xref: /openbmc/linux/drivers/pci/pci.c (revision dfc53baa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38 
39 DEFINE_MUTEX(pci_slot_mutex);
40 
41 const char *pci_power_names[] = {
42 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 };
44 EXPORT_SYMBOL_GPL(pci_power_names);
45 
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 	unsigned int delay = dev->d3_delay;
70 
71 	if (delay < pci_pm_d3_delay)
72 		delay = pci_pm_d3_delay;
73 
74 	if (delay)
75 		msleep(delay);
76 }
77 
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
80 #endif
81 
82 #define DEFAULT_CARDBUS_IO_SIZE		(256)
83 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87 
88 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
93 /*
94  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96  * pci=hpmemsize=nnM overrides both
97  */
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
100 
101 #define DEFAULT_HOTPLUG_BUS_SIZE	1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103 
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
105 
106 /*
107  * The default CLS is used if arch didn't set CLS explicitly and not
108  * all pci devices agree on the same value.  Arch can override either
109  * the dfl or actual value as it sees fit.  Don't forget this is
110  * measured in 32-bit words, not bytes.
111  */
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
114 
115 /*
116  * If we set up a device for bus mastering, we need to check the latency
117  * timer as certain BIOSes forget to set it properly.
118  */
119 unsigned int pcibios_max_latency = 255;
120 
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
123 
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
126 
127 /* If set, the PCI config space of each device is printed during boot. */
128 bool pci_early_dump;
129 
130 bool pci_ats_disabled(void)
131 {
132 	return pcie_ats_disabled;
133 }
134 EXPORT_SYMBOL_GPL(pci_ats_disabled);
135 
136 /* Disable bridge_d3 for all PCIe ports */
137 static bool pci_bridge_d3_disable;
138 /* Force bridge_d3 for all PCIe ports */
139 static bool pci_bridge_d3_force;
140 
141 static int __init pcie_port_pm_setup(char *str)
142 {
143 	if (!strcmp(str, "off"))
144 		pci_bridge_d3_disable = true;
145 	else if (!strcmp(str, "force"))
146 		pci_bridge_d3_force = true;
147 	return 1;
148 }
149 __setup("pcie_port_pm=", pcie_port_pm_setup);
150 
151 /* Time to wait after a reset for device to become responsive */
152 #define PCIE_RESET_READY_POLL_MS 60000
153 
154 /**
155  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156  * @bus: pointer to PCI bus structure to search
157  *
158  * Given a PCI bus, returns the highest PCI bus number present in the set
159  * including the given PCI bus and its list of child PCI buses.
160  */
161 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
162 {
163 	struct pci_bus *tmp;
164 	unsigned char max, n;
165 
166 	max = bus->busn_res.end;
167 	list_for_each_entry(tmp, &bus->children, node) {
168 		n = pci_bus_max_busnr(tmp);
169 		if (n > max)
170 			max = n;
171 	}
172 	return max;
173 }
174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
175 
176 /**
177  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
178  * @pdev: the PCI device
179  *
180  * Returns error bits set in PCI_STATUS and clears them.
181  */
182 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
183 {
184 	u16 status;
185 	int ret;
186 
187 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
188 	if (ret != PCIBIOS_SUCCESSFUL)
189 		return -EIO;
190 
191 	status &= PCI_STATUS_ERROR_BITS;
192 	if (status)
193 		pci_write_config_word(pdev, PCI_STATUS, status);
194 
195 	return status;
196 }
197 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
198 
199 #ifdef CONFIG_HAS_IOMEM
200 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
201 {
202 	struct resource *res = &pdev->resource[bar];
203 
204 	/*
205 	 * Make sure the BAR is actually a memory resource, not an IO resource
206 	 */
207 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
208 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
209 		return NULL;
210 	}
211 	return ioremap(res->start, resource_size(res));
212 }
213 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
214 
215 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
216 {
217 	/*
218 	 * Make sure the BAR is actually a memory resource, not an IO resource
219 	 */
220 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
221 		WARN_ON(1);
222 		return NULL;
223 	}
224 	return ioremap_wc(pci_resource_start(pdev, bar),
225 			  pci_resource_len(pdev, bar));
226 }
227 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
228 #endif
229 
230 /**
231  * pci_dev_str_match_path - test if a path string matches a device
232  * @dev: the PCI device to test
233  * @path: string to match the device against
234  * @endptr: pointer to the string after the match
235  *
236  * Test if a string (typically from a kernel parameter) formatted as a
237  * path of device/function addresses matches a PCI device. The string must
238  * be of the form:
239  *
240  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
241  *
242  * A path for a device can be obtained using 'lspci -t'.  Using a path
243  * is more robust against bus renumbering than using only a single bus,
244  * device and function address.
245  *
246  * Returns 1 if the string matches the device, 0 if it does not and
247  * a negative error code if it fails to parse the string.
248  */
249 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
250 				  const char **endptr)
251 {
252 	int ret;
253 	int seg, bus, slot, func;
254 	char *wpath, *p;
255 	char end;
256 
257 	*endptr = strchrnul(path, ';');
258 
259 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
260 	if (!wpath)
261 		return -ENOMEM;
262 
263 	while (1) {
264 		p = strrchr(wpath, '/');
265 		if (!p)
266 			break;
267 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
268 		if (ret != 2) {
269 			ret = -EINVAL;
270 			goto free_and_exit;
271 		}
272 
273 		if (dev->devfn != PCI_DEVFN(slot, func)) {
274 			ret = 0;
275 			goto free_and_exit;
276 		}
277 
278 		/*
279 		 * Note: we don't need to get a reference to the upstream
280 		 * bridge because we hold a reference to the top level
281 		 * device which should hold a reference to the bridge,
282 		 * and so on.
283 		 */
284 		dev = pci_upstream_bridge(dev);
285 		if (!dev) {
286 			ret = 0;
287 			goto free_and_exit;
288 		}
289 
290 		*p = 0;
291 	}
292 
293 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
294 		     &func, &end);
295 	if (ret != 4) {
296 		seg = 0;
297 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
298 		if (ret != 3) {
299 			ret = -EINVAL;
300 			goto free_and_exit;
301 		}
302 	}
303 
304 	ret = (seg == pci_domain_nr(dev->bus) &&
305 	       bus == dev->bus->number &&
306 	       dev->devfn == PCI_DEVFN(slot, func));
307 
308 free_and_exit:
309 	kfree(wpath);
310 	return ret;
311 }
312 
313 /**
314  * pci_dev_str_match - test if a string matches a device
315  * @dev: the PCI device to test
316  * @p: string to match the device against
317  * @endptr: pointer to the string after the match
318  *
319  * Test if a string (typically from a kernel parameter) matches a specified
320  * PCI device. The string may be of one of the following formats:
321  *
322  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
323  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
324  *
325  * The first format specifies a PCI bus/device/function address which
326  * may change if new hardware is inserted, if motherboard firmware changes,
327  * or due to changes caused in kernel parameters. If the domain is
328  * left unspecified, it is taken to be 0.  In order to be robust against
329  * bus renumbering issues, a path of PCI device/function numbers may be used
330  * to address the specific device.  The path for a device can be determined
331  * through the use of 'lspci -t'.
332  *
333  * The second format matches devices using IDs in the configuration
334  * space which may match multiple devices in the system. A value of 0
335  * for any field will match all devices. (Note: this differs from
336  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
337  * legacy reasons and convenience so users don't have to specify
338  * FFFFFFFFs on the command line.)
339  *
340  * Returns 1 if the string matches the device, 0 if it does not and
341  * a negative error code if the string cannot be parsed.
342  */
343 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
344 			     const char **endptr)
345 {
346 	int ret;
347 	int count;
348 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
349 
350 	if (strncmp(p, "pci:", 4) == 0) {
351 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
352 		p += 4;
353 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
354 			     &subsystem_vendor, &subsystem_device, &count);
355 		if (ret != 4) {
356 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
357 			if (ret != 2)
358 				return -EINVAL;
359 
360 			subsystem_vendor = 0;
361 			subsystem_device = 0;
362 		}
363 
364 		p += count;
365 
366 		if ((!vendor || vendor == dev->vendor) &&
367 		    (!device || device == dev->device) &&
368 		    (!subsystem_vendor ||
369 			    subsystem_vendor == dev->subsystem_vendor) &&
370 		    (!subsystem_device ||
371 			    subsystem_device == dev->subsystem_device))
372 			goto found;
373 	} else {
374 		/*
375 		 * PCI Bus, Device, Function IDs are specified
376 		 * (optionally, may include a path of devfns following it)
377 		 */
378 		ret = pci_dev_str_match_path(dev, p, &p);
379 		if (ret < 0)
380 			return ret;
381 		else if (ret)
382 			goto found;
383 	}
384 
385 	*endptr = p;
386 	return 0;
387 
388 found:
389 	*endptr = p;
390 	return 1;
391 }
392 
393 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
394 				   u8 pos, int cap, int *ttl)
395 {
396 	u8 id;
397 	u16 ent;
398 
399 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
400 
401 	while ((*ttl)--) {
402 		if (pos < 0x40)
403 			break;
404 		pos &= ~3;
405 		pci_bus_read_config_word(bus, devfn, pos, &ent);
406 
407 		id = ent & 0xff;
408 		if (id == 0xff)
409 			break;
410 		if (id == cap)
411 			return pos;
412 		pos = (ent >> 8);
413 	}
414 	return 0;
415 }
416 
417 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
418 			       u8 pos, int cap)
419 {
420 	int ttl = PCI_FIND_CAP_TTL;
421 
422 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
423 }
424 
425 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
426 {
427 	return __pci_find_next_cap(dev->bus, dev->devfn,
428 				   pos + PCI_CAP_LIST_NEXT, cap);
429 }
430 EXPORT_SYMBOL_GPL(pci_find_next_capability);
431 
432 static int __pci_bus_find_cap_start(struct pci_bus *bus,
433 				    unsigned int devfn, u8 hdr_type)
434 {
435 	u16 status;
436 
437 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
438 	if (!(status & PCI_STATUS_CAP_LIST))
439 		return 0;
440 
441 	switch (hdr_type) {
442 	case PCI_HEADER_TYPE_NORMAL:
443 	case PCI_HEADER_TYPE_BRIDGE:
444 		return PCI_CAPABILITY_LIST;
445 	case PCI_HEADER_TYPE_CARDBUS:
446 		return PCI_CB_CAPABILITY_LIST;
447 	}
448 
449 	return 0;
450 }
451 
452 /**
453  * pci_find_capability - query for devices' capabilities
454  * @dev: PCI device to query
455  * @cap: capability code
456  *
457  * Tell if a device supports a given PCI capability.
458  * Returns the address of the requested capability structure within the
459  * device's PCI configuration space or 0 in case the device does not
460  * support it.  Possible values for @cap include:
461  *
462  *  %PCI_CAP_ID_PM           Power Management
463  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
464  *  %PCI_CAP_ID_VPD          Vital Product Data
465  *  %PCI_CAP_ID_SLOTID       Slot Identification
466  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
467  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
468  *  %PCI_CAP_ID_PCIX         PCI-X
469  *  %PCI_CAP_ID_EXP          PCI Express
470  */
471 int pci_find_capability(struct pci_dev *dev, int cap)
472 {
473 	int pos;
474 
475 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
476 	if (pos)
477 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
478 
479 	return pos;
480 }
481 EXPORT_SYMBOL(pci_find_capability);
482 
483 /**
484  * pci_bus_find_capability - query for devices' capabilities
485  * @bus: the PCI bus to query
486  * @devfn: PCI device to query
487  * @cap: capability code
488  *
489  * Like pci_find_capability() but works for PCI devices that do not have a
490  * pci_dev structure set up yet.
491  *
492  * Returns the address of the requested capability structure within the
493  * device's PCI configuration space or 0 in case the device does not
494  * support it.
495  */
496 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
497 {
498 	int pos;
499 	u8 hdr_type;
500 
501 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
502 
503 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
504 	if (pos)
505 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
506 
507 	return pos;
508 }
509 EXPORT_SYMBOL(pci_bus_find_capability);
510 
511 /**
512  * pci_find_next_ext_capability - Find an extended capability
513  * @dev: PCI device to query
514  * @start: address at which to start looking (0 to start at beginning of list)
515  * @cap: capability code
516  *
517  * Returns the address of the next matching extended capability structure
518  * within the device's PCI configuration space or 0 if the device does
519  * not support it.  Some capabilities can occur several times, e.g., the
520  * vendor-specific capability, and this provides a way to find them all.
521  */
522 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
523 {
524 	u32 header;
525 	int ttl;
526 	int pos = PCI_CFG_SPACE_SIZE;
527 
528 	/* minimum 8 bytes per capability */
529 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
530 
531 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
532 		return 0;
533 
534 	if (start)
535 		pos = start;
536 
537 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
538 		return 0;
539 
540 	/*
541 	 * If we have no capabilities, this is indicated by cap ID,
542 	 * cap version and next pointer all being 0.
543 	 */
544 	if (header == 0)
545 		return 0;
546 
547 	while (ttl-- > 0) {
548 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
549 			return pos;
550 
551 		pos = PCI_EXT_CAP_NEXT(header);
552 		if (pos < PCI_CFG_SPACE_SIZE)
553 			break;
554 
555 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 			break;
557 	}
558 
559 	return 0;
560 }
561 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
562 
563 /**
564  * pci_find_ext_capability - Find an extended capability
565  * @dev: PCI device to query
566  * @cap: capability code
567  *
568  * Returns the address of the requested extended capability structure
569  * within the device's PCI configuration space or 0 if the device does
570  * not support it.  Possible values for @cap include:
571  *
572  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
573  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
574  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
575  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
576  */
577 int pci_find_ext_capability(struct pci_dev *dev, int cap)
578 {
579 	return pci_find_next_ext_capability(dev, 0, cap);
580 }
581 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
582 
583 /**
584  * pci_get_dsn - Read and return the 8-byte Device Serial Number
585  * @dev: PCI device to query
586  *
587  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
588  * Number.
589  *
590  * Returns the DSN, or zero if the capability does not exist.
591  */
592 u64 pci_get_dsn(struct pci_dev *dev)
593 {
594 	u32 dword;
595 	u64 dsn;
596 	int pos;
597 
598 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
599 	if (!pos)
600 		return 0;
601 
602 	/*
603 	 * The Device Serial Number is two dwords offset 4 bytes from the
604 	 * capability position. The specification says that the first dword is
605 	 * the lower half, and the second dword is the upper half.
606 	 */
607 	pos += 4;
608 	pci_read_config_dword(dev, pos, &dword);
609 	dsn = (u64)dword;
610 	pci_read_config_dword(dev, pos + 4, &dword);
611 	dsn |= ((u64)dword) << 32;
612 
613 	return dsn;
614 }
615 EXPORT_SYMBOL_GPL(pci_get_dsn);
616 
617 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
618 {
619 	int rc, ttl = PCI_FIND_CAP_TTL;
620 	u8 cap, mask;
621 
622 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
623 		mask = HT_3BIT_CAP_MASK;
624 	else
625 		mask = HT_5BIT_CAP_MASK;
626 
627 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
628 				      PCI_CAP_ID_HT, &ttl);
629 	while (pos) {
630 		rc = pci_read_config_byte(dev, pos + 3, &cap);
631 		if (rc != PCIBIOS_SUCCESSFUL)
632 			return 0;
633 
634 		if ((cap & mask) == ht_cap)
635 			return pos;
636 
637 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
638 					      pos + PCI_CAP_LIST_NEXT,
639 					      PCI_CAP_ID_HT, &ttl);
640 	}
641 
642 	return 0;
643 }
644 /**
645  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
646  * @dev: PCI device to query
647  * @pos: Position from which to continue searching
648  * @ht_cap: Hypertransport capability code
649  *
650  * To be used in conjunction with pci_find_ht_capability() to search for
651  * all capabilities matching @ht_cap. @pos should always be a value returned
652  * from pci_find_ht_capability().
653  *
654  * NB. To be 100% safe against broken PCI devices, the caller should take
655  * steps to avoid an infinite loop.
656  */
657 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
658 {
659 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
660 }
661 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
662 
663 /**
664  * pci_find_ht_capability - query a device's Hypertransport capabilities
665  * @dev: PCI device to query
666  * @ht_cap: Hypertransport capability code
667  *
668  * Tell if a device supports a given Hypertransport capability.
669  * Returns an address within the device's PCI configuration space
670  * or 0 in case the device does not support the request capability.
671  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
672  * which has a Hypertransport capability matching @ht_cap.
673  */
674 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
675 {
676 	int pos;
677 
678 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
679 	if (pos)
680 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
681 
682 	return pos;
683 }
684 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
685 
686 /**
687  * pci_find_parent_resource - return resource region of parent bus of given
688  *			      region
689  * @dev: PCI device structure contains resources to be searched
690  * @res: child resource record for which parent is sought
691  *
692  * For given resource region of given device, return the resource region of
693  * parent bus the given region is contained in.
694  */
695 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
696 					  struct resource *res)
697 {
698 	const struct pci_bus *bus = dev->bus;
699 	struct resource *r;
700 	int i;
701 
702 	pci_bus_for_each_resource(bus, r, i) {
703 		if (!r)
704 			continue;
705 		if (resource_contains(r, res)) {
706 
707 			/*
708 			 * If the window is prefetchable but the BAR is
709 			 * not, the allocator made a mistake.
710 			 */
711 			if (r->flags & IORESOURCE_PREFETCH &&
712 			    !(res->flags & IORESOURCE_PREFETCH))
713 				return NULL;
714 
715 			/*
716 			 * If we're below a transparent bridge, there may
717 			 * be both a positively-decoded aperture and a
718 			 * subtractively-decoded region that contain the BAR.
719 			 * We want the positively-decoded one, so this depends
720 			 * on pci_bus_for_each_resource() giving us those
721 			 * first.
722 			 */
723 			return r;
724 		}
725 	}
726 	return NULL;
727 }
728 EXPORT_SYMBOL(pci_find_parent_resource);
729 
730 /**
731  * pci_find_resource - Return matching PCI device resource
732  * @dev: PCI device to query
733  * @res: Resource to look for
734  *
735  * Goes over standard PCI resources (BARs) and checks if the given resource
736  * is partially or fully contained in any of them. In that case the
737  * matching resource is returned, %NULL otherwise.
738  */
739 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
740 {
741 	int i;
742 
743 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
744 		struct resource *r = &dev->resource[i];
745 
746 		if (r->start && resource_contains(r, res))
747 			return r;
748 	}
749 
750 	return NULL;
751 }
752 EXPORT_SYMBOL(pci_find_resource);
753 
754 /**
755  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
756  * @dev: the PCI device to operate on
757  * @pos: config space offset of status word
758  * @mask: mask of bit(s) to care about in status word
759  *
760  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
761  */
762 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
763 {
764 	int i;
765 
766 	/* Wait for Transaction Pending bit clean */
767 	for (i = 0; i < 4; i++) {
768 		u16 status;
769 		if (i)
770 			msleep((1 << (i - 1)) * 100);
771 
772 		pci_read_config_word(dev, pos, &status);
773 		if (!(status & mask))
774 			return 1;
775 	}
776 
777 	return 0;
778 }
779 
780 static int pci_acs_enable;
781 
782 /**
783  * pci_request_acs - ask for ACS to be enabled if supported
784  */
785 void pci_request_acs(void)
786 {
787 	pci_acs_enable = 1;
788 }
789 
790 static const char *disable_acs_redir_param;
791 
792 /**
793  * pci_disable_acs_redir - disable ACS redirect capabilities
794  * @dev: the PCI device
795  *
796  * For only devices specified in the disable_acs_redir parameter.
797  */
798 static void pci_disable_acs_redir(struct pci_dev *dev)
799 {
800 	int ret = 0;
801 	const char *p;
802 	int pos;
803 	u16 ctrl;
804 
805 	if (!disable_acs_redir_param)
806 		return;
807 
808 	p = disable_acs_redir_param;
809 	while (*p) {
810 		ret = pci_dev_str_match(dev, p, &p);
811 		if (ret < 0) {
812 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
813 				     disable_acs_redir_param);
814 
815 			break;
816 		} else if (ret == 1) {
817 			/* Found a match */
818 			break;
819 		}
820 
821 		if (*p != ';' && *p != ',') {
822 			/* End of param or invalid format */
823 			break;
824 		}
825 		p++;
826 	}
827 
828 	if (ret != 1)
829 		return;
830 
831 	if (!pci_dev_specific_disable_acs_redir(dev))
832 		return;
833 
834 	pos = dev->acs_cap;
835 	if (!pos) {
836 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
837 		return;
838 	}
839 
840 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
841 
842 	/* P2P Request & Completion Redirect */
843 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
844 
845 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
846 
847 	pci_info(dev, "disabled ACS redirect\n");
848 }
849 
850 /**
851  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
852  * @dev: the PCI device
853  */
854 static void pci_std_enable_acs(struct pci_dev *dev)
855 {
856 	int pos;
857 	u16 cap;
858 	u16 ctrl;
859 
860 	pos = dev->acs_cap;
861 	if (!pos)
862 		return;
863 
864 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
865 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
866 
867 	/* Source Validation */
868 	ctrl |= (cap & PCI_ACS_SV);
869 
870 	/* P2P Request Redirect */
871 	ctrl |= (cap & PCI_ACS_RR);
872 
873 	/* P2P Completion Redirect */
874 	ctrl |= (cap & PCI_ACS_CR);
875 
876 	/* Upstream Forwarding */
877 	ctrl |= (cap & PCI_ACS_UF);
878 
879 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
880 }
881 
882 /**
883  * pci_enable_acs - enable ACS if hardware support it
884  * @dev: the PCI device
885  */
886 static void pci_enable_acs(struct pci_dev *dev)
887 {
888 	if (!pci_acs_enable)
889 		goto disable_acs_redir;
890 
891 	if (!pci_dev_specific_enable_acs(dev))
892 		goto disable_acs_redir;
893 
894 	pci_std_enable_acs(dev);
895 
896 disable_acs_redir:
897 	/*
898 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
899 	 * enabled by the kernel because it may have been enabled by
900 	 * platform firmware.  So if we are told to disable it, we should
901 	 * always disable it after setting the kernel's default
902 	 * preferences.
903 	 */
904 	pci_disable_acs_redir(dev);
905 }
906 
907 /**
908  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
909  * @dev: PCI device to have its BARs restored
910  *
911  * Restore the BAR values for a given device, so as to make it
912  * accessible by its driver.
913  */
914 static void pci_restore_bars(struct pci_dev *dev)
915 {
916 	int i;
917 
918 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
919 		pci_update_resource(dev, i);
920 }
921 
922 static const struct pci_platform_pm_ops *pci_platform_pm;
923 
924 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
925 {
926 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
927 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
928 		return -EINVAL;
929 	pci_platform_pm = ops;
930 	return 0;
931 }
932 
933 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
934 {
935 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
936 }
937 
938 static inline int platform_pci_set_power_state(struct pci_dev *dev,
939 					       pci_power_t t)
940 {
941 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
942 }
943 
944 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
945 {
946 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
947 }
948 
949 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
950 {
951 	if (pci_platform_pm && pci_platform_pm->refresh_state)
952 		pci_platform_pm->refresh_state(dev);
953 }
954 
955 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
956 {
957 	return pci_platform_pm ?
958 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
959 }
960 
961 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
962 {
963 	return pci_platform_pm ?
