1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/pci-aspm.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pci-ats.h> 33 #include <asm/setup.h> 34 #include <asm/dma.h> 35 #include <linux/aer.h> 36 #include "pci.h" 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3_delay; 67 68 if (delay < pci_pm_d3_delay) 69 delay = pci_pm_d3_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 88 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 90 91 #define DEFAULT_HOTPLUG_BUS_SIZE 1 92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 93 94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 95 96 /* 97 * The default CLS is used if arch didn't set CLS explicitly and not 98 * all pci devices agree on the same value. Arch can override either 99 * the dfl or actual value as it sees fit. Don't forget this is 100 * measured in 32-bit words, not bytes. 101 */ 102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 103 u8 pci_cache_line_size; 104 105 /* 106 * If we set up a device for bus mastering, we need to check the latency 107 * timer as certain BIOSes forget to set it properly. 108 */ 109 unsigned int pcibios_max_latency = 255; 110 111 /* If set, the PCIe ARI capability will not be used. */ 112 static bool pcie_ari_disabled; 113 114 /* Disable bridge_d3 for all PCIe ports */ 115 static bool pci_bridge_d3_disable; 116 /* Force bridge_d3 for all PCIe ports */ 117 static bool pci_bridge_d3_force; 118 119 static int __init pcie_port_pm_setup(char *str) 120 { 121 if (!strcmp(str, "off")) 122 pci_bridge_d3_disable = true; 123 else if (!strcmp(str, "force")) 124 pci_bridge_d3_force = true; 125 return 1; 126 } 127 __setup("pcie_port_pm=", pcie_port_pm_setup); 128 129 /** 130 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 131 * @bus: pointer to PCI bus structure to search 132 * 133 * Given a PCI bus, returns the highest PCI bus number present in the set 134 * including the given PCI bus and its list of child PCI buses. 135 */ 136 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 137 { 138 struct pci_bus *tmp; 139 unsigned char max, n; 140 141 max = bus->busn_res.end; 142 list_for_each_entry(tmp, &bus->children, node) { 143 n = pci_bus_max_busnr(tmp); 144 if (n > max) 145 max = n; 146 } 147 return max; 148 } 149 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 150 151 #ifdef CONFIG_HAS_IOMEM 152 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 153 { 154 struct resource *res = &pdev->resource[bar]; 155 156 /* 157 * Make sure the BAR is actually a memory resource, not an IO resource 158 */ 159 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 160 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 161 return NULL; 162 } 163 return ioremap_nocache(res->start, resource_size(res)); 164 } 165 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 166 167 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 168 { 169 /* 170 * Make sure the BAR is actually a memory resource, not an IO resource 171 */ 172 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 173 WARN_ON(1); 174 return NULL; 175 } 176 return ioremap_wc(pci_resource_start(pdev, bar), 177 pci_resource_len(pdev, bar)); 178 } 179 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 180 #endif 181 182 183 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 184 u8 pos, int cap, int *ttl) 185 { 186 u8 id; 187 u16 ent; 188 189 pci_bus_read_config_byte(bus, devfn, pos, &pos); 190 191 while ((*ttl)--) { 192 if (pos < 0x40) 193 break; 194 pos &= ~3; 195 pci_bus_read_config_word(bus, devfn, pos, &ent); 196 197 id = ent & 0xff; 198 if (id == 0xff) 199 break; 200 if (id == cap) 201 return pos; 202 pos = (ent >> 8); 203 } 204 return 0; 205 } 206 207 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 208 u8 pos, int cap) 209 { 210 int ttl = PCI_FIND_CAP_TTL; 211 212 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 213 } 214 215 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 216 { 217 return __pci_find_next_cap(dev->bus, dev->devfn, 218 pos + PCI_CAP_LIST_NEXT, cap); 219 } 220 EXPORT_SYMBOL_GPL(pci_find_next_capability); 221 222 static int __pci_bus_find_cap_start(struct pci_bus *bus, 223 unsigned int devfn, u8 hdr_type) 224 { 225 u16 status; 226 227 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 228 if (!(status & PCI_STATUS_CAP_LIST)) 229 return 0; 230 231 switch (hdr_type) { 232 case PCI_HEADER_TYPE_NORMAL: 233 case PCI_HEADER_TYPE_BRIDGE: 234 return PCI_CAPABILITY_LIST; 235 case PCI_HEADER_TYPE_CARDBUS: 236 return PCI_CB_CAPABILITY_LIST; 237 } 238 239 return 0; 240 } 241 242 /** 243 * pci_find_capability - query for devices' capabilities 244 * @dev: PCI device to query 245 * @cap: capability code 246 * 247 * Tell if a device supports a given PCI capability. 248 * Returns the address of the requested capability structure within the 249 * device's PCI configuration space or 0 in case the device does not 250 * support it. Possible values for @cap: 251 * 252 * %PCI_CAP_ID_PM Power Management 253 * %PCI_CAP_ID_AGP Accelerated Graphics Port 254 * %PCI_CAP_ID_VPD Vital Product Data 255 * %PCI_CAP_ID_SLOTID Slot Identification 256 * %PCI_CAP_ID_MSI Message Signalled Interrupts 257 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 258 * %PCI_CAP_ID_PCIX PCI-X 259 * %PCI_CAP_ID_EXP PCI Express 260 */ 261 int pci_find_capability(struct pci_dev *dev, int cap) 262 { 263 int pos; 264 265 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 266 if (pos) 267 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 268 269 return pos; 270 } 271 EXPORT_SYMBOL(pci_find_capability); 272 273 /** 274 * pci_bus_find_capability - query for devices' capabilities 275 * @bus: the PCI bus to query 276 * @devfn: PCI device to query 277 * @cap: capability code 278 * 279 * Like pci_find_capability() but works for pci devices that do not have a 280 * pci_dev structure set up yet. 281 * 282 * Returns the address of the requested capability structure within the 283 * device's PCI configuration space or 0 in case the device does not 284 * support it. 285 */ 286 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 287 { 288 int pos; 289 u8 hdr_type; 290 291 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 292 293 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 294 if (pos) 295 pos = __pci_find_next_cap(bus, devfn, pos, cap); 296 297 return pos; 298 } 299 EXPORT_SYMBOL(pci_bus_find_capability); 300 301 /** 302 * pci_find_next_ext_capability - Find an extended capability 303 * @dev: PCI device to query 304 * @start: address at which to start looking (0 to start at beginning of list) 305 * @cap: capability code 306 * 307 * Returns the address of the next matching extended capability structure 308 * within the device's PCI configuration space or 0 if the device does 309 * not support it. Some capabilities can occur several times, e.g., the 310 * vendor-specific capability, and this provides a way to find them all. 311 */ 312 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 313 { 314 u32 header; 315 int ttl; 316 int pos = PCI_CFG_SPACE_SIZE; 317 318 /* minimum 8 bytes per capability */ 319 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 320 321 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 322 return 0; 323 324 if (start) 325 pos = start; 326 327 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 328 return 0; 329 330 /* 331 * If we have no capabilities, this is indicated by cap ID, 332 * cap version and next pointer all being 0. 333 */ 334 if (header == 0) 335 return 0; 336 337 while (ttl-- > 0) { 338 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 339 return pos; 340 341 pos = PCI_EXT_CAP_NEXT(header); 342 if (pos < PCI_CFG_SPACE_SIZE) 343 break; 344 345 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 346 break; 347 } 348 349 return 0; 350 } 351 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 352 353 /** 354 * pci_find_ext_capability - Find an extended capability 355 * @dev: PCI device to query 356 * @cap: capability code 357 * 358 * Returns the address of the requested extended capability structure 359 * within the device's PCI configuration space or 0 if the device does 360 * not support it. Possible values for @cap: 361 * 362 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 363 * %PCI_EXT_CAP_ID_VC Virtual Channel 364 * %PCI_EXT_CAP_ID_DSN Device Serial Number 365 * %PCI_EXT_CAP_ID_PWR Power Budgeting 366 */ 367 int pci_find_ext_capability(struct pci_dev *dev, int cap) 368 { 369 return pci_find_next_ext_capability(dev, 0, cap); 370 } 371 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 372 373 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 374 { 375 int rc, ttl = PCI_FIND_CAP_TTL; 376 u8 cap, mask; 377 378 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 379 mask = HT_3BIT_CAP_MASK; 380 else 381 mask = HT_5BIT_CAP_MASK; 382 383 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 384 PCI_CAP_ID_HT, &ttl); 385 while (pos) { 386 rc = pci_read_config_byte(dev, pos + 3, &cap); 387 if (rc != PCIBIOS_SUCCESSFUL) 388 return 0; 389 390 if ((cap & mask) == ht_cap) 391 return pos; 392 393 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 394 pos + PCI_CAP_LIST_NEXT, 395 PCI_CAP_ID_HT, &ttl); 396 } 397 398 return 0; 399 } 400 /** 401 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 402 * @dev: PCI device to query 403 * @pos: Position from which to continue searching 404 * @ht_cap: Hypertransport capability code 405 * 406 * To be used in conjunction with pci_find_ht_capability() to search for 407 * all capabilities matching @ht_cap. @pos should always be a value returned 408 * from pci_find_ht_capability(). 409 * 410 * NB. To be 100% safe against broken PCI devices, the caller should take 411 * steps to avoid an infinite loop. 412 */ 413 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 414 { 415 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 416 } 417 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 418 419 /** 420 * pci_find_ht_capability - query a device's Hypertransport capabilities 421 * @dev: PCI device to query 422 * @ht_cap: Hypertransport capability code 423 * 424 * Tell if a device supports a given Hypertransport capability. 425 * Returns an address within the device's PCI configuration space 426 * or 0 in case the device does not support the request capability. 427 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 428 * which has a Hypertransport capability matching @ht_cap. 429 */ 430 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 431 { 432 int pos; 433 434 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 435 if (pos) 436 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 437 438 return pos; 439 } 440 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 441 442 /** 443 * pci_find_parent_resource - return resource region of parent bus of given region 444 * @dev: PCI device structure contains resources to be searched 445 * @res: child resource record for which parent is sought 446 * 447 * For given resource region of given device, return the resource 448 * region of parent bus the given region is contained in. 449 */ 450 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 451 struct resource *res) 452 { 453 const struct pci_bus *bus = dev->bus; 454 struct resource *r; 455 int i; 456 457 pci_bus_for_each_resource(bus, r, i) { 458 if (!r) 459 continue; 460 if (resource_contains(r, res)) { 461 462 /* 463 * If the window is prefetchable but the BAR is 464 * not, the allocator made a mistake. 465 */ 466 if (r->flags & IORESOURCE_PREFETCH && 467 !(res->flags & IORESOURCE_PREFETCH)) 468 return NULL; 469 470 /* 471 * If we're below a transparent bridge, there may 472 * be both a positively-decoded aperture and a 473 * subtractively-decoded region that contain the BAR. 474 * We want the positively-decoded one, so this depends 475 * on pci_bus_for_each_resource() giving us those 476 * first. 477 */ 478 return r; 479 } 480 } 481 return NULL; 482 } 483 EXPORT_SYMBOL(pci_find_parent_resource); 484 485 /** 486 * pci_find_resource - Return matching PCI device resource 487 * @dev: PCI device to query 488 * @res: Resource to look for 489 * 490 * Goes over standard PCI resources (BARs) and checks if the given resource 491 * is partially or fully contained in any of them. In that case the 492 * matching resource is returned, %NULL otherwise. 493 */ 494 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 495 { 496 int i; 497 498 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 499 struct resource *r = &dev->resource[i]; 500 501 if (r->start && resource_contains(r, res)) 502 return r; 503 } 504 505 return NULL; 506 } 507 EXPORT_SYMBOL(pci_find_resource); 508 509 /** 510 * pci_find_pcie_root_port - return PCIe Root Port 511 * @dev: PCI device to query 512 * 513 * Traverse up the parent chain and return the PCIe Root Port PCI Device 514 * for a given PCI Device. 515 */ 516 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 517 { 518 struct pci_dev *bridge, *highest_pcie_bridge = dev; 519 520 bridge = pci_upstream_bridge(dev); 521 while (bridge && pci_is_pcie(bridge)) { 522 highest_pcie_bridge = bridge; 523 bridge = pci_upstream_bridge(bridge); 524 } 525 526 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 527 return NULL; 528 529 return highest_pcie_bridge; 530 } 531 EXPORT_SYMBOL(pci_find_pcie_root_port); 532 533 /** 534 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 535 * @dev: the PCI device to operate on 536 * @pos: config space offset of status word 537 * @mask: mask of bit(s) to care about in status word 538 * 539 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 540 */ 541 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 542 { 543 int i; 544 545 /* Wait for Transaction Pending bit clean */ 546 for (i = 0; i < 4; i++) { 547 u16 status; 548 if (i) 549 msleep((1 << (i - 1)) * 100); 550 551 pci_read_config_word(dev, pos, &status); 552 if (!(status & mask)) 553 return 1; 554 } 555 556 return 0; 557 } 558 559 /** 560 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 561 * @dev: PCI device to have its BARs restored 562 * 563 * Restore the BAR values for a given device, so as to make it 564 * accessible by its driver. 565 */ 566 static void pci_restore_bars(struct pci_dev *dev) 567 { 568 int i; 569 570 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 571 pci_update_resource(dev, i); 572 } 573 574 static const struct pci_platform_pm_ops *pci_platform_pm; 575 576 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 577 { 578 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 579 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 580 return -EINVAL; 581 pci_platform_pm = ops; 582 return 0; 583 } 584 585 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 586 { 587 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 588 } 589 590 static inline int platform_pci_set_power_state(struct pci_dev *dev, 591 pci_power_t t) 592 { 593 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 594 } 595 596 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 597 { 598 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 599 } 600 601 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 602 { 603 return pci_platform_pm ? 604 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 605 } 606 607 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 608 { 609 return pci_platform_pm ? 610 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 611 } 612 613 static inline bool platform_pci_need_resume(struct pci_dev *dev) 614 { 615 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 616 } 617 618 /** 619 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 620 * given PCI device 621 * @dev: PCI device to handle. 622 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 623 * 624 * RETURN VALUE: 625 * -EINVAL if the requested state is invalid. 626 * -EIO if device does not support PCI PM or its PM capabilities register has a 627 * wrong version, or device doesn't support the requested state. 628 * 0 if device already is in the requested state. 629 * 0 if device's power state has been successfully changed. 630 */ 631 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 632 { 633 u16 pmcsr; 634 bool need_restore = false; 635 636 /* Check if we're already there */ 637 if (dev->current_state == state) 638 return 0; 639 640 if (!dev->pm_cap) 641 return -EIO; 642 643 if (state < PCI_D0 || state > PCI_D3hot) 644 return -EINVAL; 645 646 /* Validate current state: 647 * Can enter D0 from any state, but if we can only go deeper 648 * to sleep if we're already in a low power state 649 */ 650 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 651 && dev->current_state > state) { 652 pci_err(dev, "invalid power transition (from state %d to %d)\n", 653 dev->current_state, state); 654 return -EINVAL; 655 } 656 657 /* check if this device supports the desired state */ 658 if ((state == PCI_D1 && !dev->d1_support) 659 || (state == PCI_D2 && !dev->d2_support)) 660 return -EIO; 661 662 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 663 664 /* If we're (effectively) in D3, force entire word to 0. 665 * This doesn't affect PME_Status, disables PME_En, and 666 * sets PowerState to 0. 667 */ 668 switch (dev->current_state) { 669 case PCI_D0: 670 case PCI_D1: 671 case PCI_D2: 672 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 673 pmcsr |= state; 674 break; 675 case PCI_D3hot: 676 case PCI_D3cold: 677 case PCI_UNKNOWN: /* Boot-up */ 678 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 679 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 680 need_restore = true; 681 /* Fall-through: force to D0 */ 682 default: 683 pmcsr = 0; 684 break; 685 } 686 687 /* enter specified state */ 688 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 689 690 /* Mandatory power management transition delays */ 691 /* see PCI PM 1.1 5.6.1 table 18 */ 692 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 693 pci_dev_d3_sleep(dev); 694 else if (state == PCI_D2 || dev->current_state == PCI_D2) 695 udelay(PCI_PM_D2_DELAY); 696 697 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 698 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 699 if (dev->current_state != state && printk_ratelimit()) 700 pci_info(dev, "Refused to change power state, currently in D%d\n", 701 dev->current_state); 702 703 /* 704 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 705 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 706 * from D3hot to D0 _may_ perform an internal reset, thereby 707 * going to "D0 Uninitialized" rather than "D0 Initialized". 708 * For example, at least some versions of the 3c905B and the 709 * 3c556B exhibit this behaviour. 710 * 711 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 712 * devices in a D3hot state at boot. Consequently, we need to 713 * restore at least the BARs so that the device will be 714 * accessible to its driver. 715 */ 716 if (need_restore) 717 pci_restore_bars(dev); 718 719 if (dev->bus->self) 720 pcie_aspm_pm_state_change(dev->bus->self); 721 722 return 0; 723 } 724 725 /** 726 * pci_update_current_state - Read power state of given device and cache it 727 * @dev: PCI device to handle. 728 * @state: State to cache in case the device doesn't have the PM capability 729 * 730 * The power state is read from the PMCSR register, which however is 731 * inaccessible in D3cold. The platform firmware is therefore queried first 732 * to detect accessibility of the register. In case the platform firmware 733 * reports an incorrect state or the device isn't power manageable by the 734 * platform at all, we try to detect D3cold by testing accessibility of the 735 * vendor ID in config space. 736 */ 737 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 738 { 739 if (platform_pci_get_power_state(dev) == PCI_D3cold || 740 !pci_device_is_present(dev)) { 741 dev->current_state = PCI_D3cold; 742 } else if (dev->pm_cap) { 743 u16 pmcsr; 744 745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 747 } else { 748 dev->current_state = state; 749 } 750 } 751 752 /** 753 * pci_power_up - Put the given device into D0 forcibly 754 * @dev: PCI device to power up 755 */ 756 void pci_power_up(struct pci_dev *dev) 757 { 758 if (platform_pci_power_manageable(dev)) 759 platform_pci_set_power_state(dev, PCI_D0); 760 761 pci_raw_set_power_state(dev, PCI_D0); 762 pci_update_current_state(dev, PCI_D0); 763 } 764 765 /** 766 * pci_platform_power_transition - Use platform to change device power state 767 * @dev: PCI device to handle. 