xref: /openbmc/linux/drivers/pci/pci.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
27 
28 const char *pci_power_names[] = {
29 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 };
31 EXPORT_SYMBOL_GPL(pci_power_names);
32 
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35 
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
38 
39 unsigned int pci_pm_d3_delay;
40 
41 static void pci_pme_list_scan(struct work_struct *work);
42 
43 static LIST_HEAD(pci_pme_list);
44 static DEFINE_MUTEX(pci_pme_list_mutex);
45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46 
47 struct pci_pme_device {
48 	struct list_head list;
49 	struct pci_dev *dev;
50 };
51 
52 #define PME_TIMEOUT 1000 /* How long between PME checks */
53 
54 static void pci_dev_d3_sleep(struct pci_dev *dev)
55 {
56 	unsigned int delay = dev->d3_delay;
57 
58 	if (delay < pci_pm_d3_delay)
59 		delay = pci_pm_d3_delay;
60 
61 	msleep(delay);
62 }
63 
64 #ifdef CONFIG_PCI_DOMAINS
65 int pci_domains_supported = 1;
66 #endif
67 
68 #define DEFAULT_CARDBUS_IO_SIZE		(256)
69 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73 
74 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
75 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
77 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79 
80 /*
81  * The default CLS is used if arch didn't set CLS explicitly and not
82  * all pci devices agree on the same value.  Arch can override either
83  * the dfl or actual value as it sees fit.  Don't forget this is
84  * measured in 32-bit words, not bytes.
85  */
86 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
87 u8 pci_cache_line_size;
88 
89 /**
90  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
91  * @bus: pointer to PCI bus structure to search
92  *
93  * Given a PCI bus, returns the highest PCI bus number present in the set
94  * including the given PCI bus and its list of child PCI buses.
95  */
96 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
97 {
98 	struct list_head *tmp;
99 	unsigned char max, n;
100 
101 	max = bus->subordinate;
102 	list_for_each(tmp, &bus->children) {
103 		n = pci_bus_max_busnr(pci_bus_b(tmp));
104 		if(n > max)
105 			max = n;
106 	}
107 	return max;
108 }
109 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
110 
111 #ifdef CONFIG_HAS_IOMEM
112 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
113 {
114 	/*
115 	 * Make sure the BAR is actually a memory resource, not an IO resource
116 	 */
117 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
118 		WARN_ON(1);
119 		return NULL;
120 	}
121 	return ioremap_nocache(pci_resource_start(pdev, bar),
122 				     pci_resource_len(pdev, bar));
123 }
124 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
125 #endif
126 
127 #if 0
128 /**
129  * pci_max_busnr - returns maximum PCI bus number
130  *
131  * Returns the highest PCI bus number present in the system global list of
132  * PCI buses.
133  */
134 unsigned char __devinit
135 pci_max_busnr(void)
136 {
137 	struct pci_bus *bus = NULL;
138 	unsigned char max, n;
139 
140 	max = 0;
141 	while ((bus = pci_find_next_bus(bus)) != NULL) {
142 		n = pci_bus_max_busnr(bus);
143 		if(n > max)
144 			max = n;
145 	}
146 	return max;
147 }
148 
149 #endif  /*  0  */
150 
151 #define PCI_FIND_CAP_TTL	48
152 
153 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
154 				   u8 pos, int cap, int *ttl)
155 {
156 	u8 id;
157 
158 	while ((*ttl)--) {
159 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
160 		if (pos < 0x40)
161 			break;
162 		pos &= ~3;
163 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
164 					 &id);
165 		if (id == 0xff)
166 			break;
167 		if (id == cap)
168 			return pos;
169 		pos += PCI_CAP_LIST_NEXT;
170 	}
171 	return 0;
172 }
173 
174 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
175 			       u8 pos, int cap)
176 {
177 	int ttl = PCI_FIND_CAP_TTL;
178 
179 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
180 }
181 
182 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
183 {
184 	return __pci_find_next_cap(dev->bus, dev->devfn,
185 				   pos + PCI_CAP_LIST_NEXT, cap);
186 }
187 EXPORT_SYMBOL_GPL(pci_find_next_capability);
188 
189 static int __pci_bus_find_cap_start(struct pci_bus *bus,
190 				    unsigned int devfn, u8 hdr_type)
191 {
192 	u16 status;
193 
194 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
195 	if (!(status & PCI_STATUS_CAP_LIST))
196 		return 0;
197 
198 	switch (hdr_type) {
199 	case PCI_HEADER_TYPE_NORMAL:
200 	case PCI_HEADER_TYPE_BRIDGE:
201 		return PCI_CAPABILITY_LIST;
202 	case PCI_HEADER_TYPE_CARDBUS:
203 		return PCI_CB_CAPABILITY_LIST;
204 	default:
205 		return 0;
206 	}
207 
208 	return 0;
209 }
210 
211 /**
212  * pci_find_capability - query for devices' capabilities
213  * @dev: PCI device to query
214  * @cap: capability code
215  *
216  * Tell if a device supports a given PCI capability.
217  * Returns the address of the requested capability structure within the
218  * device's PCI configuration space or 0 in case the device does not
219  * support it.  Possible values for @cap:
220  *
221  *  %PCI_CAP_ID_PM           Power Management
222  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
223  *  %PCI_CAP_ID_VPD          Vital Product Data
224  *  %PCI_CAP_ID_SLOTID       Slot Identification
225  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
226  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
227  *  %PCI_CAP_ID_PCIX         PCI-X
228  *  %PCI_CAP_ID_EXP          PCI Express
229  */
230 int pci_find_capability(struct pci_dev *dev, int cap)
231 {
232 	int pos;
233 
234 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
235 	if (pos)
236 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
237 
238 	return pos;
239 }
240 
241 /**
242  * pci_bus_find_capability - query for devices' capabilities
243  * @bus:   the PCI bus to query
244  * @devfn: PCI device to query
245  * @cap:   capability code
246  *
247  * Like pci_find_capability() but works for pci devices that do not have a
248  * pci_dev structure set up yet.
249  *
250  * Returns the address of the requested capability structure within the
251  * device's PCI configuration space or 0 in case the device does not
252  * support it.
253  */
254 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
255 {
256 	int pos;
257 	u8 hdr_type;
258 
259 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
260 
261 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
262 	if (pos)
263 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
264 
265 	return pos;
266 }
267 
268 /**
269  * pci_find_ext_capability - Find an extended capability
270  * @dev: PCI device to query
271  * @cap: capability code
272  *
273  * Returns the address of the requested extended capability structure
274  * within the device's PCI configuration space or 0 if the device does
275  * not support it.  Possible values for @cap:
276  *
277  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
278  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
279  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
280  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
281  */
282 int pci_find_ext_capability(struct pci_dev *dev, int cap)
283 {
284 	u32 header;
285 	int ttl;
286 	int pos = PCI_CFG_SPACE_SIZE;
287 
288 	/* minimum 8 bytes per capability */
289 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
290 
291 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
292 		return 0;
293 
294 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
295 		return 0;
296 
297 	/*
298 	 * If we have no capabilities, this is indicated by cap ID,
299 	 * cap version and next pointer all being 0.