964 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
965 }
966 
967 static inline bool platform_pci_need_resume(struct pci_dev *dev)
968 {
969 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
970 }
971 
972 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
973 {
974 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
975 		return pci_platform_pm->bridge_d3(dev);
976 	return false;
977 }
978 
979 /**
980  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
981  *			     given PCI device
982  * @dev: PCI device to handle.
983  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
984  *
985  * RETURN VALUE:
986  * -EINVAL if the requested state is invalid.
987  * -EIO if device does not support PCI PM or its PM capabilities register has a
988  * wrong version, or device doesn't support the requested state.
989  * 0 if device already is in the requested state.
990  * 0 if device's power state has been successfully changed.
991  */
992 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
993 {
994 	u16 pmcsr;
995 	bool need_restore = false;
996 
997 	/* Check if we're already there */
998 	if (dev->current_state == state)
999 		return 0;
1000 
1001 	if (!dev->pm_cap)
1002 		return -EIO;
1003 
1004 	if (state < PCI_D0 || state > PCI_D3hot)
1005 		return -EINVAL;
1006 
1007 	/*
1008 	 * Validate transition: We can enter D0 from any state, but if
1009 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1010 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1011 	 * we'd have to go from D3 to D0, then to D1.
1012 	 */
1013 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1014 	    && dev->current_state > state) {
1015 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1016 			pci_power_name(dev->current_state),
1017 			pci_power_name(state));
1018 		return -EINVAL;
1019 	}
1020 
1021 	/* Check if this device supports the desired state */
1022 	if ((state == PCI_D1 && !dev->d1_support)
1023 	   || (state == PCI_D2 && !dev->d2_support))
1024 		return -EIO;
1025 
1026 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1027 	if (pmcsr == (u16) ~0) {
1028 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1029 			pci_power_name(dev->current_state),
1030 			pci_power_name(state));
1031 		return -EIO;
1032 	}
1033 
1034 	/*
1035 	 * If we're (effectively) in D3, force entire word to 0.
1036 	 * This doesn't affect PME_Status, disables PME_En, and
1037 	 * sets PowerState to 0.
1038 	 */
1039 	switch (dev->current_state) {
1040 	case PCI_D0:
1041 	case PCI_D1:
1042 	case PCI_D2:
1043 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1044 		pmcsr |= state;
1045 		break;
1046 	case PCI_D3hot:
1047 	case PCI_D3cold:
1048 	case PCI_UNKNOWN: /* Boot-up */
1049 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1050 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1051 			need_restore = true;
1052 		fallthrough;	/* force to D0 */
1053 	default:
1054 		pmcsr = 0;
1055 		break;
1056 	}
1057 
1058 	/* Enter specified state */
1059 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1060 
1061 	/*
1062 	 * Mandatory power management transition delays; see PCI PM 1.1
1063 	 * 5.6.1 table 18
1064 	 */
1065 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1066 		pci_dev_d3_sleep(dev);
1067 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1068 		msleep(PCI_PM_D2_DELAY);
1069 
1070 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1071 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1072 	if (dev->current_state != state)
1073 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1074 			 pci_power_name(dev->current_state),
1075 			 pci_power_name(state));
1076 
1077 	/*
1078 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1079 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1080 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1081 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1082 	 * For example, at least some versions of the 3c905B and the
1083 	 * 3c556B exhibit this behaviour.
1084 	 *
1085 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1086 	 * devices in a D3hot state at boot.  Consequently, we need to
1087 	 * restore at least the BARs so that the device will be
1088 	 * accessible to its driver.
1089 	 */
1090 	if (need_restore)
1091 		pci_restore_bars(dev);
1092 
1093 	if (dev->bus->self)
1094 		pcie_aspm_pm_state_change(dev->bus->self);
1095 
1096 	return 0;
1097 }
1098 
1099 /**
1100  * pci_update_current_state - Read power state of given device and cache it
1101  * @dev: PCI device to handle.
1102  * @state: State to cache in case the device doesn't have the PM capability
1103  *
1104  * The power state is read from the PMCSR register, which however is
1105  * inaccessible in D3cold.  The platform firmware is therefore queried first
1106  * to detect accessibility of the register.  In case the platform firmware
1107  * reports an incorrect state or the device isn't power manageable by the
1108  * platform at all, we try to detect D3cold by testing accessibility of the
1109  * vendor ID in config space.
1110  */
1111 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1112 {
1113 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1114 	    !pci_device_is_present(dev)) {
1115 		dev->current_state = PCI_D3cold;
1116 	} else if (dev->pm_cap) {
1117 		u16 pmcsr;
1118 
1119 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1120 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1121 	} else {
1122 		dev->current_state = state;
1123 	}
1124 }
1125 
1126 /**
1127  * pci_refresh_power_state - Refresh the given device's power state data
1128  * @dev: Target PCI device.
1129  *
1130  * Ask the platform to refresh the devices power state information and invoke
1131  * pci_update_current_state() to update its current PCI power state.
1132  */
1133 void pci_refresh_power_state(struct pci_dev *dev)
1134 {
1135 	if (platform_pci_power_manageable(dev))
1136 		platform_pci_refresh_power_state(dev);
1137 
1138 	pci_update_current_state(dev, dev->current_state);
1139 }
1140 
1141 /**
1142  * pci_platform_power_transition - Use platform to change device power state
1143  * @dev: PCI device to handle.
1144  * @state: State to put the device into.
1145  */
1146 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1147 {
1148 	int error;
1149 
1150 	if (platform_pci_power_manageable(dev)) {
1151 		error = platform_pci_set_power_state(dev, state);
1152 		if (!error)
1153 			pci_update_current_state(dev, state);
1154 	} else
1155 		error = -ENODEV;
1156 
1157 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1158 		dev->current_state = PCI_D0;
1159 
1160 	return error;
1161 }
1162 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1163 
1164 /**
1165  * pci_wakeup - Wake up a PCI device
1166  * @pci_dev: Device to handle.
1167  * @ign: ignored parameter
1168  */
1169 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1170 {
1171 	pci_wakeup_event(pci_dev);
1172 	pm_request_resume(&pci_dev->dev);
1173 	return 0;
1174 }
1175 
1176 /**
1177  * pci_wakeup_bus - Walk given bus and wake up devices on it
1178  * @bus: Top bus of the subtree to walk.
1179  */
1180 void pci_wakeup_bus(struct pci_bus *bus)
1181 {
1182 	if (bus)
1183 		pci_walk_bus(bus, pci_wakeup, NULL);
1184 }
1185 
1186 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1187 {
1188 	int delay = 1;
1189 	u32 id;
1190 
1191 	/*
1192 	 * After reset, the device should not silently discard config
1193 	 * requests, but it may still indicate that it needs more time by
1194 	 * responding to them with CRS completions.  The Root Port will
1195 	 * generally synthesize ~0 data to complete the read (except when
1196 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1197 	 * case it synthesizes 0x0001 data).
1198 	 *
1199 	 * Wait for the device to return a non-CRS completion.  Read the
1200 	 * Command register instead of Vendor ID so we don't have to
1201 	 * contend with the CRS SV value.
1202 	 */
1203 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1204 	while (id == ~0) {
1205 		if (delay > timeout) {
1206 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1207 				 delay - 1, reset_type);
1208 			return -ENOTTY;
1209 		}
1210 
1211 		if (delay > 1000)
1212 			pci_info(dev, "not ready %dms after %s; waiting\n",
1213 				 delay - 1, reset_type);
1214 
1215 		msleep(delay);
1216 		delay *= 2;
1217 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1218 	}
1219 
1220 	if (delay > 1000)
1221 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1222 			 reset_type);
1223 
1224 	return 0;
1225 }
1226 
1227 /**
1228  * pci_power_up - Put the given device into D0
1229  * @dev: PCI device to power up
1230  */
1231 int pci_power_up(struct pci_dev *dev)
1232 {
1233 	pci_platform_power_transition(dev, PCI_D0);
1234 
1235 	/*
1236 	 * Mandatory power management transition delays are handled in
1237 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1238 	 * corresponding bridge.
1239 	 */
1240 	if (dev->runtime_d3cold) {
1241 		/*
1242 		 * When powering on a bridge from D3cold, the whole hierarchy
1243 		 * may be powered on into D0uninitialized state, resume them to
1244 		 * give them a chance to suspend again
1245 		 */
1246 		pci_wakeup_bus(dev->subordinate);
1247 	}
1248 
1249 	return pci_raw_set_power_state(dev, PCI_D0);
1250 }
1251 
1252 /**
1253  * __pci_dev_set_current_state - Set current state of a PCI device
1254  * @dev: Device to handle
1255  * @data: pointer to state to be set
1256  */
1257 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1258 {
1259 	pci_power_t state = *(pci_power_t *)data;
1260 
1261 	dev->current_state = state;
1262 	return 0;
1263 }
1264 
1265 /**
1266  * pci_bus_set_current_state - Walk given bus and set current state of devices
1267  * @bus: Top bus of the subtree to walk.
1268  * @state: state to be set
1269  */
1270 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1271 {
1272 	if (bus)
1273 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1274 }
1275 
1276 /**
1277  * pci_set_power_state - Set the power state of a PCI device
1278  * @dev: PCI device to handle.
1279  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1280  *
1281  * Transition a device to a new power state, using the platform firmware and/or
1282  * the device's PCI PM registers.
1283  *
1284  * RETURN VALUE:
1285  * -EINVAL if the requested state is invalid.
1286  * -EIO if device does not support PCI PM or its PM capabilities register has a
1287  * wrong version, or device doesn't support the requested state.
1288  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1289  * 0 if device already is in the requested state.
1290  * 0 if the transition is to D3 but D3 is not supported.
1291  * 0 if device's power state has been successfully changed.
1292  */
1293 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1294 {
1295 	int error;
1296 
1297 	/* Bound the state we're entering */
1298 	if (state > PCI_D3cold)
1299 		state = PCI_D3cold;
1300 	else if (state < PCI_D0)
1301 		state = PCI_D0;
1302 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1303 
1304 		/*
1305 		 * If the device or the parent bridge do not support PCI
1306 		 * PM, ignore the request if we're doing anything other
1307 		 * than putting it into D0 (which would only happen on
1308 		 * boot).
1309 		 */
1310 		return 0;
1311 
1312 	/* Check if we're already there */
1313 	if (dev->current_state == state)
1314 		return 0;
1315 
1316 	if (state == PCI_D0)
1317 		return pci_power_up(dev);
1318 
1319 	/*
1320 	 * This device is quirked not to be put into D3, so don't put it in
1321 	 * D3
1322 	 */
1323 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1324 		return 0;
1325 
1326 	/*
1327 	 * To put device in D3cold, we put device into D3hot in native
1328 	 * way, then put device into D3cold with platform ops
1329 	 */
1330 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1331 					PCI_D3hot : state);
1332 
1333 	if (pci_platform_power_transition(dev, state))
1334 		return error;
1335 
1336 	/* Powering off a bridge may power off the whole hierarchy */
1337 	if (state == PCI_D3cold)
1338 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1339 
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL(pci_set_power_state);
1343 
1344 /**
1345  * pci_choose_state - Choose the power state of a PCI device
1346  * @dev: PCI device to be suspended
1347  * @state: target sleep state for the whole system. This is the value
1348  *	   that is passed to suspend() function.
1349  *
1350  * Returns PCI power state suitable for given device and given system
1351  * message.
1352  */
1353 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1354 {
1355 	pci_power_t ret;
1356 
1357 	if (!dev->pm_cap)
1358 		return PCI_D0;
1359 
1360 	ret = platform_pci_choose_state(dev);
1361 	if (ret != PCI_POWER_ERROR)
1362 		return ret;
1363 
1364 	switch (state.event) {
1365 	case PM_EVENT_ON:
1366 		return PCI_D0;
1367 	case PM_EVENT_FREEZE:
1368 	case PM_EVENT_PRETHAW:
1369 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1370 	case PM_EVENT_SUSPEND:
1371 	case PM_EVENT_HIBERNATE:
1372 		return PCI_D3hot;
1373 	default:
1374 		pci_info(dev, "unrecognized suspend event %d\n",
1375 			 state.event);
1376 		BUG();
1377 	}
1378 	return PCI_D0;
1379 }
1380 EXPORT_SYMBOL(pci_choose_state);
1381 
1382 #define PCI_EXP_SAVE_REGS	7
1383 
1384 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1385 						       u16 cap, bool extended)
1386 {
1387 	struct pci_cap_saved_state *tmp;
1388 
1389 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1390 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1391 			return tmp;
1392 	}
1393 	return NULL;
1394 }
1395 
1396 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1397 {
1398 	return _pci_find_saved_cap(dev, cap, false);
1399 }
1400 
1401 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1402 {
1403 	return _pci_find_saved_cap(dev, cap, true);
1404 }
1405 
1406 static int pci_save_pcie_state(struct pci_dev *dev)
1407 {
1408 	int i = 0;
1409 	struct pci_cap_saved_state *save_state;
1410 	u16 *cap;
1411 
1412 	if (!pci_is_pcie(dev))
1413 		return 0;
1414 
1415 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1416 	if (!save_state) {
1417 		pci_err(dev, "buffer not found in %s\n", __func__);
1418 		return -ENOMEM;
1419 	}
1420 
1421 	cap = (u16 *)&save_state->cap.data[0];
1422 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1423 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1424 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1425 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1426 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1427 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1428 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1429 
1430 	return 0;
1431 }
1432 
1433 static void pci_restore_pcie_state(struct pci_dev *dev)
1434 {
1435 	int i = 0;
1436 	struct pci_cap_saved_state *save_state;
1437 	u16 *cap;
1438 
1439 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1440 	if (!save_state)
1441 		return;
1442 
1443 	cap = (u16 *)&save_state->cap.data[0];
1444 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1445 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1446 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1447 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1448 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1449 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1450 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1451 }
1452 
1453 static int pci_save_pcix_state(struct pci_dev *dev)
1454 {
1455 	int pos;
1456 	struct pci_cap_saved_state *save_state;
1457 
1458 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1459 	if (!pos)
1460 		return 0;
1461 
1462 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1463 	if (!save_state) {
1464 		pci_err(dev, "buffer not found in %s\n", __func__);
1465 		return -ENOMEM;
1466 	}
1467 
1468 	pci_read_config_word(dev, pos + PCI_X_CMD,
1469 			     (u16 *)save_state->cap.data);
1470 
1471 	return 0;
1472 }
1473 
1474 static void pci_restore_pcix_state(struct pci_dev *dev)
1475 {
1476 	int i = 0, pos;
1477 	struct pci_cap_saved_state *save_state;
1478 	u16 *cap;
1479 
1480 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1481 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1482 	if (!save_state || !pos)
1483 		return;
1484 	cap = (u16 *)&save_state->cap.data[0];
1485 
1486 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1487 }
1488 
1489 static void pci_save_ltr_state(struct pci_dev *dev)
1490 {
1491 	int ltr;
1492 	struct pci_cap_saved_state *save_state;
1493 	u16 *cap;
1494 
1495 	if (!pci_is_pcie(dev))
1496 		return;
1497 
1498 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1499 	if (!ltr)
1500 		return;
1501 
1502 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1503 	if (!save_state) {
1504 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1505 		return;
1506 	}
1507 
1508 	cap = (u16 *)&save_state->cap.data[0];
1509 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1510 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1511 }
1512 
1513 static void pci_restore_ltr_state(struct pci_dev *dev)
1514 {
1515 	struct pci_cap_saved_state *save_state;
1516 	int ltr;
1517 	u16 *cap;
1518 
1519 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1520 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1521 	if (!save_state || !ltr)
1522 		return;
1523 
1524 	cap = (u16 *)&save_state->cap.data[0];
1525 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1526 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1527 }
1528 
1529 /**
1530  * pci_save_state - save the PCI configuration space of a device before
1531  *		    suspending
1532  * @dev: PCI device that we're dealing with
1533  */
1534 int pci_save_state(struct pci_dev *dev)
1535 {
1536 	int i;
1537 	/* XXX: 100% dword access ok here? */
1538 	for (i = 0; i < 16; i++) {
1539 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1540 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1541 			i * 4, dev->saved_config_space[i]);
1542 	}
1543 	dev->state_saved = true;
1544 
1545 	i = pci_save_pcie_state(dev);
1546 	if (i != 0)
1547 		return i;
1548 
1549 	i = pci_save_pcix_state(dev);
1550 	if (i != 0)
1551 		return i;
1552 
1553 	pci_save_ltr_state(dev);
1554 	pci_save_dpc_state(dev);
1555 	pci_save_aer_state(dev);
1556 	return pci_save_vc_state(dev);
1557 }
1558 EXPORT_SYMBOL(pci_save_state);
1559 
1560 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1561 				     u32 saved_val, int retry, bool force)
1562 {
1563 	u32 val;
1564 
1565 	pci_read_config_dword(pdev, offset, &val);
1566 	if (!force && val == saved_val)
1567 		return;
1568 
1569 	for (;;) {
1570 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1571 			offset, val, saved_val);
1572 		pci_write_config_dword(pdev, offset, saved_val);
1573 		if (retry-- <= 0)
1574 			return;
1575 
1576 		pci_read_config_dword(pdev, offset, &val);
1577 		if (val == saved_val)
1578 			return;
1579 
1580 		mdelay(1);
1581 	}
1582 }
1583 
1584 static void pci_restore_config_space_range(struct pci_dev *pdev,
1585 					   int start, int end, int retry,
1586 					   bool force)
1587 {
1588 	int index;
1589 
1590 	for (index = end; index >= start; index--)
1591 		pci_restore_config_dword(pdev, 4 * index,
1592 					 pdev->saved_config_space[index],
1593 					 retry, force);
1594 }
1595 
1596 static void pci_restore_config_space(struct pci_dev *pdev)
1597 {
1598 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1599 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1600 		/* Restore BARs before the command register. */
1601 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1602 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1603 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1604 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1605 
1606 		/*
1607 		 * Force rewriting of prefetch registers to avoid S3 resume
1608 		 * issues on Intel PCI bridges that occur when these
1609 		 * registers are not explicitly written.
1610 		 */
1611 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1612 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1613 	} else {
1614 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1615 	}
1616 }
1617 
1618 static void pci_restore_rebar_state(struct pci_dev *pdev)
1619 {
1620 	unsigned int pos, nbars, i;
1621 	u32 ctrl;
1622 
1623 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1624 	if (!pos)
1625 		return;
1626 
1627 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1628 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1629 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1630 
1631 	for (i = 0; i < nbars; i++, pos += 8) {
1632 		struct resource *res;
1633 		int bar_idx, size;
1634 
1635 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1636 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1637 		res = pdev->resource + bar_idx;
1638 		size = ilog2(resource_size(res)) - 20;
1639 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1640 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1641 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1642 	}
1643 }
1644 
1645 /**
1646  * pci_restore_state - Restore the saved state of a PCI device
1647  * @dev: PCI device that we're dealing with
1648  */
1649 void pci_restore_state(struct pci_dev *dev)
1650 {
1651 	if (!dev->state_saved)
1652 		return;
1653 
1654 	/*
1655 	 * Restore max latencies (in the LTR capability) before enabling
1656 	 * LTR itself (in the PCIe capability).
1657 	 */
1658 	pci_restore_ltr_state(dev);
1659 
1660 	pci_restore_pcie_state(dev);
1661 	pci_restore_pasid_state(dev);
1662 	pci_restore_pri_state(dev);
1663 	pci_restore_ats_state(dev);
1664 	pci_restore_vc_state(dev);
1665 	pci_restore_rebar_state(dev);
1666 	pci_restore_dpc_state(dev);
1667 
1668 	pci_aer_clear_status(dev);
1669 	pci_restore_aer_state(dev);
1670 
1671 	pci_restore_config_space(dev);
1672 
1673 	pci_restore_pcix_state(dev);
1674 	pci_restore_msi_state(dev);
1675 
1676 	/* Restore ACS and IOV configuration state */
1677 	pci_enable_acs(dev);
1678 	pci_restore_iov_state(dev);
1679 
1680 	dev->state_saved = false;
1681 }
1682 EXPORT_SYMBOL(pci_restore_state);
1683 
1684 struct pci_saved_state {
1685 	u32 config_space[16];
1686 	struct pci_cap_saved_data cap[];
1687 };
1688 
1689 /**
1690  * pci_store_saved_state - Allocate and return an opaque struct containing
1691  *			   the device saved state.
1692  * @dev: PCI device that we're dealing with
1693  *
1694  * Return NULL if no state or error.
1695  */
1696 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1697 {
1698 	struct pci_saved_state *state;
1699 	struct pci_cap_saved_state *tmp;
1700 	struct pci_cap_saved_data *cap;
1701 	size_t size;
1702 
1703 	if (!dev->state_saved)
1704 		return NULL;
1705 
1706 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1707 
1708 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1709 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1710 
1711 	state = kzalloc(size, GFP_KERNEL);
1712 	if (!state)
1713 		return NULL;
1714 
1715 	memcpy(state->config_space, dev->saved_config_space,
1716 	       sizeof(state->config_space));
1717 
1718 	cap = state->cap;
1719 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1720 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1721 		memcpy(cap, &tmp->cap, len);
1722 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1723 	}
1724 	/* Empty cap_save terminates list */
1725 
1726 	return state;
1727 }
1728 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1729 
1730 /**
1731  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1732  * @dev: PCI device that we're dealing with
1733  * @state: Saved state returned from pci_store_saved_state()
1734  */
1735 int pci_load_saved_state(struct pci_dev *dev,
1736 			 struct pci_saved_state *state)
1737 {
1738 	struct pci_cap_saved_data *cap;
1739 
1740 	dev->state_saved = false;
1741 
1742 	if (!state)
1743 		return 0;
1744 
1745 	memcpy(dev->saved_config_space, state->config_space,
1746 	       sizeof(state->config_space));
1747 
1748 	cap = state->cap;
1749 	while (cap->size) {
1750 		struct pci_cap_saved_state *tmp;
1751 
1752 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1753 		if (!tmp || tmp->cap.size != cap->size)
1754 			return -EINVAL;
1755 
1756 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1757 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1758 		       sizeof(struct pci_cap_saved_data) + cap->size);
1759 	}
1760 
1761 	dev->state_saved = true;
1762 	return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1765 
1766 /**
1767  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1768  *				   and free the memory allocated for it.
1769  * @dev: PCI device that we're dealing with
1770  * @state: Pointer to saved state returned from pci_store_saved_state()
1771  */
1772 int pci_load_and_free_saved_state(struct pci_dev *dev,
1773 				  struct pci_saved_state **state)
1774 {
1775 	int ret = pci_load_saved_state(dev, *state);
1776 	kfree(*state);
1777 	*state = NULL;
1778 	return ret;
1779 }
1780 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1781 
1782 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1783 {
1784 	return pci_enable_resources(dev, bars);
1785 }
1786 
1787 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1788 {
1789 	int err;
1790 	struct pci_dev *bridge;
1791 	u16 cmd;
1792 	u8 pin;
1793 
1794 	err = pci_set_power_state(dev, PCI_D0);
1795 	if (err < 0 && err != -EIO)
1796 		return err;
1797 
1798 	bridge = pci_upstream_bridge(dev);
1799 	if (bridge)
1800 		pcie_aspm_powersave_config_link(bridge);
1801 
1802 	err = pcibios_enable_device(dev, bars);
1803 	if (err < 0)
1804 		return err;
1805 	pci_fixup_device(pci_fixup_enable, dev);
1806 
1807 	if (dev->msi_enabled || dev->msix_enabled)
1808 		return 0;
1809 
1810 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1811 	if (pin) {
1812 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1813 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1814 			pci_write_config_word(dev, PCI_COMMAND,
1815 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1816 	}
1817 
1818 	return 0;
1819 }
1820 
1821 /**
1822  * pci_reenable_device - Resume abandoned device
1823  * @dev: PCI device to be resumed
1824  *
1825  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1826  * to be called by normal code, write proper resume handler and use it instead.
