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6527 unsigned int command_bits, u32 flags) 6528 { 6529 struct pci_bus *bus; 6530 struct pci_dev *bridge; 6531 u16 cmd; 6532 int rc; 6533 6534 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6535 6536 /* ARCH specific VGA enables */ 6537 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6538 if (rc) 6539 return rc; 6540 6541 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6542 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6543 if (decode) 6544 cmd |= command_bits; 6545 else 6546 cmd &= ~command_bits; 6547 pci_write_config_word(dev, PCI_COMMAND, cmd); 6548 } 6549 6550 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6551 return 0; 6552 6553 bus = dev->bus; 6554 while (bus) { 6555 bridge = bus->self; 6556 if (bridge) { 6557 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6558 &cmd); 6559 if (decode) 6560 cmd |= PCI_BRIDGE_CTL_VGA; 6561 else 6562 cmd &= ~PCI_BRIDGE_CTL_VGA; 6563 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6564 cmd); 6565 } 6566 bus = bus->parent; 6567 } 6568 return 0; 6569 } 6570 6571 #ifdef CONFIG_ACPI 6572 bool pci_pr3_present(struct pci_dev *pdev) 6573 { 6574 struct acpi_device *adev; 6575 6576 if (acpi_disabled) 6577 return false; 6578 6579 adev = ACPI_COMPANION(&pdev->dev); 6580 if (!adev) 6581 return false; 6582 6583 return adev->power.flags.power_resources && 6584 acpi_has_method(adev->handle, "_PR3"); 6585 } 6586 EXPORT_SYMBOL_GPL(pci_pr3_present); 6587 #endif 6588 6589 /** 6590 * pci_add_dma_alias - Add a DMA devfn alias for a device 6591 * @dev: the PCI device for which alias is added 6592 * @devfn_from: alias slot and function 6593 * @nr_devfns: number of subsequent devfns to alias 6594 * 6595 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6596 * which is used to program permissible bus-devfn source addresses for DMA 6597 * requests in an IOMMU. These aliases factor into IOMMU group creation 6598 * and are useful for devices generating DMA requests beyond or different 6599 * from their logical bus-devfn. Examples include device quirks where the 6600 * device simply uses the wrong devfn, as well as non-transparent bridges 6601 * where the alias may be a proxy for devices in another domain. 6602 * 6603 * IOMMU group creation is performed during device discovery or addition, 6604 * prior to any potential DMA mapping and therefore prior to driver probing 6605 * (especially for userspace assigned devices where IOMMU group definition 6606 * cannot be left as a userspace activity). DMA aliases should therefore 6607 * be configured via quirks, such as the PCI fixup header quirk. 6608 */ 6609 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6610 unsigned int nr_devfns) 6611 { 6612 int devfn_to; 6613 6614 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6615 devfn_to = devfn_from + nr_devfns - 1; 6616 6617 if (!dev->dma_alias_mask) 6618 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6619 if (!dev->dma_alias_mask) { 6620 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6621 return; 6622 } 6623 6624 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6625 6626 if (nr_devfns == 1) 6627 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6628 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6629 else if (nr_devfns > 1) 6630 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6631 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6632 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6633 } 6634 6635 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6636 { 6637 return (dev1->dma_alias_mask && 6638 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6639 (dev2->dma_alias_mask && 6640 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6641 pci_real_dma_dev(dev1) == dev2 || 6642 pci_real_dma_dev(dev2) == dev1; 6643 } 6644 6645 bool pci_device_is_present(struct pci_dev *pdev) 6646 { 6647 u32 v; 6648 6649 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6650 pdev = pci_physfn(pdev); 6651 if (pci_dev_is_disconnected(pdev)) 6652 return false; 6653 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6654 } 6655 EXPORT_SYMBOL_GPL(pci_device_is_present); 6656 6657 void pci_ignore_hotplug(struct pci_dev *dev) 6658 { 6659 struct pci_dev *bridge = dev->bus->self; 6660 6661 dev->ignore_hotplug = 1; 6662 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6663 if (bridge) 6664 bridge->ignore_hotplug = 1; 6665 } 6666 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6667 6668 /** 6669 * pci_real_dma_dev - Get PCI DMA device for PCI device 6670 * @dev: the PCI device that may have a PCI DMA alias 6671 * 6672 * Permits the platform to provide architecture-specific functionality to 6673 * devices needing to alias DMA to another PCI device on another PCI bus. If 6674 * the PCI device is on the same bus, it is recommended to use 6675 * pci_add_dma_alias(). This is the default implementation. Architecture 6676 * implementations can override this. 6677 */ 6678 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6679 { 6680 return dev; 6681 } 6682 6683 resource_size_t __weak pcibios_default_alignment(void) 6684 { 6685 return 0; 6686 } 6687 6688 /* 6689 * Arches that don't want to expose struct resource to userland as-is in 6690 * sysfs and /proc can implement their own pci_resource_to_user(). 