300 	 */
301 	if (header == 0)
302 		return 0;
303 
304 	while (ttl-- > 0) {
305 		if (PCI_EXT_CAP_ID(header) == cap)
306 			return pos;
307 
308 		pos = PCI_EXT_CAP_NEXT(header);
309 		if (pos < PCI_CFG_SPACE_SIZE)
310 			break;
311 
312 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
313 			break;
314 	}
315 
316 	return 0;
317 }
318 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
319 
320 /**
321  * pci_bus_find_ext_capability - find an extended capability
322  * @bus:   the PCI bus to query
323  * @devfn: PCI device to query
324  * @cap:   capability code
325  *
326  * Like pci_find_ext_capability() but works for pci devices that do not have a
327  * pci_dev structure set up yet.
328  *
329  * Returns the address of the requested capability structure within the
330  * device's PCI configuration space or 0 in case the device does not
331  * support it.
332  */
333 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
334 				int cap)
335 {
336 	u32 header;
337 	int ttl;
338 	int pos = PCI_CFG_SPACE_SIZE;
339 
340 	/* minimum 8 bytes per capability */
341 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
342 
343 	if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
344 		return 0;
345 	if (header == 0xffffffff || header == 0)
346 		return 0;
347 
348 	while (ttl-- > 0) {
349 		if (PCI_EXT_CAP_ID(header) == cap)
350 			return pos;
351 
352 		pos = PCI_EXT_CAP_NEXT(header);
353 		if (pos < PCI_CFG_SPACE_SIZE)
354 			break;
355 
356 		if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
357 			break;
358 	}
359 
360 	return 0;
361 }
362 
363 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
364 {
365 	int rc, ttl = PCI_FIND_CAP_TTL;
366 	u8 cap, mask;
367 
368 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
369 		mask = HT_3BIT_CAP_MASK;
370 	else
371 		mask = HT_5BIT_CAP_MASK;
372 
373 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
374 				      PCI_CAP_ID_HT, &ttl);
375 	while (pos) {
376 		rc = pci_read_config_byte(dev, pos + 3, &cap);
377 		if (rc != PCIBIOS_SUCCESSFUL)
378 			return 0;
379 
380 		if ((cap & mask) == ht_cap)
381 			return pos;
382 
383 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
384 					      pos + PCI_CAP_LIST_NEXT,
385 					      PCI_CAP_ID_HT, &ttl);
386 	}
387 
388 	return 0;
389 }
390 /**
391  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
392  * @dev: PCI device to query
393  * @pos: Position from which to continue searching
394  * @ht_cap: Hypertransport capability code
395  *
396  * To be used in conjunction with pci_find_ht_capability() to search for
397  * all capabilities matching @ht_cap. @pos should always be a value returned
398  * from pci_find_ht_capability().
399  *
400  * NB. To be 100% safe against broken PCI devices, the caller should take
401  * steps to avoid an infinite loop.
402  */
403 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
404 {
405 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
406 }
407 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
408 
409 /**
410  * pci_find_ht_capability - query a device's Hypertransport capabilities
411  * @dev: PCI device to query
412  * @ht_cap: Hypertransport capability code
413  *
414  * Tell if a device supports a given Hypertransport capability.
415  * Returns an address within the device's PCI configuration space
416  * or 0 in case the device does not support the request capability.
417  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
418  * which has a Hypertransport capability matching @ht_cap.
419  */
420 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
421 {
422 	int pos;
423 
424 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
425 	if (pos)
426 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
427 
428 	return pos;
429 }
430 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
431 
432 /**
433  * pci_find_parent_resource - return resource region of parent bus of given region
434  * @dev: PCI device structure contains resources to be searched
435  * @res: child resource record for which parent is sought
436  *
437  *  For given resource region of given device, return the resource
438  *  region of parent bus the given region is contained in or where
439  *  it should be allocated from.
440  */
441 struct resource *
442 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
443 {
444 	const struct pci_bus *bus = dev->bus;
445 	int i;
446 	struct resource *best = NULL, *r;
447 
448 	pci_bus_for_each_resource(bus, r, i) {
449 		if (!r)
450 			continue;
451 		if (res->start && !(res->start >= r->start && res->end <= r->end))
452 			continue;	/* Not contained */
453 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
454 			continue;	/* Wrong type */
455 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
456 			return r;	/* Exact match */
457 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
458 		if (r->flags & IORESOURCE_PREFETCH)
459 			continue;
460 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
461 		if (!best)
462 			best = r;
463 	}
464 	return best;
465 }
466 
467 /**
468  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
469  * @dev: PCI device to have its BARs restored
470  *
471  * Restore the BAR values for a given device, so as to make it
472  * accessible by its driver.
473  */
474 static void
475 pci_restore_bars(struct pci_dev *dev)
476 {
477 	int i;
478 
479 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
480 		pci_update_resource(dev, i);
481 }
482 
483 static struct pci_platform_pm_ops *pci_platform_pm;
484 
485 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
486 {
487 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
488 	    || !ops->sleep_wake || !ops->can_wakeup)
489 		return -EINVAL;
490 	pci_platform_pm = ops;
491 	return 0;
492 }
493 
494 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
495 {
496 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
497 }
498 
499 static inline int platform_pci_set_power_state(struct pci_dev *dev,
500                                                 pci_power_t t)
501 {
502 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
503 }
504 
505 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
506 {
507 	return pci_platform_pm ?
508 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
509 }
510 
511 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
512 {
513 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
514 }
515 
516 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
517 {
518 	return pci_platform_pm ?
519 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
520 }
521 
522 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
523 {
524 	return pci_platform_pm ?
525 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
526 }
527 
528 /**
529  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
530  *                           given PCI device
531  * @dev: PCI device to handle.
532  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
533  *
534  * RETURN VALUE:
535  * -EINVAL if the requested state is invalid.
536  * -EIO if device does not support PCI PM or its PM capabilities register has a
537  * wrong version, or device doesn't support the requested state.
538  * 0 if device already is in the requested state.
539  * 0 if device's power state has been successfully changed.
540  */
541 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
542 {
543 	u16 pmcsr;
544 	bool need_restore = false;
545 
546 	/* Check if we're already there */
547 	if (dev->current_state == state)
548 		return 0;
549 
550 	if (!dev->pm_cap)
551 		return -EIO;
552 
553 	if (state < PCI_D0 || state > PCI_D3hot)
554 		return -EINVAL;
555 
556 	/* Validate current state:
557 	 * Can enter D0 from any state, but if we can only go deeper
558 	 * to sleep if we're already in a low power state
559 	 */
560 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
561 	    && dev->current_state > state) {
562 		dev_err(&dev->dev, "invalid power transition "
563 			"(from state %d to %d)\n", dev->current_state, state);
564 		return -EINVAL;
565 	}
566 
567 	/* check if this device supports the desired state */
568 	if ((state == PCI_D1 && !dev->d1_support)
569 	   || (state == PCI_D2 && !dev->d2_support))
570 		return -EIO;
571 
572 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
573 
574 	/* If we're (effectively) in D3, force entire word to 0.
575 	 * This doesn't affect PME_Status, disables PME_En, and
576 	 * sets PowerState to 0.