1827  */
1828 int pci_reenable_device(struct pci_dev *dev)
1829 {
1830 	if (pci_is_enabled(dev))
1831 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL(pci_reenable_device);
1835 
1836 static void pci_enable_bridge(struct pci_dev *dev)
1837 {
1838 	struct pci_dev *bridge;
1839 	int retval;
1840 
1841 	bridge = pci_upstream_bridge(dev);
1842 	if (bridge)
1843 		pci_enable_bridge(bridge);
1844 
1845 	if (pci_is_enabled(dev)) {
1846 		if (!dev->is_busmaster)
1847 			pci_set_master(dev);
1848 		return;
1849 	}
1850 
1851 	retval = pci_enable_device(dev);
1852 	if (retval)
1853 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1854 			retval);
1855 	pci_set_master(dev);
1856 }
1857 
1858 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1859 {
1860 	struct pci_dev *bridge;
1861 	int err;
1862 	int i, bars = 0;
1863 
1864 	/*
1865 	 * Power state could be unknown at this point, either due to a fresh
1866 	 * boot or a device removal call.  So get the current power state
1867 	 * so that things like MSI message writing will behave as expected
1868 	 * (e.g. if the device really is in D0 at enable time).
1869 	 */
1870 	if (dev->pm_cap) {
1871 		u16 pmcsr;
1872 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1873 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1874 	}
1875 
1876 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1877 		return 0;		/* already enabled */
1878 
1879 	bridge = pci_upstream_bridge(dev);
1880 	if (bridge)
1881 		pci_enable_bridge(bridge);
1882 
1883 	/* only skip sriov related */
1884 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1885 		if (dev->resource[i].flags & flags)
1886 			bars |= (1 << i);
1887 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1888 		if (dev->resource[i].flags & flags)
1889 			bars |= (1 << i);
1890 
1891 	err = do_pci_enable_device(dev, bars);
1892 	if (err < 0)
1893 		atomic_dec(&dev->enable_cnt);
1894 	return err;
1895 }
1896 
1897 /**
1898  * pci_enable_device_io - Initialize a device for use with IO space
1899  * @dev: PCI device to be initialized
1900  *
1901  * Initialize device before it's used by a driver. Ask low-level code
1902  * to enable I/O resources. Wake up the device if it was suspended.
1903  * Beware, this function can fail.
1904  */
1905 int pci_enable_device_io(struct pci_dev *dev)
1906 {
1907 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1908 }
1909 EXPORT_SYMBOL(pci_enable_device_io);
1910 
1911 /**
1912  * pci_enable_device_mem - Initialize a device for use with Memory space
1913  * @dev: PCI device to be initialized
1914  *
1915  * Initialize device before it's used by a driver. Ask low-level code
1916  * to enable Memory resources. Wake up the device if it was suspended.
1917  * Beware, this function can fail.
1918  */
1919 int pci_enable_device_mem(struct pci_dev *dev)
1920 {
1921 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1922 }
1923 EXPORT_SYMBOL(pci_enable_device_mem);
1924 
1925 /**
1926  * pci_enable_device - Initialize device before it's used by a driver.
1927  * @dev: PCI device to be initialized
1928  *
1929  * Initialize device before it's used by a driver. Ask low-level code
1930  * to enable I/O and memory. Wake up the device if it was suspended.
1931  * Beware, this function can fail.
1932  *
1933  * Note we don't actually enable the device many times if we call
1934  * this function repeatedly (we just increment the count).
1935  */
1936 int pci_enable_device(struct pci_dev *dev)
1937 {
1938 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1939 }
1940 EXPORT_SYMBOL(pci_enable_device);
1941 
1942 /*
1943  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1944  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1945  * there's no need to track it separately.  pci_devres is initialized
1946  * when a device is enabled using managed PCI device enable interface.
1947  */
1948 struct pci_devres {
1949 	unsigned int enabled:1;
1950 	unsigned int pinned:1;
1951 	unsigned int orig_intx:1;
1952 	unsigned int restore_intx:1;
1953 	unsigned int mwi:1;
1954 	u32 region_mask;
1955 };
1956 
1957 static void pcim_release(struct device *gendev, void *res)
1958 {
1959 	struct pci_dev *dev = to_pci_dev(gendev);
1960 	struct pci_devres *this = res;
1961 	int i;
1962 
1963 	if (dev->msi_enabled)
1964 		pci_disable_msi(dev);
1965 	if (dev->msix_enabled)
1966 		pci_disable_msix(dev);
1967 
1968 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1969 		if (this->region_mask & (1 << i))
1970 			pci_release_region(dev, i);
1971 
1972 	if (this->mwi)
1973 		pci_clear_mwi(dev);
1974 
1975 	if (this->restore_intx)
1976 		pci_intx(dev, this->orig_intx);
1977 
1978 	if (this->enabled && !this->pinned)
1979 		pci_disable_device(dev);
1980 }
1981 
1982 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1983 {
1984 	struct pci_devres *dr, *new_dr;
1985 
1986 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1987 	if (dr)
1988 		return dr;
1989 
1990 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1991 	if (!new_dr)
1992 		return NULL;
1993 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1994 }
1995 
1996 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1997 {
1998 	if (pci_is_managed(pdev))
1999 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2000 	return NULL;
2001 }
2002 
2003 /**
2004  * pcim_enable_device - Managed pci_enable_device()
2005  * @pdev: PCI device to be initialized
2006  *
2007  * Managed pci_enable_device().
2008  */
2009 int pcim_enable_device(struct pci_dev *pdev)
2010 {
2011 	struct pci_devres *dr;
2012 	int rc;
2013 
2014 	dr = get_pci_dr(pdev);
2015 	if (unlikely(!dr))
2016 		return -ENOMEM;
2017 	if (dr->enabled)
2018 		return 0;
2019 
2020 	rc = pci_enable_device(pdev);
2021 	if (!rc) {
2022 		pdev->is_managed = 1;
2023 		dr->enabled = 1;
2024 	}
2025 	return rc;
2026 }
2027 EXPORT_SYMBOL(pcim_enable_device);
2028 
2029 /**
2030  * pcim_pin_device - Pin managed PCI device
2031  * @pdev: PCI device to pin
2032  *
2033  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2034  * driver detach.  @pdev must have been enabled with
2035  * pcim_enable_device().
2036  */
2037 void pcim_pin_device(struct pci_dev *pdev)
2038 {
2039 	struct pci_devres *dr;
2040 
2041 	dr = find_pci_dr(pdev);
2042 	WARN_ON(!dr || !dr->enabled);
2043 	if (dr)
2044 		dr->pinned = 1;
2045 }
2046 EXPORT_SYMBOL(pcim_pin_device);
2047 
2048 /*
2049  * pcibios_add_device - provide arch specific hooks when adding device dev
2050  * @dev: the PCI device being added
2051  *
2052  * Permits the platform to provide architecture specific functionality when
2053  * devices are added. This is the default implementation. Architecture
2054  * implementations can override this.
2055  */
2056 int __weak pcibios_add_device(struct pci_dev *dev)
2057 {
2058 	return 0;
2059 }
2060 
2061 /**
2062  * pcibios_release_device - provide arch specific hooks when releasing
2063  *			    device dev
2064  * @dev: the PCI device being released
2065  *
2066  * Permits the platform to provide architecture specific functionality when
2067  * devices are released. This is the default implementation. Architecture
2068  * implementations can override this.
2069  */
2070 void __weak pcibios_release_device(struct pci_dev *dev) {}
2071 
2072 /**
2073  * pcibios_disable_device - disable arch specific PCI resources for device dev
2074  * @dev: the PCI device to disable
2075  *
2076  * Disables architecture specific PCI resources for the device. This
2077  * is the default implementation. Architecture implementations can
2078  * override this.
2079  */
2080 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2081 
2082 /**
2083  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2084  * @irq: ISA IRQ to penalize
2085  * @active: IRQ active or not
2086  *
2087  * Permits the platform to provide architecture-specific functionality when
2088  * penalizing ISA IRQs. This is the default implementation. Architecture
2089  * implementations can override this.
2090  */
2091 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2092 
2093 static void do_pci_disable_device(struct pci_dev *dev)
2094 {
2095 	u16 pci_command;
2096 
2097 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2098 	if (pci_command & PCI_COMMAND_MASTER) {
2099 		pci_command &= ~PCI_COMMAND_MASTER;
2100 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2101 	}
2102 
2103 	pcibios_disable_device(dev);
2104 }
2105 
2106 /**
2107  * pci_disable_enabled_device - Disable device without updating enable_cnt
2108  * @dev: PCI device to disable
2109  *
2110  * NOTE: This function is a backend of PCI power management routines and is
2111  * not supposed to be called drivers.
2112  */
2113 void pci_disable_enabled_device(struct pci_dev *dev)
2114 {
2115 	if (pci_is_enabled(dev))
2116 		do_pci_disable_device(dev);
2117 }
2118 
2119 /**
2120  * pci_disable_device - Disable PCI device after use
2121  * @dev: PCI device to be disabled
2122  *
2123  * Signal to the system that the PCI device is not in use by the system
2124  * anymore.  This only involves disabling PCI bus-mastering, if active.
2125  *
2126  * Note we don't actually disable the device until all callers of
2127  * pci_enable_device() have called pci_disable_device().
2128  */
2129 void pci_disable_device(struct pci_dev *dev)
2130 {
2131 	struct pci_devres *dr;
2132 
2133 	dr = find_pci_dr(dev);
2134 	if (dr)
2135 		dr->enabled = 0;
2136 
2137 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2138 		      "disabling already-disabled device");
2139 
2140 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2141 		return;
2142 
2143 	do_pci_disable_device(dev);
2144 
2145 	dev->is_busmaster = 0;
2146 }
2147 EXPORT_SYMBOL(pci_disable_device);
2148 
2149 /**
2150  * pcibios_set_pcie_reset_state - set reset state for device dev
2151  * @dev: the PCIe device reset
2152  * @state: Reset state to enter into
2153  *
2154  * Set the PCIe reset state for the device. This is the default
2155  * implementation. Architecture implementations can override this.
2156  */
2157 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2158 					enum pcie_reset_state state)
2159 {
2160 	return -EINVAL;
2161 }
2162 
2163 /**
2164  * pci_set_pcie_reset_state - set reset state for device dev
2165  * @dev: the PCIe device reset
2166  * @state: Reset state to enter into
2167  *
2168  * Sets the PCI reset state for the device.
2169  */
2170 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2171 {
2172 	return pcibios_set_pcie_reset_state(dev, state);
2173 }
2174 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2175 
2176 void pcie_clear_device_status(struct pci_dev *dev)
2177 {
2178 	u16 sta;
2179 
2180 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2181 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2182 }
2183 
2184 /**
2185  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2186  * @dev: PCIe root port or event collector.
2187  */
2188 void pcie_clear_root_pme_status(struct pci_dev *dev)
2189 {
2190 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2191 }
2192 
2193 /**
2194  * pci_check_pme_status - Check if given device has generated PME.
2195  * @dev: Device to check.
2196  *
2197  * Check the PME status of the device and if set, clear it and clear PME enable
2198  * (if set).  Return 'true' if PME status and PME enable were both set or
2199  * 'false' otherwise.
2200  */
2201 bool pci_check_pme_status(struct pci_dev *dev)
2202 {
2203 	int pmcsr_pos;
2204 	u16 pmcsr;
2205 	bool ret = false;
2206 
2207 	if (!dev->pm_cap)
2208 		return false;
2209 
2210 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2211 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2212 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2213 		return false;
2214 
2215 	/* Clear PME status. */
2216 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2217 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2218 		/* Disable PME to avoid interrupt flood. */
2219 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2220 		ret = true;
2221 	}
2222 
2223 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2224 
2225 	return ret;
2226 }
2227 
2228 /**
2229  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2230  * @dev: Device to handle.
2231  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2232  *
2233  * Check if @dev has generated PME and queue a resume request for it in that
2234  * case.
2235  */
2236 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2237 {
2238 	if (pme_poll_reset && dev->pme_poll)
2239 		dev->pme_poll = false;
2240 
2241 	if (pci_check_pme_status(dev)) {
2242 		pci_wakeup_event(dev);
2243 		pm_request_resume(&dev->dev);
2244 	}
2245 	return 0;
2246 }
2247 
2248 /**
2249  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2250  * @bus: Top bus of the subtree to walk.
2251  */
2252 void pci_pme_wakeup_bus(struct pci_bus *bus)
2253 {
2254 	if (bus)
2255 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2256 }
2257 
2258 
2259 /**
2260  * pci_pme_capable - check the capability of PCI device to generate PME#
2261  * @dev: PCI device to handle.
2262  * @state: PCI state from which device will issue PME#.
2263  */
2264 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2265 {
2266 	if (!dev->pm_cap)
2267 		return false;
2268 
2269 	return !!(dev->pme_support & (1 << state));
2270 }
2271 EXPORT_SYMBOL(pci_pme_capable);
2272 
2273 static void pci_pme_list_scan(struct work_struct *work)
2274 {
2275 	struct pci_pme_device *pme_dev, *n;
2276 
2277 	mutex_lock(&pci_pme_list_mutex);
2278 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2279 		if (pme_dev->dev->pme_poll) {
2280 			struct pci_dev *bridge;
2281 
2282 			bridge = pme_dev->dev->bus->self;
2283 			/*
2284 			 * If bridge is in low power state, the
2285 			 * configuration space of subordinate devices
2286 			 * may be not accessible
2287 			 */
2288 			if (bridge && bridge->current_state != PCI_D0)
2289 				continue;
2290 			/*
2291 			 * If the device is in D3cold it should not be
2292 			 * polled either.
2293 			 */
2294 			if (pme_dev->dev->current_state == PCI_D3cold)
2295 				continue;
2296 
2297 			pci_pme_wakeup(pme_dev->dev, NULL);
2298 		} else {
2299 			list_del(&pme_dev->list);
2300 			kfree(pme_dev);
2301 		}
2302 	}
2303 	if (!list_empty(&pci_pme_list))
2304 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2305 				   msecs_to_jiffies(PME_TIMEOUT));
2306 	mutex_unlock(&pci_pme_list_mutex);
2307 }
2308 
2309 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2310 {
2311 	u16 pmcsr;
2312 
2313 	if (!dev->pme_support)
2314 		return;
2315 
2316 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2317 	/* Clear PME_Status by writing 1 to it and enable PME# */
2318 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2319 	if (!enable)
2320 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2321 
2322 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2323 }
2324 
2325 /**
2326  * pci_pme_restore - Restore PME configuration after config space restore.
2327  * @dev: PCI device to update.
2328  */
2329 void pci_pme_restore(struct pci_dev *dev)
2330 {
2331 	u16 pmcsr;
2332 
2333 	if (!dev->pme_support)
2334 		return;
2335 
2336 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2337 	if (dev->wakeup_prepared) {
2338 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2339 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2340 	} else {
2341 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2342 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2343 	}
2344 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2345 }
2346 
2347 /**
2348  * pci_pme_active - enable or disable PCI device's PME# function
2349  * @dev: PCI device to handle.
2350  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2351  *
2352  * The caller must verify that the device is capable of generating PME# before
2353  * calling this function with @enable equal to 'true'.
2354  */
2355 void pci_pme_active(struct pci_dev *dev, bool enable)
2356 {
2357 	__pci_pme_active(dev, enable);
2358 
2359 	/*
2360 	 * PCI (as opposed to PCIe) PME requires that the device have
2361 	 * its PME# line hooked up correctly. Not all hardware vendors
2362 	 * do this, so the PME never gets delivered and the device
2363 	 * remains asleep. The easiest way around this is to
2364 	 * periodically walk the list of suspended devices and check
2365 	 * whether any have their PME flag set. The assumption is that
2366 	 * we'll wake up often enough anyway that this won't be a huge
2367 	 * hit, and the power savings from the devices will still be a
2368 	 * win.
2369 	 *
2370 	 * Although PCIe uses in-band PME message instead of PME# line
2371 	 * to report PME, PME does not work for some PCIe devices in
2372 	 * reality.  For example, there are devices that set their PME
2373 	 * status bits, but don't really bother to send a PME message;
2374 	 * there are PCI Express Root Ports that don't bother to
2375 	 * trigger interrupts when they receive PME messages from the
2376 	 * devices below.  So PME poll is used for PCIe devices too.
2377 	 */
2378 
2379 	if (dev->pme_poll) {
2380 		struct pci_pme_device *pme_dev;
2381 		if (enable) {
2382 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2383 					  GFP_KERNEL);
2384 			if (!pme_dev) {
2385 				pci_warn(dev, "can't enable PME#\n");
2386 				return;
2387 			}
2388 			pme_dev->dev = dev;
2389 			mutex_lock(&pci_pme_list_mutex);
2390 			list_add(&pme_dev->list, &pci_pme_list);
2391 			if (list_is_singular(&pci_pme_list))
2392 				queue_delayed_work(system_freezable_wq,
2393 						   &pci_pme_work,
2394 						   msecs_to_jiffies(PME_TIMEOUT));
2395 			mutex_unlock(&pci_pme_list_mutex);
2396 		} else {
2397 			mutex_lock(&pci_pme_list_mutex);
2398 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2399 				if (pme_dev->dev == dev) {
2400 					list_del(&pme_dev->list);
2401 					kfree(pme_dev);
2402 					break;
2403 				}
2404 			}
2405 			mutex_unlock(&pci_pme_list_mutex);
2406 		}
2407 	}
2408 
2409 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2410 }
2411 EXPORT_SYMBOL(pci_pme_active);
2412 
2413 /**
2414  * __pci_enable_wake - enable PCI device as wakeup event source
2415  * @dev: PCI device affected
2416  * @state: PCI state from which device will issue wakeup events
2417  * @enable: True to enable event generation; false to disable
2418  *
2419  * This enables the device as a wakeup event source, or disables it.
2420  * When such events involves platform-specific hooks, those hooks are
2421  * called automatically by this routine.
2422  *
2423  * Devices with legacy power management (no standard PCI PM capabilities)
2424  * always require such platform hooks.
2425  *
2426  * RETURN VALUE:
2427  * 0 is returned on success
2428  * -EINVAL is returned if device is not supposed to wake up the system
2429  * Error code depending on the platform is returned if both the platform and
2430  * the native mechanism fail to enable the generation of wake-up events
2431  */
2432 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2433 {
2434 	int ret = 0;
2435 
2436 	/*
2437 	 * Bridges that are not power-manageable directly only signal
2438 	 * wakeup on behalf of subordinate devices which is set up
2439 	 * elsewhere, so skip them. However, bridges that are
2440 	 * power-manageable may signal wakeup for themselves (for example,
2441 	 * on a hotplug event) and they need to be covered here.
2442 	 */
2443 	if (!pci_power_manageable(dev))
2444 		return 0;
2445 
2446 	/* Don't do the same thing twice in a row for one device. */
2447 	if (!!enable == !!dev->wakeup_prepared)
2448 		return 0;
2449 
2450 	/*
2451 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2452 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2453 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2454 	 */
2455 
2456 	if (enable) {
2457 		int error;
2458 
2459 		if (pci_pme_capable(dev, state))
2460 			pci_pme_active(dev, true);
2461 		else
2462 			ret = 1;
2463 		error = platform_pci_set_wakeup(dev, true);
2464 		if (ret)
2465 			ret = error;
2466 		if (!ret)
2467 			dev->wakeup_prepared = true;
2468 	} else {
2469 		platform_pci_set_wakeup(dev, false);
2470 		pci_pme_active(dev, false);
2471 		dev->wakeup_prepared = false;
2472 	}
2473 
2474 	return ret;
2475 }
2476 
2477 /**
2478  * pci_enable_wake - change wakeup settings for a PCI device
2479  * @pci_dev: Target device
2480  * @state: PCI state from which device will issue wakeup events
2481  * @enable: Whether or not to enable event generation
2482  *
2483  * If @enable is set, check device_may_wakeup() for the device before calling
2484  * __pci_enable_wake() for it.
2485  */
2486 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2487 {
2488 	if (enable && !device_may_wakeup(&pci_dev->dev))
2489 		return -EINVAL;
2490 
2491 	return __pci_enable_wake(pci_dev, state, enable);
2492 }
2493 EXPORT_SYMBOL(pci_enable_wake);
2494 
2495 /**
2496  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2497  * @dev: PCI device to prepare
2498  * @enable: True to enable wake-up event generation; false to disable
2499  *
2500  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2501  * and this function allows them to set that up cleanly - pci_enable_wake()
2502  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2503  * ordering constraints.
2504  *
2505  * This function only returns error code if the device is not allowed to wake
2506  * up the system from sleep or it is not capable of generating PME# from both
2507  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2508  */
2509 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2510 {
2511 	return pci_pme_capable(dev, PCI_D3cold) ?
2512 			pci_enable_wake(dev, PCI_D3cold, enable) :
2513 			pci_enable_wake(dev, PCI_D3hot, enable);
2514 }
2515 EXPORT_SYMBOL(pci_wake_from_d3);
2516 
2517 /**
2518  * pci_target_state - find an appropriate low power state for a given PCI dev
2519  * @dev: PCI device
2520  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2521  *
2522  * Use underlying platform code to find a supported low power state for @dev.
2523  * If the platform can't manage @dev, return the deepest state from which it
2524  * can generate wake events, based on any available PME info.
2525  */
2526 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2527 {
2528 	pci_power_t target_state = PCI_D3hot;
2529 
2530 	if (platform_pci_power_manageable(dev)) {
2531 		/*
2532 		 * Call the platform to find the target state for the device.
2533 		 */
2534 		pci_power_t state = platform_pci_choose_state(dev);
2535 
2536 		switch (state) {
2537 		case PCI_POWER_ERROR:
2538 		case PCI_UNKNOWN:
2539 			break;
2540 		case PCI_D1:
2541 		case PCI_D2:
2542 			if (pci_no_d1d2(dev))
2543 				break;
2544 			fallthrough;
2545 		default:
2546 			target_state = state;
2547 		}
2548 
2549 		return target_state;
2550 	}
2551 
2552 	if (!dev->pm_cap)
2553 		target_state = PCI_D0;
2554 
2555 	/*
2556 	 * If the device is in D3cold even though it's not power-manageable by
2557 	 * the platform, it may have been powered down by non-standard means.
2558 	 * Best to let it slumber.
2559 	 */
2560 	if (dev->current_state == PCI_D3cold)
2561 		target_state = PCI_D3cold;
2562 
2563 	if (wakeup) {
2564 		/*
2565 		 * Find the deepest state from which the device can generate
2566 		 * PME#.
2567 		 */
2568 		if (dev->pme_support) {
2569 			while (target_state
2570 			      && !(dev->pme_support & (1 << target_state)))
2571 				target_state--;
2572 		}
2573 	}
2574 
2575 	return target_state;
2576 }
2577 
2578 /**
2579  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2580  *			  into a sleep state
2581  * @dev: Device to handle.
2582  *
2583  * Choose the power state appropriate for the device depending on whether
2584  * it can wake up the system and/or is power manageable by the platform
2585  * (PCI_D3hot is the default) and put the device into that state.
