xref: /openbmc/linux/drivers/pci/pci.c (revision e2c75e76)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  *	David Mosberger-Tang
7  *
8  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/pci-aspm.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3_delay;
67 
68 	if (delay < pci_pm_d3_delay)
69 		delay = pci_pm_d3_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
88 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
90 
91 #define DEFAULT_HOTPLUG_BUS_SIZE	1
92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
93 
94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
95 
96 /*
97  * The default CLS is used if arch didn't set CLS explicitly and not
98  * all pci devices agree on the same value.  Arch can override either
99  * the dfl or actual value as it sees fit.  Don't forget this is
100  * measured in 32-bit words, not bytes.
101  */
102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
103 u8 pci_cache_line_size;
104 
105 /*
106  * If we set up a device for bus mastering, we need to check the latency
107  * timer as certain BIOSes forget to set it properly.
108  */
109 unsigned int pcibios_max_latency = 255;
110 
111 /* If set, the PCIe ARI capability will not be used. */
112 static bool pcie_ari_disabled;
113 
114 /* Disable bridge_d3 for all PCIe ports */
115 static bool pci_bridge_d3_disable;
116 /* Force bridge_d3 for all PCIe ports */
117 static bool pci_bridge_d3_force;
118 
119 static int __init pcie_port_pm_setup(char *str)
120 {
121 	if (!strcmp(str, "off"))
122 		pci_bridge_d3_disable = true;
123 	else if (!strcmp(str, "force"))
124 		pci_bridge_d3_force = true;
125 	return 1;
126 }
127 __setup("pcie_port_pm=", pcie_port_pm_setup);
128 
129 /**
130  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
131  * @bus: pointer to PCI bus structure to search
132  *
133  * Given a PCI bus, returns the highest PCI bus number present in the set
134  * including the given PCI bus and its list of child PCI buses.
135  */
136 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
137 {
138 	struct pci_bus *tmp;
139 	unsigned char max, n;
140 
141 	max = bus->busn_res.end;
142 	list_for_each_entry(tmp, &bus->children, node) {
143 		n = pci_bus_max_busnr(tmp);
144 		if (n > max)
145 			max = n;
146 	}
147 	return max;
148 }
149 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
150 
151 #ifdef CONFIG_HAS_IOMEM
152 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
153 {
154 	struct resource *res = &pdev->resource[bar];
155 
156 	/*
157 	 * Make sure the BAR is actually a memory resource, not an IO resource
158 	 */
159 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
160 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
161 		return NULL;
162 	}
163 	return ioremap_nocache(res->start, resource_size(res));
164 }
165 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
166 
167 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
168 {
169 	/*
170 	 * Make sure the BAR is actually a memory resource, not an IO resource
171 	 */
172 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
173 		WARN_ON(1);
174 		return NULL;
175 	}
176 	return ioremap_wc(pci_resource_start(pdev, bar),
177 			  pci_resource_len(pdev, bar));
178 }
179 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
180 #endif
181 
182 
183 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
184 				   u8 pos, int cap, int *ttl)
185 {
186 	u8 id;
187 	u16 ent;
188 
189 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
190 
191 	while ((*ttl)--) {
192 		if (pos < 0x40)
193 			break;
194 		pos &= ~3;
195 		pci_bus_read_config_word(bus, devfn, pos, &ent);
196 
197 		id = ent & 0xff;
198 		if (id == 0xff)
199 			break;
200 		if (id == cap)
201 			return pos;
202 		pos = (ent >> 8);
203 	}
204 	return 0;
205 }
206 
207 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
208 			       u8 pos, int cap)
209 {
210 	int ttl = PCI_FIND_CAP_TTL;
211 
212 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
213 }
214 
215 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
216 {
217 	return __pci_find_next_cap(dev->bus, dev->devfn,
218 				   pos + PCI_CAP_LIST_NEXT, cap);
219 }
220 EXPORT_SYMBOL_GPL(pci_find_next_capability);
221 
222 static int __pci_bus_find_cap_start(struct pci_bus *bus,
223 				    unsigned int devfn, u8 hdr_type)
224 {
225 	u16 status;
226 
227 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
228 	if (!(status & PCI_STATUS_CAP_LIST))
229 		return 0;
230 
231 	switch (hdr_type) {
232 	case PCI_HEADER_TYPE_NORMAL:
233 	case PCI_HEADER_TYPE_BRIDGE:
234 		return PCI_CAPABILITY_LIST;
235 	case PCI_HEADER_TYPE_CARDBUS:
236 		return PCI_CB_CAPABILITY_LIST;
237 	}
238 
239 	return 0;
240 }
241 
242 /**
243  * pci_find_capability - query for devices' capabilities
244  * @dev: PCI device to query
245  * @cap: capability code
246  *
247  * Tell if a device supports a given PCI capability.
248  * Returns the address of the requested capability structure within the
249  * device's PCI configuration space or 0 in case the device does not
250  * support it.  Possible values for @cap:
251  *
252  *  %PCI_CAP_ID_PM           Power Management
253  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
254  *  %PCI_CAP_ID_VPD          Vital Product Data
255  *  %PCI_CAP_ID_SLOTID       Slot Identification
256  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
257  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
258  *  %PCI_CAP_ID_PCIX         PCI-X
259  *  %PCI_CAP_ID_EXP          PCI Express
260  */
261 int pci_find_capability(struct pci_dev *dev, int cap)
262 {
263 	int pos;
264 
265 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
266 	if (pos)
267 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
268 
269 	return pos;
270 }
271 EXPORT_SYMBOL(pci_find_capability);
272 
273 /**
274  * pci_bus_find_capability - query for devices' capabilities
275  * @bus:   the PCI bus to query
276  * @devfn: PCI device to query
277  * @cap:   capability code
278  *
279  * Like pci_find_capability() but works for pci devices that do not have a
280  * pci_dev structure set up yet.
281  *
282  * Returns the address of the requested capability structure within the
283  * device's PCI configuration space or 0 in case the device does not
284  * support it.
285  */
286 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
287 {
288 	int pos;
289 	u8 hdr_type;
290 
291 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
292 
293 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
294 	if (pos)
295 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
296 
297 	return pos;
298 }
299 EXPORT_SYMBOL(pci_bus_find_capability);
300 
301 /**
302  * pci_find_next_ext_capability - Find an extended capability
303  * @dev: PCI device to query
304  * @start: address at which to start looking (0 to start at beginning of list)
305  * @cap: capability code
306  *
307  * Returns the address of the next matching extended capability structure
308  * within the device's PCI configuration space or 0 if the device does
309  * not support it.  Some capabilities can occur several times, e.g., the
310  * vendor-specific capability, and this provides a way to find them all.
311  */
312 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
313 {
314 	u32 header;
315 	int ttl;
316 	int pos = PCI_CFG_SPACE_SIZE;
317 
318 	/* minimum 8 bytes per capability */
319 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
320 
321 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
322 		return 0;
323 
324 	if (start)
325 		pos = start;
326 
327 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
328 		return 0;
329 
330 	/*
331 	 * If we have no capabilities, this is indicated by cap ID,
332 	 * cap version and next pointer all being 0.
333 	 */
334 	if (header == 0)
335 		return 0;
336 
337 	while (ttl-- > 0) {
338 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
339 			return pos;
340 
341 		pos = PCI_EXT_CAP_NEXT(header);
342 		if (pos < PCI_CFG_SPACE_SIZE)
343 			break;
344 
345 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
346 			break;
347 	}
348 
349 	return 0;
350 }
351 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
352 
353 /**
354  * pci_find_ext_capability - Find an extended capability
355  * @dev: PCI device to query
356  * @cap: capability code
357  *
358  * Returns the address of the requested extended capability structure
359  * within the device's PCI configuration space or 0 if the device does
360  * not support it.  Possible values for @cap:
361  *
362  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
363  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
364  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
365  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
366  */
367 int pci_find_ext_capability(struct pci_dev *dev, int cap)
368 {
369 	return pci_find_next_ext_capability(dev, 0, cap);
370 }
371 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
372 
373 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
374 {
375 	int rc, ttl = PCI_FIND_CAP_TTL;
376 	u8 cap, mask;
377 
378 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
379 		mask = HT_3BIT_CAP_MASK;
380 	else
381 		mask = HT_5BIT_CAP_MASK;
382 
383 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
384 				      PCI_CAP_ID_HT, &ttl);
385 	while (pos) {
386 		rc = pci_read_config_byte(dev, pos + 3, &cap);
387 		if (rc != PCIBIOS_SUCCESSFUL)
388 			return 0;
389 
390 		if ((cap & mask) == ht_cap)
391 			return pos;
392 
393 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
394 					      pos + PCI_CAP_LIST_NEXT,
395 					      PCI_CAP_ID_HT, &ttl);
396 	}
397 
398 	return 0;
399 }
400 /**
401  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
402  * @dev: PCI device to query
403  * @pos: Position from which to continue searching
404  * @ht_cap: Hypertransport capability code
405  *
406  * To be used in conjunction with pci_find_ht_capability() to search for
407  * all capabilities matching @ht_cap. @pos should always be a value returned
408  * from pci_find_ht_capability().
409  *
410  * NB. To be 100% safe against broken PCI devices, the caller should take
411  * steps to avoid an infinite loop.
412  */
413 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
414 {
415 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
416 }
417 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
418 
419 /**
420  * pci_find_ht_capability - query a device's Hypertransport capabilities
421  * @dev: PCI device to query
422  * @ht_cap: Hypertransport capability code
423  *
424  * Tell if a device supports a given Hypertransport capability.
425  * Returns an address within the device's PCI configuration space
426  * or 0 in case the device does not support the request capability.
427  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
428  * which has a Hypertransport capability matching @ht_cap.
429  */
430 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
431 {
432 	int pos;
433 
434 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
435 	if (pos)
436 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
437 
438 	return pos;
439 }
440 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
441 
442 /**
443  * pci_find_parent_resource - return resource region of parent bus of given region
444  * @dev: PCI device structure contains resources to be searched
445  * @res: child resource record for which parent is sought
446  *
447  *  For given resource region of given device, return the resource
448  *  region of parent bus the given region is contained in.
449  */
450 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
451 					  struct resource *res)
452 {
453 	const struct pci_bus *bus = dev->bus;
454 	struct resource *r;
455 	int i;
456 
457 	pci_bus_for_each_resource(bus, r, i) {
458 		if (!r)
459 			continue;
460 		if (resource_contains(r, res)) {
461 
462 			/*
463 			 * If the window is prefetchable but the BAR is
464 			 * not, the allocator made a mistake.
465 			 */
466 			if (r->flags & IORESOURCE_PREFETCH &&
467 			    !(res->flags & IORESOURCE_PREFETCH))
468 				return NULL;
469 
470 			/*
471 			 * If we're below a transparent bridge, there may
472 			 * be both a positively-decoded aperture and a
473 			 * subtractively-decoded region that contain the BAR.
474 			 * We want the positively-decoded one, so this depends
475 			 * on pci_bus_for_each_resource() giving us those
476 			 * first.
477 			 */
478 			return r;
479 		}
480 	}
481 	return NULL;
482 }
483 EXPORT_SYMBOL(pci_find_parent_resource);
484 
485 /**
486  * pci_find_resource - Return matching PCI device resource
487  * @dev: PCI device to query
488  * @res: Resource to look for
489  *
490  * Goes over standard PCI resources (BARs) and checks if the given resource
491  * is partially or fully contained in any of them. In that case the
492  * matching resource is returned, %NULL otherwise.
493  */
494 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
495 {
496 	int i;
497 
498 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
499 		struct resource *r = &dev->resource[i];
500 
501 		if (r->start && resource_contains(r, res))
502 			return r;
503 	}
504 
505 	return NULL;
506 }
507 EXPORT_SYMBOL(pci_find_resource);
508 
509 /**
510  * pci_find_pcie_root_port - return PCIe Root Port
511  * @dev: PCI device to query
512  *
513  * Traverse up the parent chain and return the PCIe Root Port PCI Device
514  * for a given PCI Device.
515  */
516 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
517 {
518 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
519 
520 	bridge = pci_upstream_bridge(dev);
521 	while (bridge && pci_is_pcie(bridge)) {
522 		highest_pcie_bridge = bridge;
523 		bridge = pci_upstream_bridge(bridge);
524 	}
525 
526 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
527 		return NULL;
528 
529 	return highest_pcie_bridge;
530 }
531 EXPORT_SYMBOL(pci_find_pcie_root_port);
532 
533 /**
534  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
535  * @dev: the PCI device to operate on
536  * @pos: config space offset of status word
537  * @mask: mask of bit(s) to care about in status word
538  *
539  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
540  */
541 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
542 {
543 	int i;
544 
545 	/* Wait for Transaction Pending bit clean */
546 	for (i = 0; i < 4; i++) {
547 		u16 status;
548 		if (i)
549 			msleep((1 << (i - 1)) * 100);
550 
551 		pci_read_config_word(dev, pos, &status);
552 		if (!(status & mask))
553 			return 1;
554 	}
555 
556 	return 0;
557 }
558 
559 /**
560  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
561  * @dev: PCI device to have its BARs restored
562  *
563  * Restore the BAR values for a given device, so as to make it
564  * accessible by its driver.
565  */
566 static void pci_restore_bars(struct pci_dev *dev)
567 {
568 	int i;
569 
570 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
571 		pci_update_resource(dev, i);
572 }
573 
574 static const struct pci_platform_pm_ops *pci_platform_pm;
575 
576 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
577 {
578 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
579 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
580 		return -EINVAL;
581 	pci_platform_pm = ops;
582 	return 0;
583 }
584 
585 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
586 {
587 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
588 }
589 
590 static inline int platform_pci_set_power_state(struct pci_dev *dev,
591 					       pci_power_t t)
592 {
593 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
594 }
595 
596 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
597 {
598 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
599 }
600 
601 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
602 {
603 	return pci_platform_pm ?
604 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
605 }
606 
607 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
608 {
609 	return pci_platform_pm ?
610 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
611 }
612 
613 static inline bool platform_pci_need_resume(struct pci_dev *dev)
614 {
615 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
616 }
617 
618 /**
619  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
620  *                           given PCI device
621  * @dev: PCI device to handle.
622  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
623  *
624  * RETURN VALUE:
625  * -EINVAL if the requested state is invalid.
626  * -EIO if device does not support PCI PM or its PM capabilities register has a
627  * wrong version, or device doesn't support the requested state.
628  * 0 if device already is in the requested state.
629  * 0 if device's power state has been successfully changed.
630  */
631 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
632 {
633 	u16 pmcsr;
634 	bool need_restore = false;
635 
636 	/* Check if we're already there */
637 	if (dev->current_state == state)
638 		return 0;
639 
640 	if (!dev->pm_cap)
641 		return -EIO;
642 
643 	if (state < PCI_D0 || state > PCI_D3hot)
644 		return -EINVAL;
645 
646 	/* Validate current state:
647 	 * Can enter D0 from any state, but if we can only go deeper
648 	 * to sleep if we're already in a low power state
649 	 */
650 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
651 	    && dev->current_state > state) {
652 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
653 			dev->current_state, state);
654 		return -EINVAL;
655 	}
656 
657 	/* check if this device supports the desired state */
658 	if ((state == PCI_D1 && !dev->d1_support)
659 	   || (state == PCI_D2 && !dev->d2_support))
660 		return -EIO;
661 
662 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
663 
664 	/* If we're (effectively) in D3, force entire word to 0.
665 	 * This doesn't affect PME_Status, disables PME_En, and
666 	 * sets PowerState to 0.
667 	 */
668 	switch (dev->current_state) {
669 	case PCI_D0:
670 	case PCI_D1:
671 	case PCI_D2:
672 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
673 		pmcsr |= state;
674 		break;
675 	case PCI_D3hot:
676 	case PCI_D3cold:
677 	case PCI_UNKNOWN: /* Boot-up */
678 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
679 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
680 			need_restore = true;
681 		/* Fall-through: force to D0 */
682 	default:
683 		pmcsr = 0;
684 		break;
685 	}
686 
687 	/* enter specified state */
688 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
689 
690 	/* Mandatory power management transition delays */
691 	/* see PCI PM 1.1 5.6.1 table 18 */
692 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
693 		pci_dev_d3_sleep(dev);
694 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
695 		udelay(PCI_PM_D2_DELAY);
696 
697 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
698 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
699 	if (dev->current_state != state && printk_ratelimit())
700 		pci_info(dev, "Refused to change power state, currently in D%d\n",
701 			 dev->current_state);
702 
703 	/*
704 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
705 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
706 	 * from D3hot to D0 _may_ perform an internal reset, thereby
707 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
708 	 * For example, at least some versions of the 3c905B and the
709 	 * 3c556B exhibit this behaviour.
710 	 *
711 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
712 	 * devices in a D3hot state at boot.  Consequently, we need to
713 	 * restore at least the BARs so that the device will be
714 	 * accessible to its driver.
715 	 */
716 	if (need_restore)
717 		pci_restore_bars(dev);
718 
719 	if (dev->bus->self)
720 		pcie_aspm_pm_state_change(dev->bus->self);
721 
722 	return 0;
723 }
724 
725 /**
726  * pci_update_current_state - Read power state of given device and cache it
727  * @dev: PCI device to handle.
728  * @state: State to cache in case the device doesn't have the PM capability
729  *
730  * The power state is read from the PMCSR register, which however is
731  * inaccessible in D3cold.  The platform firmware is therefore queried first
732  * to detect accessibility of the register.  In case the platform firmware
733  * reports an incorrect state or the device isn't power manageable by the
734  * platform at all, we try to detect D3cold by testing accessibility of the
735  * vendor ID in config space.
736  */
737 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
738 {
739 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
740 	    !pci_device_is_present(dev)) {
741 		dev->current_state = PCI_D3cold;
742 	} else if (dev->pm_cap) {
743 		u16 pmcsr;
744 
745 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
746 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
747 	} else {
748 		dev->current_state = state;
749 	}
750 }
751 
752 /**
753  * pci_power_up - Put the given device into D0 forcibly
754  * @dev: PCI device to power up
755  */
756 void pci_power_up(struct pci_dev *dev)
757 {
758 	if (platform_pci_power_manageable(dev))
759 		platform_pci_set_power_state(dev, PCI_D0);
760 
761 	pci_raw_set_power_state(dev, PCI_D0);
762 	pci_update_current_state(dev, PCI_D0);
763 }
764 
765 /**
766  * pci_platform_power_transition - Use platform to change device power state
767  * @dev: PCI device to handle.
768  * @state: State to put the device into.
769  */
770 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
771 {
772 	int error;
773 
774 	if (platform_pci_power_manageable(dev)) {
775 		error = platform_pci_set_power_state(dev, state);
776 		if (!error)
777 			pci_update_current_state(dev, state);
778 	} else
779 		error = -ENODEV;
780 
781 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
782 		dev->current_state = PCI_D0;
783 
784 	return error;
785 }
786 
787 /**
788  * pci_wakeup - Wake up a PCI device
789  * @pci_dev: Device to handle.
790  * @ign: ignored parameter
791  */
792 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
793 {
794 	pci_wakeup_event(pci_dev);
795 	pm_request_resume(&pci_dev->dev);
796 	return 0;
797 }
798 
799 /**
800  * pci_wakeup_bus - Walk given bus and wake up devices on it
801  * @bus: Top bus of the subtree to walk.
802  */
803 static void pci_wakeup_bus(struct pci_bus *bus)
804 {
805 	if (bus)
806 		pci_walk_bus(bus, pci_wakeup, NULL);
807 }
808 
809 /**
810  * __pci_start_power_transition - Start power transition of a PCI device
811  * @dev: PCI device to handle.
812  * @state: State to put the device into.
813  */
814 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
815 {
816 	if (state == PCI_D0) {
817 		pci_platform_power_transition(dev, PCI_D0);
818 		/*
819 		 * Mandatory power management transition delays, see
820 		 * PCI Express Base Specification Revision 2.0 Section
821 		 * 6.6.1: Conventional Reset.  Do not delay for
822 		 * devices powered on/off by corresponding bridge,
823 		 * because have already delayed for the bridge.