577 	 */
578 	switch (dev->current_state) {
579 	case PCI_D0:
580 	case PCI_D1:
581 	case PCI_D2:
582 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
583 		pmcsr |= state;
584 		break;
585 	case PCI_D3hot:
586 	case PCI_D3cold:
587 	case PCI_UNKNOWN: /* Boot-up */
588 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
589 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
590 			need_restore = true;
591 		/* Fall-through: force to D0 */
592 	default:
593 		pmcsr = 0;
594 		break;
595 	}
596 
597 	/* enter specified state */
598 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
599 
600 	/* Mandatory power management transition delays */
601 	/* see PCI PM 1.1 5.6.1 table 18 */
602 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
603 		pci_dev_d3_sleep(dev);
604 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
605 		udelay(PCI_PM_D2_DELAY);
606 
607 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
608 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
609 	if (dev->current_state != state && printk_ratelimit())
610 		dev_info(&dev->dev, "Refused to change power state, "
611 			"currently in D%d\n", dev->current_state);
612 
613 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
614 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
615 	 * from D3hot to D0 _may_ perform an internal reset, thereby
616 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
617 	 * For example, at least some versions of the 3c905B and the
618 	 * 3c556B exhibit this behaviour.
619 	 *
620 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
621 	 * devices in a D3hot state at boot.  Consequently, we need to
622 	 * restore at least the BARs so that the device will be
623 	 * accessible to its driver.
624 	 */
625 	if (need_restore)
626 		pci_restore_bars(dev);
627 
628 	if (dev->bus->self)
629 		pcie_aspm_pm_state_change(dev->bus->self);
630 
631 	return 0;
632 }
633 
634 /**
635  * pci_update_current_state - Read PCI power state of given device from its
636  *                            PCI PM registers and cache it
637  * @dev: PCI device to handle.
638  * @state: State to cache in case the device doesn't have the PM capability
639  */
640 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
641 {
642 	if (dev->pm_cap) {
643 		u16 pmcsr;
644 
645 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
646 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
647 	} else {
648 		dev->current_state = state;
649 	}
650 }
651 
652 /**
653  * pci_platform_power_transition - Use platform to change device power state
654  * @dev: PCI device to handle.
655  * @state: State to put the device into.
656  */
657 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
658 {
659 	int error;
660 
661 	if (platform_pci_power_manageable(dev)) {
662 		error = platform_pci_set_power_state(dev, state);
663 		if (!error)
664 			pci_update_current_state(dev, state);
665 	} else {
666 		error = -ENODEV;
667 		/* Fall back to PCI_D0 if native PM is not supported */
668 		if (!dev->pm_cap)
669 			dev->current_state = PCI_D0;
670 	}
671 
672 	return error;
673 }
674 
675 /**
676  * __pci_start_power_transition - Start power transition of a PCI device
677  * @dev: PCI device to handle.
678  * @state: State to put the device into.
679  */
680 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
681 {
682 	if (state == PCI_D0)
683 		pci_platform_power_transition(dev, PCI_D0);
684 }
685 
686 /**
687  * __pci_complete_power_transition - Complete power transition of a PCI device
688  * @dev: PCI device to handle.
689  * @state: State to put the device into.
690  *
691  * This function should not be called directly by device drivers.
692  */
693 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
694 {
695 	return state >= PCI_D0 ?
696 			pci_platform_power_transition(dev, state) : -EINVAL;
697 }
698 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
699 
700 /**
701  * pci_set_power_state - Set the power state of a PCI device
702  * @dev: PCI device to handle.
703  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
704  *
705  * Transition a device to a new power state, using the platform firmware and/or
706  * the device's PCI PM registers.
707  *
708  * RETURN VALUE:
709  * -EINVAL if the requested state is invalid.
710  * -EIO if device does not support PCI PM or its PM capabilities register has a
711  * wrong version, or device doesn't support the requested state.
712  * 0 if device already is in the requested state.
713  * 0 if device's power state has been successfully changed.
714  */
715 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
716 {
717 	int error;
718 
719 	/* bound the state we're entering */
720 	if (state > PCI_D3hot)
721 		state = PCI_D3hot;
722 	else if (state < PCI_D0)
723 		state = PCI_D0;
724 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
725 		/*
726 		 * If the device or the parent bridge do not support PCI PM,
727 		 * ignore the request if we're doing anything other than putting
728 		 * it into D0 (which would only happen on boot).
729 		 */
730 		return 0;
731 
732 	__pci_start_power_transition(dev, state);
733 
734 	/* This device is quirked not to be put into D3, so
735 	   don't put it in D3 */
736 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
737 		return 0;
738 
739 	error = pci_raw_set_power_state(dev, state);
740 
741 	if (!__pci_complete_power_transition(dev, state))
742 		error = 0;
743 
744 	return error;
745 }
746 
747 /**
748  * pci_choose_state - Choose the power state of a PCI device
749  * @dev: PCI device to be suspended
750  * @state: target sleep state for the whole system. This is the value
751  *	that is passed to suspend() function.
752  *
753  * Returns PCI power state suitable for given device and given system
754  * message.
755  */
756 
757 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
758 {
759 	pci_power_t ret;
760 
761 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
762 		return PCI_D0;
763 
764 	ret = platform_pci_choose_state(dev);
765 	if (ret != PCI_POWER_ERROR)
766 		return ret;
767 
768 	switch (state.event) {
769 	case PM_EVENT_ON:
770 		return PCI_D0;
771 	case PM_EVENT_FREEZE:
772 	case PM_EVENT_PRETHAW:
773 		/* REVISIT both freeze and pre-thaw "should" use D0 */
774 	case PM_EVENT_SUSPEND:
775 	case PM_EVENT_HIBERNATE:
776 		return PCI_D3hot;
777 	default:
778 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
779 			 state.event);
780 		BUG();
781 	}
782 	return PCI_D0;
783 }
784 
785 EXPORT_SYMBOL(pci_choose_state);
786 
787 #define PCI_EXP_SAVE_REGS	7
788 
789 #define pcie_cap_has_devctl(type, flags)	1
790 #define pcie_cap_has_lnkctl(type, flags)		\
791 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
792 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
793 		  type == PCI_EXP_TYPE_ENDPOINT ||	\
794 		  type == PCI_EXP_TYPE_LEG_END))
795 #define pcie_cap_has_sltctl(type, flags)		\
796 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
797 		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
798 		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
799 		   (flags & PCI_EXP_FLAGS_SLOT))))
800 #define pcie_cap_has_rtctl(type, flags)			\
801 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
802 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
803 		  type == PCI_EXP_TYPE_RC_EC))
804 #define pcie_cap_has_devctl2(type, flags)		\
805 		((flags & PCI_EXP_FLAGS_VERS) > 1)
806 #define pcie_cap_has_lnkctl2(type, flags)		\
807 		((flags & PCI_EXP_FLAGS_VERS) > 1)
808 #define pcie_cap_has_sltctl2(type, flags)		\
809 		((flags & PCI_EXP_FLAGS_VERS) > 1)
810 
811 static int pci_save_pcie_state(struct pci_dev *dev)
812 {
813 	int pos, i = 0;
814 	struct pci_cap_saved_state *save_state;
815 	u16 *cap;
816 	u16 flags;
817 
818 	pos = pci_pcie_cap(dev);
819 	if (!pos)
820 		return 0;
821 
822 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
823 	if (!save_state) {
824 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
825 		return -ENOMEM;
826 	}
827 	cap = (u16 *)&save_state->data[0];
828 
829 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
830 
831 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
832 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
833 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
834 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
835 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
836 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
837 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
838 		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
839 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
840 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
841 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
842 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
843 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
844 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