2586  */
2587 int pci_prepare_to_sleep(struct pci_dev *dev)
2588 {
2589 	bool wakeup = device_may_wakeup(&dev->dev);
2590 	pci_power_t target_state = pci_target_state(dev, wakeup);
2591 	int error;
2592 
2593 	if (target_state == PCI_POWER_ERROR)
2594 		return -EIO;
2595 
2596 	pci_enable_wake(dev, target_state, wakeup);
2597 
2598 	error = pci_set_power_state(dev, target_state);
2599 
2600 	if (error)
2601 		pci_enable_wake(dev, target_state, false);
2602 
2603 	return error;
2604 }
2605 EXPORT_SYMBOL(pci_prepare_to_sleep);
2606 
2607 /**
2608  * pci_back_from_sleep - turn PCI device on during system-wide transition
2609  *			 into working state
2610  * @dev: Device to handle.
2611  *
2612  * Disable device's system wake-up capability and put it into D0.
2613  */
2614 int pci_back_from_sleep(struct pci_dev *dev)
2615 {
2616 	pci_enable_wake(dev, PCI_D0, false);
2617 	return pci_set_power_state(dev, PCI_D0);
2618 }
2619 EXPORT_SYMBOL(pci_back_from_sleep);
2620 
2621 /**
2622  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2623  * @dev: PCI device being suspended.
2624  *
2625  * Prepare @dev to generate wake-up events at run time and put it into a low
2626  * power state.
2627  */
2628 int pci_finish_runtime_suspend(struct pci_dev *dev)
2629 {
2630 	pci_power_t target_state;
2631 	int error;
2632 
2633 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2634 	if (target_state == PCI_POWER_ERROR)
2635 		return -EIO;
2636 
2637 	dev->runtime_d3cold = target_state == PCI_D3cold;
2638 
2639 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2640 
2641 	error = pci_set_power_state(dev, target_state);
2642 
2643 	if (error) {
2644 		pci_enable_wake(dev, target_state, false);
2645 		dev->runtime_d3cold = false;
2646 	}
2647 
2648 	return error;
2649 }
2650 
2651 /**
2652  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2653  * @dev: Device to check.
2654  *
2655  * Return true if the device itself is capable of generating wake-up events
2656  * (through the platform or using the native PCIe PME) or if the device supports
2657  * PME and one of its upstream bridges can generate wake-up events.
2658  */
2659 bool pci_dev_run_wake(struct pci_dev *dev)
2660 {
2661 	struct pci_bus *bus = dev->bus;
2662 
2663 	if (!dev->pme_support)
2664 		return false;
2665 
2666 	/* PME-capable in principle, but not from the target power state */
2667 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2668 		return false;
2669 
2670 	if (device_can_wakeup(&dev->dev))
2671 		return true;
2672 
2673 	while (bus->parent) {
2674 		struct pci_dev *bridge = bus->self;
2675 
2676 		if (device_can_wakeup(&bridge->dev))
2677 			return true;
2678 
2679 		bus = bus->parent;
2680 	}
2681 
2682 	/* We have reached the root bus. */
2683 	if (bus->bridge)
2684 		return device_can_wakeup(bus->bridge);
2685 
2686 	return false;
2687 }
2688 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2689 
2690 /**
2691  * pci_dev_need_resume - Check if it is necessary to resume the device.
2692  * @pci_dev: Device to check.
2693  *
2694  * Return 'true' if the device is not runtime-suspended or it has to be
2695  * reconfigured due to wakeup settings difference between system and runtime
2696  * suspend, or the current power state of it is not suitable for the upcoming
2697  * (system-wide) transition.
2698  */
2699 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2700 {
2701 	struct device *dev = &pci_dev->dev;
2702 	pci_power_t target_state;
2703 
2704 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2705 		return true;
2706 
2707 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2708 
2709 	/*
2710 	 * If the earlier platform check has not triggered, D3cold is just power
2711 	 * removal on top of D3hot, so no need to resume the device in that
2712 	 * case.
2713 	 */
2714 	return target_state != pci_dev->current_state &&
2715 		target_state != PCI_D3cold &&
2716 		pci_dev->current_state != PCI_D3hot;
2717 }
2718 
2719 /**
2720  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2721  * @pci_dev: Device to check.
2722  *
2723  * If the device is suspended and it is not configured for system wakeup,
2724  * disable PME for it to prevent it from waking up the system unnecessarily.
2725  *
2726  * Note that if the device's power state is D3cold and the platform check in
2727  * pci_dev_need_resume() has not triggered, the device's configuration need not
2728  * be changed.
2729  */
2730 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2731 {
2732 	struct device *dev = &pci_dev->dev;
2733 
2734 	spin_lock_irq(&dev->power.lock);
2735 
2736 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2737 	    pci_dev->current_state < PCI_D3cold)
2738 		__pci_pme_active(pci_dev, false);
2739 
2740 	spin_unlock_irq(&dev->power.lock);
2741 }
2742 
2743 /**
2744  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2745  * @pci_dev: Device to handle.
2746  *
2747  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2748  * it might have been disabled during the prepare phase of system suspend if
2749  * the device was not configured for system wakeup.
2750  */
2751 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2752 {
2753 	struct device *dev = &pci_dev->dev;
2754 
2755 	if (!pci_dev_run_wake(pci_dev))
2756 		return;
2757 
2758 	spin_lock_irq(&dev->power.lock);
2759 
2760 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2761 		__pci_pme_active(pci_dev, true);
2762 
2763 	spin_unlock_irq(&dev->power.lock);
2764 }
2765 
2766 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2767 {
2768 	struct device *dev = &pdev->dev;
2769 	struct device *parent = dev->parent;
2770 
2771 	if (parent)
2772 		pm_runtime_get_sync(parent);
2773 	pm_runtime_get_noresume(dev);
2774 	/*
2775 	 * pdev->current_state is set to PCI_D3cold during suspending,
2776 	 * so wait until suspending completes
2777 	 */
2778 	pm_runtime_barrier(dev);
2779 	/*
2780 	 * Only need to resume devices in D3cold, because config
2781 	 * registers are still accessible for devices suspended but
2782 	 * not in D3cold.
2783 	 */
2784 	if (pdev->current_state == PCI_D3cold)
2785 		pm_runtime_resume(dev);
2786 }
2787 
2788 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2789 {
2790 	struct device *dev = &pdev->dev;
2791 	struct device *parent = dev->parent;
2792 
2793 	pm_runtime_put(dev);
2794 	if (parent)
2795 		pm_runtime_put_sync(parent);
2796 }
2797 
2798 static const struct dmi_system_id bridge_d3_blacklist[] = {
2799 #ifdef CONFIG_X86
2800 	{
2801 		/*
2802 		 * Gigabyte X299 root port is not marked as hotplug capable
2803 		 * which allows Linux to power manage it.  However, this
2804 		 * confuses the BIOS SMI handler so don't power manage root
2805 		 * ports on that system.
2806 		 */
2807 		.ident = "X299 DESIGNARE EX-CF",
2808 		.matches = {
2809 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2810 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2811 		},
2812 	},
2813 #endif
2814 	{ }
2815 };
2816 
2817 /**
2818  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2819  * @bridge: Bridge to check
2820  *
2821  * This function checks if it is possible to move the bridge to D3.
2822  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2823  */
2824 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2825 {
2826 	if (!pci_is_pcie(bridge))
2827 		return false;
2828 
2829 	switch (pci_pcie_type(bridge)) {
2830 	case PCI_EXP_TYPE_ROOT_PORT:
2831 	case PCI_EXP_TYPE_UPSTREAM:
2832 	case PCI_EXP_TYPE_DOWNSTREAM:
2833 		if (pci_bridge_d3_disable)
2834 			return false;
2835 
2836 		/*
2837 		 * Hotplug ports handled by firmware in System Management Mode
2838 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2839 		 */
2840 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2841 			return false;
2842 
2843 		if (pci_bridge_d3_force)
2844 			return true;
2845 
2846 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2847 		if (bridge->is_thunderbolt)
2848 			return true;
2849 
2850 		/* Platform might know better if the bridge supports D3 */
2851 		if (platform_pci_bridge_d3(bridge))
2852 			return true;
2853 
2854 		/*
2855 		 * Hotplug ports handled natively by the OS were not validated
2856 		 * by vendors for runtime D3 at least until 2018 because there
2857 		 * was no OS support.
2858 		 */
2859 		if (bridge->is_hotplug_bridge)
2860 			return false;
2861 
2862 		if (dmi_check_system(bridge_d3_blacklist))
2863 			return false;
2864 
2865 		/*
2866 		 * It should be safe to put PCIe ports from 2015 or newer
2867 		 * to D3.
2868 		 */
2869 		if (dmi_get_bios_year() >= 2015)
2870 			return true;
2871 		break;
2872 	}
2873 
2874 	return false;
2875 }
2876 
2877 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2878 {
2879 	bool *d3cold_ok = data;
2880 
2881 	if (/* The device needs to be allowed to go D3cold ... */
2882 	    dev->no_d3cold || !dev->d3cold_allowed ||
2883 
2884 	    /* ... and if it is wakeup capable to do so from D3cold. */
2885 	    (device_may_wakeup(&dev->dev) &&
2886 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2887 
2888 	    /* If it is a bridge it must be allowed to go to D3. */
2889 	    !pci_power_manageable(dev))
2890 
2891 		*d3cold_ok = false;
2892 
2893 	return !*d3cold_ok;
2894 }
2895 
2896 /*
2897  * pci_bridge_d3_update - Update bridge D3 capabilities
2898  * @dev: PCI device which is changed
2899  *
2900  * Update upstream bridge PM capabilities accordingly depending on if the
2901  * device PM configuration was changed or the device is being removed.  The
2902  * change is also propagated upstream.
2903  */
2904 void pci_bridge_d3_update(struct pci_dev *dev)
2905 {
2906 	bool remove = !device_is_registered(&dev->dev);
2907 	struct pci_dev *bridge;
2908 	bool d3cold_ok = true;
2909 
2910 	bridge = pci_upstream_bridge(dev);
2911 	if (!bridge || !pci_bridge_d3_possible(bridge))
2912 		return;
2913 
2914 	/*
2915 	 * If D3 is currently allowed for the bridge, removing one of its
2916 	 * children won't change that.
2917 	 */
2918 	if (remove && bridge->bridge_d3)
2919 		return;
2920 
2921 	/*
2922 	 * If D3 is currently allowed for the bridge and a child is added or
2923 	 * changed, disallowance of D3 can only be caused by that child, so
2924 	 * we only need to check that single device, not any of its siblings.
2925 	 *
2926 	 * If D3 is currently not allowed for the bridge, checking the device
2927 	 * first may allow us to skip checking its siblings.
2928 	 */
2929 	if (!remove)
2930 		pci_dev_check_d3cold(dev, &d3cold_ok);
2931 
2932 	/*
2933 	 * If D3 is currently not allowed for the bridge, this may be caused
2934 	 * either by the device being changed/removed or any of its siblings,
2935 	 * so we need to go through all children to find out if one of them
2936 	 * continues to block D3.
2937 	 */
2938 	if (d3cold_ok && !bridge->bridge_d3)
2939 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2940 			     &d3cold_ok);
2941 
2942 	if (bridge->bridge_d3 != d3cold_ok) {
2943 		bridge->bridge_d3 = d3cold_ok;
2944 		/* Propagate change to upstream bridges */
2945 		pci_bridge_d3_update(bridge);
2946 	}
2947 }
2948 
2949 /**
2950  * pci_d3cold_enable - Enable D3cold for device
2951  * @dev: PCI device to handle
2952  *
2953  * This function can be used in drivers to enable D3cold from the device
2954  * they handle.  It also updates upstream PCI bridge PM capabilities
2955  * accordingly.
2956  */
2957 void pci_d3cold_enable(struct pci_dev *dev)
2958 {
2959 	if (dev->no_d3cold) {
2960 		dev->no_d3cold = false;
2961 		pci_bridge_d3_update(dev);
2962 	}
2963 }
2964 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2965 
2966 /**
2967  * pci_d3cold_disable - Disable D3cold for device
2968  * @dev: PCI device to handle
2969  *
2970  * This function can be used in drivers to disable D3cold from the device
2971  * they handle.  It also updates upstream PCI bridge PM capabilities
2972  * accordingly.
2973  */
2974 void pci_d3cold_disable(struct pci_dev *dev)
2975 {
2976 	if (!dev->no_d3cold) {
2977 		dev->no_d3cold = true;
2978 		pci_bridge_d3_update(dev);
2979 	}
2980 }
2981 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2982 
2983 /**
2984  * pci_pm_init - Initialize PM functions of given PCI device
2985  * @dev: PCI device to handle.
2986  */
2987 void pci_pm_init(struct pci_dev *dev)
2988 {
2989 	int pm;
2990 	u16 status;
2991 	u16 pmc;
2992 
2993 	pm_runtime_forbid(&dev->dev);
2994 	pm_runtime_set_active(&dev->dev);
2995 	pm_runtime_enable(&dev->dev);
2996 	device_enable_async_suspend(&dev->dev);
2997 	dev->wakeup_prepared = false;
2998 
2999 	dev->pm_cap = 0;
3000 	dev->pme_support = 0;
3001 
3002 	/* find PCI PM capability in list */
3003 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3004 	if (!pm)
3005 		return;
3006 	/* Check device's ability to generate PME# */
3007 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3008 
3009 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3010 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3011 			pmc & PCI_PM_CAP_VER_MASK);
3012 		return;
3013 	}
3014 
3015 	dev->pm_cap = pm;
3016 	dev->d3_delay = PCI_PM_D3_WAIT;
3017 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3018 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3019 	dev->d3cold_allowed = true;
3020 
3021 	dev->d1_support = false;
3022 	dev->d2_support = false;
3023 	if (!pci_no_d1d2(dev)) {
3024 		if (pmc & PCI_PM_CAP_D1)
3025 			dev->d1_support = true;
3026 		if (pmc & PCI_PM_CAP_D2)
3027 			dev->d2_support = true;
3028 
3029 		if (dev->d1_support || dev->d2_support)
3030 			pci_info(dev, "supports%s%s\n",
3031 				   dev->d1_support ? " D1" : "",
3032 				   dev->d2_support ? " D2" : "");
3033 	}
3034 
3035 	pmc &= PCI_PM_CAP_PME_MASK;
3036 	if (pmc) {
3037 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3038 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3039 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3040 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3041 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
3042 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3043 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3044 		dev->pme_poll = true;
3045 		/*
3046 		 * Make device's PM flags reflect the wake-up capability, but
3047 		 * let the user space enable it to wake up the system as needed.
3048 		 */
3049 		device_set_wakeup_capable(&dev->dev, true);
3050 		/* Disable the PME# generation functionality */
3051 		pci_pme_active(dev, false);
3052 	}
3053 
3054 	pci_read_config_word(dev, PCI_STATUS, &status);
3055 	if (status & PCI_STATUS_IMM_READY)
3056 		dev->imm_ready = 1;
3057 }
3058 
3059 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3060 {
3061 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3062 
3063 	switch (prop) {
3064 	case PCI_EA_P_MEM:
3065 	case PCI_EA_P_VF_MEM:
3066 		flags |= IORESOURCE_MEM;
3067 		break;
3068 	case PCI_EA_P_MEM_PREFETCH:
3069 	case PCI_EA_P_VF_MEM_PREFETCH:
3070 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3071 		break;
3072 	case PCI_EA_P_IO:
3073 		flags |= IORESOURCE_IO;
3074 		break;
3075 	default:
3076 		return 0;
3077 	}
3078 
3079 	return flags;
3080 }
3081 
3082 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3083 					    u8 prop)
3084 {
3085 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3086 		return &dev->resource[bei];
3087 #ifdef CONFIG_PCI_IOV
3088 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3089 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3090 		return &dev->resource[PCI_IOV_RESOURCES +
3091 				      bei - PCI_EA_BEI_VF_BAR0];
3092 #endif
3093 	else if (bei == PCI_EA_BEI_ROM)
3094 		return &dev->resource[PCI_ROM_RESOURCE];
3095 	else
3096 		return NULL;
3097 }
3098 
3099 /* Read an Enhanced Allocation (EA) entry */
3100 static int pci_ea_read(struct pci_dev *dev, int offset)
3101 {
3102 	struct resource *res;
3103 	int ent_size, ent_offset = offset;
3104 	resource_size_t start, end;
3105 	unsigned long flags;
3106 	u32 dw0, bei, base, max_offset;
3107 	u8 prop;
3108 	bool support_64 = (sizeof(resource_size_t) >= 8);
3109 
3110 	pci_read_config_dword(dev, ent_offset, &dw0);
3111 	ent_offset += 4;
3112 
3113 	/* Entry size field indicates DWORDs after 1st */
3114 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3115 
3116 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3117 		goto out;
3118 
3119 	bei = (dw0 & PCI_EA_BEI) >> 4;
3120 	prop = (dw0 & PCI_EA_PP) >> 8;
3121 
3122 	/*
3123 	 * If the Property is in the reserved range, try the Secondary
3124 	 * Property instead.
3125 	 */
3126 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3127 		prop = (dw0 & PCI_EA_SP) >> 16;
3128 	if (prop > PCI_EA_P_BRIDGE_IO)
3129 		goto out;
3130 
3131 	res = pci_ea_get_resource(dev, bei, prop);
3132 	if (!res) {
3133 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3134 		goto out;
3135 	}
3136 
3137 	flags = pci_ea_flags(dev, prop);
3138 	if (!flags) {
3139 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3140 		goto out;
3141 	}
3142 
3143 	/* Read Base */
3144 	pci_read_config_dword(dev, ent_offset, &base);
3145 	start = (base & PCI_EA_FIELD_MASK);
3146 	ent_offset += 4;
3147 
3148 	/* Read MaxOffset */
3149 	pci_read_config_dword(dev, ent_offset, &max_offset);
3150 	ent_offset += 4;
3151 
3152 	/* Read Base MSBs (if 64-bit entry) */
3153 	if (base & PCI_EA_IS_64) {
3154 		u32 base_upper;
3155 
3156 		pci_read_config_dword(dev, ent_offset, &base_upper);
3157 		ent_offset += 4;
3158 
3159 		flags |= IORESOURCE_MEM_64;
3160 
3161 		/* entry starts above 32-bit boundary, can't use */
3162 		if (!support_64 && base_upper)
3163 			goto out;
3164 
3165 		if (support_64)
3166 			start |= ((u64)base_upper << 32);
3167 	}
3168 
3169 	end = start + (max_offset | 0x03);
3170 
3171 	/* Read MaxOffset MSBs (if 64-bit entry) */
3172 	if (max_offset & PCI_EA_IS_64) {
3173 		u32 max_offset_upper;
3174 
3175 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3176 		ent_offset += 4;
3177 
3178 		flags |= IORESOURCE_MEM_64;
3179 
3180 		/* entry too big, can't use */
3181 		if (!support_64 && max_offset_upper)
3182 			goto out;
3183 
3184 		if (support_64)
3185 			end += ((u64)max_offset_upper << 32);
3186 	}
3187 
3188 	if (end < start) {
3189 		pci_err(dev, "EA Entry crosses address boundary\n");
3190 		goto out;
3191 	}
3192 
3193 	if (ent_size != ent_offset - offset) {
3194 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3195 			ent_size, ent_offset - offset);
3196 		goto out;
3197 	}
3198 
3199 	res->name = pci_name(dev);
3200 	res->start = start;
3201 	res->end = end;
3202 	res->flags = flags;
3203 
3204 	if (bei <= PCI_EA_BEI_BAR5)
3205 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3206 			   bei, res, prop);
3207 	else if (bei == PCI_EA_BEI_ROM)
3208 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3209 			   res, prop);
3210 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3211 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3212 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3213 	else
3214 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3215 			   bei, res, prop);
3216 
3217 out:
3218 	return offset + ent_size;
3219 }
3220 
3221 /* Enhanced Allocation Initialization */
3222 void pci_ea_init(struct pci_dev *dev)
3223 {
3224 	int ea;
3225 	u8 num_ent;
3226 	int offset;
3227 	int i;
3228 
3229 	/* find PCI EA capability in list */
3230 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3231 	if (!ea)
3232 		return;
3233 
3234 	/* determine the number of entries */
3235 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3236 					&num_ent);
3237 	num_ent &= PCI_EA_NUM_ENT_MASK;
3238 
3239 	offset = ea + PCI_EA_FIRST_ENT;
3240 
3241 	/* Skip DWORD 2 for type 1 functions */
3242 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3243 		offset += 4;
3244 
3245 	/* parse each EA entry */
3246 	for (i = 0; i < num_ent; ++i)
3247 		offset = pci_ea_read(dev, offset);
3248 }
3249 
3250 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3251 	struct pci_cap_saved_state *new_cap)
3252 {
3253 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3254 }
3255 
3256 /**
3257  * _pci_add_cap_save_buffer - allocate buffer for saving given
3258  *			      capability registers
3259  * @dev: the PCI device
3260  * @cap: the capability to allocate the buffer for
3261  * @extended: Standard or Extended capability ID
3262  * @size: requested size of the buffer
3263  */
3264 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3265 				    bool extended, unsigned int size)
3266 {
3267 	int pos;
3268 	struct pci_cap_saved_state *save_state;
3269 
3270 	if (extended)
3271 		pos = pci_find_ext_capability(dev, cap);
3272 	else
3273 		pos = pci_find_capability(dev, cap);
3274 
3275 	if (!pos)
3276 		return 0;
3277 
3278 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3279 	if (!save_state)
3280 		return -ENOMEM;
3281 
3282 	save_state->cap.cap_nr = cap;
3283 	save_state->cap.cap_extended = extended;
3284 	save_state->cap.size = size;
3285 	pci_add_saved_cap(dev, save_state);
3286 
3287 	return 0;
3288 }
3289 
3290 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3291 {
3292 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3293 }
3294 
3295 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3296 {
3297 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3298 }
3299 
3300 /**
3301  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3302  * @dev: the PCI device
3303  */
3304 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3305 {
3306 	int error;
3307 
3308 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3309 					PCI_EXP_SAVE_REGS * sizeof(u16));
3310 	if (error)
3311 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3312 
3313 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3314 	if (error)
3315 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3316 
3317 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3318 					    2 * sizeof(u16));
3319 	if (error)
3320 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3321 
3322 	pci_allocate_vc_save_buffers(dev);
3323 }
3324 
3325 void pci_free_cap_save_buffers(struct pci_dev *dev)
3326 {
3327 	struct pci_cap_saved_state *tmp;
3328 	struct hlist_node *n;
3329 
3330 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3331 		kfree(tmp);
3332 }
3333 
3334 /**
3335  * pci_configure_ari - enable or disable ARI forwarding
3336  * @dev: the PCI device
3337  *
3338  * If @dev and its upstream bridge both support ARI, enable ARI in the
3339  * bridge.  Otherwise, disable ARI in the bridge.
3340  */
3341 void pci_configure_ari(struct pci_dev *dev)
3342 {
3343 	u32 cap;
3344 	struct pci_dev *bridge;
3345 
3346 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3347 		return;
3348 
3349 	bridge = dev->bus->self;
3350 	if (!bridge)
3351 		return;
3352 
3353 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3354 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3355 		return;
3356 
3357 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3358 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3359 					 PCI_EXP_DEVCTL2_ARI);
3360 		bridge->ari_enabled = 1;
3361 	} else {
3362 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3363 					   PCI_EXP_DEVCTL2_ARI);
3364 		bridge->ari_enabled = 0;
3365 	}
3366 }
3367 
3368 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3369 {
3370 	int pos;
3371 	u16 cap, ctrl;
3372 
3373 	pos = pdev->acs_cap;
3374 	if (!pos)
3375 		return false;
3376 
3377 	/*
3378 	 * Except for egress control, capabilities are either required
3379 	 * or only required if controllable.  Features missing from the
3380 	 * capability field can therefore be assumed as hard-wired enabled.
