xref: /openbmc/linux/drivers/pci/pci.c (revision e2ad626f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 
736 	if (vendor != dev->vendor)
737 		return 0;
738 
739 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 						     PCI_EXT_CAP_ID_VNDR))) {
741 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
742 					  &header) == PCIBIOS_SUCCESSFUL &&
743 		    PCI_VNDR_HEADER_ID(header) == cap)
744 			return vsec;
745 	}
746 
747 	return 0;
748 }
749 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
750 
751 /**
752  * pci_find_dvsec_capability - Find DVSEC for vendor
753  * @dev: PCI device to query
754  * @vendor: Vendor ID to match for the DVSEC
755  * @dvsec: Designated Vendor-specific capability ID
756  *
757  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
758  * offset in config space; otherwise return 0.
759  */
760 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
761 {
762 	int pos;
763 
764 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
765 	if (!pos)
766 		return 0;
767 
768 	while (pos) {
769 		u16 v, id;
770 
771 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
772 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
773 		if (vendor == v && dvsec == id)
774 			return pos;
775 
776 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
777 	}
778 
779 	return 0;
780 }
781 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
782 
783 /**
784  * pci_find_parent_resource - return resource region of parent bus of given
785  *			      region
786  * @dev: PCI device structure contains resources to be searched
787  * @res: child resource record for which parent is sought
788  *
789  * For given resource region of given device, return the resource region of
790  * parent bus the given region is contained in.
791  */
792 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
793 					  struct resource *res)
794 {
795 	const struct pci_bus *bus = dev->bus;
796 	struct resource *r;
797 
798 	pci_bus_for_each_resource(bus, r) {
799 		if (!r)
800 			continue;
801 		if (resource_contains(r, res)) {
802 
803 			/*
804 			 * If the window is prefetchable but the BAR is
805 			 * not, the allocator made a mistake.
806 			 */
807 			if (r->flags & IORESOURCE_PREFETCH &&
808 			    !(res->flags & IORESOURCE_PREFETCH))
809 				return NULL;
810 
811 			/*
812 			 * If we're below a transparent bridge, there may
813 			 * be both a positively-decoded aperture and a
814 			 * subtractively-decoded region that contain the BAR.
815 			 * We want the positively-decoded one, so this depends
816 			 * on pci_bus_for_each_resource() giving us those
817 			 * first.
818 			 */
819 			return r;
820 		}
821 	}
822 	return NULL;
823 }
824 EXPORT_SYMBOL(pci_find_parent_resource);
825 
826 /**
827  * pci_find_resource - Return matching PCI device resource
828  * @dev: PCI device to query
829  * @res: Resource to look for
830  *
831  * Goes over standard PCI resources (BARs) and checks if the given resource
832  * is partially or fully contained in any of them. In that case the
833  * matching resource is returned, %NULL otherwise.
834  */
835 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
836 {
837 	int i;
838 
839 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
840 		struct resource *r = &dev->resource[i];
841 
842 		if (r->start && resource_contains(r, res))
843 			return r;
844 	}
845 
846 	return NULL;
847 }
848 EXPORT_SYMBOL(pci_find_resource);
849 
850 /**
851  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
852  * @dev: the PCI device to operate on
853  * @pos: config space offset of status word
854  * @mask: mask of bit(s) to care about in status word
855  *
856  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
857  */
858 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
859 {
860 	int i;
861 
862 	/* Wait for Transaction Pending bit clean */
863 	for (i = 0; i < 4; i++) {
864 		u16 status;
865 		if (i)
866 			msleep((1 << (i - 1)) * 100);
867 
868 		pci_read_config_word(dev, pos, &status);
869 		if (!(status & mask))
870 			return 1;
871 	}
872 
873 	return 0;
874 }
875 
876 static int pci_acs_enable;
877 
878 /**
879  * pci_request_acs - ask for ACS to be enabled if supported
880  */
881 void pci_request_acs(void)
882 {
883 	pci_acs_enable = 1;
884 }
885 
886 static const char *disable_acs_redir_param;
887 
888 /**
889  * pci_disable_acs_redir - disable ACS redirect capabilities
890  * @dev: the PCI device
891  *
892  * For only devices specified in the disable_acs_redir parameter.
893  */
894 static void pci_disable_acs_redir(struct pci_dev *dev)
895 {
896 	int ret = 0;
897 	const char *p;
898 	int pos;
899 	u16 ctrl;
900 
901 	if (!disable_acs_redir_param)
902 		return;
903 
904 	p = disable_acs_redir_param;
905 	while (*p) {
906 		ret = pci_dev_str_match(dev, p, &p);
907 		if (ret < 0) {
908 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
909 				     disable_acs_redir_param);
910 
911 			break;
912 		} else if (ret == 1) {
913 			/* Found a match */
914 			break;
915 		}
916 
917 		if (*p != ';' && *p != ',') {
918 			/* End of param or invalid format */
919 			break;
920 		}
921 		p++;
922 	}
923 
924 	if (ret != 1)
925 		return;
926 
927 	if (!pci_dev_specific_disable_acs_redir(dev))
928 		return;
929 
930 	pos = dev->acs_cap;
931 	if (!pos) {
932 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
933 		return;
934 	}
935 
936 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
937 
938 	/* P2P Request & Completion Redirect */
939 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
940 
941 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
942 
943 	pci_info(dev, "disabled ACS redirect\n");
944 }
945 
946 /**
947  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
948  * @dev: the PCI device
949  */
950 static void pci_std_enable_acs(struct pci_dev *dev)
951 {
952 	int pos;
953 	u16 cap;
954 	u16 ctrl;
955 
956 	pos = dev->acs_cap;
957 	if (!pos)
958 		return;
959 
960 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
961 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
962 
963 	/* Source Validation */
964 	ctrl |= (cap & PCI_ACS_SV);
965 
966 	/* P2P Request Redirect */
967 	ctrl |= (cap & PCI_ACS_RR);
968 
969 	/* P2P Completion Redirect */
970 	ctrl |= (cap & PCI_ACS_CR);
971 
972 	/* Upstream Forwarding */
973 	ctrl |= (cap & PCI_ACS_UF);
974 
975 	/* Enable Translation Blocking for external devices and noats */
976 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
977 		ctrl |= (cap & PCI_ACS_TB);
978 
979 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
980 }
981 
982 /**
983  * pci_enable_acs - enable ACS if hardware support it
984  * @dev: the PCI device
985  */
986 static void pci_enable_acs(struct pci_dev *dev)
987 {
988 	if (!pci_acs_enable)
989 		goto disable_acs_redir;
990 
991 	if (!pci_dev_specific_enable_acs(dev))
992 		goto disable_acs_redir;
993 
994 	pci_std_enable_acs(dev);
995 
996 disable_acs_redir:
997 	/*
998 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
999 	 * enabled by the kernel because it may have been enabled by
1000 	 * platform firmware.  So if we are told to disable it, we should
1001 	 * always disable it after setting the kernel's default
1002 	 * preferences.
1003 	 */
1004 	pci_disable_acs_redir(dev);
1005 }
1006 
1007 /**
1008  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1009  * @dev: PCI device to have its BARs restored
1010  *
1011  * Restore the BAR values for a given device, so as to make it
1012  * accessible by its driver.
1013  */
1014 static void pci_restore_bars(struct pci_dev *dev)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1019 		pci_update_resource(dev, i);
1020 }
1021 
1022 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1023 {
1024 	if (pci_use_mid_pm())
1025 		return true;
1026 
1027 	return acpi_pci_power_manageable(dev);
1028 }
1029 
1030 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1031 					       pci_power_t t)
1032 {
1033 	if (pci_use_mid_pm())
1034 		return mid_pci_set_power_state(dev, t);
1035 
1036 	return acpi_pci_set_power_state(dev, t);
1037 }
1038 
1039 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1040 {
1041 	if (pci_use_mid_pm())
1042 		return mid_pci_get_power_state(dev);
1043 
1044 	return acpi_pci_get_power_state(dev);
1045 }
1046 
1047 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1048 {
1049 	if (!pci_use_mid_pm())
1050 		acpi_pci_refresh_power_state(dev);
1051 }
1052 
1053 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1054 {
1055 	if (pci_use_mid_pm())
1056 		return PCI_POWER_ERROR;
1057 
1058 	return acpi_pci_choose_state(dev);
1059 }
1060 
1061 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1062 {
1063 	if (pci_use_mid_pm())
1064 		return PCI_POWER_ERROR;
1065 
1066 	return acpi_pci_wakeup(dev, enable);
1067 }
1068 
1069 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1070 {
1071 	if (pci_use_mid_pm())
1072 		return false;
1073 
1074 	return acpi_pci_need_resume(dev);
1075 }
1076 
1077 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1078 {
1079 	if (pci_use_mid_pm())
1080 		return false;
1081 
1082 	return acpi_pci_bridge_d3(dev);
1083 }
1084 
1085 /**
1086  * pci_update_current_state - Read power state of given device and cache it
1087  * @dev: PCI device to handle.
1088  * @state: State to cache in case the device doesn't have the PM capability
1089  *
1090  * The power state is read from the PMCSR register, which however is
1091  * inaccessible in D3cold.  The platform firmware is therefore queried first
1092  * to detect accessibility of the register.  In case the platform firmware
1093  * reports an incorrect state or the device isn't power manageable by the
1094  * platform at all, we try to detect D3cold by testing accessibility of the
1095  * vendor ID in config space.
1096  */
1097 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1098 {
1099 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1100 		dev->current_state = PCI_D3cold;
1101 	} else if (dev->pm_cap) {
1102 		u16 pmcsr;
1103 
1104 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1105 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1106 			dev->current_state = PCI_D3cold;
1107 			return;
1108 		}
1109 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1110 	} else {
1111 		dev->current_state = state;
1112 	}
1113 }
1114 
1115 /**
1116  * pci_refresh_power_state - Refresh the given device's power state data
1117  * @dev: Target PCI device.
1118  *
1119  * Ask the platform to refresh the devices power state information and invoke
1120  * pci_update_current_state() to update its current PCI power state.
1121  */
1122 void pci_refresh_power_state(struct pci_dev *dev)
1123 {
1124 	platform_pci_refresh_power_state(dev);
1125 	pci_update_current_state(dev, dev->current_state);
1126 }
1127 
1128 /**
1129  * pci_platform_power_transition - Use platform to change device power state
1130  * @dev: PCI device to handle.
1131  * @state: State to put the device into.
1132  */
1133 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1134 {
1135 	int error;
1136 
1137 	error = platform_pci_set_power_state(dev, state);
1138 	if (!error)
1139 		pci_update_current_state(dev, state);
1140 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1141 		dev->current_state = PCI_D0;
1142 
1143 	return error;
1144 }
1145 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1146 
1147 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1148 {
1149 	pm_request_resume(&pci_dev->dev);
1150 	return 0;
1151 }
1152 
1153 /**
1154  * pci_resume_bus - Walk given bus and runtime resume devices on it
1155  * @bus: Top bus of the subtree to walk.
1156  */
1157 void pci_resume_bus(struct pci_bus *bus)
1158 {
1159 	if (bus)
1160 		pci_walk_bus(bus, pci_resume_one, NULL);
1161 }
1162 
1163 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1164 {
1165 	int delay = 1;
1166 	bool retrain = false;
1167 	struct pci_dev *bridge;
1168 
1169 	if (pci_is_pcie(dev)) {
1170 		bridge = pci_upstream_bridge(dev);
1171 		if (bridge)
1172 			retrain = true;
1173 	}
1174 
1175 	/*
1176 	 * After reset, the device should not silently discard config
1177 	 * requests, but it may still indicate that it needs more time by
1178 	 * responding to them with CRS completions.  The Root Port will
1179 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1180 	 * the read (except when CRS SV is enabled and the read was for the
1181 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1182 	 *
1183 	 * Wait for the device to return a non-CRS completion.  Read the
1184 	 * Command register instead of Vendor ID so we don't have to
1185 	 * contend with the CRS SV value.
1186 	 */
1187 	for (;;) {
1188 		u32 id;
1189 
1190 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1191 		if (!PCI_POSSIBLE_ERROR(id))
1192 			break;
1193 
1194 		if (delay > timeout) {
1195 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1196 				 delay - 1, reset_type);
1197 			return -ENOTTY;
1198 		}
1199 
1200 		if (delay > PCI_RESET_WAIT) {
1201 			if (retrain) {
1202 				retrain = false;
1203 				if (pcie_failed_link_retrain(bridge)) {
1204 					delay = 1;
1205 					continue;
1206 				}
1207 			}
1208 			pci_info(dev, "not ready %dms after %s; waiting\n",
1209 				 delay - 1, reset_type);
1210 		}
1211 
1212 		msleep(delay);
1213 		delay *= 2;
1214 	}
1215 
1216 	if (delay > PCI_RESET_WAIT)
1217 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1218 			 reset_type);
1219 
1220 	return 0;
1221 }
1222 
1223 /**
1224  * pci_power_up - Put the given device into D0
1225  * @dev: PCI device to power up
1226  *
1227  * On success, return 0 or 1, depending on whether or not it is necessary to
1228  * restore the device's BARs subsequently (1 is returned in that case).
1229  *
1230  * On failure, return a negative error code.  Always return failure if @dev
1231  * lacks a Power Management Capability, even if the platform was able to
1232  * put the device in D0 via non-PCI means.
1233  */
1234 int pci_power_up(struct pci_dev *dev)
1235 {
1236 	bool need_restore;
1237 	pci_power_t state;
1238 	u16 pmcsr;
1239 
1240 	platform_pci_set_power_state(dev, PCI_D0);
1241 
1242 	if (!dev->pm_cap) {
1243 		state = platform_pci_get_power_state(dev);
1244 		if (state == PCI_UNKNOWN)
1245 			dev->current_state = PCI_D0;
1246 		else
1247 			dev->current_state = state;
1248 
1249 		return -EIO;
1250 	}
1251 
1252 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1253 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1254 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1255 			pci_power_name(dev->current_state));
1256 		dev->current_state = PCI_D3cold;
1257 		return -EIO;
1258 	}
1259 
1260 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1261 
1262 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1263 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1264 
1265 	if (state == PCI_D0)
1266 		goto end;
1267 
1268 	/*
1269 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1270 	 * PME_En, and sets PowerState to 0.
1271 	 */
1272 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1273 
1274 	/* Mandatory transition delays; see PCI PM 1.2. */
1275 	if (state == PCI_D3hot)
1276 		pci_dev_d3_sleep(dev);
1277 	else if (state == PCI_D2)
1278 		udelay(PCI_PM_D2_DELAY);
1279 
1280 end:
1281 	dev->current_state = PCI_D0;
1282 	if (need_restore)
1283 		return 1;
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1290  * @dev: PCI device to power up
1291  *
1292  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1293  * to confirm the state change, restore its BARs if they might be lost and
1294  * reconfigure ASPM in accordance with the new power state.
1295  *
1296  * If pci_restore_state() is going to be called right after a power state change
1297  * to D0, it is more efficient to use pci_power_up() directly instead of this
1298  * function.
1299  */
1300 static int pci_set_full_power_state(struct pci_dev *dev)
1301 {
1302 	u16 pmcsr;
1303 	int ret;
1304 
1305 	ret = pci_power_up(dev);
1306 	if (ret < 0) {
1307 		if (dev->current_state == PCI_D0)
1308 			return 0;
1309 
1310 		return ret;
1311 	}
1312 
1313 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1314 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1315 	if (dev->current_state != PCI_D0) {
1316 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1317 				     pci_power_name(dev->current_state));
1318 	} else if (ret > 0) {
1319 		/*
1320 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1321 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1322 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1323 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1324 		 * For example, at least some versions of the 3c905B and the
1325 		 * 3c556B exhibit this behaviour.
1326 		 *
1327 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1328 		 * devices in a D3hot state at boot.  Consequently, we need to
1329 		 * restore at least the BARs so that the device will be
1330 		 * accessible to its driver.
1331 		 */
1332 		pci_restore_bars(dev);
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 /**
1339  * __pci_dev_set_current_state - Set current state of a PCI device
1340  * @dev: Device to handle
1341  * @data: pointer to state to be set
1342  */
1343 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1344 {
1345 	pci_power_t state = *(pci_power_t *)data;
1346 
1347 	dev->current_state = state;
1348 	return 0;
1349 }
1350 
1351 /**
1352  * pci_bus_set_current_state - Walk given bus and set current state of devices
1353  * @bus: Top bus of the subtree to walk.
1354  * @state: state to be set
1355  */
1356 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1357 {
1358 	if (bus)
1359 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1360 }
1361 
1362 /**
1363  * pci_set_low_power_state - Put a PCI device into a low-power state.
1364  * @dev: PCI device to handle.
1365  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1366  *
1367  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1368  *
1369  * RETURN VALUE:
1370  * -EINVAL if the requested state is invalid.
1371  * -EIO if device does not support PCI PM or its PM capabilities register has a
1372  * wrong version, or device doesn't support the requested state.
1373  * 0 if device already is in the requested state.
1374  * 0 if device's power state has been successfully changed.
1375  */
1376 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1377 {
1378 	u16 pmcsr;
1379 
1380 	if (!dev->pm_cap)
1381 		return -EIO;
1382 
1383 	/*
1384 	 * Validate transition: We can enter D0 from any state, but if
1385 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1386 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1387 	 * we'd have to go from D3 to D0, then to D1.
1388 	 */
1389 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1390 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1391 			pci_power_name(dev->current_state),
1392 			pci_power_name(state));
1393 		return -EINVAL;
1394 	}
1395 
1396 	/* Check if this device supports the desired state */
1397 	if ((state == PCI_D1 && !dev->d1_support)
1398 	   || (state == PCI_D2 && !dev->d2_support))
1399 		return -EIO;
1400 
1401 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1402 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1403 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1404 			pci_power_name(dev->current_state),
1405 			pci_power_name(state));
1406 		dev->current_state = PCI_D3cold;
1407 		return -EIO;
1408 	}
1409 
1410 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1411 	pmcsr |= state;
1412 
1413 	/* Enter specified state */
1414 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1415 
1416 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1417 	if (state == PCI_D3hot)
1418 		pci_dev_d3_sleep(dev);
1419 	else if (state == PCI_D2)
1420 		udelay(PCI_PM_D2_DELAY);
1421 
1422 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1423 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1424 	if (dev->current_state != state)
1425 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1426 				     pci_power_name(dev->current_state),
1427 				     pci_power_name(state));
1428 
1429 	return 0;
1430 }
1431 
1432 /**
1433  * pci_set_power_state - Set the power state of a PCI device
1434  * @dev: PCI device to handle.
1435  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1436  *
1437  * Transition a device to a new power state, using the platform firmware and/or
1438  * the device's PCI PM registers.
1439  *
1440  * RETURN VALUE:
1441  * -EINVAL if the requested state is invalid.
1442  * -EIO if device does not support PCI PM or its PM capabilities register has a
1443  * wrong version, or device doesn't support the requested state.
1444  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1445  * 0 if device already is in the requested state.
1446  * 0 if the transition is to D3 but D3 is not supported.
1447  * 0 if device's power state has been successfully changed.
1448  */
1449 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1450 {
1451 	int error;
1452 
1453 	/* Bound the state we're entering */
1454 	if (state > PCI_D3cold)
1455 		state = PCI_D3cold;
1456 	else if (state < PCI_D0)
1457 		state = PCI_D0;
1458 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1459 
1460 		/*
1461 		 * If the device or the parent bridge do not support PCI
1462 		 * PM, ignore the request if we're doing anything other
1463 		 * than putting it into D0 (which would only happen on
1464 		 * boot).
1465 		 */
1466 		return 0;
1467 
1468 	/* Check if we're already there */
1469 	if (dev->current_state == state)
1470 		return 0;
1471 
1472 	if (state == PCI_D0)
1473 		return pci_set_full_power_state(dev);
1474 
1475 	/*
1476 	 * This device is quirked not to be put into D3, so don't put it in
1477 	 * D3
1478 	 */
1479 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1480 		return 0;
1481 
1482 	if (state == PCI_D3cold) {
1483 		/*
1484 		 * To put the device in D3cold, put it into D3hot in the native
1485 		 * way, then put it into D3cold using platform ops.
1486 		 */
1487 		error = pci_set_low_power_state(dev, PCI_D3hot);
1488 
1489 		if (pci_platform_power_transition(dev, PCI_D3cold))
1490 			return error;
1491 
1492 		/* Powering off a bridge may power off the whole hierarchy */
1493 		if (dev->current_state == PCI_D3cold)
1494 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1495 	} else {
1496 		error = pci_set_low_power_state(dev, state);
1497 
1498 		if (pci_platform_power_transition(dev, state))
1499 			return error;
1500 	}
1501 
1502 	return 0;
1503 }
1504 EXPORT_SYMBOL(pci_set_power_state);
1505 
1506 #define PCI_EXP_SAVE_REGS	7
1507 
1508 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1509 						       u16 cap, bool extended)
1510 {
1511 	struct pci_cap_saved_state *tmp;
1512 
1513 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1514 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1515 			return tmp;
1516 	}
1517 	return NULL;
1518 }
1519 
1520 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1521 {
1522 	return _pci_find_saved_cap(dev, cap, false);
1523 }
1524 
1525 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1526 {
1527 	return _pci_find_saved_cap(dev, cap, true);
1528 }
1529 
1530 static int pci_save_pcie_state(struct pci_dev *dev)
1531 {
1532 	int i = 0;
1533 	struct pci_cap_saved_state *save_state;
1534 	u16 *cap;
1535 
1536 	if (!pci_is_pcie(dev))
1537 		return 0;
1538 
1539 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1540 	if (!save_state) {
1541 		pci_err(dev, "buffer not found in %s\n", __func__);
1542 		return -ENOMEM;
1543 	}
1544 
1545 	cap = (u16 *)&save_state->cap.data[0];
1546 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1547 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1548 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1549 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1550 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1551 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1552 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1553 
1554 	return 0;
1555 }
1556 
1557 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1558 {
1559 #ifdef CONFIG_PCIEASPM
1560 	struct pci_dev *bridge;
1561 	u32 ctl;
1562 
1563 	bridge = pci_upstream_bridge(dev);
1564 	if (bridge && bridge->ltr_path) {
1565 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1566 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1567 			pci_dbg(bridge, "re-enabling LTR\n");
1568 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1569 						 PCI_EXP_DEVCTL2_LTR_EN);
1570 		}
1571 	}
1572 #endif
1573 }
1574 
1575 static void pci_restore_pcie_state(struct pci_dev *dev)
1576 {
1577 	int i = 0;
1578 	struct pci_cap_saved_state *save_state;
1579 	u16 *cap;
1580 
1581 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1582 	if (!save_state)
1583 		return;
1584 
1585 	/*
1586 	 * Downstream ports reset the LTR enable bit when link goes down.