768 * @state: State to put the device into. 769 */ 770 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 771 { 772 int error; 773 774 if (platform_pci_power_manageable(dev)) { 775 error = platform_pci_set_power_state(dev, state); 776 if (!error) 777 pci_update_current_state(dev, state); 778 } else 779 error = -ENODEV; 780 781 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 782 dev->current_state = PCI_D0; 783 784 return error; 785 } 786 787 /** 788 * pci_wakeup - Wake up a PCI device 789 * @pci_dev: Device to handle. 790 * @ign: ignored parameter 791 */ 792 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 793 { 794 pci_wakeup_event(pci_dev); 795 pm_request_resume(&pci_dev->dev); 796 return 0; 797 } 798 799 /** 800 * pci_wakeup_bus - Walk given bus and wake up devices on it 801 * @bus: Top bus of the subtree to walk. 802 */ 803 static void pci_wakeup_bus(struct pci_bus *bus) 804 { 805 if (bus) 806 pci_walk_bus(bus, pci_wakeup, NULL); 807 } 808 809 /** 810 * __pci_start_power_transition - Start power transition of a PCI device 811 * @dev: PCI device to handle. 812 * @state: State to put the device into. 813 */ 814 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 815 { 816 if (state == PCI_D0) { 817 pci_platform_power_transition(dev, PCI_D0); 818 /* 819 * Mandatory power management transition delays, see 820 * PCI Express Base Specification Revision 2.0 Section 821 * 6.6.1: Conventional Reset. Do not delay for 822 * devices powered on/off by corresponding bridge, 823 * because have already delayed for the bridge. 824 */ 825 if (dev->runtime_d3cold) { 826 if (dev->d3cold_delay) 827 msleep(dev->d3cold_delay); 828 /* 829 * When powering on a bridge from D3cold, the 830 * whole hierarchy may be powered on into 831 * D0uninitialized state, resume them to give 832 * them a chance to suspend again 833 */ 834 pci_wakeup_bus(dev->subordinate); 835 } 836 } 837 } 838 839 /** 840 * __pci_dev_set_current_state - Set current state of a PCI device 841 * @dev: Device to handle 842 * @data: pointer to state to be set 843 */ 844 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 845 { 846 pci_power_t state = *(pci_power_t *)data; 847 848 dev->current_state = state; 849 return 0; 850 } 851 852 /** 853 * __pci_bus_set_current_state - Walk given bus and set current state of devices 854 * @bus: Top bus of the subtree to walk. 855 * @state: state to be set 856 */ 857 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 858 { 859 if (bus) 860 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 861 } 862 863 /** 864 * __pci_complete_power_transition - Complete power transition of a PCI device 865 * @dev: PCI device to handle. 866 * @state: State to put the device into. 867 * 868 * This function should not be called directly by device drivers. 869 */ 870 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 871 { 872 int ret; 873 874 if (state <= PCI_D0) 875 return -EINVAL; 876 ret = pci_platform_power_transition(dev, state); 877 /* Power off the bridge may power off the whole hierarchy */ 878 if (!ret && state == PCI_D3cold) 879 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 880 return ret; 881 } 882 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 883 884 /** 885 * pci_set_power_state - Set the power state of a PCI device 886 * @dev: PCI device to handle. 887 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 888 * 889 * Transition a device to a new power state, using the platform firmware and/or 890 * the device's PCI PM registers. 891 * 892 * RETURN VALUE: 893 * -EINVAL if the requested state is invalid. 894 * -EIO if device does not support PCI PM or its PM capabilities register has a 895 * wrong version, or device doesn't support the requested state. 896 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 897 * 0 if device already is in the requested state. 898 * 0 if the transition is to D3 but D3 is not supported. 899 * 0 if device's power state has been successfully changed. 900 */ 901 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 902 { 903 int error; 904 905 /* bound the state we're entering */ 906 if (state > PCI_D3cold) 907 state = PCI_D3cold; 908 else if (state < PCI_D0) 909 state = PCI_D0; 910 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 911 /* 912 * If the device or the parent bridge do not support PCI PM, 913 * ignore the request if we're doing anything other than putting 914 * it into D0 (which would only happen on boot). 915 */ 916 return 0; 917 918 /* Check if we're already there */ 919 if (dev->current_state == state) 920 return 0; 921 922 __pci_start_power_transition(dev, state); 923 924 /* This device is quirked not to be put into D3, so 925 don't put it in D3 */ 926 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 927 return 0; 928 929 /* 930 * To put device in D3cold, we put device into D3hot in native 931 * way, then put device into D3cold with platform ops 932 */ 933 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 934 PCI_D3hot : state); 935 936 if (!__pci_complete_power_transition(dev, state)) 937 error = 0; 938 939 return error; 940 } 941 EXPORT_SYMBOL(pci_set_power_state); 942 943 /** 944 * pci_choose_state - Choose the power state of a PCI device 945 * @dev: PCI device to be suspended 946 * @state: target sleep state for the whole system. This is the value 947 * that is passed to suspend() function. 948 * 949 * Returns PCI power state suitable for given device and given system 950 * message. 951 */ 952 953 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 954 { 955 pci_power_t ret; 956 957 if (!dev->pm_cap) 958 return PCI_D0; 959 960 ret = platform_pci_choose_state(dev); 961 if (ret != PCI_POWER_ERROR) 962 return ret; 963 964 switch (state.event) { 965 case PM_EVENT_ON: 966 return PCI_D0; 967 case PM_EVENT_FREEZE: 968 case PM_EVENT_PRETHAW: 969 /* REVISIT both freeze and pre-thaw "should" use D0 */ 970 case PM_EVENT_SUSPEND: 971 case PM_EVENT_HIBERNATE: 972 return PCI_D3hot; 973 default: 974 pci_info(dev, "unrecognized suspend event %d\n", 975 state.event); 976 BUG(); 977 } 978 return PCI_D0; 979 } 980 EXPORT_SYMBOL(pci_choose_state); 981 982 #define PCI_EXP_SAVE_REGS 7 983 984 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 985 u16 cap, bool extended) 986 { 987 struct pci_cap_saved_state *tmp; 988 989 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 990 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 991 return tmp; 992 } 993 return NULL; 994 } 995 996 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 997 { 998 return _pci_find_saved_cap(dev, cap, false); 999 } 1000 1001 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1002 { 1003 return _pci_find_saved_cap(dev, cap, true); 1004 } 1005 1006 static int pci_save_pcie_state(struct pci_dev *dev) 1007 { 1008 int i = 0; 1009 struct pci_cap_saved_state *save_state; 1010 u16 *cap; 1011 1012 if (!pci_is_pcie(dev)) 1013 return 0; 1014 1015 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1016 if (!save_state) { 1017 pci_err(dev, "buffer not found in %s\n", __func__); 1018 return -ENOMEM; 1019 } 1020 1021 cap = (u16 *)&save_state->cap.data[0]; 1022 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1023 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1024 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1025 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1029 1030 return 0; 1031 } 1032 1033 static void pci_restore_pcie_state(struct pci_dev *dev) 1034 { 1035 int i = 0; 1036 struct pci_cap_saved_state *save_state; 1037 u16 *cap; 1038 1039 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1040 if (!save_state) 1041 return; 1042 1043 cap = (u16 *)&save_state->cap.data[0]; 1044 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1045 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1046 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1047 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1051 } 1052 1053 1054 static int pci_save_pcix_state(struct pci_dev *dev) 1055 { 1056 int pos; 1057 struct pci_cap_saved_state *save_state; 1058 1059 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1060 if (!pos) 1061 return 0; 1062 1063 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1064 if (!save_state) { 1065 pci_err(dev, "buffer not found in %s\n", __func__); 1066 return -ENOMEM; 1067 } 1068 1069 pci_read_config_word(dev, pos + PCI_X_CMD, 1070 (u16 *)save_state->cap.data); 1071 1072 return 0; 1073 } 1074 1075 static void pci_restore_pcix_state(struct pci_dev *dev) 1076 { 1077 int i = 0, pos; 1078 struct pci_cap_saved_state *save_state; 1079 u16 *cap; 1080 1081 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1082 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1083 if (!save_state || !pos) 1084 return; 1085 cap = (u16 *)&save_state->cap.data[0]; 1086 1087 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1088 } 1089 1090 1091 /** 1092 * pci_save_state - save the PCI configuration space of a device before suspending 1093 * @dev: - PCI device that we're dealing with 1094 */ 1095 int pci_save_state(struct pci_dev *dev) 1096 { 1097 int i; 1098 /* XXX: 100% dword access ok here? */ 1099 for (i = 0; i < 16; i++) 1100 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1101 dev->state_saved = true; 1102 1103 i = pci_save_pcie_state(dev); 1104 if (i != 0) 1105 return i; 1106 1107 i = pci_save_pcix_state(dev); 1108 if (i != 0) 1109 return i; 1110 1111 return pci_save_vc_state(dev); 1112 } 1113 EXPORT_SYMBOL(pci_save_state); 1114 1115 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1116 u32 saved_val, int retry) 1117 { 1118 u32 val; 1119 1120 pci_read_config_dword(pdev, offset, &val); 1121 if (val == saved_val) 1122 return; 1123 1124 for (;;) { 1125 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1126 offset, val, saved_val); 1127 pci_write_config_dword(pdev, offset, saved_val); 1128 if (retry-- <= 0) 1129 return; 1130 1131 pci_read_config_dword(pdev, offset, &val); 1132 if (val == saved_val) 1133 return; 1134 1135 mdelay(1); 1136 } 1137 } 1138 1139 static void pci_restore_config_space_range(struct pci_dev *pdev, 1140 int start, int end, int retry) 1141 { 1142 int index; 1143 1144 for (index = end; index >= start; index--) 1145 pci_restore_config_dword(pdev, 4 * index, 1146 pdev->saved_config_space[index], 1147 retry); 1148 } 1149 1150 static void pci_restore_config_space(struct pci_dev *pdev) 1151 { 1152 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1153 pci_restore_config_space_range(pdev, 10, 15, 0); 1154 /* Restore BARs before the command register. */ 1155 pci_restore_config_space_range(pdev, 4, 9, 10); 1156 pci_restore_config_space_range(pdev, 0, 3, 0); 1157 } else { 1158 pci_restore_config_space_range(pdev, 0, 15, 0); 1159 } 1160 } 1161 1162 /** 1163 * pci_restore_state - Restore the saved state of a PCI device 1164 * @dev: - PCI device that we're dealing with 1165 */ 1166 void pci_restore_state(struct pci_dev *dev) 1167 { 1168 if (!dev->state_saved) 1169 return; 1170 1171 /* PCI Express register must be restored first */ 1172 pci_restore_pcie_state(dev); 1173 pci_restore_pasid_state(dev); 1174 pci_restore_pri_state(dev); 1175 pci_restore_ats_state(dev); 1176 pci_restore_vc_state(dev); 1177 1178 pci_cleanup_aer_error_status_regs(dev); 1179 1180 pci_restore_config_space(dev); 1181 1182 pci_restore_pcix_state(dev); 1183 pci_restore_msi_state(dev); 1184 1185 /* Restore ACS and IOV configuration state */ 1186 pci_enable_acs(dev); 1187 pci_restore_iov_state(dev); 1188 1189 dev->state_saved = false; 1190 } 1191 EXPORT_SYMBOL(pci_restore_state); 1192 1193 struct pci_saved_state { 1194 u32 config_space[16]; 1195 struct pci_cap_saved_data cap[0]; 1196 }; 1197 1198 /** 1199 * pci_store_saved_state - Allocate and return an opaque struct containing 1200 * the device saved state. 1201 * @dev: PCI device that we're dealing with 1202 * 1203 * Return NULL if no state or error. 1204 */ 1205 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1206 { 1207 struct pci_saved_state *state; 1208 struct pci_cap_saved_state *tmp; 1209 struct pci_cap_saved_data *cap; 1210 size_t size; 1211 1212 if (!dev->state_saved) 1213 return NULL; 1214 1215 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1216 1217 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1218 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1219 1220 state = kzalloc(size, GFP_KERNEL); 1221 if (!state) 1222 return NULL; 1223 1224 memcpy(state->config_space, dev->saved_config_space, 1225 sizeof(state->config_space)); 1226 1227 cap = state->cap; 1228 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1229 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1230 memcpy(cap, &tmp->cap, len); 1231 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1232 } 1233 /* Empty cap_save terminates list */ 1234 1235 return state; 1236 } 1237 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1238 1239 /** 1240 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1241 * @dev: PCI device that we're dealing with 1242 * @state: Saved state returned from pci_store_saved_state() 1243 */ 1244 int pci_load_saved_state(struct pci_dev *dev, 1245 struct pci_saved_state *state) 1246 { 1247 struct pci_cap_saved_data *cap; 1248 1249 dev->state_saved = false; 1250 1251 if (!state) 1252 return 0; 1253 1254 memcpy(dev->saved_config_space, state->config_space, 1255 sizeof(state->config_space)); 1256 1257 cap = state->cap; 1258 while (cap->size) { 1259 struct pci_cap_saved_state *tmp; 1260 1261 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1262 if (!tmp || tmp->cap.size != cap->size) 1263 return -EINVAL; 1264 1265 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1266 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1267 sizeof(struct pci_cap_saved_data) + cap->size); 1268 } 1269 1270 dev->state_saved = true; 1271 return 0; 1272 } 1273 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1274 1275 /** 1276 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1277 * and free the memory allocated for it. 1278 * @dev: PCI device that we're dealing with 1279 * @state: Pointer to saved state returned from pci_store_saved_state() 1280 */ 1281 int pci_load_and_free_saved_state(struct pci_dev *dev, 1282 struct pci_saved_state **state) 1283 { 1284 int ret = pci_load_saved_state(dev, *state); 1285 kfree(*state); 1286 *state = NULL; 1287 return ret; 1288 } 1289 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1290 1291 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1292 { 1293 return pci_enable_resources(dev, bars); 1294 } 1295 1296 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1297 { 1298 int err; 1299 struct pci_dev *bridge; 1300 u16 cmd; 1301 u8 pin; 1302 1303 err = pci_set_power_state(dev, PCI_D0); 1304 if (err < 0 && err != -EIO) 1305 return err; 1306 1307 bridge = pci_upstream_bridge(dev); 1308 if (bridge) 1309 pcie_aspm_powersave_config_link(bridge); 1310 1311 err = pcibios_enable_device(dev, bars); 1312 if (err < 0) 1313 return err; 1314 pci_fixup_device(pci_fixup_enable, dev); 1315 1316 if (dev->msi_enabled || dev->msix_enabled) 1317 return 0; 1318 1319 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1320 if (pin) { 1321 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1322 if (cmd & PCI_COMMAND_INTX_DISABLE) 1323 pci_write_config_word(dev, PCI_COMMAND, 1324 cmd & ~PCI_COMMAND_INTX_DISABLE); 1325 } 1326 1327 return 0; 1328 } 1329 1330 /** 1331 * pci_reenable_device - Resume abandoned device 1332 * @dev: PCI device to be resumed 1333 * 1334 * Note this function is a backend of pci_default_resume and is not supposed 1335 * to be called by normal code, write proper resume handler and use it instead. 1336 */ 1337 int pci_reenable_device(struct pci_dev *dev) 1338 { 1339 if (pci_is_enabled(dev)) 1340 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1341 return 0; 1342 } 1343 EXPORT_SYMBOL(pci_reenable_device); 1344 1345 static void pci_enable_bridge(struct pci_dev *dev) 1346 { 1347 struct pci_dev *bridge; 1348 int retval; 1349 1350 bridge = pci_upstream_bridge(dev); 1351 if (bridge) 1352 pci_enable_bridge(bridge); 1353 1354 if (pci_is_enabled(dev)) { 1355 if (!dev->is_busmaster) 1356 pci_set_master(dev); 1357 return; 1358 } 1359 1360 retval = pci_enable_device(dev); 1361 if (retval) 1362 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1363 retval); 1364 pci_set_master(dev); 1365 } 1366 1367 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1368 { 1369 struct pci_dev *bridge; 1370 int err; 1371 int i, bars = 0; 1372 1373 /* 1374 * Power state could be unknown at this point, either due to a fresh 1375 * boot or a device removal call. So get the current power state 1376 * so that things like MSI message writing will behave as expected 1377 * (e.g. if the device really is in D0 at enable time). 1378 */ 1379 if (dev->pm_cap) { 1380 u16 pmcsr; 1381 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1382 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1383 } 1384 1385 if (atomic_inc_return(&dev->enable_cnt) > 1) 1386 return 0; /* already enabled */ 1387 1388 bridge = pci_upstream_bridge(dev); 1389 if (bridge) 1390 pci_enable_bridge(bridge); 1391 1392 /* only skip sriov related */ 1393 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1394 if (dev->resource[i].flags & flags) 1395 bars |= (1 << i); 1396 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1397 if (dev->resource[i].flags & flags) 1398 bars |= (1 << i); 1399 1400 err = do_pci_enable_device(dev, bars); 1401 if (err < 0) 1402 atomic_dec(&dev->enable_cnt); 1403 return err; 1404 } 1405 1406 /** 1407 * pci_enable_device_io - Initialize a device for use with IO space 1408 * @dev: PCI device to be initialized 1409 * 1410 * Initialize device before it's used by a driver. Ask low-level code 1411 * to enable I/O resources. Wake up the device if it was suspended. 1412 * Beware, this function can fail. 1413 */ 1414 int pci_enable_device_io(struct pci_dev *dev) 1415 { 1416 return pci_enable_device_flags(dev, IORESOURCE_IO); 1417 } 1418 EXPORT_SYMBOL(pci_enable_device_io); 1419 1420 /** 1421 * pci_enable_device_mem - Initialize a device for use with Memory space 1422 * @dev: PCI device to be initialized 1423 * 1424 * Initialize device before it's used by a driver. Ask low-level code 1425 * to enable Memory resources. Wake up the device if it was suspended. 1426 * Beware, this function can fail. 1427 */ 1428 int pci_enable_device_mem(struct pci_dev *dev) 1429 { 1430 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1431 } 1432 EXPORT_SYMBOL(pci_enable_device_mem); 1433 1434 /** 1435 * pci_enable_device - Initialize device before it's used by a driver. 1436 * @dev: PCI device to be initialized 1437 * 1438 * Initialize device before it's used by a driver. Ask low-level code 1439 * to enable I/O and memory. Wake up the device if it was suspended. 1440 * Beware, this function can fail. 1441 * 1442 * Note we don't actually enable the device many times if we call 1443 * this function repeatedly (we just increment the count). 1444 */ 1445 int pci_enable_device(struct pci_dev *dev) 1446 { 1447 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1448 } 1449 EXPORT_SYMBOL(pci_enable_device); 1450 1451 /* 1452 * Managed PCI resources. This manages device on/off, intx/msi/msix 1453 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1454 * there's no need to track it separately. pci_devres is initialized 1455 * when a device is enabled using managed PCI device enable interface. 1456 */ 1457 struct pci_devres { 1458 unsigned int enabled:1; 1459 unsigned int pinned:1; 1460 unsigned int orig_intx:1; 1461 unsigned int restore_intx:1; 1462 unsigned int mwi:1; 1463 u32 region_mask; 1464 }; 1465 1466 static void pcim_release(struct device *gendev, void *res) 1467 { 1468 struct pci_dev *dev = to_pci_dev(gendev); 1469 struct pci_devres *this = res; 1470 int i; 1471 1472 if (dev->msi_enabled) 1473 pci_disable_msi(dev); 1474 if (dev->msix_enabled) 1475 pci_disable_msix(dev); 1476 1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1478 if (this->region_mask & (1 << i)) 1479 pci_release_region(dev, i); 1480 1481 if (this->mwi) 1482 pci_clear_mwi(dev); 1483 1484 if (this->restore_intx) 1485 pci_intx(dev, this->orig_intx); 1486 1487 if (this->enabled && !this->pinned) 1488 pci_disable_device(dev); 1489 } 1490 1491 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1492 { 1493 struct pci_devres *dr, *new_dr; 1494 1495 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1496 if (dr) 1497 return dr; 1498 1499 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1500 if (!new_dr) 1501 return NULL; 1502 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1503 } 1504 1505 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1506 { 1507 if (pci_is_managed(pdev)) 1508 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1509 return NULL; 1510 } 1511 1512 /** 1513 * pcim_enable_device - Managed pci_enable_device() 1514 * @pdev: PCI device to be initialized 1515 * 1516 * Managed pci_enable_device(). 