6691 */ 6692 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6693 const struct resource *rsrc, 6694 resource_size_t *start, resource_size_t *end) 6695 { 6696 *start = rsrc->start; 6697 *end = rsrc->end; 6698 } 6699 6700 static char *resource_alignment_param; 6701 static DEFINE_SPINLOCK(resource_alignment_lock); 6702 6703 /** 6704 * pci_specified_resource_alignment - get resource alignment specified by user. 6705 * @dev: the PCI device to get 6706 * @resize: whether or not to change resources' size when reassigning alignment 6707 * 6708 * RETURNS: Resource alignment if it is specified. 6709 * Zero if it is not specified. 6710 */ 6711 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6712 bool *resize) 6713 { 6714 int align_order, count; 6715 resource_size_t align = pcibios_default_alignment(); 6716 const char *p; 6717 int ret; 6718 6719 spin_lock(&resource_alignment_lock); 6720 p = resource_alignment_param; 6721 if (!p || !*p) 6722 goto out; 6723 if (pci_has_flag(PCI_PROBE_ONLY)) { 6724 align = 0; 6725 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6726 goto out; 6727 } 6728 6729 while (*p) { 6730 count = 0; 6731 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6732 p[count] == '@') { 6733 p += count + 1; 6734 if (align_order > 63) { 6735 pr_err("PCI: Invalid requested alignment (order %d)\n", 6736 align_order); 6737 align_order = PAGE_SHIFT; 6738 } 6739 } else { 6740 align_order = PAGE_SHIFT; 6741 } 6742 6743 ret = pci_dev_str_match(dev, p, &p); 6744 if (ret == 1) { 6745 *resize = true; 6746 align = 1ULL << align_order; 6747 break; 6748 } else if (ret < 0) { 6749 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6750 p); 6751 break; 6752 } 6753 6754 if (*p != ';' && *p != ',') { 6755 /* End of param or invalid format */ 6756 break; 6757 } 6758 p++; 6759 } 6760 out: 6761 spin_unlock(&resource_alignment_lock); 6762 return align; 6763 } 6764 6765 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6766 resource_size_t align, bool resize) 6767 { 6768 struct resource *r = &dev->resource[bar]; 6769 resource_size_t size; 6770 6771 if (!(r->flags & IORESOURCE_MEM)) 6772 return; 6773 6774 if (r->flags & IORESOURCE_PCI_FIXED) { 6775 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6776 bar, r, (unsigned long long)align); 6777 return; 6778 } 6779 6780 size = resource_size(r); 6781 if (size >= align) 6782 return; 6783 6784 /* 6785 * Increase the alignment of the resource. There are two ways we 6786 * can do this: 6787 * 6788 * 1) Increase the size of the resource. BARs are aligned on their 6789 * size, so when we reallocate space for this resource, we'll 6790 * allocate it with the larger alignment. This also prevents 6791 * assignment of any other BARs inside the alignment region, so 6792 * if we're requesting page alignment, this means no other BARs 6793 * will share the page. 6794 * 6795 * The disadvantage is that this makes the resource larger than 6796 * the hardware BAR, which may break drivers that compute things 6797 * based on the resource size, e.g., to find registers at a 6798 * fixed offset before the end of the BAR. 6799 * 6800 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6801 * set r->start to the desired alignment. By itself this 6802 * doesn't prevent other BARs being put inside the alignment 6803 * region, but if we realign *every* resource of every device in 6804 * the system, none of them will share an alignment region. 6805 * 6806 * When the user has requested alignment for only some devices via 6807 * the "pci=resource_alignment" argument, "resize" is true and we 6808 * use the first method. Otherwise we assume we're aligning all 6809 * devices and we use the second. 6810 */ 6811 6812 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6813 bar, r, (unsigned long long)align); 6814 6815 if (resize) { 6816 r->start = 0; 6817 r->end = align - 1; 6818 } else { 6819 r->flags &= ~IORESOURCE_SIZEALIGN; 6820 r->flags |= IORESOURCE_STARTALIGN; 6821 r->start = align; 6822 r->end = r->start + size - 1; 6823 } 6824 r->flags |= IORESOURCE_UNSET; 6825 } 6826 6827 /* 6828 * This function disables memory decoding and releases memory resources 6829 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6830 * It also rounds up size to specified alignment. 