1587 	 * Check and re-configure the bit here before restoring device.
1588 	 * PCIe r5.0, sec 7.5.3.16.
1589 	 */
1590 	pci_bridge_reconfigure_ltr(dev);
1591 
1592 	cap = (u16 *)&save_state->cap.data[0];
1593 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1594 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1595 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1596 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1597 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1598 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1599 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1600 }
1601 
1602 static int pci_save_pcix_state(struct pci_dev *dev)
1603 {
1604 	int pos;
1605 	struct pci_cap_saved_state *save_state;
1606 
1607 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1608 	if (!pos)
1609 		return 0;
1610 
1611 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1612 	if (!save_state) {
1613 		pci_err(dev, "buffer not found in %s\n", __func__);
1614 		return -ENOMEM;
1615 	}
1616 
1617 	pci_read_config_word(dev, pos + PCI_X_CMD,
1618 			     (u16 *)save_state->cap.data);
1619 
1620 	return 0;
1621 }
1622 
1623 static void pci_restore_pcix_state(struct pci_dev *dev)
1624 {
1625 	int i = 0, pos;
1626 	struct pci_cap_saved_state *save_state;
1627 	u16 *cap;
1628 
1629 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1630 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1631 	if (!save_state || !pos)
1632 		return;
1633 	cap = (u16 *)&save_state->cap.data[0];
1634 
1635 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1636 }
1637 
1638 static void pci_save_ltr_state(struct pci_dev *dev)
1639 {
1640 	int ltr;
1641 	struct pci_cap_saved_state *save_state;
1642 	u32 *cap;
1643 
1644 	if (!pci_is_pcie(dev))
1645 		return;
1646 
1647 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1648 	if (!ltr)
1649 		return;
1650 
1651 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1652 	if (!save_state) {
1653 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1654 		return;
1655 	}
1656 
1657 	/* Some broken devices only support dword access to LTR */
1658 	cap = &save_state->cap.data[0];
1659 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1660 }
1661 
1662 static void pci_restore_ltr_state(struct pci_dev *dev)
1663 {
1664 	struct pci_cap_saved_state *save_state;
1665 	int ltr;
1666 	u32 *cap;
1667 
1668 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1669 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1670 	if (!save_state || !ltr)
1671 		return;
1672 
1673 	/* Some broken devices only support dword access to LTR */
1674 	cap = &save_state->cap.data[0];
1675 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1676 }
1677 
1678 /**
1679  * pci_save_state - save the PCI configuration space of a device before
1680  *		    suspending
1681  * @dev: PCI device that we're dealing with
1682  */
1683 int pci_save_state(struct pci_dev *dev)
1684 {
1685 	int i;
1686 	/* XXX: 100% dword access ok here? */
1687 	for (i = 0; i < 16; i++) {
1688 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1689 		pci_dbg(dev, "save config %#04x: %#010x\n",
1690 			i * 4, dev->saved_config_space[i]);
1691 	}
1692 	dev->state_saved = true;
1693 
1694 	i = pci_save_pcie_state(dev);
1695 	if (i != 0)
1696 		return i;
1697 
1698 	i = pci_save_pcix_state(dev);
1699 	if (i != 0)
1700 		return i;
1701 
1702 	pci_save_ltr_state(dev);
1703 	pci_save_dpc_state(dev);
1704 	pci_save_aer_state(dev);
1705 	pci_save_ptm_state(dev);
1706 	return pci_save_vc_state(dev);
1707 }
1708 EXPORT_SYMBOL(pci_save_state);
1709 
1710 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1711 				     u32 saved_val, int retry, bool force)
1712 {
1713 	u32 val;
1714 
1715 	pci_read_config_dword(pdev, offset, &val);
1716 	if (!force && val == saved_val)
1717 		return;
1718 
1719 	for (;;) {
1720 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1721 			offset, val, saved_val);
1722 		pci_write_config_dword(pdev, offset, saved_val);
1723 		if (retry-- <= 0)
1724 			return;
1725 
1726 		pci_read_config_dword(pdev, offset, &val);
1727 		if (val == saved_val)
1728 			return;
1729 
1730 		mdelay(1);
1731 	}
1732 }
1733 
1734 static void pci_restore_config_space_range(struct pci_dev *pdev,
1735 					   int start, int end, int retry,
1736 					   bool force)
1737 {
1738 	int index;
1739 
1740 	for (index = end; index >= start; index--)
1741 		pci_restore_config_dword(pdev, 4 * index,
1742 					 pdev->saved_config_space[index],
1743 					 retry, force);
1744 }
1745 
1746 static void pci_restore_config_space(struct pci_dev *pdev)
1747 {
1748 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1749 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1750 		/* Restore BARs before the command register. */
1751 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1752 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1753 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1754 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1755 
1756 		/*
1757 		 * Force rewriting of prefetch registers to avoid S3 resume
1758 		 * issues on Intel PCI bridges that occur when these
1759 		 * registers are not explicitly written.
1760 		 */
1761 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1762 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1763 	} else {
1764 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1765 	}
1766 }
1767 
1768 static void pci_restore_rebar_state(struct pci_dev *pdev)
1769 {
1770 	unsigned int pos, nbars, i;
1771 	u32 ctrl;
1772 
1773 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1774 	if (!pos)
1775 		return;
1776 
1777 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1778 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1779 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1780 
1781 	for (i = 0; i < nbars; i++, pos += 8) {
1782 		struct resource *res;
1783 		int bar_idx, size;
1784 
1785 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1786 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1787 		res = pdev->resource + bar_idx;
1788 		size = pci_rebar_bytes_to_size(resource_size(res));
1789 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1790 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1791 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1792 	}
1793 }
1794 
1795 /**
1796  * pci_restore_state - Restore the saved state of a PCI device
1797  * @dev: PCI device that we're dealing with
1798  */
1799 void pci_restore_state(struct pci_dev *dev)
1800 {
1801 	if (!dev->state_saved)
1802 		return;
1803 
1804 	/*
1805 	 * Restore max latencies (in the LTR capability) before enabling
1806 	 * LTR itself (in the PCIe capability).
1807 	 */
1808 	pci_restore_ltr_state(dev);
1809 
1810 	pci_restore_pcie_state(dev);
1811 	pci_restore_pasid_state(dev);
1812 	pci_restore_pri_state(dev);
1813 	pci_restore_ats_state(dev);
1814 	pci_restore_vc_state(dev);
1815 	pci_restore_rebar_state(dev);
1816 	pci_restore_dpc_state(dev);
1817 	pci_restore_ptm_state(dev);
1818 
1819 	pci_aer_clear_status(dev);
1820 	pci_restore_aer_state(dev);
1821 
1822 	pci_restore_config_space(dev);
1823 
1824 	pci_restore_pcix_state(dev);
1825 	pci_restore_msi_state(dev);
1826 
1827 	/* Restore ACS and IOV configuration state */
1828 	pci_enable_acs(dev);
1829 	pci_restore_iov_state(dev);
1830 
1831 	dev->state_saved = false;
1832 }
1833 EXPORT_SYMBOL(pci_restore_state);
1834 
1835 struct pci_saved_state {
1836 	u32 config_space[16];
1837 	struct pci_cap_saved_data cap[];
1838 };
1839 
1840 /**
1841  * pci_store_saved_state - Allocate and return an opaque struct containing
1842  *			   the device saved state.
1843  * @dev: PCI device that we're dealing with
1844  *
1845  * Return NULL if no state or error.
1846  */
1847 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1848 {
1849 	struct pci_saved_state *state;
1850 	struct pci_cap_saved_state *tmp;
1851 	struct pci_cap_saved_data *cap;
1852 	size_t size;
1853 
1854 	if (!dev->state_saved)
1855 		return NULL;
1856 
1857 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1858 
1859 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1860 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1861 
1862 	state = kzalloc(size, GFP_KERNEL);
1863 	if (!state)
1864 		return NULL;
1865 
1866 	memcpy(state->config_space, dev->saved_config_space,
1867 	       sizeof(state->config_space));
1868 
1869 	cap = state->cap;
1870 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1871 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1872 		memcpy(cap, &tmp->cap, len);
1873 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1874 	}
1875 	/* Empty cap_save terminates list */
1876 
1877 	return state;
1878 }
1879 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1880 
1881 /**
1882  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1883  * @dev: PCI device that we're dealing with
1884  * @state: Saved state returned from pci_store_saved_state()
1885  */
1886 int pci_load_saved_state(struct pci_dev *dev,
1887 			 struct pci_saved_state *state)
1888 {
1889 	struct pci_cap_saved_data *cap;
1890 
1891 	dev->state_saved = false;
1892 
1893 	if (!state)
1894 		return 0;
1895 
1896 	memcpy(dev->saved_config_space, state->config_space,
1897 	       sizeof(state->config_space));
1898 
1899 	cap = state->cap;
1900 	while (cap->size) {
1901 		struct pci_cap_saved_state *tmp;
1902 
1903 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1904 		if (!tmp || tmp->cap.size != cap->size)
1905 			return -EINVAL;
1906 
1907 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1908 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1909 		       sizeof(struct pci_cap_saved_data) + cap->size);
1910 	}
1911 
1912 	dev->state_saved = true;
1913 	return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1916 
1917 /**
1918  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1919  *				   and free the memory allocated for it.
1920  * @dev: PCI device that we're dealing with
1921  * @state: Pointer to saved state returned from pci_store_saved_state()
1922  */
1923 int pci_load_and_free_saved_state(struct pci_dev *dev,
1924 				  struct pci_saved_state **state)
1925 {
1926 	int ret = pci_load_saved_state(dev, *state);
1927 	kfree(*state);
1928 	*state = NULL;
1929 	return ret;
1930 }
1931 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1932 
1933 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1934 {
1935 	return pci_enable_resources(dev, bars);
1936 }
1937 
1938 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1939 {
1940 	int err;
1941 	struct pci_dev *bridge;
1942 	u16 cmd;
1943 	u8 pin;
1944 
1945 	err = pci_set_power_state(dev, PCI_D0);
1946 	if (err < 0 && err != -EIO)
1947 		return err;
1948 
1949 	bridge = pci_upstream_bridge(dev);
1950 	if (bridge)
1951 		pcie_aspm_powersave_config_link(bridge);
1952 
1953 	err = pcibios_enable_device(dev, bars);
1954 	if (err < 0)
1955 		return err;
1956 	pci_fixup_device(pci_fixup_enable, dev);
1957 
1958 	if (dev->msi_enabled || dev->msix_enabled)
1959 		return 0;
1960 
1961 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1962 	if (pin) {
1963 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1964 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1965 			pci_write_config_word(dev, PCI_COMMAND,
1966 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 /**
1973  * pci_reenable_device - Resume abandoned device
1974  * @dev: PCI device to be resumed
1975  *
1976  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1977  * to be called by normal code, write proper resume handler and use it instead.
1978  */
1979 int pci_reenable_device(struct pci_dev *dev)
1980 {
1981 	if (pci_is_enabled(dev))
1982 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1983 	return 0;
1984 }
1985 EXPORT_SYMBOL(pci_reenable_device);
1986 
1987 static void pci_enable_bridge(struct pci_dev *dev)
1988 {
1989 	struct pci_dev *bridge;
1990 	int retval;
1991 
1992 	bridge = pci_upstream_bridge(dev);
1993 	if (bridge)
1994 		pci_enable_bridge(bridge);
1995 
1996 	if (pci_is_enabled(dev)) {
1997 		if (!dev->is_busmaster)
1998 			pci_set_master(dev);
1999 		return;
2000 	}
2001 
2002 	retval = pci_enable_device(dev);
2003 	if (retval)
2004 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2005 			retval);
2006 	pci_set_master(dev);
2007 }
2008 
2009 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2010 {
2011 	struct pci_dev *bridge;
2012 	int err;
2013 	int i, bars = 0;
2014 
2015 	/*
2016 	 * Power state could be unknown at this point, either due to a fresh
2017 	 * boot or a device removal call.  So get the current power state
2018 	 * so that things like MSI message writing will behave as expected
2019 	 * (e.g. if the device really is in D0 at enable time).
2020 	 */
2021 	pci_update_current_state(dev, dev->current_state);
2022 
2023 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2024 		return 0;		/* already enabled */
2025 
2026 	bridge = pci_upstream_bridge(dev);
2027 	if (bridge)
2028 		pci_enable_bridge(bridge);
2029 
2030 	/* only skip sriov related */
2031 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2032 		if (dev->resource[i].flags & flags)
2033 			bars |= (1 << i);
2034 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2035 		if (dev->resource[i].flags & flags)
2036 			bars |= (1 << i);
2037 
2038 	err = do_pci_enable_device(dev, bars);
2039 	if (err < 0)
2040 		atomic_dec(&dev->enable_cnt);
2041 	return err;
2042 }
2043 
2044 /**
2045  * pci_enable_device_io - Initialize a device for use with IO space
2046  * @dev: PCI device to be initialized
2047  *
2048  * Initialize device before it's used by a driver. Ask low-level code
2049  * to enable I/O resources. Wake up the device if it was suspended.
2050  * Beware, this function can fail.
2051  */
2052 int pci_enable_device_io(struct pci_dev *dev)
2053 {
2054 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2055 }
2056 EXPORT_SYMBOL(pci_enable_device_io);
2057 
2058 /**
2059  * pci_enable_device_mem - Initialize a device for use with Memory space
2060  * @dev: PCI device to be initialized
2061  *
2062  * Initialize device before it's used by a driver. Ask low-level code
2063  * to enable Memory resources. Wake up the device if it was suspended.
2064  * Beware, this function can fail.
2065  */
2066 int pci_enable_device_mem(struct pci_dev *dev)
2067 {
2068 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2069 }
2070 EXPORT_SYMBOL(pci_enable_device_mem);
2071 
2072 /**
2073  * pci_enable_device - Initialize device before it's used by a driver.
2074  * @dev: PCI device to be initialized
2075  *
2076  * Initialize device before it's used by a driver. Ask low-level code
2077  * to enable I/O and memory. Wake up the device if it was suspended.
2078  * Beware, this function can fail.
2079  *
2080  * Note we don't actually enable the device many times if we call
2081  * this function repeatedly (we just increment the count).
2082  */
2083 int pci_enable_device(struct pci_dev *dev)
2084 {
2085 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2086 }
2087 EXPORT_SYMBOL(pci_enable_device);
2088 
2089 /*
2090  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2091  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2092  * there's no need to track it separately.  pci_devres is initialized
2093  * when a device is enabled using managed PCI device enable interface.
2094  */
2095 struct pci_devres {
2096 	unsigned int enabled:1;
2097 	unsigned int pinned:1;
2098 	unsigned int orig_intx:1;
2099 	unsigned int restore_intx:1;
2100 	unsigned int mwi:1;
2101 	u32 region_mask;
2102 };
2103 
2104 static void pcim_release(struct device *gendev, void *res)
2105 {
2106 	struct pci_dev *dev = to_pci_dev(gendev);
2107 	struct pci_devres *this = res;
2108 	int i;
2109 
2110 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2111 		if (this->region_mask & (1 << i))
2112 			pci_release_region(dev, i);
2113 
2114 	if (this->mwi)
2115 		pci_clear_mwi(dev);
2116 
2117 	if (this->restore_intx)
2118 		pci_intx(dev, this->orig_intx);
2119 
2120 	if (this->enabled && !this->pinned)
2121 		pci_disable_device(dev);
2122 }
2123 
2124 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2125 {
2126 	struct pci_devres *dr, *new_dr;
2127 
2128 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2129 	if (dr)
2130 		return dr;
2131 
2132 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2133 	if (!new_dr)
2134 		return NULL;
2135 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2136 }
2137 
2138 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2139 {
2140 	if (pci_is_managed(pdev))
2141 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2142 	return NULL;
2143 }
2144 
2145 /**
2146  * pcim_enable_device - Managed pci_enable_device()
2147  * @pdev: PCI device to be initialized
2148  *
2149  * Managed pci_enable_device().
2150  */
2151 int pcim_enable_device(struct pci_dev *pdev)
2152 {
2153 	struct pci_devres *dr;
2154 	int rc;
2155 
2156 	dr = get_pci_dr(pdev);
2157 	if (unlikely(!dr))
2158 		return -ENOMEM;
2159 	if (dr->enabled)
2160 		return 0;
2161 
2162 	rc = pci_enable_device(pdev);
2163 	if (!rc) {
2164 		pdev->is_managed = 1;
2165 		dr->enabled = 1;
2166 	}
2167 	return rc;
2168 }
2169 EXPORT_SYMBOL(pcim_enable_device);
2170 
2171 /**
2172  * pcim_pin_device - Pin managed PCI device
2173  * @pdev: PCI device to pin
2174  *
2175  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2176  * driver detach.  @pdev must have been enabled with
2177  * pcim_enable_device().
2178  */
2179 void pcim_pin_device(struct pci_dev *pdev)
2180 {
2181 	struct pci_devres *dr;
2182 
2183 	dr = find_pci_dr(pdev);
2184 	WARN_ON(!dr || !dr->enabled);
2185 	if (dr)
2186 		dr->pinned = 1;
2187 }
2188 EXPORT_SYMBOL(pcim_pin_device);
2189 
2190 /*
2191  * pcibios_device_add - provide arch specific hooks when adding device dev
2192  * @dev: the PCI device being added
2193  *
2194  * Permits the platform to provide architecture specific functionality when
2195  * devices are added. This is the default implementation. Architecture
2196  * implementations can override this.
2197  */
2198 int __weak pcibios_device_add(struct pci_dev *dev)
2199 {
2200 	return 0;
2201 }
2202 
2203 /**
2204  * pcibios_release_device - provide arch specific hooks when releasing
2205  *			    device dev
2206  * @dev: the PCI device being released
2207  *
2208  * Permits the platform to provide architecture specific functionality when
2209  * devices are released. This is the default implementation. Architecture
2210  * implementations can override this.
2211  */
2212 void __weak pcibios_release_device(struct pci_dev *dev) {}
2213 
2214 /**
2215  * pcibios_disable_device - disable arch specific PCI resources for device dev
2216  * @dev: the PCI device to disable
2217  *
2218  * Disables architecture specific PCI resources for the device. This
2219  * is the default implementation. Architecture implementations can
2220  * override this.
2221  */
2222 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2223 
2224 /**
2225  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2226  * @irq: ISA IRQ to penalize
2227  * @active: IRQ active or not
2228  *
2229  * Permits the platform to provide architecture-specific functionality when
2230  * penalizing ISA IRQs. This is the default implementation. Architecture
2231  * implementations can override this.
2232  */
2233 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2234 
2235 static void do_pci_disable_device(struct pci_dev *dev)
2236 {
2237 	u16 pci_command;
2238 
2239 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2240 	if (pci_command & PCI_COMMAND_MASTER) {
2241 		pci_command &= ~PCI_COMMAND_MASTER;
2242 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2243 	}
2244 
2245 	pcibios_disable_device(dev);
2246 }
2247 
2248 /**
2249  * pci_disable_enabled_device - Disable device without updating enable_cnt
2250  * @dev: PCI device to disable
2251  *
2252  * NOTE: This function is a backend of PCI power management routines and is
2253  * not supposed to be called drivers.
2254  */
2255 void pci_disable_enabled_device(struct pci_dev *dev)
2256 {
2257 	if (pci_is_enabled(dev))
2258 		do_pci_disable_device(dev);
2259 }
2260 
2261 /**
2262  * pci_disable_device - Disable PCI device after use
2263  * @dev: PCI device to be disabled
2264  *
2265  * Signal to the system that the PCI device is not in use by the system
2266  * anymore.  This only involves disabling PCI bus-mastering, if active.
2267  *
2268  * Note we don't actually disable the device until all callers of
2269  * pci_enable_device() have called pci_disable_device().
2270  */
2271 void pci_disable_device(struct pci_dev *dev)
2272 {
2273 	struct pci_devres *dr;
2274 
2275 	dr = find_pci_dr(dev);
2276 	if (dr)
2277 		dr->enabled = 0;
2278 
2279 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2280 		      "disabling already-disabled device");
2281 
2282 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2283 		return;
2284 
2285 	do_pci_disable_device(dev);
2286 
2287 	dev->is_busmaster = 0;
2288 }
2289 EXPORT_SYMBOL(pci_disable_device);
2290 
2291 /**
2292  * pcibios_set_pcie_reset_state - set reset state for device dev
2293  * @dev: the PCIe device reset
2294  * @state: Reset state to enter into
2295  *
2296  * Set the PCIe reset state for the device. This is the default
2297  * implementation. Architecture implementations can override this.
2298  */
2299 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2300 					enum pcie_reset_state state)
2301 {
2302 	return -EINVAL;
2303 }
2304 
2305 /**
2306  * pci_set_pcie_reset_state - set reset state for device dev
2307  * @dev: the PCIe device reset
2308  * @state: Reset state to enter into
2309  *
2310  * Sets the PCI reset state for the device.
2311  */
2312 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2313 {
2314 	return pcibios_set_pcie_reset_state(dev, state);
2315 }
2316 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2317 
2318 #ifdef CONFIG_PCIEAER
2319 void pcie_clear_device_status(struct pci_dev *dev)
2320 {
2321 	u16 sta;
2322 
2323 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2324 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2325 }
2326 #endif
2327 
2328 /**
2329  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2330  * @dev: PCIe root port or event collector.
2331  */
2332 void pcie_clear_root_pme_status(struct pci_dev *dev)
2333 {
2334 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2335 }
2336 
2337 /**
2338  * pci_check_pme_status - Check if given device has generated PME.
2339  * @dev: Device to check.
2340  *
2341  * Check the PME status of the device and if set, clear it and clear PME enable
2342  * (if set).  Return 'true' if PME status and PME enable were both set or
2343  * 'false' otherwise.
2344  */
2345 bool pci_check_pme_status(struct pci_dev *dev)
2346 {
2347 	int pmcsr_pos;
2348 	u16 pmcsr;
2349 	bool ret = false;
2350 
2351 	if (!dev->pm_cap)
2352 		return false;
2353 
2354 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2355 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2356 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2357 		return false;
2358 
2359 	/* Clear PME status. */
2360 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2361 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2362 		/* Disable PME to avoid interrupt flood. */
2363 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2364 		ret = true;
2365 	}
2366 
2367 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2368 
2369 	return ret;
2370 }
2371 
2372 /**
2373  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2374  * @dev: Device to handle.
2375  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2376  *
2377  * Check if @dev has generated PME and queue a resume request for it in that
2378  * case.
2379  */
2380 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2381 {
2382 	if (pme_poll_reset && dev->pme_poll)
2383 		dev->pme_poll = false;
2384 
2385 	if (pci_check_pme_status(dev)) {
2386 		pci_wakeup_event(dev);
2387 		pm_request_resume(&dev->dev);
2388 	}
2389 	return 0;
2390 }
2391 
2392 /**
2393  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2394  * @bus: Top bus of the subtree to walk.