1517 */ 1518 int pcim_enable_device(struct pci_dev *pdev) 1519 { 1520 struct pci_devres *dr; 1521 int rc; 1522 1523 dr = get_pci_dr(pdev); 1524 if (unlikely(!dr)) 1525 return -ENOMEM; 1526 if (dr->enabled) 1527 return 0; 1528 1529 rc = pci_enable_device(pdev); 1530 if (!rc) { 1531 pdev->is_managed = 1; 1532 dr->enabled = 1; 1533 } 1534 return rc; 1535 } 1536 EXPORT_SYMBOL(pcim_enable_device); 1537 1538 /** 1539 * pcim_pin_device - Pin managed PCI device 1540 * @pdev: PCI device to pin 1541 * 1542 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1543 * driver detach. @pdev must have been enabled with 1544 * pcim_enable_device(). 1545 */ 1546 void pcim_pin_device(struct pci_dev *pdev) 1547 { 1548 struct pci_devres *dr; 1549 1550 dr = find_pci_dr(pdev); 1551 WARN_ON(!dr || !dr->enabled); 1552 if (dr) 1553 dr->pinned = 1; 1554 } 1555 EXPORT_SYMBOL(pcim_pin_device); 1556 1557 /* 1558 * pcibios_add_device - provide arch specific hooks when adding device dev 1559 * @dev: the PCI device being added 1560 * 1561 * Permits the platform to provide architecture specific functionality when 1562 * devices are added. This is the default implementation. Architecture 1563 * implementations can override this. 1564 */ 1565 int __weak pcibios_add_device(struct pci_dev *dev) 1566 { 1567 return 0; 1568 } 1569 1570 /** 1571 * pcibios_release_device - provide arch specific hooks when releasing device dev 1572 * @dev: the PCI device being released 1573 * 1574 * Permits the platform to provide architecture specific functionality when 1575 * devices are released. This is the default implementation. Architecture 1576 * implementations can override this. 1577 */ 1578 void __weak pcibios_release_device(struct pci_dev *dev) {} 1579 1580 /** 1581 * pcibios_disable_device - disable arch specific PCI resources for device dev 1582 * @dev: the PCI device to disable 1583 * 1584 * Disables architecture specific PCI resources for the device. This 1585 * is the default implementation. Architecture implementations can 1586 * override this. 1587 */ 1588 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1589 1590 /** 1591 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1592 * @irq: ISA IRQ to penalize 1593 * @active: IRQ active or not 1594 * 1595 * Permits the platform to provide architecture-specific functionality when 1596 * penalizing ISA IRQs. This is the default implementation. Architecture 1597 * implementations can override this. 1598 */ 1599 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1600 1601 static void do_pci_disable_device(struct pci_dev *dev) 1602 { 1603 u16 pci_command; 1604 1605 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1606 if (pci_command & PCI_COMMAND_MASTER) { 1607 pci_command &= ~PCI_COMMAND_MASTER; 1608 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1609 } 1610 1611 pcibios_disable_device(dev); 1612 } 1613 1614 /** 1615 * pci_disable_enabled_device - Disable device without updating enable_cnt 1616 * @dev: PCI device to disable 1617 * 1618 * NOTE: This function is a backend of PCI power management routines and is 1619 * not supposed to be called drivers. 1620 */ 1621 void pci_disable_enabled_device(struct pci_dev *dev) 1622 { 1623 if (pci_is_enabled(dev)) 1624 do_pci_disable_device(dev); 1625 } 1626 1627 /** 1628 * pci_disable_device - Disable PCI device after use 1629 * @dev: PCI device to be disabled 1630 * 1631 * Signal to the system that the PCI device is not in use by the system 1632 * anymore. This only involves disabling PCI bus-mastering, if active. 1633 * 1634 * Note we don't actually disable the device until all callers of 1635 * pci_enable_device() have called pci_disable_device(). 1636 */ 1637 void pci_disable_device(struct pci_dev *dev) 1638 { 1639 struct pci_devres *dr; 1640 1641 dr = find_pci_dr(dev); 1642 if (dr) 1643 dr->enabled = 0; 1644 1645 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1646 "disabling already-disabled device"); 1647 1648 if (atomic_dec_return(&dev->enable_cnt) != 0) 1649 return; 1650 1651 do_pci_disable_device(dev); 1652 1653 dev->is_busmaster = 0; 1654 } 1655 EXPORT_SYMBOL(pci_disable_device); 1656 1657 /** 1658 * pcibios_set_pcie_reset_state - set reset state for device dev 1659 * @dev: the PCIe device reset 1660 * @state: Reset state to enter into 1661 * 1662 * 1663 * Sets the PCIe reset state for the device. This is the default 1664 * implementation. Architecture implementations can override this. 1665 */ 1666 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1667 enum pcie_reset_state state) 1668 { 1669 return -EINVAL; 1670 } 1671 1672 /** 1673 * pci_set_pcie_reset_state - set reset state for device dev 1674 * @dev: the PCIe device reset 1675 * @state: Reset state to enter into 1676 * 1677 * 1678 * Sets the PCI reset state for the device. 1679 */ 1680 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1681 { 1682 return pcibios_set_pcie_reset_state(dev, state); 1683 } 1684 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1685 1686 /** 1687 * pci_check_pme_status - Check if given device has generated PME. 1688 * @dev: Device to check. 1689 * 1690 * Check the PME status of the device and if set, clear it and clear PME enable 1691 * (if set). Return 'true' if PME status and PME enable were both set or 1692 * 'false' otherwise. 1693 */ 1694 bool pci_check_pme_status(struct pci_dev *dev) 1695 { 1696 int pmcsr_pos; 1697 u16 pmcsr; 1698 bool ret = false; 1699 1700 if (!dev->pm_cap) 1701 return false; 1702 1703 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1704 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1705 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1706 return false; 1707 1708 /* Clear PME status. */ 1709 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1710 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1711 /* Disable PME to avoid interrupt flood. */ 1712 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1713 ret = true; 1714 } 1715 1716 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1717 1718 return ret; 1719 } 1720 1721 /** 1722 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1723 * @dev: Device to handle. 1724 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1725 * 1726 * Check if @dev has generated PME and queue a resume request for it in that 1727 * case. 1728 */ 1729 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1730 { 1731 if (pme_poll_reset && dev->pme_poll) 1732 dev->pme_poll = false; 1733 1734 if (pci_check_pme_status(dev)) { 1735 pci_wakeup_event(dev); 1736 pm_request_resume(&dev->dev); 1737 } 1738 return 0; 1739 } 1740 1741 /** 1742 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1743 * @bus: Top bus of the subtree to walk. 1744 */ 1745 void pci_pme_wakeup_bus(struct pci_bus *bus) 1746 { 1747 if (bus) 1748 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1749 } 1750 1751 1752 /** 1753 * pci_pme_capable - check the capability of PCI device to generate PME# 1754 * @dev: PCI device to handle. 1755 * @state: PCI state from which device will issue PME#. 1756 */ 1757 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1758 { 1759 if (!dev->pm_cap) 1760 return false; 1761 1762 return !!(dev->pme_support & (1 << state)); 1763 } 1764 EXPORT_SYMBOL(pci_pme_capable); 1765 1766 static void pci_pme_list_scan(struct work_struct *work) 1767 { 1768 struct pci_pme_device *pme_dev, *n; 1769 1770 mutex_lock(&pci_pme_list_mutex); 1771 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1772 if (pme_dev->dev->pme_poll) { 1773 struct pci_dev *bridge; 1774 1775 bridge = pme_dev->dev->bus->self; 1776 /* 1777 * If bridge is in low power state, the 1778 * configuration space of subordinate devices 1779 * may be not accessible 1780 */ 1781 if (bridge && bridge->current_state != PCI_D0) 1782 continue; 1783 pci_pme_wakeup(pme_dev->dev, NULL); 1784 } else { 1785 list_del(&pme_dev->list); 1786 kfree(pme_dev); 1787 } 1788 } 1789 if (!list_empty(&pci_pme_list)) 1790 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1791 msecs_to_jiffies(PME_TIMEOUT)); 1792 mutex_unlock(&pci_pme_list_mutex); 1793 } 1794 1795 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1796 { 1797 u16 pmcsr; 1798 1799 if (!dev->pme_support) 1800 return; 1801 1802 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1803 /* Clear PME_Status by writing 1 to it and enable PME# */ 1804 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1805 if (!enable) 1806 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1807 1808 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1809 } 1810 1811 /** 1812 * pci_pme_restore - Restore PME configuration after config space restore. 1813 * @dev: PCI device to update. 1814 */ 1815 void pci_pme_restore(struct pci_dev *dev) 1816 { 1817 u16 pmcsr; 1818 1819 if (!dev->pme_support) 1820 return; 1821 1822 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1823 if (dev->wakeup_prepared) { 1824 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1825 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1826 } else { 1827 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1828 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1829 } 1830 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1831 } 1832 1833 /** 1834 * pci_pme_active - enable or disable PCI device's PME# function 1835 * @dev: PCI device to handle. 1836 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1837 * 1838 * The caller must verify that the device is capable of generating PME# before 1839 * calling this function with @enable equal to 'true'. 1840 */ 1841 void pci_pme_active(struct pci_dev *dev, bool enable) 1842 { 1843 __pci_pme_active(dev, enable); 1844 1845 /* 1846 * PCI (as opposed to PCIe) PME requires that the device have 1847 * its PME# line hooked up correctly. Not all hardware vendors 1848 * do this, so the PME never gets delivered and the device 1849 * remains asleep. The easiest way around this is to 1850 * periodically walk the list of suspended devices and check 1851 * whether any have their PME flag set. The assumption is that 1852 * we'll wake up often enough anyway that this won't be a huge 1853 * hit, and the power savings from the devices will still be a 1854 * win. 1855 * 1856 * Although PCIe uses in-band PME message instead of PME# line 1857 * to report PME, PME does not work for some PCIe devices in 1858 * reality. For example, there are devices that set their PME 1859 * status bits, but don't really bother to send a PME message; 1860 * there are PCI Express Root Ports that don't bother to 1861 * trigger interrupts when they receive PME messages from the 1862 * devices below. So PME poll is used for PCIe devices too. 1863 */ 1864 1865 if (dev->pme_poll) { 1866 struct pci_pme_device *pme_dev; 1867 if (enable) { 1868 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1869 GFP_KERNEL); 1870 if (!pme_dev) { 1871 pci_warn(dev, "can't enable PME#\n"); 1872 return; 1873 } 1874 pme_dev->dev = dev; 1875 mutex_lock(&pci_pme_list_mutex); 1876 list_add(&pme_dev->list, &pci_pme_list); 1877 if (list_is_singular(&pci_pme_list)) 1878 queue_delayed_work(system_freezable_wq, 1879 &pci_pme_work, 1880 msecs_to_jiffies(PME_TIMEOUT)); 1881 mutex_unlock(&pci_pme_list_mutex); 1882 } else { 1883 mutex_lock(&pci_pme_list_mutex); 1884 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1885 if (pme_dev->dev == dev) { 1886 list_del(&pme_dev->list); 1887 kfree(pme_dev); 1888 break; 1889 } 1890 } 1891 mutex_unlock(&pci_pme_list_mutex); 1892 } 1893 } 1894 1895 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1896 } 1897 EXPORT_SYMBOL(pci_pme_active); 1898 1899 /** 1900 * pci_enable_wake - enable PCI device as wakeup event source 1901 * @dev: PCI device affected 1902 * @state: PCI state from which device will issue wakeup events 1903 * @enable: True to enable event generation; false to disable 1904 * 1905 * This enables the device as a wakeup event source, or disables it. 1906 * When such events involves platform-specific hooks, those hooks are 1907 * called automatically by this routine. 1908 * 1909 * Devices with legacy power management (no standard PCI PM capabilities) 1910 * always require such platform hooks. 1911 * 1912 * RETURN VALUE: 1913 * 0 is returned on success 1914 * -EINVAL is returned if device is not supposed to wake up the system 1915 * Error code depending on the platform is returned if both the platform and 1916 * the native mechanism fail to enable the generation of wake-up events 1917 */ 1918 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1919 { 1920 int ret = 0; 1921 1922 /* 1923 * Bridges can only signal wakeup on behalf of subordinate devices, 1924 * but that is set up elsewhere, so skip them. 1925 */ 1926 if (pci_has_subordinate(dev)) 1927 return 0; 1928 1929 /* Don't do the same thing twice in a row for one device. */ 1930 if (!!enable == !!dev->wakeup_prepared) 1931 return 0; 1932 1933 /* 1934 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1935 * Anderson we should be doing PME# wake enable followed by ACPI wake 1936 * enable. To disable wake-up we call the platform first, for symmetry. 1937 */ 1938 1939 if (enable) { 1940 int error; 1941 1942 if (pci_pme_capable(dev, state)) 1943 pci_pme_active(dev, true); 1944 else 1945 ret = 1; 1946 error = platform_pci_set_wakeup(dev, true); 1947 if (ret) 1948 ret = error; 1949 if (!ret) 1950 dev->wakeup_prepared = true; 1951 } else { 1952 platform_pci_set_wakeup(dev, false); 1953 pci_pme_active(dev, false); 1954 dev->wakeup_prepared = false; 1955 } 1956 1957 return ret; 1958 } 1959 EXPORT_SYMBOL(pci_enable_wake); 1960 1961 /** 1962 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1963 * @dev: PCI device to prepare 1964 * @enable: True to enable wake-up event generation; false to disable 1965 * 1966 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1967 * and this function allows them to set that up cleanly - pci_enable_wake() 1968 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1969 * ordering constraints. 1970 * 1971 * This function only returns error code if the device is not capable of 1972 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1973 * enable wake-up power for it. 1974 */ 1975 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1976 { 1977 return pci_pme_capable(dev, PCI_D3cold) ? 1978 pci_enable_wake(dev, PCI_D3cold, enable) : 1979 pci_enable_wake(dev, PCI_D3hot, enable); 1980 } 1981 EXPORT_SYMBOL(pci_wake_from_d3); 1982 1983 /** 1984 * pci_target_state - find an appropriate low power state for a given PCI dev 1985 * @dev: PCI device 1986 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 1987 * 1988 * Use underlying platform code to find a supported low power state for @dev. 1989 * If the platform can't manage @dev, return the deepest state from which it 1990 * can generate wake events, based on any available PME info. 1991 */ 1992 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 1993 { 1994 pci_power_t target_state = PCI_D3hot; 1995 1996 if (platform_pci_power_manageable(dev)) { 1997 /* 1998 * Call the platform to choose the target state of the device 1999 * and enable wake-up from this state if supported. 2000 */ 2001 pci_power_t state = platform_pci_choose_state(dev); 2002 2003 switch (state) { 2004 case PCI_POWER_ERROR: 2005 case PCI_UNKNOWN: 2006 break; 2007 case PCI_D1: 2008 case PCI_D2: 2009 if (pci_no_d1d2(dev)) 2010 break; 2011 default: 2012 target_state = state; 2013 } 2014 2015 return target_state; 2016 } 2017 2018 if (!dev->pm_cap) 2019 target_state = PCI_D0; 2020 2021 /* 2022 * If the device is in D3cold even though it's not power-manageable by 2023 * the platform, it may have been powered down by non-standard means. 2024 * Best to let it slumber. 2025 */ 2026 if (dev->current_state == PCI_D3cold) 2027 target_state = PCI_D3cold; 2028 2029 if (wakeup) { 2030 /* 2031 * Find the deepest state from which the device can generate 2032 * wake-up events, make it the target state and enable device 2033 * to generate PME#. 2034 */ 2035 if (dev->pme_support) { 2036 while (target_state 2037 && !(dev->pme_support & (1 << target_state))) 2038 target_state--; 2039 } 2040 } 2041 2042 return target_state; 2043 } 2044 2045 /** 2046 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2047 * @dev: Device to handle. 2048 * 2049 * Choose the power state appropriate for the device depending on whether 2050 * it can wake up the system and/or is power manageable by the platform 2051 * (PCI_D3hot is the default) and put the device into that state. 2052 */ 2053 int pci_prepare_to_sleep(struct pci_dev *dev) 2054 { 2055 bool wakeup = device_may_wakeup(&dev->dev); 2056 pci_power_t target_state = pci_target_state(dev, wakeup); 2057 int error; 2058 2059 if (target_state == PCI_POWER_ERROR) 2060 return -EIO; 2061 2062 pci_enable_wake(dev, target_state, wakeup); 2063 2064 error = pci_set_power_state(dev, target_state); 2065 2066 if (error) 2067 pci_enable_wake(dev, target_state, false); 2068 2069 return error; 2070 } 2071 EXPORT_SYMBOL(pci_prepare_to_sleep); 2072 2073 /** 2074 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2075 * @dev: Device to handle. 2076 * 2077 * Disable device's system wake-up capability and put it into D0. 2078 */ 2079 int pci_back_from_sleep(struct pci_dev *dev) 2080 { 2081 pci_enable_wake(dev, PCI_D0, false); 2082 return pci_set_power_state(dev, PCI_D0); 2083 } 2084 EXPORT_SYMBOL(pci_back_from_sleep); 2085 2086 /** 2087 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2088 * @dev: PCI device being suspended. 2089 * 2090 * Prepare @dev to generate wake-up events at run time and put it into a low 2091 * power state. 2092 */ 2093 int pci_finish_runtime_suspend(struct pci_dev *dev) 2094 { 2095 pci_power_t target_state; 2096 int error; 2097 2098 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2099 if (target_state == PCI_POWER_ERROR) 2100 return -EIO; 2101 2102 dev->runtime_d3cold = target_state == PCI_D3cold; 2103 2104 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2105 2106 error = pci_set_power_state(dev, target_state); 2107 2108 if (error) { 2109 pci_enable_wake(dev, target_state, false); 2110 dev->runtime_d3cold = false; 2111 } 2112 2113 return error; 2114 } 2115 2116 /** 2117 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2118 * @dev: Device to check. 2119 * 2120 * Return true if the device itself is capable of generating wake-up events 2121 * (through the platform or using the native PCIe PME) or if the device supports 2122 * PME and one of its upstream bridges can generate wake-up events. 2123 */ 2124 bool pci_dev_run_wake(struct pci_dev *dev) 2125 { 2126 struct pci_bus *bus = dev->bus; 2127 2128 if (device_can_wakeup(&dev->dev)) 2129 return true; 2130 2131 if (!dev->pme_support) 2132 return false; 2133 2134 /* PME-capable in principle, but not from the target power state */ 2135 if (!pci_pme_capable(dev, pci_target_state(dev, false))) 2136 return false; 2137 2138 while (bus->parent) { 2139 struct pci_dev *bridge = bus->self; 2140 2141 if (device_can_wakeup(&bridge->dev)) 2142 return true; 2143 2144 bus = bus->parent; 2145 } 2146 2147 /* We have reached the root bus. */ 2148 if (bus->bridge) 2149 return device_can_wakeup(bus->bridge); 2150 2151 return false; 2152 } 2153 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2154 2155 /** 2156 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2157 * @pci_dev: Device to check. 2158 * 2159 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2160 * reconfigured due to wakeup settings difference between system and runtime 2161 * suspend and the current power state of it is suitable for the upcoming 2162 * (system) transition. 2163 * 2164 * If the device is not configured for system wakeup, disable PME for it before 2165 * returning 'true' to prevent it from waking up the system unnecessarily. 2166 */ 2167 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2168 { 2169 struct device *dev = &pci_dev->dev; 2170 bool wakeup = device_may_wakeup(dev); 2171 2172 if (!pm_runtime_suspended(dev) 2173 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2174 || platform_pci_need_resume(pci_dev)) 2175 return false; 2176 2177 /* 2178 * At this point the device is good to go unless it's been configured 2179 * to generate PME at the runtime suspend time, but it is not supposed 2180 * to wake up the system. In that case, simply disable PME for it 2181 * (it will have to be re-enabled on exit from system resume). 