845 
846 	return 0;
847 }
848 
849 static void pci_restore_pcie_state(struct pci_dev *dev)
850 {
851 	int i = 0, pos;
852 	struct pci_cap_saved_state *save_state;
853 	u16 *cap;
854 	u16 flags;
855 
856 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
857 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
858 	if (!save_state || pos <= 0)
859 		return;
860 	cap = (u16 *)&save_state->data[0];
861 
862 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
863 
864 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
865 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
866 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
867 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
868 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
869 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
870 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
871 		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
872 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
873 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
874 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
875 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
876 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
877 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
878 }
879 
880 
881 static int pci_save_pcix_state(struct pci_dev *dev)
882 {
883 	int pos;
884 	struct pci_cap_saved_state *save_state;
885 
886 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
887 	if (pos <= 0)
888 		return 0;
889 
890 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
891 	if (!save_state) {
892 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
893 		return -ENOMEM;
894 	}
895 
896 	pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
897 
898 	return 0;
899 }
900 
901 static void pci_restore_pcix_state(struct pci_dev *dev)
902 {
903 	int i = 0, pos;
904 	struct pci_cap_saved_state *save_state;
905 	u16 *cap;
906 
907 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
908 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
909 	if (!save_state || pos <= 0)
910 		return;
911 	cap = (u16 *)&save_state->data[0];
912 
913 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
914 }
915 
916 
917 /**
918  * pci_save_state - save the PCI configuration space of a device before suspending
919  * @dev: - PCI device that we're dealing with
920  */
921 int
922 pci_save_state(struct pci_dev *dev)
923 {
924 	int i;
925 	/* XXX: 100% dword access ok here? */
926 	for (i = 0; i < 16; i++)
927 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
928 	dev->state_saved = true;
929 	if ((i = pci_save_pcie_state(dev)) != 0)
930 		return i;
931 	if ((i = pci_save_pcix_state(dev)) != 0)
932 		return i;
933 	return 0;
934 }
935 
936 /**
937  * pci_restore_state - Restore the saved state of a PCI device
938  * @dev: - PCI device that we're dealing with
939  */
940 void pci_restore_state(struct pci_dev *dev)
941 {
942 	int i;
943 	u32 val;
944 
945 	if (!dev->state_saved)
946 		return;
947 
948 	/* PCI Express register must be restored first */
949 	pci_restore_pcie_state(dev);
950 
951 	/*
952 	 * The Base Address register should be programmed before the command
953 	 * register(s)
954 	 */
955 	for (i = 15; i >= 0; i--) {
956 		pci_read_config_dword(dev, i * 4, &val);
957 		if (val != dev->saved_config_space[i]) {
958 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
959 				"space at offset %#x (was %#x, writing %#x)\n",
960 				i, val, (int)dev->saved_config_space[i]);
961 			pci_write_config_dword(dev,i * 4,
962 				dev->saved_config_space[i]);
963 		}
964 	}
965 	pci_restore_pcix_state(dev);
966 	pci_restore_msi_state(dev);
967 	pci_restore_iov_state(dev);
968 
969 	dev->state_saved = false;
970 }
971 
972 static int do_pci_enable_device(struct pci_dev *dev, int bars)
973 {
974 	int err;
975 
976 	err = pci_set_power_state(dev, PCI_D0);
977 	if (err < 0 && err != -EIO)
978 		return err;
979 	err = pcibios_enable_device(dev, bars);
980 	if (err < 0)
981 		return err;
982 	pci_fixup_device(pci_fixup_enable, dev);
983 
984 	return 0;
985 }
986 
987 /**
988  * pci_reenable_device - Resume abandoned device
989  * @dev: PCI device to be resumed
990  *
991  *  Note this function is a backend of pci_default_resume and is not supposed
992  *  to be called by normal code, write proper resume handler and use it instead.
993  */
994 int pci_reenable_device(struct pci_dev *dev)
995 {
996 	if (pci_is_enabled(dev))
997 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
998 	return 0;
999 }
1000 
1001 static int __pci_enable_device_flags(struct pci_dev *dev,
1002 				     resource_size_t flags)
1003 {
1004 	int err;
1005 	int i, bars = 0;
1006 
1007 	/*
1008 	 * Power state could be unknown at this point, either due to a fresh
1009 	 * boot or a device removal call.  So get the current power state
1010 	 * so that things like MSI message writing will behave as expected
1011 	 * (e.g. if the device really is in D0 at enable time).
1012 	 */
1013 	if (dev->pm_cap) {
1014 		u16 pmcsr;
1015 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1016 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1017 	}
1018 
1019 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
1020 		return 0;		/* already enabled */
1021 
1022 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1023 		if (dev->resource[i].flags & flags)
1024 			bars |= (1 << i);
1025 
1026 	err = do_pci_enable_device(dev, bars);
1027 	if (err < 0)
1028 		atomic_dec(&dev->enable_cnt);
1029 	return err;
1030 }
1031 
1032 /**
1033  * pci_enable_device_io - Initialize a device for use with IO space
1034  * @dev: PCI device to be initialized
1035  *
1036  *  Initialize device before it's used by a driver. Ask low-level code
1037  *  to enable I/O resources. Wake up the device if it was suspended.
1038  *  Beware, this function can fail.
1039  */
1040 int pci_enable_device_io(struct pci_dev *dev)
1041 {
1042 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
1043 }
1044 
1045 /**
1046  * pci_enable_device_mem - Initialize a device for use with Memory space
1047  * @dev: PCI device to be initialized
1048  *
1049  *  Initialize device before it's used by a driver. Ask low-level code
1050  *  to enable Memory resources. Wake up the device if it was suspended.
1051  *  Beware, this function can fail.
1052  */
1053 int pci_enable_device_mem(struct pci_dev *dev)
1054 {
1055 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1056 }
1057 
1058 /**
1059  * pci_enable_device - Initialize device before it's used by a driver.
1060  * @dev: PCI device to be initialized
1061  *
1062  *  Initialize device before it's used by a driver. Ask low-level code
1063  *  to enable I/O and memory. Wake up the device if it was suspended.
1064  *  Beware, this function can fail.
1065  *
1066  *  Note we don't actually enable the device many times if we call
1067  *  this function repeatedly (we just increment the count).
1068  */
1069 int pci_enable_device(struct pci_dev *dev)
1070 {
1071 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1072 }
1073 
1074 /*
1075  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1076  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1077  * there's no need to track it separately.  pci_devres is initialized
1078  * when a device is enabled using managed PCI device enable interface.
1079  */
1080 struct pci_devres {
1081 	unsigned int enabled:1;
1082 	unsigned int pinned:1;
1083 	unsigned int orig_intx:1;
1084 	unsigned int restore_intx:1;
1085 	u32 region_mask;
1086 };
1087 
1088 static void pcim_release(struct device *gendev, void *res)
1089 {
1090 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1091 	struct pci_devres *this = res;
1092 	int i;
1093 
1094 	if (dev->msi_enabled)
1095 		pci_disable_msi(dev);
1096 	if (dev->msix_enabled)
1097 		pci_disable_msix(dev);
1098 
1099 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1100 		if (this->region_mask & (1 << i))
1101 			pci_release_region(dev, i);
1102 
1103 	if (this->restore_intx)
1104 		pci_intx(dev, this->orig_intx);
1105 
1106 	if (this->enabled && !this->pinned)
1107 		pci_disable_device(dev);
1108 }
1109 
1110 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1111 {
1112 	struct pci_devres *dr, *new_dr;
1113 
1114 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1115 	if (dr)
1116 		return dr;
1117 
1118 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1119 	if (!new_dr)
1120 		return NULL;
1121 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1122 }
1123 
1124 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1125 {
1126 	if (pci_is_managed(pdev))
1127 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1128 	return NULL;
1129 }
1130 
1131 /**
1132  * pcim_enable_device - Managed pci_enable_device()
1133  * @pdev: PCI device to be initialized
1134  *
1135  * Managed pci_enable_device().