2395  */
2396 void pci_pme_wakeup_bus(struct pci_bus *bus)
2397 {
2398 	if (bus)
2399 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2400 }
2401 
2402 
2403 /**
2404  * pci_pme_capable - check the capability of PCI device to generate PME#
2405  * @dev: PCI device to handle.
2406  * @state: PCI state from which device will issue PME#.
2407  */
2408 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2409 {
2410 	if (!dev->pm_cap)
2411 		return false;
2412 
2413 	return !!(dev->pme_support & (1 << state));
2414 }
2415 EXPORT_SYMBOL(pci_pme_capable);
2416 
2417 static void pci_pme_list_scan(struct work_struct *work)
2418 {
2419 	struct pci_pme_device *pme_dev, *n;
2420 
2421 	mutex_lock(&pci_pme_list_mutex);
2422 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2423 		struct pci_dev *pdev = pme_dev->dev;
2424 
2425 		if (pdev->pme_poll) {
2426 			struct pci_dev *bridge = pdev->bus->self;
2427 			struct device *dev = &pdev->dev;
2428 			int pm_status;
2429 
2430 			/*
2431 			 * If bridge is in low power state, the
2432 			 * configuration space of subordinate devices
2433 			 * may be not accessible
2434 			 */
2435 			if (bridge && bridge->current_state != PCI_D0)
2436 				continue;
2437 
2438 			/*
2439 			 * If the device is in a low power state it
2440 			 * should not be polled either.
2441 			 */
2442 			pm_status = pm_runtime_get_if_active(dev, true);
2443 			if (!pm_status)
2444 				continue;
2445 
2446 			if (pdev->current_state != PCI_D3cold)
2447 				pci_pme_wakeup(pdev, NULL);
2448 
2449 			if (pm_status > 0)
2450 				pm_runtime_put(dev);
2451 		} else {
2452 			list_del(&pme_dev->list);
2453 			kfree(pme_dev);
2454 		}
2455 	}
2456 	if (!list_empty(&pci_pme_list))
2457 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2458 				   msecs_to_jiffies(PME_TIMEOUT));
2459 	mutex_unlock(&pci_pme_list_mutex);
2460 }
2461 
2462 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2463 {
2464 	u16 pmcsr;
2465 
2466 	if (!dev->pme_support)
2467 		return;
2468 
2469 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2470 	/* Clear PME_Status by writing 1 to it and enable PME# */
2471 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2472 	if (!enable)
2473 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2474 
2475 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2476 }
2477 
2478 /**
2479  * pci_pme_restore - Restore PME configuration after config space restore.
2480  * @dev: PCI device to update.
2481  */
2482 void pci_pme_restore(struct pci_dev *dev)
2483 {
2484 	u16 pmcsr;
2485 
2486 	if (!dev->pme_support)
2487 		return;
2488 
2489 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2490 	if (dev->wakeup_prepared) {
2491 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2492 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2493 	} else {
2494 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2495 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2496 	}
2497 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2498 }
2499 
2500 /**
2501  * pci_pme_active - enable or disable PCI device's PME# function
2502  * @dev: PCI device to handle.
2503  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2504  *
2505  * The caller must verify that the device is capable of generating PME# before
2506  * calling this function with @enable equal to 'true'.
2507  */
2508 void pci_pme_active(struct pci_dev *dev, bool enable)
2509 {
2510 	__pci_pme_active(dev, enable);
2511 
2512 	/*
2513 	 * PCI (as opposed to PCIe) PME requires that the device have
2514 	 * its PME# line hooked up correctly. Not all hardware vendors
2515 	 * do this, so the PME never gets delivered and the device
2516 	 * remains asleep. The easiest way around this is to
2517 	 * periodically walk the list of suspended devices and check
2518 	 * whether any have their PME flag set. The assumption is that
2519 	 * we'll wake up often enough anyway that this won't be a huge
2520 	 * hit, and the power savings from the devices will still be a
2521 	 * win.
2522 	 *
2523 	 * Although PCIe uses in-band PME message instead of PME# line
2524 	 * to report PME, PME does not work for some PCIe devices in
2525 	 * reality.  For example, there are devices that set their PME
2526 	 * status bits, but don't really bother to send a PME message;
2527 	 * there are PCI Express Root Ports that don't bother to
2528 	 * trigger interrupts when they receive PME messages from the
2529 	 * devices below.  So PME poll is used for PCIe devices too.
2530 	 */
2531 
2532 	if (dev->pme_poll) {
2533 		struct pci_pme_device *pme_dev;
2534 		if (enable) {
2535 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2536 					  GFP_KERNEL);
2537 			if (!pme_dev) {
2538 				pci_warn(dev, "can't enable PME#\n");
2539 				return;
2540 			}
2541 			pme_dev->dev = dev;
2542 			mutex_lock(&pci_pme_list_mutex);
2543 			list_add(&pme_dev->list, &pci_pme_list);
2544 			if (list_is_singular(&pci_pme_list))
2545 				queue_delayed_work(system_freezable_wq,
2546 						   &pci_pme_work,
2547 						   msecs_to_jiffies(PME_TIMEOUT));
2548 			mutex_unlock(&pci_pme_list_mutex);
2549 		} else {
2550 			mutex_lock(&pci_pme_list_mutex);
2551 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2552 				if (pme_dev->dev == dev) {
2553 					list_del(&pme_dev->list);
2554 					kfree(pme_dev);
2555 					break;
2556 				}
2557 			}
2558 			mutex_unlock(&pci_pme_list_mutex);
2559 		}
2560 	}
2561 
2562 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2563 }
2564 EXPORT_SYMBOL(pci_pme_active);
2565 
2566 /**
2567  * __pci_enable_wake - enable PCI device as wakeup event source
2568  * @dev: PCI device affected
2569  * @state: PCI state from which device will issue wakeup events
2570  * @enable: True to enable event generation; false to disable
2571  *
2572  * This enables the device as a wakeup event source, or disables it.
2573  * When such events involves platform-specific hooks, those hooks are
2574  * called automatically by this routine.
2575  *
2576  * Devices with legacy power management (no standard PCI PM capabilities)
2577  * always require such platform hooks.
2578  *
2579  * RETURN VALUE:
2580  * 0 is returned on success
2581  * -EINVAL is returned if device is not supposed to wake up the system
2582  * Error code depending on the platform is returned if both the platform and
2583  * the native mechanism fail to enable the generation of wake-up events
2584  */
2585 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2586 {
2587 	int ret = 0;
2588 
2589 	/*
2590 	 * Bridges that are not power-manageable directly only signal
2591 	 * wakeup on behalf of subordinate devices which is set up
2592 	 * elsewhere, so skip them. However, bridges that are
2593 	 * power-manageable may signal wakeup for themselves (for example,
2594 	 * on a hotplug event) and they need to be covered here.
2595 	 */
2596 	if (!pci_power_manageable(dev))
2597 		return 0;
2598 
2599 	/* Don't do the same thing twice in a row for one device. */
2600 	if (!!enable == !!dev->wakeup_prepared)
2601 		return 0;
2602 
2603 	/*
2604 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2605 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2606 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2607 	 */
2608 
2609 	if (enable) {
2610 		int error;
2611 
2612 		/*
2613 		 * Enable PME signaling if the device can signal PME from
2614 		 * D3cold regardless of whether or not it can signal PME from
2615 		 * the current target state, because that will allow it to
2616 		 * signal PME when the hierarchy above it goes into D3cold and
2617 		 * the device itself ends up in D3cold as a result of that.
2618 		 */
2619 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2620 			pci_pme_active(dev, true);
2621 		else
2622 			ret = 1;
2623 		error = platform_pci_set_wakeup(dev, true);
2624 		if (ret)
2625 			ret = error;
2626 		if (!ret)
2627 			dev->wakeup_prepared = true;
2628 	} else {
2629 		platform_pci_set_wakeup(dev, false);
2630 		pci_pme_active(dev, false);
2631 		dev->wakeup_prepared = false;
2632 	}
2633 
2634 	return ret;
2635 }
2636 
2637 /**
2638  * pci_enable_wake - change wakeup settings for a PCI device
2639  * @pci_dev: Target device
2640  * @state: PCI state from which device will issue wakeup events
2641  * @enable: Whether or not to enable event generation
2642  *
2643  * If @enable is set, check device_may_wakeup() for the device before calling
2644  * __pci_enable_wake() for it.
2645  */
2646 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2647 {
2648 	if (enable && !device_may_wakeup(&pci_dev->dev))
2649 		return -EINVAL;
2650 
2651 	return __pci_enable_wake(pci_dev, state, enable);
2652 }
2653 EXPORT_SYMBOL(pci_enable_wake);
2654 
2655 /**
2656  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2657  * @dev: PCI device to prepare
2658  * @enable: True to enable wake-up event generation; false to disable
2659  *
2660  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2661  * and this function allows them to set that up cleanly - pci_enable_wake()
2662  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2663  * ordering constraints.
2664  *
2665  * This function only returns error code if the device is not allowed to wake
2666  * up the system from sleep or it is not capable of generating PME# from both
2667  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2668  */
2669 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2670 {
2671 	return pci_pme_capable(dev, PCI_D3cold) ?
2672 			pci_enable_wake(dev, PCI_D3cold, enable) :
2673 			pci_enable_wake(dev, PCI_D3hot, enable);
2674 }
2675 EXPORT_SYMBOL(pci_wake_from_d3);
2676 
2677 /**
2678  * pci_target_state - find an appropriate low power state for a given PCI dev
2679  * @dev: PCI device
2680  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2681  *
2682  * Use underlying platform code to find a supported low power state for @dev.
2683  * If the platform can't manage @dev, return the deepest state from which it
2684  * can generate wake events, based on any available PME info.
2685  */
2686 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2687 {
2688 	if (platform_pci_power_manageable(dev)) {
2689 		/*
2690 		 * Call the platform to find the target state for the device.
2691 		 */
2692 		pci_power_t state = platform_pci_choose_state(dev);
2693 
2694 		switch (state) {
2695 		case PCI_POWER_ERROR:
2696 		case PCI_UNKNOWN:
2697 			return PCI_D3hot;
2698 
2699 		case PCI_D1:
2700 		case PCI_D2:
2701 			if (pci_no_d1d2(dev))
2702 				return PCI_D3hot;
2703 		}
2704 
2705 		return state;
2706 	}
2707 
2708 	/*
2709 	 * If the device is in D3cold even though it's not power-manageable by
2710 	 * the platform, it may have been powered down by non-standard means.
2711 	 * Best to let it slumber.
2712 	 */
2713 	if (dev->current_state == PCI_D3cold)
2714 		return PCI_D3cold;
2715 	else if (!dev->pm_cap)
2716 		return PCI_D0;
2717 
2718 	if (wakeup && dev->pme_support) {
2719 		pci_power_t state = PCI_D3hot;
2720 
2721 		/*
2722 		 * Find the deepest state from which the device can generate
2723 		 * PME#.
2724 		 */
2725 		while (state && !(dev->pme_support & (1 << state)))
2726 			state--;
2727 
2728 		if (state)
2729 			return state;
2730 		else if (dev->pme_support & 1)
2731 			return PCI_D0;
2732 	}
2733 
2734 	return PCI_D3hot;
2735 }
2736 
2737 /**
2738  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2739  *			  into a sleep state
2740  * @dev: Device to handle.
2741  *
2742  * Choose the power state appropriate for the device depending on whether
2743  * it can wake up the system and/or is power manageable by the platform
2744  * (PCI_D3hot is the default) and put the device into that state.
2745  */
2746 int pci_prepare_to_sleep(struct pci_dev *dev)
2747 {
2748 	bool wakeup = device_may_wakeup(&dev->dev);
2749 	pci_power_t target_state = pci_target_state(dev, wakeup);
2750 	int error;
2751 
2752 	if (target_state == PCI_POWER_ERROR)
2753 		return -EIO;
2754 
2755 	pci_enable_wake(dev, target_state, wakeup);
2756 
2757 	error = pci_set_power_state(dev, target_state);
2758 
2759 	if (error)
2760 		pci_enable_wake(dev, target_state, false);
2761 
2762 	return error;
2763 }
2764 EXPORT_SYMBOL(pci_prepare_to_sleep);
2765 
2766 /**
2767  * pci_back_from_sleep - turn PCI device on during system-wide transition
2768  *			 into working state
2769  * @dev: Device to handle.
2770  *
2771  * Disable device's system wake-up capability and put it into D0.
2772  */
2773 int pci_back_from_sleep(struct pci_dev *dev)
2774 {
2775 	int ret = pci_set_power_state(dev, PCI_D0);
2776 
2777 	if (ret)
2778 		return ret;
2779 
2780 	pci_enable_wake(dev, PCI_D0, false);
2781 	return 0;
2782 }
2783 EXPORT_SYMBOL(pci_back_from_sleep);
2784 
2785 /**
2786  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2787  * @dev: PCI device being suspended.
2788  *
2789  * Prepare @dev to generate wake-up events at run time and put it into a low
2790  * power state.
2791  */
2792 int pci_finish_runtime_suspend(struct pci_dev *dev)
2793 {
2794 	pci_power_t target_state;
2795 	int error;
2796 
2797 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2798 	if (target_state == PCI_POWER_ERROR)
2799 		return -EIO;
2800 
2801 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2802 
2803 	error = pci_set_power_state(dev, target_state);
2804 
2805 	if (error)
2806 		pci_enable_wake(dev, target_state, false);
2807 
2808 	return error;
2809 }
2810 
2811 /**
2812  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2813  * @dev: Device to check.
2814  *
2815  * Return true if the device itself is capable of generating wake-up events
2816  * (through the platform or using the native PCIe PME) or if the device supports
2817  * PME and one of its upstream bridges can generate wake-up events.
2818  */
2819 bool pci_dev_run_wake(struct pci_dev *dev)
2820 {
2821 	struct pci_bus *bus = dev->bus;
2822 
2823 	if (!dev->pme_support)
2824 		return false;
2825 
2826 	/* PME-capable in principle, but not from the target power state */
2827 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2828 		return false;
2829 
2830 	if (device_can_wakeup(&dev->dev))
2831 		return true;
2832 
2833 	while (bus->parent) {
2834 		struct pci_dev *bridge = bus->self;
2835 
2836 		if (device_can_wakeup(&bridge->dev))
2837 			return true;
2838 
2839 		bus = bus->parent;
2840 	}
2841 
2842 	/* We have reached the root bus. */
2843 	if (bus->bridge)
2844 		return device_can_wakeup(bus->bridge);
2845 
2846 	return false;
2847 }
2848 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2849 
2850 /**
2851  * pci_dev_need_resume - Check if it is necessary to resume the device.
2852  * @pci_dev: Device to check.
2853  *
2854  * Return 'true' if the device is not runtime-suspended or it has to be
2855  * reconfigured due to wakeup settings difference between system and runtime
2856  * suspend, or the current power state of it is not suitable for the upcoming
2857  * (system-wide) transition.
2858  */
2859 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2860 {
2861 	struct device *dev = &pci_dev->dev;
2862 	pci_power_t target_state;
2863 
2864 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2865 		return true;
2866 
2867 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2868 
2869 	/*
2870 	 * If the earlier platform check has not triggered, D3cold is just power
2871 	 * removal on top of D3hot, so no need to resume the device in that
2872 	 * case.
2873 	 */
2874 	return target_state != pci_dev->current_state &&
2875 		target_state != PCI_D3cold &&
2876 		pci_dev->current_state != PCI_D3hot;
2877 }
2878 
2879 /**
2880  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2881  * @pci_dev: Device to check.
2882  *
2883  * If the device is suspended and it is not configured for system wakeup,
2884  * disable PME for it to prevent it from waking up the system unnecessarily.
2885  *
2886  * Note that if the device's power state is D3cold and the platform check in
2887  * pci_dev_need_resume() has not triggered, the device's configuration need not
2888  * be changed.
2889  */
2890 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2891 {
2892 	struct device *dev = &pci_dev->dev;
2893 
2894 	spin_lock_irq(&dev->power.lock);
2895 
2896 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2897 	    pci_dev->current_state < PCI_D3cold)
2898 		__pci_pme_active(pci_dev, false);
2899 
2900 	spin_unlock_irq(&dev->power.lock);
2901 }
2902 
2903 /**
2904  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2905  * @pci_dev: Device to handle.
2906  *
2907  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2908  * it might have been disabled during the prepare phase of system suspend if
2909  * the device was not configured for system wakeup.
2910  */
2911 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2912 {
2913 	struct device *dev = &pci_dev->dev;
2914 
2915 	if (!pci_dev_run_wake(pci_dev))
2916 		return;
2917 
2918 	spin_lock_irq(&dev->power.lock);
2919 
2920 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2921 		__pci_pme_active(pci_dev, true);
2922 
2923 	spin_unlock_irq(&dev->power.lock);
2924 }
2925 
2926 /**
2927  * pci_choose_state - Choose the power state of a PCI device.
2928  * @dev: Target PCI device.
2929  * @state: Target state for the whole system.
2930  *
2931  * Returns PCI power state suitable for @dev and @state.
2932  */
2933 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2934 {
2935 	if (state.event == PM_EVENT_ON)
2936 		return PCI_D0;
2937 
2938 	return pci_target_state(dev, false);
2939 }
2940 EXPORT_SYMBOL(pci_choose_state);
2941 
2942 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2943 {
2944 	struct device *dev = &pdev->dev;
2945 	struct device *parent = dev->parent;
2946 
2947 	if (parent)
2948 		pm_runtime_get_sync(parent);
2949 	pm_runtime_get_noresume(dev);
2950 	/*
2951 	 * pdev->current_state is set to PCI_D3cold during suspending,
2952 	 * so wait until suspending completes
2953 	 */
2954 	pm_runtime_barrier(dev);
2955 	/*
2956 	 * Only need to resume devices in D3cold, because config
2957 	 * registers are still accessible for devices suspended but
2958 	 * not in D3cold.
2959 	 */
2960 	if (pdev->current_state == PCI_D3cold)
2961 		pm_runtime_resume(dev);
2962 }
2963 
2964 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2965 {
2966 	struct device *dev = &pdev->dev;
2967 	struct device *parent = dev->parent;
2968 
2969 	pm_runtime_put(dev);
2970 	if (parent)
2971 		pm_runtime_put_sync(parent);
2972 }
2973 
2974 static const struct dmi_system_id bridge_d3_blacklist[] = {
2975 #ifdef CONFIG_X86
2976 	{
2977 		/*
2978 		 * Gigabyte X299 root port is not marked as hotplug capable
2979 		 * which allows Linux to power manage it.  However, this
2980 		 * confuses the BIOS SMI handler so don't power manage root
2981 		 * ports on that system.
2982 		 */
2983 		.ident = "X299 DESIGNARE EX-CF",
2984 		.matches = {
2985 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2986 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2987 		},
2988 	},
2989 	{
2990 		/*
2991 		 * Downstream device is not accessible after putting a root port
2992 		 * into D3cold and back into D0 on Elo Continental Z2 board
2993 		 */
2994 		.ident = "Elo Continental Z2",
2995 		.matches = {
2996 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2997 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2998 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2999 		},
3000 	},
3001 #endif
3002 	{ }
3003 };
3004 
3005 /**
3006  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3007  * @bridge: Bridge to check
3008  *
3009  * This function checks if it is possible to move the bridge to D3.
3010  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3011  */
3012 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3013 {
3014 	if (!pci_is_pcie(bridge))
3015 		return false;
3016 
3017 	switch (pci_pcie_type(bridge)) {
3018 	case PCI_EXP_TYPE_ROOT_PORT:
3019 	case PCI_EXP_TYPE_UPSTREAM:
3020 	case PCI_EXP_TYPE_DOWNSTREAM:
3021 		if (pci_bridge_d3_disable)
3022 			return false;
3023 
3024 		/*
3025 		 * Hotplug ports handled by firmware in System Management Mode
3026 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3027 		 */
3028 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3029 			return false;
3030 
3031 		if (pci_bridge_d3_force)
3032 			return true;
3033 
3034 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3035 		if (bridge->is_thunderbolt)
3036 			return true;
3037 
3038 		/* Platform might know better if the bridge supports D3 */
3039 		if (platform_pci_bridge_d3(bridge))
3040 			return true;
3041 
3042 		/*
3043 		 * Hotplug ports handled natively by the OS were not validated
3044 		 * by vendors for runtime D3 at least until 2018 because there
3045 		 * was no OS support.
3046 		 */
3047 		if (bridge->is_hotplug_bridge)
3048 			return false;
3049 
3050 		if (dmi_check_system(bridge_d3_blacklist))
3051 			return false;
3052 
3053 		/*
3054 		 * It should be safe to put PCIe ports from 2015 or newer
3055 		 * to D3.
3056 		 */
3057 		if (dmi_get_bios_year() >= 2015)
3058 			return true;
3059 		break;
3060 	}
3061 
3062 	return false;
3063 }
3064 
3065 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3066 {
3067 	bool *d3cold_ok = data;
3068 
3069 	if (/* The device needs to be allowed to go D3cold ... */
3070 	    dev->no_d3cold || !dev->d3cold_allowed ||
3071 
3072 	    /* ... and if it is wakeup capable to do so from D3cold. */
3073 	    (device_may_wakeup(&dev->dev) &&
3074 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3075 
3076 	    /* If it is a bridge it must be allowed to go to D3. */
3077 	    !pci_power_manageable(dev))
3078 
3079 		*d3cold_ok = false;
3080 
3081 	return !*d3cold_ok;
3082 }
3083 
3084 /*
3085  * pci_bridge_d3_update - Update bridge D3 capabilities
3086  * @dev: PCI device which is changed
3087  *
3088  * Update upstream bridge PM capabilities accordingly depending on if the
3089  * device PM configuration was changed or the device is being removed.  The
3090  * change is also propagated upstream.
3091  */
3092 void pci_bridge_d3_update(struct pci_dev *dev)
3093 {
3094 	bool remove = !device_is_registered(&dev->dev);
3095 	struct pci_dev *bridge;
3096 	bool d3cold_ok = true;
3097 
3098 	bridge = pci_upstream_bridge(dev);
3099 	if (!bridge || !pci_bridge_d3_possible(bridge))
3100 		return;
3101 
3102 	/*
3103 	 * If D3 is currently allowed for the bridge, removing one of its
3104 	 * children won't change that.
3105 	 */
3106 	if (remove && bridge->bridge_d3)
3107 		return;
3108 
3109 	/*
3110 	 * If D3 is currently allowed for the bridge and a child is added or
3111 	 * changed, disallowance of D3 can only be caused by that child, so
3112 	 * we only need to check that single device, not any of its siblings.
3113 	 *
3114 	 * If D3 is currently not allowed for the bridge, checking the device
3115 	 * first may allow us to skip checking its siblings.