2182 * 2183 * If the device's power state is D3cold and the platform check above 2184 * hasn't triggered, the device's configuration is suitable and we don't 2185 * need to manipulate it at all. 2186 */ 2187 spin_lock_irq(&dev->power.lock); 2188 2189 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2190 !wakeup) 2191 __pci_pme_active(pci_dev, false); 2192 2193 spin_unlock_irq(&dev->power.lock); 2194 return true; 2195 } 2196 2197 /** 2198 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2199 * @pci_dev: Device to handle. 2200 * 2201 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2202 * it might have been disabled during the prepare phase of system suspend if 2203 * the device was not configured for system wakeup. 2204 */ 2205 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2206 { 2207 struct device *dev = &pci_dev->dev; 2208 2209 if (!pci_dev_run_wake(pci_dev)) 2210 return; 2211 2212 spin_lock_irq(&dev->power.lock); 2213 2214 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2215 __pci_pme_active(pci_dev, true); 2216 2217 spin_unlock_irq(&dev->power.lock); 2218 } 2219 2220 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2221 { 2222 struct device *dev = &pdev->dev; 2223 struct device *parent = dev->parent; 2224 2225 if (parent) 2226 pm_runtime_get_sync(parent); 2227 pm_runtime_get_noresume(dev); 2228 /* 2229 * pdev->current_state is set to PCI_D3cold during suspending, 2230 * so wait until suspending completes 2231 */ 2232 pm_runtime_barrier(dev); 2233 /* 2234 * Only need to resume devices in D3cold, because config 2235 * registers are still accessible for devices suspended but 2236 * not in D3cold. 2237 */ 2238 if (pdev->current_state == PCI_D3cold) 2239 pm_runtime_resume(dev); 2240 } 2241 2242 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2243 { 2244 struct device *dev = &pdev->dev; 2245 struct device *parent = dev->parent; 2246 2247 pm_runtime_put(dev); 2248 if (parent) 2249 pm_runtime_put_sync(parent); 2250 } 2251 2252 /** 2253 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2254 * @bridge: Bridge to check 2255 * 2256 * This function checks if it is possible to move the bridge to D3. 2257 * Currently we only allow D3 for recent enough PCIe ports. 2258 */ 2259 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2260 { 2261 unsigned int year; 2262 2263 if (!pci_is_pcie(bridge)) 2264 return false; 2265 2266 switch (pci_pcie_type(bridge)) { 2267 case PCI_EXP_TYPE_ROOT_PORT: 2268 case PCI_EXP_TYPE_UPSTREAM: 2269 case PCI_EXP_TYPE_DOWNSTREAM: 2270 if (pci_bridge_d3_disable) 2271 return false; 2272 2273 /* 2274 * Hotplug interrupts cannot be delivered if the link is down, 2275 * so parents of a hotplug port must stay awake. In addition, 2276 * hotplug ports handled by firmware in System Management Mode 2277 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2278 * For simplicity, disallow in general for now. 2279 */ 2280 if (bridge->is_hotplug_bridge) 2281 return false; 2282 2283 if (pci_bridge_d3_force) 2284 return true; 2285 2286 /* 2287 * It should be safe to put PCIe ports from 2015 or newer 2288 * to D3. 2289 */ 2290 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && 2291 year >= 2015) { 2292 return true; 2293 } 2294 break; 2295 } 2296 2297 return false; 2298 } 2299 2300 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2301 { 2302 bool *d3cold_ok = data; 2303 2304 if (/* The device needs to be allowed to go D3cold ... */ 2305 dev->no_d3cold || !dev->d3cold_allowed || 2306 2307 /* ... and if it is wakeup capable to do so from D3cold. */ 2308 (device_may_wakeup(&dev->dev) && 2309 !pci_pme_capable(dev, PCI_D3cold)) || 2310 2311 /* If it is a bridge it must be allowed to go to D3. */ 2312 !pci_power_manageable(dev)) 2313 2314 *d3cold_ok = false; 2315 2316 return !*d3cold_ok; 2317 } 2318 2319 /* 2320 * pci_bridge_d3_update - Update bridge D3 capabilities 2321 * @dev: PCI device which is changed 2322 * 2323 * Update upstream bridge PM capabilities accordingly depending on if the 2324 * device PM configuration was changed or the device is being removed. The 2325 * change is also propagated upstream. 2326 */ 2327 void pci_bridge_d3_update(struct pci_dev *dev) 2328 { 2329 bool remove = !device_is_registered(&dev->dev); 2330 struct pci_dev *bridge; 2331 bool d3cold_ok = true; 2332 2333 bridge = pci_upstream_bridge(dev); 2334 if (!bridge || !pci_bridge_d3_possible(bridge)) 2335 return; 2336 2337 /* 2338 * If D3 is currently allowed for the bridge, removing one of its 2339 * children won't change that. 2340 */ 2341 if (remove && bridge->bridge_d3) 2342 return; 2343 2344 /* 2345 * If D3 is currently allowed for the bridge and a child is added or 2346 * changed, disallowance of D3 can only be caused by that child, so 2347 * we only need to check that single device, not any of its siblings. 2348 * 2349 * If D3 is currently not allowed for the bridge, checking the device 2350 * first may allow us to skip checking its siblings. 2351 */ 2352 if (!remove) 2353 pci_dev_check_d3cold(dev, &d3cold_ok); 2354 2355 /* 2356 * If D3 is currently not allowed for the bridge, this may be caused 2357 * either by the device being changed/removed or any of its siblings, 2358 * so we need to go through all children to find out if one of them 2359 * continues to block D3. 2360 */ 2361 if (d3cold_ok && !bridge->bridge_d3) 2362 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2363 &d3cold_ok); 2364 2365 if (bridge->bridge_d3 != d3cold_ok) { 2366 bridge->bridge_d3 = d3cold_ok; 2367 /* Propagate change to upstream bridges */ 2368 pci_bridge_d3_update(bridge); 2369 } 2370 } 2371 2372 /** 2373 * pci_d3cold_enable - Enable D3cold for device 2374 * @dev: PCI device to handle 2375 * 2376 * This function can be used in drivers to enable D3cold from the device 2377 * they handle. It also updates upstream PCI bridge PM capabilities 2378 * accordingly. 2379 */ 2380 void pci_d3cold_enable(struct pci_dev *dev) 2381 { 2382 if (dev->no_d3cold) { 2383 dev->no_d3cold = false; 2384 pci_bridge_d3_update(dev); 2385 } 2386 } 2387 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2388 2389 /** 2390 * pci_d3cold_disable - Disable D3cold for device 2391 * @dev: PCI device to handle 2392 * 2393 * This function can be used in drivers to disable D3cold from the device 2394 * they handle. It also updates upstream PCI bridge PM capabilities 2395 * accordingly. 2396 */ 2397 void pci_d3cold_disable(struct pci_dev *dev) 2398 { 2399 if (!dev->no_d3cold) { 2400 dev->no_d3cold = true; 2401 pci_bridge_d3_update(dev); 2402 } 2403 } 2404 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2405 2406 /** 2407 * pci_pm_init - Initialize PM functions of given PCI device 2408 * @dev: PCI device to handle. 2409 */ 2410 void pci_pm_init(struct pci_dev *dev) 2411 { 2412 int pm; 2413 u16 pmc; 2414 2415 pm_runtime_forbid(&dev->dev); 2416 pm_runtime_set_active(&dev->dev); 2417 pm_runtime_enable(&dev->dev); 2418 device_enable_async_suspend(&dev->dev); 2419 dev->wakeup_prepared = false; 2420 2421 dev->pm_cap = 0; 2422 dev->pme_support = 0; 2423 2424 /* find PCI PM capability in list */ 2425 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2426 if (!pm) 2427 return; 2428 /* Check device's ability to generate PME# */ 2429 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2430 2431 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2432 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2433 pmc & PCI_PM_CAP_VER_MASK); 2434 return; 2435 } 2436 2437 dev->pm_cap = pm; 2438 dev->d3_delay = PCI_PM_D3_WAIT; 2439 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2440 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2441 dev->d3cold_allowed = true; 2442 2443 dev->d1_support = false; 2444 dev->d2_support = false; 2445 if (!pci_no_d1d2(dev)) { 2446 if (pmc & PCI_PM_CAP_D1) 2447 dev->d1_support = true; 2448 if (pmc & PCI_PM_CAP_D2) 2449 dev->d2_support = true; 2450 2451 if (dev->d1_support || dev->d2_support) 2452 pci_printk(KERN_DEBUG, dev, "supports%s%s\n", 2453 dev->d1_support ? " D1" : "", 2454 dev->d2_support ? " D2" : ""); 2455 } 2456 2457 pmc &= PCI_PM_CAP_PME_MASK; 2458 if (pmc) { 2459 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n", 2460 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2461 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2462 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2463 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2464 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2465 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2466 dev->pme_poll = true; 2467 /* 2468 * Make device's PM flags reflect the wake-up capability, but 2469 * let the user space enable it to wake up the system as needed. 2470 */ 2471 device_set_wakeup_capable(&dev->dev, true); 2472 /* Disable the PME# generation functionality */ 2473 pci_pme_active(dev, false); 2474 } 2475 } 2476 2477 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2478 { 2479 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2480 2481 switch (prop) { 2482 case PCI_EA_P_MEM: 2483 case PCI_EA_P_VF_MEM: 2484 flags |= IORESOURCE_MEM; 2485 break; 2486 case PCI_EA_P_MEM_PREFETCH: 2487 case PCI_EA_P_VF_MEM_PREFETCH: 2488 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2489 break; 2490 case PCI_EA_P_IO: 2491 flags |= IORESOURCE_IO; 2492 break; 2493 default: 2494 return 0; 2495 } 2496 2497 return flags; 2498 } 2499 2500 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2501 u8 prop) 2502 { 2503 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2504 return &dev->resource[bei]; 2505 #ifdef CONFIG_PCI_IOV 2506 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2507 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2508 return &dev->resource[PCI_IOV_RESOURCES + 2509 bei - PCI_EA_BEI_VF_BAR0]; 2510 #endif 2511 else if (bei == PCI_EA_BEI_ROM) 2512 return &dev->resource[PCI_ROM_RESOURCE]; 2513 else 2514 return NULL; 2515 } 2516 2517 /* Read an Enhanced Allocation (EA) entry */ 2518 static int pci_ea_read(struct pci_dev *dev, int offset) 2519 { 2520 struct resource *res; 2521 int ent_size, ent_offset = offset; 2522 resource_size_t start, end; 2523 unsigned long flags; 2524 u32 dw0, bei, base, max_offset; 2525 u8 prop; 2526 bool support_64 = (sizeof(resource_size_t) >= 8); 2527 2528 pci_read_config_dword(dev, ent_offset, &dw0); 2529 ent_offset += 4; 2530 2531 /* Entry size field indicates DWORDs after 1st */ 2532 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2533 2534 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2535 goto out; 2536 2537 bei = (dw0 & PCI_EA_BEI) >> 4; 2538 prop = (dw0 & PCI_EA_PP) >> 8; 2539 2540 /* 2541 * If the Property is in the reserved range, try the Secondary 2542 * Property instead. 2543 */ 2544 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2545 prop = (dw0 & PCI_EA_SP) >> 16; 2546 if (prop > PCI_EA_P_BRIDGE_IO) 2547 goto out; 2548 2549 res = pci_ea_get_resource(dev, bei, prop); 2550 if (!res) { 2551 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2552 goto out; 2553 } 2554 2555 flags = pci_ea_flags(dev, prop); 2556 if (!flags) { 2557 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2558 goto out; 2559 } 2560 2561 /* Read Base */ 2562 pci_read_config_dword(dev, ent_offset, &base); 2563 start = (base & PCI_EA_FIELD_MASK); 2564 ent_offset += 4; 2565 2566 /* Read MaxOffset */ 2567 pci_read_config_dword(dev, ent_offset, &max_offset); 2568 ent_offset += 4; 2569 2570 /* Read Base MSBs (if 64-bit entry) */ 2571 if (base & PCI_EA_IS_64) { 2572 u32 base_upper; 2573 2574 pci_read_config_dword(dev, ent_offset, &base_upper); 2575 ent_offset += 4; 2576 2577 flags |= IORESOURCE_MEM_64; 2578 2579 /* entry starts above 32-bit boundary, can't use */ 2580 if (!support_64 && base_upper) 2581 goto out; 2582 2583 if (support_64) 2584 start |= ((u64)base_upper << 32); 2585 } 2586 2587 end = start + (max_offset | 0x03); 2588 2589 /* Read MaxOffset MSBs (if 64-bit entry) */ 2590 if (max_offset & PCI_EA_IS_64) { 2591 u32 max_offset_upper; 2592 2593 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2594 ent_offset += 4; 2595 2596 flags |= IORESOURCE_MEM_64; 2597 2598 /* entry too big, can't use */ 2599 if (!support_64 && max_offset_upper) 2600 goto out; 2601 2602 if (support_64) 2603 end += ((u64)max_offset_upper << 32); 2604 } 2605 2606 if (end < start) { 2607 pci_err(dev, "EA Entry crosses address boundary\n"); 2608 goto out; 2609 } 2610 2611 if (ent_size != ent_offset - offset) { 2612 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2613 ent_size, ent_offset - offset); 2614 goto out; 2615 } 2616 2617 res->name = pci_name(dev); 2618 res->start = start; 2619 res->end = end; 2620 res->flags = flags; 2621 2622 if (bei <= PCI_EA_BEI_BAR5) 2623 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2624 bei, res, prop); 2625 else if (bei == PCI_EA_BEI_ROM) 2626 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2627 res, prop); 2628 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2629 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2630 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2631 else 2632 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2633 bei, res, prop); 2634 2635 out: 2636 return offset + ent_size; 2637 } 2638 2639 /* Enhanced Allocation Initialization */ 2640 void pci_ea_init(struct pci_dev *dev) 2641 { 2642 int ea; 2643 u8 num_ent; 2644 int offset; 2645 int i; 2646 2647 /* find PCI EA capability in list */ 2648 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2649 if (!ea) 2650 return; 2651 2652 /* determine the number of entries */ 2653 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2654 &num_ent); 2655 num_ent &= PCI_EA_NUM_ENT_MASK; 2656 2657 offset = ea + PCI_EA_FIRST_ENT; 2658 2659 /* Skip DWORD 2 for type 1 functions */ 2660 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2661 offset += 4; 2662 2663 /* parse each EA entry */ 2664 for (i = 0; i < num_ent; ++i) 2665 offset = pci_ea_read(dev, offset); 2666 } 2667 2668 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2669 struct pci_cap_saved_state *new_cap) 2670 { 2671 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2672 } 2673 2674 /** 2675 * _pci_add_cap_save_buffer - allocate buffer for saving given 2676 * capability registers 2677 * @dev: the PCI device 2678 * @cap: the capability to allocate the buffer for 2679 * @extended: Standard or Extended capability ID 2680 * @size: requested size of the buffer 2681 */ 2682 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2683 bool extended, unsigned int size) 2684 { 2685 int pos; 2686 struct pci_cap_saved_state *save_state; 2687 2688 if (extended) 2689 pos = pci_find_ext_capability(dev, cap); 2690 else 2691 pos = pci_find_capability(dev, cap); 2692 2693 if (!pos) 2694 return 0; 2695 2696 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2697 if (!save_state) 2698 return -ENOMEM; 2699 2700 save_state->cap.cap_nr = cap; 2701 save_state->cap.cap_extended = extended; 2702 save_state->cap.size = size; 2703 pci_add_saved_cap(dev, save_state); 2704 2705 return 0; 2706 } 2707 2708 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2709 { 2710 return _pci_add_cap_save_buffer(dev, cap, false, size); 2711 } 2712 2713 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2714 { 2715 return _pci_add_cap_save_buffer(dev, cap, true, size); 2716 } 2717 2718 /** 2719 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2720 * @dev: the PCI device 2721 */ 2722 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2723 { 2724 int error; 2725 2726 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2727 PCI_EXP_SAVE_REGS * sizeof(u16)); 2728 if (error) 2729 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 2730 2731 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2732 if (error) 2733 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 2734 2735 pci_allocate_vc_save_buffers(dev); 2736 } 2737 2738 void pci_free_cap_save_buffers(struct pci_dev *dev) 2739 { 2740 struct pci_cap_saved_state *tmp; 2741 struct hlist_node *n; 2742 2743 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2744 kfree(tmp); 2745 } 2746 2747 /** 2748 * pci_configure_ari - enable or disable ARI forwarding 2749 * @dev: the PCI device 2750 * 2751 * If @dev and its upstream bridge both support ARI, enable ARI in the 2752 * bridge. Otherwise, disable ARI in the bridge. 2753 */ 2754 void pci_configure_ari(struct pci_dev *dev) 2755 { 2756 u32 cap; 2757 struct pci_dev *bridge; 2758 2759 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2760 return; 2761 2762 bridge = dev->bus->self; 2763 if (!bridge) 2764 return; 2765 2766 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2767 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2768 return; 2769 2770 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2771 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2772 PCI_EXP_DEVCTL2_ARI); 2773 bridge->ari_enabled = 1; 2774 } else { 2775 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2776 PCI_EXP_DEVCTL2_ARI); 2777 bridge->ari_enabled = 0; 2778 } 2779 } 2780 2781 static int pci_acs_enable; 2782 2783 /** 2784 * pci_request_acs - ask for ACS to be enabled if supported 2785 */ 2786 void pci_request_acs(void) 2787 { 2788 pci_acs_enable = 1; 2789 } 2790 2791 /** 2792 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2793 * @dev: the PCI device 2794 */ 2795 static void pci_std_enable_acs(struct pci_dev *dev) 2796 { 2797 int pos; 2798 u16 cap; 2799 u16 ctrl; 2800 2801 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2802 if (!pos) 2803 return; 2804 2805 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2806 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2807 2808 /* Source Validation */ 2809 ctrl |= (cap & PCI_ACS_SV); 2810 2811 /* P2P Request Redirect */ 2812 ctrl |= (cap & PCI_ACS_RR); 2813 2814 /* P2P Completion Redirect */ 2815 ctrl |= (cap & PCI_ACS_CR); 2816 2817 /* Upstream Forwarding */ 2818 ctrl |= (cap & PCI_ACS_UF); 2819 2820 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2821 } 2822 2823 /** 2824 * pci_enable_acs - enable ACS if hardware support it 2825 * @dev: the PCI device 2826 */ 2827 void pci_enable_acs(struct pci_dev *dev) 2828 { 2829 if (!pci_acs_enable) 2830 return; 2831 2832 if (!pci_dev_specific_enable_acs(dev)) 2833 return; 2834 2835 pci_std_enable_acs(dev); 2836 } 2837 2838 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2839 { 2840 int pos; 2841 u16 cap, ctrl; 2842 2843 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2844 if (!pos) 2845 return false; 2846 2847 /* 2848 * Except for egress control, capabilities are either required 2849 * or only required if controllable. Features missing from the 2850 * capability field can therefore be assumed as hard-wired enabled. 2851 */ 2852 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2853 acs_flags &= (cap | PCI_ACS_EC); 2854 2855 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2856 return (ctrl & acs_flags) == acs_flags; 2857 } 2858 2859 /** 2860 * pci_acs_enabled - test ACS against required flags for a given device 2861 * @pdev: device to test 2862 * @acs_flags: required PCI ACS flags 2863 * 2864 * Return true if the device supports the provided flags. Automatically 2865 * filters out flags that are not implemented on multifunction devices. 2866 * 2867 * Note that this interface checks the effective ACS capabilities of the 2868 * device rather than the actual capabilities. For instance, most single 2869 * function endpoints are not required to support ACS because they have no 2870 * opportunity for peer-to-peer access. We therefore return 'true' 2871 * regardless of whether the device exposes an ACS capability. This makes 2872 * it much easier for callers of this function to ignore the actual type 2873 * or topology of the device when testing ACS support. 2874 */ 2875 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2876 { 2877 int ret; 2878 2879 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2880 if (ret >= 0) 2881 return ret > 0; 2882 2883 /* 2884 * Conventional PCI and PCI-X devices never support ACS, either 2885 * effectively or actually. The shared bus topology implies that 2886 * any device on the bus can receive or snoop DMA. 2887 */ 2888 if (!pci_is_pcie(pdev)) 2889 return false; 2890 2891 switch (pci_pcie_type(pdev)) { 2892 /* 2893 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2894 * but since their primary interface is PCI/X, we conservatively 2895 * handle them as we would a non-PCIe device. 2896 */ 2897 case PCI_EXP_TYPE_PCIE_BRIDGE: 2898 /* 2899 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2900 * applicable... must never implement an ACS Extended Capability...". 