6831 * Later on, the kernel will assign page-aligned memory resource back 6832 * to the device. 6833 */ 6834 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6835 { 6836 int i; 6837 struct resource *r; 6838 resource_size_t align; 6839 u16 command; 6840 bool resize = false; 6841 6842 /* 6843 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6844 * 3.4.1.11. Their resources are allocated from the space 6845 * described by the VF BARx register in the PF's SR-IOV capability. 6846 * We can't influence their alignment here. 6847 */ 6848 if (dev->is_virtfn) 6849 return; 6850 6851 /* check if specified PCI is target device to reassign */ 6852 align = pci_specified_resource_alignment(dev, &resize); 6853 if (!align) 6854 return; 6855 6856 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6857 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6858 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6859 return; 6860 } 6861 6862 pci_read_config_word(dev, PCI_COMMAND, &command); 6863 command &= ~PCI_COMMAND_MEMORY; 6864 pci_write_config_word(dev, PCI_COMMAND, command); 6865 6866 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6867 pci_request_resource_alignment(dev, i, align, resize); 6868 6869 /* 6870 * Need to disable bridge's resource window, 6871 * to enable the kernel to reassign new resource 6872 * window later on. 6873 */ 6874 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6875 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6876 r = &dev->resource[i]; 6877 if (!(r->flags & IORESOURCE_MEM)) 6878 continue; 6879 r->flags |= IORESOURCE_UNSET; 6880 r->end = resource_size(r) - 1; 6881 r->start = 0; 6882 } 6883 pci_disable_bridge_window(dev); 6884 } 6885 } 6886 6887 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6888 { 6889 size_t count = 0; 6890 6891 spin_lock(&resource_alignment_lock); 6892 if (resource_alignment_param) 6893 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6894 spin_unlock(&resource_alignment_lock); 6895 6896 return count; 6897 } 6898 6899 static ssize_t resource_alignment_store(const struct bus_type *bus, 6900 const char *buf, size_t count) 6901 { 6902 char *param, *old, *end; 6903 6904 if (count >= (PAGE_SIZE - 1)) 6905 return -EINVAL; 6906 6907 param = kstrndup(buf, count, GFP_KERNEL); 6908 if (!param) 6909 return -ENOMEM; 6910 6911 end = strchr(param, '\n'); 6912 if (end) 6913 *end = '\0'; 6914 6915 spin_lock(&resource_alignment_lock); 6916 old = resource_alignment_param; 6917 if (strlen(param)) { 6918 resource_alignment_param = param; 6919 } else { 6920 kfree(param); 6921 resource_alignment_param = NULL; 6922 } 6923 spin_unlock(&resource_alignment_lock); 6924 6925 kfree(old); 6926 6927 return count; 6928 } 6929 6930 static BUS_ATTR_RW(resource_alignment); 6931 6932 static int __init pci_resource_alignment_sysfs_init(void) 6933 { 6934 return bus_create_file(&pci_bus_type, 6935 &bus_attr_resource_alignment); 6936 } 6937 late_initcall(pci_resource_alignment_sysfs_init); 6938 6939 static void pci_no_domains(void) 6940 { 6941 #ifdef CONFIG_PCI_DOMAINS 6942 pci_domains_supported = 0; 6943 #endif 6944 } 6945 6946 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6947 static DEFINE_IDA(pci_domain_nr_static_ida); 6948 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6949 6950 static void of_pci_reserve_static_domain_nr(void) 6951 { 6952 struct device_node *np; 6953 int domain_nr; 6954 6955 for_each_node_by_type(np, "pci") { 6956 domain_nr = of_get_pci_domain_nr(np); 6957 if (domain_nr < 0) 6958 continue; 6959 /* 6960 * Permanently allocate domain_nr in dynamic_ida 6961 * to prevent it from dynamic allocation. 6962 */ 6963 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6964 domain_nr, domain_nr, GFP_KERNEL); 6965 } 6966 } 6967 6968 static int of_pci_bus_find_domain_nr(struct device *parent) 6969 { 6970 static bool static_domains_reserved = false; 6971 int domain_nr; 6972 6973 /* On the first call scan device tree for static allocations. */ 6974 if (!static_domains_reserved) { 6975 of_pci_reserve_static_domain_nr(); 6976 static_domains_reserved = true; 6977 } 6978 6979 if (parent) { 6980 /* 6981 * If domain is in DT, allocate it in static IDA. This 6982 * prevents duplicate static allocations in case of errors 6983 * in DT. 6984 */ 6985 domain_nr = of_get_pci_domain_nr(parent->of_node); 6986 if (domain_nr >= 0) 6987 return ida_alloc_range(&pci_domain_nr_static_ida, 6988 domain_nr, domain_nr, 6989 GFP_KERNEL); 6990 } 6991 6992 /* 6993 * If domain was not specified in DT, choose a free ID from dynamic 6994 * allocations. All domain numbers from DT are permanently in 6995 * dynamic allocations to prevent assigning them to other DT nodes 6996 * without static domain. 