1136  */
1137 int pcim_enable_device(struct pci_dev *pdev)
1138 {
1139 	struct pci_devres *dr;
1140 	int rc;
1141 
1142 	dr = get_pci_dr(pdev);
1143 	if (unlikely(!dr))
1144 		return -ENOMEM;
1145 	if (dr->enabled)
1146 		return 0;
1147 
1148 	rc = pci_enable_device(pdev);
1149 	if (!rc) {
1150 		pdev->is_managed = 1;
1151 		dr->enabled = 1;
1152 	}
1153 	return rc;
1154 }
1155 
1156 /**
1157  * pcim_pin_device - Pin managed PCI device
1158  * @pdev: PCI device to pin
1159  *
1160  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1161  * driver detach.  @pdev must have been enabled with
1162  * pcim_enable_device().
1163  */
1164 void pcim_pin_device(struct pci_dev *pdev)
1165 {
1166 	struct pci_devres *dr;
1167 
1168 	dr = find_pci_dr(pdev);
1169 	WARN_ON(!dr || !dr->enabled);
1170 	if (dr)
1171 		dr->pinned = 1;
1172 }
1173 
1174 /**
1175  * pcibios_disable_device - disable arch specific PCI resources for device dev
1176  * @dev: the PCI device to disable
1177  *
1178  * Disables architecture specific PCI resources for the device. This
1179  * is the default implementation. Architecture implementations can
1180  * override this.
1181  */
1182 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1183 
1184 static void do_pci_disable_device(struct pci_dev *dev)
1185 {
1186 	u16 pci_command;
1187 
1188 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1189 	if (pci_command & PCI_COMMAND_MASTER) {
1190 		pci_command &= ~PCI_COMMAND_MASTER;
1191 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1192 	}
1193 
1194 	pcibios_disable_device(dev);
1195 }
1196 
1197 /**
1198  * pci_disable_enabled_device - Disable device without updating enable_cnt
1199  * @dev: PCI device to disable
1200  *
1201  * NOTE: This function is a backend of PCI power management routines and is
1202  * not supposed to be called drivers.
1203  */
1204 void pci_disable_enabled_device(struct pci_dev *dev)
1205 {
1206 	if (pci_is_enabled(dev))
1207 		do_pci_disable_device(dev);
1208 }
1209 
1210 /**
1211  * pci_disable_device - Disable PCI device after use
1212  * @dev: PCI device to be disabled
1213  *
1214  * Signal to the system that the PCI device is not in use by the system
1215  * anymore.  This only involves disabling PCI bus-mastering, if active.
1216  *
1217  * Note we don't actually disable the device until all callers of
1218  * pci_enable_device() have called pci_disable_device().
1219  */
1220 void
1221 pci_disable_device(struct pci_dev *dev)
1222 {
1223 	struct pci_devres *dr;
1224 
1225 	dr = find_pci_dr(dev);
1226 	if (dr)
1227 		dr->enabled = 0;
1228 
1229 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1230 		return;
1231 
1232 	do_pci_disable_device(dev);
1233 
1234 	dev->is_busmaster = 0;
1235 }
1236 
1237 /**
1238  * pcibios_set_pcie_reset_state - set reset state for device dev
1239  * @dev: the PCIe device reset
1240  * @state: Reset state to enter into
1241  *
1242  *
1243  * Sets the PCIe reset state for the device. This is the default
1244  * implementation. Architecture implementations can override this.
1245  */
1246 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1247 							enum pcie_reset_state state)
1248 {
1249 	return -EINVAL;
1250 }
1251 
1252 /**
1253  * pci_set_pcie_reset_state - set reset state for device dev
1254  * @dev: the PCIe device reset
1255  * @state: Reset state to enter into
1256  *
1257  *
1258  * Sets the PCI reset state for the device.
1259  */
1260 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1261 {
1262 	return pcibios_set_pcie_reset_state(dev, state);
1263 }
1264 
1265 /**
1266  * pci_check_pme_status - Check if given device has generated PME.
1267  * @dev: Device to check.
1268  *
1269  * Check the PME status of the device and if set, clear it and clear PME enable
1270  * (if set).  Return 'true' if PME status and PME enable were both set or
1271  * 'false' otherwise.
1272  */
1273 bool pci_check_pme_status(struct pci_dev *dev)
1274 {
1275 	int pmcsr_pos;
1276 	u16 pmcsr;
1277 	bool ret = false;
1278 
1279 	if (!dev->pm_cap)
1280 		return false;
1281 
1282 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1283 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1284 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1285 		return false;
1286 
1287 	/* Clear PME status. */
1288 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1289 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1290 		/* Disable PME to avoid interrupt flood. */
1291 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1292 		ret = true;
1293 	}
1294 
1295 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1302  * @dev: Device to handle.
1303  * @ign: Ignored.
1304  *
1305  * Check if @dev has generated PME and queue a resume request for it in that
1306  * case.
1307  */
1308 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1309 {
1310 	if (pci_check_pme_status(dev)) {
1311 		pci_wakeup_event(dev);
1312 		pm_request_resume(&dev->dev);
1313 	}
1314 	return 0;
1315 }
1316 
1317 /**
1318  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1319  * @bus: Top bus of the subtree to walk.
1320  */
1321 void pci_pme_wakeup_bus(struct pci_bus *bus)
1322 {
1323 	if (bus)
1324 		pci_walk_bus(bus, pci_pme_wakeup, NULL);
1325 }
1326 
1327 /**
1328  * pci_pme_capable - check the capability of PCI device to generate PME#
1329  * @dev: PCI device to handle.
1330  * @state: PCI state from which device will issue PME#.
1331  */
1332 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1333 {
1334 	if (!dev->pm_cap)
1335 		return false;
1336 
1337 	return !!(dev->pme_support & (1 << state));
1338 }
1339 
1340 static void pci_pme_list_scan(struct work_struct *work)
1341 {
1342 	struct pci_pme_device *pme_dev;
1343 
1344 	mutex_lock(&pci_pme_list_mutex);
1345 	if (!list_empty(&pci_pme_list)) {
1346 		list_for_each_entry(pme_dev, &pci_pme_list, list)
1347 			pci_pme_wakeup(pme_dev->dev, NULL);
1348 		schedule_delayed_work(&pci_pme_work, msecs_to_jiffies(PME_TIMEOUT));
1349 	}
1350 	mutex_unlock(&pci_pme_list_mutex);
1351 }
1352 
1353 /**
1354  * pci_external_pme - is a device an external PCI PME source?
1355  * @dev: PCI device to check
1356  *
1357  */
1358 
1359 static bool pci_external_pme(struct pci_dev *dev)
1360 {
1361 	if (pci_is_pcie(dev) || dev->bus->number == 0)
1362 		return false;
1363 	return true;
1364 }
1365 
1366 /**
1367  * pci_pme_active - enable or disable PCI device's PME# function
1368  * @dev: PCI device to handle.