2901 * This seems arbitrary, but we take a conservative interpretation 2902 * of this statement. 2903 */ 2904 case PCI_EXP_TYPE_PCI_BRIDGE: 2905 case PCI_EXP_TYPE_RC_EC: 2906 return false; 2907 /* 2908 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2909 * implement ACS in order to indicate their peer-to-peer capabilities, 2910 * regardless of whether they are single- or multi-function devices. 2911 */ 2912 case PCI_EXP_TYPE_DOWNSTREAM: 2913 case PCI_EXP_TYPE_ROOT_PORT: 2914 return pci_acs_flags_enabled(pdev, acs_flags); 2915 /* 2916 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2917 * implemented by the remaining PCIe types to indicate peer-to-peer 2918 * capabilities, but only when they are part of a multifunction 2919 * device. The footnote for section 6.12 indicates the specific 2920 * PCIe types included here. 2921 */ 2922 case PCI_EXP_TYPE_ENDPOINT: 2923 case PCI_EXP_TYPE_UPSTREAM: 2924 case PCI_EXP_TYPE_LEG_END: 2925 case PCI_EXP_TYPE_RC_END: 2926 if (!pdev->multifunction) 2927 break; 2928 2929 return pci_acs_flags_enabled(pdev, acs_flags); 2930 } 2931 2932 /* 2933 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2934 * to single function devices with the exception of downstream ports. 2935 */ 2936 return true; 2937 } 2938 2939 /** 2940 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2941 * @start: starting downstream device 2942 * @end: ending upstream device or NULL to search to the root bus 2943 * @acs_flags: required flags 2944 * 2945 * Walk up a device tree from start to end testing PCI ACS support. If 2946 * any step along the way does not support the required flags, return false. 2947 */ 2948 bool pci_acs_path_enabled(struct pci_dev *start, 2949 struct pci_dev *end, u16 acs_flags) 2950 { 2951 struct pci_dev *pdev, *parent = start; 2952 2953 do { 2954 pdev = parent; 2955 2956 if (!pci_acs_enabled(pdev, acs_flags)) 2957 return false; 2958 2959 if (pci_is_root_bus(pdev->bus)) 2960 return (end == NULL); 2961 2962 parent = pdev->bus->self; 2963 } while (pdev != end); 2964 2965 return true; 2966 } 2967 2968 /** 2969 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 2970 * @pdev: PCI device 2971 * @bar: BAR to find 2972 * 2973 * Helper to find the position of the ctrl register for a BAR. 2974 * Returns -ENOTSUPP if resizable BARs are not supported at all. 2975 * Returns -ENOENT if no ctrl register for the BAR could be found. 2976 */ 2977 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 2978 { 2979 unsigned int pos, nbars, i; 2980 u32 ctrl; 2981 2982 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 2983 if (!pos) 2984 return -ENOTSUPP; 2985 2986 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 2987 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 2988 PCI_REBAR_CTRL_NBAR_SHIFT; 2989 2990 for (i = 0; i < nbars; i++, pos += 8) { 2991 int bar_idx; 2992 2993 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 2994 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 2995 if (bar_idx == bar) 2996 return pos; 2997 } 2998 2999 return -ENOENT; 3000 } 3001 3002 /** 3003 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3004 * @pdev: PCI device 3005 * @bar: BAR to query 3006 * 3007 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3008 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3009 */ 3010 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3011 { 3012 int pos; 3013 u32 cap; 3014 3015 pos = pci_rebar_find_pos(pdev, bar); 3016 if (pos < 0) 3017 return 0; 3018 3019 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3020 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3021 } 3022 3023 /** 3024 * pci_rebar_get_current_size - get the current size of a BAR 3025 * @pdev: PCI device 3026 * @bar: BAR to set size to 3027 * 3028 * Read the size of a BAR from the resizable BAR config. 3029 * Returns size if found or negative error code. 3030 */ 3031 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3032 { 3033 int pos; 3034 u32 ctrl; 3035 3036 pos = pci_rebar_find_pos(pdev, bar); 3037 if (pos < 0) 3038 return pos; 3039 3040 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3041 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8; 3042 } 3043 3044 /** 3045 * pci_rebar_set_size - set a new size for a BAR 3046 * @pdev: PCI device 3047 * @bar: BAR to set size to 3048 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3049 * 3050 * Set the new size of a BAR as defined in the spec. 3051 * Returns zero if resizing was successful, error code otherwise. 3052 */ 3053 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3054 { 3055 int pos; 3056 u32 ctrl; 3057 3058 pos = pci_rebar_find_pos(pdev, bar); 3059 if (pos < 0) 3060 return pos; 3061 3062 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3063 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3064 ctrl |= size << 8; 3065 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3066 return 0; 3067 } 3068 3069 /** 3070 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3071 * @dev: the PCI device 3072 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3073 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3074 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3075 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3076 * 3077 * Return 0 if all upstream bridges support AtomicOp routing, egress 3078 * blocking is disabled on all upstream ports, and the root port supports 3079 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3080 * AtomicOp completion), or negative otherwise. 3081 */ 3082 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3083 { 3084 struct pci_bus *bus = dev->bus; 3085 struct pci_dev *bridge; 3086 u32 cap, ctl2; 3087 3088 if (!pci_is_pcie(dev)) 3089 return -EINVAL; 3090 3091 /* 3092 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3093 * AtomicOp requesters. For now, we only support endpoints as 3094 * requesters and root ports as completers. No endpoints as 3095 * completers, and no peer-to-peer. 3096 */ 3097 3098 switch (pci_pcie_type(dev)) { 3099 case PCI_EXP_TYPE_ENDPOINT: 3100 case PCI_EXP_TYPE_LEG_END: 3101 case PCI_EXP_TYPE_RC_END: 3102 break; 3103 default: 3104 return -EINVAL; 3105 } 3106 3107 while (bus->parent) { 3108 bridge = bus->self; 3109 3110 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3111 3112 switch (pci_pcie_type(bridge)) { 3113 /* Ensure switch ports support AtomicOp routing */ 3114 case PCI_EXP_TYPE_UPSTREAM: 3115 case PCI_EXP_TYPE_DOWNSTREAM: 3116 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3117 return -EINVAL; 3118 break; 3119 3120 /* Ensure root port supports all the sizes we care about */ 3121 case PCI_EXP_TYPE_ROOT_PORT: 3122 if ((cap & cap_mask) != cap_mask) 3123 return -EINVAL; 3124 break; 3125 } 3126 3127 /* Ensure upstream ports don't block AtomicOps on egress */ 3128 if (!bridge->has_secondary_link) { 3129 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3130 &ctl2); 3131 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3132 return -EINVAL; 3133 } 3134 3135 bus = bus->parent; 3136 } 3137 3138 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3139 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3140 return 0; 3141 } 3142 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3143 3144 /** 3145 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3146 * @dev: the PCI device 3147 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3148 * 3149 * Perform INTx swizzling for a device behind one level of bridge. This is 3150 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3151 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3152 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3153 * the PCI Express Base Specification, Revision 2.1) 3154 */ 3155 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3156 { 3157 int slot; 3158 3159 if (pci_ari_enabled(dev->bus)) 3160 slot = 0; 3161 else 3162 slot = PCI_SLOT(dev->devfn); 3163 3164 return (((pin - 1) + slot) % 4) + 1; 3165 } 3166 3167 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3168 { 3169 u8 pin; 3170 3171 pin = dev->pin; 3172 if (!pin) 3173 return -1; 3174 3175 while (!pci_is_root_bus(dev->bus)) { 3176 pin = pci_swizzle_interrupt_pin(dev, pin); 3177 dev = dev->bus->self; 3178 } 3179 *bridge = dev; 3180 return pin; 3181 } 3182 3183 /** 3184 * pci_common_swizzle - swizzle INTx all the way to root bridge 3185 * @dev: the PCI device 3186 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3187 * 3188 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3189 * bridges all the way up to a PCI root bus. 3190 */ 3191 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3192 { 3193 u8 pin = *pinp; 3194 3195 while (!pci_is_root_bus(dev->bus)) { 3196 pin = pci_swizzle_interrupt_pin(dev, pin); 3197 dev = dev->bus->self; 3198 } 3199 *pinp = pin; 3200 return PCI_SLOT(dev->devfn); 3201 } 3202 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3203 3204 /** 3205 * pci_release_region - Release a PCI bar 3206 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3207 * @bar: BAR to release 3208 * 3209 * Releases the PCI I/O and memory resources previously reserved by a 3210 * successful call to pci_request_region. Call this function only 3211 * after all use of the PCI regions has ceased. 3212 */ 3213 void pci_release_region(struct pci_dev *pdev, int bar) 3214 { 3215 struct pci_devres *dr; 3216 3217 if (pci_resource_len(pdev, bar) == 0) 3218 return; 3219 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3220 release_region(pci_resource_start(pdev, bar), 3221 pci_resource_len(pdev, bar)); 3222 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3223 release_mem_region(pci_resource_start(pdev, bar), 3224 pci_resource_len(pdev, bar)); 3225 3226 dr = find_pci_dr(pdev); 3227 if (dr) 3228 dr->region_mask &= ~(1 << bar); 3229 } 3230 EXPORT_SYMBOL(pci_release_region); 3231 3232 /** 3233 * __pci_request_region - Reserved PCI I/O and memory resource 3234 * @pdev: PCI device whose resources are to be reserved 3235 * @bar: BAR to be reserved 3236 * @res_name: Name to be associated with resource. 3237 * @exclusive: whether the region access is exclusive or not 3238 * 3239 * Mark the PCI region associated with PCI device @pdev BR @bar as 3240 * being reserved by owner @res_name. Do not access any 3241 * address inside the PCI regions unless this call returns 3242 * successfully. 3243 * 3244 * If @exclusive is set, then the region is marked so that userspace 3245 * is explicitly not allowed to map the resource via /dev/mem or 3246 * sysfs MMIO access. 3247 * 3248 * Returns 0 on success, or %EBUSY on error. A warning 3249 * message is also printed on failure. 3250 */ 3251 static int __pci_request_region(struct pci_dev *pdev, int bar, 3252 const char *res_name, int exclusive) 3253 { 3254 struct pci_devres *dr; 3255 3256 if (pci_resource_len(pdev, bar) == 0) 3257 return 0; 3258 3259 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3260 if (!request_region(pci_resource_start(pdev, bar), 3261 pci_resource_len(pdev, bar), res_name)) 3262 goto err_out; 3263 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3264 if (!__request_mem_region(pci_resource_start(pdev, bar), 3265 pci_resource_len(pdev, bar), res_name, 3266 exclusive)) 3267 goto err_out; 3268 } 3269 3270 dr = find_pci_dr(pdev); 3271 if (dr) 3272 dr->region_mask |= 1 << bar; 3273 3274 return 0; 3275 3276 err_out: 3277 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3278 &pdev->resource[bar]); 3279 return -EBUSY; 3280 } 3281 3282 /** 3283 * pci_request_region - Reserve PCI I/O and memory resource 3284 * @pdev: PCI device whose resources are to be reserved 3285 * @bar: BAR to be reserved 3286 * @res_name: Name to be associated with resource 3287 * 3288 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3289 * being reserved by owner @res_name. Do not access any 3290 * address inside the PCI regions unless this call returns 3291 * successfully. 3292 * 3293 * Returns 0 on success, or %EBUSY on error. A warning 3294 * message is also printed on failure. 3295 */ 3296 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3297 { 3298 return __pci_request_region(pdev, bar, res_name, 0); 3299 } 3300 EXPORT_SYMBOL(pci_request_region); 3301 3302 /** 3303 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3304 * @pdev: PCI device whose resources are to be reserved 3305 * @bar: BAR to be reserved 3306 * @res_name: Name to be associated with resource. 3307 * 3308 * Mark the PCI region associated with PCI device @pdev BR @bar as 3309 * being reserved by owner @res_name. Do not access any 3310 * address inside the PCI regions unless this call returns 3311 * successfully. 3312 * 3313 * Returns 0 on success, or %EBUSY on error. A warning 3314 * message is also printed on failure. 3315 * 3316 * The key difference that _exclusive makes it that userspace is 3317 * explicitly not allowed to map the resource via /dev/mem or 3318 * sysfs. 3319 */ 3320 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3321 const char *res_name) 3322 { 3323 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3324 } 3325 EXPORT_SYMBOL(pci_request_region_exclusive); 3326 3327 /** 3328 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3329 * @pdev: PCI device whose resources were previously reserved 3330 * @bars: Bitmask of BARs to be released 3331 * 3332 * Release selected PCI I/O and memory resources previously reserved. 3333 * Call this function only after all use of the PCI regions has ceased. 3334 */ 3335 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3336 { 3337 int i; 3338 3339 for (i = 0; i < 6; i++) 3340 if (bars & (1 << i)) 3341 pci_release_region(pdev, i); 3342 } 3343 EXPORT_SYMBOL(pci_release_selected_regions); 3344 3345 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3346 const char *res_name, int excl) 3347 { 3348 int i; 3349 3350 for (i = 0; i < 6; i++) 3351 if (bars & (1 << i)) 3352 if (__pci_request_region(pdev, i, res_name, excl)) 3353 goto err_out; 3354 return 0; 3355 3356 err_out: 3357 while (--i >= 0) 3358 if (bars & (1 << i)) 3359 pci_release_region(pdev, i); 3360 3361 return -EBUSY; 3362 } 3363 3364 3365 /** 3366 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3367 * @pdev: PCI device whose resources are to be reserved 3368 * @bars: Bitmask of BARs to be requested 3369 * @res_name: Name to be associated with resource 3370 */ 3371 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3372 const char *res_name) 3373 { 3374 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3375 } 3376 EXPORT_SYMBOL(pci_request_selected_regions); 3377 3378 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3379 const char *res_name) 3380 { 3381 return __pci_request_selected_regions(pdev, bars, res_name, 3382 IORESOURCE_EXCLUSIVE); 3383 } 3384 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3385 3386 /** 3387 * pci_release_regions - Release reserved PCI I/O and memory resources 3388 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3389 * 3390 * Releases all PCI I/O and memory resources previously reserved by a 3391 * successful call to pci_request_regions. Call this function only 3392 * after all use of the PCI regions has ceased. 3393 */ 3394 3395 void pci_release_regions(struct pci_dev *pdev) 3396 { 3397 pci_release_selected_regions(pdev, (1 << 6) - 1); 3398 } 3399 EXPORT_SYMBOL(pci_release_regions); 3400 3401 /** 3402 * pci_request_regions - Reserved PCI I/O and memory resources 3403 * @pdev: PCI device whose resources are to be reserved 3404 * @res_name: Name to be associated with resource. 3405 * 3406 * Mark all PCI regions associated with PCI device @pdev as 3407 * being reserved by owner @res_name. Do not access any 3408 * address inside the PCI regions unless this call returns 3409 * successfully. 3410 * 3411 * Returns 0 on success, or %EBUSY on error. A warning 3412 * message is also printed on failure. 3413 */ 3414 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3415 { 3416 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3417 } 3418 EXPORT_SYMBOL(pci_request_regions); 3419 3420 /** 3421 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3422 * @pdev: PCI device whose resources are to be reserved 3423 * @res_name: Name to be associated with resource. 3424 * 3425 * Mark all PCI regions associated with PCI device @pdev as 3426 * being reserved by owner @res_name. Do not access any 3427 * address inside the PCI regions unless this call returns 3428 * successfully. 3429 * 3430 * pci_request_regions_exclusive() will mark the region so that 3431 * /dev/mem and the sysfs MMIO access will not be allowed. 3432 * 3433 * Returns 0 on success, or %EBUSY on error. A warning 3434 * message is also printed on failure. 3435 */ 3436 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3437 { 3438 return pci_request_selected_regions_exclusive(pdev, 3439 ((1 << 6) - 1), res_name); 3440 } 3441 EXPORT_SYMBOL(pci_request_regions_exclusive); 3442 3443 #ifdef PCI_IOBASE 3444 struct io_range { 3445 struct list_head list; 3446 phys_addr_t start; 3447 resource_size_t size; 3448 }; 3449 3450 static LIST_HEAD(io_range_list); 3451 static DEFINE_SPINLOCK(io_range_lock); 3452 #endif 3453 3454 /* 3455 * Record the PCI IO range (expressed as CPU physical address + size). 3456 * Return a negative value if an error has occured, zero otherwise 3457 */ 3458 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3459 { 3460 int err = 0; 3461 3462 #ifdef PCI_IOBASE 3463 struct io_range *range; 3464 resource_size_t allocated_size = 0; 3465 3466 /* check if the range hasn't been previously recorded */ 3467 spin_lock(&io_range_lock); 3468 list_for_each_entry(range, &io_range_list, list) { 3469 if (addr >= range->start && addr + size <= range->start + size) { 3470 /* range already registered, bail out */ 3471 goto end_register; 3472 } 3473 allocated_size += range->size; 3474 } 3475 3476 /* range not registed yet, check for available space */ 3477 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3478 /* if it's too big check if 64K space can be reserved */ 3479 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3480 err = -E2BIG; 3481 goto end_register; 3482 } 3483 3484 size = SZ_64K; 3485 pr_warn("Requested IO range too big, new size set to 64K\n"); 3486 } 3487 3488 /* add the range to the list */ 3489 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3490 if (!range) { 3491 err = -ENOMEM; 3492 goto end_register; 3493 } 3494 3495 range->start = addr; 3496 range->size = size; 3497 3498 list_add_tail(&range->list, &io_range_list); 3499 3500 end_register: 3501 spin_unlock(&io_range_lock); 3502 #endif 3503 3504 return err; 3505 } 3506 3507 phys_addr_t pci_pio_to_address(unsigned long pio) 3508 { 3509 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3510 3511 #ifdef PCI_IOBASE 3512 struct io_range *range; 3513 resource_size_t allocated_size = 0; 3514 3515 if (pio > IO_SPACE_LIMIT) 3516 return address; 3517 3518 spin_lock(&io_range_lock); 3519 list_for_each_entry(range, &io_range_list, list) { 3520 if (pio >= allocated_size && pio < allocated_size + range->size) { 3521 address = range->start + pio - allocated_size; 3522 break; 3523 } 3524 allocated_size += range->size; 3525 } 3526 spin_unlock(&io_range_lock); 3527 #endif 3528 3529 return address; 3530 } 3531 3532 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3533 { 3534 #ifdef PCI_IOBASE 3535 struct io_range *res; 3536 resource_size_t offset = 0; 3537 unsigned long addr = -1; 3538 3539 spin_lock(&io_range_lock); 3540 list_for_each_entry(res, &io_range_list, list) { 3541 if (address >= res->start && address < res->start + res->size) { 3542 addr = address - res->start + offset; 3543 break; 3544 } 3545 offset += res->size; 3546 } 3547 spin_unlock(&io_range_lock); 3548 3549 return addr; 3550 #else 3551 if (address > IO_SPACE_LIMIT) 3552 return (unsigned long)-1; 3553 3554 return (unsigned long) address; 3555 #endif 3556 } 3557 3558 /** 3559 * pci_remap_iospace - Remap the memory mapped I/O space 3560 * @res: Resource describing the I/O space 3561 * @phys_addr: physical address of range to be mapped 3562 * 3563 * Remap the memory mapped I/O space described by the @res 3564 * and the CPU physical address @phys_addr into virtual address space. 3565 * Only architectures that have memory mapped IO functions defined 3566 * (and the PCI_IOBASE value defined) should call this function. 3567 */ 3568 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3569 { 3570 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3571 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3572 3573 if (!