3116 	 */
3117 	if (!remove)
3118 		pci_dev_check_d3cold(dev, &d3cold_ok);
3119 
3120 	/*
3121 	 * If D3 is currently not allowed for the bridge, this may be caused
3122 	 * either by the device being changed/removed or any of its siblings,
3123 	 * so we need to go through all children to find out if one of them
3124 	 * continues to block D3.
3125 	 */
3126 	if (d3cold_ok && !bridge->bridge_d3)
3127 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3128 			     &d3cold_ok);
3129 
3130 	if (bridge->bridge_d3 != d3cold_ok) {
3131 		bridge->bridge_d3 = d3cold_ok;
3132 		/* Propagate change to upstream bridges */
3133 		pci_bridge_d3_update(bridge);
3134 	}
3135 }
3136 
3137 /**
3138  * pci_d3cold_enable - Enable D3cold for device
3139  * @dev: PCI device to handle
3140  *
3141  * This function can be used in drivers to enable D3cold from the device
3142  * they handle.  It also updates upstream PCI bridge PM capabilities
3143  * accordingly.
3144  */
3145 void pci_d3cold_enable(struct pci_dev *dev)
3146 {
3147 	if (dev->no_d3cold) {
3148 		dev->no_d3cold = false;
3149 		pci_bridge_d3_update(dev);
3150 	}
3151 }
3152 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3153 
3154 /**
3155  * pci_d3cold_disable - Disable D3cold for device
3156  * @dev: PCI device to handle
3157  *
3158  * This function can be used in drivers to disable D3cold from the device
3159  * they handle.  It also updates upstream PCI bridge PM capabilities
3160  * accordingly.
3161  */
3162 void pci_d3cold_disable(struct pci_dev *dev)
3163 {
3164 	if (!dev->no_d3cold) {
3165 		dev->no_d3cold = true;
3166 		pci_bridge_d3_update(dev);
3167 	}
3168 }
3169 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3170 
3171 /**
3172  * pci_pm_init - Initialize PM functions of given PCI device
3173  * @dev: PCI device to handle.
3174  */
3175 void pci_pm_init(struct pci_dev *dev)
3176 {
3177 	int pm;
3178 	u16 status;
3179 	u16 pmc;
3180 
3181 	pm_runtime_forbid(&dev->dev);
3182 	pm_runtime_set_active(&dev->dev);
3183 	pm_runtime_enable(&dev->dev);
3184 	device_enable_async_suspend(&dev->dev);
3185 	dev->wakeup_prepared = false;
3186 
3187 	dev->pm_cap = 0;
3188 	dev->pme_support = 0;
3189 
3190 	/* find PCI PM capability in list */
3191 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3192 	if (!pm)
3193 		return;
3194 	/* Check device's ability to generate PME# */
3195 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3196 
3197 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3198 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3199 			pmc & PCI_PM_CAP_VER_MASK);
3200 		return;
3201 	}
3202 
3203 	dev->pm_cap = pm;
3204 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3205 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3206 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3207 	dev->d3cold_allowed = true;
3208 
3209 	dev->d1_support = false;
3210 	dev->d2_support = false;
3211 	if (!pci_no_d1d2(dev)) {
3212 		if (pmc & PCI_PM_CAP_D1)
3213 			dev->d1_support = true;
3214 		if (pmc & PCI_PM_CAP_D2)
3215 			dev->d2_support = true;
3216 
3217 		if (dev->d1_support || dev->d2_support)
3218 			pci_info(dev, "supports%s%s\n",
3219 				   dev->d1_support ? " D1" : "",
3220 				   dev->d2_support ? " D2" : "");
3221 	}
3222 
3223 	pmc &= PCI_PM_CAP_PME_MASK;
3224 	if (pmc) {
3225 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3226 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3227 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3228 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3229 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3230 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3231 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3232 		dev->pme_poll = true;
3233 		/*
3234 		 * Make device's PM flags reflect the wake-up capability, but
3235 		 * let the user space enable it to wake up the system as needed.
3236 		 */
3237 		device_set_wakeup_capable(&dev->dev, true);
3238 		/* Disable the PME# generation functionality */
3239 		pci_pme_active(dev, false);
3240 	}
3241 
3242 	pci_read_config_word(dev, PCI_STATUS, &status);
3243 	if (status & PCI_STATUS_IMM_READY)
3244 		dev->imm_ready = 1;
3245 }
3246 
3247 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3248 {
3249 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3250 
3251 	switch (prop) {
3252 	case PCI_EA_P_MEM:
3253 	case PCI_EA_P_VF_MEM:
3254 		flags |= IORESOURCE_MEM;
3255 		break;
3256 	case PCI_EA_P_MEM_PREFETCH:
3257 	case PCI_EA_P_VF_MEM_PREFETCH:
3258 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3259 		break;
3260 	case PCI_EA_P_IO:
3261 		flags |= IORESOURCE_IO;
3262 		break;
3263 	default:
3264 		return 0;
3265 	}
3266 
3267 	return flags;
3268 }
3269 
3270 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3271 					    u8 prop)
3272 {
3273 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3274 		return &dev->resource[bei];
3275 #ifdef CONFIG_PCI_IOV
3276 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3277 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3278 		return &dev->resource[PCI_IOV_RESOURCES +
3279 				      bei - PCI_EA_BEI_VF_BAR0];
3280 #endif
3281 	else if (bei == PCI_EA_BEI_ROM)
3282 		return &dev->resource[PCI_ROM_RESOURCE];
3283 	else
3284 		return NULL;
3285 }
3286 
3287 /* Read an Enhanced Allocation (EA) entry */
3288 static int pci_ea_read(struct pci_dev *dev, int offset)
3289 {
3290 	struct resource *res;
3291 	int ent_size, ent_offset = offset;
3292 	resource_size_t start, end;
3293 	unsigned long flags;
3294 	u32 dw0, bei, base, max_offset;
3295 	u8 prop;
3296 	bool support_64 = (sizeof(resource_size_t) >= 8);
3297 
3298 	pci_read_config_dword(dev, ent_offset, &dw0);
3299 	ent_offset += 4;
3300 
3301 	/* Entry size field indicates DWORDs after 1st */
3302 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3303 
3304 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3305 		goto out;
3306 
3307 	bei = (dw0 & PCI_EA_BEI) >> 4;
3308 	prop = (dw0 & PCI_EA_PP) >> 8;
3309 
3310 	/*
3311 	 * If the Property is in the reserved range, try the Secondary
3312 	 * Property instead.
3313 	 */
3314 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3315 		prop = (dw0 & PCI_EA_SP) >> 16;
3316 	if (prop > PCI_EA_P_BRIDGE_IO)
3317 		goto out;
3318 
3319 	res = pci_ea_get_resource(dev, bei, prop);
3320 	if (!res) {
3321 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3322 		goto out;
3323 	}
3324 
3325 	flags = pci_ea_flags(dev, prop);
3326 	if (!flags) {
3327 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3328 		goto out;
3329 	}
3330 
3331 	/* Read Base */
3332 	pci_read_config_dword(dev, ent_offset, &base);
3333 	start = (base & PCI_EA_FIELD_MASK);
3334 	ent_offset += 4;
3335 
3336 	/* Read MaxOffset */
3337 	pci_read_config_dword(dev, ent_offset, &max_offset);
3338 	ent_offset += 4;
3339 
3340 	/* Read Base MSBs (if 64-bit entry) */
3341 	if (base & PCI_EA_IS_64) {
3342 		u32 base_upper;
3343 
3344 		pci_read_config_dword(dev, ent_offset, &base_upper);
3345 		ent_offset += 4;
3346 
3347 		flags |= IORESOURCE_MEM_64;
3348 
3349 		/* entry starts above 32-bit boundary, can't use */
3350 		if (!support_64 && base_upper)
3351 			goto out;
3352 
3353 		if (support_64)
3354 			start |= ((u64)base_upper << 32);
3355 	}
3356 
3357 	end = start + (max_offset | 0x03);
3358 
3359 	/* Read MaxOffset MSBs (if 64-bit entry) */
3360 	if (max_offset & PCI_EA_IS_64) {
3361 		u32 max_offset_upper;
3362 
3363 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3364 		ent_offset += 4;
3365 
3366 		flags |= IORESOURCE_MEM_64;
3367 
3368 		/* entry too big, can't use */
3369 		if (!support_64 && max_offset_upper)
3370 			goto out;
3371 
3372 		if (support_64)
3373 			end += ((u64)max_offset_upper << 32);
3374 	}
3375 
3376 	if (end < start) {
3377 		pci_err(dev, "EA Entry crosses address boundary\n");
3378 		goto out;
3379 	}
3380 
3381 	if (ent_size != ent_offset - offset) {
3382 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3383 			ent_size, ent_offset - offset);
3384 		goto out;
3385 	}
3386 
3387 	res->name = pci_name(dev);
3388 	res->start = start;
3389 	res->end = end;
3390 	res->flags = flags;
3391 
3392 	if (bei <= PCI_EA_BEI_BAR5)
3393 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3394 			   bei, res, prop);
3395 	else if (bei == PCI_EA_BEI_ROM)
3396 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3397 			   res, prop);
3398 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3399 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3400 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3401 	else
3402 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3403 			   bei, res, prop);
3404 
3405 out:
3406 	return offset + ent_size;
3407 }
3408 
3409 /* Enhanced Allocation Initialization */
3410 void pci_ea_init(struct pci_dev *dev)
3411 {
3412 	int ea;
3413 	u8 num_ent;
3414 	int offset;
3415 	int i;
3416 
3417 	/* find PCI EA capability in list */
3418 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3419 	if (!ea)
3420 		return;
3421 
3422 	/* determine the number of entries */
3423 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3424 					&num_ent);
3425 	num_ent &= PCI_EA_NUM_ENT_MASK;
3426 
3427 	offset = ea + PCI_EA_FIRST_ENT;
3428 
3429 	/* Skip DWORD 2 for type 1 functions */
3430 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3431 		offset += 4;
3432 
3433 	/* parse each EA entry */
3434 	for (i = 0; i < num_ent; ++i)
3435 		offset = pci_ea_read(dev, offset);
3436 }
3437 
3438 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3439 	struct pci_cap_saved_state *new_cap)
3440 {
3441 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3442 }
3443 
3444 /**
3445  * _pci_add_cap_save_buffer - allocate buffer for saving given
3446  *			      capability registers
3447  * @dev: the PCI device
3448  * @cap: the capability to allocate the buffer for
3449  * @extended: Standard or Extended capability ID
3450  * @size: requested size of the buffer
3451  */
3452 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3453 				    bool extended, unsigned int size)
3454 {
3455 	int pos;
3456 	struct pci_cap_saved_state *save_state;
3457 
3458 	if (extended)
3459 		pos = pci_find_ext_capability(dev, cap);
3460 	else
3461 		pos = pci_find_capability(dev, cap);
3462 
3463 	if (!pos)
3464 		return 0;
3465 
3466 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3467 	if (!save_state)
3468 		return -ENOMEM;
3469 
3470 	save_state->cap.cap_nr = cap;
3471 	save_state->cap.cap_extended = extended;
3472 	save_state->cap.size = size;
3473 	pci_add_saved_cap(dev, save_state);
3474 
3475 	return 0;
3476 }
3477 
3478 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3479 {
3480 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3481 }
3482 
3483 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3484 {
3485 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3486 }
3487 
3488 /**
3489  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3490  * @dev: the PCI device
3491  */
3492 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3493 {
3494 	int error;
3495 
3496 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3497 					PCI_EXP_SAVE_REGS * sizeof(u16));
3498 	if (error)
3499 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3500 
3501 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3502 	if (error)
3503 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3504 
3505 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3506 					    2 * sizeof(u16));
3507 	if (error)
3508 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3509 
3510 	pci_allocate_vc_save_buffers(dev);
3511 }
3512 
3513 void pci_free_cap_save_buffers(struct pci_dev *dev)
3514 {
3515 	struct pci_cap_saved_state *tmp;
3516 	struct hlist_node *n;
3517 
3518 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3519 		kfree(tmp);
3520 }
3521 
3522 /**
3523  * pci_configure_ari - enable or disable ARI forwarding
3524  * @dev: the PCI device
3525  *
3526  * If @dev and its upstream bridge both support ARI, enable ARI in the
3527  * bridge.  Otherwise, disable ARI in the bridge.
3528  */
3529 void pci_configure_ari(struct pci_dev *dev)
3530 {
3531 	u32 cap;
3532 	struct pci_dev *bridge;
3533 
3534 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3535 		return;
3536 
3537 	bridge = dev->bus->self;
3538 	if (!bridge)
3539 		return;
3540 
3541 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3542 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3543 		return;
3544 
3545 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3546 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3547 					 PCI_EXP_DEVCTL2_ARI);
3548 		bridge->ari_enabled = 1;
3549 	} else {
3550 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3551 					   PCI_EXP_DEVCTL2_ARI);
3552 		bridge->ari_enabled = 0;
3553 	}
3554 }
3555 
3556 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3557 {
3558 	int pos;
3559 	u16 cap, ctrl;
3560 
3561 	pos = pdev->acs_cap;
3562 	if (!pos)
3563 		return false;
3564 
3565 	/*
3566 	 * Except for egress control, capabilities are either required
3567 	 * or only required if controllable.  Features missing from the
3568 	 * capability field can therefore be assumed as hard-wired enabled.
3569 	 */
3570 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3571 	acs_flags &= (cap | PCI_ACS_EC);
3572 
3573 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3574 	return (ctrl & acs_flags) == acs_flags;
3575 }
3576 
3577 /**
3578  * pci_acs_enabled - test ACS against required flags for a given device
3579  * @pdev: device to test
3580  * @acs_flags: required PCI ACS flags
3581  *
3582  * Return true if the device supports the provided flags.  Automatically
3583  * filters out flags that are not implemented on multifunction devices.
3584  *
3585  * Note that this interface checks the effective ACS capabilities of the
3586  * device rather than the actual capabilities.  For instance, most single
3587  * function endpoints are not required to support ACS because they have no
3588  * opportunity for peer-to-peer access.  We therefore return 'true'
3589  * regardless of whether the device exposes an ACS capability.  This makes
3590  * it much easier for callers of this function to ignore the actual type
3591  * or topology of the device when testing ACS support.
3592  */
3593 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3594 {
3595 	int ret;
3596 
3597 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3598 	if (ret >= 0)
3599 		return ret > 0;
3600 
3601 	/*
3602 	 * Conventional PCI and PCI-X devices never support ACS, either
3603 	 * effectively or actually.  The shared bus topology implies that
3604 	 * any device on the bus can receive or snoop DMA.
3605 	 */
3606 	if (!pci_is_pcie(pdev))
3607 		return false;
3608 
3609 	switch (pci_pcie_type(pdev)) {
3610 	/*
3611 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3612 	 * but since their primary interface is PCI/X, we conservatively
3613 	 * handle them as we would a non-PCIe device.
3614 	 */
3615 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3616 	/*
3617 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3618 	 * applicable... must never implement an ACS Extended Capability...".
3619 	 * This seems arbitrary, but we take a conservative interpretation
3620 	 * of this statement.
3621 	 */
3622 	case PCI_EXP_TYPE_PCI_BRIDGE:
3623 	case PCI_EXP_TYPE_RC_EC:
3624 		return false;
3625 	/*
3626 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3627 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3628 	 * regardless of whether they are single- or multi-function devices.
3629 	 */
3630 	case PCI_EXP_TYPE_DOWNSTREAM:
3631 	case PCI_EXP_TYPE_ROOT_PORT:
3632 		return pci_acs_flags_enabled(pdev, acs_flags);
3633 	/*
3634 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3635 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3636 	 * capabilities, but only when they are part of a multifunction
3637 	 * device.  The footnote for section 6.12 indicates the specific
3638 	 * PCIe types included here.
3639 	 */
3640 	case PCI_EXP_TYPE_ENDPOINT:
3641 	case PCI_EXP_TYPE_UPSTREAM:
3642 	case PCI_EXP_TYPE_LEG_END:
3643 	case PCI_EXP_TYPE_RC_END:
3644 		if (!pdev->multifunction)
3645 			break;
3646 
3647 		return pci_acs_flags_enabled(pdev, acs_flags);
3648 	}
3649 
3650 	/*
3651 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3652 	 * to single function devices with the exception of downstream ports.
3653 	 */
3654 	return true;
3655 }
3656 
3657 /**
3658  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3659  * @start: starting downstream device
3660  * @end: ending upstream device or NULL to search to the root bus
3661  * @acs_flags: required flags
3662  *
3663  * Walk up a device tree from start to end testing PCI ACS support.  If
3664  * any step along the way does not support the required flags, return false.
3665  */
3666 bool pci_acs_path_enabled(struct pci_dev *start,
3667 			  struct pci_dev *end, u16 acs_flags)
3668 {
3669 	struct pci_dev *pdev, *parent = start;
3670 
3671 	do {
3672 		pdev = parent;
3673 
3674 		if (!pci_acs_enabled(pdev, acs_flags))
3675 			return false;
3676 
3677 		if (pci_is_root_bus(pdev->bus))
3678 			return (end == NULL);
3679 
3680 		parent = pdev->bus->self;
3681 	} while (pdev != end);
3682 
3683 	return true;
3684 }
3685 
3686 /**
3687  * pci_acs_init - Initialize ACS if hardware supports it
3688  * @dev: the PCI device
3689  */
3690 void pci_acs_init(struct pci_dev *dev)
3691 {
3692 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3693 
3694 	/*
3695 	 * Attempt to enable ACS regardless of capability because some Root
3696 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3697 	 * the standard ACS capability but still support ACS via those
3698 	 * quirks.
3699 	 */
3700 	pci_enable_acs(dev);
3701 }
3702 
3703 /**
3704  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3705  * @pdev: PCI device
3706  * @bar: BAR to find
3707  *
3708  * Helper to find the position of the ctrl register for a BAR.
3709  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3710  * Returns -ENOENT if no ctrl register for the BAR could be found.
3711  */
3712 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3713 {
3714 	unsigned int pos, nbars, i;
3715 	u32 ctrl;
3716 
3717 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3718 	if (!pos)
3719 		return -ENOTSUPP;
3720 
3721 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3722 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3723 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3724 
3725 	for (i = 0; i < nbars; i++, pos += 8) {
3726 		int bar_idx;
3727 
3728 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3729 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3730 		if (bar_idx == bar)
3731 			return pos;
3732 	}
3733 
3734 	return -ENOENT;
3735 }
3736 
3737 /**
3738  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3739  * @pdev: PCI device
3740  * @bar: BAR to query
3741  *
3742  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3743  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3744  */
3745 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3746 {
3747 	int pos;
3748 	u32 cap;
3749 
3750 	pos = pci_rebar_find_pos(pdev, bar);
3751 	if (pos < 0)
3752 		return 0;
3753 
3754 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3755 	cap &= PCI_REBAR_CAP_SIZES;
3756 
3757 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3758 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3759 	    bar == 0 && cap == 0x7000)
3760 		cap = 0x3f000;
3761 
3762 	return cap >> 4;
3763 }
3764 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3765 
3766 /**
3767  * pci_rebar_get_current_size - get the current size of a BAR
3768  * @pdev: PCI device
3769  * @bar: BAR to set size to
3770  *
3771  * Read the size of a BAR from the resizable BAR config.
3772  * Returns size if found or negative error code.
3773  */
3774 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3775 {
3776 	int pos;
3777 	u32 ctrl;
3778 
3779 	pos = pci_rebar_find_pos(pdev, bar);
3780 	if (pos < 0)
3781 		return pos;
3782 
3783 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3784 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3785 }
3786 
3787 /**
3788  * pci_rebar_set_size - set a new size for a BAR
3789  * @pdev: PCI device
3790  * @bar: BAR to set size to
3791  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3792  *
3793  * Set the new size of a BAR as defined in the spec.
3794  * Returns zero if resizing was successful, error code otherwise.
3795  */
3796 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3797 {
3798 	int pos;
3799 	u32 ctrl;
3800 
3801 	pos = pci_rebar_find_pos(pdev, bar);
3802 	if (pos < 0)
3803 		return pos;
3804 
3805 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3806 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3807 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3808 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3809 	return 0;
3810 }
3811 
3812 /**
3813  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3814  * @dev: the PCI device
3815  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3816  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3817  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3818  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3819  *
3820  * Return 0 if all upstream bridges support AtomicOp routing, egress
3821  * blocking is disabled on all upstream ports, and the root port supports
3822  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3823  * AtomicOp completion), or negative otherwise.
3824  */
3825 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3826 {
3827 	struct pci_bus *bus = dev->bus;
3828 	struct pci_dev *bridge;
3829 	u32 cap, ctl2;
3830 
3831 	/*
3832 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3833 	 * in Device Control 2 is reserved in VFs and the PF value applies
3834 	 * to all associated VFs.
3835 	 */
3836 	if (dev->is_virtfn)
3837 		return -EINVAL;
3838 
3839 	if (!pci_is_pcie(dev))
3840 		return -EINVAL;
3841 
3842 	/*
3843 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3844 	 * AtomicOp requesters.  For now, we only support endpoints as
3845 	 * requesters and root ports as completers.  No endpoints as
3846 	 * completers, and no peer-to-peer.
3847 	 */
3848 
3849 	switch (pci_pcie_type(dev)) {
3850 	case PCI_EXP_TYPE_ENDPOINT:
3851 	case PCI_EXP_TYPE_LEG_END:
3852 	case PCI_EXP_TYPE_RC_END:
3853 		break;
3854 	default:
3855 		return -EINVAL;
3856 	}
3857 
3858 	while (bus->parent) {
3859 		bridge = bus->self;
3860 
3861 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3862 
3863 		switch (pci_pcie_type(bridge)) {
3864 		/* Ensure switch ports support AtomicOp routing */
3865 		case PCI_EXP_TYPE_UPSTREAM:
3866 		case PCI_EXP_TYPE_DOWNSTREAM:
3867 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3868 				return -EINVAL;
3869 			break;
3870 
3871 		/* Ensure root port supports all the sizes we care about */
3872 		case PCI_EXP_TYPE_ROOT_PORT:
3873 			if ((cap & cap_mask) != cap_mask)
3874 				return -EINVAL;
3875 			break;
3876 		}
3877 
3878 		/* Ensure upstream ports don't block AtomicOps on egress */
3879 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3880 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3881 						   &ctl2);
3882 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3883 				return -EINVAL;
3884 		}
3885 
3886 		bus = bus->parent;
3887 	}
3888 
3889 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3890 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3891 	return 0;
3892 }
3893 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3894 
3895 /**
3896  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3897  * @dev: the PCI device
3898  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3899  *
3900  * Perform INTx swizzling for a device behind one level of bridge.  This is
3901  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3902  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3903  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3904  * the PCI Express Base Specification, Revision 2.1)
3905  */
3906 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3907 {
3908 	int slot;
3909 
3910 	if (pci_ari_enabled(dev->bus))
3911 		slot = 0;
3912 	else
3913 		slot = PCI_SLOT(dev->devfn);
3914 
3915 	return (((pin - 1) + slot) % 4) + 1;
3916 }
3917 
3918 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3919 {
3920 	u8 pin;
3921 
3922 	pin = dev->pin;
3923 	if (!pin)
3924 		return -1;
3925 
3926 	while (!pci_is_root_bus(dev->bus)) {
3927 		pin = pci_swizzle_interrupt_pin(dev, pin);
3928 		dev = dev->bus->self;
3929 	}
3930 	*bridge = dev;
3931 	return pin;
3932 }
3933 
3934 /**
3935  * pci_common_swizzle - swizzle INTx all the way to root bridge
3936  * @dev: the PCI device
3937  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3938  *
3939  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3940  * bridges all the way up to a PCI root bus.