824 		 */
825 		if (dev->runtime_d3cold) {
826 			if (dev->d3cold_delay)
827 				msleep(dev->d3cold_delay);
828 			/*
829 			 * When powering on a bridge from D3cold, the
830 			 * whole hierarchy may be powered on into
831 			 * D0uninitialized state, resume them to give
832 			 * them a chance to suspend again
833 			 */
834 			pci_wakeup_bus(dev->subordinate);
835 		}
836 	}
837 }
838 
839 /**
840  * __pci_dev_set_current_state - Set current state of a PCI device
841  * @dev: Device to handle
842  * @data: pointer to state to be set
843  */
844 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
845 {
846 	pci_power_t state = *(pci_power_t *)data;
847 
848 	dev->current_state = state;
849 	return 0;
850 }
851 
852 /**
853  * __pci_bus_set_current_state - Walk given bus and set current state of devices
854  * @bus: Top bus of the subtree to walk.
855  * @state: state to be set
856  */
857 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
858 {
859 	if (bus)
860 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
861 }
862 
863 /**
864  * __pci_complete_power_transition - Complete power transition of a PCI device
865  * @dev: PCI device to handle.
866  * @state: State to put the device into.
867  *
868  * This function should not be called directly by device drivers.
869  */
870 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
871 {
872 	int ret;
873 
874 	if (state <= PCI_D0)
875 		return -EINVAL;
876 	ret = pci_platform_power_transition(dev, state);
877 	/* Power off the bridge may power off the whole hierarchy */
878 	if (!ret && state == PCI_D3cold)
879 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
880 	return ret;
881 }
882 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
883 
884 /**
885  * pci_set_power_state - Set the power state of a PCI device
886  * @dev: PCI device to handle.
887  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
888  *
889  * Transition a device to a new power state, using the platform firmware and/or
890  * the device's PCI PM registers.
891  *
892  * RETURN VALUE:
893  * -EINVAL if the requested state is invalid.
894  * -EIO if device does not support PCI PM or its PM capabilities register has a
895  * wrong version, or device doesn't support the requested state.
896  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
897  * 0 if device already is in the requested state.
898  * 0 if the transition is to D3 but D3 is not supported.
899  * 0 if device's power state has been successfully changed.
900  */
901 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
902 {
903 	int error;
904 
905 	/* bound the state we're entering */
906 	if (state > PCI_D3cold)
907 		state = PCI_D3cold;
908 	else if (state < PCI_D0)
909 		state = PCI_D0;
910 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
911 		/*
912 		 * If the device or the parent bridge do not support PCI PM,
913 		 * ignore the request if we're doing anything other than putting
914 		 * it into D0 (which would only happen on boot).
915 		 */
916 		return 0;
917 
918 	/* Check if we're already there */
919 	if (dev->current_state == state)
920 		return 0;
921 
922 	__pci_start_power_transition(dev, state);
923 
924 	/* This device is quirked not to be put into D3, so
925 	   don't put it in D3 */
926 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
927 		return 0;
928 
929 	/*
930 	 * To put device in D3cold, we put device into D3hot in native
931 	 * way, then put device into D3cold with platform ops
932 	 */
933 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
934 					PCI_D3hot : state);
935 
936 	if (!__pci_complete_power_transition(dev, state))
937 		error = 0;
938 
939 	return error;
940 }
941 EXPORT_SYMBOL(pci_set_power_state);
942 
943 /**
944  * pci_choose_state - Choose the power state of a PCI device
945  * @dev: PCI device to be suspended
946  * @state: target sleep state for the whole system. This is the value
947  *	that is passed to suspend() function.
948  *
949  * Returns PCI power state suitable for given device and given system
950  * message.
951  */
952 
953 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
954 {
955 	pci_power_t ret;
956 
957 	if (!dev->pm_cap)
958 		return PCI_D0;
959 
960 	ret = platform_pci_choose_state(dev);
961 	if (ret != PCI_POWER_ERROR)
962 		return ret;
963 
964 	switch (state.event) {
965 	case PM_EVENT_ON:
966 		return PCI_D0;
967 	case PM_EVENT_FREEZE:
968 	case PM_EVENT_PRETHAW:
969 		/* REVISIT both freeze and pre-thaw "should" use D0 */
970 	case PM_EVENT_SUSPEND:
971 	case PM_EVENT_HIBERNATE:
972 		return PCI_D3hot;
973 	default:
974 		pci_info(dev, "unrecognized suspend event %d\n",
975 			 state.event);
976 		BUG();
977 	}
978 	return PCI_D0;
979 }
980 EXPORT_SYMBOL(pci_choose_state);
981 
982 #define PCI_EXP_SAVE_REGS	7
983 
984 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
985 						       u16 cap, bool extended)
986 {
987 	struct pci_cap_saved_state *tmp;
988 
989 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
990 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
991 			return tmp;
992 	}
993 	return NULL;
994 }
995 
996 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
997 {
998 	return _pci_find_saved_cap(dev, cap, false);
999 }
1000 
1001 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1002 {
1003 	return _pci_find_saved_cap(dev, cap, true);
1004 }
1005 
1006 static int pci_save_pcie_state(struct pci_dev *dev)
1007 {
1008 	int i = 0;
1009 	struct pci_cap_saved_state *save_state;
1010 	u16 *cap;
1011 
1012 	if (!pci_is_pcie(dev))
1013 		return 0;
1014 
1015 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1016 	if (!save_state) {
1017 		pci_err(dev, "buffer not found in %s\n", __func__);
1018 		return -ENOMEM;
1019 	}
1020 
1021 	cap = (u16 *)&save_state->cap.data[0];
1022 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1023 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1024 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1025 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1026 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1027 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1028 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1029 
1030 	return 0;
1031 }
1032 
1033 static void pci_restore_pcie_state(struct pci_dev *dev)
1034 {
1035 	int i = 0;
1036 	struct pci_cap_saved_state *save_state;
1037 	u16 *cap;
1038 
1039 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1040 	if (!save_state)
1041 		return;
1042 
1043 	cap = (u16 *)&save_state->cap.data[0];
1044 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1045 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1046 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1047 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1048 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1049 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1050 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1051 }
1052 
1053 
1054 static int pci_save_pcix_state(struct pci_dev *dev)
1055 {
1056 	int pos;
1057 	struct pci_cap_saved_state *save_state;
1058 
1059 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1060 	if (!pos)
1061 		return 0;
1062 
1063 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1064 	if (!save_state) {
1065 		pci_err(dev, "buffer not found in %s\n", __func__);
1066 		return -ENOMEM;
1067 	}
1068 
1069 	pci_read_config_word(dev, pos + PCI_X_CMD,
1070 			     (u16 *)save_state->cap.data);
1071 
1072 	return 0;
1073 }
1074 
1075 static void pci_restore_pcix_state(struct pci_dev *dev)
1076 {
1077 	int i = 0, pos;
1078 	struct pci_cap_saved_state *save_state;
1079 	u16 *cap;
1080 
1081 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1082 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1083 	if (!save_state || !pos)
1084 		return;
1085 	cap = (u16 *)&save_state->cap.data[0];
1086 
1087 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1088 }
1089 
1090 
1091 /**
1092  * pci_save_state - save the PCI configuration space of a device before suspending
1093  * @dev: - PCI device that we're dealing with
1094  */
1095 int pci_save_state(struct pci_dev *dev)
1096 {
1097 	int i;
1098 	/* XXX: 100% dword access ok here? */
1099 	for (i = 0; i < 16; i++)
1100 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1101 	dev->state_saved = true;
1102 
1103 	i = pci_save_pcie_state(dev);
1104 	if (i != 0)
1105 		return i;
1106 
1107 	i = pci_save_pcix_state(dev);
1108 	if (i != 0)
1109 		return i;
1110 
1111 	return pci_save_vc_state(dev);
1112 }
1113 EXPORT_SYMBOL(pci_save_state);
1114 
1115 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1116 				     u32 saved_val, int retry)
1117 {
1118 	u32 val;
1119 
1120 	pci_read_config_dword(pdev, offset, &val);
1121 	if (val == saved_val)
1122 		return;
1123 
1124 	for (;;) {
1125 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1126 			offset, val, saved_val);
1127 		pci_write_config_dword(pdev, offset, saved_val);
1128 		if (retry-- <= 0)
1129 			return;
1130 
1131 		pci_read_config_dword(pdev, offset, &val);
1132 		if (val == saved_val)
1133 			return;
1134 
1135 		mdelay(1);
1136 	}
1137 }
1138 
1139 static void pci_restore_config_space_range(struct pci_dev *pdev,
1140 					   int start, int end, int retry)
1141 {
1142 	int index;
1143 
1144 	for (index = end; index >= start; index--)
1145 		pci_restore_config_dword(pdev, 4 * index,
1146 					 pdev->saved_config_space[index],
1147 					 retry);
1148 }
1149 
1150 static void pci_restore_config_space(struct pci_dev *pdev)
1151 {
1152 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1153 		pci_restore_config_space_range(pdev, 10, 15, 0);
1154 		/* Restore BARs before the command register. */
1155 		pci_restore_config_space_range(pdev, 4, 9, 10);
1156 		pci_restore_config_space_range(pdev, 0, 3, 0);
1157 	} else {
1158 		pci_restore_config_space_range(pdev, 0, 15, 0);
1159 	}
1160 }
1161 
1162 /**
1163  * pci_restore_state - Restore the saved state of a PCI device
1164  * @dev: - PCI device that we're dealing with
1165  */
1166 void pci_restore_state(struct pci_dev *dev)
1167 {
1168 	if (!dev->state_saved)
1169 		return;
1170 
1171 	/* PCI Express register must be restored first */
1172 	pci_restore_pcie_state(dev);
1173 	pci_restore_pasid_state(dev);
1174 	pci_restore_pri_state(dev);
1175 	pci_restore_ats_state(dev);
1176 	pci_restore_vc_state(dev);
1177 
1178 	pci_cleanup_aer_error_status_regs(dev);
1179 
1180 	pci_restore_config_space(dev);
1181 
1182 	pci_restore_pcix_state(dev);
1183 	pci_restore_msi_state(dev);
1184 
1185 	/* Restore ACS and IOV configuration state */
1186 	pci_enable_acs(dev);
1187 	pci_restore_iov_state(dev);
1188 
1189 	dev->state_saved = false;
1190 }
1191 EXPORT_SYMBOL(pci_restore_state);
1192 
1193 struct pci_saved_state {
1194 	u32 config_space[16];
1195 	struct pci_cap_saved_data cap[0];
1196 };
1197 
1198 /**
1199  * pci_store_saved_state - Allocate and return an opaque struct containing
1200  *			   the device saved state.
1201  * @dev: PCI device that we're dealing with
1202  *
1203  * Return NULL if no state or error.
1204  */
1205 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1206 {
1207 	struct pci_saved_state *state;
1208 	struct pci_cap_saved_state *tmp;
1209 	struct pci_cap_saved_data *cap;
1210 	size_t size;
1211 
1212 	if (!dev->state_saved)
1213 		return NULL;
1214 
1215 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1216 
1217 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1218 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1219 
1220 	state = kzalloc(size, GFP_KERNEL);
1221 	if (!state)
1222 		return NULL;
1223 
1224 	memcpy(state->config_space, dev->saved_config_space,
1225 	       sizeof(state->config_space));
1226 
1227 	cap = state->cap;
1228 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1229 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1230 		memcpy(cap, &tmp->cap, len);
1231 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1232 	}
1233 	/* Empty cap_save terminates list */
1234 
1235 	return state;
1236 }
1237 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1238 
1239 /**
1240  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1241  * @dev: PCI device that we're dealing with
1242  * @state: Saved state returned from pci_store_saved_state()
1243  */
1244 int pci_load_saved_state(struct pci_dev *dev,
1245 			 struct pci_saved_state *state)
1246 {
1247 	struct pci_cap_saved_data *cap;
1248 
1249 	dev->state_saved = false;
1250 
1251 	if (!state)
1252 		return 0;
1253 
1254 	memcpy(dev->saved_config_space, state->config_space,
1255 	       sizeof(state->config_space));
1256 
1257 	cap = state->cap;
1258 	while (cap->size) {
1259 		struct pci_cap_saved_state *tmp;
1260 
1261 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1262 		if (!tmp || tmp->cap.size != cap->size)
1263 			return -EINVAL;
1264 
1265 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1266 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1267 		       sizeof(struct pci_cap_saved_data) + cap->size);
1268 	}
1269 
1270 	dev->state_saved = true;
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1274 
1275 /**
1276  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1277  *				   and free the memory allocated for it.
1278  * @dev: PCI device that we're dealing with
1279  * @state: Pointer to saved state returned from pci_store_saved_state()
1280  */
1281 int pci_load_and_free_saved_state(struct pci_dev *dev,
1282 				  struct pci_saved_state **state)
1283 {
1284 	int ret = pci_load_saved_state(dev, *state);
1285 	kfree(*state);
1286 	*state = NULL;
1287 	return ret;
1288 }
1289 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1290 
1291 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1292 {
1293 	return pci_enable_resources(dev, bars);
1294 }
1295 
1296 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1297 {
1298 	int err;
1299 	struct pci_dev *bridge;
1300 	u16 cmd;
1301 	u8 pin;
1302 
1303 	err = pci_set_power_state(dev, PCI_D0);
1304 	if (err < 0 && err != -EIO)
1305 		return err;
1306 
1307 	bridge = pci_upstream_bridge(dev);
1308 	if (bridge)
1309 		pcie_aspm_powersave_config_link(bridge);
1310 
1311 	err = pcibios_enable_device(dev, bars);
1312 	if (err < 0)
1313 		return err;
1314 	pci_fixup_device(pci_fixup_enable, dev);
1315 
1316 	if (dev->msi_enabled || dev->msix_enabled)
1317 		return 0;
1318 
1319 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1320 	if (pin) {
1321 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1322 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1323 			pci_write_config_word(dev, PCI_COMMAND,
1324 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 /**
1331  * pci_reenable_device - Resume abandoned device
1332  * @dev: PCI device to be resumed
1333  *
1334  *  Note this function is a backend of pci_default_resume and is not supposed
1335  *  to be called by normal code, write proper resume handler and use it instead.
1336  */
1337 int pci_reenable_device(struct pci_dev *dev)
1338 {
1339 	if (pci_is_enabled(dev))
1340 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1341 	return 0;
1342 }
1343 EXPORT_SYMBOL(pci_reenable_device);
1344 
1345 static void pci_enable_bridge(struct pci_dev *dev)
1346 {
1347 	struct pci_dev *bridge;
1348 	int retval;
1349 
1350 	bridge = pci_upstream_bridge(dev);
1351 	if (bridge)
1352 		pci_enable_bridge(bridge);
1353 
1354 	if (pci_is_enabled(dev)) {
1355 		if (!dev->is_busmaster)
1356 			pci_set_master(dev);
1357 		return;
1358 	}
1359 
1360 	retval = pci_enable_device(dev);
1361 	if (retval)
1362 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1363 			retval);
1364 	pci_set_master(dev);
1365 }
1366 
1367 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1368 {
1369 	struct pci_dev *bridge;
1370 	int err;
1371 	int i, bars = 0;
1372 
1373 	/*
1374 	 * Power state could be unknown at this point, either due to a fresh
1375 	 * boot or a device removal call.  So get the current power state
1376 	 * so that things like MSI message writing will behave as expected
1377 	 * (e.g. if the device really is in D0 at enable time).
1378 	 */
1379 	if (dev->pm_cap) {
1380 		u16 pmcsr;
1381 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1382 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1383 	}
1384 
1385 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1386 		return 0;		/* already enabled */
1387 
1388 	bridge = pci_upstream_bridge(dev);
1389 	if (bridge)
1390 		pci_enable_bridge(bridge);
1391 
1392 	/* only skip sriov related */
1393 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1394 		if (dev->resource[i].flags & flags)
1395 			bars |= (1 << i);
1396 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1397 		if (dev->resource[i].flags & flags)
1398 			bars |= (1 << i);
1399 
1400 	err = do_pci_enable_device(dev, bars);
1401 	if (err < 0)
1402 		atomic_dec(&dev->enable_cnt);
1403 	return err;
1404 }
1405 
1406 /**
1407  * pci_enable_device_io - Initialize a device for use with IO space
1408  * @dev: PCI device to be initialized
1409  *
1410  *  Initialize device before it's used by a driver. Ask low-level code
1411  *  to enable I/O resources. Wake up the device if it was suspended.
1412  *  Beware, this function can fail.
1413  */
1414 int pci_enable_device_io(struct pci_dev *dev)
1415 {
1416 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1417 }
1418 EXPORT_SYMBOL(pci_enable_device_io);
1419 
1420 /**
1421  * pci_enable_device_mem - Initialize a device for use with Memory space
1422  * @dev: PCI device to be initialized
1423  *
1424  *  Initialize device before it's used by a driver. Ask low-level code
1425  *  to enable Memory resources. Wake up the device if it was suspended.
1426  *  Beware, this function can fail.
1427  */
1428 int pci_enable_device_mem(struct pci_dev *dev)
1429 {
1430 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1431 }
1432 EXPORT_SYMBOL(pci_enable_device_mem);
1433 
1434 /**
1435  * pci_enable_device - Initialize device before it's used by a driver.
1436  * @dev: PCI device to be initialized
1437  *
1438  *  Initialize device before it's used by a driver. Ask low-level code
1439  *  to enable I/O and memory. Wake up the device if it was suspended.
1440  *  Beware, this function can fail.
1441  *
1442  *  Note we don't actually enable the device many times if we call
1443  *  this function repeatedly (we just increment the count).
1444  */
1445 int pci_enable_device(struct pci_dev *dev)
1446 {
1447 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1448 }
1449 EXPORT_SYMBOL(pci_enable_device);
1450 
1451 /*
1452  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1453  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1454  * there's no need to track it separately.  pci_devres is initialized
1455  * when a device is enabled using managed PCI device enable interface.
1456  */
1457 struct pci_devres {
1458 	unsigned int enabled:1;
1459 	unsigned int pinned:1;
1460 	unsigned int orig_intx:1;
1461 	unsigned int restore_intx:1;
1462 	unsigned int mwi:1;
1463 	u32 region_mask;
1464 };
1465 
1466 static void pcim_release(struct device *gendev, void *res)
1467 {
1468 	struct pci_dev *dev = to_pci_dev(gendev);
1469 	struct pci_devres *this = res;
1470 	int i;
1471 
1472 	if (dev->msi_enabled)
1473 		pci_disable_msi(dev);
1474 	if (dev->msix_enabled)
1475 		pci_disable_msix(dev);
1476 
1477 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478 		if (this->region_mask & (1 << i))
1479 			pci_release_region(dev, i);
1480 
1481 	if (this->mwi)
1482 		pci_clear_mwi(dev);
1483 
1484 	if (this->restore_intx)
1485 		pci_intx(dev, this->orig_intx);
1486 
1487 	if (this->enabled && !this->pinned)
1488 		pci_disable_device(dev);
1489 }
1490 
1491 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1492 {
1493 	struct pci_devres *dr, *new_dr;
1494 
1495 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1496 	if (dr)
1497 		return dr;
1498 
1499 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1500 	if (!new_dr)
1501 		return NULL;
1502 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1503 }
1504 
1505 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1506 {
1507 	if (pci_is_managed(pdev))
1508 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1509 	return NULL;
1510 }
1511 
1512 /**
1513  * pcim_enable_device - Managed pci_enable_device()
1514  * @pdev: PCI device to be initialized
1515  *
1516  * Managed pci_enable_device().
1517  */
1518 int pcim_enable_device(struct pci_dev *pdev)
1519 {
1520 	struct pci_devres *dr;
1521 	int rc;
1522 
1523 	dr = get_pci_dr(pdev);
1524 	if (unlikely(!dr))
1525 		return -ENOMEM;
1526 	if (dr->enabled)
1527 		return 0;
1528 
1529 	rc = pci_enable_device(pdev);
1530 	if (!rc) {
1531 		pdev->is_managed = 1;
1532 		dr->enabled = 1;
1533 	}
1534 	return rc;
1535 }
1536 EXPORT_SYMBOL(pcim_enable_device);
1537 
1538 /**
1539  * pcim_pin_device - Pin managed PCI device
1540  * @pdev: PCI device to pin
1541  *
1542  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1543  * driver detach.  @pdev must have been enabled with
1544  * pcim_enable_device().
1545  */
1546 void pcim_pin_device(struct pci_dev *pdev)
1547 {
1548 	struct pci_devres *dr;
1549 
1550 	dr = find_pci_dr(pdev);
1551 	WARN_ON(!dr || !dr->enabled);
1552 	if (dr)
1553 		dr->pinned = 1;
1554 }
1555 EXPORT_SYMBOL(pcim_pin_device);
1556 
1557 /*
1558  * pcibios_add_device - provide arch specific hooks when adding device dev
1559  * @dev: the PCI device being added
1560  *
1561  * Permits the platform to provide architecture specific functionality when
1562  * devices are added. This is the default implementation. Architecture
1563  * implementations can override this.