(res->flags & IORESOURCE_IO)) 3574 return -EINVAL; 3575 3576 if (res->end > IO_SPACE_LIMIT) 3577 return -EINVAL; 3578 3579 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3580 pgprot_device(PAGE_KERNEL)); 3581 #else 3582 /* this architecture does not have memory mapped I/O space, 3583 so this function should never be called */ 3584 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3585 return -ENODEV; 3586 #endif 3587 } 3588 EXPORT_SYMBOL(pci_remap_iospace); 3589 3590 /** 3591 * pci_unmap_iospace - Unmap the memory mapped I/O space 3592 * @res: resource to be unmapped 3593 * 3594 * Unmap the CPU virtual address @res from virtual address space. 3595 * Only architectures that have memory mapped IO functions defined 3596 * (and the PCI_IOBASE value defined) should call this function. 3597 */ 3598 void pci_unmap_iospace(struct resource *res) 3599 { 3600 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3601 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3602 3603 unmap_kernel_range(vaddr, resource_size(res)); 3604 #endif 3605 } 3606 EXPORT_SYMBOL(pci_unmap_iospace); 3607 3608 /** 3609 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3610 * @dev: Generic device to remap IO address for 3611 * @offset: Resource address to map 3612 * @size: Size of map 3613 * 3614 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3615 * detach. 3616 */ 3617 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3618 resource_size_t offset, 3619 resource_size_t size) 3620 { 3621 void __iomem **ptr, *addr; 3622 3623 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3624 if (!ptr) 3625 return NULL; 3626 3627 addr = pci_remap_cfgspace(offset, size); 3628 if (addr) { 3629 *ptr = addr; 3630 devres_add(dev, ptr); 3631 } else 3632 devres_free(ptr); 3633 3634 return addr; 3635 } 3636 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3637 3638 /** 3639 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3640 * @dev: generic device to handle the resource for 3641 * @res: configuration space resource to be handled 3642 * 3643 * Checks that a resource is a valid memory region, requests the memory 3644 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3645 * proper PCI configuration space memory attributes are guaranteed. 3646 * 3647 * All operations are managed and will be undone on driver detach. 3648 * 3649 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3650 * on failure. Usage example:: 3651 * 3652 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3653 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3654 * if (IS_ERR(base)) 3655 * return PTR_ERR(base); 3656 */ 3657 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3658 struct resource *res) 3659 { 3660 resource_size_t size; 3661 const char *name; 3662 void __iomem *dest_ptr; 3663 3664 BUG_ON(!dev); 3665 3666 if (!res || resource_type(res) != IORESOURCE_MEM) { 3667 dev_err(dev, "invalid resource\n"); 3668 return IOMEM_ERR_PTR(-EINVAL); 3669 } 3670 3671 size = resource_size(res); 3672 name = res->name ?: dev_name(dev); 3673 3674 if (!devm_request_mem_region(dev, res->start, size, name)) { 3675 dev_err(dev, "can't request region for resource %pR\n", res); 3676 return IOMEM_ERR_PTR(-EBUSY); 3677 } 3678 3679 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3680 if (!dest_ptr) { 3681 dev_err(dev, "ioremap failed for resource %pR\n", res); 3682 devm_release_mem_region(dev, res->start, size); 3683 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3684 } 3685 3686 return dest_ptr; 3687 } 3688 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3689 3690 static void __pci_set_master(struct pci_dev *dev, bool enable) 3691 { 3692 u16 old_cmd, cmd; 3693 3694 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3695 if (enable) 3696 cmd = old_cmd | PCI_COMMAND_MASTER; 3697 else 3698 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3699 if (cmd != old_cmd) { 3700 pci_dbg(dev, "%s bus mastering\n", 3701 enable ? "enabling" : "disabling"); 3702 pci_write_config_word(dev, PCI_COMMAND, cmd); 3703 } 3704 dev->is_busmaster = enable; 3705 } 3706 3707 /** 3708 * pcibios_setup - process "pci=" kernel boot arguments 3709 * @str: string used to pass in "pci=" kernel boot arguments 3710 * 3711 * Process kernel boot arguments. This is the default implementation. 3712 * Architecture specific implementations can override this as necessary. 3713 */ 3714 char * __weak __init pcibios_setup(char *str) 3715 { 3716 return str; 3717 } 3718 3719 /** 3720 * pcibios_set_master - enable PCI bus-mastering for device dev 3721 * @dev: the PCI device to enable 3722 * 3723 * Enables PCI bus-mastering for the device. This is the default 3724 * implementation. Architecture specific implementations can override 3725 * this if necessary. 3726 */ 3727 void __weak pcibios_set_master(struct pci_dev *dev) 3728 { 3729 u8 lat; 3730 3731 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3732 if (pci_is_pcie(dev)) 3733 return; 3734 3735 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3736 if (lat < 16) 3737 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3738 else if (lat > pcibios_max_latency) 3739 lat = pcibios_max_latency; 3740 else 3741 return; 3742 3743 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3744 } 3745 3746 /** 3747 * pci_set_master - enables bus-mastering for device dev 3748 * @dev: the PCI device to enable 3749 * 3750 * Enables bus-mastering on the device and calls pcibios_set_master() 3751 * to do the needed arch specific settings. 3752 */ 3753 void pci_set_master(struct pci_dev *dev) 3754 { 3755 __pci_set_master(dev, true); 3756 pcibios_set_master(dev); 3757 } 3758 EXPORT_SYMBOL(pci_set_master); 3759 3760 /** 3761 * pci_clear_master - disables bus-mastering for device dev 3762 * @dev: the PCI device to disable 3763 */ 3764 void pci_clear_master(struct pci_dev *dev) 3765 { 3766 __pci_set_master(dev, false); 3767 } 3768 EXPORT_SYMBOL(pci_clear_master); 3769 3770 /** 3771 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3772 * @dev: the PCI device for which MWI is to be enabled 3773 * 3774 * Helper function for pci_set_mwi. 3775 * Originally copied from drivers/net/acenic.c. 3776 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3777 * 3778 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3779 */ 3780 int pci_set_cacheline_size(struct pci_dev *dev) 3781 { 3782 u8 cacheline_size; 3783 3784 if (!pci_cache_line_size) 3785 return -EINVAL; 3786 3787 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3788 equal to or multiple of the right value. */ 3789 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3790 if (cacheline_size >= pci_cache_line_size && 3791 (cacheline_size % pci_cache_line_size) == 0) 3792 return 0; 3793 3794 /* Write the correct value. */ 3795 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3796 /* Read it back. */ 3797 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3798 if (cacheline_size == pci_cache_line_size) 3799 return 0; 3800 3801 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n", 3802 pci_cache_line_size << 2); 3803 3804 return -EINVAL; 3805 } 3806 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3807 3808 /** 3809 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3810 * @dev: the PCI device for which MWI is enabled 3811 * 3812 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3813 * 3814 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3815 */ 3816 int pci_set_mwi(struct pci_dev *dev) 3817 { 3818 #ifdef PCI_DISABLE_MWI 3819 return 0; 3820 #else 3821 int rc; 3822 u16 cmd; 3823 3824 rc = pci_set_cacheline_size(dev); 3825 if (rc) 3826 return rc; 3827 3828 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3829 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3830 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 3831 cmd |= PCI_COMMAND_INVALIDATE; 3832 pci_write_config_word(dev, PCI_COMMAND, cmd); 3833 } 3834 return 0; 3835 #endif 3836 } 3837 EXPORT_SYMBOL(pci_set_mwi); 3838 3839 /** 3840 * pcim_set_mwi - a device-managed pci_set_mwi() 3841 * @dev: the PCI device for which MWI is enabled 3842 * 3843 * Managed pci_set_mwi(). 3844 * 3845 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3846 */ 3847 int pcim_set_mwi(struct pci_dev *dev) 3848 { 3849 struct pci_devres *dr; 3850 3851 dr = find_pci_dr(dev); 3852 if (!dr) 3853 return -ENOMEM; 3854 3855 dr->mwi = 1; 3856 return pci_set_mwi(dev); 3857 } 3858 EXPORT_SYMBOL(pcim_set_mwi); 3859 3860 /** 3861 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3862 * @dev: the PCI device for which MWI is enabled 3863 * 3864 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3865 * Callers are not required to check the return value. 3866 * 3867 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3868 */ 3869 int pci_try_set_mwi(struct pci_dev *dev) 3870 { 3871 #ifdef PCI_DISABLE_MWI 3872 return 0; 3873 #else 3874 return pci_set_mwi(dev); 3875 #endif 3876 } 3877 EXPORT_SYMBOL(pci_try_set_mwi); 3878 3879 /** 3880 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3881 * @dev: the PCI device to disable 3882 * 3883 * Disables PCI Memory-Write-Invalidate transaction on the device 3884 */ 3885 void pci_clear_mwi(struct pci_dev *dev) 3886 { 3887 #ifndef PCI_DISABLE_MWI 3888 u16 cmd; 3889 3890 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3891 if (cmd & PCI_COMMAND_INVALIDATE) { 3892 cmd &= ~PCI_COMMAND_INVALIDATE; 3893 pci_write_config_word(dev, PCI_COMMAND, cmd); 3894 } 3895 #endif 3896 } 3897 EXPORT_SYMBOL(pci_clear_mwi); 3898 3899 /** 3900 * pci_intx - enables/disables PCI INTx for device dev 3901 * @pdev: the PCI device to operate on 3902 * @enable: boolean: whether to enable or disable PCI INTx 3903 * 3904 * Enables/disables PCI INTx for device dev 3905 */ 3906 void pci_intx(struct pci_dev *pdev, int enable) 3907 { 3908 u16 pci_command, new; 3909 3910 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3911 3912 if (enable) 3913 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3914 else 3915 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3916 3917 if (new != pci_command) { 3918 struct pci_devres *dr; 3919 3920 pci_write_config_word(pdev, PCI_COMMAND, new); 3921 3922 dr = find_pci_dr(pdev); 3923 if (dr && !dr->restore_intx) { 3924 dr->restore_intx = 1; 3925 dr->orig_intx = !enable; 3926 } 3927 } 3928 } 3929 EXPORT_SYMBOL_GPL(pci_intx); 3930 3931 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3932 { 3933 struct pci_bus *bus = dev->bus; 3934 bool mask_updated = true; 3935 u32 cmd_status_dword; 3936 u16 origcmd, newcmd; 3937 unsigned long flags; 3938 bool irq_pending; 3939 3940 /* 3941 * We do a single dword read to retrieve both command and status. 3942 * Document assumptions that make this possible. 3943 */ 3944 BUILD_BUG_ON(PCI_COMMAND % 4); 3945 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3946 3947 raw_spin_lock_irqsave(&pci_lock, flags); 3948 3949 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3950 3951 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3952 3953 /* 3954 * Check interrupt status register to see whether our device 3955 * triggered the interrupt (when masking) or the next IRQ is 3956 * already pending (when unmasking). 3957 */ 3958 if (mask != irq_pending) { 3959 mask_updated = false; 3960 goto done; 3961 } 3962 3963 origcmd = cmd_status_dword; 3964 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3965 if (mask) 3966 newcmd |= PCI_COMMAND_INTX_DISABLE; 3967 if (newcmd != origcmd) 3968 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3969 3970 done: 3971 raw_spin_unlock_irqrestore(&pci_lock, flags); 3972 3973 return mask_updated; 3974 } 3975 3976 /** 3977 * pci_check_and_mask_intx - mask INTx on pending interrupt 3978 * @dev: the PCI device to operate on 3979 * 3980 * Check if the device dev has its INTx line asserted, mask it and 3981 * return true in that case. False is returned if no interrupt was 3982 * pending. 3983 */ 3984 bool pci_check_and_mask_intx(struct pci_dev *dev) 3985 { 3986 return pci_check_and_set_intx_mask(dev, true); 3987 } 3988 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3989 3990 /** 3991 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3992 * @dev: the PCI device to operate on 3993 * 3994 * Check if the device dev has its INTx line asserted, unmask it if not 3995 * and return true. False is returned and the mask remains active if 3996 * there was still an interrupt pending. 3997 */ 3998 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3999 { 4000 return pci_check_and_set_intx_mask(dev, false); 4001 } 4002 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4003 4004 /** 4005 * pci_wait_for_pending_transaction - waits for pending transaction 4006 * @dev: the PCI device to operate on 4007 * 4008 * Return 0 if transaction is pending 1 otherwise. 4009 */ 4010 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4011 { 4012 if (!pci_is_pcie(dev)) 4013 return 1; 4014 4015 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4016 PCI_EXP_DEVSTA_TRPND); 4017 } 4018 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4019 4020 static void pci_flr_wait(struct pci_dev *dev) 4021 { 4022 int delay = 1, timeout = 60000; 4023 u32 id; 4024 4025 /* 4026 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within 4027 * 100ms, but may silently discard requests while the FLR is in 4028 * progress. Wait 100ms before trying to access the device. 4029 */ 4030 msleep(100); 4031 4032 /* 4033 * After 100ms, the device should not silently discard config 4034 * requests, but it may still indicate that it needs more time by 4035 * responding to them with CRS completions. The Root Port will 4036 * generally synthesize ~0 data to complete the read (except when 4037 * CRS SV is enabled and the read was for the Vendor ID; in that 4038 * case it synthesizes 0x0001 data). 4039 * 4040 * Wait for the device to return a non-CRS completion. Read the 4041 * Command register instead of Vendor ID so we don't have to 4042 * contend with the CRS SV value. 4043 */ 4044 pci_read_config_dword(dev, PCI_COMMAND, &id); 4045 while (id == ~0) { 4046 if (delay > timeout) { 4047 pci_warn(dev, "not ready %dms after FLR; giving up\n", 4048 100 + delay - 1); 4049 return; 4050 } 4051 4052 if (delay > 1000) 4053 pci_info(dev, "not ready %dms after FLR; waiting\n", 4054 100 + delay - 1); 4055 4056 msleep(delay); 4057 delay *= 2; 4058 pci_read_config_dword(dev, PCI_COMMAND, &id); 4059 } 4060 4061 if (delay > 1000) 4062 pci_info(dev, "ready %dms after FLR\n", 100 + delay - 1); 4063 } 4064 4065 /** 4066 * pcie_has_flr - check if a device supports function level resets 4067 * @dev: device to check 4068 * 4069 * Returns true if the device advertises support for PCIe function level 4070 * resets. 4071 */ 4072 static bool pcie_has_flr(struct pci_dev *dev) 4073 { 4074 u32 cap; 4075 4076 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4077 return false; 4078 4079 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4080 return cap & PCI_EXP_DEVCAP_FLR; 4081 } 4082 4083 /** 4084 * pcie_flr - initiate a PCIe function level reset 4085 * @dev: device to reset 4086 * 4087 * Initiate a function level reset on @dev. The caller should ensure the 4088 * device supports FLR before calling this function, e.g. by using the 4089 * pcie_has_flr() helper. 4090 */ 4091 void pcie_flr(struct pci_dev *dev) 4092 { 4093 if (!pci_wait_for_pending_transaction(dev)) 4094 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4095 4096 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4097 pci_flr_wait(dev); 4098 } 4099 EXPORT_SYMBOL_GPL(pcie_flr); 4100 4101 static int pci_af_flr(struct pci_dev *dev, int probe) 4102 { 4103 int pos; 4104 u8 cap; 4105 4106 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4107 if (!pos) 4108 return -ENOTTY; 4109 4110 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4111 return -ENOTTY; 4112 4113 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4114 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4115 return -ENOTTY; 4116 4117 if (probe) 4118 return 0; 4119 4120 /* 4121 * Wait for Transaction Pending bit to clear. A word-aligned test 4122 * is used, so we use the conrol offset rather than status and shift 4123 * the test bit to match. 4124 */ 4125 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4126 PCI_AF_STATUS_TP << 8)) 4127 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4128 4129 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4130 pci_flr_wait(dev); 4131 return 0; 4132 } 4133 4134 /** 4135 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4136 * @dev: Device to reset. 4137 * @probe: If set, only check if the device can be reset this way. 4138 * 4139 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4140 * unset, it will be reinitialized internally when going from PCI_D3hot to 4141 * PCI_D0. If that's the case and the device is not in a low-power state 4142 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4143 * 4144 * NOTE: This causes the caller to sleep for twice the device power transition 4145 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4146 * by default (i.e. unless the @dev's d3_delay field has a different value). 4147 * Moreover, only devices in D0 can be reset by this function. 4148 */ 4149 static int pci_pm_reset(struct pci_dev *dev, int probe) 4150 { 4151 u16 csr; 4152 4153 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4154 return -ENOTTY; 4155 4156 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4157 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4158 return -ENOTTY; 4159 4160 if (probe) 4161 return 0; 4162 4163 if (dev->current_state != PCI_D0) 4164 return -EINVAL; 4165 4166 csr &= ~PCI_PM_CTRL_STATE_MASK; 4167 csr |= PCI_D3hot; 4168 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4169 pci_dev_d3_sleep(dev); 4170 4171 csr &= ~PCI_PM_CTRL_STATE_MASK; 4172 csr |= PCI_D0; 4173 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4174 pci_dev_d3_sleep(dev); 4175 4176 return 0; 4177 } 4178 4179 void pci_reset_secondary_bus(struct pci_dev *dev) 4180 { 4181 u16 ctrl; 4182 4183 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4184 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4185 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4186 /* 4187 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4188 * this to 2ms to ensure that we meet the minimum requirement. 4189 */ 4190 msleep(2); 4191 4192 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4193 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4194 4195 /* 4196 * Trhfa for conventional PCI is 2^25 clock cycles. 4197 * Assuming a minimum 33MHz clock this results in a 1s 4198 * delay before we can consider subordinate devices to 4199 * be re-initialized. PCIe has some ways to shorten this, 4200 * but we don't make use of them yet. 4201 */ 4202 ssleep(1); 4203 } 4204 4205 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4206 { 4207 pci_reset_secondary_bus(dev); 4208 } 4209 4210 /** 4211 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4212 * @dev: Bridge device 4213 * 4214 * Use the bridge control register to assert reset on the secondary bus. 4215 * Devices on the secondary bus are left in power-on state. 4216 */ 4217 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4218 { 4219 pcibios_reset_secondary_bus(dev); 4220 } 4221 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4222 4223 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4224 { 4225 struct pci_dev *pdev; 4226 4227 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4228 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4229 return -ENOTTY; 4230 4231 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4232 if (pdev != dev) 4233 return -ENOTTY; 4234 4235 if (probe) 4236 return 0; 4237 4238 pci_reset_bridge_secondary_bus(dev->bus->self); 4239 4240 return 0; 4241 } 4242 4243 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4244 { 4245 int rc = -ENOTTY; 4246 4247 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4248 return rc; 4249 4250 if (hotplug->ops->reset_slot) 4251 rc = hotplug->ops->reset_slot(hotplug, probe); 4252 4253 module_put(hotplug->ops->owner); 4254 4255 return rc; 4256 } 4257 4258 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4259 { 4260 struct pci_dev *pdev; 4261 4262 if (dev->subordinate || !dev->slot || 4263 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4264 return -ENOTTY; 4265 4266 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4267 if (pdev != dev && pdev->slot == dev->slot) 4268 return -ENOTTY; 4269 4270 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4271 } 4272 4273 static void pci_dev_lock(struct pci_dev *dev) 4274 { 4275 pci_cfg_access_lock(dev); 4276 /* block PM suspend, driver probe, etc. */ 4277 device_lock(&dev->dev); 4278 } 4279 4280 /* Return 1 on successful lock, 0 on contention */ 4281 static int pci_dev_trylock(struct pci_dev *dev) 4282 { 4283 if (pci_cfg_access_trylock(dev)) { 4284 if (device_trylock(&dev->dev)) 4285 return 1; 4286 pci_cfg_access_unlock(dev); 4287 } 4288 4289 return 0; 4290 } 4291 4292 static void pci_dev_unlock(struct pci_dev *dev) 4293 { 4294 device_unlock(&dev->dev); 4295 pci_cfg_access_unlock(dev); 4296 } 4297 4298 static void pci_dev_save_and_disable(struct pci_dev *dev) 4299 { 4300 const struct pci_error_handlers *err_handler = 4301 dev->driver ? dev->driver->err_handler : NULL; 4302 4303 /* 4304 * dev->driver->err_handler->reset_prepare() is protected against 4305 * races with ->remove() by the device lock, which must be held by 4306 * the caller. 