3941  */
3942 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3943 {
3944 	u8 pin = *pinp;
3945 
3946 	while (!pci_is_root_bus(dev->bus)) {
3947 		pin = pci_swizzle_interrupt_pin(dev, pin);
3948 		dev = dev->bus->self;
3949 	}
3950 	*pinp = pin;
3951 	return PCI_SLOT(dev->devfn);
3952 }
3953 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3954 
3955 /**
3956  * pci_release_region - Release a PCI bar
3957  * @pdev: PCI device whose resources were previously reserved by
3958  *	  pci_request_region()
3959  * @bar: BAR to release
3960  *
3961  * Releases the PCI I/O and memory resources previously reserved by a
3962  * successful call to pci_request_region().  Call this function only
3963  * after all use of the PCI regions has ceased.
3964  */
3965 void pci_release_region(struct pci_dev *pdev, int bar)
3966 {
3967 	struct pci_devres *dr;
3968 
3969 	if (pci_resource_len(pdev, bar) == 0)
3970 		return;
3971 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3972 		release_region(pci_resource_start(pdev, bar),
3973 				pci_resource_len(pdev, bar));
3974 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3975 		release_mem_region(pci_resource_start(pdev, bar),
3976 				pci_resource_len(pdev, bar));
3977 
3978 	dr = find_pci_dr(pdev);
3979 	if (dr)
3980 		dr->region_mask &= ~(1 << bar);
3981 }
3982 EXPORT_SYMBOL(pci_release_region);
3983 
3984 /**
3985  * __pci_request_region - Reserved PCI I/O and memory resource
3986  * @pdev: PCI device whose resources are to be reserved
3987  * @bar: BAR to be reserved
3988  * @res_name: Name to be associated with resource.
3989  * @exclusive: whether the region access is exclusive or not
3990  *
3991  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3992  * being reserved by owner @res_name.  Do not access any
3993  * address inside the PCI regions unless this call returns
3994  * successfully.
3995  *
3996  * If @exclusive is set, then the region is marked so that userspace
3997  * is explicitly not allowed to map the resource via /dev/mem or
3998  * sysfs MMIO access.
3999  *
4000  * Returns 0 on success, or %EBUSY on error.  A warning
4001  * message is also printed on failure.
4002  */
4003 static int __pci_request_region(struct pci_dev *pdev, int bar,
4004 				const char *res_name, int exclusive)
4005 {
4006 	struct pci_devres *dr;
4007 
4008 	if (pci_resource_len(pdev, bar) == 0)
4009 		return 0;
4010 
4011 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4012 		if (!request_region(pci_resource_start(pdev, bar),
4013 			    pci_resource_len(pdev, bar), res_name))
4014 			goto err_out;
4015 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4016 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4017 					pci_resource_len(pdev, bar), res_name,
4018 					exclusive))
4019 			goto err_out;
4020 	}
4021 
4022 	dr = find_pci_dr(pdev);
4023 	if (dr)
4024 		dr->region_mask |= 1 << bar;
4025 
4026 	return 0;
4027 
4028 err_out:
4029 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4030 		 &pdev->resource[bar]);
4031 	return -EBUSY;
4032 }
4033 
4034 /**
4035  * pci_request_region - Reserve PCI I/O and memory resource
4036  * @pdev: PCI device whose resources are to be reserved
4037  * @bar: BAR to be reserved
4038  * @res_name: Name to be associated with resource
4039  *
4040  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4041  * being reserved by owner @res_name.  Do not access any
4042  * address inside the PCI regions unless this call returns
4043  * successfully.
4044  *
4045  * Returns 0 on success, or %EBUSY on error.  A warning
4046  * message is also printed on failure.
4047  */
4048 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4049 {
4050 	return __pci_request_region(pdev, bar, res_name, 0);
4051 }
4052 EXPORT_SYMBOL(pci_request_region);
4053 
4054 /**
4055  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4056  * @pdev: PCI device whose resources were previously reserved
4057  * @bars: Bitmask of BARs to be released
4058  *
4059  * Release selected PCI I/O and memory resources previously reserved.
4060  * Call this function only after all use of the PCI regions has ceased.
4061  */
4062 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4063 {
4064 	int i;
4065 
4066 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4067 		if (bars & (1 << i))
4068 			pci_release_region(pdev, i);
4069 }
4070 EXPORT_SYMBOL(pci_release_selected_regions);
4071 
4072 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4073 					  const char *res_name, int excl)
4074 {
4075 	int i;
4076 
4077 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4078 		if (bars & (1 << i))
4079 			if (__pci_request_region(pdev, i, res_name, excl))
4080 				goto err_out;
4081 	return 0;
4082 
4083 err_out:
4084 	while (--i >= 0)
4085 		if (bars & (1 << i))
4086 			pci_release_region(pdev, i);
4087 
4088 	return -EBUSY;
4089 }
4090 
4091 
4092 /**
4093  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4094  * @pdev: PCI device whose resources are to be reserved
4095  * @bars: Bitmask of BARs to be requested
4096  * @res_name: Name to be associated with resource
4097  */
4098 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4099 				 const char *res_name)
4100 {
4101 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4102 }
4103 EXPORT_SYMBOL(pci_request_selected_regions);
4104 
4105 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4106 					   const char *res_name)
4107 {
4108 	return __pci_request_selected_regions(pdev, bars, res_name,
4109 			IORESOURCE_EXCLUSIVE);
4110 }
4111 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4112 
4113 /**
4114  * pci_release_regions - Release reserved PCI I/O and memory resources
4115  * @pdev: PCI device whose resources were previously reserved by
4116  *	  pci_request_regions()
4117  *
4118  * Releases all PCI I/O and memory resources previously reserved by a
4119  * successful call to pci_request_regions().  Call this function only
4120  * after all use of the PCI regions has ceased.
4121  */
4122 
4123 void pci_release_regions(struct pci_dev *pdev)
4124 {
4125 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4126 }
4127 EXPORT_SYMBOL(pci_release_regions);
4128 
4129 /**
4130  * pci_request_regions - Reserve PCI I/O and memory resources
4131  * @pdev: PCI device whose resources are to be reserved
4132  * @res_name: Name to be associated with resource.
4133  *
4134  * Mark all PCI regions associated with PCI device @pdev as
4135  * being reserved by owner @res_name.  Do not access any
4136  * address inside the PCI regions unless this call returns
4137  * successfully.
4138  *
4139  * Returns 0 on success, or %EBUSY on error.  A warning
4140  * message is also printed on failure.
4141  */
4142 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4143 {
4144 	return pci_request_selected_regions(pdev,
4145 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4146 }
4147 EXPORT_SYMBOL(pci_request_regions);
4148 
4149 /**
4150  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4151  * @pdev: PCI device whose resources are to be reserved
4152  * @res_name: Name to be associated with resource.
4153  *
4154  * Mark all PCI regions associated with PCI device @pdev as being reserved
4155  * by owner @res_name.  Do not access any address inside the PCI regions
4156  * unless this call returns successfully.
4157  *
4158  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4159  * and the sysfs MMIO access will not be allowed.
4160  *
4161  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4162  * printed on failure.
4163  */
4164 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4165 {
4166 	return pci_request_selected_regions_exclusive(pdev,
4167 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4168 }
4169 EXPORT_SYMBOL(pci_request_regions_exclusive);
4170 
4171 /*
4172  * Record the PCI IO range (expressed as CPU physical address + size).
4173  * Return a negative value if an error has occurred, zero otherwise
4174  */
4175 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4176 			resource_size_t	size)
4177 {
4178 	int ret = 0;
4179 #ifdef PCI_IOBASE
4180 	struct logic_pio_hwaddr *range;
4181 
4182 	if (!size || addr + size < addr)
4183 		return -EINVAL;
4184 
4185 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4186 	if (!range)
4187 		return -ENOMEM;
4188 
4189 	range->fwnode = fwnode;
4190 	range->size = size;
4191 	range->hw_start = addr;
4192 	range->flags = LOGIC_PIO_CPU_MMIO;
4193 
4194 	ret = logic_pio_register_range(range);
4195 	if (ret)
4196 		kfree(range);
4197 
4198 	/* Ignore duplicates due to deferred probing */
4199 	if (ret == -EEXIST)
4200 		ret = 0;
4201 #endif
4202 
4203 	return ret;
4204 }
4205 
4206 phys_addr_t pci_pio_to_address(unsigned long pio)
4207 {
4208 #ifdef PCI_IOBASE
4209 	if (pio < MMIO_UPPER_LIMIT)
4210 		return logic_pio_to_hwaddr(pio);
4211 #endif
4212 
4213 	return (phys_addr_t) OF_BAD_ADDR;
4214 }
4215 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4216 
4217 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4218 {
4219 #ifdef PCI_IOBASE
4220 	return logic_pio_trans_cpuaddr(address);
4221 #else
4222 	if (address > IO_SPACE_LIMIT)
4223 		return (unsigned long)-1;
4224 
4225 	return (unsigned long) address;
4226 #endif
4227 }
4228 
4229 /**
4230  * pci_remap_iospace - Remap the memory mapped I/O space
4231  * @res: Resource describing the I/O space
4232  * @phys_addr: physical address of range to be mapped
4233  *
4234  * Remap the memory mapped I/O space described by the @res and the CPU
4235  * physical address @phys_addr into virtual address space.  Only
4236  * architectures that have memory mapped IO functions defined (and the
4237  * PCI_IOBASE value defined) should call this function.
4238  */
4239 #ifndef pci_remap_iospace
4240 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4241 {
4242 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4243 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4244 
4245 	if (!(res->flags & IORESOURCE_IO))
4246 		return -EINVAL;
4247 
4248 	if (res->end > IO_SPACE_LIMIT)
4249 		return -EINVAL;
4250 
4251 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4252 				  pgprot_device(PAGE_KERNEL));
4253 #else
4254 	/*
4255 	 * This architecture does not have memory mapped I/O space,
4256 	 * so this function should never be called
4257 	 */
4258 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4259 	return -ENODEV;
4260 #endif
4261 }
4262 EXPORT_SYMBOL(pci_remap_iospace);
4263 #endif
4264 
4265 /**
4266  * pci_unmap_iospace - Unmap the memory mapped I/O space
4267  * @res: resource to be unmapped
4268  *
4269  * Unmap the CPU virtual address @res from virtual address space.  Only
4270  * architectures that have memory mapped IO functions defined (and the
4271  * PCI_IOBASE value defined) should call this function.
4272  */
4273 void pci_unmap_iospace(struct resource *res)
4274 {
4275 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4276 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4277 
4278 	vunmap_range(vaddr, vaddr + resource_size(res));
4279 #endif
4280 }
4281 EXPORT_SYMBOL(pci_unmap_iospace);
4282 
4283 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4284 {
4285 	struct resource **res = ptr;
4286 
4287 	pci_unmap_iospace(*res);
4288 }
4289 
4290 /**
4291  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4292  * @dev: Generic device to remap IO address for
4293  * @res: Resource describing the I/O space
4294  * @phys_addr: physical address of range to be mapped
4295  *
4296  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4297  * detach.
4298  */
4299 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4300 			   phys_addr_t phys_addr)
4301 {
4302 	const struct resource **ptr;
4303 	int error;
4304 
4305 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4306 	if (!ptr)
4307 		return -ENOMEM;
4308 
4309 	error = pci_remap_iospace(res, phys_addr);
4310 	if (error) {
4311 		devres_free(ptr);
4312 	} else	{
4313 		*ptr = res;
4314 		devres_add(dev, ptr);
4315 	}
4316 
4317 	return error;
4318 }
4319 EXPORT_SYMBOL(devm_pci_remap_iospace);
4320 
4321 /**
4322  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4323  * @dev: Generic device to remap IO address for
4324  * @offset: Resource address to map
4325  * @size: Size of map
4326  *
4327  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4328  * detach.
4329  */
4330 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4331 				      resource_size_t offset,
4332 				      resource_size_t size)
4333 {
4334 	void __iomem **ptr, *addr;
4335 
4336 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4337 	if (!ptr)
4338 		return NULL;
4339 
4340 	addr = pci_remap_cfgspace(offset, size);
4341 	if (addr) {
4342 		*ptr = addr;
4343 		devres_add(dev, ptr);
4344 	} else
4345 		devres_free(ptr);
4346 
4347 	return addr;
4348 }
4349 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4350 
4351 /**
4352  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4353  * @dev: generic device to handle the resource for
4354  * @res: configuration space resource to be handled
4355  *
4356  * Checks that a resource is a valid memory region, requests the memory
4357  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4358  * proper PCI configuration space memory attributes are guaranteed.
4359  *
4360  * All operations are managed and will be undone on driver detach.
4361  *
4362  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4363  * on failure. Usage example::
4364  *
4365  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4366  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4367  *	if (IS_ERR(base))
4368  *		return PTR_ERR(base);
4369  */
4370 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4371 					  struct resource *res)
4372 {
4373 	resource_size_t size;
4374 	const char *name;
4375 	void __iomem *dest_ptr;
4376 
4377 	BUG_ON(!dev);
4378 
4379 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4380 		dev_err(dev, "invalid resource\n");
4381 		return IOMEM_ERR_PTR(-EINVAL);
4382 	}
4383 
4384 	size = resource_size(res);
4385 
4386 	if (res->name)
4387 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4388 				      res->name);
4389 	else
4390 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4391 	if (!name)
4392 		return IOMEM_ERR_PTR(-ENOMEM);
4393 
4394 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4395 		dev_err(dev, "can't request region for resource %pR\n", res);
4396 		return IOMEM_ERR_PTR(-EBUSY);
4397 	}
4398 
4399 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4400 	if (!dest_ptr) {
4401 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4402 		devm_release_mem_region(dev, res->start, size);
4403 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4404 	}
4405 
4406 	return dest_ptr;
4407 }
4408 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4409 
4410 static void __pci_set_master(struct pci_dev *dev, bool enable)
4411 {
4412 	u16 old_cmd, cmd;
4413 
4414 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4415 	if (enable)
4416 		cmd = old_cmd | PCI_COMMAND_MASTER;
4417 	else
4418 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4419 	if (cmd != old_cmd) {
4420 		pci_dbg(dev, "%s bus mastering\n",
4421 			enable ? "enabling" : "disabling");
4422 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4423 	}
4424 	dev->is_busmaster = enable;
4425 }
4426 
4427 /**
4428  * pcibios_setup - process "pci=" kernel boot arguments
4429  * @str: string used to pass in "pci=" kernel boot arguments
4430  *
4431  * Process kernel boot arguments.  This is the default implementation.
4432  * Architecture specific implementations can override this as necessary.
4433  */
4434 char * __weak __init pcibios_setup(char *str)
4435 {
4436 	return str;
4437 }
4438 
4439 /**
4440  * pcibios_set_master - enable PCI bus-mastering for device dev
4441  * @dev: the PCI device to enable
4442  *
4443  * Enables PCI bus-mastering for the device.  This is the default
4444  * implementation.  Architecture specific implementations can override
4445  * this if necessary.
4446  */
4447 void __weak pcibios_set_master(struct pci_dev *dev)
4448 {
4449 	u8 lat;
4450 
4451 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4452 	if (pci_is_pcie(dev))
4453 		return;
4454 
4455 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4456 	if (lat < 16)
4457 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4458 	else if (lat > pcibios_max_latency)
4459 		lat = pcibios_max_latency;
4460 	else
4461 		return;
4462 
4463 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4464 }
4465 
4466 /**
4467  * pci_set_master - enables bus-mastering for device dev
4468  * @dev: the PCI device to enable
4469  *
4470  * Enables bus-mastering on the device and calls pcibios_set_master()
4471  * to do the needed arch specific settings.
4472  */
4473 void pci_set_master(struct pci_dev *dev)
4474 {
4475 	__pci_set_master(dev, true);
4476 	pcibios_set_master(dev);
4477 }
4478 EXPORT_SYMBOL(pci_set_master);
4479 
4480 /**
4481  * pci_clear_master - disables bus-mastering for device dev
4482  * @dev: the PCI device to disable
4483  */
4484 void pci_clear_master(struct pci_dev *dev)
4485 {
4486 	__pci_set_master(dev, false);
4487 }
4488 EXPORT_SYMBOL(pci_clear_master);
4489 
4490 /**
4491  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4492  * @dev: the PCI device for which MWI is to be enabled
4493  *
4494  * Helper function for pci_set_mwi.
4495  * Originally copied from drivers/net/acenic.c.
4496  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4497  *
4498  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4499  */
4500 int pci_set_cacheline_size(struct pci_dev *dev)
4501 {
4502 	u8 cacheline_size;
4503 
4504 	if (!pci_cache_line_size)
4505 		return -EINVAL;
4506 
4507 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4508 	   equal to or multiple of the right value. */
4509 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4510 	if (cacheline_size >= pci_cache_line_size &&
4511 	    (cacheline_size % pci_cache_line_size) == 0)
4512 		return 0;
4513 
4514 	/* Write the correct value. */
4515 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4516 	/* Read it back. */
4517 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4518 	if (cacheline_size == pci_cache_line_size)
4519 		return 0;
4520 
4521 	pci_dbg(dev, "cache line size of %d is not supported\n",
4522 		   pci_cache_line_size << 2);
4523 
4524 	return -EINVAL;
4525 }
4526 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4527 
4528 /**
4529  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4530  * @dev: the PCI device for which MWI is enabled
4531  *
4532  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4533  *
4534  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4535  */
4536 int pci_set_mwi(struct pci_dev *dev)
4537 {
4538 #ifdef PCI_DISABLE_MWI
4539 	return 0;
4540 #else
4541 	int rc;
4542 	u16 cmd;
4543 
4544 	rc = pci_set_cacheline_size(dev);
4545 	if (rc)
4546 		return rc;
4547 
4548 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4549 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4550 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4551 		cmd |= PCI_COMMAND_INVALIDATE;
4552 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4553 	}
4554 	return 0;
4555 #endif
4556 }
4557 EXPORT_SYMBOL(pci_set_mwi);
4558 
4559 /**
4560  * pcim_set_mwi - a device-managed pci_set_mwi()
4561  * @dev: the PCI device for which MWI is enabled
4562  *
4563  * Managed pci_set_mwi().
4564  *
4565  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4566  */
4567 int pcim_set_mwi(struct pci_dev *dev)
4568 {
4569 	struct pci_devres *dr;
4570 
4571 	dr = find_pci_dr(dev);
4572 	if (!dr)
4573 		return -ENOMEM;
4574 
4575 	dr->mwi = 1;
4576 	return pci_set_mwi(dev);
4577 }
4578 EXPORT_SYMBOL(pcim_set_mwi);
4579 
4580 /**
4581  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4582  * @dev: the PCI device for which MWI is enabled
4583  *
4584  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4585  * Callers are not required to check the return value.
4586  *
4587  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4588  */
4589 int pci_try_set_mwi(struct pci_dev *dev)
4590 {
4591 #ifdef PCI_DISABLE_MWI
4592 	return 0;
4593 #else
4594 	return pci_set_mwi(dev);
4595 #endif
4596 }
4597 EXPORT_SYMBOL(pci_try_set_mwi);
4598 
4599 /**
4600  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4601  * @dev: the PCI device to disable
4602  *
4603  * Disables PCI Memory-Write-Invalidate transaction on the device
4604  */
4605 void pci_clear_mwi(struct pci_dev *dev)
4606 {
4607 #ifndef PCI_DISABLE_MWI
4608 	u16 cmd;
4609 
4610 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4611 	if (cmd & PCI_COMMAND_INVALIDATE) {
4612 		cmd &= ~PCI_COMMAND_INVALIDATE;
4613 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4614 	}
4615 #endif
4616 }
4617 EXPORT_SYMBOL(pci_clear_mwi);
4618 
4619 /**
4620  * pci_disable_parity - disable parity checking for device
4621  * @dev: the PCI device to operate on
4622  *
4623  * Disable parity checking for device @dev
4624  */
4625 void pci_disable_parity(struct pci_dev *dev)
4626 {
4627 	u16 cmd;
4628 
4629 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4630 	if (cmd & PCI_COMMAND_PARITY) {
4631 		cmd &= ~PCI_COMMAND_PARITY;
4632 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4633 	}
4634 }
4635 
4636 /**
4637  * pci_intx - enables/disables PCI INTx for device dev
4638  * @pdev: the PCI device to operate on
4639  * @enable: boolean: whether to enable or disable PCI INTx
4640  *
4641  * Enables/disables PCI INTx for device @pdev
4642  */
4643 void pci_intx(struct pci_dev *pdev, int enable)
4644 {
4645 	u16 pci_command, new;
4646 
4647 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4648 
4649 	if (enable)
4650 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4651 	else
4652 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4653 
4654 	if (new != pci_command) {
4655 		struct pci_devres *dr;
4656 
4657 		pci_write_config_word(pdev, PCI_COMMAND, new);
4658 
4659 		dr = find_pci_dr(pdev);
4660 		if (dr && !dr->restore_intx) {
4661 			dr->restore_intx = 1;
4662 			dr->orig_intx = !enable;
4663 		}
4664 	}
4665 }
4666 EXPORT_SYMBOL_GPL(pci_intx);
4667 
4668 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4669 {
4670 	struct pci_bus *bus = dev->bus;
4671 	bool mask_updated = true;
4672 	u32 cmd_status_dword;
4673 	u16 origcmd, newcmd;
4674 	unsigned long flags;
4675 	bool irq_pending;
4676 
4677 	/*
4678 	 * We do a single dword read to retrieve both command and status.
4679 	 * Document assumptions that make this possible.
4680 	 */
4681 	BUILD_BUG_ON(PCI_COMMAND % 4);
4682 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4683 
4684 	raw_spin_lock_irqsave(&pci_lock, flags);
4685 
4686 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4687 
4688 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4689 
4690 	/*
4691 	 * Check interrupt status register to see whether our device
4692 	 * triggered the interrupt (when masking) or the next IRQ is
4693 	 * already pending (when unmasking).