1564  */
1565 int __weak pcibios_add_device(struct pci_dev *dev)
1566 {
1567 	return 0;
1568 }
1569 
1570 /**
1571  * pcibios_release_device - provide arch specific hooks when releasing device dev
1572  * @dev: the PCI device being released
1573  *
1574  * Permits the platform to provide architecture specific functionality when
1575  * devices are released. This is the default implementation. Architecture
1576  * implementations can override this.
1577  */
1578 void __weak pcibios_release_device(struct pci_dev *dev) {}
1579 
1580 /**
1581  * pcibios_disable_device - disable arch specific PCI resources for device dev
1582  * @dev: the PCI device to disable
1583  *
1584  * Disables architecture specific PCI resources for the device. This
1585  * is the default implementation. Architecture implementations can
1586  * override this.
1587  */
1588 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1589 
1590 /**
1591  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1592  * @irq: ISA IRQ to penalize
1593  * @active: IRQ active or not
1594  *
1595  * Permits the platform to provide architecture-specific functionality when
1596  * penalizing ISA IRQs. This is the default implementation. Architecture
1597  * implementations can override this.
1598  */
1599 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1600 
1601 static void do_pci_disable_device(struct pci_dev *dev)
1602 {
1603 	u16 pci_command;
1604 
1605 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1606 	if (pci_command & PCI_COMMAND_MASTER) {
1607 		pci_command &= ~PCI_COMMAND_MASTER;
1608 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1609 	}
1610 
1611 	pcibios_disable_device(dev);
1612 }
1613 
1614 /**
1615  * pci_disable_enabled_device - Disable device without updating enable_cnt
1616  * @dev: PCI device to disable
1617  *
1618  * NOTE: This function is a backend of PCI power management routines and is
1619  * not supposed to be called drivers.
1620  */
1621 void pci_disable_enabled_device(struct pci_dev *dev)
1622 {
1623 	if (pci_is_enabled(dev))
1624 		do_pci_disable_device(dev);
1625 }
1626 
1627 /**
1628  * pci_disable_device - Disable PCI device after use
1629  * @dev: PCI device to be disabled
1630  *
1631  * Signal to the system that the PCI device is not in use by the system
1632  * anymore.  This only involves disabling PCI bus-mastering, if active.
1633  *
1634  * Note we don't actually disable the device until all callers of
1635  * pci_enable_device() have called pci_disable_device().
1636  */
1637 void pci_disable_device(struct pci_dev *dev)
1638 {
1639 	struct pci_devres *dr;
1640 
1641 	dr = find_pci_dr(dev);
1642 	if (dr)
1643 		dr->enabled = 0;
1644 
1645 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1646 		      "disabling already-disabled device");
1647 
1648 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1649 		return;
1650 
1651 	do_pci_disable_device(dev);
1652 
1653 	dev->is_busmaster = 0;
1654 }
1655 EXPORT_SYMBOL(pci_disable_device);
1656 
1657 /**
1658  * pcibios_set_pcie_reset_state - set reset state for device dev
1659  * @dev: the PCIe device reset
1660  * @state: Reset state to enter into
1661  *
1662  *
1663  * Sets the PCIe reset state for the device. This is the default
1664  * implementation. Architecture implementations can override this.
1665  */
1666 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1667 					enum pcie_reset_state state)
1668 {
1669 	return -EINVAL;
1670 }
1671 
1672 /**
1673  * pci_set_pcie_reset_state - set reset state for device dev
1674  * @dev: the PCIe device reset
1675  * @state: Reset state to enter into
1676  *
1677  *
1678  * Sets the PCI reset state for the device.
1679  */
1680 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1681 {
1682 	return pcibios_set_pcie_reset_state(dev, state);
1683 }
1684 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1685 
1686 /**
1687  * pci_check_pme_status - Check if given device has generated PME.
1688  * @dev: Device to check.
1689  *
1690  * Check the PME status of the device and if set, clear it and clear PME enable
1691  * (if set).  Return 'true' if PME status and PME enable were both set or
1692  * 'false' otherwise.
1693  */
1694 bool pci_check_pme_status(struct pci_dev *dev)
1695 {
1696 	int pmcsr_pos;
1697 	u16 pmcsr;
1698 	bool ret = false;
1699 
1700 	if (!dev->pm_cap)
1701 		return false;
1702 
1703 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1704 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1705 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1706 		return false;
1707 
1708 	/* Clear PME status. */
1709 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1710 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1711 		/* Disable PME to avoid interrupt flood. */
1712 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713 		ret = true;
1714 	}
1715 
1716 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1717 
1718 	return ret;
1719 }
1720 
1721 /**
1722  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1723  * @dev: Device to handle.
1724  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1725  *
1726  * Check if @dev has generated PME and queue a resume request for it in that
1727  * case.
1728  */
1729 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1730 {
1731 	if (pme_poll_reset && dev->pme_poll)
1732 		dev->pme_poll = false;
1733 
1734 	if (pci_check_pme_status(dev)) {
1735 		pci_wakeup_event(dev);
1736 		pm_request_resume(&dev->dev);
1737 	}
1738 	return 0;
1739 }
1740 
1741 /**
1742  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1743  * @bus: Top bus of the subtree to walk.
1744  */
1745 void pci_pme_wakeup_bus(struct pci_bus *bus)
1746 {
1747 	if (bus)
1748 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1749 }
1750 
1751 
1752 /**
1753  * pci_pme_capable - check the capability of PCI device to generate PME#
1754  * @dev: PCI device to handle.
1755  * @state: PCI state from which device will issue PME#.
1756  */
1757 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1758 {
1759 	if (!dev->pm_cap)
1760 		return false;
1761 
1762 	return !!(dev->pme_support & (1 << state));
1763 }
1764 EXPORT_SYMBOL(pci_pme_capable);
1765 
1766 static void pci_pme_list_scan(struct work_struct *work)
1767 {
1768 	struct pci_pme_device *pme_dev, *n;
1769 
1770 	mutex_lock(&pci_pme_list_mutex);
1771 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1772 		if (pme_dev->dev->pme_poll) {
1773 			struct pci_dev *bridge;
1774 
1775 			bridge = pme_dev->dev->bus->self;
1776 			/*
1777 			 * If bridge is in low power state, the
1778 			 * configuration space of subordinate devices
1779 			 * may be not accessible
1780 			 */
1781 			if (bridge && bridge->current_state != PCI_D0)
1782 				continue;
1783 			pci_pme_wakeup(pme_dev->dev, NULL);
1784 		} else {
1785 			list_del(&pme_dev->list);
1786 			kfree(pme_dev);
1787 		}
1788 	}
1789 	if (!list_empty(&pci_pme_list))
1790 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1791 				   msecs_to_jiffies(PME_TIMEOUT));
1792 	mutex_unlock(&pci_pme_list_mutex);
1793 }
1794 
1795 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1796 {
1797 	u16 pmcsr;
1798 
1799 	if (!dev->pme_support)
1800 		return;
1801 
1802 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1803 	/* Clear PME_Status by writing 1 to it and enable PME# */
1804 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1805 	if (!enable)
1806 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1807 
1808 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1809 }
1810 
1811 /**
1812  * pci_pme_restore - Restore PME configuration after config space restore.
1813  * @dev: PCI device to update.
1814  */
1815 void pci_pme_restore(struct pci_dev *dev)
1816 {
1817 	u16 pmcsr;
1818 
1819 	if (!dev->pme_support)
1820 		return;
1821 
1822 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1823 	if (dev->wakeup_prepared) {
1824 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1825 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1826 	} else {
1827 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1828 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1829 	}
1830 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1831 }
1832 
1833 /**
1834  * pci_pme_active - enable or disable PCI device's PME# function
1835  * @dev: PCI device to handle.
1836  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1837  *
1838  * The caller must verify that the device is capable of generating PME# before
1839  * calling this function with @enable equal to 'true'.
1840  */
1841 void pci_pme_active(struct pci_dev *dev, bool enable)
1842 {
1843 	__pci_pme_active(dev, enable);
1844 
1845 	/*
1846 	 * PCI (as opposed to PCIe) PME requires that the device have
1847 	 * its PME# line hooked up correctly. Not all hardware vendors
1848 	 * do this, so the PME never gets delivered and the device
1849 	 * remains asleep. The easiest way around this is to
1850 	 * periodically walk the list of suspended devices and check
1851 	 * whether any have their PME flag set. The assumption is that
1852 	 * we'll wake up often enough anyway that this won't be a huge
1853 	 * hit, and the power savings from the devices will still be a
1854 	 * win.
1855 	 *
1856 	 * Although PCIe uses in-band PME message instead of PME# line
1857 	 * to report PME, PME does not work for some PCIe devices in
1858 	 * reality.  For example, there are devices that set their PME
1859 	 * status bits, but don't really bother to send a PME message;
1860 	 * there are PCI Express Root Ports that don't bother to
1861 	 * trigger interrupts when they receive PME messages from the
1862 	 * devices below.  So PME poll is used for PCIe devices too.
1863 	 */
1864 
1865 	if (dev->pme_poll) {
1866 		struct pci_pme_device *pme_dev;
1867 		if (enable) {
1868 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1869 					  GFP_KERNEL);
1870 			if (!pme_dev) {
1871 				pci_warn(dev, "can't enable PME#\n");
1872 				return;
1873 			}
1874 			pme_dev->dev = dev;
1875 			mutex_lock(&pci_pme_list_mutex);
1876 			list_add(&pme_dev->list, &pci_pme_list);
1877 			if (list_is_singular(&pci_pme_list))
1878 				queue_delayed_work(system_freezable_wq,
1879 						   &pci_pme_work,
1880 						   msecs_to_jiffies(PME_TIMEOUT));
1881 			mutex_unlock(&pci_pme_list_mutex);
1882 		} else {
1883 			mutex_lock(&pci_pme_list_mutex);
1884 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1885 				if (pme_dev->dev == dev) {
1886 					list_del(&pme_dev->list);
1887 					kfree(pme_dev);
1888 					break;
1889 				}
1890 			}
1891 			mutex_unlock(&pci_pme_list_mutex);
1892 		}
1893 	}
1894 
1895 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1896 }
1897 EXPORT_SYMBOL(pci_pme_active);
1898 
1899 /**
1900  * pci_enable_wake - enable PCI device as wakeup event source
1901  * @dev: PCI device affected
1902  * @state: PCI state from which device will issue wakeup events
1903  * @enable: True to enable event generation; false to disable
1904  *
1905  * This enables the device as a wakeup event source, or disables it.
1906  * When such events involves platform-specific hooks, those hooks are
1907  * called automatically by this routine.
1908  *
1909  * Devices with legacy power management (no standard PCI PM capabilities)
1910  * always require such platform hooks.
1911  *
1912  * RETURN VALUE:
1913  * 0 is returned on success
1914  * -EINVAL is returned if device is not supposed to wake up the system
1915  * Error code depending on the platform is returned if both the platform and
1916  * the native mechanism fail to enable the generation of wake-up events
1917  */
1918 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1919 {
1920 	int ret = 0;
1921 
1922 	/*
1923 	 * Bridges can only signal wakeup on behalf of subordinate devices,
1924 	 * but that is set up elsewhere, so skip them.
1925 	 */
1926 	if (pci_has_subordinate(dev))
1927 		return 0;
1928 
1929 	/* Don't do the same thing twice in a row for one device. */
1930 	if (!!enable == !!dev->wakeup_prepared)
1931 		return 0;
1932 
1933 	/*
1934 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1935 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1936 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1937 	 */
1938 
1939 	if (enable) {
1940 		int error;
1941 
1942 		if (pci_pme_capable(dev, state))
1943 			pci_pme_active(dev, true);
1944 		else
1945 			ret = 1;
1946 		error = platform_pci_set_wakeup(dev, true);
1947 		if (ret)
1948 			ret = error;
1949 		if (!ret)
1950 			dev->wakeup_prepared = true;
1951 	} else {
1952 		platform_pci_set_wakeup(dev, false);
1953 		pci_pme_active(dev, false);
1954 		dev->wakeup_prepared = false;
1955 	}
1956 
1957 	return ret;
1958 }
1959 EXPORT_SYMBOL(pci_enable_wake);
1960 
1961 /**
1962  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1963  * @dev: PCI device to prepare
1964  * @enable: True to enable wake-up event generation; false to disable
1965  *
1966  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1967  * and this function allows them to set that up cleanly - pci_enable_wake()
1968  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1969  * ordering constraints.
1970  *
1971  * This function only returns error code if the device is not capable of
1972  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1973  * enable wake-up power for it.
1974  */
1975 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1976 {
1977 	return pci_pme_capable(dev, PCI_D3cold) ?
1978 			pci_enable_wake(dev, PCI_D3cold, enable) :
1979 			pci_enable_wake(dev, PCI_D3hot, enable);
1980 }
1981 EXPORT_SYMBOL(pci_wake_from_d3);
1982 
1983 /**
1984  * pci_target_state - find an appropriate low power state for a given PCI dev
1985  * @dev: PCI device
1986  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1987  *
1988  * Use underlying platform code to find a supported low power state for @dev.
1989  * If the platform can't manage @dev, return the deepest state from which it
1990  * can generate wake events, based on any available PME info.
1991  */
1992 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1993 {
1994 	pci_power_t target_state = PCI_D3hot;
1995 
1996 	if (platform_pci_power_manageable(dev)) {
1997 		/*
1998 		 * Call the platform to choose the target state of the device
1999 		 * and enable wake-up from this state if supported.
2000 		 */
2001 		pci_power_t state = platform_pci_choose_state(dev);
2002 
2003 		switch (state) {
2004 		case PCI_POWER_ERROR:
2005 		case PCI_UNKNOWN:
2006 			break;
2007 		case PCI_D1:
2008 		case PCI_D2:
2009 			if (pci_no_d1d2(dev))
2010 				break;
2011 		default:
2012 			target_state = state;
2013 		}
2014 
2015 		return target_state;
2016 	}
2017 
2018 	if (!dev->pm_cap)
2019 		target_state = PCI_D0;
2020 
2021 	/*
2022 	 * If the device is in D3cold even though it's not power-manageable by
2023 	 * the platform, it may have been powered down by non-standard means.
2024 	 * Best to let it slumber.
2025 	 */
2026 	if (dev->current_state == PCI_D3cold)
2027 		target_state = PCI_D3cold;
2028 
2029 	if (wakeup) {
2030 		/*
2031 		 * Find the deepest state from which the device can generate
2032 		 * wake-up events, make it the target state and enable device
2033 		 * to generate PME#.
2034 		 */
2035 		if (dev->pme_support) {
2036 			while (target_state
2037 			      && !(dev->pme_support & (1 << target_state)))
2038 				target_state--;
2039 		}
2040 	}
2041 
2042 	return target_state;
2043 }
2044 
2045 /**
2046  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2047  * @dev: Device to handle.
2048  *
2049  * Choose the power state appropriate for the device depending on whether
2050  * it can wake up the system and/or is power manageable by the platform
2051  * (PCI_D3hot is the default) and put the device into that state.
2052  */
2053 int pci_prepare_to_sleep(struct pci_dev *dev)
2054 {
2055 	bool wakeup = device_may_wakeup(&dev->dev);
2056 	pci_power_t target_state = pci_target_state(dev, wakeup);
2057 	int error;
2058 
2059 	if (target_state == PCI_POWER_ERROR)
2060 		return -EIO;
2061 
2062 	pci_enable_wake(dev, target_state, wakeup);
2063 
2064 	error = pci_set_power_state(dev, target_state);
2065 
2066 	if (error)
2067 		pci_enable_wake(dev, target_state, false);
2068 
2069 	return error;
2070 }
2071 EXPORT_SYMBOL(pci_prepare_to_sleep);
2072 
2073 /**
2074  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2075  * @dev: Device to handle.
2076  *
2077  * Disable device's system wake-up capability and put it into D0.
2078  */
2079 int pci_back_from_sleep(struct pci_dev *dev)
2080 {
2081 	pci_enable_wake(dev, PCI_D0, false);
2082 	return pci_set_power_state(dev, PCI_D0);
2083 }
2084 EXPORT_SYMBOL(pci_back_from_sleep);
2085 
2086 /**
2087  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2088  * @dev: PCI device being suspended.
2089  *
2090  * Prepare @dev to generate wake-up events at run time and put it into a low
2091  * power state.
2092  */
2093 int pci_finish_runtime_suspend(struct pci_dev *dev)
2094 {
2095 	pci_power_t target_state;
2096 	int error;
2097 
2098 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2099 	if (target_state == PCI_POWER_ERROR)
2100 		return -EIO;
2101 
2102 	dev->runtime_d3cold = target_state == PCI_D3cold;
2103 
2104 	pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2105 
2106 	error = pci_set_power_state(dev, target_state);
2107 
2108 	if (error) {
2109 		pci_enable_wake(dev, target_state, false);
2110 		dev->runtime_d3cold = false;
2111 	}
2112 
2113 	return error;
2114 }
2115 
2116 /**
2117  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2118  * @dev: Device to check.
2119  *
2120  * Return true if the device itself is capable of generating wake-up events
2121  * (through the platform or using the native PCIe PME) or if the device supports
2122  * PME and one of its upstream bridges can generate wake-up events.
2123  */
2124 bool pci_dev_run_wake(struct pci_dev *dev)
2125 {
2126 	struct pci_bus *bus = dev->bus;
2127 
2128 	if (device_can_wakeup(&dev->dev))
2129 		return true;
2130 
2131 	if (!dev->pme_support)
2132 		return false;
2133 
2134 	/* PME-capable in principle, but not from the target power state */
2135 	if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2136 		return false;
2137 
2138 	while (bus->parent) {
2139 		struct pci_dev *bridge = bus->self;
2140 
2141 		if (device_can_wakeup(&bridge->dev))
2142 			return true;
2143 
2144 		bus = bus->parent;
2145 	}
2146 
2147 	/* We have reached the root bus. */
2148 	if (bus->bridge)
2149 		return device_can_wakeup(bus->bridge);
2150 
2151 	return false;
2152 }
2153 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2154 
2155 /**
2156  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2157  * @pci_dev: Device to check.
2158  *
2159  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2160  * reconfigured due to wakeup settings difference between system and runtime
2161  * suspend and the current power state of it is suitable for the upcoming
2162  * (system) transition.
2163  *
2164  * If the device is not configured for system wakeup, disable PME for it before
2165  * returning 'true' to prevent it from waking up the system unnecessarily.
2166  */
2167 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2168 {
2169 	struct device *dev = &pci_dev->dev;
2170 	bool wakeup = device_may_wakeup(dev);
2171 
2172 	if (!pm_runtime_suspended(dev)
2173 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2174 	    || platform_pci_need_resume(pci_dev))
2175 		return false;
2176 
2177 	/*
2178 	 * At this point the device is good to go unless it's been configured
2179 	 * to generate PME at the runtime suspend time, but it is not supposed
2180 	 * to wake up the system.  In that case, simply disable PME for it
2181 	 * (it will have to be re-enabled on exit from system resume).
2182 	 *
2183 	 * If the device's power state is D3cold and the platform check above
2184 	 * hasn't triggered, the device's configuration is suitable and we don't
2185 	 * need to manipulate it at all.
2186 	 */
2187 	spin_lock_irq(&dev->power.lock);
2188 
2189 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2190 	    !wakeup)
2191 		__pci_pme_active(pci_dev, false);
2192 
2193 	spin_unlock_irq(&dev->power.lock);
2194 	return true;
2195 }
2196 
2197 /**
2198  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2199  * @pci_dev: Device to handle.
2200  *
2201  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2202  * it might have been disabled during the prepare phase of system suspend if
2203  * the device was not configured for system wakeup.
2204  */
2205 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2206 {
2207 	struct device *dev = &pci_dev->dev;
2208 
2209 	if (!pci_dev_run_wake(pci_dev))
2210 		return;
2211 
2212 	spin_lock_irq(&dev->power.lock);
2213 
2214 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2215 		__pci_pme_active(pci_dev, true);
2216 
2217 	spin_unlock_irq(&dev->power.lock);
2218 }
2219 
2220 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2221 {
2222 	struct device *dev = &pdev->dev;
2223 	struct device *parent = dev->parent;
2224 
2225 	if (parent)
2226 		pm_runtime_get_sync(parent);
2227 	pm_runtime_get_noresume(dev);
2228 	/*
2229 	 * pdev->current_state is set to PCI_D3cold during suspending,
2230 	 * so wait until suspending completes
2231 	 */
2232 	pm_runtime_barrier(dev);
2233 	/*
2234 	 * Only need to resume devices in D3cold, because config
2235 	 * registers are still accessible for devices suspended but
2236 	 * not in D3cold.