6997 */ 6998 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6999 } 7000 7001 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 7002 { 7003 if (bus->domain_nr < 0) 7004 return; 7005 7006 /* Release domain from IDA where it was allocated. */ 7007 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 7008 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 7009 else 7010 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 7011 } 7012 7013 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 7014 { 7015 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 7016 acpi_pci_bus_find_domain_nr(bus); 7017 } 7018 7019 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 7020 { 7021 if (!acpi_disabled) 7022 return; 7023 of_pci_bus_release_domain_nr(bus, parent); 7024 } 7025 #endif 7026 7027 /** 7028 * pci_ext_cfg_avail - can we access extended PCI config space? 7029 * 7030 * Returns 1 if we can access PCI extended config space (offsets 7031 * greater than 0xff). This is the default implementation. Architecture 7032 * implementations can override this. 7033 */ 7034 int __weak pci_ext_cfg_avail(void) 7035 { 7036 return 1; 7037 } 7038 7039 void __weak pci_fixup_cardbus(struct pci_bus *bus) 7040 { 7041 } 7042 EXPORT_SYMBOL(pci_fixup_cardbus); 7043 7044 static int __init pci_setup(char *str) 7045 { 7046 while (str) { 7047 char *k = strchr(str, ','); 7048 if (k) 7049 *k++ = 0; 7050 if (*str && (str = pcibios_setup(str)) && *str) { 7051 if (!strcmp(str, "nomsi")) { 7052 pci_no_msi(); 7053 } else if (!strncmp(str, "noats", 5)) { 7054 pr_info("PCIe: ATS is disabled\n"); 7055 pcie_ats_disabled = true; 7056 } else if (!strcmp(str, "noaer")) { 7057 pci_no_aer(); 7058 } else if (!strcmp(str, "earlydump")) { 7059 pci_early_dump = true; 7060 } else if (!strncmp(str, "realloc=", 8)) { 7061 pci_realloc_get_opt(str + 8); 7062 } else if (!strncmp(str, "realloc", 7)) { 7063 pci_realloc_get_opt("on"); 7064 } else if (!strcmp(str, "nodomains")) { 7065 pci_no_domains(); 7066 } else if (!strncmp(str, "noari", 5)) { 7067 pcie_ari_disabled = true; 7068 } else if (!strncmp(str, "cbiosize=", 9)) { 7069 pci_cardbus_io_size = memparse(str + 9, &str); 7070 } else if (!strncmp(str, "cbmemsize=", 10)) { 7071 pci_cardbus_mem_size = memparse(str + 10, &str); 7072 } else if (!strncmp(str, "resource_alignment=", 19)) { 7073 resource_alignment_param = str + 19; 7074 } else if (!strncmp(str, "ecrc=", 5)) { 7075 pcie_ecrc_get_policy(str + 5); 7076 } else if (!strncmp(str, "hpiosize=", 9)) { 7077 pci_hotplug_io_size = memparse(str + 9, &str); 7078 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7079 pci_hotplug_mmio_size = memparse(str + 11, &str); 7080 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7081 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7082 } else if (!strncmp(str, "hpmemsize=", 10)) { 7083 pci_hotplug_mmio_size = memparse(str + 10, &str); 7084 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7085 } else if (!strncmp(str, "hpbussize=", 10)) { 7086 pci_hotplug_bus_size = 7087 simple_strtoul(str + 10, &str, 0); 7088 if (pci_hotplug_bus_size > 0xff) 7089 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7090 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7091 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7092 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7093 pcie_bus_config = PCIE_BUS_SAFE; 7094 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7095 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7096 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7097 pcie_bus_config = PCIE_BUS_PEER2PEER; 7098 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7099 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7100 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7101 disable_acs_redir_param = str + 18; 7102 } else { 7103 pr_err("PCI: Unknown option `%s'\n", str); 7104 } 7105 } 7106 str = k; 7107 } 7108 return 0; 7109 } 7110 early_param("pci", pci_setup); 7111 7112 /* 7113 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7114 * in pci_setup(), above, to point to data in the __initdata section which 7115 * will be freed after the init sequence is complete. We can't allocate memory 7116 * in pci_setup() because some architectures do not have any memory allocation 7117 * service available during an early_param() call. So we allocate memory and 7118 * copy the variable here before the init section is freed. 7119 * 7120 */ 7121 static int __init pci_realloc_setup_params(void) 7122 { 7123 resource_alignment_param = kstrdup(resource_alignment_param, 7124 GFP_KERNEL); 7125 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7126 7127 return 0; 7128 } 7129 pure_initcall(pci_realloc_setup_params); 7130