3381 	 */
3382 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3383 	acs_flags &= (cap | PCI_ACS_EC);
3384 
3385 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3386 	return (ctrl & acs_flags) == acs_flags;
3387 }
3388 
3389 /**
3390  * pci_acs_enabled - test ACS against required flags for a given device
3391  * @pdev: device to test
3392  * @acs_flags: required PCI ACS flags
3393  *
3394  * Return true if the device supports the provided flags.  Automatically
3395  * filters out flags that are not implemented on multifunction devices.
3396  *
3397  * Note that this interface checks the effective ACS capabilities of the
3398  * device rather than the actual capabilities.  For instance, most single
3399  * function endpoints are not required to support ACS because they have no
3400  * opportunity for peer-to-peer access.  We therefore return 'true'
3401  * regardless of whether the device exposes an ACS capability.  This makes
3402  * it much easier for callers of this function to ignore the actual type
3403  * or topology of the device when testing ACS support.
3404  */
3405 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3406 {
3407 	int ret;
3408 
3409 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3410 	if (ret >= 0)
3411 		return ret > 0;
3412 
3413 	/*
3414 	 * Conventional PCI and PCI-X devices never support ACS, either
3415 	 * effectively or actually.  The shared bus topology implies that
3416 	 * any device on the bus can receive or snoop DMA.
3417 	 */
3418 	if (!pci_is_pcie(pdev))
3419 		return false;
3420 
3421 	switch (pci_pcie_type(pdev)) {
3422 	/*
3423 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3424 	 * but since their primary interface is PCI/X, we conservatively
3425 	 * handle them as we would a non-PCIe device.
3426 	 */
3427 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3428 	/*
3429 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3430 	 * applicable... must never implement an ACS Extended Capability...".
3431 	 * This seems arbitrary, but we take a conservative interpretation
3432 	 * of this statement.
3433 	 */
3434 	case PCI_EXP_TYPE_PCI_BRIDGE:
3435 	case PCI_EXP_TYPE_RC_EC:
3436 		return false;
3437 	/*
3438 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3439 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3440 	 * regardless of whether they are single- or multi-function devices.
3441 	 */
3442 	case PCI_EXP_TYPE_DOWNSTREAM:
3443 	case PCI_EXP_TYPE_ROOT_PORT:
3444 		return pci_acs_flags_enabled(pdev, acs_flags);
3445 	/*
3446 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3447 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3448 	 * capabilities, but only when they are part of a multifunction
3449 	 * device.  The footnote for section 6.12 indicates the specific
3450 	 * PCIe types included here.
3451 	 */
3452 	case PCI_EXP_TYPE_ENDPOINT:
3453 	case PCI_EXP_TYPE_UPSTREAM:
3454 	case PCI_EXP_TYPE_LEG_END:
3455 	case PCI_EXP_TYPE_RC_END:
3456 		if (!pdev->multifunction)
3457 			break;
3458 
3459 		return pci_acs_flags_enabled(pdev, acs_flags);
3460 	}
3461 
3462 	/*
3463 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3464 	 * to single function devices with the exception of downstream ports.
3465 	 */
3466 	return true;
3467 }
3468 
3469 /**
3470  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3471  * @start: starting downstream device
3472  * @end: ending upstream device or NULL to search to the root bus
3473  * @acs_flags: required flags
3474  *
3475  * Walk up a device tree from start to end testing PCI ACS support.  If
3476  * any step along the way does not support the required flags, return false.
3477  */
3478 bool pci_acs_path_enabled(struct pci_dev *start,
3479 			  struct pci_dev *end, u16 acs_flags)
3480 {
3481 	struct pci_dev *pdev, *parent = start;
3482 
3483 	do {
3484 		pdev = parent;
3485 
3486 		if (!pci_acs_enabled(pdev, acs_flags))
3487 			return false;
3488 
3489 		if (pci_is_root_bus(pdev->bus))
3490 			return (end == NULL);
3491 
3492 		parent = pdev->bus->self;
3493 	} while (pdev != end);
3494 
3495 	return true;
3496 }
3497 
3498 /**
3499  * pci_acs_init - Initialize ACS if hardware supports it
3500  * @dev: the PCI device
3501  */
3502 void pci_acs_init(struct pci_dev *dev)
3503 {
3504 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3505 
3506 	if (dev->acs_cap)
3507 		pci_enable_acs(dev);
3508 }
3509 
3510 /**
3511  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3512  * @pdev: PCI device
3513  * @bar: BAR to find
3514  *
3515  * Helper to find the position of the ctrl register for a BAR.
3516  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3517  * Returns -ENOENT if no ctrl register for the BAR could be found.
3518  */
3519 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3520 {
3521 	unsigned int pos, nbars, i;
3522 	u32 ctrl;
3523 
3524 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3525 	if (!pos)
3526 		return -ENOTSUPP;
3527 
3528 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3529 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3530 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3531 
3532 	for (i = 0; i < nbars; i++, pos += 8) {
3533 		int bar_idx;
3534 
3535 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3536 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3537 		if (bar_idx == bar)
3538 			return pos;
3539 	}
3540 
3541 	return -ENOENT;
3542 }
3543 
3544 /**
3545  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3546  * @pdev: PCI device
3547  * @bar: BAR to query
3548  *
3549  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3550  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3551  */
3552 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3553 {
3554 	int pos;
3555 	u32 cap;
3556 
3557 	pos = pci_rebar_find_pos(pdev, bar);
3558 	if (pos < 0)
3559 		return 0;
3560 
3561 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3562 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3563 }
3564 
3565 /**
3566  * pci_rebar_get_current_size - get the current size of a BAR
3567  * @pdev: PCI device
3568  * @bar: BAR to set size to
3569  *
3570  * Read the size of a BAR from the resizable BAR config.
3571  * Returns size if found or negative error code.
3572  */
3573 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3574 {
3575 	int pos;
3576 	u32 ctrl;
3577 
3578 	pos = pci_rebar_find_pos(pdev, bar);
3579 	if (pos < 0)
3580 		return pos;
3581 
3582 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3583 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3584 }
3585 
3586 /**
3587  * pci_rebar_set_size - set a new size for a BAR
3588  * @pdev: PCI device
3589  * @bar: BAR to set size to
3590  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3591  *
3592  * Set the new size of a BAR as defined in the spec.
3593  * Returns zero if resizing was successful, error code otherwise.
3594  */
3595 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3596 {
3597 	int pos;
3598 	u32 ctrl;
3599 
3600 	pos = pci_rebar_find_pos(pdev, bar);
3601 	if (pos < 0)
3602 		return pos;
3603 
3604 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3605 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3606 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3607 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3608 	return 0;
3609 }
3610 
3611 /**
3612  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3613  * @dev: the PCI device
3614  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3615  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3616  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3617  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3618  *
3619  * Return 0 if all upstream bridges support AtomicOp routing, egress
3620  * blocking is disabled on all upstream ports, and the root port supports
3621  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3622  * AtomicOp completion), or negative otherwise.
3623  */
3624 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3625 {
3626 	struct pci_bus *bus = dev->bus;
3627 	struct pci_dev *bridge;
3628 	u32 cap, ctl2;
3629 
3630 	if (!pci_is_pcie(dev))
3631 		return -EINVAL;
3632 
3633 	/*
3634 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3635 	 * AtomicOp requesters.  For now, we only support endpoints as
3636 	 * requesters and root ports as completers.  No endpoints as
3637 	 * completers, and no peer-to-peer.
3638 	 */
3639 
3640 	switch (pci_pcie_type(dev)) {
3641 	case PCI_EXP_TYPE_ENDPOINT:
3642 	case PCI_EXP_TYPE_LEG_END:
3643 	case PCI_EXP_TYPE_RC_END:
3644 		break;
3645 	default:
3646 		return -EINVAL;
3647 	}
3648 
3649 	while (bus->parent) {
3650 		bridge = bus->self;
3651 
3652 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3653 
3654 		switch (pci_pcie_type(bridge)) {
3655 		/* Ensure switch ports support AtomicOp routing */
3656 		case PCI_EXP_TYPE_UPSTREAM:
3657 		case PCI_EXP_TYPE_DOWNSTREAM:
3658 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3659 				return -EINVAL;
3660 			break;
3661 
3662 		/* Ensure root port supports all the sizes we care about */
3663 		case PCI_EXP_TYPE_ROOT_PORT:
3664 			if ((cap & cap_mask) != cap_mask)
3665 				return -EINVAL;
3666 			break;
3667 		}
3668 
3669 		/* Ensure upstream ports don't block AtomicOps on egress */
3670 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3671 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3672 						   &ctl2);
3673 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3674 				return -EINVAL;
3675 		}
3676 
3677 		bus = bus->parent;
3678 	}
3679 
3680 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3681 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3682 	return 0;
3683 }
3684 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3685 
3686 /**
3687  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3688  * @dev: the PCI device
3689  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3690  *
3691  * Perform INTx swizzling for a device behind one level of bridge.  This is
3692  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3693  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3694  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3695  * the PCI Express Base Specification, Revision 2.1)
3696  */
3697 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3698 {
3699 	int slot;
3700 
3701 	if (pci_ari_enabled(dev->bus))
3702 		slot = 0;
3703 	else
3704 		slot = PCI_SLOT(dev->devfn);
3705 
3706 	return (((pin - 1) + slot) % 4) + 1;
3707 }
3708 
3709 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3710 {
3711 	u8 pin;
3712 
3713 	pin = dev->pin;
3714 	if (!pin)
3715 		return -1;
3716 
3717 	while (!pci_is_root_bus(dev->bus)) {
3718 		pin = pci_swizzle_interrupt_pin(dev, pin);
3719 		dev = dev->bus->self;
3720 	}
3721 	*bridge = dev;
3722 	return pin;
3723 }
3724 
3725 /**
3726  * pci_common_swizzle - swizzle INTx all the way to root bridge
3727  * @dev: the PCI device
3728  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3729  *
3730  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3731  * bridges all the way up to a PCI root bus.
3732  */
3733 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3734 {
3735 	u8 pin = *pinp;
3736 
3737 	while (!pci_is_root_bus(dev->bus)) {
3738 		pin = pci_swizzle_interrupt_pin(dev, pin);
3739 		dev = dev->bus->self;
3740 	}
3741 	*pinp = pin;
3742 	return PCI_SLOT(dev->devfn);
3743 }
3744 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3745 
3746 /**
3747  * pci_release_region - Release a PCI bar
3748  * @pdev: PCI device whose resources were previously reserved by
3749  *	  pci_request_region()
3750  * @bar: BAR to release
3751  *
3752  * Releases the PCI I/O and memory resources previously reserved by a
3753  * successful call to pci_request_region().  Call this function only
3754  * after all use of the PCI regions has ceased.
3755  */
3756 void pci_release_region(struct pci_dev *pdev, int bar)
3757 {
3758 	struct pci_devres *dr;
3759 
3760 	if (pci_resource_len(pdev, bar) == 0)
3761 		return;
3762 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3763 		release_region(pci_resource_start(pdev, bar),
3764 				pci_resource_len(pdev, bar));
3765 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3766 		release_mem_region(pci_resource_start(pdev, bar),
3767 				pci_resource_len(pdev, bar));
3768 
3769 	dr = find_pci_dr(pdev);
3770 	if (dr)
3771 		dr->region_mask &= ~(1 << bar);
3772 }
3773 EXPORT_SYMBOL(pci_release_region);
3774 
3775 /**
3776  * __pci_request_region - Reserved PCI I/O and memory resource
3777  * @pdev: PCI device whose resources are to be reserved
3778  * @bar: BAR to be reserved
3779  * @res_name: Name to be associated with resource.
3780  * @exclusive: whether the region access is exclusive or not
3781  *
3782  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3783  * being reserved by owner @res_name.  Do not access any
3784  * address inside the PCI regions unless this call returns
3785  * successfully.
3786  *
3787  * If @exclusive is set, then the region is marked so that userspace
3788  * is explicitly not allowed to map the resource via /dev/mem or
3789  * sysfs MMIO access.
3790  *
3791  * Returns 0 on success, or %EBUSY on error.  A warning
3792  * message is also printed on failure.
3793  */
3794 static int __pci_request_region(struct pci_dev *pdev, int bar,
3795 				const char *res_name, int exclusive)
3796 {
3797 	struct pci_devres *dr;
3798 
3799 	if (pci_resource_len(pdev, bar) == 0)
3800 		return 0;
3801 
3802 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3803 		if (!request_region(pci_resource_start(pdev, bar),
3804 			    pci_resource_len(pdev, bar), res_name))
3805 			goto err_out;
3806 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3807 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3808 					pci_resource_len(pdev, bar), res_name,
3809 					exclusive))
3810 			goto err_out;
3811 	}
3812 
3813 	dr = find_pci_dr(pdev);
3814 	if (dr)
3815 		dr->region_mask |= 1 << bar;
3816 
3817 	return 0;
3818 
3819 err_out:
3820 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3821 		 &pdev->resource[bar]);
3822 	return -EBUSY;
3823 }
3824 
3825 /**
3826  * pci_request_region - Reserve PCI I/O and memory resource
3827  * @pdev: PCI device whose resources are to be reserved
3828  * @bar: BAR to be reserved
3829  * @res_name: Name to be associated with resource
3830  *
3831  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3832  * being reserved by owner @res_name.  Do not access any
3833  * address inside the PCI regions unless this call returns
3834  * successfully.
3835  *
3836  * Returns 0 on success, or %EBUSY on error.  A warning
3837  * message is also printed on failure.
3838  */
3839 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3840 {
3841 	return __pci_request_region(pdev, bar, res_name, 0);
3842 }
3843 EXPORT_SYMBOL(pci_request_region);
3844 
3845 /**
3846  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3847  * @pdev: PCI device whose resources were previously reserved
3848  * @bars: Bitmask of BARs to be released
3849  *
3850  * Release selected PCI I/O and memory resources previously reserved.
3851  * Call this function only after all use of the PCI regions has ceased.
3852  */
3853 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3854 {
3855 	int i;
3856 
3857 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3858 		if (bars & (1 << i))
3859 			pci_release_region(pdev, i);
3860 }
3861 EXPORT_SYMBOL(pci_release_selected_regions);
3862 
3863 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3864 					  const char *res_name, int excl)
3865 {
3866 	int i;
3867 
3868 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3869 		if (bars & (1 << i))
3870 			if (__pci_request_region(pdev, i, res_name, excl))
3871 				goto err_out;
3872 	return 0;
3873 
3874 err_out:
3875 	while (--i >= 0)
3876 		if (bars & (1 << i))
3877 			pci_release_region(pdev, i);
3878 
3879 	return -EBUSY;
3880 }
3881 
3882 
3883 /**
3884  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3885  * @pdev: PCI device whose resources are to be reserved
3886  * @bars: Bitmask of BARs to be requested
3887  * @res_name: Name to be associated with resource
3888  */
3889 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3890 				 const char *res_name)
3891 {
3892 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3893 }
3894 EXPORT_SYMBOL(pci_request_selected_regions);
3895 
3896 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3897 					   const char *res_name)
3898 {
3899 	return __pci_request_selected_regions(pdev, bars, res_name,
3900 			IORESOURCE_EXCLUSIVE);
3901 }
3902 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3903 
3904 /**
3905  * pci_release_regions - Release reserved PCI I/O and memory resources
3906  * @pdev: PCI device whose resources were previously reserved by
3907  *	  pci_request_regions()
3908  *
3909  * Releases all PCI I/O and memory resources previously reserved by a
3910  * successful call to pci_request_regions().  Call this function only
3911  * after all use of the PCI regions has ceased.
3912  */
3913 
3914 void pci_release_regions(struct pci_dev *pdev)
3915 {
3916 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3917 }
3918 EXPORT_SYMBOL(pci_release_regions);
3919 
3920 /**
3921  * pci_request_regions - Reserve PCI I/O and memory resources
3922  * @pdev: PCI device whose resources are to be reserved
3923  * @res_name: Name to be associated with resource.
3924  *
3925  * Mark all PCI regions associated with PCI device @pdev as
3926  * being reserved by owner @res_name.  Do not access any
3927  * address inside the PCI regions unless this call returns
3928  * successfully.
3929  *
3930  * Returns 0 on success, or %EBUSY on error.  A warning
3931  * message is also printed on failure.
3932  */
3933 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3934 {
3935 	return pci_request_selected_regions(pdev,
3936 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3937 }
3938 EXPORT_SYMBOL(pci_request_regions);
3939 
3940 /**
3941  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3942  * @pdev: PCI device whose resources are to be reserved
3943  * @res_name: Name to be associated with resource.
3944  *
3945  * Mark all PCI regions associated with PCI device @pdev as being reserved
3946  * by owner @res_name.  Do not access any address inside the PCI regions
3947  * unless this call returns successfully.
3948  *
3949  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3950  * and the sysfs MMIO access will not be allowed.
3951  *
3952  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3953  * printed on failure.
3954  */
3955 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3956 {
3957 	return pci_request_selected_regions_exclusive(pdev,
3958 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3959 }
3960 EXPORT_SYMBOL(pci_request_regions_exclusive);
3961 
3962 /*
3963  * Record the PCI IO range (expressed as CPU physical address + size).
3964  * Return a negative value if an error has occurred, zero otherwise
3965  */
3966 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3967 			resource_size_t	size)
3968 {
3969 	int ret = 0;
3970 #ifdef PCI_IOBASE
3971 	struct logic_pio_hwaddr *range;
3972 
3973 	if (!size || addr + size < addr)
3974 		return -EINVAL;
3975 
3976 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3977 	if (!range)
3978 		return -ENOMEM;
3979 
3980 	range->fwnode = fwnode;
3981 	range->size = size;
3982 	range->hw_start = addr;
3983 	range->flags = LOGIC_PIO_CPU_MMIO;
3984 
3985 	ret = logic_pio_register_range(range);
3986 	if (ret)
3987 		kfree(range);
3988 #endif
3989 
3990 	return ret;
3991 }
3992 
3993 phys_addr_t pci_pio_to_address(unsigned long pio)
3994 {
3995 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3996 
3997 #ifdef PCI_IOBASE
3998 	if (pio >= MMIO_UPPER_LIMIT)
3999 		return address;
4000 
4001 	address = logic_pio_to_hwaddr(pio);
4002 #endif
4003 
4004 	return address;
4005 }
4006 
4007 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4008 {
4009 #ifdef PCI_IOBASE
4010 	return logic_pio_trans_cpuaddr(address);
4011 #else
4012 	if (address > IO_SPACE_LIMIT)
4013 		return (unsigned long)-1;
4014 
4015 	return (unsigned long) address;
4016 #endif
4017 }
4018 
4019 /**
4020  * pci_remap_iospace - Remap the memory mapped I/O space
4021  * @res: Resource describing the I/O space
4022  * @phys_addr: physical address of range to be mapped
4023  *
4024  * Remap the memory mapped I/O space described by the @res and the CPU
4025  * physical address @phys_addr into virtual address space.  Only
4026  * architectures that have memory mapped IO functions defined (and the
4027  * PCI_IOBASE value defined) should call this function.
4028  */
4029 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4030 {
4031 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4032 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4033 
4034 	if (!(res->flags & IORESOURCE_IO))
4035 		return -EINVAL;
4036 
4037 	if (res->end > IO_SPACE_LIMIT)
4038 		return -EINVAL;
4039 
4040 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4041 				  pgprot_device(PAGE_KERNEL));
4042 #else
4043 	/*
4044 	 * This architecture does not have memory mapped I/O space,
4045 	 * so this function should never be called
4046 	 */
4047 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4048 	return -ENODEV;
4049 #endif
4050 }
4051 EXPORT_SYMBOL(pci_remap_iospace);
4052 
4053 /**
4054  * pci_unmap_iospace - Unmap the memory mapped I/O space
4055  * @res: resource to be unmapped
4056  *
4057  * Unmap the CPU virtual address @res from virtual address space.  Only
4058  * architectures that have memory mapped IO functions defined (and the
4059  * PCI_IOBASE value defined) should call this function.
4060  */
4061 void pci_unmap_iospace(struct resource *res)
4062 {
4063 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4064 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4065 
4066 	unmap_kernel_range(vaddr, resource_size(res));
4067 #endif
4068 }
4069 EXPORT_SYMBOL(pci_unmap_iospace);
4070 
4071 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4072 {
4073 	struct resource **res = ptr;
4074 
4075 	pci_unmap_iospace(*res);
4076 }
4077 
4078 /**
4079  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4080  * @dev: Generic device to remap IO address for
4081  * @res: Resource describing the I/O space
4082  * @phys_addr: physical address of range to be mapped
4083  *
4084  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4085  * detach.
4086  */
4087 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4088 			   phys_addr_t phys_addr)
4089 {
4090 	const struct resource **ptr;
4091 	int error;
4092 
4093 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4094 	if (!ptr)
4095 		return -ENOMEM;
4096 
4097 	error = pci_remap_iospace(res, phys_addr);
4098 	if (error) {
4099 		devres_free(ptr);
4100 	} else	{
4101 		*ptr = res;
4102 		devres_add(dev, ptr);
4103 	}
4104 
4105 	return error;
4106 }
4107 EXPORT_SYMBOL(devm_pci_remap_iospace);
4108 
4109 /**
4110  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4111  * @dev: Generic device to remap IO address for
4112  * @offset: Resource address to map
4113  * @size: Size of map
4114  *
4115  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4116  * detach.
4117  */
4118 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4119 				      resource_size_t offset,
4120 				      resource_size_t size)
4121 {
4122 	void __iomem **ptr, *addr;
4123 
4124 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4125 	if (!ptr)
4126 		return NULL;
4127 
4128 	addr = pci_remap_cfgspace(offset, size);
4129 	if (addr) {
4130 		*ptr = addr;
4131 		devres_add(dev, ptr);
4132 	} else
4133 		devres_free(ptr);
4134 
4135 	return addr;
4136 }
4137 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4138 
4139 /**
4140  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4141  * @dev: generic device to handle the resource for
4142  * @res: configuration space resource to be handled
4143  *
4144  * Checks that a resource is a valid memory region, requests the memory
4145  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4146  * proper PCI configuration space memory attributes are guaranteed.
4147  *
4148  * All operations are managed and will be undone on driver detach.
4149  *
4150  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4151  * on failure. Usage example::
4152  *
4153  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4154  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4155  *	if (IS_ERR(base))
4156  *		return PTR_ERR(base);
4157  */
4158 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4159 					  struct resource *res)
4160 {
4161 	resource_size_t size;
4162 	const char *name;
4163 	void __iomem *dest_ptr;
4164 
4165 	BUG_ON(!dev);
4166 
4167 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4168 		dev_err(dev, "invalid resource\n");
4169 		return IOMEM_ERR_PTR(-EINVAL);
4170 	}
4171 
4172 	size = resource_size(res);
4173 	name = res->name ?: dev_name(dev);
4174 
4175 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4176 		dev_err(dev, "can't request region for resource %pR\n", res);
4177 		return IOMEM_ERR_PTR(-EBUSY);
4178 	}
4179 
4180 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4181 	if (!dest_ptr) {
4182 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4183 		devm_release_mem_region(dev, res->start, size);
4184 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4185 	}
4186 
4187 	return dest_ptr;
4188 }
4189 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4190 
4191 static void __pci_set_master(struct pci_dev *dev, bool enable)
4192 {
4193 	u16 old_cmd, cmd;
4194 
4195 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4196 	if (enable)
4197 		cmd = old_cmd | PCI_COMMAND_MASTER;
4198 	else
4199 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4200 	if (cmd != old_cmd) {
4201 		pci_dbg(dev, "%s bus mastering\n",
4202 			enable ? "enabling" : "disabling");
4203 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4204 	}
4205 	dev->is_busmaster = enable;
4206 }
4207 
4208 /**
4209  * pcibios_setup - process "pci=" kernel boot arguments
4210  * @str: string used to pass in "pci=" kernel boot arguments
4211  *
4212  * Process kernel boot arguments.  This is the default implementation.