4307 */ 4308 if (err_handler && err_handler->reset_prepare) 4309 err_handler->reset_prepare(dev); 4310 4311 /* 4312 * Wake-up device prior to save. PM registers default to D0 after 4313 * reset and a simple register restore doesn't reliably return 4314 * to a non-D0 state anyway. 4315 */ 4316 pci_set_power_state(dev, PCI_D0); 4317 4318 pci_save_state(dev); 4319 /* 4320 * Disable the device by clearing the Command register, except for 4321 * INTx-disable which is set. This not only disables MMIO and I/O port 4322 * BARs, but also prevents the device from being Bus Master, preventing 4323 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4324 * compliant devices, INTx-disable prevents legacy interrupts. 4325 */ 4326 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4327 } 4328 4329 static void pci_dev_restore(struct pci_dev *dev) 4330 { 4331 const struct pci_error_handlers *err_handler = 4332 dev->driver ? dev->driver->err_handler : NULL; 4333 4334 pci_restore_state(dev); 4335 4336 /* 4337 * dev->driver->err_handler->reset_done() is protected against 4338 * races with ->remove() by the device lock, which must be held by 4339 * the caller. 4340 */ 4341 if (err_handler && err_handler->reset_done) 4342 err_handler->reset_done(dev); 4343 } 4344 4345 /** 4346 * __pci_reset_function_locked - reset a PCI device function while holding 4347 * the @dev mutex lock. 4348 * @dev: PCI device to reset 4349 * 4350 * Some devices allow an individual function to be reset without affecting 4351 * other functions in the same device. The PCI device must be responsive 4352 * to PCI config space in order to use this function. 4353 * 4354 * The device function is presumed to be unused and the caller is holding 4355 * the device mutex lock when this function is called. 4356 * Resetting the device will make the contents of PCI configuration space 4357 * random, so any caller of this must be prepared to reinitialise the 4358 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4359 * etc. 4360 * 4361 * Returns 0 if the device function was successfully reset or negative if the 4362 * device doesn't support resetting a single function. 4363 */ 4364 int __pci_reset_function_locked(struct pci_dev *dev) 4365 { 4366 int rc; 4367 4368 might_sleep(); 4369 4370 /* 4371 * A reset method returns -ENOTTY if it doesn't support this device 4372 * and we should try the next method. 4373 * 4374 * If it returns 0 (success), we're finished. If it returns any 4375 * other error, we're also finished: this indicates that further 4376 * reset mechanisms might be broken on the device. 4377 */ 4378 rc = pci_dev_specific_reset(dev, 0); 4379 if (rc != -ENOTTY) 4380 return rc; 4381 if (pcie_has_flr(dev)) { 4382 pcie_flr(dev); 4383 return 0; 4384 } 4385 rc = pci_af_flr(dev, 0); 4386 if (rc != -ENOTTY) 4387 return rc; 4388 rc = pci_pm_reset(dev, 0); 4389 if (rc != -ENOTTY) 4390 return rc; 4391 rc = pci_dev_reset_slot_function(dev, 0); 4392 if (rc != -ENOTTY) 4393 return rc; 4394 return pci_parent_bus_reset(dev, 0); 4395 } 4396 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4397 4398 /** 4399 * pci_probe_reset_function - check whether the device can be safely reset 4400 * @dev: PCI device to reset 4401 * 4402 * Some devices allow an individual function to be reset without affecting 4403 * other functions in the same device. The PCI device must be responsive 4404 * to PCI config space in order to use this function. 4405 * 4406 * Returns 0 if the device function can be reset or negative if the 4407 * device doesn't support resetting a single function. 4408 */ 4409 int pci_probe_reset_function(struct pci_dev *dev) 4410 { 4411 int rc; 4412 4413 might_sleep(); 4414 4415 rc = pci_dev_specific_reset(dev, 1); 4416 if (rc != -ENOTTY) 4417 return rc; 4418 if (pcie_has_flr(dev)) 4419 return 0; 4420 rc = pci_af_flr(dev, 1); 4421 if (rc != -ENOTTY) 4422 return rc; 4423 rc = pci_pm_reset(dev, 1); 4424 if (rc != -ENOTTY) 4425 return rc; 4426 rc = pci_dev_reset_slot_function(dev, 1); 4427 if (rc != -ENOTTY) 4428 return rc; 4429 4430 return pci_parent_bus_reset(dev, 1); 4431 } 4432 4433 /** 4434 * pci_reset_function - quiesce and reset a PCI device function 4435 * @dev: PCI device to reset 4436 * 4437 * Some devices allow an individual function to be reset without affecting 4438 * other functions in the same device. The PCI device must be responsive 4439 * to PCI config space in order to use this function. 4440 * 4441 * This function does not just reset the PCI portion of a device, but 4442 * clears all the state associated with the device. This function differs 4443 * from __pci_reset_function_locked() in that it saves and restores device state 4444 * over the reset and takes the PCI device lock. 4445 * 4446 * Returns 0 if the device function was successfully reset or negative if the 4447 * device doesn't support resetting a single function. 4448 */ 4449 int pci_reset_function(struct pci_dev *dev) 4450 { 4451 int rc; 4452 4453 rc = pci_probe_reset_function(dev); 4454 if (rc) 4455 return rc; 4456 4457 pci_dev_lock(dev); 4458 pci_dev_save_and_disable(dev); 4459 4460 rc = __pci_reset_function_locked(dev); 4461 4462 pci_dev_restore(dev); 4463 pci_dev_unlock(dev); 4464 4465 return rc; 4466 } 4467 EXPORT_SYMBOL_GPL(pci_reset_function); 4468 4469 /** 4470 * pci_reset_function_locked - quiesce and reset a PCI device function 4471 * @dev: PCI device to reset 4472 * 4473 * Some devices allow an individual function to be reset without affecting 4474 * other functions in the same device. The PCI device must be responsive 4475 * to PCI config space in order to use this function. 4476 * 4477 * This function does not just reset the PCI portion of a device, but 4478 * clears all the state associated with the device. This function differs 4479 * from __pci_reset_function_locked() in that it saves and restores device state 4480 * over the reset. It also differs from pci_reset_function() in that it 4481 * requires the PCI device lock to be held. 4482 * 4483 * Returns 0 if the device function was successfully reset or negative if the 4484 * device doesn't support resetting a single function. 4485 */ 4486 int pci_reset_function_locked(struct pci_dev *dev) 4487 { 4488 int rc; 4489 4490 rc = pci_probe_reset_function(dev); 4491 if (rc) 4492 return rc; 4493 4494 pci_dev_save_and_disable(dev); 4495 4496 rc = __pci_reset_function_locked(dev); 4497 4498 pci_dev_restore(dev); 4499 4500 return rc; 4501 } 4502 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4503 4504 /** 4505 * pci_try_reset_function - quiesce and reset a PCI device function 4506 * @dev: PCI device to reset 4507 * 4508 * Same as above, except return -EAGAIN if unable to lock device. 4509 */ 4510 int pci_try_reset_function(struct pci_dev *dev) 4511 { 4512 int rc; 4513 4514 rc = pci_probe_reset_function(dev); 4515 if (rc) 4516 return rc; 4517 4518 if (!pci_dev_trylock(dev)) 4519 return -EAGAIN; 4520 4521 pci_dev_save_and_disable(dev); 4522 rc = __pci_reset_function_locked(dev); 4523 pci_dev_unlock(dev); 4524 4525 pci_dev_restore(dev); 4526 return rc; 4527 } 4528 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4529 4530 /* Do any devices on or below this bus prevent a bus reset? */ 4531 static bool pci_bus_resetable(struct pci_bus *bus) 4532 { 4533 struct pci_dev *dev; 4534 4535 4536 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4537 return false; 4538 4539 list_for_each_entry(dev, &bus->devices, bus_list) { 4540 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4541 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4542 return false; 4543 } 4544 4545 return true; 4546 } 4547 4548 /* Lock devices from the top of the tree down */ 4549 static void pci_bus_lock(struct pci_bus *bus) 4550 { 4551 struct pci_dev *dev; 4552 4553 list_for_each_entry(dev, &bus->devices, bus_list) { 4554 pci_dev_lock(dev); 4555 if (dev->subordinate) 4556 pci_bus_lock(dev->subordinate); 4557 } 4558 } 4559 4560 /* Unlock devices from the bottom of the tree up */ 4561 static void pci_bus_unlock(struct pci_bus *bus) 4562 { 4563 struct pci_dev *dev; 4564 4565 list_for_each_entry(dev, &bus->devices, bus_list) { 4566 if (dev->subordinate) 4567 pci_bus_unlock(dev->subordinate); 4568 pci_dev_unlock(dev); 4569 } 4570 } 4571 4572 /* Return 1 on successful lock, 0 on contention */ 4573 static int pci_bus_trylock(struct pci_bus *bus) 4574 { 4575 struct pci_dev *dev; 4576 4577 list_for_each_entry(dev, &bus->devices, bus_list) { 4578 if (!pci_dev_trylock(dev)) 4579 goto unlock; 4580 if (dev->subordinate) { 4581 if (!pci_bus_trylock(dev->subordinate)) { 4582 pci_dev_unlock(dev); 4583 goto unlock; 4584 } 4585 } 4586 } 4587 return 1; 4588 4589 unlock: 4590 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4591 if (dev->subordinate) 4592 pci_bus_unlock(dev->subordinate); 4593 pci_dev_unlock(dev); 4594 } 4595 return 0; 4596 } 4597 4598 /* Do any devices on or below this slot prevent a bus reset? */ 4599 static bool pci_slot_resetable(struct pci_slot *slot) 4600 { 4601 struct pci_dev *dev; 4602 4603 if (slot->bus->self && 4604 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4605 return false; 4606 4607 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4608 if (!dev->slot || dev->slot != slot) 4609 continue; 4610 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4611 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4612 return false; 4613 } 4614 4615 return true; 4616 } 4617 4618 /* Lock devices from the top of the tree down */ 4619 static void pci_slot_lock(struct pci_slot *slot) 4620 { 4621 struct pci_dev *dev; 4622 4623 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4624 if (!dev->slot || dev->slot != slot) 4625 continue; 4626 pci_dev_lock(dev); 4627 if (dev->subordinate) 4628 pci_bus_lock(dev->subordinate); 4629 } 4630 } 4631 4632 /* Unlock devices from the bottom of the tree up */ 4633 static void pci_slot_unlock(struct pci_slot *slot) 4634 { 4635 struct pci_dev *dev; 4636 4637 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4638 if (!dev->slot || dev->slot != slot) 4639 continue; 4640 if (dev->subordinate) 4641 pci_bus_unlock(dev->subordinate); 4642 pci_dev_unlock(dev); 4643 } 4644 } 4645 4646 /* Return 1 on successful lock, 0 on contention */ 4647 static int pci_slot_trylock(struct pci_slot *slot) 4648 { 4649 struct pci_dev *dev; 4650 4651 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4652 if (!dev->slot || dev->slot != slot) 4653 continue; 4654 if (!pci_dev_trylock(dev)) 4655 goto unlock; 4656 if (dev->subordinate) { 4657 if (!pci_bus_trylock(dev->subordinate)) { 4658 pci_dev_unlock(dev); 4659 goto unlock; 4660 } 4661 } 4662 } 4663 return 1; 4664 4665 unlock: 4666 list_for_each_entry_continue_reverse(dev, 4667 &slot->bus->devices, bus_list) { 4668 if (!dev->slot || dev->slot != slot) 4669 continue; 4670 if (dev->subordinate) 4671 pci_bus_unlock(dev->subordinate); 4672 pci_dev_unlock(dev); 4673 } 4674 return 0; 4675 } 4676 4677 /* Save and disable devices from the top of the tree down */ 4678 static void pci_bus_save_and_disable(struct pci_bus *bus) 4679 { 4680 struct pci_dev *dev; 4681 4682 list_for_each_entry(dev, &bus->devices, bus_list) { 4683 pci_dev_lock(dev); 4684 pci_dev_save_and_disable(dev); 4685 pci_dev_unlock(dev); 4686 if (dev->subordinate) 4687 pci_bus_save_and_disable(dev->subordinate); 4688 } 4689 } 4690 4691 /* 4692 * Restore devices from top of the tree down - parent bridges need to be 4693 * restored before we can get to subordinate devices. 4694 */ 4695 static void pci_bus_restore(struct pci_bus *bus) 4696 { 4697 struct pci_dev *dev; 4698 4699 list_for_each_entry(dev, &bus->devices, bus_list) { 4700 pci_dev_lock(dev); 4701 pci_dev_restore(dev); 4702 pci_dev_unlock(dev); 4703 if (dev->subordinate) 4704 pci_bus_restore(dev->subordinate); 4705 } 4706 } 4707 4708 /* Save and disable devices from the top of the tree down */ 4709 static void pci_slot_save_and_disable(struct pci_slot *slot) 4710 { 4711 struct pci_dev *dev; 4712 4713 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4714 if (!dev->slot || dev->slot != slot) 4715 continue; 4716 pci_dev_save_and_disable(dev); 4717 if (dev->subordinate) 4718 pci_bus_save_and_disable(dev->subordinate); 4719 } 4720 } 4721 4722 /* 4723 * Restore devices from top of the tree down - parent bridges need to be 4724 * restored before we can get to subordinate devices. 4725 */ 4726 static void pci_slot_restore(struct pci_slot *slot) 4727 { 4728 struct pci_dev *dev; 4729 4730 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4731 if (!dev->slot || dev->slot != slot) 4732 continue; 4733 pci_dev_restore(dev); 4734 if (dev->subordinate) 4735 pci_bus_restore(dev->subordinate); 4736 } 4737 } 4738 4739 static int pci_slot_reset(struct pci_slot *slot, int probe) 4740 { 4741 int rc; 4742 4743 if (!slot || !pci_slot_resetable(slot)) 4744 return -ENOTTY; 4745 4746 if (!probe) 4747 pci_slot_lock(slot); 4748 4749 might_sleep(); 4750 4751 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4752 4753 if (!probe) 4754 pci_slot_unlock(slot); 4755 4756 return rc; 4757 } 4758 4759 /** 4760 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4761 * @slot: PCI slot to probe 4762 * 4763 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4764 */ 4765 int pci_probe_reset_slot(struct pci_slot *slot) 4766 { 4767 return pci_slot_reset(slot, 1); 4768 } 4769 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4770 4771 /** 4772 * pci_reset_slot - reset a PCI slot 4773 * @slot: PCI slot to reset 4774 * 4775 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4776 * independent of other slots. For instance, some slots may support slot power 4777 * control. In the case of a 1:1 bus to slot architecture, this function may 4778 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4779 * Generally a slot reset should be attempted before a bus reset. All of the 4780 * function of the slot and any subordinate buses behind the slot are reset 4781 * through this function. PCI config space of all devices in the slot and 4782 * behind the slot is saved before and restored after reset. 4783 * 4784 * Return 0 on success, non-zero on error. 4785 */ 4786 int pci_reset_slot(struct pci_slot *slot) 4787 { 4788 int rc; 4789 4790 rc = pci_slot_reset(slot, 1); 4791 if (rc) 4792 return rc; 4793 4794 pci_slot_save_and_disable(slot); 4795 4796 rc = pci_slot_reset(slot, 0); 4797 4798 pci_slot_restore(slot); 4799 4800 return rc; 4801 } 4802 EXPORT_SYMBOL_GPL(pci_reset_slot); 4803 4804 /** 4805 * pci_try_reset_slot - Try to reset a PCI slot 4806 * @slot: PCI slot to reset 4807 * 4808 * Same as above except return -EAGAIN if the slot cannot be locked 4809 */ 4810 int pci_try_reset_slot(struct pci_slot *slot) 4811 { 4812 int rc; 4813 4814 rc = pci_slot_reset(slot, 1); 4815 if (rc) 4816 return rc; 4817 4818 pci_slot_save_and_disable(slot); 4819 4820 if (pci_slot_trylock(slot)) { 4821 might_sleep(); 4822 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4823 pci_slot_unlock(slot); 4824 } else 4825 rc = -EAGAIN; 4826 4827 pci_slot_restore(slot); 4828 4829 return rc; 4830 } 4831 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4832 4833 static int pci_bus_reset(struct pci_bus *bus, int probe) 4834 { 4835 if (!bus->self || !pci_bus_resetable(bus)) 4836 return -ENOTTY; 4837 4838 if (probe) 4839 return 0; 4840 4841 pci_bus_lock(bus); 4842 4843 might_sleep(); 4844 4845 pci_reset_bridge_secondary_bus(bus->self); 4846 4847 pci_bus_unlock(bus); 4848 4849 return 0; 4850 } 4851 4852 /** 4853 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4854 * @bus: PCI bus to probe 4855 * 4856 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4857 */ 4858 int pci_probe_reset_bus(struct pci_bus *bus) 4859 { 4860 return pci_bus_reset(bus, 1); 4861 } 4862 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4863 4864 /** 4865 * pci_reset_bus - reset a PCI bus 4866 * @bus: top level PCI bus to reset 4867 * 4868 * Do a bus reset on the given bus and any subordinate buses, saving 4869 * and restoring state of all devices. 4870 * 4871 * Return 0 on success, non-zero on error. 4872 */ 4873 int pci_reset_bus(struct pci_bus *bus) 4874 { 4875 int rc; 4876 4877 rc = pci_bus_reset(bus, 1); 4878 if (rc) 4879 return rc; 4880 4881 pci_bus_save_and_disable(bus); 4882 4883 rc = pci_bus_reset(bus, 0); 4884 4885 pci_bus_restore(bus); 4886 4887 return rc; 4888 } 4889 EXPORT_SYMBOL_GPL(pci_reset_bus); 4890 4891 /** 4892 * pci_try_reset_bus - Try to reset a PCI bus 4893 * @bus: top level PCI bus to reset 4894 * 4895 * Same as above except return -EAGAIN if the bus cannot be locked 4896 */ 4897 int pci_try_reset_bus(struct pci_bus *bus) 4898 { 4899 int rc; 4900 4901 rc = pci_bus_reset(bus, 1); 4902 if (rc) 4903 return rc; 4904 4905 pci_bus_save_and_disable(bus); 4906 4907 if (pci_bus_trylock(bus)) { 4908 might_sleep(); 4909 pci_reset_bridge_secondary_bus(bus->self); 4910 pci_bus_unlock(bus); 4911 } else 4912 rc = -EAGAIN; 4913 4914 pci_bus_restore(bus); 4915 4916 return rc; 4917 } 4918 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4919 4920 /** 4921 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4922 * @dev: PCI device to query 4923 * 4924 * Returns mmrbc: maximum designed memory read count in bytes 4925 * or appropriate error value. 4926 */ 4927 int pcix_get_max_mmrbc(struct pci_dev *dev) 4928 { 4929 int cap; 4930 u32 stat; 4931 4932 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4933 if (!cap) 4934 return -EINVAL; 4935 4936 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4937 return -EINVAL; 4938 4939 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4940 } 4941 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4942 4943 /** 4944 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4945 * @dev: PCI device to query 4946 * 4947 * Returns mmrbc: maximum memory read count in bytes 4948 * or appropriate error value. 4949 */ 4950 int pcix_get_mmrbc(struct pci_dev *dev) 4951 { 4952 int cap; 4953 u16 cmd; 4954 4955 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4956 if (!cap) 4957 return -EINVAL; 4958 4959 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4960 return -EINVAL; 4961 4962 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4963 } 4964 EXPORT_SYMBOL(pcix_get_mmrbc); 4965 4966 /** 4967 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4968 * @dev: PCI device to query 4969 * @mmrbc: maximum memory read count in bytes 4970 * valid values are 512, 1024, 2048, 4096 4971 * 4972 * If possible sets maximum memory read byte count, some bridges have erratas 4973 * that prevent this. 4974 */ 4975 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4976 { 4977 int cap; 4978 u32 stat, v, o; 4979 u16 cmd; 4980 4981 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4982 return -EINVAL; 4983 4984 v = ffs(mmrbc) - 10; 4985 4986 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4987 if (!cap) 4988 return -EINVAL; 4989 4990 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4991 return -EINVAL; 4992 4993 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4994 return -E2BIG; 4995 4996 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4997 return -EINVAL; 4998 4999 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5000 if (o != v) { 5001 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5002 return -EIO; 5003 5004 cmd &= ~PCI_X_CMD_MAX_READ; 5005 cmd |= v << 2; 5006 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5007 return -EIO; 5008 } 5009 return 0; 5010 } 5011 EXPORT_SYMBOL(pcix_set_mmrbc); 5012 5013 /** 5014 * pcie_get_readrq - get PCI Express read request size 5015 * @dev: PCI device to query 5016 * 5017 * Returns maximum memory read request in bytes 5018 * or appropriate error value. 