1369  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1370  *
1371  * The caller must verify that the device is capable of generating PME# before
1372  * calling this function with @enable equal to 'true'.
1373  */
1374 void pci_pme_active(struct pci_dev *dev, bool enable)
1375 {
1376 	u16 pmcsr;
1377 
1378 	if (!dev->pm_cap)
1379 		return;
1380 
1381 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1382 	/* Clear PME_Status by writing 1 to it and enable PME# */
1383 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1384 	if (!enable)
1385 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1386 
1387 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1388 
1389 	/* PCI (as opposed to PCIe) PME requires that the device have
1390 	   its PME# line hooked up correctly. Not all hardware vendors
1391 	   do this, so the PME never gets delivered and the device
1392 	   remains asleep. The easiest way around this is to
1393 	   periodically walk the list of suspended devices and check
1394 	   whether any have their PME flag set. The assumption is that
1395 	   we'll wake up often enough anyway that this won't be a huge
1396 	   hit, and the power savings from the devices will still be a
1397 	   win. */
1398 
1399 	if (pci_external_pme(dev)) {
1400 		struct pci_pme_device *pme_dev;
1401 		if (enable) {
1402 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1403 					  GFP_KERNEL);
1404 			if (!pme_dev)
1405 				goto out;
1406 			pme_dev->dev = dev;
1407 			mutex_lock(&pci_pme_list_mutex);
1408 			list_add(&pme_dev->list, &pci_pme_list);
1409 			if (list_is_singular(&pci_pme_list))
1410 				schedule_delayed_work(&pci_pme_work,
1411 						      msecs_to_jiffies(PME_TIMEOUT));
1412 			mutex_unlock(&pci_pme_list_mutex);
1413 		} else {
1414 			mutex_lock(&pci_pme_list_mutex);
1415 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1416 				if (pme_dev->dev == dev) {
1417 					list_del(&pme_dev->list);
1418 					kfree(pme_dev);
1419 					break;
1420 				}
1421 			}
1422 			mutex_unlock(&pci_pme_list_mutex);
1423 		}
1424 	}
1425 
1426 out:
1427 	dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1428 			enable ? "enabled" : "disabled");
1429 }
1430 
1431 /**
1432  * __pci_enable_wake - enable PCI device as wakeup event source
1433  * @dev: PCI device affected
1434  * @state: PCI state from which device will issue wakeup events
1435  * @runtime: True if the events are to be generated at run time
1436  * @enable: True to enable event generation; false to disable
1437  *
1438  * This enables the device as a wakeup event source, or disables it.
1439  * When such events involves platform-specific hooks, those hooks are
1440  * called automatically by this routine.
1441  *
1442  * Devices with legacy power management (no standard PCI PM capabilities)
1443  * always require such platform hooks.
1444  *
1445  * RETURN VALUE:
1446  * 0 is returned on success
1447  * -EINVAL is returned if device is not supposed to wake up the system
1448  * Error code depending on the platform is returned if both the platform and
1449  * the native mechanism fail to enable the generation of wake-up events
1450  */
1451 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1452 		      bool runtime, bool enable)
1453 {
1454 	int ret = 0;
1455 
1456 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1457 		return -EINVAL;
1458 
1459 	/* Don't do the same thing twice in a row for one device. */
1460 	if (!!enable == !!dev->wakeup_prepared)
1461 		return 0;
1462 
1463 	/*
1464 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1465 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1466 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1467 	 */
1468 
1469 	if (enable) {
1470 		int error;
1471 
1472 		if (pci_pme_capable(dev, state))
1473 			pci_pme_active(dev, true);
1474 		else
1475 			ret = 1;
1476 		error = runtime ? platform_pci_run_wake(dev, true) :
1477 					platform_pci_sleep_wake(dev, true);
1478 		if (ret)
1479 			ret = error;
1480 		if (!ret)
1481 			dev->wakeup_prepared = true;
1482 	} else {
1483 		if (runtime)
1484 			platform_pci_run_wake(dev, false);
1485 		else
1486 			platform_pci_sleep_wake(dev, false);
1487 		pci_pme_active(dev, false);
1488 		dev->wakeup_prepared = false;
1489 	}
1490 
1491 	return ret;
1492 }
1493 EXPORT_SYMBOL(__pci_enable_wake);
1494 
1495 /**
1496  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1497  * @dev: PCI device to prepare
1498  * @enable: True to enable wake-up event generation; false to disable
1499  *
1500  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1501  * and this function allows them to set that up cleanly - pci_enable_wake()
1502  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1503  * ordering constraints.
1504  *
1505  * This function only returns error code if the device is not capable of
1506  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1507  * enable wake-up power for it.
1508  */
1509 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1510 {
1511 	return pci_pme_capable(dev, PCI_D3cold) ?
1512 			pci_enable_wake(dev, PCI_D3cold, enable) :
1513 			pci_enable_wake(dev, PCI_D3hot, enable);
1514 }
1515 
1516 /**
1517  * pci_target_state - find an appropriate low power state for a given PCI dev
1518  * @dev: PCI device
1519  *
1520  * Use underlying platform code to find a supported low power state for @dev.
1521  * If the platform can't manage @dev, return the deepest state from which it
1522  * can generate wake events, based on any available PME info.
1523  */
1524 pci_power_t pci_target_state(struct pci_dev *dev)
1525 {
1526 	pci_power_t target_state = PCI_D3hot;
1527 
1528 	if (platform_pci_power_manageable(dev)) {
1529 		/*
1530 		 * Call the platform to choose the target state of the device
1531 		 * and enable wake-up from this state if supported.
1532 		 */
1533 		pci_power_t state = platform_pci_choose_state(dev);
1534 
1535 		switch (state) {
1536 		case PCI_POWER_ERROR:
1537 		case PCI_UNKNOWN:
1538 			break;
1539 		case PCI_D1:
1540 		case PCI_D2:
1541 			if (pci_no_d1d2(dev))
1542 				break;
1543 		default:
1544 			target_state = state;
1545 		}
1546 	} else if (!dev->pm_cap) {
1547 		target_state = PCI_D0;
1548 	} else if (device_may_wakeup(&dev->dev)) {
1549 		/*
1550 		 * Find the deepest state from which the device can generate
1551 		 * wake-up events, make it the target state and enable device
1552 		 * to generate PME#.
1553 		 */
1554 		if (dev->pme_support) {
1555 			while (target_state
1556 			      && !(dev->pme_support & (1 << target_state)))
1557 				target_state--;
1558 		}
1559 	}
1560 
1561 	return target_state;
1562 }
1563 
1564 /**
1565  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1566  * @dev: Device to handle.
1567  *
1568  * Choose the power state appropriate for the device depending on whether
1569  * it can wake up the system and/or is power manageable by the platform
1570  * (PCI_D3hot is the default) and put the device into that state.
1571  */
1572 int pci_prepare_to_sleep(struct pci_dev *dev)
1573 {
1574 	pci_power_t target_state = pci_target_state(dev);
1575 	int error;
1576 
1577 	if (target_state == PCI_POWER_ERROR)
1578 		return -EIO;
1579 
1580 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1581 
1582 	error = pci_set_power_state(dev, target_state);
1583 
1584 	if (error)
1585 		pci_enable_wake(dev, target_state, false);
1586 
1587 	return error;
1588 }
1589 
1590 /**
1591  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1592  * @dev: Device to handle.