2237 	 */
2238 	if (pdev->current_state == PCI_D3cold)
2239 		pm_runtime_resume(dev);
2240 }
2241 
2242 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2243 {
2244 	struct device *dev = &pdev->dev;
2245 	struct device *parent = dev->parent;
2246 
2247 	pm_runtime_put(dev);
2248 	if (parent)
2249 		pm_runtime_put_sync(parent);
2250 }
2251 
2252 /**
2253  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2254  * @bridge: Bridge to check
2255  *
2256  * This function checks if it is possible to move the bridge to D3.
2257  * Currently we only allow D3 for recent enough PCIe ports.
2258  */
2259 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2260 {
2261 	unsigned int year;
2262 
2263 	if (!pci_is_pcie(bridge))
2264 		return false;
2265 
2266 	switch (pci_pcie_type(bridge)) {
2267 	case PCI_EXP_TYPE_ROOT_PORT:
2268 	case PCI_EXP_TYPE_UPSTREAM:
2269 	case PCI_EXP_TYPE_DOWNSTREAM:
2270 		if (pci_bridge_d3_disable)
2271 			return false;
2272 
2273 		/*
2274 		 * Hotplug interrupts cannot be delivered if the link is down,
2275 		 * so parents of a hotplug port must stay awake. In addition,
2276 		 * hotplug ports handled by firmware in System Management Mode
2277 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2278 		 * For simplicity, disallow in general for now.
2279 		 */
2280 		if (bridge->is_hotplug_bridge)
2281 			return false;
2282 
2283 		if (pci_bridge_d3_force)
2284 			return true;
2285 
2286 		/*
2287 		 * It should be safe to put PCIe ports from 2015 or newer
2288 		 * to D3.
2289 		 */
2290 		if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2291 		    year >= 2015) {
2292 			return true;
2293 		}
2294 		break;
2295 	}
2296 
2297 	return false;
2298 }
2299 
2300 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2301 {
2302 	bool *d3cold_ok = data;
2303 
2304 	if (/* The device needs to be allowed to go D3cold ... */
2305 	    dev->no_d3cold || !dev->d3cold_allowed ||
2306 
2307 	    /* ... and if it is wakeup capable to do so from D3cold. */
2308 	    (device_may_wakeup(&dev->dev) &&
2309 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2310 
2311 	    /* If it is a bridge it must be allowed to go to D3. */
2312 	    !pci_power_manageable(dev))
2313 
2314 		*d3cold_ok = false;
2315 
2316 	return !*d3cold_ok;
2317 }
2318 
2319 /*
2320  * pci_bridge_d3_update - Update bridge D3 capabilities
2321  * @dev: PCI device which is changed
2322  *
2323  * Update upstream bridge PM capabilities accordingly depending on if the
2324  * device PM configuration was changed or the device is being removed.  The
2325  * change is also propagated upstream.
2326  */
2327 void pci_bridge_d3_update(struct pci_dev *dev)
2328 {
2329 	bool remove = !device_is_registered(&dev->dev);
2330 	struct pci_dev *bridge;
2331 	bool d3cold_ok = true;
2332 
2333 	bridge = pci_upstream_bridge(dev);
2334 	if (!bridge || !pci_bridge_d3_possible(bridge))
2335 		return;
2336 
2337 	/*
2338 	 * If D3 is currently allowed for the bridge, removing one of its
2339 	 * children won't change that.
2340 	 */
2341 	if (remove && bridge->bridge_d3)
2342 		return;
2343 
2344 	/*
2345 	 * If D3 is currently allowed for the bridge and a child is added or
2346 	 * changed, disallowance of D3 can only be caused by that child, so
2347 	 * we only need to check that single device, not any of its siblings.
2348 	 *
2349 	 * If D3 is currently not allowed for the bridge, checking the device
2350 	 * first may allow us to skip checking its siblings.
2351 	 */
2352 	if (!remove)
2353 		pci_dev_check_d3cold(dev, &d3cold_ok);
2354 
2355 	/*
2356 	 * If D3 is currently not allowed for the bridge, this may be caused
2357 	 * either by the device being changed/removed or any of its siblings,
2358 	 * so we need to go through all children to find out if one of them
2359 	 * continues to block D3.
2360 	 */
2361 	if (d3cold_ok && !bridge->bridge_d3)
2362 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2363 			     &d3cold_ok);
2364 
2365 	if (bridge->bridge_d3 != d3cold_ok) {
2366 		bridge->bridge_d3 = d3cold_ok;
2367 		/* Propagate change to upstream bridges */
2368 		pci_bridge_d3_update(bridge);
2369 	}
2370 }
2371 
2372 /**
2373  * pci_d3cold_enable - Enable D3cold for device
2374  * @dev: PCI device to handle
2375  *
2376  * This function can be used in drivers to enable D3cold from the device
2377  * they handle.  It also updates upstream PCI bridge PM capabilities
2378  * accordingly.
2379  */
2380 void pci_d3cold_enable(struct pci_dev *dev)
2381 {
2382 	if (dev->no_d3cold) {
2383 		dev->no_d3cold = false;
2384 		pci_bridge_d3_update(dev);
2385 	}
2386 }
2387 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2388 
2389 /**
2390  * pci_d3cold_disable - Disable D3cold for device
2391  * @dev: PCI device to handle
2392  *
2393  * This function can be used in drivers to disable D3cold from the device
2394  * they handle.  It also updates upstream PCI bridge PM capabilities
2395  * accordingly.
2396  */
2397 void pci_d3cold_disable(struct pci_dev *dev)
2398 {
2399 	if (!dev->no_d3cold) {
2400 		dev->no_d3cold = true;
2401 		pci_bridge_d3_update(dev);
2402 	}
2403 }
2404 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2405 
2406 /**
2407  * pci_pm_init - Initialize PM functions of given PCI device
2408  * @dev: PCI device to handle.
2409  */
2410 void pci_pm_init(struct pci_dev *dev)
2411 {
2412 	int pm;
2413 	u16 pmc;
2414 
2415 	pm_runtime_forbid(&dev->dev);
2416 	pm_runtime_set_active(&dev->dev);
2417 	pm_runtime_enable(&dev->dev);
2418 	device_enable_async_suspend(&dev->dev);
2419 	dev->wakeup_prepared = false;
2420 
2421 	dev->pm_cap = 0;
2422 	dev->pme_support = 0;
2423 
2424 	/* find PCI PM capability in list */
2425 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2426 	if (!pm)
2427 		return;
2428 	/* Check device's ability to generate PME# */
2429 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2430 
2431 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2432 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2433 			pmc & PCI_PM_CAP_VER_MASK);
2434 		return;
2435 	}
2436 
2437 	dev->pm_cap = pm;
2438 	dev->d3_delay = PCI_PM_D3_WAIT;
2439 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2440 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2441 	dev->d3cold_allowed = true;
2442 
2443 	dev->d1_support = false;
2444 	dev->d2_support = false;
2445 	if (!pci_no_d1d2(dev)) {
2446 		if (pmc & PCI_PM_CAP_D1)
2447 			dev->d1_support = true;
2448 		if (pmc & PCI_PM_CAP_D2)
2449 			dev->d2_support = true;
2450 
2451 		if (dev->d1_support || dev->d2_support)
2452 			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2453 				   dev->d1_support ? " D1" : "",
2454 				   dev->d2_support ? " D2" : "");
2455 	}
2456 
2457 	pmc &= PCI_PM_CAP_PME_MASK;
2458 	if (pmc) {
2459 		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2460 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2461 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2462 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2463 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2464 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2465 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2466 		dev->pme_poll = true;
2467 		/*
2468 		 * Make device's PM flags reflect the wake-up capability, but
2469 		 * let the user space enable it to wake up the system as needed.
2470 		 */
2471 		device_set_wakeup_capable(&dev->dev, true);
2472 		/* Disable the PME# generation functionality */
2473 		pci_pme_active(dev, false);
2474 	}
2475 }
2476 
2477 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2478 {
2479 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2480 
2481 	switch (prop) {
2482 	case PCI_EA_P_MEM:
2483 	case PCI_EA_P_VF_MEM:
2484 		flags |= IORESOURCE_MEM;
2485 		break;
2486 	case PCI_EA_P_MEM_PREFETCH:
2487 	case PCI_EA_P_VF_MEM_PREFETCH:
2488 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2489 		break;
2490 	case PCI_EA_P_IO:
2491 		flags |= IORESOURCE_IO;
2492 		break;
2493 	default:
2494 		return 0;
2495 	}
2496 
2497 	return flags;
2498 }
2499 
2500 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2501 					    u8 prop)
2502 {
2503 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2504 		return &dev->resource[bei];
2505 #ifdef CONFIG_PCI_IOV
2506 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2507 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2508 		return &dev->resource[PCI_IOV_RESOURCES +
2509 				      bei - PCI_EA_BEI_VF_BAR0];
2510 #endif
2511 	else if (bei == PCI_EA_BEI_ROM)
2512 		return &dev->resource[PCI_ROM_RESOURCE];
2513 	else
2514 		return NULL;
2515 }
2516 
2517 /* Read an Enhanced Allocation (EA) entry */
2518 static int pci_ea_read(struct pci_dev *dev, int offset)
2519 {
2520 	struct resource *res;
2521 	int ent_size, ent_offset = offset;
2522 	resource_size_t start, end;
2523 	unsigned long flags;
2524 	u32 dw0, bei, base, max_offset;
2525 	u8 prop;
2526 	bool support_64 = (sizeof(resource_size_t) >= 8);
2527 
2528 	pci_read_config_dword(dev, ent_offset, &dw0);
2529 	ent_offset += 4;
2530 
2531 	/* Entry size field indicates DWORDs after 1st */
2532 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2533 
2534 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2535 		goto out;
2536 
2537 	bei = (dw0 & PCI_EA_BEI) >> 4;
2538 	prop = (dw0 & PCI_EA_PP) >> 8;
2539 
2540 	/*
2541 	 * If the Property is in the reserved range, try the Secondary
2542 	 * Property instead.
2543 	 */
2544 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2545 		prop = (dw0 & PCI_EA_SP) >> 16;
2546 	if (prop > PCI_EA_P_BRIDGE_IO)
2547 		goto out;
2548 
2549 	res = pci_ea_get_resource(dev, bei, prop);
2550 	if (!res) {
2551 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2552 		goto out;
2553 	}
2554 
2555 	flags = pci_ea_flags(dev, prop);
2556 	if (!flags) {
2557 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2558 		goto out;
2559 	}
2560 
2561 	/* Read Base */
2562 	pci_read_config_dword(dev, ent_offset, &base);
2563 	start = (base & PCI_EA_FIELD_MASK);
2564 	ent_offset += 4;
2565 
2566 	/* Read MaxOffset */
2567 	pci_read_config_dword(dev, ent_offset, &max_offset);
2568 	ent_offset += 4;
2569 
2570 	/* Read Base MSBs (if 64-bit entry) */
2571 	if (base & PCI_EA_IS_64) {
2572 		u32 base_upper;
2573 
2574 		pci_read_config_dword(dev, ent_offset, &base_upper);
2575 		ent_offset += 4;
2576 
2577 		flags |= IORESOURCE_MEM_64;
2578 
2579 		/* entry starts above 32-bit boundary, can't use */
2580 		if (!support_64 && base_upper)
2581 			goto out;
2582 
2583 		if (support_64)
2584 			start |= ((u64)base_upper << 32);
2585 	}
2586 
2587 	end = start + (max_offset | 0x03);
2588 
2589 	/* Read MaxOffset MSBs (if 64-bit entry) */
2590 	if (max_offset & PCI_EA_IS_64) {
2591 		u32 max_offset_upper;
2592 
2593 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2594 		ent_offset += 4;
2595 
2596 		flags |= IORESOURCE_MEM_64;
2597 
2598 		/* entry too big, can't use */
2599 		if (!support_64 && max_offset_upper)
2600 			goto out;
2601 
2602 		if (support_64)
2603 			end += ((u64)max_offset_upper << 32);
2604 	}
2605 
2606 	if (end < start) {
2607 		pci_err(dev, "EA Entry crosses address boundary\n");
2608 		goto out;
2609 	}
2610 
2611 	if (ent_size != ent_offset - offset) {
2612 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2613 			ent_size, ent_offset - offset);
2614 		goto out;
2615 	}
2616 
2617 	res->name = pci_name(dev);
2618 	res->start = start;
2619 	res->end = end;
2620 	res->flags = flags;
2621 
2622 	if (bei <= PCI_EA_BEI_BAR5)
2623 		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2624 			   bei, res, prop);
2625 	else if (bei == PCI_EA_BEI_ROM)
2626 		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2627 			   res, prop);
2628 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2629 		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2630 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2631 	else
2632 		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2633 			   bei, res, prop);
2634 
2635 out:
2636 	return offset + ent_size;
2637 }
2638 
2639 /* Enhanced Allocation Initialization */
2640 void pci_ea_init(struct pci_dev *dev)
2641 {
2642 	int ea;
2643 	u8 num_ent;
2644 	int offset;
2645 	int i;
2646 
2647 	/* find PCI EA capability in list */
2648 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2649 	if (!ea)
2650 		return;
2651 
2652 	/* determine the number of entries */
2653 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2654 					&num_ent);
2655 	num_ent &= PCI_EA_NUM_ENT_MASK;
2656 
2657 	offset = ea + PCI_EA_FIRST_ENT;
2658 
2659 	/* Skip DWORD 2 for type 1 functions */
2660 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2661 		offset += 4;
2662 
2663 	/* parse each EA entry */
2664 	for (i = 0; i < num_ent; ++i)
2665 		offset = pci_ea_read(dev, offset);
2666 }
2667 
2668 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2669 	struct pci_cap_saved_state *new_cap)
2670 {
2671 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2672 }
2673 
2674 /**
2675  * _pci_add_cap_save_buffer - allocate buffer for saving given
2676  *                            capability registers
2677  * @dev: the PCI device
2678  * @cap: the capability to allocate the buffer for
2679  * @extended: Standard or Extended capability ID
2680  * @size: requested size of the buffer
2681  */
2682 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2683 				    bool extended, unsigned int size)
2684 {
2685 	int pos;
2686 	struct pci_cap_saved_state *save_state;
2687 
2688 	if (extended)
2689 		pos = pci_find_ext_capability(dev, cap);
2690 	else
2691 		pos = pci_find_capability(dev, cap);
2692 
2693 	if (!pos)
2694 		return 0;
2695 
2696 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2697 	if (!save_state)
2698 		return -ENOMEM;
2699 
2700 	save_state->cap.cap_nr = cap;
2701 	save_state->cap.cap_extended = extended;
2702 	save_state->cap.size = size;
2703 	pci_add_saved_cap(dev, save_state);
2704 
2705 	return 0;
2706 }
2707 
2708 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2709 {
2710 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2711 }
2712 
2713 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2714 {
2715 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2716 }
2717 
2718 /**
2719  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2720  * @dev: the PCI device
2721  */
2722 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2723 {
2724 	int error;
2725 
2726 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2727 					PCI_EXP_SAVE_REGS * sizeof(u16));
2728 	if (error)
2729 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2730 
2731 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2732 	if (error)
2733 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2734 
2735 	pci_allocate_vc_save_buffers(dev);
2736 }
2737 
2738 void pci_free_cap_save_buffers(struct pci_dev *dev)
2739 {
2740 	struct pci_cap_saved_state *tmp;
2741 	struct hlist_node *n;
2742 
2743 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2744 		kfree(tmp);
2745 }
2746 
2747 /**
2748  * pci_configure_ari - enable or disable ARI forwarding
2749  * @dev: the PCI device
2750  *
2751  * If @dev and its upstream bridge both support ARI, enable ARI in the
2752  * bridge.  Otherwise, disable ARI in the bridge.
2753  */
2754 void pci_configure_ari(struct pci_dev *dev)
2755 {
2756 	u32 cap;
2757 	struct pci_dev *bridge;
2758 
2759 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2760 		return;
2761 
2762 	bridge = dev->bus->self;
2763 	if (!bridge)
2764 		return;
2765 
2766 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2767 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2768 		return;
2769 
2770 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2771 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2772 					 PCI_EXP_DEVCTL2_ARI);
2773 		bridge->ari_enabled = 1;
2774 	} else {
2775 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2776 					   PCI_EXP_DEVCTL2_ARI);
2777 		bridge->ari_enabled = 0;
2778 	}
2779 }
2780 
2781 static int pci_acs_enable;
2782 
2783 /**
2784  * pci_request_acs - ask for ACS to be enabled if supported
2785  */
2786 void pci_request_acs(void)
2787 {
2788 	pci_acs_enable = 1;
2789 }
2790 
2791 /**
2792  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2793  * @dev: the PCI device
2794  */
2795 static void pci_std_enable_acs(struct pci_dev *dev)
2796 {
2797 	int pos;
2798 	u16 cap;
2799 	u16 ctrl;
2800 
2801 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2802 	if (!pos)
2803 		return;
2804 
2805 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2806 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2807 
2808 	/* Source Validation */
2809 	ctrl |= (cap & PCI_ACS_SV);
2810 
2811 	/* P2P Request Redirect */
2812 	ctrl |= (cap & PCI_ACS_RR);
2813 
2814 	/* P2P Completion Redirect */
2815 	ctrl |= (cap & PCI_ACS_CR);
2816 
2817 	/* Upstream Forwarding */
2818 	ctrl |= (cap & PCI_ACS_UF);
2819 
2820 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2821 }
2822 
2823 /**
2824  * pci_enable_acs - enable ACS if hardware support it
2825  * @dev: the PCI device
2826  */
2827 void pci_enable_acs(struct pci_dev *dev)
2828 {
2829 	if (!pci_acs_enable)
2830 		return;
2831 
2832 	if (!pci_dev_specific_enable_acs(dev))
2833 		return;
2834 
2835 	pci_std_enable_acs(dev);
2836 }
2837 
2838 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2839 {
2840 	int pos;
2841 	u16 cap, ctrl;
2842 
2843 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2844 	if (!pos)
2845 		return false;
2846 
2847 	/*
2848 	 * Except for egress control, capabilities are either required
2849 	 * or only required if controllable.  Features missing from the
2850 	 * capability field can therefore be assumed as hard-wired enabled.
2851 	 */
2852 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2853 	acs_flags &= (cap | PCI_ACS_EC);
2854 
2855 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2856 	return (ctrl & acs_flags) == acs_flags;
2857 }
2858 
2859 /**
2860  * pci_acs_enabled - test ACS against required flags for a given device
2861  * @pdev: device to test
2862  * @acs_flags: required PCI ACS flags
2863  *
2864  * Return true if the device supports the provided flags.  Automatically
2865  * filters out flags that are not implemented on multifunction devices.
2866  *
2867  * Note that this interface checks the effective ACS capabilities of the
2868  * device rather than the actual capabilities.  For instance, most single
2869  * function endpoints are not required to support ACS because they have no
2870  * opportunity for peer-to-peer access.  We therefore return 'true'
2871  * regardless of whether the device exposes an ACS capability.  This makes
2872  * it much easier for callers of this function to ignore the actual type
2873  * or topology of the device when testing ACS support.
2874  */
2875 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2876 {
2877 	int ret;
2878 
2879 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2880 	if (ret >= 0)
2881 		return ret > 0;
2882 
2883 	/*
2884 	 * Conventional PCI and PCI-X devices never support ACS, either
2885 	 * effectively or actually.  The shared bus topology implies that
2886 	 * any device on the bus can receive or snoop DMA.
2887 	 */
2888 	if (!pci_is_pcie(pdev))
2889 		return false;
2890 
2891 	switch (pci_pcie_type(pdev)) {
2892 	/*
2893 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2894 	 * but since their primary interface is PCI/X, we conservatively
2895 	 * handle them as we would a non-PCIe device.
2896 	 */
2897 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2898 	/*
2899 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2900 	 * applicable... must never implement an ACS Extended Capability...".
2901 	 * This seems arbitrary, but we take a conservative interpretation
2902 	 * of this statement.
2903 	 */
2904 	case PCI_EXP_TYPE_PCI_BRIDGE:
2905 	case PCI_EXP_TYPE_RC_EC:
2906 		return false;
2907 	/*
2908 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2909 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2910 	 * regardless of whether they are single- or multi-function devices.