5019 */ 5020 int pcie_get_readrq(struct pci_dev *dev) 5021 { 5022 u16 ctl; 5023 5024 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5025 5026 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5027 } 5028 EXPORT_SYMBOL(pcie_get_readrq); 5029 5030 /** 5031 * pcie_set_readrq - set PCI Express maximum memory read request 5032 * @dev: PCI device to query 5033 * @rq: maximum memory read count in bytes 5034 * valid values are 128, 256, 512, 1024, 2048, 4096 5035 * 5036 * If possible sets maximum memory read request in bytes 5037 */ 5038 int pcie_set_readrq(struct pci_dev *dev, int rq) 5039 { 5040 u16 v; 5041 5042 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5043 return -EINVAL; 5044 5045 /* 5046 * If using the "performance" PCIe config, we clamp the 5047 * read rq size to the max packet size to prevent the 5048 * host bridge generating requests larger than we can 5049 * cope with 5050 */ 5051 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5052 int mps = pcie_get_mps(dev); 5053 5054 if (mps < rq) 5055 rq = mps; 5056 } 5057 5058 v = (ffs(rq) - 8) << 12; 5059 5060 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5061 PCI_EXP_DEVCTL_READRQ, v); 5062 } 5063 EXPORT_SYMBOL(pcie_set_readrq); 5064 5065 /** 5066 * pcie_get_mps - get PCI Express maximum payload size 5067 * @dev: PCI device to query 5068 * 5069 * Returns maximum payload size in bytes 5070 */ 5071 int pcie_get_mps(struct pci_dev *dev) 5072 { 5073 u16 ctl; 5074 5075 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5076 5077 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5078 } 5079 EXPORT_SYMBOL(pcie_get_mps); 5080 5081 /** 5082 * pcie_set_mps - set PCI Express maximum payload size 5083 * @dev: PCI device to query 5084 * @mps: maximum payload size in bytes 5085 * valid values are 128, 256, 512, 1024, 2048, 4096 5086 * 5087 * If possible sets maximum payload size 5088 */ 5089 int pcie_set_mps(struct pci_dev *dev, int mps) 5090 { 5091 u16 v; 5092 5093 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5094 return -EINVAL; 5095 5096 v = ffs(mps) - 8; 5097 if (v > dev->pcie_mpss) 5098 return -EINVAL; 5099 v <<= 5; 5100 5101 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5102 PCI_EXP_DEVCTL_PAYLOAD, v); 5103 } 5104 EXPORT_SYMBOL(pcie_set_mps); 5105 5106 /** 5107 * pcie_get_minimum_link - determine minimum link settings of a PCI device 5108 * @dev: PCI device to query 5109 * @speed: storage for minimum speed 5110 * @width: storage for minimum width 5111 * 5112 * This function will walk up the PCI device chain and determine the minimum 5113 * link width and speed of the device. 5114 */ 5115 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 5116 enum pcie_link_width *width) 5117 { 5118 int ret; 5119 5120 *speed = PCI_SPEED_UNKNOWN; 5121 *width = PCIE_LNK_WIDTH_UNKNOWN; 5122 5123 while (dev) { 5124 u16 lnksta; 5125 enum pci_bus_speed next_speed; 5126 enum pcie_link_width next_width; 5127 5128 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5129 if (ret) 5130 return ret; 5131 5132 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5133 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5134 PCI_EXP_LNKSTA_NLW_SHIFT; 5135 5136 if (next_speed < *speed) 5137 *speed = next_speed; 5138 5139 if (next_width < *width) 5140 *width = next_width; 5141 5142 dev = dev->bus->self; 5143 } 5144 5145 return 0; 5146 } 5147 EXPORT_SYMBOL(pcie_get_minimum_link); 5148 5149 /** 5150 * pci_select_bars - Make BAR mask from the type of resource 5151 * @dev: the PCI device for which BAR mask is made 5152 * @flags: resource type mask to be selected 5153 * 5154 * This helper routine makes bar mask from the type of resource. 5155 */ 5156 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5157 { 5158 int i, bars = 0; 5159 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5160 if (pci_resource_flags(dev, i) & flags) 5161 bars |= (1 << i); 5162 return bars; 5163 } 5164 EXPORT_SYMBOL(pci_select_bars); 5165 5166 /* Some architectures require additional programming to enable VGA */ 5167 static arch_set_vga_state_t arch_set_vga_state; 5168 5169 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5170 { 5171 arch_set_vga_state = func; /* NULL disables */ 5172 } 5173 5174 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5175 unsigned int command_bits, u32 flags) 5176 { 5177 if (arch_set_vga_state) 5178 return arch_set_vga_state(dev, decode, command_bits, 5179 flags); 5180 return 0; 5181 } 5182 5183 /** 5184 * pci_set_vga_state - set VGA decode state on device and parents if requested 5185 * @dev: the PCI device 5186 * @decode: true = enable decoding, false = disable decoding 5187 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5188 * @flags: traverse ancestors and change bridges 5189 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5190 */ 5191 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5192 unsigned int command_bits, u32 flags) 5193 { 5194 struct pci_bus *bus; 5195 struct pci_dev *bridge; 5196 u16 cmd; 5197 int rc; 5198 5199 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5200 5201 /* ARCH specific VGA enables */ 5202 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5203 if (rc) 5204 return rc; 5205 5206 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5207 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5208 if (decode == true) 5209 cmd |= command_bits; 5210 else 5211 cmd &= ~command_bits; 5212 pci_write_config_word(dev, PCI_COMMAND, cmd); 5213 } 5214 5215 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5216 return 0; 5217 5218 bus = dev->bus; 5219 while (bus) { 5220 bridge = bus->self; 5221 if (bridge) { 5222 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5223 &cmd); 5224 if (decode == true) 5225 cmd |= PCI_BRIDGE_CTL_VGA; 5226 else 5227 cmd &= ~PCI_BRIDGE_CTL_VGA; 5228 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5229 cmd); 5230 } 5231 bus = bus->parent; 5232 } 5233 return 0; 5234 } 5235 5236 /** 5237 * pci_add_dma_alias - Add a DMA devfn alias for a device 5238 * @dev: the PCI device for which alias is added 5239 * @devfn: alias slot and function 5240 * 5241 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5242 * It should be called early, preferably as PCI fixup header quirk. 5243 */ 5244 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5245 { 5246 if (!dev->dma_alias_mask) 5247 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5248 sizeof(long), GFP_KERNEL); 5249 if (!dev->dma_alias_mask) { 5250 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5251 return; 5252 } 5253 5254 set_bit(devfn, dev->dma_alias_mask); 5255 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5256 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5257 } 5258 5259 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5260 { 5261 return (dev1->dma_alias_mask && 5262 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5263 (dev2->dma_alias_mask && 5264 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5265 } 5266 5267 bool pci_device_is_present(struct pci_dev *pdev) 5268 { 5269 u32 v; 5270 5271 if (pci_dev_is_disconnected(pdev)) 5272 return false; 5273 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5274 } 5275 EXPORT_SYMBOL_GPL(pci_device_is_present); 5276 5277 void pci_ignore_hotplug(struct pci_dev *dev) 5278 { 5279 struct pci_dev *bridge = dev->bus->self; 5280 5281 dev->ignore_hotplug = 1; 5282 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5283 if (bridge) 5284 bridge->ignore_hotplug = 1; 5285 } 5286 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5287 5288 resource_size_t __weak pcibios_default_alignment(void) 5289 { 5290 return 0; 5291 } 5292 5293 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5294 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5295 static DEFINE_SPINLOCK(resource_alignment_lock); 5296 5297 /** 5298 * pci_specified_resource_alignment - get resource alignment specified by user. 5299 * @dev: the PCI device to get 5300 * @resize: whether or not to change resources' size when reassigning alignment 5301 * 5302 * RETURNS: Resource alignment if it is specified. 5303 * Zero if it is not specified. 5304 */ 5305 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5306 bool *resize) 5307 { 5308 int seg, bus, slot, func, align_order, count; 5309 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5310 resource_size_t align = pcibios_default_alignment(); 5311 char *p; 5312 5313 spin_lock(&resource_alignment_lock); 5314 p = resource_alignment_param; 5315 if (!*p && !align) 5316 goto out; 5317 if (pci_has_flag(PCI_PROBE_ONLY)) { 5318 align = 0; 5319 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5320 goto out; 5321 } 5322 5323 while (*p) { 5324 count = 0; 5325 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5326 p[count] == '@') { 5327 p += count + 1; 5328 } else { 5329 align_order = -1; 5330 } 5331 if (strncmp(p, "pci:", 4) == 0) { 5332 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5333 p += 4; 5334 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5335 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5336 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5337 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5338 p); 5339 break; 5340 } 5341 subsystem_vendor = subsystem_device = 0; 5342 } 5343 p += count; 5344 if ((!vendor || (vendor == dev->vendor)) && 5345 (!device || (device == dev->device)) && 5346 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5347 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5348 *resize = true; 5349 if (align_order == -1) 5350 align = PAGE_SIZE; 5351 else 5352 align = 1 << align_order; 5353 /* Found */ 5354 break; 5355 } 5356 } 5357 else { 5358 if (sscanf(p, "%x:%x:%x.%x%n", 5359 &seg, &bus, &slot, &func, &count) != 4) { 5360 seg = 0; 5361 if (sscanf(p, "%x:%x.%x%n", 5362 &bus, &slot, &func, &count) != 3) { 5363 /* Invalid format */ 5364 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5365 p); 5366 break; 5367 } 5368 } 5369 p += count; 5370 if (seg == pci_domain_nr(dev->bus) && 5371 bus == dev->bus->number && 5372 slot == PCI_SLOT(dev->devfn) && 5373 func == PCI_FUNC(dev->devfn)) { 5374 *resize = true; 5375 if (align_order == -1) 5376 align = PAGE_SIZE; 5377 else 5378 align = 1 << align_order; 5379 /* Found */ 5380 break; 5381 } 5382 } 5383 if (*p != ';' && *p != ',') { 5384 /* End of param or invalid format */ 5385 break; 5386 } 5387 p++; 5388 } 5389 out: 5390 spin_unlock(&resource_alignment_lock); 5391 return align; 5392 } 5393 5394 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5395 resource_size_t align, bool resize) 5396 { 5397 struct resource *r = &dev->resource[bar]; 5398 resource_size_t size; 5399 5400 if (!(r->flags & IORESOURCE_MEM)) 5401 return; 5402 5403 if (r->flags & IORESOURCE_PCI_FIXED) { 5404 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5405 bar, r, (unsigned long long)align); 5406 return; 5407 } 5408 5409 size = resource_size(r); 5410 if (size >= align) 5411 return; 5412 5413 /* 5414 * Increase the alignment of the resource. There are two ways we 5415 * can do this: 5416 * 5417 * 1) Increase the size of the resource. BARs are aligned on their 5418 * size, so when we reallocate space for this resource, we'll 5419 * allocate it with the larger alignment. This also prevents 5420 * assignment of any other BARs inside the alignment region, so 5421 * if we're requesting page alignment, this means no other BARs 5422 * will share the page. 5423 * 5424 * The disadvantage is that this makes the resource larger than 5425 * the hardware BAR, which may break drivers that compute things 5426 * based on the resource size, e.g., to find registers at a 5427 * fixed offset before the end of the BAR. 5428 * 5429 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5430 * set r->start to the desired alignment. By itself this 5431 * doesn't prevent other BARs being put inside the alignment 5432 * region, but if we realign *every* resource of every device in 5433 * the system, none of them will share an alignment region. 5434 * 5435 * When the user has requested alignment for only some devices via 5436 * the "pci=resource_alignment" argument, "resize" is true and we 5437 * use the first method. Otherwise we assume we're aligning all 5438 * devices and we use the second. 5439 */ 5440 5441 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 5442 bar, r, (unsigned long long)align); 5443 5444 if (resize) { 5445 r->start = 0; 5446 r->end = align - 1; 5447 } else { 5448 r->flags &= ~IORESOURCE_SIZEALIGN; 5449 r->flags |= IORESOURCE_STARTALIGN; 5450 r->start = align; 5451 r->end = r->start + size - 1; 5452 } 5453 r->flags |= IORESOURCE_UNSET; 5454 } 5455 5456 /* 5457 * This function disables memory decoding and releases memory resources 5458 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5459 * It also rounds up size to specified alignment. 5460 * Later on, the kernel will assign page-aligned memory resource back 5461 * to the device. 5462 */ 5463 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5464 { 5465 int i; 5466 struct resource *r; 5467 resource_size_t align; 5468 u16 command; 5469 bool resize = false; 5470 5471 /* 5472 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5473 * 3.4.1.11. Their resources are allocated from the space 5474 * described by the VF BARx register in the PF's SR-IOV capability. 5475 * We can't influence their alignment here. 5476 */ 5477 if (dev->is_virtfn) 5478 return; 5479 5480 /* check if specified PCI is target device to reassign */ 5481 align = pci_specified_resource_alignment(dev, &resize); 5482 if (!align) 5483 return; 5484 5485 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5486 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5487 pci_warn(dev, "Can't reassign resources to host bridge\n"); 5488 return; 5489 } 5490 5491 pci_info(dev, "Disabling memory decoding and releasing memory resources\n"); 5492 pci_read_config_word(dev, PCI_COMMAND, &command); 5493 command &= ~PCI_COMMAND_MEMORY; 5494 pci_write_config_word(dev, PCI_COMMAND, command); 5495 5496 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5497 pci_request_resource_alignment(dev, i, align, resize); 5498 5499 /* 5500 * Need to disable bridge's resource window, 5501 * to enable the kernel to reassign new resource 5502 * window later on. 5503 */ 5504 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5505 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5506 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5507 r = &dev->resource[i]; 5508 if (!(r->flags & IORESOURCE_MEM)) 5509 continue; 5510 r->flags |= IORESOURCE_UNSET; 5511 r->end = resource_size(r) - 1; 5512 r->start = 0; 5513 } 5514 pci_disable_bridge_window(dev); 5515 } 5516 } 5517 5518 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5519 { 5520 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5521 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5522 spin_lock(&resource_alignment_lock); 5523 strncpy(resource_alignment_param, buf, count); 5524 resource_alignment_param[count] = '\0'; 5525 spin_unlock(&resource_alignment_lock); 5526 return count; 5527 } 5528 5529 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5530 { 5531 size_t count; 5532 spin_lock(&resource_alignment_lock); 5533 count = snprintf(buf, size, "%s", resource_alignment_param); 5534 spin_unlock(&resource_alignment_lock); 5535 return count; 5536 } 5537 5538 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5539 { 5540 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5541 } 5542 5543 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5544 const char *buf, size_t count) 5545 { 5546 return pci_set_resource_alignment_param(buf, count); 5547 } 5548 5549 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5550 pci_resource_alignment_store); 5551 5552 static int __init pci_resource_alignment_sysfs_init(void) 5553 { 5554 return bus_create_file(&pci_bus_type, 5555 &bus_attr_resource_alignment); 5556 } 5557 late_initcall(pci_resource_alignment_sysfs_init); 5558 5559 static void pci_no_domains(void) 5560 { 5561 #ifdef CONFIG_PCI_DOMAINS 5562 pci_domains_supported = 0; 5563 #endif 5564 } 5565 5566 #ifdef CONFIG_PCI_DOMAINS 5567 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5568 5569 int pci_get_new_domain_nr(void) 5570 { 5571 return atomic_inc_return(&__domain_nr); 5572 } 5573 5574 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5575 static int of_pci_bus_find_domain_nr(struct device *parent) 5576 { 5577 static int use_dt_domains = -1; 5578 int domain = -1; 5579 5580 if (parent) 5581 domain = of_get_pci_domain_nr(parent->of_node); 5582 /* 5583 * Check DT domain and use_dt_domains values. 5584 * 5585 * If DT domain property is valid (domain >= 0) and 5586 * use_dt_domains != 0, the DT assignment is valid since this means 5587 * we have not previously allocated a domain number by using 5588 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5589 * 1, to indicate that we have just assigned a domain number from 5590 * DT. 5591 * 5592 * If DT domain property value is not valid (ie domain < 0), and we 5593 * have not previously assigned a domain number from DT 5594 * (use_dt_domains != 1) we should assign a domain number by 5595 * using the: 5596 * 5597 * pci_get_new_domain_nr() 5598 * 5599 * API and update the use_dt_domains value to keep track of method we 5600 * are using to assign domain numbers (use_dt_domains = 0). 5601 * 5602 * All other combinations imply we have a platform that is trying 5603 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5604 * which is a recipe for domain mishandling and it is prevented by 5605 * invalidating the domain value (domain = -1) and printing a 5606 * corresponding error. 5607 */ 5608 if (domain >= 0 && use_dt_domains) { 5609 use_dt_domains = 1; 5610 } else if (domain < 0 && use_dt_domains != 1) { 5611 use_dt_domains = 0; 5612 domain = pci_get_new_domain_nr(); 5613 } else { 5614 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n", 5615 parent->of_node); 5616 domain = -1; 5617 } 5618 5619 return domain; 5620 } 5621 5622 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5623 { 5624 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5625 acpi_pci_bus_find_domain_nr(bus); 5626 } 5627 #endif 5628 #endif 5629 5630 /** 5631 * pci_ext_cfg_avail - can we access extended PCI config space? 5632 * 5633 * Returns 1 if we can access PCI extended config space (offsets 5634 * greater than 0xff). This is the default implementation. Architecture 5635 * implementations can override this. 5636 */ 5637 int __weak pci_ext_cfg_avail(void) 5638 { 5639 return 1; 5640 } 5641 5642 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5643 { 5644 } 5645 EXPORT_SYMBOL(pci_fixup_cardbus); 5646 5647 static int __init pci_setup(char *str) 5648 { 5649 while (str) { 5650 char *k = strchr(str, ','); 5651 if (k) 5652 *k++ = 0; 5653 if (*str && (str = pcibios_setup(str)) && *str) { 5654 if (!strcmp(str, "nomsi")) { 5655 pci_no_msi(); 5656 } else if (!strcmp(str, "noaer")) { 5657 pci_no_aer(); 5658 } else if (!strncmp(str, "realloc=", 8)) { 5659 pci_realloc_get_opt(str + 8); 5660 } else if (!strncmp(str, "realloc", 7)) { 5661 pci_realloc_get_opt("on"); 5662 } else if (!strcmp(str, "nodomains")) { 5663 pci_no_domains(); 5664 } else if (!strncmp(str, "noari", 5)) { 5665 pcie_ari_disabled = true; 5666 } else if (!strncmp(str, "cbiosize=", 9)) { 5667 pci_cardbus_io_size = memparse(str + 9, &str); 5668 } else if (!strncmp(str, "cbmemsize=", 10)) { 5669 pci_cardbus_mem_size = memparse(str + 10, &str); 5670 } else if (!strncmp(str, "resource_alignment=", 19)) { 5671 pci_set_resource_alignment_param(str + 19, 5672 strlen(str + 19)); 5673 } else if (!strncmp(str, "ecrc=", 5)) { 5674 pcie_ecrc_get_policy(str + 5); 5675 } else if (!strncmp(str, "hpiosize=", 9)) { 5676 pci_hotplug_io_size = memparse(str + 9, &str); 5677 } else if (!strncmp(str, "hpmemsize=", 10)) { 5678 pci_hotplug_mem_size = memparse(str + 10, &str); 5679 } else if (!strncmp(str, "hpbussize=", 10)) { 5680 pci_hotplug_bus_size = 5681 simple_strtoul(str + 10, &str, 0); 5682 if (pci_hotplug_bus_size > 0xff) 5683 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5684 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5685 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5686 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5687 pcie_bus_config = PCIE_BUS_SAFE; 5688 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5689 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5690 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5691 pcie_bus_config = PCIE_BUS_PEER2PEER; 5692 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5693 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5694 } else { 5695 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5696 str); 5697 } 5698 } 5699 str = k; 5700 } 5701 return 0; 5702 } 5703 early_param("pci", pci_setup); 5704