4694 	 */
4695 	if (mask != irq_pending) {
4696 		mask_updated = false;
4697 		goto done;
4698 	}
4699 
4700 	origcmd = cmd_status_dword;
4701 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4702 	if (mask)
4703 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4704 	if (newcmd != origcmd)
4705 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4706 
4707 done:
4708 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4709 
4710 	return mask_updated;
4711 }
4712 
4713 /**
4714  * pci_check_and_mask_intx - mask INTx on pending interrupt
4715  * @dev: the PCI device to operate on
4716  *
4717  * Check if the device dev has its INTx line asserted, mask it and return
4718  * true in that case. False is returned if no interrupt was pending.
4719  */
4720 bool pci_check_and_mask_intx(struct pci_dev *dev)
4721 {
4722 	return pci_check_and_set_intx_mask(dev, true);
4723 }
4724 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4725 
4726 /**
4727  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4728  * @dev: the PCI device to operate on
4729  *
4730  * Check if the device dev has its INTx line asserted, unmask it if not and
4731  * return true. False is returned and the mask remains active if there was
4732  * still an interrupt pending.
4733  */
4734 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4735 {
4736 	return pci_check_and_set_intx_mask(dev, false);
4737 }
4738 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4739 
4740 /**
4741  * pci_wait_for_pending_transaction - wait for pending transaction
4742  * @dev: the PCI device to operate on
4743  *
4744  * Return 0 if transaction is pending 1 otherwise.
4745  */
4746 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4747 {
4748 	if (!pci_is_pcie(dev))
4749 		return 1;
4750 
4751 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4752 				    PCI_EXP_DEVSTA_TRPND);
4753 }
4754 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4755 
4756 /**
4757  * pcie_flr - initiate a PCIe function level reset
4758  * @dev: device to reset
4759  *
4760  * Initiate a function level reset unconditionally on @dev without
4761  * checking any flags and DEVCAP
4762  */
4763 int pcie_flr(struct pci_dev *dev)
4764 {
4765 	if (!pci_wait_for_pending_transaction(dev))
4766 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4767 
4768 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4769 
4770 	if (dev->imm_ready)
4771 		return 0;
4772 
4773 	/*
4774 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4775 	 * 100ms, but may silently discard requests while the FLR is in
4776 	 * progress.  Wait 100ms before trying to access the device.
4777 	 */
4778 	msleep(100);
4779 
4780 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4781 }
4782 EXPORT_SYMBOL_GPL(pcie_flr);
4783 
4784 /**
4785  * pcie_reset_flr - initiate a PCIe function level reset
4786  * @dev: device to reset
4787  * @probe: if true, return 0 if device can be reset this way
4788  *
4789  * Initiate a function level reset on @dev.
4790  */
4791 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4792 {
4793 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4794 		return -ENOTTY;
4795 
4796 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4797 		return -ENOTTY;
4798 
4799 	if (probe)
4800 		return 0;
4801 
4802 	return pcie_flr(dev);
4803 }
4804 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4805 
4806 static int pci_af_flr(struct pci_dev *dev, bool probe)
4807 {
4808 	int pos;
4809 	u8 cap;
4810 
4811 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4812 	if (!pos)
4813 		return -ENOTTY;
4814 
4815 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4816 		return -ENOTTY;
4817 
4818 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4819 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4820 		return -ENOTTY;
4821 
4822 	if (probe)
4823 		return 0;
4824 
4825 	/*
4826 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4827 	 * is used, so we use the control offset rather than status and shift
4828 	 * the test bit to match.
4829 	 */
4830 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4831 				 PCI_AF_STATUS_TP << 8))
4832 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4833 
4834 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4835 
4836 	if (dev->imm_ready)
4837 		return 0;
4838 
4839 	/*
4840 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4841 	 * updated 27 July 2006; a device must complete an FLR within
4842 	 * 100ms, but may silently discard requests while the FLR is in
4843 	 * progress.  Wait 100ms before trying to access the device.
4844 	 */
4845 	msleep(100);
4846 
4847 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4848 }
4849 
4850 /**
4851  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4852  * @dev: Device to reset.
4853  * @probe: if true, return 0 if the device can be reset this way.
4854  *
4855  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4856  * unset, it will be reinitialized internally when going from PCI_D3hot to
4857  * PCI_D0.  If that's the case and the device is not in a low-power state
4858  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4859  *
4860  * NOTE: This causes the caller to sleep for twice the device power transition
4861  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4862  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4863  * Moreover, only devices in D0 can be reset by this function.
4864  */
4865 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4866 {
4867 	u16 csr;
4868 
4869 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4870 		return -ENOTTY;
4871 
4872 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4873 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4874 		return -ENOTTY;
4875 
4876 	if (probe)
4877 		return 0;
4878 
4879 	if (dev->current_state != PCI_D0)
4880 		return -EINVAL;
4881 
4882 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4883 	csr |= PCI_D3hot;
4884 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4885 	pci_dev_d3_sleep(dev);
4886 
4887 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4888 	csr |= PCI_D0;
4889 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4890 	pci_dev_d3_sleep(dev);
4891 
4892 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4893 }
4894 
4895 /**
4896  * pcie_wait_for_link_status - Wait for link status change
4897  * @pdev: Device whose link to wait for.
4898  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4899  * @active: Waiting for active or inactive?
4900  *
4901  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4902  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4903  */
4904 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4905 				     bool use_lt, bool active)
4906 {
4907 	u16 lnksta_mask, lnksta_match;
4908 	unsigned long end_jiffies;
4909 	u16 lnksta;
4910 
4911 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4912 	lnksta_match = active ? lnksta_mask : 0;
4913 
4914 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4915 	do {
4916 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4917 		if ((lnksta & lnksta_mask) == lnksta_match)
4918 			return 0;
4919 		msleep(1);
4920 	} while (time_before(jiffies, end_jiffies));
4921 
4922 	return -ETIMEDOUT;
4923 }
4924 
4925 /**
4926  * pcie_retrain_link - Request a link retrain and wait for it to complete
4927  * @pdev: Device whose link to retrain.
4928  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4929  *
4930  * Retrain completion status is retrieved from the Link Status Register
4931  * according to @use_lt.  It is not verified whether the use of the DLLLA
4932  * bit is valid.
4933  *
4934  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4935  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4936  */
4937 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4938 {
4939 	int rc;
4940 
4941 	/*
4942 	 * Ensure the updated LNKCTL parameters are used during link
4943 	 * training by checking that there is no ongoing link training to
4944 	 * avoid LTSSM race as recommended in Implementation Note at the
4945 	 * end of PCIe r6.0.1 sec 7.5.3.7.
4946 	 */
4947 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4948 	if (rc)
4949 		return rc;
4950 
4951 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4952 	if (pdev->clear_retrain_link) {
4953 		/*
4954 		 * Due to an erratum in some devices the Retrain Link bit
4955 		 * needs to be cleared again manually to allow the link
4956 		 * training to succeed.
4957 		 */
4958 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4959 	}
4960 
4961 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4962 }
4963 
4964 /**
4965  * pcie_wait_for_link_delay - Wait until link is active or inactive
4966  * @pdev: Bridge device
4967  * @active: waiting for active or inactive?
4968  * @delay: Delay to wait after link has become active (in ms)
4969  *
4970  * Use this to wait till link becomes active or inactive.
4971  */
4972 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4973 				     int delay)
4974 {
4975 	int rc;
4976 
4977 	/*
4978 	 * Some controllers might not implement link active reporting. In this
4979 	 * case, we wait for 1000 ms + any delay requested by the caller.
4980 	 */
4981 	if (!pdev->link_active_reporting) {
4982 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4983 		return true;
4984 	}
4985 
4986 	/*
4987 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4988 	 * after which we should expect an link active if the reset was
4989 	 * successful. If so, software must wait a minimum 100ms before sending
4990 	 * configuration requests to devices downstream this port.
4991 	 *
4992 	 * If the link fails to activate, either the device was physically
4993 	 * removed or the link is permanently failed.
4994 	 */
4995 	if (active)
4996 		msleep(20);
4997 	rc = pcie_wait_for_link_status(pdev, false, active);
4998 	if (active) {
4999 		if (rc)
5000 			rc = pcie_failed_link_retrain(pdev);
5001 		if (rc)
5002 			return false;
5003 
5004 		msleep(delay);
5005 		return true;
5006 	}
5007 
5008 	if (rc)
5009 		return false;
5010 
5011 	return true;
5012 }
5013 
5014 /**
5015  * pcie_wait_for_link - Wait until link is active or inactive
5016  * @pdev: Bridge device
5017  * @active: waiting for active or inactive?
5018  *
5019  * Use this to wait till link becomes active or inactive.
5020  */
5021 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5022 {
5023 	return pcie_wait_for_link_delay(pdev, active, 100);
5024 }
5025 
5026 /*
5027  * Find maximum D3cold delay required by all the devices on the bus.  The
5028  * spec says 100 ms, but firmware can lower it and we allow drivers to
5029  * increase it as well.
5030  *
5031  * Called with @pci_bus_sem locked for reading.
5032  */
5033 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5034 {
5035 	const struct pci_dev *pdev;
5036 	int min_delay = 100;
5037 	int max_delay = 0;
5038 
5039 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5040 		if (pdev->d3cold_delay < min_delay)
5041 			min_delay = pdev->d3cold_delay;
5042 		if (pdev->d3cold_delay > max_delay)
5043 			max_delay = pdev->d3cold_delay;
5044 	}
5045 
5046 	return max(min_delay, max_delay);
5047 }
5048 
5049 /**
5050  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5051  * @dev: PCI bridge
5052  * @reset_type: reset type in human-readable form
5053  *
5054  * Handle necessary delays before access to the devices on the secondary
5055  * side of the bridge are permitted after D3cold to D0 transition
5056  * or Conventional Reset.
5057  *
5058  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5059  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5060  * 4.3.2.
5061  *
5062  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5063  * failed to become accessible.
5064  */
5065 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5066 {
5067 	struct pci_dev *child;
5068 	int delay;
5069 
5070 	if (pci_dev_is_disconnected(dev))
5071 		return 0;
5072 
5073 	if (!pci_is_bridge(dev))
5074 		return 0;
5075 
5076 	down_read(&pci_bus_sem);
5077 
5078 	/*
5079 	 * We only deal with devices that are present currently on the bus.
5080 	 * For any hot-added devices the access delay is handled in pciehp
5081 	 * board_added(). In case of ACPI hotplug the firmware is expected
5082 	 * to configure the devices before OS is notified.
5083 	 */
5084 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5085 		up_read(&pci_bus_sem);
5086 		return 0;
5087 	}
5088 
5089 	/* Take d3cold_delay requirements into account */
5090 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5091 	if (!delay) {
5092 		up_read(&pci_bus_sem);
5093 		return 0;
5094 	}
5095 
5096 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5097 				 bus_list);
5098 	up_read(&pci_bus_sem);
5099 
5100 	/*
5101 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5102 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5103 	 */
5104 	if (!pci_is_pcie(dev)) {
5105 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5106 		msleep(1000 + delay);
5107 		return 0;
5108 	}
5109 
5110 	/*
5111 	 * For PCIe downstream and root ports that do not support speeds
5112 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5113 	 * speeds (gen3) we need to wait first for the data link layer to
5114 	 * become active.
5115 	 *
5116 	 * However, 100 ms is the minimum and the PCIe spec says the
5117 	 * software must allow at least 1s before it can determine that the
5118 	 * device that did not respond is a broken device. Also device can
5119 	 * take longer than that to respond if it indicates so through Request
5120 	 * Retry Status completions.
5121 	 *
5122 	 * Therefore we wait for 100 ms and check for the device presence
5123 	 * until the timeout expires.
5124 	 */
5125 	if (!pcie_downstream_port(dev))
5126 		return 0;
5127 
5128 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5129 		u16 status;
5130 
5131 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5132 		msleep(delay);
5133 
5134 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5135 			return 0;
5136 
5137 		/*
5138 		 * If the port supports active link reporting we now check
5139 		 * whether the link is active and if not bail out early with
5140 		 * the assumption that the device is not present anymore.
5141 		 */
5142 		if (!dev->link_active_reporting)
5143 			return -ENOTTY;
5144 
5145 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5146 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5147 			return -ENOTTY;
5148 
5149 		return pci_dev_wait(child, reset_type,
5150 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5151 	}
5152 
5153 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5154 		delay);
5155 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5156 		/* Did not train, no need to wait any further */
5157 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5158 		return -ENOTTY;
5159 	}
5160 
5161 	return pci_dev_wait(child, reset_type,
5162 			    PCIE_RESET_READY_POLL_MS - delay);
5163 }
5164 
5165 void pci_reset_secondary_bus(struct pci_dev *dev)
5166 {
5167 	u16 ctrl;
5168 
5169 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5170 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5171 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5172 
5173 	/*
5174 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5175 	 * this to 2ms to ensure that we meet the minimum requirement.
5176 	 */
5177 	msleep(2);
5178 
5179 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5180 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5181 }
5182 
5183 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5184 {
5185 	pci_reset_secondary_bus(dev);
5186 }
5187 
5188 /**
5189  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5190  * @dev: Bridge device
5191  *
5192  * Use the bridge control register to assert reset on the secondary bus.
5193  * Devices on the secondary bus are left in power-on state.
5194  */
5195 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5196 {
5197 	pcibios_reset_secondary_bus(dev);
5198 
5199 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5200 }
5201 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5202 
5203 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5204 {
5205 	struct pci_dev *pdev;
5206 
5207 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5208 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5209 		return -ENOTTY;
5210 
5211 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5212 		if (pdev != dev)
5213 			return -ENOTTY;
5214 
5215 	if (probe)
5216 		return 0;
5217 
5218 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5219 }
5220 
5221 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5222 {
5223 	int rc = -ENOTTY;
5224 
5225 	if (!hotplug || !try_module_get(hotplug->owner))
5226 		return rc;
5227 
5228 	if (hotplug->ops->reset_slot)
5229 		rc = hotplug->ops->reset_slot(hotplug, probe);
5230 
5231 	module_put(hotplug->owner);
5232 
5233 	return rc;
5234 }
5235 
5236 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5237 {
5238 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5239 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5240 		return -ENOTTY;
5241 
5242 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5243 }
5244 
5245 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5246 {
5247 	int rc;
5248 
5249 	rc = pci_dev_reset_slot_function(dev, probe);
5250 	if (rc != -ENOTTY)
5251 		return rc;
5252 	return pci_parent_bus_reset(dev, probe);
5253 }
5254 
5255 void pci_dev_lock(struct pci_dev *dev)
5256 {
5257 	/* block PM suspend, driver probe, etc. */
5258 	device_lock(&dev->dev);
5259 	pci_cfg_access_lock(dev);
5260 }
5261 EXPORT_SYMBOL_GPL(pci_dev_lock);
5262 
5263 /* Return 1 on successful lock, 0 on contention */
5264 int pci_dev_trylock(struct pci_dev *dev)
5265 {
5266 	if (device_trylock(&dev->dev)) {
5267 		if (pci_cfg_access_trylock(dev))
5268 			return 1;
5269 		device_unlock(&dev->dev);
5270 	}
5271 
5272 	return 0;
5273 }
5274 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5275 
5276 void pci_dev_unlock(struct pci_dev *dev)
5277 {
5278 	pci_cfg_access_unlock(dev);
5279 	device_unlock(&dev->dev);
5280 }
5281 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5282 
5283 static void pci_dev_save_and_disable(struct pci_dev *dev)
5284 {
5285 	const struct pci_error_handlers *err_handler =
5286 			dev->driver ? dev->driver->err_handler : NULL;
5287 
5288 	/*
5289 	 * dev->driver->err_handler->reset_prepare() is protected against
5290 	 * races with ->remove() by the device lock, which must be held by
5291 	 * the caller.
5292 	 */
5293 	if (err_handler && err_handler->reset_prepare)
5294 		err_handler->reset_prepare(dev);
5295 
5296 	/*
5297 	 * Wake-up device prior to save.  PM registers default to D0 after
5298 	 * reset and a simple register restore doesn't reliably return
5299 	 * to a non-D0 state anyway.
5300 	 */
5301 	pci_set_power_state(dev, PCI_D0);
5302 
5303 	pci_save_state(dev);
5304 	/*
5305 	 * Disable the device by clearing the Command register, except for
5306 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5307 	 * BARs, but also prevents the device from being Bus Master, preventing
5308 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5309 	 * compliant devices, INTx-disable prevents legacy interrupts.
5310 	 */
5311 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5312 }
5313 
5314 static void pci_dev_restore(struct pci_dev *dev)
5315 {
5316 	const struct pci_error_handlers *err_handler =
5317 			dev->driver ? dev->driver->err_handler : NULL;
5318 
5319 	pci_restore_state(dev);
5320 
5321 	/*
5322 	 * dev->driver->err_handler->reset_done() is protected against
5323 	 * races with ->remove() by the device lock, which must be held by
5324 	 * the caller.
5325 	 */
5326 	if (err_handler && err_handler->reset_done)
5327 		err_handler->reset_done(dev);
5328 }
5329 
5330 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5331 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5332 	{ },
5333 	{ pci_dev_specific_reset, .name = "device_specific" },
5334 	{ pci_dev_acpi_reset, .name = "acpi" },
5335 	{ pcie_reset_flr, .name = "flr" },
5336 	{ pci_af_flr, .name = "af_flr" },
5337 	{ pci_pm_reset, .name = "pm" },
5338 	{ pci_reset_bus_function, .name = "bus" },
5339 };
5340 
5341 static ssize_t reset_method_show(struct device *dev,
5342 				 struct device_attribute *attr, char *buf)
5343 {
5344 	struct pci_dev *pdev = to_pci_dev(dev);
5345 	ssize_t len = 0;
5346 	int i, m;
5347 
5348 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5349 		m = pdev->reset_methods[i];
5350 		if (!m)
5351 			break;
5352 
5353 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5354 				     pci_reset_fn_methods[m].name);
5355 	}
5356 
5357 	if (len)
5358 		len += sysfs_emit_at(buf, len, "\n");
5359 
5360 	return len;
5361 }
5362 
5363 static int reset_method_lookup(const char *name)
5364 {
5365 	int m;
5366 
5367 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5368 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5369 			return m;
5370 	}
5371 
5372 	return 0;	/* not found */
5373 }
5374 
5375 static ssize_t reset_method_store(struct device *dev,
5376 				  struct device_attribute *attr,
5377 				  const char *buf, size_t count)
5378 {
5379 	struct pci_dev *pdev = to_pci_dev(dev);
5380 	char *options, *name;
5381 	int m, n;
5382 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5383 
5384 	if (sysfs_streq(buf, "")) {
5385 		pdev->reset_methods[0] = 0;
5386 		pci_warn(pdev, "All device reset methods disabled by user");
5387 		return count;
5388 	}
5389 
5390 	if (sysfs_streq(buf, "default")) {
5391 		pci_init_reset_methods(pdev);
5392 		return count;
5393 	}
5394 
5395 	options = kstrndup(buf, count, GFP_KERNEL);
5396 	if (!options)
5397 		return -ENOMEM;
5398 
5399 	n = 0;
5400 	while ((name = strsep(&options, " ")) != NULL) {
5401 		if (sysfs_streq(name, ""))
5402 			continue;
5403 
5404 		name = strim(name);
5405 
5406 		m = reset_method_lookup(name);
5407 		if (!m) {
5408 			pci_err(pdev, "Invalid reset method '%s'", name);
5409 			goto error;
5410 		}
5411 
5412 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5413 			pci_err(pdev, "Unsupported reset method '%s'", name);
5414 			goto error;
5415 		}
5416 
5417 		if (n == PCI_NUM_RESET_METHODS - 1) {
5418 			pci_err(pdev, "Too many reset methods\n");
5419 			goto error;
5420 		}
5421 
5422 		reset_methods[n++] = m;
5423 	}
5424 
5425 	reset_methods[n] = 0;
5426 
5427 	/* Warn if dev-specific supported but not highest priority */
5428 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5429 	    reset_methods[0] != 1)
5430 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5431 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5432 	kfree(options);
5433 	return count;
5434 
5435 error:
5436 	/* Leave previous methods unchanged */
5437 	kfree(options);
5438 	return -EINVAL;
5439 }
5440 static DEVICE_ATTR_RW(reset_method);
5441 
5442 static struct attribute *pci_dev_reset_method_attrs[] = {
5443 	&dev_attr_reset_method.attr,
5444 	NULL,
5445 };
5446 
5447 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5448 						    struct attribute *a, int n)
5449 {
5450 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5451 
5452 	if (!pci_reset_supported(pdev))
5453 		return 0;
5454 
5455 	return a->mode;
5456 }
5457 
5458 const struct attribute_group pci_dev_reset_method_attr_group = {
5459 	.attrs = pci_dev_reset_method_attrs,
5460 	.is_visible = pci_dev_reset_method_attr_is_visible,
5461 };
5462 
5463 /**
5464  * __pci_reset_function_locked - reset a PCI device function while holding
5465  * the @dev mutex lock.
5466  * @dev: PCI device to reset
5467  *
5468  * Some devices allow an individual function to be reset without affecting
5469  * other functions in the same device.  The PCI device must be responsive
5470  * to PCI config space in order to use this function.
5471  *
5472  * The device function is presumed to be unused and the caller is holding
5473  * the device mutex lock when this function is called.
5474  *
5475  * Resetting the device will make the contents of PCI configuration space
5476  * random, so any caller of this must be prepared to reinitialise the
5477  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5478  * etc.
5479  *
5480  * Returns 0 if the device function was successfully reset or negative if the
5481  * device doesn't support resetting a single function.
5482  */
5483 int __pci_reset_function_locked(struct pci_dev *dev)
5484 {
5485 	int i, m, rc;
5486 
5487 	might_sleep();
5488 
5489 	/*
5490 	 * A reset method returns -ENOTTY if it doesn't support this device and
5491 	 * we should try the next method.
5492 	 *
5493 	 * If it returns 0 (success), we're finished.  If it returns any other
5494 	 * error, we're also finished: this indicates that further reset
5495 	 * mechanisms might be broken on the device.
5496 	 */
5497 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5498 		m = dev->reset_methods[i];
5499 		if (!m)
5500 			return -ENOTTY;
5501 
5502 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5503 		if (!rc)
5504 			return 0;
5505 		if (rc != -ENOTTY)
5506 			return rc;
5507 	}
5508 
5509 	return -ENOTTY;
5510 }
5511 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5512 
5513 /**
5514  * pci_init_reset_methods - check whether device can be safely reset
5515  * and store supported reset mechanisms.
5516  * @dev: PCI device to check for reset mechanisms
5517  *
5518  * Some devices allow an individual function to be reset without affecting
5519  * other functions in the same device.  The PCI device must be in D0-D3hot
5520  * state.