2911 	 */
2912 	case PCI_EXP_TYPE_DOWNSTREAM:
2913 	case PCI_EXP_TYPE_ROOT_PORT:
2914 		return pci_acs_flags_enabled(pdev, acs_flags);
2915 	/*
2916 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2917 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2918 	 * capabilities, but only when they are part of a multifunction
2919 	 * device.  The footnote for section 6.12 indicates the specific
2920 	 * PCIe types included here.
2921 	 */
2922 	case PCI_EXP_TYPE_ENDPOINT:
2923 	case PCI_EXP_TYPE_UPSTREAM:
2924 	case PCI_EXP_TYPE_LEG_END:
2925 	case PCI_EXP_TYPE_RC_END:
2926 		if (!pdev->multifunction)
2927 			break;
2928 
2929 		return pci_acs_flags_enabled(pdev, acs_flags);
2930 	}
2931 
2932 	/*
2933 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2934 	 * to single function devices with the exception of downstream ports.
2935 	 */
2936 	return true;
2937 }
2938 
2939 /**
2940  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2941  * @start: starting downstream device
2942  * @end: ending upstream device or NULL to search to the root bus
2943  * @acs_flags: required flags
2944  *
2945  * Walk up a device tree from start to end testing PCI ACS support.  If
2946  * any step along the way does not support the required flags, return false.
2947  */
2948 bool pci_acs_path_enabled(struct pci_dev *start,
2949 			  struct pci_dev *end, u16 acs_flags)
2950 {
2951 	struct pci_dev *pdev, *parent = start;
2952 
2953 	do {
2954 		pdev = parent;
2955 
2956 		if (!pci_acs_enabled(pdev, acs_flags))
2957 			return false;
2958 
2959 		if (pci_is_root_bus(pdev->bus))
2960 			return (end == NULL);
2961 
2962 		parent = pdev->bus->self;
2963 	} while (pdev != end);
2964 
2965 	return true;
2966 }
2967 
2968 /**
2969  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2970  * @pdev: PCI device
2971  * @bar: BAR to find
2972  *
2973  * Helper to find the position of the ctrl register for a BAR.
2974  * Returns -ENOTSUPP if resizable BARs are not supported at all.
2975  * Returns -ENOENT if no ctrl register for the BAR could be found.
2976  */
2977 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2978 {
2979 	unsigned int pos, nbars, i;
2980 	u32 ctrl;
2981 
2982 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
2983 	if (!pos)
2984 		return -ENOTSUPP;
2985 
2986 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2987 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
2988 		    PCI_REBAR_CTRL_NBAR_SHIFT;
2989 
2990 	for (i = 0; i < nbars; i++, pos += 8) {
2991 		int bar_idx;
2992 
2993 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2994 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
2995 		if (bar_idx == bar)
2996 			return pos;
2997 	}
2998 
2999 	return -ENOENT;
3000 }
3001 
3002 /**
3003  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3004  * @pdev: PCI device
3005  * @bar: BAR to query
3006  *
3007  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3008  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3009  */
3010 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3011 {
3012 	int pos;
3013 	u32 cap;
3014 
3015 	pos = pci_rebar_find_pos(pdev, bar);
3016 	if (pos < 0)
3017 		return 0;
3018 
3019 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3020 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3021 }
3022 
3023 /**
3024  * pci_rebar_get_current_size - get the current size of a BAR
3025  * @pdev: PCI device
3026  * @bar: BAR to set size to
3027  *
3028  * Read the size of a BAR from the resizable BAR config.
3029  * Returns size if found or negative error code.
3030  */
3031 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3032 {
3033 	int pos;
3034 	u32 ctrl;
3035 
3036 	pos = pci_rebar_find_pos(pdev, bar);
3037 	if (pos < 0)
3038 		return pos;
3039 
3040 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3041 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3042 }
3043 
3044 /**
3045  * pci_rebar_set_size - set a new size for a BAR
3046  * @pdev: PCI device
3047  * @bar: BAR to set size to
3048  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3049  *
3050  * Set the new size of a BAR as defined in the spec.
3051  * Returns zero if resizing was successful, error code otherwise.
3052  */
3053 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3054 {
3055 	int pos;
3056 	u32 ctrl;
3057 
3058 	pos = pci_rebar_find_pos(pdev, bar);
3059 	if (pos < 0)
3060 		return pos;
3061 
3062 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3063 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3064 	ctrl |= size << 8;
3065 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3066 	return 0;
3067 }
3068 
3069 /**
3070  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3071  * @dev: the PCI device
3072  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3073  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3074  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3075  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3076  *
3077  * Return 0 if all upstream bridges support AtomicOp routing, egress
3078  * blocking is disabled on all upstream ports, and the root port supports
3079  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3080  * AtomicOp completion), or negative otherwise.
3081  */
3082 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3083 {
3084 	struct pci_bus *bus = dev->bus;
3085 	struct pci_dev *bridge;
3086 	u32 cap, ctl2;
3087 
3088 	if (!pci_is_pcie(dev))
3089 		return -EINVAL;
3090 
3091 	/*
3092 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3093 	 * AtomicOp requesters.  For now, we only support endpoints as
3094 	 * requesters and root ports as completers.  No endpoints as
3095 	 * completers, and no peer-to-peer.
3096 	 */
3097 
3098 	switch (pci_pcie_type(dev)) {
3099 	case PCI_EXP_TYPE_ENDPOINT:
3100 	case PCI_EXP_TYPE_LEG_END:
3101 	case PCI_EXP_TYPE_RC_END:
3102 		break;
3103 	default:
3104 		return -EINVAL;
3105 	}
3106 
3107 	while (bus->parent) {
3108 		bridge = bus->self;
3109 
3110 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3111 
3112 		switch (pci_pcie_type(bridge)) {
3113 		/* Ensure switch ports support AtomicOp routing */
3114 		case PCI_EXP_TYPE_UPSTREAM:
3115 		case PCI_EXP_TYPE_DOWNSTREAM:
3116 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3117 				return -EINVAL;
3118 			break;
3119 
3120 		/* Ensure root port supports all the sizes we care about */
3121 		case PCI_EXP_TYPE_ROOT_PORT:
3122 			if ((cap & cap_mask) != cap_mask)
3123 				return -EINVAL;
3124 			break;
3125 		}
3126 
3127 		/* Ensure upstream ports don't block AtomicOps on egress */
3128 		if (!bridge->has_secondary_link) {
3129 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3130 						   &ctl2);
3131 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3132 				return -EINVAL;
3133 		}
3134 
3135 		bus = bus->parent;
3136 	}
3137 
3138 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3139 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3140 	return 0;
3141 }
3142 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3143 
3144 /**
3145  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3146  * @dev: the PCI device
3147  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3148  *
3149  * Perform INTx swizzling for a device behind one level of bridge.  This is
3150  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3151  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3152  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3153  * the PCI Express Base Specification, Revision 2.1)
3154  */
3155 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3156 {
3157 	int slot;
3158 
3159 	if (pci_ari_enabled(dev->bus))
3160 		slot = 0;
3161 	else
3162 		slot = PCI_SLOT(dev->devfn);
3163 
3164 	return (((pin - 1) + slot) % 4) + 1;
3165 }
3166 
3167 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3168 {
3169 	u8 pin;
3170 
3171 	pin = dev->pin;
3172 	if (!pin)
3173 		return -1;
3174 
3175 	while (!pci_is_root_bus(dev->bus)) {
3176 		pin = pci_swizzle_interrupt_pin(dev, pin);
3177 		dev = dev->bus->self;
3178 	}
3179 	*bridge = dev;
3180 	return pin;
3181 }
3182 
3183 /**
3184  * pci_common_swizzle - swizzle INTx all the way to root bridge
3185  * @dev: the PCI device
3186  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3187  *
3188  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3189  * bridges all the way up to a PCI root bus.
3190  */
3191 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3192 {
3193 	u8 pin = *pinp;
3194 
3195 	while (!pci_is_root_bus(dev->bus)) {
3196 		pin = pci_swizzle_interrupt_pin(dev, pin);
3197 		dev = dev->bus->self;
3198 	}
3199 	*pinp = pin;
3200 	return PCI_SLOT(dev->devfn);
3201 }
3202 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3203 
3204 /**
3205  *	pci_release_region - Release a PCI bar
3206  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3207  *	@bar: BAR to release
3208  *
3209  *	Releases the PCI I/O and memory resources previously reserved by a
3210  *	successful call to pci_request_region.  Call this function only
3211  *	after all use of the PCI regions has ceased.
3212  */
3213 void pci_release_region(struct pci_dev *pdev, int bar)
3214 {
3215 	struct pci_devres *dr;
3216 
3217 	if (pci_resource_len(pdev, bar) == 0)
3218 		return;
3219 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3220 		release_region(pci_resource_start(pdev, bar),
3221 				pci_resource_len(pdev, bar));
3222 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3223 		release_mem_region(pci_resource_start(pdev, bar),
3224 				pci_resource_len(pdev, bar));
3225 
3226 	dr = find_pci_dr(pdev);
3227 	if (dr)
3228 		dr->region_mask &= ~(1 << bar);
3229 }
3230 EXPORT_SYMBOL(pci_release_region);
3231 
3232 /**
3233  *	__pci_request_region - Reserved PCI I/O and memory resource
3234  *	@pdev: PCI device whose resources are to be reserved
3235  *	@bar: BAR to be reserved
3236  *	@res_name: Name to be associated with resource.
3237  *	@exclusive: whether the region access is exclusive or not
3238  *
3239  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3240  *	being reserved by owner @res_name.  Do not access any
3241  *	address inside the PCI regions unless this call returns
3242  *	successfully.
3243  *
3244  *	If @exclusive is set, then the region is marked so that userspace
3245  *	is explicitly not allowed to map the resource via /dev/mem or
3246  *	sysfs MMIO access.
3247  *
3248  *	Returns 0 on success, or %EBUSY on error.  A warning
3249  *	message is also printed on failure.
3250  */
3251 static int __pci_request_region(struct pci_dev *pdev, int bar,
3252 				const char *res_name, int exclusive)
3253 {
3254 	struct pci_devres *dr;
3255 
3256 	if (pci_resource_len(pdev, bar) == 0)
3257 		return 0;
3258 
3259 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3260 		if (!request_region(pci_resource_start(pdev, bar),
3261 			    pci_resource_len(pdev, bar), res_name))
3262 			goto err_out;
3263 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3264 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3265 					pci_resource_len(pdev, bar), res_name,
3266 					exclusive))
3267 			goto err_out;
3268 	}
3269 
3270 	dr = find_pci_dr(pdev);
3271 	if (dr)
3272 		dr->region_mask |= 1 << bar;
3273 
3274 	return 0;
3275 
3276 err_out:
3277 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3278 		 &pdev->resource[bar]);
3279 	return -EBUSY;
3280 }
3281 
3282 /**
3283  *	pci_request_region - Reserve PCI I/O and memory resource
3284  *	@pdev: PCI device whose resources are to be reserved
3285  *	@bar: BAR to be reserved
3286  *	@res_name: Name to be associated with resource
3287  *
3288  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3289  *	being reserved by owner @res_name.  Do not access any
3290  *	address inside the PCI regions unless this call returns
3291  *	successfully.
3292  *
3293  *	Returns 0 on success, or %EBUSY on error.  A warning
3294  *	message is also printed on failure.
3295  */
3296 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3297 {
3298 	return __pci_request_region(pdev, bar, res_name, 0);
3299 }
3300 EXPORT_SYMBOL(pci_request_region);
3301 
3302 /**
3303  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3304  *	@pdev: PCI device whose resources are to be reserved
3305  *	@bar: BAR to be reserved
3306  *	@res_name: Name to be associated with resource.
3307  *
3308  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3309  *	being reserved by owner @res_name.  Do not access any
3310  *	address inside the PCI regions unless this call returns
3311  *	successfully.
3312  *
3313  *	Returns 0 on success, or %EBUSY on error.  A warning
3314  *	message is also printed on failure.
3315  *
3316  *	The key difference that _exclusive makes it that userspace is
3317  *	explicitly not allowed to map the resource via /dev/mem or
3318  *	sysfs.
3319  */
3320 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3321 				 const char *res_name)
3322 {
3323 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3324 }
3325 EXPORT_SYMBOL(pci_request_region_exclusive);
3326 
3327 /**
3328  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3329  * @pdev: PCI device whose resources were previously reserved
3330  * @bars: Bitmask of BARs to be released
3331  *
3332  * Release selected PCI I/O and memory resources previously reserved.
3333  * Call this function only after all use of the PCI regions has ceased.
3334  */
3335 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3336 {
3337 	int i;
3338 
3339 	for (i = 0; i < 6; i++)
3340 		if (bars & (1 << i))
3341 			pci_release_region(pdev, i);
3342 }
3343 EXPORT_SYMBOL(pci_release_selected_regions);
3344 
3345 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3346 					  const char *res_name, int excl)
3347 {
3348 	int i;
3349 
3350 	for (i = 0; i < 6; i++)
3351 		if (bars & (1 << i))
3352 			if (__pci_request_region(pdev, i, res_name, excl))
3353 				goto err_out;
3354 	return 0;
3355 
3356 err_out:
3357 	while (--i >= 0)
3358 		if (bars & (1 << i))
3359 			pci_release_region(pdev, i);
3360 
3361 	return -EBUSY;
3362 }
3363 
3364 
3365 /**
3366  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3367  * @pdev: PCI device whose resources are to be reserved
3368  * @bars: Bitmask of BARs to be requested
3369  * @res_name: Name to be associated with resource
3370  */
3371 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3372 				 const char *res_name)
3373 {
3374 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3375 }
3376 EXPORT_SYMBOL(pci_request_selected_regions);
3377 
3378 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3379 					   const char *res_name)
3380 {
3381 	return __pci_request_selected_regions(pdev, bars, res_name,
3382 			IORESOURCE_EXCLUSIVE);
3383 }
3384 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3385 
3386 /**
3387  *	pci_release_regions - Release reserved PCI I/O and memory resources
3388  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3389  *
3390  *	Releases all PCI I/O and memory resources previously reserved by a
3391  *	successful call to pci_request_regions.  Call this function only
3392  *	after all use of the PCI regions has ceased.
3393  */
3394 
3395 void pci_release_regions(struct pci_dev *pdev)
3396 {
3397 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3398 }
3399 EXPORT_SYMBOL(pci_release_regions);
3400 
3401 /**
3402  *	pci_request_regions - Reserved PCI I/O and memory resources
3403  *	@pdev: PCI device whose resources are to be reserved
3404  *	@res_name: Name to be associated with resource.
3405  *
3406  *	Mark all PCI regions associated with PCI device @pdev as
3407  *	being reserved by owner @res_name.  Do not access any
3408  *	address inside the PCI regions unless this call returns
3409  *	successfully.
3410  *
3411  *	Returns 0 on success, or %EBUSY on error.  A warning
3412  *	message is also printed on failure.
3413  */
3414 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3415 {
3416 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3417 }
3418 EXPORT_SYMBOL(pci_request_regions);
3419 
3420 /**
3421  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3422  *	@pdev: PCI device whose resources are to be reserved
3423  *	@res_name: Name to be associated with resource.
3424  *
3425  *	Mark all PCI regions associated with PCI device @pdev as
3426  *	being reserved by owner @res_name.  Do not access any
3427  *	address inside the PCI regions unless this call returns
3428  *	successfully.
3429  *
3430  *	pci_request_regions_exclusive() will mark the region so that
3431  *	/dev/mem and the sysfs MMIO access will not be allowed.
3432  *
3433  *	Returns 0 on success, or %EBUSY on error.  A warning
3434  *	message is also printed on failure.
3435  */
3436 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3437 {
3438 	return pci_request_selected_regions_exclusive(pdev,
3439 					((1 << 6) - 1), res_name);
3440 }
3441 EXPORT_SYMBOL(pci_request_regions_exclusive);
3442 
3443 #ifdef PCI_IOBASE
3444 struct io_range {
3445 	struct list_head list;
3446 	phys_addr_t start;
3447 	resource_size_t size;
3448 };
3449 
3450 static LIST_HEAD(io_range_list);
3451 static DEFINE_SPINLOCK(io_range_lock);
3452 #endif
3453 
3454 /*
3455  * Record the PCI IO range (expressed as CPU physical address + size).
3456  * Return a negative value if an error has occured, zero otherwise
3457  */
3458 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3459 {
3460 	int err = 0;
3461 
3462 #ifdef PCI_IOBASE
3463 	struct io_range *range;
3464 	resource_size_t allocated_size = 0;
3465 
3466 	/* check if the range hasn't been previously recorded */
3467 	spin_lock(&io_range_lock);
3468 	list_for_each_entry(range, &io_range_list, list) {
3469 		if (addr >= range->start && addr + size <= range->start + size) {
3470 			/* range already registered, bail out */
3471 			goto end_register;
3472 		}
3473 		allocated_size += range->size;
3474 	}
3475 
3476 	/* range not registed yet, check for available space */
3477 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3478 		/* if it's too big check if 64K space can be reserved */
3479 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3480 			err = -E2BIG;
3481 			goto end_register;
3482 		}
3483 
3484 		size = SZ_64K;
3485 		pr_warn("Requested IO range too big, new size set to 64K\n");
3486 	}
3487 
3488 	/* add the range to the list */
3489 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3490 	if (!range) {
3491 		err = -ENOMEM;
3492 		goto end_register;
3493 	}
3494 
3495 	range->start = addr;
3496 	range->size = size;
3497 
3498 	list_add_tail(&range->list, &io_range_list);
3499 
3500 end_register:
3501 	spin_unlock(&io_range_lock);
3502 #endif
3503 
3504 	return err;
3505 }
3506 
3507 phys_addr_t pci_pio_to_address(unsigned long pio)
3508 {
3509 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3510 
3511 #ifdef PCI_IOBASE
3512 	struct io_range *range;
3513 	resource_size_t allocated_size = 0;
3514 
3515 	if (pio > IO_SPACE_LIMIT)
3516 		return address;
3517 
3518 	spin_lock(&io_range_lock);
3519 	list_for_each_entry(range, &io_range_list, list) {
3520 		if (pio >= allocated_size && pio < allocated_size + range->size) {
3521 			address = range->start + pio - allocated_size;
3522 			break;
3523 		}
3524 		allocated_size += range->size;
3525 	}
3526 	spin_unlock(&io_range_lock);
3527 #endif
3528 
3529 	return address;
3530 }
3531 
3532 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3533 {
3534 #ifdef PCI_IOBASE
3535 	struct io_range *res;
3536 	resource_size_t offset = 0;
3537 	unsigned long addr = -1;
3538 
3539 	spin_lock(&io_range_lock);
3540 	list_for_each_entry(res, &io_range_list, list) {
3541 		if (address >= res->start && address < res->start + res->size) {
3542 			addr = address - res->start + offset;
3543 			break;
3544 		}
3545 		offset += res->size;
3546 	}
3547 	spin_unlock(&io_range_lock);
3548 
3549 	return addr;
3550 #else
3551 	if (address > IO_SPACE_LIMIT)
3552 		return (unsigned long)-1;
3553 
3554 	return (unsigned long) address;
3555 #endif
3556 }
3557 
3558 /**
3559  *	pci_remap_iospace - Remap the memory mapped I/O space
3560  *	@res: Resource describing the I/O space
3561  *	@phys_addr: physical address of range to be mapped
3562  *
3563  *	Remap the memory mapped I/O space described by the @res
3564  *	and the CPU physical address @phys_addr into virtual address space.
3565  *	Only architectures that have memory mapped IO functions defined
3566  *	(and the PCI_IOBASE value defined) should call this function.
3567  */
3568 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3569 {
3570 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3571 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3572 
3573 	if (!(res->flags & IORESOURCE_IO))
3574 		return -EINVAL;
3575 
3576 	if (res->end > IO_SPACE_LIMIT)
3577 		return -EINVAL;
3578 
3579 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3580 				  pgprot_device(PAGE_KERNEL));
3581 #else
3582 	/* this architecture does not have memory mapped I/O space,
3583 	   so this function should never be called */
3584 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3585 	return -ENODEV;
3586 #endif
3587 }
3588 EXPORT_SYMBOL(pci_remap_iospace);
3589 
3590 /**
3591  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3592  *	@res: resource to be unmapped
3593  *
3594  *	Unmap the CPU virtual address @res from virtual address space.
3595  *	Only architectures that have memory mapped IO functions defined
3596  *	(and the PCI_IOBASE value defined) should call this function.