4213  * Architecture specific implementations can override this as necessary.
4214  */
4215 char * __weak __init pcibios_setup(char *str)
4216 {
4217 	return str;
4218 }
4219 
4220 /**
4221  * pcibios_set_master - enable PCI bus-mastering for device dev
4222  * @dev: the PCI device to enable
4223  *
4224  * Enables PCI bus-mastering for the device.  This is the default
4225  * implementation.  Architecture specific implementations can override
4226  * this if necessary.
4227  */
4228 void __weak pcibios_set_master(struct pci_dev *dev)
4229 {
4230 	u8 lat;
4231 
4232 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4233 	if (pci_is_pcie(dev))
4234 		return;
4235 
4236 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4237 	if (lat < 16)
4238 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4239 	else if (lat > pcibios_max_latency)
4240 		lat = pcibios_max_latency;
4241 	else
4242 		return;
4243 
4244 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4245 }
4246 
4247 /**
4248  * pci_set_master - enables bus-mastering for device dev
4249  * @dev: the PCI device to enable
4250  *
4251  * Enables bus-mastering on the device and calls pcibios_set_master()
4252  * to do the needed arch specific settings.
4253  */
4254 void pci_set_master(struct pci_dev *dev)
4255 {
4256 	__pci_set_master(dev, true);
4257 	pcibios_set_master(dev);
4258 }
4259 EXPORT_SYMBOL(pci_set_master);
4260 
4261 /**
4262  * pci_clear_master - disables bus-mastering for device dev
4263  * @dev: the PCI device to disable
4264  */
4265 void pci_clear_master(struct pci_dev *dev)
4266 {
4267 	__pci_set_master(dev, false);
4268 }
4269 EXPORT_SYMBOL(pci_clear_master);
4270 
4271 /**
4272  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4273  * @dev: the PCI device for which MWI is to be enabled
4274  *
4275  * Helper function for pci_set_mwi.
4276  * Originally copied from drivers/net/acenic.c.
4277  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4278  *
4279  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280  */
4281 int pci_set_cacheline_size(struct pci_dev *dev)
4282 {
4283 	u8 cacheline_size;
4284 
4285 	if (!pci_cache_line_size)
4286 		return -EINVAL;
4287 
4288 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4289 	   equal to or multiple of the right value. */
4290 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4291 	if (cacheline_size >= pci_cache_line_size &&
4292 	    (cacheline_size % pci_cache_line_size) == 0)
4293 		return 0;
4294 
4295 	/* Write the correct value. */
4296 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4297 	/* Read it back. */
4298 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4299 	if (cacheline_size == pci_cache_line_size)
4300 		return 0;
4301 
4302 	pci_info(dev, "cache line size of %d is not supported\n",
4303 		   pci_cache_line_size << 2);
4304 
4305 	return -EINVAL;
4306 }
4307 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4308 
4309 /**
4310  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4311  * @dev: the PCI device for which MWI is enabled
4312  *
4313  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4314  *
4315  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4316  */
4317 int pci_set_mwi(struct pci_dev *dev)
4318 {
4319 #ifdef PCI_DISABLE_MWI
4320 	return 0;
4321 #else
4322 	int rc;
4323 	u16 cmd;
4324 
4325 	rc = pci_set_cacheline_size(dev);
4326 	if (rc)
4327 		return rc;
4328 
4329 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4330 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4331 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4332 		cmd |= PCI_COMMAND_INVALIDATE;
4333 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4334 	}
4335 	return 0;
4336 #endif
4337 }
4338 EXPORT_SYMBOL(pci_set_mwi);
4339 
4340 /**
4341  * pcim_set_mwi - a device-managed pci_set_mwi()
4342  * @dev: the PCI device for which MWI is enabled
4343  *
4344  * Managed pci_set_mwi().
4345  *
4346  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4347  */
4348 int pcim_set_mwi(struct pci_dev *dev)
4349 {
4350 	struct pci_devres *dr;
4351 
4352 	dr = find_pci_dr(dev);
4353 	if (!dr)
4354 		return -ENOMEM;
4355 
4356 	dr->mwi = 1;
4357 	return pci_set_mwi(dev);
4358 }
4359 EXPORT_SYMBOL(pcim_set_mwi);
4360 
4361 /**
4362  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4363  * @dev: the PCI device for which MWI is enabled
4364  *
4365  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4366  * Callers are not required to check the return value.
4367  *
4368  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369  */
4370 int pci_try_set_mwi(struct pci_dev *dev)
4371 {
4372 #ifdef PCI_DISABLE_MWI
4373 	return 0;
4374 #else
4375 	return pci_set_mwi(dev);
4376 #endif
4377 }
4378 EXPORT_SYMBOL(pci_try_set_mwi);
4379 
4380 /**
4381  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4382  * @dev: the PCI device to disable
4383  *
4384  * Disables PCI Memory-Write-Invalidate transaction on the device
4385  */
4386 void pci_clear_mwi(struct pci_dev *dev)
4387 {
4388 #ifndef PCI_DISABLE_MWI
4389 	u16 cmd;
4390 
4391 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4392 	if (cmd & PCI_COMMAND_INVALIDATE) {
4393 		cmd &= ~PCI_COMMAND_INVALIDATE;
4394 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4395 	}
4396 #endif
4397 }
4398 EXPORT_SYMBOL(pci_clear_mwi);
4399 
4400 /**
4401  * pci_intx - enables/disables PCI INTx for device dev
4402  * @pdev: the PCI device to operate on
4403  * @enable: boolean: whether to enable or disable PCI INTx
4404  *
4405  * Enables/disables PCI INTx for device @pdev
4406  */
4407 void pci_intx(struct pci_dev *pdev, int enable)
4408 {
4409 	u16 pci_command, new;
4410 
4411 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4412 
4413 	if (enable)
4414 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4415 	else
4416 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4417 
4418 	if (new != pci_command) {
4419 		struct pci_devres *dr;
4420 
4421 		pci_write_config_word(pdev, PCI_COMMAND, new);
4422 
4423 		dr = find_pci_dr(pdev);
4424 		if (dr && !dr->restore_intx) {
4425 			dr->restore_intx = 1;
4426 			dr->orig_intx = !enable;
4427 		}
4428 	}
4429 }
4430 EXPORT_SYMBOL_GPL(pci_intx);
4431 
4432 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4433 {
4434 	struct pci_bus *bus = dev->bus;
4435 	bool mask_updated = true;
4436 	u32 cmd_status_dword;
4437 	u16 origcmd, newcmd;
4438 	unsigned long flags;
4439 	bool irq_pending;
4440 
4441 	/*
4442 	 * We do a single dword read to retrieve both command and status.
4443 	 * Document assumptions that make this possible.
4444 	 */
4445 	BUILD_BUG_ON(PCI_COMMAND % 4);
4446 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4447 
4448 	raw_spin_lock_irqsave(&pci_lock, flags);
4449 
4450 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4451 
4452 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4453 
4454 	/*
4455 	 * Check interrupt status register to see whether our device
4456 	 * triggered the interrupt (when masking) or the next IRQ is
4457 	 * already pending (when unmasking).
4458 	 */
4459 	if (mask != irq_pending) {
4460 		mask_updated = false;
4461 		goto done;
4462 	}
4463 
4464 	origcmd = cmd_status_dword;
4465 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4466 	if (mask)
4467 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4468 	if (newcmd != origcmd)
4469 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4470 
4471 done:
4472 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4473 
4474 	return mask_updated;
4475 }
4476 
4477 /**
4478  * pci_check_and_mask_intx - mask INTx on pending interrupt
4479  * @dev: the PCI device to operate on
4480  *
4481  * Check if the device dev has its INTx line asserted, mask it and return
4482  * true in that case. False is returned if no interrupt was pending.
4483  */
4484 bool pci_check_and_mask_intx(struct pci_dev *dev)
4485 {
4486 	return pci_check_and_set_intx_mask(dev, true);
4487 }
4488 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4489 
4490 /**
4491  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4492  * @dev: the PCI device to operate on
4493  *
4494  * Check if the device dev has its INTx line asserted, unmask it if not and
4495  * return true. False is returned and the mask remains active if there was
4496  * still an interrupt pending.
4497  */
4498 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4499 {
4500 	return pci_check_and_set_intx_mask(dev, false);
4501 }
4502 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4503 
4504 /**
4505  * pci_wait_for_pending_transaction - wait for pending transaction
4506  * @dev: the PCI device to operate on
4507  *
4508  * Return 0 if transaction is pending 1 otherwise.
4509  */
4510 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4511 {
4512 	if (!pci_is_pcie(dev))
4513 		return 1;
4514 
4515 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4516 				    PCI_EXP_DEVSTA_TRPND);
4517 }
4518 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4519 
4520 /**
4521  * pcie_has_flr - check if a device supports function level resets
4522  * @dev: device to check
4523  *
4524  * Returns true if the device advertises support for PCIe function level
4525  * resets.
4526  */
4527 bool pcie_has_flr(struct pci_dev *dev)
4528 {
4529 	u32 cap;
4530 
4531 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4532 		return false;
4533 
4534 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4535 	return cap & PCI_EXP_DEVCAP_FLR;
4536 }
4537 EXPORT_SYMBOL_GPL(pcie_has_flr);
4538 
4539 /**
4540  * pcie_flr - initiate a PCIe function level reset
4541  * @dev: device to reset
4542  *
4543  * Initiate a function level reset on @dev.  The caller should ensure the
4544  * device supports FLR before calling this function, e.g. by using the
4545  * pcie_has_flr() helper.
4546  */
4547 int pcie_flr(struct pci_dev *dev)
4548 {
4549 	if (!pci_wait_for_pending_transaction(dev))
4550 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4551 
4552 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4553 
4554 	if (dev->imm_ready)
4555 		return 0;
4556 
4557 	/*
4558 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4559 	 * 100ms, but may silently discard requests while the FLR is in
4560 	 * progress.  Wait 100ms before trying to access the device.
4561 	 */
4562 	msleep(100);
4563 
4564 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4565 }
4566 EXPORT_SYMBOL_GPL(pcie_flr);
4567 
4568 static int pci_af_flr(struct pci_dev *dev, int probe)
4569 {
4570 	int pos;
4571 	u8 cap;
4572 
4573 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4574 	if (!pos)
4575 		return -ENOTTY;
4576 
4577 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4578 		return -ENOTTY;
4579 
4580 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4581 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4582 		return -ENOTTY;
4583 
4584 	if (probe)
4585 		return 0;
4586 
4587 	/*
4588 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4589 	 * is used, so we use the control offset rather than status and shift
4590 	 * the test bit to match.
4591 	 */
4592 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4593 				 PCI_AF_STATUS_TP << 8))
4594 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4595 
4596 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4597 
4598 	if (dev->imm_ready)
4599 		return 0;
4600 
4601 	/*
4602 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4603 	 * updated 27 July 2006; a device must complete an FLR within
4604 	 * 100ms, but may silently discard requests while the FLR is in
4605 	 * progress.  Wait 100ms before trying to access the device.
4606 	 */
4607 	msleep(100);
4608 
4609 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4610 }
4611 
4612 /**
4613  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4614  * @dev: Device to reset.
4615  * @probe: If set, only check if the device can be reset this way.
4616  *
4617  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4618  * unset, it will be reinitialized internally when going from PCI_D3hot to
4619  * PCI_D0.  If that's the case and the device is not in a low-power state
4620  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4621  *
4622  * NOTE: This causes the caller to sleep for twice the device power transition
4623  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4624  * by default (i.e. unless the @dev's d3_delay field has a different value).
4625  * Moreover, only devices in D0 can be reset by this function.
4626  */
4627 static int pci_pm_reset(struct pci_dev *dev, int probe)
4628 {
4629 	u16 csr;
4630 
4631 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4632 		return -ENOTTY;
4633 
4634 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4635 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4636 		return -ENOTTY;
4637 
4638 	if (probe)
4639 		return 0;
4640 
4641 	if (dev->current_state != PCI_D0)
4642 		return -EINVAL;
4643 
4644 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4645 	csr |= PCI_D3hot;
4646 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4647 	pci_dev_d3_sleep(dev);
4648 
4649 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4650 	csr |= PCI_D0;
4651 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4652 	pci_dev_d3_sleep(dev);
4653 
4654 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4655 }
4656 
4657 /**
4658  * pcie_wait_for_link_delay - Wait until link is active or inactive
4659  * @pdev: Bridge device
4660  * @active: waiting for active or inactive?
4661  * @delay: Delay to wait after link has become active (in ms)
4662  *
4663  * Use this to wait till link becomes active or inactive.
4664  */
4665 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4666 				     int delay)
4667 {
4668 	int timeout = 1000;
4669 	bool ret;
4670 	u16 lnk_status;
4671 
4672 	/*
4673 	 * Some controllers might not implement link active reporting. In this
4674 	 * case, we wait for 1000 ms + any delay requested by the caller.
4675 	 */
4676 	if (!pdev->link_active_reporting) {
4677 		msleep(timeout + delay);
4678 		return true;
4679 	}
4680 
4681 	/*
4682 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4683 	 * after which we should expect an link active if the reset was
4684 	 * successful. If so, software must wait a minimum 100ms before sending
4685 	 * configuration requests to devices downstream this port.
4686 	 *
4687 	 * If the link fails to activate, either the device was physically
4688 	 * removed or the link is permanently failed.
4689 	 */
4690 	if (active)
4691 		msleep(20);
4692 	for (;;) {
4693 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4694 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4695 		if (ret == active)
4696 			break;
4697 		if (timeout <= 0)
4698 			break;
4699 		msleep(10);
4700 		timeout -= 10;
4701 	}
4702 	if (active && ret)
4703 		msleep(delay);
4704 	else if (ret != active)
4705 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4706 			active ? "set" : "cleared");
4707 	return ret == active;
4708 }
4709 
4710 /**
4711  * pcie_wait_for_link - Wait until link is active or inactive
4712  * @pdev: Bridge device
4713  * @active: waiting for active or inactive?
4714  *
4715  * Use this to wait till link becomes active or inactive.
4716  */
4717 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4718 {
4719 	return pcie_wait_for_link_delay(pdev, active, 100);
4720 }
4721 
4722 /*
4723  * Find maximum D3cold delay required by all the devices on the bus.  The
4724  * spec says 100 ms, but firmware can lower it and we allow drivers to
4725  * increase it as well.
4726  *
4727  * Called with @pci_bus_sem locked for reading.
4728  */
4729 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4730 {
4731 	const struct pci_dev *pdev;
4732 	int min_delay = 100;
4733 	int max_delay = 0;
4734 
4735 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4736 		if (pdev->d3cold_delay < min_delay)
4737 			min_delay = pdev->d3cold_delay;
4738 		if (pdev->d3cold_delay > max_delay)
4739 			max_delay = pdev->d3cold_delay;
4740 	}
4741 
4742 	return max(min_delay, max_delay);
4743 }
4744 
4745 /**
4746  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4747  * @dev: PCI bridge
4748  *
4749  * Handle necessary delays before access to the devices on the secondary
4750  * side of the bridge are permitted after D3cold to D0 transition.
4751  *
4752  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4753  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4754  * 4.3.2.
4755  */
4756 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4757 {
4758 	struct pci_dev *child;
4759 	int delay;
4760 
4761 	if (pci_dev_is_disconnected(dev))
4762 		return;
4763 
4764 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4765 		return;
4766 
4767 	down_read(&pci_bus_sem);
4768 
4769 	/*
4770 	 * We only deal with devices that are present currently on the bus.
4771 	 * For any hot-added devices the access delay is handled in pciehp
4772 	 * board_added(). In case of ACPI hotplug the firmware is expected
4773 	 * to configure the devices before OS is notified.
4774 	 */
4775 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4776 		up_read(&pci_bus_sem);
4777 		return;
4778 	}
4779 
4780 	/* Take d3cold_delay requirements into account */
4781 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4782 	if (!delay) {
4783 		up_read(&pci_bus_sem);
4784 		return;
4785 	}
4786 
4787 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4788 				 bus_list);
4789 	up_read(&pci_bus_sem);
4790 
4791 	/*
4792 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4793 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4794 	 * practice this should not be needed because we don't do power
4795 	 * management for them (see pci_bridge_d3_possible()).
4796 	 */
4797 	if (!pci_is_pcie(dev)) {
4798 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4799 		msleep(1000 + delay);
4800 		return;
4801 	}
4802 
4803 	/*
4804 	 * For PCIe downstream and root ports that do not support speeds
4805 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4806 	 * speeds (gen3) we need to wait first for the data link layer to
4807 	 * become active.
4808 	 *
4809 	 * However, 100 ms is the minimum and the PCIe spec says the
4810 	 * software must allow at least 1s before it can determine that the
4811 	 * device that did not respond is a broken device. There is
4812 	 * evidence that 100 ms is not always enough, for example certain
4813 	 * Titan Ridge xHCI controller does not always respond to
4814 	 * configuration requests if we only wait for 100 ms (see
4815 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4816 	 *
4817 	 * Therefore we wait for 100 ms and check for the device presence.
4818 	 * If it is still not present give it an additional 100 ms.
4819 	 */
4820 	if (!pcie_downstream_port(dev))
4821 		return;
4822 
4823 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4824 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4825 		msleep(delay);
4826 	} else {
4827 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4828 			delay);
4829 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4830 			/* Did not train, no need to wait any further */
4831 			return;
4832 		}
4833 	}
4834 
4835 	if (!pci_device_is_present(child)) {
4836 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4837 		msleep(delay);
4838 	}
4839 }
4840 
4841 void pci_reset_secondary_bus(struct pci_dev *dev)
4842 {
4843 	u16 ctrl;
4844 
4845 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4846 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4847 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4848 
4849 	/*
4850 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4851 	 * this to 2ms to ensure that we meet the minimum requirement.
4852 	 */
4853 	msleep(2);
4854 
4855 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4856 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4857 
4858 	/*
4859 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4860 	 * Assuming a minimum 33MHz clock this results in a 1s
4861 	 * delay before we can consider subordinate devices to
4862 	 * be re-initialized.  PCIe has some ways to shorten this,
4863 	 * but we don't make use of them yet.
4864 	 */
4865 	ssleep(1);
4866 }
4867 
4868 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4869 {
4870 	pci_reset_secondary_bus(dev);
4871 }
4872 
4873 /**
4874  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875  * @dev: Bridge device
4876  *
4877  * Use the bridge control register to assert reset on the secondary bus.
4878  * Devices on the secondary bus are left in power-on state.
4879  */
4880 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4881 {
4882 	pcibios_reset_secondary_bus(dev);
4883 
4884 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4885 }
4886 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4887 
4888 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4889 {
4890 	struct pci_dev *pdev;
4891 
4892 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4893 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4894 		return -ENOTTY;
4895 
4896 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4897 		if (pdev != dev)
4898 			return -ENOTTY;
4899 
4900 	if (probe)
4901 		return 0;
4902 
4903 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4904 }
4905 
4906 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4907 {
4908 	int rc = -ENOTTY;
4909 
4910 	if (!hotplug || !try_module_get(hotplug->owner))
4911 		return rc;
4912 
4913 	if (hotplug->ops->reset_slot)
4914 		rc = hotplug->ops->reset_slot(hotplug, probe);
4915 
4916 	module_put(hotplug->owner);
4917 
4918 	return rc;
4919 }
4920 
4921 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4922 {
4923 	struct pci_dev *pdev;
4924 
4925 	if (dev->subordinate || !dev->slot ||
4926 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4927 		return -ENOTTY;
4928 
4929 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4930 		if (pdev != dev && pdev->slot == dev->slot)
4931 			return -ENOTTY;
4932 
4933 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4934 }
4935 
4936 static void pci_dev_lock(struct pci_dev *dev)
4937 {
4938 	pci_cfg_access_lock(dev);
4939 	/* block PM suspend, driver probe, etc. */
4940 	device_lock(&dev->dev);
4941 }
4942 
4943 /* Return 1 on successful lock, 0 on contention */
4944 static int pci_dev_trylock(struct pci_dev *dev)
4945 {
4946 	if (pci_cfg_access_trylock(dev)) {
4947 		if (device_trylock(&dev->dev))
4948 			return 1;
4949 		pci_cfg_access_unlock(dev);
4950 	}
4951 
4952 	return 0;
4953 }
4954 
4955 static void pci_dev_unlock(struct pci_dev *dev)
4956 {
4957 	device_unlock(&dev->dev);
4958 	pci_cfg_access_unlock(dev);
4959 }
4960 
4961 static void pci_dev_save_and_disable(struct pci_dev *dev)
4962 {
4963 	const struct pci_error_handlers *err_handler =
4964 			dev->driver ? dev->driver->err_handler : NULL;
4965 
4966 	/*
4967 	 * dev->driver->err_handler->reset_prepare() is protected against
4968 	 * races with ->remove() by the device lock, which must be held by
4969 	 * the caller.
4970 	 */
4971 	if (err_handler && err_handler->reset_prepare)
4972 		err_handler->reset_prepare(dev);
4973 
4974 	/*
4975 	 * Wake-up device prior to save.  PM registers default to D0 after
4976 	 * reset and a simple register restore doesn't reliably return
4977 	 * to a non-D0 state anyway.
4978 	 */
4979 	pci_set_power_state(dev, PCI_D0);
4980 
4981 	pci_save_state(dev);
4982 	/*
4983 	 * Disable the device by clearing the Command register, except for
4984 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4985 	 * BARs, but also prevents the device from being Bus Master, preventing
4986 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4987 	 * compliant devices, INTx-disable prevents legacy interrupts.
4988 	 */
4989 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4990 }
4991 
4992 static void pci_dev_restore(struct pci_dev *dev)
4993 {
4994 	const struct pci_error_handlers *err_handler =
4995 			dev->driver ? dev->driver->err_handler : NULL;
4996 
4997 	pci_restore_state(dev);
4998 
4999 	/*
5000 	 * dev->driver->err_handler->reset_done() is protected against
5001 	 * races with ->remove() by the device lock, which must be held by
5002 	 * the caller.
5003 	 */
5004 	if (err_handler && err_handler->reset_done)
5005 		err_handler->reset_done(dev);
5006 }
5007 
5008 /**
5009  * __pci_reset_function_locked - reset a PCI device function while holding
5010  * the @dev mutex lock.
5011  * @dev: PCI device to reset
5012  *
5013  * Some devices allow an individual function to be reset without affecting
5014  * other functions in the same device.  The PCI device must be responsive
5015  * to PCI config space in order to use this function.
5016  *
5017  * The device function is presumed to be unused and the caller is holding
5018  * the device mutex lock when this function is called.
5019  *
5020  * Resetting the device will make the contents of PCI configuration space
5021  * random, so any caller of this must be prepared to reinitialise the
5022  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5023  * etc.
5024  *
5025  * Returns 0 if the device function was successfully reset or negative if the
5026  * device doesn't support resetting a single function.