1593  *
1594  * Disable device's system wake-up capability and put it into D0.
1595  */
1596 int pci_back_from_sleep(struct pci_dev *dev)
1597 {
1598 	pci_enable_wake(dev, PCI_D0, false);
1599 	return pci_set_power_state(dev, PCI_D0);
1600 }
1601 
1602 /**
1603  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1604  * @dev: PCI device being suspended.
1605  *
1606  * Prepare @dev to generate wake-up events at run time and put it into a low
1607  * power state.
1608  */
1609 int pci_finish_runtime_suspend(struct pci_dev *dev)
1610 {
1611 	pci_power_t target_state = pci_target_state(dev);
1612 	int error;
1613 
1614 	if (target_state == PCI_POWER_ERROR)
1615 		return -EIO;
1616 
1617 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1618 
1619 	error = pci_set_power_state(dev, target_state);
1620 
1621 	if (error)
1622 		__pci_enable_wake(dev, target_state, true, false);
1623 
1624 	return error;
1625 }
1626 
1627 /**
1628  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1629  * @dev: Device to check.
1630  *
1631  * Return true if the device itself is cabable of generating wake-up events
1632  * (through the platform or using the native PCIe PME) or if the device supports
1633  * PME and one of its upstream bridges can generate wake-up events.
1634  */
1635 bool pci_dev_run_wake(struct pci_dev *dev)
1636 {
1637 	struct pci_bus *bus = dev->bus;
1638 
1639 	if (device_run_wake(&dev->dev))
1640 		return true;
1641 
1642 	if (!dev->pme_support)
1643 		return false;
1644 
1645 	while (bus->parent) {
1646 		struct pci_dev *bridge = bus->self;
1647 
1648 		if (device_run_wake(&bridge->dev))
1649 			return true;
1650 
1651 		bus = bus->parent;
1652 	}
1653 
1654 	/* We have reached the root bus. */
1655 	if (bus->bridge)
1656 		return device_run_wake(bus->bridge);
1657 
1658 	return false;
1659 }
1660 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1661 
1662 /**
1663  * pci_pm_init - Initialize PM functions of given PCI device
1664  * @dev: PCI device to handle.
1665  */
1666 void pci_pm_init(struct pci_dev *dev)
1667 {
1668 	int pm;
1669 	u16 pmc;
1670 
1671 	pm_runtime_forbid(&dev->dev);
1672 	device_enable_async_suspend(&dev->dev);
1673 	dev->wakeup_prepared = false;
1674 
1675 	dev->pm_cap = 0;
1676 
1677 	/* find PCI PM capability in list */
1678 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1679 	if (!pm)
1680 		return;
1681 	/* Check device's ability to generate PME# */
1682 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1683 
1684 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1685 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1686 			pmc & PCI_PM_CAP_VER_MASK);
1687 		return;
1688 	}
1689 
1690 	dev->pm_cap = pm;
1691 	dev->d3_delay = PCI_PM_D3_WAIT;
1692 
1693 	dev->d1_support = false;
1694 	dev->d2_support = false;
1695 	if (!pci_no_d1d2(dev)) {
1696 		if (pmc & PCI_PM_CAP_D1)
1697 			dev->d1_support = true;
1698 		if (pmc & PCI_PM_CAP_D2)
1699 			dev->d2_support = true;
1700 
1701 		if (dev->d1_support || dev->d2_support)
1702 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1703 				   dev->d1_support ? " D1" : "",
1704 				   dev->d2_support ? " D2" : "");
1705 	}
1706 
1707 	pmc &= PCI_PM_CAP_PME_MASK;
1708 	if (pmc) {
1709 		dev_printk(KERN_DEBUG, &dev->dev,
1710 			 "PME# supported from%s%s%s%s%s\n",
1711 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1712 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1713 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1714 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1715 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1716 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1717 		/*
1718 		 * Make device's PM flags reflect the wake-up capability, but
1719 		 * let the user space enable it to wake up the system as needed.
1720 		 */
1721 		device_set_wakeup_capable(&dev->dev, true);
1722 		/* Disable the PME# generation functionality */
1723 		pci_pme_active(dev, false);
1724 	} else {
1725 		dev->pme_support = 0;
1726 	}
1727 }
1728 
1729 /**
1730  * platform_pci_wakeup_init - init platform wakeup if present
1731  * @dev: PCI device
1732  *
1733  * Some devices don't have PCI PM caps but can still generate wakeup
1734  * events through platform methods (like ACPI events).  If @dev supports
1735  * platform wakeup events, set the device flag to indicate as much.  This
1736  * may be redundant if the device also supports PCI PM caps, but double
1737  * initialization should be safe in that case.
1738  */
1739 void platform_pci_wakeup_init(struct pci_dev *dev)
1740 {
1741 	if (!platform_pci_can_wakeup(dev))
1742 		return;
1743 
1744 	device_set_wakeup_capable(&dev->dev, true);
1745 	platform_pci_sleep_wake(dev, false);
1746 }
1747 
1748 /**
1749  * pci_add_save_buffer - allocate buffer for saving given capability registers
1750  * @dev: the PCI device
1751  * @cap: the capability to allocate the buffer for
1752  * @size: requested size of the buffer
1753  */
1754 static int pci_add_cap_save_buffer(
1755 	struct pci_dev *dev, char cap, unsigned int size)
1756 {
1757 	int pos;
1758 	struct pci_cap_saved_state *save_state;
1759 
1760 	pos = pci_find_capability(dev, cap);
1761 	if (pos <= 0)
1762 		return 0;
1763 
1764 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1765 	if (!save_state)
1766 		return -ENOMEM;
1767 
1768 	save_state->cap_nr = cap;
1769 	pci_add_saved_cap(dev, save_state);
1770 
1771 	return 0;
1772 }
1773 
1774 /**
1775  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1776  * @dev: the PCI device
1777  */
1778 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1779 {
1780 	int error;
1781 
1782 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1783 					PCI_EXP_SAVE_REGS * sizeof(u16));
1784 	if (error)
1785 		dev_err(&dev->dev,
1786 			"unable to preallocate PCI Express save buffer\n");
1787 
1788 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1789 	if (error)
1790 		dev_err(&dev->dev,
1791 			"unable to preallocate PCI-X save buffer\n");
1792 }
1793 
1794 /**
1795  * pci_enable_ari - enable ARI forwarding if hardware support it
1796  * @dev: the PCI device
1797  */
1798 void pci_enable_ari(struct pci_dev *dev)
1799 {
1800 	int pos;
1801 	u32 cap;
1802 	u16 ctrl;
1803 	struct pci_dev *bridge;
1804 
1805 	if (!pci_is_pcie(dev) || dev->devfn)
1806 		return;
1807 
1808 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1809 	if (!pos)
1810 		return;
1811 
1812 	bridge = dev->bus->self;
1813 	if (!bridge || !pci_is_pcie(bridge))
1814 		return;
1815 
1816 	pos = pci_pcie_cap(bridge);
1817 	if (!pos)
1818 		return;
1819 
1820 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1821 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1822 		return;
1823 
1824 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1825 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1826 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1827 
1828 	bridge->ari_enabled = 1;
1829 }
1830 
1831 static int pci_acs_enable;
1832 
1833 /**
1834  * pci_request_acs - ask for ACS to be enabled if supported
1835  */
1836 void pci_request_acs(void)
1837 {
1838 	pci_acs_enable = 1;
1839 }
1840 
1841 /**
1842  * pci_enable_acs - enable ACS if hardware support it
1843  * @dev: the PCI device
1844  */
1845 void pci_enable_acs(struct pci_dev *dev)
1846 {
1847 	int pos;