3597  */
3598 void pci_unmap_iospace(struct resource *res)
3599 {
3600 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3601 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3602 
3603 	unmap_kernel_range(vaddr, resource_size(res));
3604 #endif
3605 }
3606 EXPORT_SYMBOL(pci_unmap_iospace);
3607 
3608 /**
3609  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3610  * @dev: Generic device to remap IO address for
3611  * @offset: Resource address to map
3612  * @size: Size of map
3613  *
3614  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3615  * detach.
3616  */
3617 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3618 				      resource_size_t offset,
3619 				      resource_size_t size)
3620 {
3621 	void __iomem **ptr, *addr;
3622 
3623 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3624 	if (!ptr)
3625 		return NULL;
3626 
3627 	addr = pci_remap_cfgspace(offset, size);
3628 	if (addr) {
3629 		*ptr = addr;
3630 		devres_add(dev, ptr);
3631 	} else
3632 		devres_free(ptr);
3633 
3634 	return addr;
3635 }
3636 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3637 
3638 /**
3639  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3640  * @dev: generic device to handle the resource for
3641  * @res: configuration space resource to be handled
3642  *
3643  * Checks that a resource is a valid memory region, requests the memory
3644  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3645  * proper PCI configuration space memory attributes are guaranteed.
3646  *
3647  * All operations are managed and will be undone on driver detach.
3648  *
3649  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3650  * on failure. Usage example::
3651  *
3652  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3653  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3654  *	if (IS_ERR(base))
3655  *		return PTR_ERR(base);
3656  */
3657 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3658 					  struct resource *res)
3659 {
3660 	resource_size_t size;
3661 	const char *name;
3662 	void __iomem *dest_ptr;
3663 
3664 	BUG_ON(!dev);
3665 
3666 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3667 		dev_err(dev, "invalid resource\n");
3668 		return IOMEM_ERR_PTR(-EINVAL);
3669 	}
3670 
3671 	size = resource_size(res);
3672 	name = res->name ?: dev_name(dev);
3673 
3674 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3675 		dev_err(dev, "can't request region for resource %pR\n", res);
3676 		return IOMEM_ERR_PTR(-EBUSY);
3677 	}
3678 
3679 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3680 	if (!dest_ptr) {
3681 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3682 		devm_release_mem_region(dev, res->start, size);
3683 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3684 	}
3685 
3686 	return dest_ptr;
3687 }
3688 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3689 
3690 static void __pci_set_master(struct pci_dev *dev, bool enable)
3691 {
3692 	u16 old_cmd, cmd;
3693 
3694 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3695 	if (enable)
3696 		cmd = old_cmd | PCI_COMMAND_MASTER;
3697 	else
3698 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3699 	if (cmd != old_cmd) {
3700 		pci_dbg(dev, "%s bus mastering\n",
3701 			enable ? "enabling" : "disabling");
3702 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3703 	}
3704 	dev->is_busmaster = enable;
3705 }
3706 
3707 /**
3708  * pcibios_setup - process "pci=" kernel boot arguments
3709  * @str: string used to pass in "pci=" kernel boot arguments
3710  *
3711  * Process kernel boot arguments.  This is the default implementation.
3712  * Architecture specific implementations can override this as necessary.
3713  */
3714 char * __weak __init pcibios_setup(char *str)
3715 {
3716 	return str;
3717 }
3718 
3719 /**
3720  * pcibios_set_master - enable PCI bus-mastering for device dev
3721  * @dev: the PCI device to enable
3722  *
3723  * Enables PCI bus-mastering for the device.  This is the default
3724  * implementation.  Architecture specific implementations can override
3725  * this if necessary.
3726  */
3727 void __weak pcibios_set_master(struct pci_dev *dev)
3728 {
3729 	u8 lat;
3730 
3731 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3732 	if (pci_is_pcie(dev))
3733 		return;
3734 
3735 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3736 	if (lat < 16)
3737 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3738 	else if (lat > pcibios_max_latency)
3739 		lat = pcibios_max_latency;
3740 	else
3741 		return;
3742 
3743 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3744 }
3745 
3746 /**
3747  * pci_set_master - enables bus-mastering for device dev
3748  * @dev: the PCI device to enable
3749  *
3750  * Enables bus-mastering on the device and calls pcibios_set_master()
3751  * to do the needed arch specific settings.
3752  */
3753 void pci_set_master(struct pci_dev *dev)
3754 {
3755 	__pci_set_master(dev, true);
3756 	pcibios_set_master(dev);
3757 }
3758 EXPORT_SYMBOL(pci_set_master);
3759 
3760 /**
3761  * pci_clear_master - disables bus-mastering for device dev
3762  * @dev: the PCI device to disable
3763  */
3764 void pci_clear_master(struct pci_dev *dev)
3765 {
3766 	__pci_set_master(dev, false);
3767 }
3768 EXPORT_SYMBOL(pci_clear_master);
3769 
3770 /**
3771  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3772  * @dev: the PCI device for which MWI is to be enabled
3773  *
3774  * Helper function for pci_set_mwi.
3775  * Originally copied from drivers/net/acenic.c.
3776  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3777  *
3778  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3779  */
3780 int pci_set_cacheline_size(struct pci_dev *dev)
3781 {
3782 	u8 cacheline_size;
3783 
3784 	if (!pci_cache_line_size)
3785 		return -EINVAL;
3786 
3787 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3788 	   equal to or multiple of the right value. */
3789 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3790 	if (cacheline_size >= pci_cache_line_size &&
3791 	    (cacheline_size % pci_cache_line_size) == 0)
3792 		return 0;
3793 
3794 	/* Write the correct value. */
3795 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3796 	/* Read it back. */
3797 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3798 	if (cacheline_size == pci_cache_line_size)
3799 		return 0;
3800 
3801 	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3802 		   pci_cache_line_size << 2);
3803 
3804 	return -EINVAL;
3805 }
3806 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3807 
3808 /**
3809  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3810  * @dev: the PCI device for which MWI is enabled
3811  *
3812  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3813  *
3814  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3815  */
3816 int pci_set_mwi(struct pci_dev *dev)
3817 {
3818 #ifdef PCI_DISABLE_MWI
3819 	return 0;
3820 #else
3821 	int rc;
3822 	u16 cmd;
3823 
3824 	rc = pci_set_cacheline_size(dev);
3825 	if (rc)
3826 		return rc;
3827 
3828 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3829 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3830 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3831 		cmd |= PCI_COMMAND_INVALIDATE;
3832 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3833 	}
3834 	return 0;
3835 #endif
3836 }
3837 EXPORT_SYMBOL(pci_set_mwi);
3838 
3839 /**
3840  * pcim_set_mwi - a device-managed pci_set_mwi()
3841  * @dev: the PCI device for which MWI is enabled
3842  *
3843  * Managed pci_set_mwi().
3844  *
3845  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3846  */
3847 int pcim_set_mwi(struct pci_dev *dev)
3848 {
3849 	struct pci_devres *dr;
3850 
3851 	dr = find_pci_dr(dev);
3852 	if (!dr)
3853 		return -ENOMEM;
3854 
3855 	dr->mwi = 1;
3856 	return pci_set_mwi(dev);
3857 }
3858 EXPORT_SYMBOL(pcim_set_mwi);
3859 
3860 /**
3861  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3862  * @dev: the PCI device for which MWI is enabled
3863  *
3864  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3865  * Callers are not required to check the return value.
3866  *
3867  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3868  */
3869 int pci_try_set_mwi(struct pci_dev *dev)
3870 {
3871 #ifdef PCI_DISABLE_MWI
3872 	return 0;
3873 #else
3874 	return pci_set_mwi(dev);
3875 #endif
3876 }
3877 EXPORT_SYMBOL(pci_try_set_mwi);
3878 
3879 /**
3880  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3881  * @dev: the PCI device to disable
3882  *
3883  * Disables PCI Memory-Write-Invalidate transaction on the device
3884  */
3885 void pci_clear_mwi(struct pci_dev *dev)
3886 {
3887 #ifndef PCI_DISABLE_MWI
3888 	u16 cmd;
3889 
3890 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3891 	if (cmd & PCI_COMMAND_INVALIDATE) {
3892 		cmd &= ~PCI_COMMAND_INVALIDATE;
3893 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3894 	}
3895 #endif
3896 }
3897 EXPORT_SYMBOL(pci_clear_mwi);
3898 
3899 /**
3900  * pci_intx - enables/disables PCI INTx for device dev
3901  * @pdev: the PCI device to operate on
3902  * @enable: boolean: whether to enable or disable PCI INTx
3903  *
3904  * Enables/disables PCI INTx for device dev
3905  */
3906 void pci_intx(struct pci_dev *pdev, int enable)
3907 {
3908 	u16 pci_command, new;
3909 
3910 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3911 
3912 	if (enable)
3913 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3914 	else
3915 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3916 
3917 	if (new != pci_command) {
3918 		struct pci_devres *dr;
3919 
3920 		pci_write_config_word(pdev, PCI_COMMAND, new);
3921 
3922 		dr = find_pci_dr(pdev);
3923 		if (dr && !dr->restore_intx) {
3924 			dr->restore_intx = 1;
3925 			dr->orig_intx = !enable;
3926 		}
3927 	}
3928 }
3929 EXPORT_SYMBOL_GPL(pci_intx);
3930 
3931 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3932 {
3933 	struct pci_bus *bus = dev->bus;
3934 	bool mask_updated = true;
3935 	u32 cmd_status_dword;
3936 	u16 origcmd, newcmd;
3937 	unsigned long flags;
3938 	bool irq_pending;
3939 
3940 	/*
3941 	 * We do a single dword read to retrieve both command and status.
3942 	 * Document assumptions that make this possible.
3943 	 */
3944 	BUILD_BUG_ON(PCI_COMMAND % 4);
3945 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3946 
3947 	raw_spin_lock_irqsave(&pci_lock, flags);
3948 
3949 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3950 
3951 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3952 
3953 	/*
3954 	 * Check interrupt status register to see whether our device
3955 	 * triggered the interrupt (when masking) or the next IRQ is
3956 	 * already pending (when unmasking).
3957 	 */
3958 	if (mask != irq_pending) {
3959 		mask_updated = false;
3960 		goto done;
3961 	}
3962 
3963 	origcmd = cmd_status_dword;
3964 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3965 	if (mask)
3966 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3967 	if (newcmd != origcmd)
3968 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3969 
3970 done:
3971 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3972 
3973 	return mask_updated;
3974 }
3975 
3976 /**
3977  * pci_check_and_mask_intx - mask INTx on pending interrupt
3978  * @dev: the PCI device to operate on
3979  *
3980  * Check if the device dev has its INTx line asserted, mask it and
3981  * return true in that case. False is returned if no interrupt was
3982  * pending.
3983  */
3984 bool pci_check_and_mask_intx(struct pci_dev *dev)
3985 {
3986 	return pci_check_and_set_intx_mask(dev, true);
3987 }
3988 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3989 
3990 /**
3991  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3992  * @dev: the PCI device to operate on
3993  *
3994  * Check if the device dev has its INTx line asserted, unmask it if not
3995  * and return true. False is returned and the mask remains active if
3996  * there was still an interrupt pending.
3997  */
3998 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3999 {
4000 	return pci_check_and_set_intx_mask(dev, false);
4001 }
4002 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4003 
4004 /**
4005  * pci_wait_for_pending_transaction - waits for pending transaction
4006  * @dev: the PCI device to operate on
4007  *
4008  * Return 0 if transaction is pending 1 otherwise.
4009  */
4010 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4011 {
4012 	if (!pci_is_pcie(dev))
4013 		return 1;
4014 
4015 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4016 				    PCI_EXP_DEVSTA_TRPND);
4017 }
4018 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4019 
4020 static void pci_flr_wait(struct pci_dev *dev)
4021 {
4022 	int delay = 1, timeout = 60000;
4023 	u32 id;
4024 
4025 	/*
4026 	 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
4027 	 * 100ms, but may silently discard requests while the FLR is in
4028 	 * progress.  Wait 100ms before trying to access the device.
4029 	 */
4030 	msleep(100);
4031 
4032 	/*
4033 	 * After 100ms, the device should not silently discard config
4034 	 * requests, but it may still indicate that it needs more time by
4035 	 * responding to them with CRS completions.  The Root Port will
4036 	 * generally synthesize ~0 data to complete the read (except when
4037 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4038 	 * case it synthesizes 0x0001 data).
4039 	 *
4040 	 * Wait for the device to return a non-CRS completion.  Read the
4041 	 * Command register instead of Vendor ID so we don't have to
4042 	 * contend with the CRS SV value.
4043 	 */
4044 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4045 	while (id == ~0) {
4046 		if (delay > timeout) {
4047 			pci_warn(dev, "not ready %dms after FLR; giving up\n",
4048 				 100 + delay - 1);
4049 			return;
4050 		}
4051 
4052 		if (delay > 1000)
4053 			pci_info(dev, "not ready %dms after FLR; waiting\n",
4054 				 100 + delay - 1);
4055 
4056 		msleep(delay);
4057 		delay *= 2;
4058 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4059 	}
4060 
4061 	if (delay > 1000)
4062 		pci_info(dev, "ready %dms after FLR\n", 100 + delay - 1);
4063 }
4064 
4065 /**
4066  * pcie_has_flr - check if a device supports function level resets
4067  * @dev:	device to check
4068  *
4069  * Returns true if the device advertises support for PCIe function level
4070  * resets.
4071  */
4072 static bool pcie_has_flr(struct pci_dev *dev)
4073 {
4074 	u32 cap;
4075 
4076 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4077 		return false;
4078 
4079 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4080 	return cap & PCI_EXP_DEVCAP_FLR;
4081 }
4082 
4083 /**
4084  * pcie_flr - initiate a PCIe function level reset
4085  * @dev:	device to reset
4086  *
4087  * Initiate a function level reset on @dev.  The caller should ensure the
4088  * device supports FLR before calling this function, e.g. by using the
4089  * pcie_has_flr() helper.
4090  */
4091 void pcie_flr(struct pci_dev *dev)
4092 {
4093 	if (!pci_wait_for_pending_transaction(dev))
4094 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4095 
4096 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4097 	pci_flr_wait(dev);
4098 }
4099 EXPORT_SYMBOL_GPL(pcie_flr);
4100 
4101 static int pci_af_flr(struct pci_dev *dev, int probe)
4102 {
4103 	int pos;
4104 	u8 cap;
4105 
4106 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4107 	if (!pos)
4108 		return -ENOTTY;
4109 
4110 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4111 		return -ENOTTY;
4112 
4113 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4114 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4115 		return -ENOTTY;
4116 
4117 	if (probe)
4118 		return 0;
4119 
4120 	/*
4121 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4122 	 * is used, so we use the conrol offset rather than status and shift
4123 	 * the test bit to match.
4124 	 */
4125 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4126 				 PCI_AF_STATUS_TP << 8))
4127 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4128 
4129 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4130 	pci_flr_wait(dev);
4131 	return 0;
4132 }
4133 
4134 /**
4135  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4136  * @dev: Device to reset.
4137  * @probe: If set, only check if the device can be reset this way.
4138  *
4139  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4140  * unset, it will be reinitialized internally when going from PCI_D3hot to
4141  * PCI_D0.  If that's the case and the device is not in a low-power state
4142  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4143  *
4144  * NOTE: This causes the caller to sleep for twice the device power transition
4145  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4146  * by default (i.e. unless the @dev's d3_delay field has a different value).
4147  * Moreover, only devices in D0 can be reset by this function.
4148  */
4149 static int pci_pm_reset(struct pci_dev *dev, int probe)
4150 {
4151 	u16 csr;
4152 
4153 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4154 		return -ENOTTY;
4155 
4156 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4157 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4158 		return -ENOTTY;
4159 
4160 	if (probe)
4161 		return 0;
4162 
4163 	if (dev->current_state != PCI_D0)
4164 		return -EINVAL;
4165 
4166 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4167 	csr |= PCI_D3hot;
4168 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4169 	pci_dev_d3_sleep(dev);
4170 
4171 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4172 	csr |= PCI_D0;
4173 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4174 	pci_dev_d3_sleep(dev);
4175 
4176 	return 0;
4177 }
4178 
4179 void pci_reset_secondary_bus(struct pci_dev *dev)
4180 {
4181 	u16 ctrl;
4182 
4183 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4184 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4185 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4186 	/*
4187 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4188 	 * this to 2ms to ensure that we meet the minimum requirement.
4189 	 */
4190 	msleep(2);
4191 
4192 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4193 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4194 
4195 	/*
4196 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4197 	 * Assuming a minimum 33MHz clock this results in a 1s
4198 	 * delay before we can consider subordinate devices to
4199 	 * be re-initialized.  PCIe has some ways to shorten this,
4200 	 * but we don't make use of them yet.
4201 	 */
4202 	ssleep(1);
4203 }
4204 
4205 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4206 {
4207 	pci_reset_secondary_bus(dev);
4208 }
4209 
4210 /**
4211  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4212  * @dev: Bridge device
4213  *
4214  * Use the bridge control register to assert reset on the secondary bus.
4215  * Devices on the secondary bus are left in power-on state.
4216  */
4217 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4218 {
4219 	pcibios_reset_secondary_bus(dev);
4220 }
4221 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4222 
4223 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4224 {
4225 	struct pci_dev *pdev;
4226 
4227 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4228 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4229 		return -ENOTTY;
4230 
4231 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4232 		if (pdev != dev)
4233 			return -ENOTTY;
4234 
4235 	if (probe)
4236 		return 0;
4237 
4238 	pci_reset_bridge_secondary_bus(dev->bus->self);
4239 
4240 	return 0;
4241 }
4242 
4243 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4244 {
4245 	int rc = -ENOTTY;
4246 
4247 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4248 		return rc;
4249 
4250 	if (hotplug->ops->reset_slot)
4251 		rc = hotplug->ops->reset_slot(hotplug, probe);
4252 
4253 	module_put(hotplug->ops->owner);
4254 
4255 	return rc;
4256 }
4257 
4258 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4259 {
4260 	struct pci_dev *pdev;
4261 
4262 	if (dev->subordinate || !dev->slot ||
4263 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4264 		return -ENOTTY;
4265 
4266 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4267 		if (pdev != dev && pdev->slot == dev->slot)
4268 			return -ENOTTY;
4269 
4270 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4271 }
4272 
4273 static void pci_dev_lock(struct pci_dev *dev)
4274 {
4275 	pci_cfg_access_lock(dev);
4276 	/* block PM suspend, driver probe, etc. */
4277 	device_lock(&dev->dev);
4278 }
4279 
4280 /* Return 1 on successful lock, 0 on contention */
4281 static int pci_dev_trylock(struct pci_dev *dev)
4282 {
4283 	if (pci_cfg_access_trylock(dev)) {
4284 		if (device_trylock(&dev->dev))
4285 			return 1;
4286 		pci_cfg_access_unlock(dev);
4287 	}
4288 
4289 	return 0;
4290 }
4291 
4292 static void pci_dev_unlock(struct pci_dev *dev)
4293 {
4294 	device_unlock(&dev->dev);
4295 	pci_cfg_access_unlock(dev);
4296 }
4297 
4298 static void pci_dev_save_and_disable(struct pci_dev *dev)
4299 {
4300 	const struct pci_error_handlers *err_handler =
4301 			dev->driver ? dev->driver->err_handler : NULL;
4302 
4303 	/*
4304 	 * dev->driver->err_handler->reset_prepare() is protected against
4305 	 * races with ->remove() by the device lock, which must be held by
4306 	 * the caller.
4307 	 */
4308 	if (err_handler && err_handler->reset_prepare)
4309 		err_handler->reset_prepare(dev);
4310 
4311 	/*
4312 	 * Wake-up device prior to save.  PM registers default to D0 after
4313 	 * reset and a simple register restore doesn't reliably return
4314 	 * to a non-D0 state anyway.
4315 	 */
4316 	pci_set_power_state(dev, PCI_D0);
4317 
4318 	pci_save_state(dev);
4319 	/*
4320 	 * Disable the device by clearing the Command register, except for
4321 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4322 	 * BARs, but also prevents the device from being Bus Master, preventing
4323 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4324 	 * compliant devices, INTx-disable prevents legacy interrupts.
4325 	 */
4326 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4327 }
4328 
4329 static void pci_dev_restore(struct pci_dev *dev)
4330 {
4331 	const struct pci_error_handlers *err_handler =
4332 			dev->driver ? dev->driver->err_handler : NULL;
4333 
4334 	pci_restore_state(dev);
4335 
4336 	/*
4337 	 * dev->driver->err_handler->reset_done() is protected against
4338 	 * races with ->remove() by the device lock, which must be held by
4339 	 * the caller.