5521  *
5522  * Stores reset mechanisms supported by device in reset_methods byte array
5523  * which is a member of struct pci_dev.
5524  */
5525 void pci_init_reset_methods(struct pci_dev *dev)
5526 {
5527 	int m, i, rc;
5528 
5529 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5530 
5531 	might_sleep();
5532 
5533 	i = 0;
5534 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5535 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5536 		if (!rc)
5537 			dev->reset_methods[i++] = m;
5538 		else if (rc != -ENOTTY)
5539 			break;
5540 	}
5541 
5542 	dev->reset_methods[i] = 0;
5543 }
5544 
5545 /**
5546  * pci_reset_function - quiesce and reset a PCI device function
5547  * @dev: PCI device to reset
5548  *
5549  * Some devices allow an individual function to be reset without affecting
5550  * other functions in the same device.  The PCI device must be responsive
5551  * to PCI config space in order to use this function.
5552  *
5553  * This function does not just reset the PCI portion of a device, but
5554  * clears all the state associated with the device.  This function differs
5555  * from __pci_reset_function_locked() in that it saves and restores device state
5556  * over the reset and takes the PCI device lock.
5557  *
5558  * Returns 0 if the device function was successfully reset or negative if the
5559  * device doesn't support resetting a single function.
5560  */
5561 int pci_reset_function(struct pci_dev *dev)
5562 {
5563 	int rc;
5564 
5565 	if (!pci_reset_supported(dev))
5566 		return -ENOTTY;
5567 
5568 	pci_dev_lock(dev);
5569 	pci_dev_save_and_disable(dev);
5570 
5571 	rc = __pci_reset_function_locked(dev);
5572 
5573 	pci_dev_restore(dev);
5574 	pci_dev_unlock(dev);
5575 
5576 	return rc;
5577 }
5578 EXPORT_SYMBOL_GPL(pci_reset_function);
5579 
5580 /**
5581  * pci_reset_function_locked - quiesce and reset a PCI device function
5582  * @dev: PCI device to reset
5583  *
5584  * Some devices allow an individual function to be reset without affecting
5585  * other functions in the same device.  The PCI device must be responsive
5586  * to PCI config space in order to use this function.
5587  *
5588  * This function does not just reset the PCI portion of a device, but
5589  * clears all the state associated with the device.  This function differs
5590  * from __pci_reset_function_locked() in that it saves and restores device state
5591  * over the reset.  It also differs from pci_reset_function() in that it
5592  * requires the PCI device lock to be held.
5593  *
5594  * Returns 0 if the device function was successfully reset or negative if the
5595  * device doesn't support resetting a single function.
5596  */
5597 int pci_reset_function_locked(struct pci_dev *dev)
5598 {
5599 	int rc;
5600 
5601 	if (!pci_reset_supported(dev))
5602 		return -ENOTTY;
5603 
5604 	pci_dev_save_and_disable(dev);
5605 
5606 	rc = __pci_reset_function_locked(dev);
5607 
5608 	pci_dev_restore(dev);
5609 
5610 	return rc;
5611 }
5612 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5613 
5614 /**
5615  * pci_try_reset_function - quiesce and reset a PCI device function
5616  * @dev: PCI device to reset
5617  *
5618  * Same as above, except return -EAGAIN if unable to lock device.
5619  */
5620 int pci_try_reset_function(struct pci_dev *dev)
5621 {
5622 	int rc;
5623 
5624 	if (!pci_reset_supported(dev))
5625 		return -ENOTTY;
5626 
5627 	if (!pci_dev_trylock(dev))
5628 		return -EAGAIN;
5629 
5630 	pci_dev_save_and_disable(dev);
5631 	rc = __pci_reset_function_locked(dev);
5632 	pci_dev_restore(dev);
5633 	pci_dev_unlock(dev);
5634 
5635 	return rc;
5636 }
5637 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5638 
5639 /* Do any devices on or below this bus prevent a bus reset? */
5640 static bool pci_bus_resettable(struct pci_bus *bus)
5641 {
5642 	struct pci_dev *dev;
5643 
5644 
5645 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5646 		return false;
5647 
5648 	list_for_each_entry(dev, &bus->devices, bus_list) {
5649 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5650 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5651 			return false;
5652 	}
5653 
5654 	return true;
5655 }
5656 
5657 /* Lock devices from the top of the tree down */
5658 static void pci_bus_lock(struct pci_bus *bus)
5659 {
5660 	struct pci_dev *dev;
5661 
5662 	list_for_each_entry(dev, &bus->devices, bus_list) {
5663 		pci_dev_lock(dev);
5664 		if (dev->subordinate)
5665 			pci_bus_lock(dev->subordinate);
5666 	}
5667 }
5668 
5669 /* Unlock devices from the bottom of the tree up */
5670 static void pci_bus_unlock(struct pci_bus *bus)
5671 {
5672 	struct pci_dev *dev;
5673 
5674 	list_for_each_entry(dev, &bus->devices, bus_list) {
5675 		if (dev->subordinate)
5676 			pci_bus_unlock(dev->subordinate);
5677 		pci_dev_unlock(dev);
5678 	}
5679 }
5680 
5681 /* Return 1 on successful lock, 0 on contention */
5682 static int pci_bus_trylock(struct pci_bus *bus)
5683 {
5684 	struct pci_dev *dev;
5685 
5686 	list_for_each_entry(dev, &bus->devices, bus_list) {
5687 		if (!pci_dev_trylock(dev))
5688 			goto unlock;
5689 		if (dev->subordinate) {
5690 			if (!pci_bus_trylock(dev->subordinate)) {
5691 				pci_dev_unlock(dev);
5692 				goto unlock;
5693 			}
5694 		}
5695 	}
5696 	return 1;
5697 
5698 unlock:
5699 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5700 		if (dev->subordinate)
5701 			pci_bus_unlock(dev->subordinate);
5702 		pci_dev_unlock(dev);
5703 	}
5704 	return 0;
5705 }
5706 
5707 /* Do any devices on or below this slot prevent a bus reset? */
5708 static bool pci_slot_resettable(struct pci_slot *slot)
5709 {
5710 	struct pci_dev *dev;
5711 
5712 	if (slot->bus->self &&
5713 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5714 		return false;
5715 
5716 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5717 		if (!dev->slot || dev->slot != slot)
5718 			continue;
5719 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5720 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5721 			return false;
5722 	}
5723 
5724 	return true;
5725 }
5726 
5727 /* Lock devices from the top of the tree down */
5728 static void pci_slot_lock(struct pci_slot *slot)
5729 {
5730 	struct pci_dev *dev;
5731 
5732 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 		if (!dev->slot || dev->slot != slot)
5734 			continue;
5735 		pci_dev_lock(dev);
5736 		if (dev->subordinate)
5737 			pci_bus_lock(dev->subordinate);
5738 	}
5739 }
5740 
5741 /* Unlock devices from the bottom of the tree up */
5742 static void pci_slot_unlock(struct pci_slot *slot)
5743 {
5744 	struct pci_dev *dev;
5745 
5746 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5747 		if (!dev->slot || dev->slot != slot)
5748 			continue;
5749 		if (dev->subordinate)
5750 			pci_bus_unlock(dev->subordinate);
5751 		pci_dev_unlock(dev);
5752 	}
5753 }
5754 
5755 /* Return 1 on successful lock, 0 on contention */
5756 static int pci_slot_trylock(struct pci_slot *slot)
5757 {
5758 	struct pci_dev *dev;
5759 
5760 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5761 		if (!dev->slot || dev->slot != slot)
5762 			continue;
5763 		if (!pci_dev_trylock(dev))
5764 			goto unlock;
5765 		if (dev->subordinate) {
5766 			if (!pci_bus_trylock(dev->subordinate)) {
5767 				pci_dev_unlock(dev);
5768 				goto unlock;
5769 			}
5770 		}
5771 	}
5772 	return 1;
5773 
5774 unlock:
5775 	list_for_each_entry_continue_reverse(dev,
5776 					     &slot->bus->devices, bus_list) {
5777 		if (!dev->slot || dev->slot != slot)
5778 			continue;
5779 		if (dev->subordinate)
5780 			pci_bus_unlock(dev->subordinate);
5781 		pci_dev_unlock(dev);
5782 	}
5783 	return 0;
5784 }
5785 
5786 /*
5787  * Save and disable devices from the top of the tree down while holding
5788  * the @dev mutex lock for the entire tree.
5789  */
5790 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5791 {
5792 	struct pci_dev *dev;
5793 
5794 	list_for_each_entry(dev, &bus->devices, bus_list) {
5795 		pci_dev_save_and_disable(dev);
5796 		if (dev->subordinate)
5797 			pci_bus_save_and_disable_locked(dev->subordinate);
5798 	}
5799 }
5800 
5801 /*
5802  * Restore devices from top of the tree down while holding @dev mutex lock
5803  * for the entire tree.  Parent bridges need to be restored before we can
5804  * get to subordinate devices.
5805  */
5806 static void pci_bus_restore_locked(struct pci_bus *bus)
5807 {
5808 	struct pci_dev *dev;
5809 
5810 	list_for_each_entry(dev, &bus->devices, bus_list) {
5811 		pci_dev_restore(dev);
5812 		if (dev->subordinate)
5813 			pci_bus_restore_locked(dev->subordinate);
5814 	}
5815 }
5816 
5817 /*
5818  * Save and disable devices from the top of the tree down while holding
5819  * the @dev mutex lock for the entire tree.
5820  */
5821 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5822 {
5823 	struct pci_dev *dev;
5824 
5825 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5826 		if (!dev->slot || dev->slot != slot)
5827 			continue;
5828 		pci_dev_save_and_disable(dev);
5829 		if (dev->subordinate)
5830 			pci_bus_save_and_disable_locked(dev->subordinate);
5831 	}
5832 }
5833 
5834 /*
5835  * Restore devices from top of the tree down while holding @dev mutex lock
5836  * for the entire tree.  Parent bridges need to be restored before we can
5837  * get to subordinate devices.
5838  */
5839 static void pci_slot_restore_locked(struct pci_slot *slot)
5840 {
5841 	struct pci_dev *dev;
5842 
5843 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5844 		if (!dev->slot || dev->slot != slot)
5845 			continue;
5846 		pci_dev_restore(dev);
5847 		if (dev->subordinate)
5848 			pci_bus_restore_locked(dev->subordinate);
5849 	}
5850 }
5851 
5852 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5853 {
5854 	int rc;
5855 
5856 	if (!slot || !pci_slot_resettable(slot))
5857 		return -ENOTTY;
5858 
5859 	if (!probe)
5860 		pci_slot_lock(slot);
5861 
5862 	might_sleep();
5863 
5864 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5865 
5866 	if (!probe)
5867 		pci_slot_unlock(slot);
5868 
5869 	return rc;
5870 }
5871 
5872 /**
5873  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5874  * @slot: PCI slot to probe
5875  *
5876  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5877  */
5878 int pci_probe_reset_slot(struct pci_slot *slot)
5879 {
5880 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5881 }
5882 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5883 
5884 /**
5885  * __pci_reset_slot - Try to reset a PCI slot
5886  * @slot: PCI slot to reset
5887  *
5888  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5889  * independent of other slots.  For instance, some slots may support slot power
5890  * control.  In the case of a 1:1 bus to slot architecture, this function may
5891  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5892  * Generally a slot reset should be attempted before a bus reset.  All of the
5893  * function of the slot and any subordinate buses behind the slot are reset
5894  * through this function.  PCI config space of all devices in the slot and
5895  * behind the slot is saved before and restored after reset.
5896  *
5897  * Same as above except return -EAGAIN if the slot cannot be locked
5898  */
5899 static int __pci_reset_slot(struct pci_slot *slot)
5900 {
5901 	int rc;
5902 
5903 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5904 	if (rc)
5905 		return rc;
5906 
5907 	if (pci_slot_trylock(slot)) {
5908 		pci_slot_save_and_disable_locked(slot);
5909 		might_sleep();
5910 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5911 		pci_slot_restore_locked(slot);
5912 		pci_slot_unlock(slot);
5913 	} else
5914 		rc = -EAGAIN;
5915 
5916 	return rc;
5917 }
5918 
5919 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5920 {
5921 	int ret;
5922 
5923 	if (!bus->self || !pci_bus_resettable(bus))
5924 		return -ENOTTY;
5925 
5926 	if (probe)
5927 		return 0;
5928 
5929 	pci_bus_lock(bus);
5930 
5931 	might_sleep();
5932 
5933 	ret = pci_bridge_secondary_bus_reset(bus->self);
5934 
5935 	pci_bus_unlock(bus);
5936 
5937 	return ret;
5938 }
5939 
5940 /**
5941  * pci_bus_error_reset - reset the bridge's subordinate bus
5942  * @bridge: The parent device that connects to the bus to reset
5943  *
5944  * This function will first try to reset the slots on this bus if the method is
5945  * available. If slot reset fails or is not available, this will fall back to a
5946  * secondary bus reset.
5947  */
5948 int pci_bus_error_reset(struct pci_dev *bridge)
5949 {
5950 	struct pci_bus *bus = bridge->subordinate;
5951 	struct pci_slot *slot;
5952 
5953 	if (!bus)
5954 		return -ENOTTY;
5955 
5956 	mutex_lock(&pci_slot_mutex);
5957 	if (list_empty(&bus->slots))
5958 		goto bus_reset;
5959 
5960 	list_for_each_entry(slot, &bus->slots, list)
5961 		if (pci_probe_reset_slot(slot))
5962 			goto bus_reset;
5963 
5964 	list_for_each_entry(slot, &bus->slots, list)
5965 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5966 			goto bus_reset;
5967 
5968 	mutex_unlock(&pci_slot_mutex);
5969 	return 0;
5970 bus_reset:
5971 	mutex_unlock(&pci_slot_mutex);
5972 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5973 }
5974 
5975 /**
5976  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5977  * @bus: PCI bus to probe
5978  *
5979  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5980  */
5981 int pci_probe_reset_bus(struct pci_bus *bus)
5982 {
5983 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5984 }
5985 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5986 
5987 /**
5988  * __pci_reset_bus - Try to reset a PCI bus
5989  * @bus: top level PCI bus to reset
5990  *
5991  * Same as above except return -EAGAIN if the bus cannot be locked
5992  */
5993 static int __pci_reset_bus(struct pci_bus *bus)
5994 {
5995 	int rc;
5996 
5997 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5998 	if (rc)
5999 		return rc;
6000 
6001 	if (pci_bus_trylock(bus)) {
6002 		pci_bus_save_and_disable_locked(bus);
6003 		might_sleep();
6004 		rc = pci_bridge_secondary_bus_reset(bus->self);
6005 		pci_bus_restore_locked(bus);
6006 		pci_bus_unlock(bus);
6007 	} else
6008 		rc = -EAGAIN;
6009 
6010 	return rc;
6011 }
6012 
6013 /**
6014  * pci_reset_bus - Try to reset a PCI bus
6015  * @pdev: top level PCI device to reset via slot/bus
6016  *
6017  * Same as above except return -EAGAIN if the bus cannot be locked
6018  */
6019 int pci_reset_bus(struct pci_dev *pdev)
6020 {
6021 	return (!pci_probe_reset_slot(pdev->slot)) ?
6022 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6023 }
6024 EXPORT_SYMBOL_GPL(pci_reset_bus);
6025 
6026 /**
6027  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6028  * @dev: PCI device to query
6029  *
6030  * Returns mmrbc: maximum designed memory read count in bytes or
6031  * appropriate error value.
6032  */
6033 int pcix_get_max_mmrbc(struct pci_dev *dev)
6034 {
6035 	int cap;
6036 	u32 stat;
6037 
6038 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6039 	if (!cap)
6040 		return -EINVAL;
6041 
6042 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6043 		return -EINVAL;
6044 
6045 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6046 }
6047 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6048 
6049 /**
6050  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6051  * @dev: PCI device to query
6052  *
6053  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6054  * value.
6055  */
6056 int pcix_get_mmrbc(struct pci_dev *dev)
6057 {
6058 	int cap;
6059 	u16 cmd;
6060 
6061 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6062 	if (!cap)
6063 		return -EINVAL;
6064 
6065 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6066 		return -EINVAL;
6067 
6068 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6069 }
6070 EXPORT_SYMBOL(pcix_get_mmrbc);
6071 
6072 /**
6073  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6074  * @dev: PCI device to query
6075  * @mmrbc: maximum memory read count in bytes
6076  *    valid values are 512, 1024, 2048, 4096
6077  *
6078  * If possible sets maximum memory read byte count, some bridges have errata
6079  * that prevent this.
6080  */
6081 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6082 {
6083 	int cap;
6084 	u32 stat, v, o;
6085 	u16 cmd;
6086 
6087 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6088 		return -EINVAL;
6089 
6090 	v = ffs(mmrbc) - 10;
6091 
6092 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6093 	if (!cap)
6094 		return -EINVAL;
6095 
6096 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6097 		return -EINVAL;
6098 
6099 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6100 		return -E2BIG;
6101 
6102 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6103 		return -EINVAL;
6104 
6105 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6106 	if (o != v) {
6107 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6108 			return -EIO;
6109 
6110 		cmd &= ~PCI_X_CMD_MAX_READ;
6111 		cmd |= v << 2;
6112 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6113 			return -EIO;
6114 	}
6115 	return 0;
6116 }
6117 EXPORT_SYMBOL(pcix_set_mmrbc);
6118 
6119 /**
6120  * pcie_get_readrq - get PCI Express read request size
6121  * @dev: PCI device to query
6122  *
6123  * Returns maximum memory read request in bytes or appropriate error value.
6124  */
6125 int pcie_get_readrq(struct pci_dev *dev)
6126 {
6127 	u16 ctl;
6128 
6129 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6130 
6131 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6132 }
6133 EXPORT_SYMBOL(pcie_get_readrq);
6134 
6135 /**
6136  * pcie_set_readrq - set PCI Express maximum memory read request
6137  * @dev: PCI device to query
6138  * @rq: maximum memory read count in bytes
6139  *    valid values are 128, 256, 512, 1024, 2048, 4096
6140  *
6141  * If possible sets maximum memory read request in bytes
6142  */
6143 int pcie_set_readrq(struct pci_dev *dev, int rq)
6144 {
6145 	u16 v;
6146 	int ret;
6147 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6148 
6149 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6150 		return -EINVAL;
6151 
6152 	/*
6153 	 * If using the "performance" PCIe config, we clamp the read rq
6154 	 * size to the max packet size to keep the host bridge from
6155 	 * generating requests larger than we can cope with.
6156 	 */
6157 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6158 		int mps = pcie_get_mps(dev);
6159 
6160 		if (mps < rq)
6161 			rq = mps;
6162 	}
6163 
6164 	v = (ffs(rq) - 8) << 12;
6165 
6166 	if (bridge->no_inc_mrrs) {
6167 		int max_mrrs = pcie_get_readrq(dev);
6168 
6169 		if (rq > max_mrrs) {
6170 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6171 			return -EINVAL;
6172 		}
6173 	}
6174 
6175 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6176 						  PCI_EXP_DEVCTL_READRQ, v);
6177 
6178 	return pcibios_err_to_errno(ret);
6179 }
6180 EXPORT_SYMBOL(pcie_set_readrq);
6181 
6182 /**
6183  * pcie_get_mps - get PCI Express maximum payload size
6184  * @dev: PCI device to query
6185  *
6186  * Returns maximum payload size in bytes
6187  */
6188 int pcie_get_mps(struct pci_dev *dev)
6189 {
6190 	u16 ctl;
6191 
6192 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6193 
6194 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6195 }
6196 EXPORT_SYMBOL(pcie_get_mps);
6197 
6198 /**
6199  * pcie_set_mps - set PCI Express maximum payload size
6200  * @dev: PCI device to query
6201  * @mps: maximum payload size in bytes
6202  *    valid values are 128, 256, 512, 1024, 2048, 4096
6203  *
6204  * If possible sets maximum payload size
6205  */
6206 int pcie_set_mps(struct pci_dev *dev, int mps)
6207 {
6208 	u16 v;
6209 	int ret;
6210 
6211 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6212 		return -EINVAL;
6213 
6214 	v = ffs(mps) - 8;
6215 	if (v > dev->pcie_mpss)
6216 		return -EINVAL;
6217 	v <<= 5;
6218 
6219 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6220 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6221 
6222 	return pcibios_err_to_errno(ret);
6223 }
6224 EXPORT_SYMBOL(pcie_set_mps);
6225 
6226 /**
6227  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6228  *			      device and its bandwidth limitation
6229  * @dev: PCI device to query
6230  * @limiting_dev: storage for device causing the bandwidth limitation
6231  * @speed: storage for speed of limiting device
6232  * @width: storage for width of limiting device
6233  *
6234  * Walk up the PCI device chain and find the point where the minimum
6235  * bandwidth is available.  Return the bandwidth available there and (if
6236  * limiting_dev, speed, and width pointers are supplied) information about
6237  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6238  * raw bandwidth.
6239  */
6240 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6241 			     enum pci_bus_speed *speed,
6242 			     enum pcie_link_width *width)
6243 {
6244 	u16 lnksta;
6245 	enum pci_bus_speed next_speed;
6246 	enum pcie_link_width next_width;
6247 	u32 bw, next_bw;
6248 
6249 	if (speed)
6250 		*speed = PCI_SPEED_UNKNOWN;
6251 	if (width)
6252 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6253 
6254 	bw = 0;
6255 
6256 	while (dev) {
6257 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6258 
6259 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6260 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6261 			PCI_EXP_LNKSTA_NLW_SHIFT;
6262 
6263 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6264 
6265 		/* Check if current device limits the total bandwidth */
6266 		if (!bw || next_bw <= bw) {
6267 			bw = next_bw;
6268 
6269 			if (limiting_dev)
6270 				*limiting_dev = dev;
6271 			if (speed)
6272 				*speed = next_speed;
6273 			if (width)
6274 				*width = next_width;
6275 		}
6276 
6277 		dev = pci_upstream_bridge(dev);
6278 	}
6279 
6280 	return bw;
6281 }
6282 EXPORT_SYMBOL(pcie_bandwidth_available);
6283 
6284 /**
6285  * pcie_get_speed_cap - query for the PCI device's link speed capability
6286  * @dev: PCI device to query
6287  *
6288  * Query the PCI device speed capability.  Return the maximum link speed
6289  * supported by the device.
6290  */
6291 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6292 {
6293 	u32 lnkcap2, lnkcap;
6294 
6295 	/*
6296 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6297 	 * implementation note there recommends using the Supported Link
6298 	 * Speeds Vector in Link Capabilities 2 when supported.