5027  */
5028 int __pci_reset_function_locked(struct pci_dev *dev)
5029 {
5030 	int rc;
5031 
5032 	might_sleep();
5033 
5034 	/*
5035 	 * A reset method returns -ENOTTY if it doesn't support this device
5036 	 * and we should try the next method.
5037 	 *
5038 	 * If it returns 0 (success), we're finished.  If it returns any
5039 	 * other error, we're also finished: this indicates that further
5040 	 * reset mechanisms might be broken on the device.
5041 	 */
5042 	rc = pci_dev_specific_reset(dev, 0);
5043 	if (rc != -ENOTTY)
5044 		return rc;
5045 	if (pcie_has_flr(dev)) {
5046 		rc = pcie_flr(dev);
5047 		if (rc != -ENOTTY)
5048 			return rc;
5049 	}
5050 	rc = pci_af_flr(dev, 0);
5051 	if (rc != -ENOTTY)
5052 		return rc;
5053 	rc = pci_pm_reset(dev, 0);
5054 	if (rc != -ENOTTY)
5055 		return rc;
5056 	rc = pci_dev_reset_slot_function(dev, 0);
5057 	if (rc != -ENOTTY)
5058 		return rc;
5059 	return pci_parent_bus_reset(dev, 0);
5060 }
5061 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5062 
5063 /**
5064  * pci_probe_reset_function - check whether the device can be safely reset
5065  * @dev: PCI device to reset
5066  *
5067  * Some devices allow an individual function to be reset without affecting
5068  * other functions in the same device.  The PCI device must be responsive
5069  * to PCI config space in order to use this function.
5070  *
5071  * Returns 0 if the device function can be reset or negative if the
5072  * device doesn't support resetting a single function.
5073  */
5074 int pci_probe_reset_function(struct pci_dev *dev)
5075 {
5076 	int rc;
5077 
5078 	might_sleep();
5079 
5080 	rc = pci_dev_specific_reset(dev, 1);
5081 	if (rc != -ENOTTY)
5082 		return rc;
5083 	if (pcie_has_flr(dev))
5084 		return 0;
5085 	rc = pci_af_flr(dev, 1);
5086 	if (rc != -ENOTTY)
5087 		return rc;
5088 	rc = pci_pm_reset(dev, 1);
5089 	if (rc != -ENOTTY)
5090 		return rc;
5091 	rc = pci_dev_reset_slot_function(dev, 1);
5092 	if (rc != -ENOTTY)
5093 		return rc;
5094 
5095 	return pci_parent_bus_reset(dev, 1);
5096 }
5097 
5098 /**
5099  * pci_reset_function - quiesce and reset a PCI device function
5100  * @dev: PCI device to reset
5101  *
5102  * Some devices allow an individual function to be reset without affecting
5103  * other functions in the same device.  The PCI device must be responsive
5104  * to PCI config space in order to use this function.
5105  *
5106  * This function does not just reset the PCI portion of a device, but
5107  * clears all the state associated with the device.  This function differs
5108  * from __pci_reset_function_locked() in that it saves and restores device state
5109  * over the reset and takes the PCI device lock.
5110  *
5111  * Returns 0 if the device function was successfully reset or negative if the
5112  * device doesn't support resetting a single function.
5113  */
5114 int pci_reset_function(struct pci_dev *dev)
5115 {
5116 	int rc;
5117 
5118 	if (!dev->reset_fn)
5119 		return -ENOTTY;
5120 
5121 	pci_dev_lock(dev);
5122 	pci_dev_save_and_disable(dev);
5123 
5124 	rc = __pci_reset_function_locked(dev);
5125 
5126 	pci_dev_restore(dev);
5127 	pci_dev_unlock(dev);
5128 
5129 	return rc;
5130 }
5131 EXPORT_SYMBOL_GPL(pci_reset_function);
5132 
5133 /**
5134  * pci_reset_function_locked - quiesce and reset a PCI device function
5135  * @dev: PCI device to reset
5136  *
5137  * Some devices allow an individual function to be reset without affecting
5138  * other functions in the same device.  The PCI device must be responsive
5139  * to PCI config space in order to use this function.
5140  *
5141  * This function does not just reset the PCI portion of a device, but
5142  * clears all the state associated with the device.  This function differs
5143  * from __pci_reset_function_locked() in that it saves and restores device state
5144  * over the reset.  It also differs from pci_reset_function() in that it
5145  * requires the PCI device lock to be held.
5146  *
5147  * Returns 0 if the device function was successfully reset or negative if the
5148  * device doesn't support resetting a single function.
5149  */
5150 int pci_reset_function_locked(struct pci_dev *dev)
5151 {
5152 	int rc;
5153 
5154 	if (!dev->reset_fn)
5155 		return -ENOTTY;
5156 
5157 	pci_dev_save_and_disable(dev);
5158 
5159 	rc = __pci_reset_function_locked(dev);
5160 
5161 	pci_dev_restore(dev);
5162 
5163 	return rc;
5164 }
5165 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5166 
5167 /**
5168  * pci_try_reset_function - quiesce and reset a PCI device function
5169  * @dev: PCI device to reset
5170  *
5171  * Same as above, except return -EAGAIN if unable to lock device.
5172  */
5173 int pci_try_reset_function(struct pci_dev *dev)
5174 {
5175 	int rc;
5176 
5177 	if (!dev->reset_fn)
5178 		return -ENOTTY;
5179 
5180 	if (!pci_dev_trylock(dev))
5181 		return -EAGAIN;
5182 
5183 	pci_dev_save_and_disable(dev);
5184 	rc = __pci_reset_function_locked(dev);
5185 	pci_dev_restore(dev);
5186 	pci_dev_unlock(dev);
5187 
5188 	return rc;
5189 }
5190 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5191 
5192 /* Do any devices on or below this bus prevent a bus reset? */
5193 static bool pci_bus_resetable(struct pci_bus *bus)
5194 {
5195 	struct pci_dev *dev;
5196 
5197 
5198 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5199 		return false;
5200 
5201 	list_for_each_entry(dev, &bus->devices, bus_list) {
5202 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5203 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5204 			return false;
5205 	}
5206 
5207 	return true;
5208 }
5209 
5210 /* Lock devices from the top of the tree down */
5211 static void pci_bus_lock(struct pci_bus *bus)
5212 {
5213 	struct pci_dev *dev;
5214 
5215 	list_for_each_entry(dev, &bus->devices, bus_list) {
5216 		pci_dev_lock(dev);
5217 		if (dev->subordinate)
5218 			pci_bus_lock(dev->subordinate);
5219 	}
5220 }
5221 
5222 /* Unlock devices from the bottom of the tree up */
5223 static void pci_bus_unlock(struct pci_bus *bus)
5224 {
5225 	struct pci_dev *dev;
5226 
5227 	list_for_each_entry(dev, &bus->devices, bus_list) {
5228 		if (dev->subordinate)
5229 			pci_bus_unlock(dev->subordinate);
5230 		pci_dev_unlock(dev);
5231 	}
5232 }
5233 
5234 /* Return 1 on successful lock, 0 on contention */
5235 static int pci_bus_trylock(struct pci_bus *bus)
5236 {
5237 	struct pci_dev *dev;
5238 
5239 	list_for_each_entry(dev, &bus->devices, bus_list) {
5240 		if (!pci_dev_trylock(dev))
5241 			goto unlock;
5242 		if (dev->subordinate) {
5243 			if (!pci_bus_trylock(dev->subordinate)) {
5244 				pci_dev_unlock(dev);
5245 				goto unlock;
5246 			}
5247 		}
5248 	}
5249 	return 1;
5250 
5251 unlock:
5252 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5253 		if (dev->subordinate)
5254 			pci_bus_unlock(dev->subordinate);
5255 		pci_dev_unlock(dev);
5256 	}
5257 	return 0;
5258 }
5259 
5260 /* Do any devices on or below this slot prevent a bus reset? */
5261 static bool pci_slot_resetable(struct pci_slot *slot)
5262 {
5263 	struct pci_dev *dev;
5264 
5265 	if (slot->bus->self &&
5266 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5267 		return false;
5268 
5269 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5270 		if (!dev->slot || dev->slot != slot)
5271 			continue;
5272 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5273 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5274 			return false;
5275 	}
5276 
5277 	return true;
5278 }
5279 
5280 /* Lock devices from the top of the tree down */
5281 static void pci_slot_lock(struct pci_slot *slot)
5282 {
5283 	struct pci_dev *dev;
5284 
5285 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5286 		if (!dev->slot || dev->slot != slot)
5287 			continue;
5288 		pci_dev_lock(dev);
5289 		if (dev->subordinate)
5290 			pci_bus_lock(dev->subordinate);
5291 	}
5292 }
5293 
5294 /* Unlock devices from the bottom of the tree up */
5295 static void pci_slot_unlock(struct pci_slot *slot)
5296 {
5297 	struct pci_dev *dev;
5298 
5299 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5300 		if (!dev->slot || dev->slot != slot)
5301 			continue;
5302 		if (dev->subordinate)
5303 			pci_bus_unlock(dev->subordinate);
5304 		pci_dev_unlock(dev);
5305 	}
5306 }
5307 
5308 /* Return 1 on successful lock, 0 on contention */
5309 static int pci_slot_trylock(struct pci_slot *slot)
5310 {
5311 	struct pci_dev *dev;
5312 
5313 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5314 		if (!dev->slot || dev->slot != slot)
5315 			continue;
5316 		if (!pci_dev_trylock(dev))
5317 			goto unlock;
5318 		if (dev->subordinate) {
5319 			if (!pci_bus_trylock(dev->subordinate)) {
5320 				pci_dev_unlock(dev);
5321 				goto unlock;
5322 			}
5323 		}
5324 	}
5325 	return 1;
5326 
5327 unlock:
5328 	list_for_each_entry_continue_reverse(dev,
5329 					     &slot->bus->devices, bus_list) {
5330 		if (!dev->slot || dev->slot != slot)
5331 			continue;
5332 		if (dev->subordinate)
5333 			pci_bus_unlock(dev->subordinate);
5334 		pci_dev_unlock(dev);
5335 	}
5336 	return 0;
5337 }
5338 
5339 /*
5340  * Save and disable devices from the top of the tree down while holding
5341  * the @dev mutex lock for the entire tree.
5342  */
5343 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5344 {
5345 	struct pci_dev *dev;
5346 
5347 	list_for_each_entry(dev, &bus->devices, bus_list) {
5348 		pci_dev_save_and_disable(dev);
5349 		if (dev->subordinate)
5350 			pci_bus_save_and_disable_locked(dev->subordinate);
5351 	}
5352 }
5353 
5354 /*
5355  * Restore devices from top of the tree down while holding @dev mutex lock
5356  * for the entire tree.  Parent bridges need to be restored before we can
5357  * get to subordinate devices.
5358  */
5359 static void pci_bus_restore_locked(struct pci_bus *bus)
5360 {
5361 	struct pci_dev *dev;
5362 
5363 	list_for_each_entry(dev, &bus->devices, bus_list) {
5364 		pci_dev_restore(dev);
5365 		if (dev->subordinate)
5366 			pci_bus_restore_locked(dev->subordinate);
5367 	}
5368 }
5369 
5370 /*
5371  * Save and disable devices from the top of the tree down while holding
5372  * the @dev mutex lock for the entire tree.
5373  */
5374 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5375 {
5376 	struct pci_dev *dev;
5377 
5378 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5379 		if (!dev->slot || dev->slot != slot)
5380 			continue;
5381 		pci_dev_save_and_disable(dev);
5382 		if (dev->subordinate)
5383 			pci_bus_save_and_disable_locked(dev->subordinate);
5384 	}
5385 }
5386 
5387 /*
5388  * Restore devices from top of the tree down while holding @dev mutex lock
5389  * for the entire tree.  Parent bridges need to be restored before we can
5390  * get to subordinate devices.
5391  */
5392 static void pci_slot_restore_locked(struct pci_slot *slot)
5393 {
5394 	struct pci_dev *dev;
5395 
5396 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5397 		if (!dev->slot || dev->slot != slot)
5398 			continue;
5399 		pci_dev_restore(dev);
5400 		if (dev->subordinate)
5401 			pci_bus_restore_locked(dev->subordinate);
5402 	}
5403 }
5404 
5405 static int pci_slot_reset(struct pci_slot *slot, int probe)
5406 {
5407 	int rc;
5408 
5409 	if (!slot || !pci_slot_resetable(slot))
5410 		return -ENOTTY;
5411 
5412 	if (!probe)
5413 		pci_slot_lock(slot);
5414 
5415 	might_sleep();
5416 
5417 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5418 
5419 	if (!probe)
5420 		pci_slot_unlock(slot);
5421 
5422 	return rc;
5423 }
5424 
5425 /**
5426  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5427  * @slot: PCI slot to probe
5428  *
5429  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5430  */
5431 int pci_probe_reset_slot(struct pci_slot *slot)
5432 {
5433 	return pci_slot_reset(slot, 1);
5434 }
5435 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5436 
5437 /**
5438  * __pci_reset_slot - Try to reset a PCI slot
5439  * @slot: PCI slot to reset
5440  *
5441  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5442  * independent of other slots.  For instance, some slots may support slot power
5443  * control.  In the case of a 1:1 bus to slot architecture, this function may
5444  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5445  * Generally a slot reset should be attempted before a bus reset.  All of the
5446  * function of the slot and any subordinate buses behind the slot are reset
5447  * through this function.  PCI config space of all devices in the slot and
5448  * behind the slot is saved before and restored after reset.
5449  *
5450  * Same as above except return -EAGAIN if the slot cannot be locked
5451  */
5452 static int __pci_reset_slot(struct pci_slot *slot)
5453 {
5454 	int rc;
5455 
5456 	rc = pci_slot_reset(slot, 1);
5457 	if (rc)
5458 		return rc;
5459 
5460 	if (pci_slot_trylock(slot)) {
5461 		pci_slot_save_and_disable_locked(slot);
5462 		might_sleep();
5463 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5464 		pci_slot_restore_locked(slot);
5465 		pci_slot_unlock(slot);
5466 	} else
5467 		rc = -EAGAIN;
5468 
5469 	return rc;
5470 }
5471 
5472 static int pci_bus_reset(struct pci_bus *bus, int probe)
5473 {
5474 	int ret;
5475 
5476 	if (!bus->self || !pci_bus_resetable(bus))
5477 		return -ENOTTY;
5478 
5479 	if (probe)
5480 		return 0;
5481 
5482 	pci_bus_lock(bus);
5483 
5484 	might_sleep();
5485 
5486 	ret = pci_bridge_secondary_bus_reset(bus->self);
5487 
5488 	pci_bus_unlock(bus);
5489 
5490 	return ret;
5491 }
5492 
5493 /**
5494  * pci_bus_error_reset - reset the bridge's subordinate bus
5495  * @bridge: The parent device that connects to the bus to reset
5496  *
5497  * This function will first try to reset the slots on this bus if the method is
5498  * available. If slot reset fails or is not available, this will fall back to a
5499  * secondary bus reset.
5500  */
5501 int pci_bus_error_reset(struct pci_dev *bridge)
5502 {
5503 	struct pci_bus *bus = bridge->subordinate;
5504 	struct pci_slot *slot;
5505 
5506 	if (!bus)
5507 		return -ENOTTY;
5508 
5509 	mutex_lock(&pci_slot_mutex);
5510 	if (list_empty(&bus->slots))
5511 		goto bus_reset;
5512 
5513 	list_for_each_entry(slot, &bus->slots, list)
5514 		if (pci_probe_reset_slot(slot))
5515 			goto bus_reset;
5516 
5517 	list_for_each_entry(slot, &bus->slots, list)
5518 		if (pci_slot_reset(slot, 0))
5519 			goto bus_reset;
5520 
5521 	mutex_unlock(&pci_slot_mutex);
5522 	return 0;
5523 bus_reset:
5524 	mutex_unlock(&pci_slot_mutex);
5525 	return pci_bus_reset(bridge->subordinate, 0);
5526 }
5527 
5528 /**
5529  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5530  * @bus: PCI bus to probe
5531  *
5532  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5533  */
5534 int pci_probe_reset_bus(struct pci_bus *bus)
5535 {
5536 	return pci_bus_reset(bus, 1);
5537 }
5538 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5539 
5540 /**
5541  * __pci_reset_bus - Try to reset a PCI bus
5542  * @bus: top level PCI bus to reset
5543  *
5544  * Same as above except return -EAGAIN if the bus cannot be locked
5545  */
5546 static int __pci_reset_bus(struct pci_bus *bus)
5547 {
5548 	int rc;
5549 
5550 	rc = pci_bus_reset(bus, 1);
5551 	if (rc)
5552 		return rc;
5553 
5554 	if (pci_bus_trylock(bus)) {
5555 		pci_bus_save_and_disable_locked(bus);
5556 		might_sleep();
5557 		rc = pci_bridge_secondary_bus_reset(bus->self);
5558 		pci_bus_restore_locked(bus);
5559 		pci_bus_unlock(bus);
5560 	} else
5561 		rc = -EAGAIN;
5562 
5563 	return rc;
5564 }
5565 
5566 /**
5567  * pci_reset_bus - Try to reset a PCI bus
5568  * @pdev: top level PCI device to reset via slot/bus
5569  *
5570  * Same as above except return -EAGAIN if the bus cannot be locked
5571  */
5572 int pci_reset_bus(struct pci_dev *pdev)
5573 {
5574 	return (!pci_probe_reset_slot(pdev->slot)) ?
5575 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5576 }
5577 EXPORT_SYMBOL_GPL(pci_reset_bus);
5578 
5579 /**
5580  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5581  * @dev: PCI device to query
5582  *
5583  * Returns mmrbc: maximum designed memory read count in bytes or
5584  * appropriate error value.
5585  */
5586 int pcix_get_max_mmrbc(struct pci_dev *dev)
5587 {
5588 	int cap;
5589 	u32 stat;
5590 
5591 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5592 	if (!cap)
5593 		return -EINVAL;
5594 
5595 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5596 		return -EINVAL;
5597 
5598 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5599 }
5600 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5601 
5602 /**
5603  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5604  * @dev: PCI device to query
5605  *
5606  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5607  * value.
5608  */
5609 int pcix_get_mmrbc(struct pci_dev *dev)
5610 {
5611 	int cap;
5612 	u16 cmd;
5613 
5614 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5615 	if (!cap)
5616 		return -EINVAL;
5617 
5618 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5619 		return -EINVAL;
5620 
5621 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5622 }
5623 EXPORT_SYMBOL(pcix_get_mmrbc);
5624 
5625 /**
5626  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5627  * @dev: PCI device to query
5628  * @mmrbc: maximum memory read count in bytes
5629  *    valid values are 512, 1024, 2048, 4096
5630  *
5631  * If possible sets maximum memory read byte count, some bridges have errata
5632  * that prevent this.
5633  */
5634 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5635 {
5636 	int cap;
5637 	u32 stat, v, o;
5638 	u16 cmd;
5639 
5640 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5641 		return -EINVAL;
5642 
5643 	v = ffs(mmrbc) - 10;
5644 
5645 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5646 	if (!cap)
5647 		return -EINVAL;
5648 
5649 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5650 		return -EINVAL;
5651 
5652 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5653 		return -E2BIG;
5654 
5655 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5656 		return -EINVAL;
5657 
5658 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5659 	if (o != v) {
5660 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5661 			return -EIO;
5662 
5663 		cmd &= ~PCI_X_CMD_MAX_READ;
5664 		cmd |= v << 2;
5665 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5666 			return -EIO;
5667 	}
5668 	return 0;
5669 }
5670 EXPORT_SYMBOL(pcix_set_mmrbc);
5671 
5672 /**
5673  * pcie_get_readrq - get PCI Express read request size
5674  * @dev: PCI device to query
5675  *
5676  * Returns maximum memory read request in bytes or appropriate error value.
5677  */
5678 int pcie_get_readrq(struct pci_dev *dev)
5679 {
5680 	u16 ctl;
5681 
5682 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5683 
5684 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5685 }
5686 EXPORT_SYMBOL(pcie_get_readrq);
5687 
5688 /**
5689  * pcie_set_readrq - set PCI Express maximum memory read request
5690  * @dev: PCI device to query
5691  * @rq: maximum memory read count in bytes
5692  *    valid values are 128, 256, 512, 1024, 2048, 4096
5693  *
5694  * If possible sets maximum memory read request in bytes
5695  */
5696 int pcie_set_readrq(struct pci_dev *dev, int rq)
5697 {
5698 	u16 v;
5699 	int ret;
5700 
5701 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5702 		return -EINVAL;
5703 
5704 	/*
5705 	 * If using the "performance" PCIe config, we clamp the read rq
5706 	 * size to the max packet size to keep the host bridge from
5707 	 * generating requests larger than we can cope with.
5708 	 */
5709 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5710 		int mps = pcie_get_mps(dev);
5711 
5712 		if (mps < rq)
5713 			rq = mps;
5714 	}
5715 
5716 	v = (ffs(rq) - 8) << 12;
5717 
5718 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5719 						  PCI_EXP_DEVCTL_READRQ, v);
5720 
5721 	return pcibios_err_to_errno(ret);
5722 }
5723 EXPORT_SYMBOL(pcie_set_readrq);
5724 
5725 /**
5726  * pcie_get_mps - get PCI Express maximum payload size
5727  * @dev: PCI device to query
5728  *
5729  * Returns maximum payload size in bytes
5730  */
5731 int pcie_get_mps(struct pci_dev *dev)
5732 {
5733 	u16 ctl;
5734 
5735 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5736 
5737 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5738 }
5739 EXPORT_SYMBOL(pcie_get_mps);
5740 
5741 /**
5742  * pcie_set_mps - set PCI Express maximum payload size
5743  * @dev: PCI device to query
5744  * @mps: maximum payload size in bytes
5745  *    valid values are 128, 256, 512, 1024, 2048, 4096
5746  *
5747  * If possible sets maximum payload size
5748  */
5749 int pcie_set_mps(struct pci_dev *dev, int mps)
5750 {
5751 	u16 v;
5752 	int ret;
5753 
5754 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5755 		return -EINVAL;
5756 
5757 	v = ffs(mps) - 8;
5758 	if (v > dev->pcie_mpss)
5759 		return -EINVAL;
5760 	v <<= 5;
5761 
5762 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5763 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5764 
5765 	return pcibios_err_to_errno(ret);
5766 }
5767 EXPORT_SYMBOL(pcie_set_mps);
5768 
5769 /**
5770  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5771  *			      device and its bandwidth limitation
5772  * @dev: PCI device to query
5773  * @limiting_dev: storage for device causing the bandwidth limitation
5774  * @speed: storage for speed of limiting device
5775  * @width: storage for width of limiting device
5776  *
5777  * Walk up the PCI device chain and find the point where the minimum
5778  * bandwidth is available.  Return the bandwidth available there and (if
5779  * limiting_dev, speed, and width pointers are supplied) information about
5780  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5781  * raw bandwidth.