4340 	 */
4341 	if (err_handler && err_handler->reset_done)
4342 		err_handler->reset_done(dev);
4343 }
4344 
4345 /**
4346  * __pci_reset_function_locked - reset a PCI device function while holding
4347  * the @dev mutex lock.
4348  * @dev: PCI device to reset
4349  *
4350  * Some devices allow an individual function to be reset without affecting
4351  * other functions in the same device.  The PCI device must be responsive
4352  * to PCI config space in order to use this function.
4353  *
4354  * The device function is presumed to be unused and the caller is holding
4355  * the device mutex lock when this function is called.
4356  * Resetting the device will make the contents of PCI configuration space
4357  * random, so any caller of this must be prepared to reinitialise the
4358  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4359  * etc.
4360  *
4361  * Returns 0 if the device function was successfully reset or negative if the
4362  * device doesn't support resetting a single function.
4363  */
4364 int __pci_reset_function_locked(struct pci_dev *dev)
4365 {
4366 	int rc;
4367 
4368 	might_sleep();
4369 
4370 	/*
4371 	 * A reset method returns -ENOTTY if it doesn't support this device
4372 	 * and we should try the next method.
4373 	 *
4374 	 * If it returns 0 (success), we're finished.  If it returns any
4375 	 * other error, we're also finished: this indicates that further
4376 	 * reset mechanisms might be broken on the device.
4377 	 */
4378 	rc = pci_dev_specific_reset(dev, 0);
4379 	if (rc != -ENOTTY)
4380 		return rc;
4381 	if (pcie_has_flr(dev)) {
4382 		pcie_flr(dev);
4383 		return 0;
4384 	}
4385 	rc = pci_af_flr(dev, 0);
4386 	if (rc != -ENOTTY)
4387 		return rc;
4388 	rc = pci_pm_reset(dev, 0);
4389 	if (rc != -ENOTTY)
4390 		return rc;
4391 	rc = pci_dev_reset_slot_function(dev, 0);
4392 	if (rc != -ENOTTY)
4393 		return rc;
4394 	return pci_parent_bus_reset(dev, 0);
4395 }
4396 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4397 
4398 /**
4399  * pci_probe_reset_function - check whether the device can be safely reset
4400  * @dev: PCI device to reset
4401  *
4402  * Some devices allow an individual function to be reset without affecting
4403  * other functions in the same device.  The PCI device must be responsive
4404  * to PCI config space in order to use this function.
4405  *
4406  * Returns 0 if the device function can be reset or negative if the
4407  * device doesn't support resetting a single function.
4408  */
4409 int pci_probe_reset_function(struct pci_dev *dev)
4410 {
4411 	int rc;
4412 
4413 	might_sleep();
4414 
4415 	rc = pci_dev_specific_reset(dev, 1);
4416 	if (rc != -ENOTTY)
4417 		return rc;
4418 	if (pcie_has_flr(dev))
4419 		return 0;
4420 	rc = pci_af_flr(dev, 1);
4421 	if (rc != -ENOTTY)
4422 		return rc;
4423 	rc = pci_pm_reset(dev, 1);
4424 	if (rc != -ENOTTY)
4425 		return rc;
4426 	rc = pci_dev_reset_slot_function(dev, 1);
4427 	if (rc != -ENOTTY)
4428 		return rc;
4429 
4430 	return pci_parent_bus_reset(dev, 1);
4431 }
4432 
4433 /**
4434  * pci_reset_function - quiesce and reset a PCI device function
4435  * @dev: PCI device to reset
4436  *
4437  * Some devices allow an individual function to be reset without affecting
4438  * other functions in the same device.  The PCI device must be responsive
4439  * to PCI config space in order to use this function.
4440  *
4441  * This function does not just reset the PCI portion of a device, but
4442  * clears all the state associated with the device.  This function differs
4443  * from __pci_reset_function_locked() in that it saves and restores device state
4444  * over the reset and takes the PCI device lock.
4445  *
4446  * Returns 0 if the device function was successfully reset or negative if the
4447  * device doesn't support resetting a single function.
4448  */
4449 int pci_reset_function(struct pci_dev *dev)
4450 {
4451 	int rc;
4452 
4453 	rc = pci_probe_reset_function(dev);
4454 	if (rc)
4455 		return rc;
4456 
4457 	pci_dev_lock(dev);
4458 	pci_dev_save_and_disable(dev);
4459 
4460 	rc = __pci_reset_function_locked(dev);
4461 
4462 	pci_dev_restore(dev);
4463 	pci_dev_unlock(dev);
4464 
4465 	return rc;
4466 }
4467 EXPORT_SYMBOL_GPL(pci_reset_function);
4468 
4469 /**
4470  * pci_reset_function_locked - quiesce and reset a PCI device function
4471  * @dev: PCI device to reset
4472  *
4473  * Some devices allow an individual function to be reset without affecting
4474  * other functions in the same device.  The PCI device must be responsive
4475  * to PCI config space in order to use this function.
4476  *
4477  * This function does not just reset the PCI portion of a device, but
4478  * clears all the state associated with the device.  This function differs
4479  * from __pci_reset_function_locked() in that it saves and restores device state
4480  * over the reset.  It also differs from pci_reset_function() in that it
4481  * requires the PCI device lock to be held.
4482  *
4483  * Returns 0 if the device function was successfully reset or negative if the
4484  * device doesn't support resetting a single function.
4485  */
4486 int pci_reset_function_locked(struct pci_dev *dev)
4487 {
4488 	int rc;
4489 
4490 	rc = pci_probe_reset_function(dev);
4491 	if (rc)
4492 		return rc;
4493 
4494 	pci_dev_save_and_disable(dev);
4495 
4496 	rc = __pci_reset_function_locked(dev);
4497 
4498 	pci_dev_restore(dev);
4499 
4500 	return rc;
4501 }
4502 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4503 
4504 /**
4505  * pci_try_reset_function - quiesce and reset a PCI device function
4506  * @dev: PCI device to reset
4507  *
4508  * Same as above, except return -EAGAIN if unable to lock device.
4509  */
4510 int pci_try_reset_function(struct pci_dev *dev)
4511 {
4512 	int rc;
4513 
4514 	rc = pci_probe_reset_function(dev);
4515 	if (rc)
4516 		return rc;
4517 
4518 	if (!pci_dev_trylock(dev))
4519 		return -EAGAIN;
4520 
4521 	pci_dev_save_and_disable(dev);
4522 	rc = __pci_reset_function_locked(dev);
4523 	pci_dev_unlock(dev);
4524 
4525 	pci_dev_restore(dev);
4526 	return rc;
4527 }
4528 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4529 
4530 /* Do any devices on or below this bus prevent a bus reset? */
4531 static bool pci_bus_resetable(struct pci_bus *bus)
4532 {
4533 	struct pci_dev *dev;
4534 
4535 
4536 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4537 		return false;
4538 
4539 	list_for_each_entry(dev, &bus->devices, bus_list) {
4540 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4541 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4542 			return false;
4543 	}
4544 
4545 	return true;
4546 }
4547 
4548 /* Lock devices from the top of the tree down */
4549 static void pci_bus_lock(struct pci_bus *bus)
4550 {
4551 	struct pci_dev *dev;
4552 
4553 	list_for_each_entry(dev, &bus->devices, bus_list) {
4554 		pci_dev_lock(dev);
4555 		if (dev->subordinate)
4556 			pci_bus_lock(dev->subordinate);
4557 	}
4558 }
4559 
4560 /* Unlock devices from the bottom of the tree up */
4561 static void pci_bus_unlock(struct pci_bus *bus)
4562 {
4563 	struct pci_dev *dev;
4564 
4565 	list_for_each_entry(dev, &bus->devices, bus_list) {
4566 		if (dev->subordinate)
4567 			pci_bus_unlock(dev->subordinate);
4568 		pci_dev_unlock(dev);
4569 	}
4570 }
4571 
4572 /* Return 1 on successful lock, 0 on contention */
4573 static int pci_bus_trylock(struct pci_bus *bus)
4574 {
4575 	struct pci_dev *dev;
4576 
4577 	list_for_each_entry(dev, &bus->devices, bus_list) {
4578 		if (!pci_dev_trylock(dev))
4579 			goto unlock;
4580 		if (dev->subordinate) {
4581 			if (!pci_bus_trylock(dev->subordinate)) {
4582 				pci_dev_unlock(dev);
4583 				goto unlock;
4584 			}
4585 		}
4586 	}
4587 	return 1;
4588 
4589 unlock:
4590 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4591 		if (dev->subordinate)
4592 			pci_bus_unlock(dev->subordinate);
4593 		pci_dev_unlock(dev);
4594 	}
4595 	return 0;
4596 }
4597 
4598 /* Do any devices on or below this slot prevent a bus reset? */
4599 static bool pci_slot_resetable(struct pci_slot *slot)
4600 {
4601 	struct pci_dev *dev;
4602 
4603 	if (slot->bus->self &&
4604 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4605 		return false;
4606 
4607 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4608 		if (!dev->slot || dev->slot != slot)
4609 			continue;
4610 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4611 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4612 			return false;
4613 	}
4614 
4615 	return true;
4616 }
4617 
4618 /* Lock devices from the top of the tree down */
4619 static void pci_slot_lock(struct pci_slot *slot)
4620 {
4621 	struct pci_dev *dev;
4622 
4623 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4624 		if (!dev->slot || dev->slot != slot)
4625 			continue;
4626 		pci_dev_lock(dev);
4627 		if (dev->subordinate)
4628 			pci_bus_lock(dev->subordinate);
4629 	}
4630 }
4631 
4632 /* Unlock devices from the bottom of the tree up */
4633 static void pci_slot_unlock(struct pci_slot *slot)
4634 {
4635 	struct pci_dev *dev;
4636 
4637 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4638 		if (!dev->slot || dev->slot != slot)
4639 			continue;
4640 		if (dev->subordinate)
4641 			pci_bus_unlock(dev->subordinate);
4642 		pci_dev_unlock(dev);
4643 	}
4644 }
4645 
4646 /* Return 1 on successful lock, 0 on contention */
4647 static int pci_slot_trylock(struct pci_slot *slot)
4648 {
4649 	struct pci_dev *dev;
4650 
4651 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4652 		if (!dev->slot || dev->slot != slot)
4653 			continue;
4654 		if (!pci_dev_trylock(dev))
4655 			goto unlock;
4656 		if (dev->subordinate) {
4657 			if (!pci_bus_trylock(dev->subordinate)) {
4658 				pci_dev_unlock(dev);
4659 				goto unlock;
4660 			}
4661 		}
4662 	}
4663 	return 1;
4664 
4665 unlock:
4666 	list_for_each_entry_continue_reverse(dev,
4667 					     &slot->bus->devices, bus_list) {
4668 		if (!dev->slot || dev->slot != slot)
4669 			continue;
4670 		if (dev->subordinate)
4671 			pci_bus_unlock(dev->subordinate);
4672 		pci_dev_unlock(dev);
4673 	}
4674 	return 0;
4675 }
4676 
4677 /* Save and disable devices from the top of the tree down */
4678 static void pci_bus_save_and_disable(struct pci_bus *bus)
4679 {
4680 	struct pci_dev *dev;
4681 
4682 	list_for_each_entry(dev, &bus->devices, bus_list) {
4683 		pci_dev_lock(dev);
4684 		pci_dev_save_and_disable(dev);
4685 		pci_dev_unlock(dev);
4686 		if (dev->subordinate)
4687 			pci_bus_save_and_disable(dev->subordinate);
4688 	}
4689 }
4690 
4691 /*
4692  * Restore devices from top of the tree down - parent bridges need to be
4693  * restored before we can get to subordinate devices.
4694  */
4695 static void pci_bus_restore(struct pci_bus *bus)
4696 {
4697 	struct pci_dev *dev;
4698 
4699 	list_for_each_entry(dev, &bus->devices, bus_list) {
4700 		pci_dev_lock(dev);
4701 		pci_dev_restore(dev);
4702 		pci_dev_unlock(dev);
4703 		if (dev->subordinate)
4704 			pci_bus_restore(dev->subordinate);
4705 	}
4706 }
4707 
4708 /* Save and disable devices from the top of the tree down */
4709 static void pci_slot_save_and_disable(struct pci_slot *slot)
4710 {
4711 	struct pci_dev *dev;
4712 
4713 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4714 		if (!dev->slot || dev->slot != slot)
4715 			continue;
4716 		pci_dev_save_and_disable(dev);
4717 		if (dev->subordinate)
4718 			pci_bus_save_and_disable(dev->subordinate);
4719 	}
4720 }
4721 
4722 /*
4723  * Restore devices from top of the tree down - parent bridges need to be
4724  * restored before we can get to subordinate devices.
4725  */
4726 static void pci_slot_restore(struct pci_slot *slot)
4727 {
4728 	struct pci_dev *dev;
4729 
4730 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4731 		if (!dev->slot || dev->slot != slot)
4732 			continue;
4733 		pci_dev_restore(dev);
4734 		if (dev->subordinate)
4735 			pci_bus_restore(dev->subordinate);
4736 	}
4737 }
4738 
4739 static int pci_slot_reset(struct pci_slot *slot, int probe)
4740 {
4741 	int rc;
4742 
4743 	if (!slot || !pci_slot_resetable(slot))
4744 		return -ENOTTY;
4745 
4746 	if (!probe)
4747 		pci_slot_lock(slot);
4748 
4749 	might_sleep();
4750 
4751 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4752 
4753 	if (!probe)
4754 		pci_slot_unlock(slot);
4755 
4756 	return rc;
4757 }
4758 
4759 /**
4760  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4761  * @slot: PCI slot to probe
4762  *
4763  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4764  */
4765 int pci_probe_reset_slot(struct pci_slot *slot)
4766 {
4767 	return pci_slot_reset(slot, 1);
4768 }
4769 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4770 
4771 /**
4772  * pci_reset_slot - reset a PCI slot
4773  * @slot: PCI slot to reset
4774  *
4775  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4776  * independent of other slots.  For instance, some slots may support slot power
4777  * control.  In the case of a 1:1 bus to slot architecture, this function may
4778  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4779  * Generally a slot reset should be attempted before a bus reset.  All of the
4780  * function of the slot and any subordinate buses behind the slot are reset
4781  * through this function.  PCI config space of all devices in the slot and
4782  * behind the slot is saved before and restored after reset.
4783  *
4784  * Return 0 on success, non-zero on error.
4785  */
4786 int pci_reset_slot(struct pci_slot *slot)
4787 {
4788 	int rc;
4789 
4790 	rc = pci_slot_reset(slot, 1);
4791 	if (rc)
4792 		return rc;
4793 
4794 	pci_slot_save_and_disable(slot);
4795 
4796 	rc = pci_slot_reset(slot, 0);
4797 
4798 	pci_slot_restore(slot);
4799 
4800 	return rc;
4801 }
4802 EXPORT_SYMBOL_GPL(pci_reset_slot);
4803 
4804 /**
4805  * pci_try_reset_slot - Try to reset a PCI slot
4806  * @slot: PCI slot to reset
4807  *
4808  * Same as above except return -EAGAIN if the slot cannot be locked
4809  */
4810 int pci_try_reset_slot(struct pci_slot *slot)
4811 {
4812 	int rc;
4813 
4814 	rc = pci_slot_reset(slot, 1);
4815 	if (rc)
4816 		return rc;
4817 
4818 	pci_slot_save_and_disable(slot);
4819 
4820 	if (pci_slot_trylock(slot)) {
4821 		might_sleep();
4822 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4823 		pci_slot_unlock(slot);
4824 	} else
4825 		rc = -EAGAIN;
4826 
4827 	pci_slot_restore(slot);
4828 
4829 	return rc;
4830 }
4831 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4832 
4833 static int pci_bus_reset(struct pci_bus *bus, int probe)
4834 {
4835 	if (!bus->self || !pci_bus_resetable(bus))
4836 		return -ENOTTY;
4837 
4838 	if (probe)
4839 		return 0;
4840 
4841 	pci_bus_lock(bus);
4842 
4843 	might_sleep();
4844 
4845 	pci_reset_bridge_secondary_bus(bus->self);
4846 
4847 	pci_bus_unlock(bus);
4848 
4849 	return 0;
4850 }
4851 
4852 /**
4853  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4854  * @bus: PCI bus to probe
4855  *
4856  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4857  */
4858 int pci_probe_reset_bus(struct pci_bus *bus)
4859 {
4860 	return pci_bus_reset(bus, 1);
4861 }
4862 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4863 
4864 /**
4865  * pci_reset_bus - reset a PCI bus
4866  * @bus: top level PCI bus to reset
4867  *
4868  * Do a bus reset on the given bus and any subordinate buses, saving
4869  * and restoring state of all devices.
4870  *
4871  * Return 0 on success, non-zero on error.
4872  */
4873 int pci_reset_bus(struct pci_bus *bus)
4874 {
4875 	int rc;
4876 
4877 	rc = pci_bus_reset(bus, 1);
4878 	if (rc)
4879 		return rc;
4880 
4881 	pci_bus_save_and_disable(bus);
4882 
4883 	rc = pci_bus_reset(bus, 0);
4884 
4885 	pci_bus_restore(bus);
4886 
4887 	return rc;
4888 }
4889 EXPORT_SYMBOL_GPL(pci_reset_bus);
4890 
4891 /**
4892  * pci_try_reset_bus - Try to reset a PCI bus
4893  * @bus: top level PCI bus to reset
4894  *
4895  * Same as above except return -EAGAIN if the bus cannot be locked
4896  */
4897 int pci_try_reset_bus(struct pci_bus *bus)
4898 {
4899 	int rc;
4900 
4901 	rc = pci_bus_reset(bus, 1);
4902 	if (rc)
4903 		return rc;
4904 
4905 	pci_bus_save_and_disable(bus);
4906 
4907 	if (pci_bus_trylock(bus)) {
4908 		might_sleep();
4909 		pci_reset_bridge_secondary_bus(bus->self);
4910 		pci_bus_unlock(bus);
4911 	} else
4912 		rc = -EAGAIN;
4913 
4914 	pci_bus_restore(bus);
4915 
4916 	return rc;
4917 }
4918 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4919 
4920 /**
4921  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4922  * @dev: PCI device to query
4923  *
4924  * Returns mmrbc: maximum designed memory read count in bytes
4925  *    or appropriate error value.
4926  */
4927 int pcix_get_max_mmrbc(struct pci_dev *dev)
4928 {
4929 	int cap;
4930 	u32 stat;
4931 
4932 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4933 	if (!cap)
4934 		return -EINVAL;
4935 
4936 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4937 		return -EINVAL;
4938 
4939 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4940 }
4941 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4942 
4943 /**
4944  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4945  * @dev: PCI device to query
4946  *
4947  * Returns mmrbc: maximum memory read count in bytes
4948  *    or appropriate error value.
4949  */
4950 int pcix_get_mmrbc(struct pci_dev *dev)
4951 {
4952 	int cap;
4953 	u16 cmd;
4954 
4955 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4956 	if (!cap)
4957 		return -EINVAL;
4958 
4959 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4960 		return -EINVAL;
4961 
4962 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4963 }
4964 EXPORT_SYMBOL(pcix_get_mmrbc);
4965 
4966 /**
4967  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4968  * @dev: PCI device to query
4969  * @mmrbc: maximum memory read count in bytes
4970  *    valid values are 512, 1024, 2048, 4096
4971  *
4972  * If possible sets maximum memory read byte count, some bridges have erratas
4973  * that prevent this.
4974  */
4975 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4976 {
4977 	int cap;
4978 	u32 stat, v, o;
4979 	u16 cmd;
4980 
4981 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4982 		return -EINVAL;
4983 
4984 	v = ffs(mmrbc) - 10;
4985 
4986 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4987 	if (!cap)
4988 		return -EINVAL;
4989 
4990 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4991 		return -EINVAL;
4992 
4993 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4994 		return -E2BIG;
4995 
4996 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4997 		return -EINVAL;
4998 
4999 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5000 	if (o != v) {
5001 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5002 			return -EIO;
5003 
5004 		cmd &= ~PCI_X_CMD_MAX_READ;
5005 		cmd |= v << 2;
5006 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5007 			return -EIO;
5008 	}
5009 	return 0;
5010 }
5011 EXPORT_SYMBOL(pcix_set_mmrbc);
5012 
5013 /**
5014  * pcie_get_readrq - get PCI Express read request size
5015  * @dev: PCI device to query
5016  *
5017  * Returns maximum memory read request in bytes
5018  *    or appropriate error value.