6299 	 *
6300 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6301 	 * should use the Supported Link Speeds field in Link Capabilities,
6302 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6303 	 */
6304 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6305 
6306 	/* PCIe r3.0-compliant */
6307 	if (lnkcap2)
6308 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6309 
6310 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6311 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6312 		return PCIE_SPEED_5_0GT;
6313 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6314 		return PCIE_SPEED_2_5GT;
6315 
6316 	return PCI_SPEED_UNKNOWN;
6317 }
6318 EXPORT_SYMBOL(pcie_get_speed_cap);
6319 
6320 /**
6321  * pcie_get_width_cap - query for the PCI device's link width capability
6322  * @dev: PCI device to query
6323  *
6324  * Query the PCI device width capability.  Return the maximum link width
6325  * supported by the device.
6326  */
6327 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6328 {
6329 	u32 lnkcap;
6330 
6331 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6332 	if (lnkcap)
6333 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6334 
6335 	return PCIE_LNK_WIDTH_UNKNOWN;
6336 }
6337 EXPORT_SYMBOL(pcie_get_width_cap);
6338 
6339 /**
6340  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6341  * @dev: PCI device
6342  * @speed: storage for link speed
6343  * @width: storage for link width
6344  *
6345  * Calculate a PCI device's link bandwidth by querying for its link speed
6346  * and width, multiplying them, and applying encoding overhead.  The result
6347  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6348  */
6349 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6350 			   enum pcie_link_width *width)
6351 {
6352 	*speed = pcie_get_speed_cap(dev);
6353 	*width = pcie_get_width_cap(dev);
6354 
6355 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6356 		return 0;
6357 
6358 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6359 }
6360 
6361 /**
6362  * __pcie_print_link_status - Report the PCI device's link speed and width
6363  * @dev: PCI device to query
6364  * @verbose: Print info even when enough bandwidth is available
6365  *
6366  * If the available bandwidth at the device is less than the device is
6367  * capable of, report the device's maximum possible bandwidth and the
6368  * upstream link that limits its performance.  If @verbose, always print
6369  * the available bandwidth, even if the device isn't constrained.
6370  */
6371 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6372 {
6373 	enum pcie_link_width width, width_cap;
6374 	enum pci_bus_speed speed, speed_cap;
6375 	struct pci_dev *limiting_dev = NULL;
6376 	u32 bw_avail, bw_cap;
6377 
6378 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6379 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6380 
6381 	if (bw_avail >= bw_cap && verbose)
6382 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6383 			 bw_cap / 1000, bw_cap % 1000,
6384 			 pci_speed_string(speed_cap), width_cap);
6385 	else if (bw_avail < bw_cap)
6386 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6387 			 bw_avail / 1000, bw_avail % 1000,
6388 			 pci_speed_string(speed), width,
6389 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6390 			 bw_cap / 1000, bw_cap % 1000,
6391 			 pci_speed_string(speed_cap), width_cap);
6392 }
6393 
6394 /**
6395  * pcie_print_link_status - Report the PCI device's link speed and width
6396  * @dev: PCI device to query
6397  *
6398  * Report the available bandwidth at the device.
6399  */
6400 void pcie_print_link_status(struct pci_dev *dev)
6401 {
6402 	__pcie_print_link_status(dev, true);
6403 }
6404 EXPORT_SYMBOL(pcie_print_link_status);
6405 
6406 /**
6407  * pci_select_bars - Make BAR mask from the type of resource
6408  * @dev: the PCI device for which BAR mask is made
6409  * @flags: resource type mask to be selected
6410  *
6411  * This helper routine makes bar mask from the type of resource.
6412  */
6413 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6414 {
6415 	int i, bars = 0;
6416 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6417 		if (pci_resource_flags(dev, i) & flags)
6418 			bars |= (1 << i);
6419 	return bars;
6420 }
6421 EXPORT_SYMBOL(pci_select_bars);
6422 
6423 /* Some architectures require additional programming to enable VGA */
6424 static arch_set_vga_state_t arch_set_vga_state;
6425 
6426 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6427 {
6428 	arch_set_vga_state = func;	/* NULL disables */
6429 }
6430 
6431 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6432 				  unsigned int command_bits, u32 flags)
6433 {
6434 	if (arch_set_vga_state)
6435 		return arch_set_vga_state(dev, decode, command_bits,
6436 						flags);
6437 	return 0;
6438 }
6439 
6440 /**
6441  * pci_set_vga_state - set VGA decode state on device and parents if requested
6442  * @dev: the PCI device
6443  * @decode: true = enable decoding, false = disable decoding
6444  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6445  * @flags: traverse ancestors and change bridges
6446  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6447  */
6448 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6449 		      unsigned int command_bits, u32 flags)
6450 {
6451 	struct pci_bus *bus;
6452 	struct pci_dev *bridge;
6453 	u16 cmd;
6454 	int rc;
6455 
6456 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6457 
6458 	/* ARCH specific VGA enables */
6459 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6460 	if (rc)
6461 		return rc;
6462 
6463 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6464 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6465 		if (decode)
6466 			cmd |= command_bits;
6467 		else
6468 			cmd &= ~command_bits;
6469 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6470 	}
6471 
6472 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6473 		return 0;
6474 
6475 	bus = dev->bus;
6476 	while (bus) {
6477 		bridge = bus->self;
6478 		if (bridge) {
6479 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6480 					     &cmd);
6481 			if (decode)
6482 				cmd |= PCI_BRIDGE_CTL_VGA;
6483 			else
6484 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6485 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6486 					      cmd);
6487 		}
6488 		bus = bus->parent;
6489 	}
6490 	return 0;
6491 }
6492 
6493 #ifdef CONFIG_ACPI
6494 bool pci_pr3_present(struct pci_dev *pdev)
6495 {
6496 	struct acpi_device *adev;
6497 
6498 	if (acpi_disabled)
6499 		return false;
6500 
6501 	adev = ACPI_COMPANION(&pdev->dev);
6502 	if (!adev)
6503 		return false;
6504 
6505 	return adev->power.flags.power_resources &&
6506 		acpi_has_method(adev->handle, "_PR3");
6507 }
6508 EXPORT_SYMBOL_GPL(pci_pr3_present);
6509 #endif
6510 
6511 /**
6512  * pci_add_dma_alias - Add a DMA devfn alias for a device
6513  * @dev: the PCI device for which alias is added
6514  * @devfn_from: alias slot and function
6515  * @nr_devfns: number of subsequent devfns to alias
6516  *
6517  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6518  * which is used to program permissible bus-devfn source addresses for DMA
6519  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6520  * and are useful for devices generating DMA requests beyond or different
6521  * from their logical bus-devfn.  Examples include device quirks where the
6522  * device simply uses the wrong devfn, as well as non-transparent bridges
6523  * where the alias may be a proxy for devices in another domain.
6524  *
6525  * IOMMU group creation is performed during device discovery or addition,
6526  * prior to any potential DMA mapping and therefore prior to driver probing
6527  * (especially for userspace assigned devices where IOMMU group definition
6528  * cannot be left as a userspace activity).  DMA aliases should therefore
6529  * be configured via quirks, such as the PCI fixup header quirk.
6530  */
6531 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6532 		       unsigned int nr_devfns)
6533 {
6534 	int devfn_to;
6535 
6536 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6537 	devfn_to = devfn_from + nr_devfns - 1;
6538 
6539 	if (!dev->dma_alias_mask)
6540 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6541 	if (!dev->dma_alias_mask) {
6542 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6543 		return;
6544 	}
6545 
6546 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6547 
6548 	if (nr_devfns == 1)
6549 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6550 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6551 	else if (nr_devfns > 1)
6552 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6553 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6554 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6555 }
6556 
6557 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6558 {
6559 	return (dev1->dma_alias_mask &&
6560 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6561 	       (dev2->dma_alias_mask &&
6562 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6563 	       pci_real_dma_dev(dev1) == dev2 ||
6564 	       pci_real_dma_dev(dev2) == dev1;
6565 }
6566 
6567 bool pci_device_is_present(struct pci_dev *pdev)
6568 {
6569 	u32 v;
6570 
6571 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6572 	pdev = pci_physfn(pdev);
6573 	if (pci_dev_is_disconnected(pdev))
6574 		return false;
6575 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6576 }
6577 EXPORT_SYMBOL_GPL(pci_device_is_present);
6578 
6579 void pci_ignore_hotplug(struct pci_dev *dev)
6580 {
6581 	struct pci_dev *bridge = dev->bus->self;
6582 
6583 	dev->ignore_hotplug = 1;
6584 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6585 	if (bridge)
6586 		bridge->ignore_hotplug = 1;
6587 }
6588 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6589 
6590 /**
6591  * pci_real_dma_dev - Get PCI DMA device for PCI device
6592  * @dev: the PCI device that may have a PCI DMA alias
6593  *
6594  * Permits the platform to provide architecture-specific functionality to
6595  * devices needing to alias DMA to another PCI device on another PCI bus. If
6596  * the PCI device is on the same bus, it is recommended to use
6597  * pci_add_dma_alias(). This is the default implementation. Architecture
6598  * implementations can override this.
6599  */
6600 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6601 {
6602 	return dev;
6603 }
6604 
6605 resource_size_t __weak pcibios_default_alignment(void)
6606 {
6607 	return 0;
6608 }
6609 
6610 /*
6611  * Arches that don't want to expose struct resource to userland as-is in
6612  * sysfs and /proc can implement their own pci_resource_to_user().
6613  */
6614 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6615 				 const struct resource *rsrc,
6616 				 resource_size_t *start, resource_size_t *end)
6617 {
6618 	*start = rsrc->start;
6619 	*end = rsrc->end;
6620 }
6621 
6622 static char *resource_alignment_param;
6623 static DEFINE_SPINLOCK(resource_alignment_lock);
6624 
6625 /**
6626  * pci_specified_resource_alignment - get resource alignment specified by user.
6627  * @dev: the PCI device to get
6628  * @resize: whether or not to change resources' size when reassigning alignment
6629  *
6630  * RETURNS: Resource alignment if it is specified.
6631  *          Zero if it is not specified.
6632  */
6633 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6634 							bool *resize)
6635 {
6636 	int align_order, count;
6637 	resource_size_t align = pcibios_default_alignment();
6638 	const char *p;
6639 	int ret;
6640 
6641 	spin_lock(&resource_alignment_lock);
6642 	p = resource_alignment_param;
6643 	if (!p || !*p)
6644 		goto out;
6645 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6646 		align = 0;
6647 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6648 		goto out;
6649 	}
6650 
6651 	while (*p) {
6652 		count = 0;
6653 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6654 		    p[count] == '@') {
6655 			p += count + 1;
6656 			if (align_order > 63) {
6657 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6658 				       align_order);
6659 				align_order = PAGE_SHIFT;
6660 			}
6661 		} else {
6662 			align_order = PAGE_SHIFT;
6663 		}
6664 
6665 		ret = pci_dev_str_match(dev, p, &p);
6666 		if (ret == 1) {
6667 			*resize = true;
6668 			align = 1ULL << align_order;
6669 			break;
6670 		} else if (ret < 0) {
6671 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6672 			       p);
6673 			break;
6674 		}
6675 
6676 		if (*p != ';' && *p != ',') {
6677 			/* End of param or invalid format */
6678 			break;
6679 		}
6680 		p++;
6681 	}
6682 out:
6683 	spin_unlock(&resource_alignment_lock);
6684 	return align;
6685 }
6686 
6687 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6688 					   resource_size_t align, bool resize)
6689 {
6690 	struct resource *r = &dev->resource[bar];
6691 	resource_size_t size;
6692 
6693 	if (!(r->flags & IORESOURCE_MEM))
6694 		return;
6695 
6696 	if (r->flags & IORESOURCE_PCI_FIXED) {
6697 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6698 			 bar, r, (unsigned long long)align);
6699 		return;
6700 	}
6701 
6702 	size = resource_size(r);
6703 	if (size >= align)
6704 		return;
6705 
6706 	/*
6707 	 * Increase the alignment of the resource.  There are two ways we
6708 	 * can do this:
6709 	 *
6710 	 * 1) Increase the size of the resource.  BARs are aligned on their
6711 	 *    size, so when we reallocate space for this resource, we'll
6712 	 *    allocate it with the larger alignment.  This also prevents
6713 	 *    assignment of any other BARs inside the alignment region, so
6714 	 *    if we're requesting page alignment, this means no other BARs
6715 	 *    will share the page.
6716 	 *
6717 	 *    The disadvantage is that this makes the resource larger than
6718 	 *    the hardware BAR, which may break drivers that compute things
6719 	 *    based on the resource size, e.g., to find registers at a
6720 	 *    fixed offset before the end of the BAR.
6721 	 *
6722 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6723 	 *    set r->start to the desired alignment.  By itself this
6724 	 *    doesn't prevent other BARs being put inside the alignment
6725 	 *    region, but if we realign *every* resource of every device in
6726 	 *    the system, none of them will share an alignment region.
6727 	 *
6728 	 * When the user has requested alignment for only some devices via
6729 	 * the "pci=resource_alignment" argument, "resize" is true and we
6730 	 * use the first method.  Otherwise we assume we're aligning all
6731 	 * devices and we use the second.
6732 	 */
6733 
6734 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6735 		 bar, r, (unsigned long long)align);
6736 
6737 	if (resize) {
6738 		r->start = 0;
6739 		r->end = align - 1;
6740 	} else {
6741 		r->flags &= ~IORESOURCE_SIZEALIGN;
6742 		r->flags |= IORESOURCE_STARTALIGN;
6743 		r->start = align;
6744 		r->end = r->start + size - 1;
6745 	}
6746 	r->flags |= IORESOURCE_UNSET;
6747 }
6748 
6749 /*
6750  * This function disables memory decoding and releases memory resources
6751  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6752  * It also rounds up size to specified alignment.
6753  * Later on, the kernel will assign page-aligned memory resource back
6754  * to the device.
6755  */
6756 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6757 {
6758 	int i;
6759 	struct resource *r;
6760 	resource_size_t align;
6761 	u16 command;
6762 	bool resize = false;
6763 
6764 	/*
6765 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6766 	 * 3.4.1.11.  Their resources are allocated from the space
6767 	 * described by the VF BARx register in the PF's SR-IOV capability.
6768 	 * We can't influence their alignment here.
6769 	 */
6770 	if (dev->is_virtfn)
6771 		return;
6772 
6773 	/* check if specified PCI is target device to reassign */
6774 	align = pci_specified_resource_alignment(dev, &resize);
6775 	if (!align)
6776 		return;
6777 
6778 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6779 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6780 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6781 		return;
6782 	}
6783 
6784 	pci_read_config_word(dev, PCI_COMMAND, &command);
6785 	command &= ~PCI_COMMAND_MEMORY;
6786 	pci_write_config_word(dev, PCI_COMMAND, command);
6787 
6788 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6789 		pci_request_resource_alignment(dev, i, align, resize);
6790 
6791 	/*
6792 	 * Need to disable bridge's resource window,
6793 	 * to enable the kernel to reassign new resource
6794 	 * window later on.
6795 	 */
6796 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6797 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6798 			r = &dev->resource[i];
6799 			if (!(r->flags & IORESOURCE_MEM))
6800 				continue;
6801 			r->flags |= IORESOURCE_UNSET;
6802 			r->end = resource_size(r) - 1;
6803 			r->start = 0;
6804 		}
6805 		pci_disable_bridge_window(dev);
6806 	}
6807 }
6808 
6809 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6810 {
6811 	size_t count = 0;
6812 
6813 	spin_lock(&resource_alignment_lock);
6814 	if (resource_alignment_param)
6815 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6816 	spin_unlock(&resource_alignment_lock);
6817 
6818 	return count;
6819 }
6820 
6821 static ssize_t resource_alignment_store(const struct bus_type *bus,
6822 					const char *buf, size_t count)
6823 {
6824 	char *param, *old, *end;
6825 
6826 	if (count >= (PAGE_SIZE - 1))
6827 		return -EINVAL;
6828 
6829 	param = kstrndup(buf, count, GFP_KERNEL);
6830 	if (!param)
6831 		return -ENOMEM;
6832 
6833 	end = strchr(param, '\n');
6834 	if (end)
6835 		*end = '\0';
6836 
6837 	spin_lock(&resource_alignment_lock);
6838 	old = resource_alignment_param;
6839 	if (strlen(param)) {
6840 		resource_alignment_param = param;
6841 	} else {
6842 		kfree(param);
6843 		resource_alignment_param = NULL;
6844 	}
6845 	spin_unlock(&resource_alignment_lock);
6846 
6847 	kfree(old);
6848 
6849 	return count;
6850 }
6851 
6852 static BUS_ATTR_RW(resource_alignment);
6853 
6854 static int __init pci_resource_alignment_sysfs_init(void)
6855 {
6856 	return bus_create_file(&pci_bus_type,
6857 					&bus_attr_resource_alignment);
6858 }
6859 late_initcall(pci_resource_alignment_sysfs_init);
6860 
6861 static void pci_no_domains(void)
6862 {
6863 #ifdef CONFIG_PCI_DOMAINS
6864 	pci_domains_supported = 0;
6865 #endif
6866 }
6867 
6868 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6869 static DEFINE_IDA(pci_domain_nr_static_ida);
6870 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6871 
6872 static void of_pci_reserve_static_domain_nr(void)
6873 {
6874 	struct device_node *np;
6875 	int domain_nr;
6876 
6877 	for_each_node_by_type(np, "pci") {
6878 		domain_nr = of_get_pci_domain_nr(np);
6879 		if (domain_nr < 0)
6880 			continue;
6881 		/*
6882 		 * Permanently allocate domain_nr in dynamic_ida
6883 		 * to prevent it from dynamic allocation.
6884 		 */
6885 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6886 				domain_nr, domain_nr, GFP_KERNEL);
6887 	}
6888 }
6889 
6890 static int of_pci_bus_find_domain_nr(struct device *parent)
6891 {
6892 	static bool static_domains_reserved = false;
6893 	int domain_nr;
6894 
6895 	/* On the first call scan device tree for static allocations. */
6896 	if (!static_domains_reserved) {
6897 		of_pci_reserve_static_domain_nr();
6898 		static_domains_reserved = true;
6899 	}
6900 
6901 	if (parent) {
6902 		/*
6903 		 * If domain is in DT, allocate it in static IDA.  This
6904 		 * prevents duplicate static allocations in case of errors
6905 		 * in DT.
6906 		 */
6907 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6908 		if (domain_nr >= 0)
6909 			return ida_alloc_range(&pci_domain_nr_static_ida,
6910 					       domain_nr, domain_nr,
6911 					       GFP_KERNEL);
6912 	}
6913 
6914 	/*
6915 	 * If domain was not specified in DT, choose a free ID from dynamic
6916 	 * allocations. All domain numbers from DT are permanently in
6917 	 * dynamic allocations to prevent assigning them to other DT nodes
6918 	 * without static domain.
6919 	 */
6920 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6921 }
6922 
6923 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6924 {
6925 	if (bus->domain_nr < 0)
6926 		return;
6927 
6928 	/* Release domain from IDA where it was allocated. */
6929 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6930 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6931 	else
6932 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6933 }
6934 
6935 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6936 {
6937 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6938 			       acpi_pci_bus_find_domain_nr(bus);
6939 }
6940 
6941 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6942 {
6943 	if (!acpi_disabled)
6944 		return;
6945 	of_pci_bus_release_domain_nr(bus, parent);
6946 }
6947 #endif
6948 
6949 /**
6950  * pci_ext_cfg_avail - can we access extended PCI config space?
6951  *
6952  * Returns 1 if we can access PCI extended config space (offsets
6953  * greater than 0xff). This is the default implementation. Architecture
6954  * implementations can override this.
6955  */
6956 int __weak pci_ext_cfg_avail(void)
6957 {
6958 	return 1;
6959 }
6960 
6961 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6962 {
6963 }
6964 EXPORT_SYMBOL(pci_fixup_cardbus);
6965 
6966 static int __init pci_setup(char *str)
6967 {
6968 	while (str) {
6969 		char *k = strchr(str, ',');
6970 		if (k)
6971 			*k++ = 0;
6972 		if (*str && (str = pcibios_setup(str)) && *str) {
6973 			if (!strcmp(str, "nomsi")) {
6974 				pci_no_msi();
6975 			} else if (!strncmp(str, "noats", 5)) {
6976 				pr_info("PCIe: ATS is disabled\n");
6977 				pcie_ats_disabled = true;
6978 			} else if (!strcmp(str, "noaer")) {
6979 				pci_no_aer();
6980 			} else if (!strcmp(str, "earlydump")) {
6981 				pci_early_dump = true;
6982 			} else if (!strncmp(str, "realloc=", 8)) {
6983 				pci_realloc_get_opt(str + 8);
6984 			} else if (!strncmp(str, "realloc", 7)) {
6985 				pci_realloc_get_opt("on");
6986 			} else if (!strcmp(str, "nodomains")) {
6987 				pci_no_domains();
6988 			} else if (!strncmp(str, "noari", 5)) {
6989 				pcie_ari_disabled = true;
6990 			} else if (!strncmp(str, "cbiosize=", 9)) {
6991 				pci_cardbus_io_size = memparse(str + 9, &str);
6992 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6993 				pci_cardbus_mem_size = memparse(str + 10, &str);
6994 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6995 				resource_alignment_param = str + 19;
6996 			} else if (!strncmp(str, "ecrc=", 5)) {
6997 				pcie_ecrc_get_policy(str + 5);
6998 			} else if (!strncmp(str, "hpiosize=", 9)) {
6999 				pci_hotplug_io_size = memparse(str + 9, &str);
7000 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7001 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7002 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7003 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7004 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7005 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7006 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7007 			} else if (!strncmp(str, "hpbussize=", 10)) {
7008 				pci_hotplug_bus_size =
7009 					simple_strtoul(str + 10, &str, 0);
7010 				if (pci_hotplug_bus_size > 0xff)
7011 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7012 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7013 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7014 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7015 				pcie_bus_config = PCIE_BUS_SAFE;
7016 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7017 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7018 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7019 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7020 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7021 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7022 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7023 				disable_acs_redir_param = str + 18;
7024 			} else {
7025 				pr_err("PCI: Unknown option `%s'\n", str);
7026 			}
7027 		}
7028 		str = k;
7029 	}
7030 	return 0;
7031 }
7032 early_param("pci", pci_setup);
7033 
7034 /*
7035  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7036  * in pci_setup(), above, to point to data in the __initdata section which
7037  * will be freed after the init sequence is complete. We can't allocate memory
7038  * in pci_setup() because some architectures do not have any memory allocation
7039  * service available during an early_param() call. So we allocate memory and
7040  * copy the variable here before the init section is freed.
7041  *
7042  */
7043 static int __init pci_realloc_setup_params(void)
7044 {
7045 	resource_alignment_param = kstrdup(resource_alignment_param,
7046 					   GFP_KERNEL);
7047 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7048 
7049 	return 0;
7050 }
7051 pure_initcall(pci_realloc_setup_params);
7052