5782  */
5783 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5784 			     enum pci_bus_speed *speed,
5785 			     enum pcie_link_width *width)
5786 {
5787 	u16 lnksta;
5788 	enum pci_bus_speed next_speed;
5789 	enum pcie_link_width next_width;
5790 	u32 bw, next_bw;
5791 
5792 	if (speed)
5793 		*speed = PCI_SPEED_UNKNOWN;
5794 	if (width)
5795 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5796 
5797 	bw = 0;
5798 
5799 	while (dev) {
5800 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5801 
5802 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5803 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5804 			PCI_EXP_LNKSTA_NLW_SHIFT;
5805 
5806 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5807 
5808 		/* Check if current device limits the total bandwidth */
5809 		if (!bw || next_bw <= bw) {
5810 			bw = next_bw;
5811 
5812 			if (limiting_dev)
5813 				*limiting_dev = dev;
5814 			if (speed)
5815 				*speed = next_speed;
5816 			if (width)
5817 				*width = next_width;
5818 		}
5819 
5820 		dev = pci_upstream_bridge(dev);
5821 	}
5822 
5823 	return bw;
5824 }
5825 EXPORT_SYMBOL(pcie_bandwidth_available);
5826 
5827 /**
5828  * pcie_get_speed_cap - query for the PCI device's link speed capability
5829  * @dev: PCI device to query
5830  *
5831  * Query the PCI device speed capability.  Return the maximum link speed
5832  * supported by the device.
5833  */
5834 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5835 {
5836 	u32 lnkcap2, lnkcap;
5837 
5838 	/*
5839 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5840 	 * implementation note there recommends using the Supported Link
5841 	 * Speeds Vector in Link Capabilities 2 when supported.
5842 	 *
5843 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5844 	 * should use the Supported Link Speeds field in Link Capabilities,
5845 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5846 	 */
5847 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5848 
5849 	/* PCIe r3.0-compliant */
5850 	if (lnkcap2)
5851 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5852 
5853 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5854 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5855 		return PCIE_SPEED_5_0GT;
5856 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5857 		return PCIE_SPEED_2_5GT;
5858 
5859 	return PCI_SPEED_UNKNOWN;
5860 }
5861 EXPORT_SYMBOL(pcie_get_speed_cap);
5862 
5863 /**
5864  * pcie_get_width_cap - query for the PCI device's link width capability
5865  * @dev: PCI device to query
5866  *
5867  * Query the PCI device width capability.  Return the maximum link width
5868  * supported by the device.
5869  */
5870 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5871 {
5872 	u32 lnkcap;
5873 
5874 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5875 	if (lnkcap)
5876 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5877 
5878 	return PCIE_LNK_WIDTH_UNKNOWN;
5879 }
5880 EXPORT_SYMBOL(pcie_get_width_cap);
5881 
5882 /**
5883  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5884  * @dev: PCI device
5885  * @speed: storage for link speed
5886  * @width: storage for link width
5887  *
5888  * Calculate a PCI device's link bandwidth by querying for its link speed
5889  * and width, multiplying them, and applying encoding overhead.  The result
5890  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5891  */
5892 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5893 			   enum pcie_link_width *width)
5894 {
5895 	*speed = pcie_get_speed_cap(dev);
5896 	*width = pcie_get_width_cap(dev);
5897 
5898 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5899 		return 0;
5900 
5901 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5902 }
5903 
5904 /**
5905  * __pcie_print_link_status - Report the PCI device's link speed and width
5906  * @dev: PCI device to query
5907  * @verbose: Print info even when enough bandwidth is available
5908  *
5909  * If the available bandwidth at the device is less than the device is
5910  * capable of, report the device's maximum possible bandwidth and the
5911  * upstream link that limits its performance.  If @verbose, always print
5912  * the available bandwidth, even if the device isn't constrained.
5913  */
5914 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5915 {
5916 	enum pcie_link_width width, width_cap;
5917 	enum pci_bus_speed speed, speed_cap;
5918 	struct pci_dev *limiting_dev = NULL;
5919 	u32 bw_avail, bw_cap;
5920 
5921 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5922 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5923 
5924 	if (bw_avail >= bw_cap && verbose)
5925 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5926 			 bw_cap / 1000, bw_cap % 1000,
5927 			 pci_speed_string(speed_cap), width_cap);
5928 	else if (bw_avail < bw_cap)
5929 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5930 			 bw_avail / 1000, bw_avail % 1000,
5931 			 pci_speed_string(speed), width,
5932 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5933 			 bw_cap / 1000, bw_cap % 1000,
5934 			 pci_speed_string(speed_cap), width_cap);
5935 }
5936 
5937 /**
5938  * pcie_print_link_status - Report the PCI device's link speed and width
5939  * @dev: PCI device to query
5940  *
5941  * Report the available bandwidth at the device.
5942  */
5943 void pcie_print_link_status(struct pci_dev *dev)
5944 {
5945 	__pcie_print_link_status(dev, true);
5946 }
5947 EXPORT_SYMBOL(pcie_print_link_status);
5948 
5949 /**
5950  * pci_select_bars - Make BAR mask from the type of resource
5951  * @dev: the PCI device for which BAR mask is made
5952  * @flags: resource type mask to be selected
5953  *
5954  * This helper routine makes bar mask from the type of resource.
5955  */
5956 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5957 {
5958 	int i, bars = 0;
5959 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5960 		if (pci_resource_flags(dev, i) & flags)
5961 			bars |= (1 << i);
5962 	return bars;
5963 }
5964 EXPORT_SYMBOL(pci_select_bars);
5965 
5966 /* Some architectures require additional programming to enable VGA */
5967 static arch_set_vga_state_t arch_set_vga_state;
5968 
5969 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5970 {
5971 	arch_set_vga_state = func;	/* NULL disables */
5972 }
5973 
5974 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5975 				  unsigned int command_bits, u32 flags)
5976 {
5977 	if (arch_set_vga_state)
5978 		return arch_set_vga_state(dev, decode, command_bits,
5979 						flags);
5980 	return 0;
5981 }
5982 
5983 /**
5984  * pci_set_vga_state - set VGA decode state on device and parents if requested
5985  * @dev: the PCI device
5986  * @decode: true = enable decoding, false = disable decoding
5987  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5988  * @flags: traverse ancestors and change bridges
5989  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5990  */
5991 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5992 		      unsigned int command_bits, u32 flags)
5993 {
5994 	struct pci_bus *bus;
5995 	struct pci_dev *bridge;
5996 	u16 cmd;
5997 	int rc;
5998 
5999 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6000 
6001 	/* ARCH specific VGA enables */
6002 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6003 	if (rc)
6004 		return rc;
6005 
6006 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6007 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6008 		if (decode == true)
6009 			cmd |= command_bits;
6010 		else
6011 			cmd &= ~command_bits;
6012 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6013 	}
6014 
6015 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6016 		return 0;
6017 
6018 	bus = dev->bus;
6019 	while (bus) {
6020 		bridge = bus->self;
6021 		if (bridge) {
6022 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6023 					     &cmd);
6024 			if (decode == true)
6025 				cmd |= PCI_BRIDGE_CTL_VGA;
6026 			else
6027 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6028 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6029 					      cmd);
6030 		}
6031 		bus = bus->parent;
6032 	}
6033 	return 0;
6034 }
6035 
6036 #ifdef CONFIG_ACPI
6037 bool pci_pr3_present(struct pci_dev *pdev)
6038 {
6039 	struct acpi_device *adev;
6040 
6041 	if (acpi_disabled)
6042 		return false;
6043 
6044 	adev = ACPI_COMPANION(&pdev->dev);
6045 	if (!adev)
6046 		return false;
6047 
6048 	return adev->power.flags.power_resources &&
6049 		acpi_has_method(adev->handle, "_PR3");
6050 }
6051 EXPORT_SYMBOL_GPL(pci_pr3_present);
6052 #endif
6053 
6054 /**
6055  * pci_add_dma_alias - Add a DMA devfn alias for a device
6056  * @dev: the PCI device for which alias is added
6057  * @devfn_from: alias slot and function
6058  * @nr_devfns: number of subsequent devfns to alias
6059  *
6060  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6061  * which is used to program permissible bus-devfn source addresses for DMA
6062  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6063  * and are useful for devices generating DMA requests beyond or different
6064  * from their logical bus-devfn.  Examples include device quirks where the
6065  * device simply uses the wrong devfn, as well as non-transparent bridges
6066  * where the alias may be a proxy for devices in another domain.
6067  *
6068  * IOMMU group creation is performed during device discovery or addition,
6069  * prior to any potential DMA mapping and therefore prior to driver probing
6070  * (especially for userspace assigned devices where IOMMU group definition
6071  * cannot be left as a userspace activity).  DMA aliases should therefore
6072  * be configured via quirks, such as the PCI fixup header quirk.
6073  */
6074 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6075 {
6076 	int devfn_to;
6077 
6078 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6079 	devfn_to = devfn_from + nr_devfns - 1;
6080 
6081 	if (!dev->dma_alias_mask)
6082 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6083 	if (!dev->dma_alias_mask) {
6084 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6085 		return;
6086 	}
6087 
6088 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6089 
6090 	if (nr_devfns == 1)
6091 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6092 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6093 	else if (nr_devfns > 1)
6094 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6095 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6096 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6097 }
6098 
6099 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6100 {
6101 	return (dev1->dma_alias_mask &&
6102 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6103 	       (dev2->dma_alias_mask &&
6104 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6105 	       pci_real_dma_dev(dev1) == dev2 ||
6106 	       pci_real_dma_dev(dev2) == dev1;
6107 }
6108 
6109 bool pci_device_is_present(struct pci_dev *pdev)
6110 {
6111 	u32 v;
6112 
6113 	if (pci_dev_is_disconnected(pdev))
6114 		return false;
6115 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6116 }
6117 EXPORT_SYMBOL_GPL(pci_device_is_present);
6118 
6119 void pci_ignore_hotplug(struct pci_dev *dev)
6120 {
6121 	struct pci_dev *bridge = dev->bus->self;
6122 
6123 	dev->ignore_hotplug = 1;
6124 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6125 	if (bridge)
6126 		bridge->ignore_hotplug = 1;
6127 }
6128 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6129 
6130 /**
6131  * pci_real_dma_dev - Get PCI DMA device for PCI device
6132  * @dev: the PCI device that may have a PCI DMA alias
6133  *
6134  * Permits the platform to provide architecture-specific functionality to
6135  * devices needing to alias DMA to another PCI device on another PCI bus. If
6136  * the PCI device is on the same bus, it is recommended to use
6137  * pci_add_dma_alias(). This is the default implementation. Architecture
6138  * implementations can override this.
6139  */
6140 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6141 {
6142 	return dev;
6143 }
6144 
6145 resource_size_t __weak pcibios_default_alignment(void)
6146 {
6147 	return 0;
6148 }
6149 
6150 /*
6151  * Arches that don't want to expose struct resource to userland as-is in
6152  * sysfs and /proc can implement their own pci_resource_to_user().
6153  */
6154 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6155 				 const struct resource *rsrc,
6156 				 resource_size_t *start, resource_size_t *end)
6157 {
6158 	*start = rsrc->start;
6159 	*end = rsrc->end;
6160 }
6161 
6162 static char *resource_alignment_param;
6163 static DEFINE_SPINLOCK(resource_alignment_lock);
6164 
6165 /**
6166  * pci_specified_resource_alignment - get resource alignment specified by user.
6167  * @dev: the PCI device to get
6168  * @resize: whether or not to change resources' size when reassigning alignment
6169  *
6170  * RETURNS: Resource alignment if it is specified.
6171  *          Zero if it is not specified.
6172  */
6173 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6174 							bool *resize)
6175 {
6176 	int align_order, count;
6177 	resource_size_t align = pcibios_default_alignment();
6178 	const char *p;
6179 	int ret;
6180 
6181 	spin_lock(&resource_alignment_lock);
6182 	p = resource_alignment_param;
6183 	if (!p || !*p)
6184 		goto out;
6185 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6186 		align = 0;
6187 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6188 		goto out;
6189 	}
6190 
6191 	while (*p) {
6192 		count = 0;
6193 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6194 							p[count] == '@') {
6195 			p += count + 1;
6196 		} else {
6197 			align_order = -1;
6198 		}
6199 
6200 		ret = pci_dev_str_match(dev, p, &p);
6201 		if (ret == 1) {
6202 			*resize = true;
6203 			if (align_order == -1)
6204 				align = PAGE_SIZE;
6205 			else
6206 				align = 1 << align_order;
6207 			break;
6208 		} else if (ret < 0) {
6209 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6210 			       p);
6211 			break;
6212 		}
6213 
6214 		if (*p != ';' && *p != ',') {
6215 			/* End of param or invalid format */
6216 			break;
6217 		}
6218 		p++;
6219 	}
6220 out:
6221 	spin_unlock(&resource_alignment_lock);
6222 	return align;
6223 }
6224 
6225 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6226 					   resource_size_t align, bool resize)
6227 {
6228 	struct resource *r = &dev->resource[bar];
6229 	resource_size_t size;
6230 
6231 	if (!(r->flags & IORESOURCE_MEM))
6232 		return;
6233 
6234 	if (r->flags & IORESOURCE_PCI_FIXED) {
6235 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6236 			 bar, r, (unsigned long long)align);
6237 		return;
6238 	}
6239 
6240 	size = resource_size(r);
6241 	if (size >= align)
6242 		return;
6243 
6244 	/*
6245 	 * Increase the alignment of the resource.  There are two ways we
6246 	 * can do this:
6247 	 *
6248 	 * 1) Increase the size of the resource.  BARs are aligned on their
6249 	 *    size, so when we reallocate space for this resource, we'll
6250 	 *    allocate it with the larger alignment.  This also prevents
6251 	 *    assignment of any other BARs inside the alignment region, so
6252 	 *    if we're requesting page alignment, this means no other BARs
6253 	 *    will share the page.
6254 	 *
6255 	 *    The disadvantage is that this makes the resource larger than
6256 	 *    the hardware BAR, which may break drivers that compute things
6257 	 *    based on the resource size, e.g., to find registers at a
6258 	 *    fixed offset before the end of the BAR.
6259 	 *
6260 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6261 	 *    set r->start to the desired alignment.  By itself this
6262 	 *    doesn't prevent other BARs being put inside the alignment
6263 	 *    region, but if we realign *every* resource of every device in
6264 	 *    the system, none of them will share an alignment region.
6265 	 *
6266 	 * When the user has requested alignment for only some devices via
6267 	 * the "pci=resource_alignment" argument, "resize" is true and we
6268 	 * use the first method.  Otherwise we assume we're aligning all
6269 	 * devices and we use the second.
6270 	 */
6271 
6272 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6273 		 bar, r, (unsigned long long)align);
6274 
6275 	if (resize) {
6276 		r->start = 0;
6277 		r->end = align - 1;
6278 	} else {
6279 		r->flags &= ~IORESOURCE_SIZEALIGN;
6280 		r->flags |= IORESOURCE_STARTALIGN;
6281 		r->start = align;
6282 		r->end = r->start + size - 1;
6283 	}
6284 	r->flags |= IORESOURCE_UNSET;
6285 }
6286 
6287 /*
6288  * This function disables memory decoding and releases memory resources
6289  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6290  * It also rounds up size to specified alignment.
6291  * Later on, the kernel will assign page-aligned memory resource back
6292  * to the device.
6293  */
6294 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6295 {
6296 	int i;
6297 	struct resource *r;
6298 	resource_size_t align;
6299 	u16 command;
6300 	bool resize = false;
6301 
6302 	/*
6303 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6304 	 * 3.4.1.11.  Their resources are allocated from the space
6305 	 * described by the VF BARx register in the PF's SR-IOV capability.
6306 	 * We can't influence their alignment here.
6307 	 */
6308 	if (dev->is_virtfn)
6309 		return;
6310 
6311 	/* check if specified PCI is target device to reassign */
6312 	align = pci_specified_resource_alignment(dev, &resize);
6313 	if (!align)
6314 		return;
6315 
6316 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6317 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6318 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6319 		return;
6320 	}
6321 
6322 	pci_read_config_word(dev, PCI_COMMAND, &command);
6323 	command &= ~PCI_COMMAND_MEMORY;
6324 	pci_write_config_word(dev, PCI_COMMAND, command);
6325 
6326 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6327 		pci_request_resource_alignment(dev, i, align, resize);
6328 
6329 	/*
6330 	 * Need to disable bridge's resource window,
6331 	 * to enable the kernel to reassign new resource
6332 	 * window later on.
6333 	 */
6334 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6335 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6336 			r = &dev->resource[i];
6337 			if (!(r->flags & IORESOURCE_MEM))
6338 				continue;
6339 			r->flags |= IORESOURCE_UNSET;
6340 			r->end = resource_size(r) - 1;
6341 			r->start = 0;
6342 		}
6343 		pci_disable_bridge_window(dev);
6344 	}
6345 }
6346 
6347 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6348 {
6349 	size_t count = 0;
6350 
6351 	spin_lock(&resource_alignment_lock);
6352 	if (resource_alignment_param)
6353 		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6354 	spin_unlock(&resource_alignment_lock);
6355 
6356 	/*
6357 	 * When set by the command line, resource_alignment_param will not
6358 	 * have a trailing line feed, which is ugly. So conditionally add
6359 	 * it here.
6360 	 */
6361 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6362 		buf[count - 1] = '\n';
6363 		buf[count++] = 0;
6364 	}
6365 
6366 	return count;
6367 }
6368 
6369 static ssize_t resource_alignment_store(struct bus_type *bus,
6370 					const char *buf, size_t count)
6371 {
6372 	char *param = kstrndup(buf, count, GFP_KERNEL);
6373 
6374 	if (!param)
6375 		return -ENOMEM;
6376 
6377 	spin_lock(&resource_alignment_lock);
6378 	kfree(resource_alignment_param);
6379 	resource_alignment_param = param;
6380 	spin_unlock(&resource_alignment_lock);
6381 	return count;
6382 }
6383 
6384 static BUS_ATTR_RW(resource_alignment);
6385 
6386 static int __init pci_resource_alignment_sysfs_init(void)
6387 {
6388 	return bus_create_file(&pci_bus_type,
6389 					&bus_attr_resource_alignment);
6390 }
6391 late_initcall(pci_resource_alignment_sysfs_init);
6392 
6393 static void pci_no_domains(void)
6394 {
6395 #ifdef CONFIG_PCI_DOMAINS
6396 	pci_domains_supported = 0;
6397 #endif
6398 }
6399 
6400 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6401 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6402 
6403 static int pci_get_new_domain_nr(void)
6404 {
6405 	return atomic_inc_return(&__domain_nr);
6406 }
6407 
6408 static int of_pci_bus_find_domain_nr(struct device *parent)
6409 {
6410 	static int use_dt_domains = -1;
6411 	int domain = -1;
6412 
6413 	if (parent)
6414 		domain = of_get_pci_domain_nr(parent->of_node);
6415 
6416 	/*
6417 	 * Check DT domain and use_dt_domains values.
6418 	 *
6419 	 * If DT domain property is valid (domain >= 0) and
6420 	 * use_dt_domains != 0, the DT assignment is valid since this means
6421 	 * we have not previously allocated a domain number by using
6422 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6423 	 * 1, to indicate that we have just assigned a domain number from
6424 	 * DT.
6425 	 *
6426 	 * If DT domain property value is not valid (ie domain < 0), and we
6427 	 * have not previously assigned a domain number from DT
6428 	 * (use_dt_domains != 1) we should assign a domain number by
6429 	 * using the:
6430 	 *
6431 	 * pci_get_new_domain_nr()
6432 	 *
6433 	 * API and update the use_dt_domains value to keep track of method we
6434 	 * are using to assign domain numbers (use_dt_domains = 0).
6435 	 *
6436 	 * All other combinations imply we have a platform that is trying
6437 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6438 	 * which is a recipe for domain mishandling and it is prevented by
6439 	 * invalidating the domain value (domain = -1) and printing a
6440 	 * corresponding error.
6441 	 */
6442 	if (domain >= 0 && use_dt_domains) {
6443 		use_dt_domains = 1;
6444 	} else if (domain < 0 && use_dt_domains != 1) {
6445 		use_dt_domains = 0;
6446 		domain = pci_get_new_domain_nr();
6447 	} else {
6448 		if (parent)
6449 			pr_err("Node %pOF has ", parent->of_node);
6450 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6451 		domain = -1;
6452 	}
6453 
6454 	return domain;
6455 }
6456 
6457 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6458 {
6459 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6460 			       acpi_pci_bus_find_domain_nr(bus);
6461 }
6462 #endif
6463 
6464 /**
6465  * pci_ext_cfg_avail - can we access extended PCI config space?
6466  *
6467  * Returns 1 if we can access PCI extended config space (offsets
6468  * greater than 0xff). This is the default implementation. Architecture
6469  * implementations can override this.
6470  */
6471 int __weak pci_ext_cfg_avail(void)
6472 {
6473 	return 1;
6474 }
6475 
6476 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6477 {
6478 }
6479 EXPORT_SYMBOL(pci_fixup_cardbus);
6480 
6481 static int __init pci_setup(char *str)
6482 {
6483 	while (str) {
6484 		char *k = strchr(str, ',');
6485 		if (k)
6486 			*k++ = 0;
6487 		if (*str && (str = pcibios_setup(str)) && *str) {
6488 			if (!strcmp(str, "nomsi")) {
6489 				pci_no_msi();
6490 			} else if (!strncmp(str, "noats", 5)) {
6491 				pr_info("PCIe: ATS is disabled\n");
6492 				pcie_ats_disabled = true;
6493 			} else if (!strcmp(str, "noaer")) {
6494 				pci_no_aer();
6495 			} else if (!strcmp(str, "earlydump")) {
6496 				pci_early_dump = true;
6497 			} else if (!strncmp(str, "realloc=", 8)) {
6498 				pci_realloc_get_opt(str + 8);
6499 			} else if (!strncmp(str, "realloc", 7)) {
6500 				pci_realloc_get_opt("on");
6501 			} else if (!strcmp(str, "nodomains")) {
6502 				pci_no_domains();
6503 			} else if (!strncmp(str, "noari", 5)) {
6504 				pcie_ari_disabled = true;
6505 			} else if (!strncmp(str, "cbiosize=", 9)) {
6506 				pci_cardbus_io_size = memparse(str + 9, &str);
6507 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6508 				pci_cardbus_mem_size = memparse(str + 10, &str);
6509 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6510 				resource_alignment_param = str + 19;
6511 			} else if (!strncmp(str, "ecrc=", 5)) {
6512 				pcie_ecrc_get_policy(str + 5);
6513 			} else if (!strncmp(str, "hpiosize=", 9)) {
6514 				pci_hotplug_io_size = memparse(str + 9, &str);
6515 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6516 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6517 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6518 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6519 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6520 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6521 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6522 			} else if (!strncmp(str, "hpbussize=", 10)) {
6523 				pci_hotplug_bus_size =
6524 					simple_strtoul(str + 10, &str, 0);
6525 				if (pci_hotplug_bus_size > 0xff)
6526 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6527 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6528 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6529 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6530 				pcie_bus_config = PCIE_BUS_SAFE;
6531 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6532 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6533 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6534 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6535 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6536 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6537 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6538 				disable_acs_redir_param = str + 18;
6539 			} else {
6540 				pr_err("PCI: Unknown option `%s'\n", str);
6541 			}
6542 		}
6543 		str = k;
6544 	}
6545 	return 0;
6546 }
6547 early_param("pci", pci_setup);
6548 
6549 /*
6550  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6551  * in pci_setup(), above, to point to data in the __initdata section which
6552  * will be freed after the init sequence is complete. We can't allocate memory
6553  * in pci_setup() because some architectures do not have any memory allocation
6554  * service available during an early_param() call. So we allocate memory and
6555  * copy the variable here before the init section is freed.
6556  *
6557  */
6558 static int __init pci_realloc_setup_params(void)
6559 {
6560 	resource_alignment_param = kstrdup(resource_alignment_param,
6561 					   GFP_KERNEL);
6562 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6563 
6564 	return 0;
6565 }
6566 pure_initcall(pci_realloc_setup_params);
6567