5019  */
5020 int pcie_get_readrq(struct pci_dev *dev)
5021 {
5022 	u16 ctl;
5023 
5024 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5025 
5026 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5027 }
5028 EXPORT_SYMBOL(pcie_get_readrq);
5029 
5030 /**
5031  * pcie_set_readrq - set PCI Express maximum memory read request
5032  * @dev: PCI device to query
5033  * @rq: maximum memory read count in bytes
5034  *    valid values are 128, 256, 512, 1024, 2048, 4096
5035  *
5036  * If possible sets maximum memory read request in bytes
5037  */
5038 int pcie_set_readrq(struct pci_dev *dev, int rq)
5039 {
5040 	u16 v;
5041 
5042 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5043 		return -EINVAL;
5044 
5045 	/*
5046 	 * If using the "performance" PCIe config, we clamp the
5047 	 * read rq size to the max packet size to prevent the
5048 	 * host bridge generating requests larger than we can
5049 	 * cope with
5050 	 */
5051 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5052 		int mps = pcie_get_mps(dev);
5053 
5054 		if (mps < rq)
5055 			rq = mps;
5056 	}
5057 
5058 	v = (ffs(rq) - 8) << 12;
5059 
5060 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5061 						  PCI_EXP_DEVCTL_READRQ, v);
5062 }
5063 EXPORT_SYMBOL(pcie_set_readrq);
5064 
5065 /**
5066  * pcie_get_mps - get PCI Express maximum payload size
5067  * @dev: PCI device to query
5068  *
5069  * Returns maximum payload size in bytes
5070  */
5071 int pcie_get_mps(struct pci_dev *dev)
5072 {
5073 	u16 ctl;
5074 
5075 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5076 
5077 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5078 }
5079 EXPORT_SYMBOL(pcie_get_mps);
5080 
5081 /**
5082  * pcie_set_mps - set PCI Express maximum payload size
5083  * @dev: PCI device to query
5084  * @mps: maximum payload size in bytes
5085  *    valid values are 128, 256, 512, 1024, 2048, 4096
5086  *
5087  * If possible sets maximum payload size
5088  */
5089 int pcie_set_mps(struct pci_dev *dev, int mps)
5090 {
5091 	u16 v;
5092 
5093 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5094 		return -EINVAL;
5095 
5096 	v = ffs(mps) - 8;
5097 	if (v > dev->pcie_mpss)
5098 		return -EINVAL;
5099 	v <<= 5;
5100 
5101 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5102 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5103 }
5104 EXPORT_SYMBOL(pcie_set_mps);
5105 
5106 /**
5107  * pcie_get_minimum_link - determine minimum link settings of a PCI device
5108  * @dev: PCI device to query
5109  * @speed: storage for minimum speed
5110  * @width: storage for minimum width
5111  *
5112  * This function will walk up the PCI device chain and determine the minimum
5113  * link width and speed of the device.
5114  */
5115 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5116 			  enum pcie_link_width *width)
5117 {
5118 	int ret;
5119 
5120 	*speed = PCI_SPEED_UNKNOWN;
5121 	*width = PCIE_LNK_WIDTH_UNKNOWN;
5122 
5123 	while (dev) {
5124 		u16 lnksta;
5125 		enum pci_bus_speed next_speed;
5126 		enum pcie_link_width next_width;
5127 
5128 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5129 		if (ret)
5130 			return ret;
5131 
5132 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5133 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5134 			PCI_EXP_LNKSTA_NLW_SHIFT;
5135 
5136 		if (next_speed < *speed)
5137 			*speed = next_speed;
5138 
5139 		if (next_width < *width)
5140 			*width = next_width;
5141 
5142 		dev = dev->bus->self;
5143 	}
5144 
5145 	return 0;
5146 }
5147 EXPORT_SYMBOL(pcie_get_minimum_link);
5148 
5149 /**
5150  * pci_select_bars - Make BAR mask from the type of resource
5151  * @dev: the PCI device for which BAR mask is made
5152  * @flags: resource type mask to be selected
5153  *
5154  * This helper routine makes bar mask from the type of resource.
5155  */
5156 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5157 {
5158 	int i, bars = 0;
5159 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5160 		if (pci_resource_flags(dev, i) & flags)
5161 			bars |= (1 << i);
5162 	return bars;
5163 }
5164 EXPORT_SYMBOL(pci_select_bars);
5165 
5166 /* Some architectures require additional programming to enable VGA */
5167 static arch_set_vga_state_t arch_set_vga_state;
5168 
5169 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5170 {
5171 	arch_set_vga_state = func;	/* NULL disables */
5172 }
5173 
5174 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5175 				  unsigned int command_bits, u32 flags)
5176 {
5177 	if (arch_set_vga_state)
5178 		return arch_set_vga_state(dev, decode, command_bits,
5179 						flags);
5180 	return 0;
5181 }
5182 
5183 /**
5184  * pci_set_vga_state - set VGA decode state on device and parents if requested
5185  * @dev: the PCI device
5186  * @decode: true = enable decoding, false = disable decoding
5187  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5188  * @flags: traverse ancestors and change bridges
5189  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5190  */
5191 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5192 		      unsigned int command_bits, u32 flags)
5193 {
5194 	struct pci_bus *bus;
5195 	struct pci_dev *bridge;
5196 	u16 cmd;
5197 	int rc;
5198 
5199 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5200 
5201 	/* ARCH specific VGA enables */
5202 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5203 	if (rc)
5204 		return rc;
5205 
5206 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5207 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5208 		if (decode == true)
5209 			cmd |= command_bits;
5210 		else
5211 			cmd &= ~command_bits;
5212 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5213 	}
5214 
5215 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5216 		return 0;
5217 
5218 	bus = dev->bus;
5219 	while (bus) {
5220 		bridge = bus->self;
5221 		if (bridge) {
5222 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5223 					     &cmd);
5224 			if (decode == true)
5225 				cmd |= PCI_BRIDGE_CTL_VGA;
5226 			else
5227 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5228 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5229 					      cmd);
5230 		}
5231 		bus = bus->parent;
5232 	}
5233 	return 0;
5234 }
5235 
5236 /**
5237  * pci_add_dma_alias - Add a DMA devfn alias for a device
5238  * @dev: the PCI device for which alias is added
5239  * @devfn: alias slot and function
5240  *
5241  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5242  * It should be called early, preferably as PCI fixup header quirk.
5243  */
5244 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5245 {
5246 	if (!dev->dma_alias_mask)
5247 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5248 					      sizeof(long), GFP_KERNEL);
5249 	if (!dev->dma_alias_mask) {
5250 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5251 		return;
5252 	}
5253 
5254 	set_bit(devfn, dev->dma_alias_mask);
5255 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5256 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5257 }
5258 
5259 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5260 {
5261 	return (dev1->dma_alias_mask &&
5262 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5263 	       (dev2->dma_alias_mask &&
5264 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5265 }
5266 
5267 bool pci_device_is_present(struct pci_dev *pdev)
5268 {
5269 	u32 v;
5270 
5271 	if (pci_dev_is_disconnected(pdev))
5272 		return false;
5273 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5274 }
5275 EXPORT_SYMBOL_GPL(pci_device_is_present);
5276 
5277 void pci_ignore_hotplug(struct pci_dev *dev)
5278 {
5279 	struct pci_dev *bridge = dev->bus->self;
5280 
5281 	dev->ignore_hotplug = 1;
5282 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5283 	if (bridge)
5284 		bridge->ignore_hotplug = 1;
5285 }
5286 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5287 
5288 resource_size_t __weak pcibios_default_alignment(void)
5289 {
5290 	return 0;
5291 }
5292 
5293 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5294 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5295 static DEFINE_SPINLOCK(resource_alignment_lock);
5296 
5297 /**
5298  * pci_specified_resource_alignment - get resource alignment specified by user.
5299  * @dev: the PCI device to get
5300  * @resize: whether or not to change resources' size when reassigning alignment
5301  *
5302  * RETURNS: Resource alignment if it is specified.
5303  *          Zero if it is not specified.
5304  */
5305 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5306 							bool *resize)
5307 {
5308 	int seg, bus, slot, func, align_order, count;
5309 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5310 	resource_size_t align = pcibios_default_alignment();
5311 	char *p;
5312 
5313 	spin_lock(&resource_alignment_lock);
5314 	p = resource_alignment_param;
5315 	if (!*p && !align)
5316 		goto out;
5317 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5318 		align = 0;
5319 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5320 		goto out;
5321 	}
5322 
5323 	while (*p) {
5324 		count = 0;
5325 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5326 							p[count] == '@') {
5327 			p += count + 1;
5328 		} else {
5329 			align_order = -1;
5330 		}
5331 		if (strncmp(p, "pci:", 4) == 0) {
5332 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5333 			p += 4;
5334 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5335 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5336 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5337 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5338 						p);
5339 					break;
5340 				}
5341 				subsystem_vendor = subsystem_device = 0;
5342 			}
5343 			p += count;
5344 			if ((!vendor || (vendor == dev->vendor)) &&
5345 				(!device || (device == dev->device)) &&
5346 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5347 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5348 				*resize = true;
5349 				if (align_order == -1)
5350 					align = PAGE_SIZE;
5351 				else
5352 					align = 1 << align_order;
5353 				/* Found */
5354 				break;
5355 			}
5356 		}
5357 		else {
5358 			if (sscanf(p, "%x:%x:%x.%x%n",
5359 				&seg, &bus, &slot, &func, &count) != 4) {
5360 				seg = 0;
5361 				if (sscanf(p, "%x:%x.%x%n",
5362 						&bus, &slot, &func, &count) != 3) {
5363 					/* Invalid format */
5364 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5365 						p);
5366 					break;
5367 				}
5368 			}
5369 			p += count;
5370 			if (seg == pci_domain_nr(dev->bus) &&
5371 				bus == dev->bus->number &&
5372 				slot == PCI_SLOT(dev->devfn) &&
5373 				func == PCI_FUNC(dev->devfn)) {
5374 				*resize = true;
5375 				if (align_order == -1)
5376 					align = PAGE_SIZE;
5377 				else
5378 					align = 1 << align_order;
5379 				/* Found */
5380 				break;
5381 			}
5382 		}
5383 		if (*p != ';' && *p != ',') {
5384 			/* End of param or invalid format */
5385 			break;
5386 		}
5387 		p++;
5388 	}
5389 out:
5390 	spin_unlock(&resource_alignment_lock);
5391 	return align;
5392 }
5393 
5394 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5395 					   resource_size_t align, bool resize)
5396 {
5397 	struct resource *r = &dev->resource[bar];
5398 	resource_size_t size;
5399 
5400 	if (!(r->flags & IORESOURCE_MEM))
5401 		return;
5402 
5403 	if (r->flags & IORESOURCE_PCI_FIXED) {
5404 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5405 			 bar, r, (unsigned long long)align);
5406 		return;
5407 	}
5408 
5409 	size = resource_size(r);
5410 	if (size >= align)
5411 		return;
5412 
5413 	/*
5414 	 * Increase the alignment of the resource.  There are two ways we
5415 	 * can do this:
5416 	 *
5417 	 * 1) Increase the size of the resource.  BARs are aligned on their
5418 	 *    size, so when we reallocate space for this resource, we'll
5419 	 *    allocate it with the larger alignment.  This also prevents
5420 	 *    assignment of any other BARs inside the alignment region, so
5421 	 *    if we're requesting page alignment, this means no other BARs
5422 	 *    will share the page.
5423 	 *
5424 	 *    The disadvantage is that this makes the resource larger than
5425 	 *    the hardware BAR, which may break drivers that compute things
5426 	 *    based on the resource size, e.g., to find registers at a
5427 	 *    fixed offset before the end of the BAR.
5428 	 *
5429 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5430 	 *    set r->start to the desired alignment.  By itself this
5431 	 *    doesn't prevent other BARs being put inside the alignment
5432 	 *    region, but if we realign *every* resource of every device in
5433 	 *    the system, none of them will share an alignment region.
5434 	 *
5435 	 * When the user has requested alignment for only some devices via
5436 	 * the "pci=resource_alignment" argument, "resize" is true and we
5437 	 * use the first method.  Otherwise we assume we're aligning all
5438 	 * devices and we use the second.
5439 	 */
5440 
5441 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5442 		 bar, r, (unsigned long long)align);
5443 
5444 	if (resize) {
5445 		r->start = 0;
5446 		r->end = align - 1;
5447 	} else {
5448 		r->flags &= ~IORESOURCE_SIZEALIGN;
5449 		r->flags |= IORESOURCE_STARTALIGN;
5450 		r->start = align;
5451 		r->end = r->start + size - 1;
5452 	}
5453 	r->flags |= IORESOURCE_UNSET;
5454 }
5455 
5456 /*
5457  * This function disables memory decoding and releases memory resources
5458  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5459  * It also rounds up size to specified alignment.
5460  * Later on, the kernel will assign page-aligned memory resource back
5461  * to the device.
5462  */
5463 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5464 {
5465 	int i;
5466 	struct resource *r;
5467 	resource_size_t align;
5468 	u16 command;
5469 	bool resize = false;
5470 
5471 	/*
5472 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5473 	 * 3.4.1.11.  Their resources are allocated from the space
5474 	 * described by the VF BARx register in the PF's SR-IOV capability.
5475 	 * We can't influence their alignment here.
5476 	 */
5477 	if (dev->is_virtfn)
5478 		return;
5479 
5480 	/* check if specified PCI is target device to reassign */
5481 	align = pci_specified_resource_alignment(dev, &resize);
5482 	if (!align)
5483 		return;
5484 
5485 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5486 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5487 		pci_warn(dev, "Can't reassign resources to host bridge\n");
5488 		return;
5489 	}
5490 
5491 	pci_info(dev, "Disabling memory decoding and releasing memory resources\n");
5492 	pci_read_config_word(dev, PCI_COMMAND, &command);
5493 	command &= ~PCI_COMMAND_MEMORY;
5494 	pci_write_config_word(dev, PCI_COMMAND, command);
5495 
5496 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5497 		pci_request_resource_alignment(dev, i, align, resize);
5498 
5499 	/*
5500 	 * Need to disable bridge's resource window,
5501 	 * to enable the kernel to reassign new resource
5502 	 * window later on.
5503 	 */
5504 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5505 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5506 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5507 			r = &dev->resource[i];
5508 			if (!(r->flags & IORESOURCE_MEM))
5509 				continue;
5510 			r->flags |= IORESOURCE_UNSET;
5511 			r->end = resource_size(r) - 1;
5512 			r->start = 0;
5513 		}
5514 		pci_disable_bridge_window(dev);
5515 	}
5516 }
5517 
5518 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5519 {
5520 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5521 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5522 	spin_lock(&resource_alignment_lock);
5523 	strncpy(resource_alignment_param, buf, count);
5524 	resource_alignment_param[count] = '\0';
5525 	spin_unlock(&resource_alignment_lock);
5526 	return count;
5527 }
5528 
5529 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5530 {
5531 	size_t count;
5532 	spin_lock(&resource_alignment_lock);
5533 	count = snprintf(buf, size, "%s", resource_alignment_param);
5534 	spin_unlock(&resource_alignment_lock);
5535 	return count;
5536 }
5537 
5538 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5539 {
5540 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5541 }
5542 
5543 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5544 					const char *buf, size_t count)
5545 {
5546 	return pci_set_resource_alignment_param(buf, count);
5547 }
5548 
5549 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5550 					pci_resource_alignment_store);
5551 
5552 static int __init pci_resource_alignment_sysfs_init(void)
5553 {
5554 	return bus_create_file(&pci_bus_type,
5555 					&bus_attr_resource_alignment);
5556 }
5557 late_initcall(pci_resource_alignment_sysfs_init);
5558 
5559 static void pci_no_domains(void)
5560 {
5561 #ifdef CONFIG_PCI_DOMAINS
5562 	pci_domains_supported = 0;
5563 #endif
5564 }
5565 
5566 #ifdef CONFIG_PCI_DOMAINS
5567 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5568 
5569 int pci_get_new_domain_nr(void)
5570 {
5571 	return atomic_inc_return(&__domain_nr);
5572 }
5573 
5574 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5575 static int of_pci_bus_find_domain_nr(struct device *parent)
5576 {
5577 	static int use_dt_domains = -1;
5578 	int domain = -1;
5579 
5580 	if (parent)
5581 		domain = of_get_pci_domain_nr(parent->of_node);
5582 	/*
5583 	 * Check DT domain and use_dt_domains values.
5584 	 *
5585 	 * If DT domain property is valid (domain >= 0) and
5586 	 * use_dt_domains != 0, the DT assignment is valid since this means
5587 	 * we have not previously allocated a domain number by using
5588 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5589 	 * 1, to indicate that we have just assigned a domain number from
5590 	 * DT.
5591 	 *
5592 	 * If DT domain property value is not valid (ie domain < 0), and we
5593 	 * have not previously assigned a domain number from DT
5594 	 * (use_dt_domains != 1) we should assign a domain number by
5595 	 * using the:
5596 	 *
5597 	 * pci_get_new_domain_nr()
5598 	 *
5599 	 * API and update the use_dt_domains value to keep track of method we
5600 	 * are using to assign domain numbers (use_dt_domains = 0).
5601 	 *
5602 	 * All other combinations imply we have a platform that is trying
5603 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5604 	 * which is a recipe for domain mishandling and it is prevented by
5605 	 * invalidating the domain value (domain = -1) and printing a
5606 	 * corresponding error.
5607 	 */
5608 	if (domain >= 0 && use_dt_domains) {
5609 		use_dt_domains = 1;
5610 	} else if (domain < 0 && use_dt_domains != 1) {
5611 		use_dt_domains = 0;
5612 		domain = pci_get_new_domain_nr();
5613 	} else {
5614 		dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5615 			parent->of_node);
5616 		domain = -1;
5617 	}
5618 
5619 	return domain;
5620 }
5621 
5622 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5623 {
5624 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5625 			       acpi_pci_bus_find_domain_nr(bus);
5626 }
5627 #endif
5628 #endif
5629 
5630 /**
5631  * pci_ext_cfg_avail - can we access extended PCI config space?
5632  *
5633  * Returns 1 if we can access PCI extended config space (offsets
5634  * greater than 0xff). This is the default implementation. Architecture
5635  * implementations can override this.
5636  */
5637 int __weak pci_ext_cfg_avail(void)
5638 {
5639 	return 1;
5640 }
5641 
5642 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5643 {
5644 }
5645 EXPORT_SYMBOL(pci_fixup_cardbus);
5646 
5647 static int __init pci_setup(char *str)
5648 {
5649 	while (str) {
5650 		char *k = strchr(str, ',');
5651 		if (k)
5652 			*k++ = 0;
5653 		if (*str && (str = pcibios_setup(str)) && *str) {
5654 			if (!strcmp(str, "nomsi")) {
5655 				pci_no_msi();
5656 			} else if (!strcmp(str, "noaer")) {
5657 				pci_no_aer();
5658 			} else if (!strncmp(str, "realloc=", 8)) {
5659 				pci_realloc_get_opt(str + 8);
5660 			} else if (!strncmp(str, "realloc", 7)) {
5661 				pci_realloc_get_opt("on");
5662 			} else if (!strcmp(str, "nodomains")) {
5663 				pci_no_domains();
5664 			} else if (!strncmp(str, "noari", 5)) {
5665 				pcie_ari_disabled = true;
5666 			} else if (!strncmp(str, "cbiosize=", 9)) {
5667 				pci_cardbus_io_size = memparse(str + 9, &str);
5668 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5669 				pci_cardbus_mem_size = memparse(str + 10, &str);
5670 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5671 				pci_set_resource_alignment_param(str + 19,
5672 							strlen(str + 19));
5673 			} else if (!strncmp(str, "ecrc=", 5)) {
5674 				pcie_ecrc_get_policy(str + 5);
5675 			} else if (!strncmp(str, "hpiosize=", 9)) {
5676 				pci_hotplug_io_size = memparse(str + 9, &str);
5677 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5678 				pci_hotplug_mem_size = memparse(str + 10, &str);
5679 			} else if (!strncmp(str, "hpbussize=", 10)) {
5680 				pci_hotplug_bus_size =
5681 					simple_strtoul(str + 10, &str, 0);
5682 				if (pci_hotplug_bus_size > 0xff)
5683 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5684 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5685 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5686 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5687 				pcie_bus_config = PCIE_BUS_SAFE;
5688 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5689 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5690 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5691 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5692 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5693 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5694 			} else {
5695 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5696 						str);
5697 			}
5698 		}
5699 		str = k;
5700 	}
5701 	return 0;
5702 }
5703 early_param("pci", pci_setup);
5704