1848 	u16 cap;
1849 	u16 ctrl;
1850 
1851 	if (!pci_acs_enable)
1852 		return;
1853 
1854 	if (!pci_is_pcie(dev))
1855 		return;
1856 
1857 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1858 	if (!pos)
1859 		return;
1860 
1861 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1862 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1863 
1864 	/* Source Validation */
1865 	ctrl |= (cap & PCI_ACS_SV);
1866 
1867 	/* P2P Request Redirect */
1868 	ctrl |= (cap & PCI_ACS_RR);
1869 
1870 	/* P2P Completion Redirect */
1871 	ctrl |= (cap & PCI_ACS_CR);
1872 
1873 	/* Upstream Forwarding */
1874 	ctrl |= (cap & PCI_ACS_UF);
1875 
1876 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1877 }
1878 
1879 /**
1880  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1881  * @dev: the PCI device
1882  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1883  *
1884  * Perform INTx swizzling for a device behind one level of bridge.  This is
1885  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1886  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
1887  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1888  * the PCI Express Base Specification, Revision 2.1)
1889  */
1890 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1891 {
1892 	int slot;
1893 
1894 	if (pci_ari_enabled(dev->bus))
1895 		slot = 0;
1896 	else
1897 		slot = PCI_SLOT(dev->devfn);
1898 
1899 	return (((pin - 1) + slot) % 4) + 1;
1900 }
1901 
1902 int
1903 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1904 {
1905 	u8 pin;
1906 
1907 	pin = dev->pin;
1908 	if (!pin)
1909 		return -1;
1910 
1911 	while (!pci_is_root_bus(dev->bus)) {
1912 		pin = pci_swizzle_interrupt_pin(dev, pin);
1913 		dev = dev->bus->self;
1914 	}
1915 	*bridge = dev;
1916 	return pin;
1917 }
1918 
1919 /**
1920  * pci_common_swizzle - swizzle INTx all the way to root bridge
1921  * @dev: the PCI device
1922  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1923  *
1924  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
1925  * bridges all the way up to a PCI root bus.
1926  */
1927 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1928 {
1929 	u8 pin = *pinp;
1930 
1931 	while (!pci_is_root_bus(dev->bus)) {
1932 		pin = pci_swizzle_interrupt_pin(dev, pin);
1933 		dev = dev->bus->self;
1934 	}
1935 	*pinp = pin;
1936 	return PCI_SLOT(dev->devfn);
1937 }
1938 
1939 /**
1940  *	pci_release_region - Release a PCI bar
1941  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
1942  *	@bar: BAR to release
1943  *
1944  *	Releases the PCI I/O and memory resources previously reserved by a
1945  *	successful call to pci_request_region.  Call this function only
1946  *	after all use of the PCI regions has ceased.
1947  */
1948 void pci_release_region(struct pci_dev *pdev, int bar)
1949 {
1950 	struct pci_devres *dr;
1951 
1952 	if (pci_resource_len(pdev, bar) == 0)
1953 		return;
1954 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1955 		release_region(pci_resource_start(pdev, bar),
1956 				pci_resource_len(pdev, bar));
1957 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1958 		release_mem_region(pci_resource_start(pdev, bar),
1959 				pci_resource_len(pdev, bar));
1960 
1961 	dr = find_pci_dr(pdev);
1962 	if (dr)
1963 		dr->region_mask &= ~(1 << bar);
1964 }
1965 
1966 /**
1967  *	__pci_request_region - Reserved PCI I/O and memory resource
1968  *	@pdev: PCI device whose resources are to be reserved
1969  *	@bar: BAR to be reserved
1970  *	@res_name: Name to be associated with resource.
1971  *	@exclusive: whether the region access is exclusive or not
1972  *
1973  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1974  *	being reserved by owner @res_name.  Do not access any
1975  *	address inside the PCI regions unless this call returns
1976  *	successfully.
1977  *
1978  *	If @exclusive is set, then the region is marked so that userspace
1979  *	is explicitly not allowed to map the resource via /dev/mem or
1980  * 	sysfs MMIO access.
1981  *
1982  *	Returns 0 on success, or %EBUSY on error.  A warning
1983  *	message is also printed on failure.
1984  */
1985 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1986 									int exclusive)
1987 {
1988 	struct pci_devres *dr;
1989 
1990 	if (pci_resource_len(pdev, bar) == 0)
1991 		return 0;
1992 
1993 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1994 		if (!request_region(pci_resource_start(pdev, bar),
1995 			    pci_resource_len(pdev, bar), res_name))
1996 			goto err_out;
1997 	}
1998 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1999 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2000 					pci_resource_len(pdev, bar), res_name,
2001 					exclusive))
2002 			goto err_out;
2003 	}
2004 
2005 	dr = find_pci_dr(pdev);
2006 	if (dr)
2007 		dr->region_mask |= 1 << bar;
2008 
2009 	return 0;
2010 
2011 err_out:
2012 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2013 		 &pdev->resource[bar]);
2014 	return -EBUSY;
2015 }
2016 
2017 /**
2018  *	pci_request_region - Reserve PCI I/O and memory resource
2019  *	@pdev: PCI device whose resources are to be reserved
2020  *	@bar: BAR to be reserved
2021  *	@res_name: Name to be associated with resource
2022  *
2023  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2024  *	being reserved by owner @res_name.  Do not access any
2025  *	address inside the PCI regions unless this call returns
2026  *	successfully.
2027  *
2028  *	Returns 0 on success, or %EBUSY on error.  A warning
2029  *	message is also printed on failure.
2030  */
2031 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2032 {
2033 	return __pci_request_region(pdev, bar, res_name, 0);
2034 }
2035 
2036 /**
2037  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2038  *	@pdev: PCI device whose resources are to be reserved
2039  *	@bar: BAR to be reserved
2040  *	@res_name: Name to be associated with resource.
2041  *
2042  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2043  *	being reserved by owner @res_name.  Do not access any
2044  *	address inside the PCI regions unless this call returns
2045  *	successfully.
2046  *
2047  *	Returns 0 on success, or %EBUSY on error.  A warning
2048  *	message is also printed on failure.
2049  *
2050  *	The key difference that _exclusive makes it that userspace is
2051  *	explicitly not allowed to map the resource via /dev/mem or
2052  * 	sysfs.
2053  */
2054 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2055 {
2056 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2057 }
2058 /**
2059  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2060  * @pdev: PCI device whose resources were previously reserved
2061  * @bars: Bitmask of BARs to be released
2062  *
2063  * Release selected PCI I/O and memory resources previously reserved.
2064  * Call this function only after all use of the PCI regions has ceased.
2065  */
2066 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2067 {
2068 	int i;
2069 
2070 	for (i = 0; i < 6; i++)
2071 		if (bars & (1 << i))
2072 			pci_release_region(pdev, i);
2073 }
2074 
2075 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2076 				 const char *res_name, int excl)
2077 {
2078 	int i;
2079 
2080 	for (i = 0; i < 6; i++)
2081 		if (bars & (1 << i))
2082 			if (__pci_request_region(pdev, i, res_name, excl))
2083 				goto err_out;
2084 	return 0;
2085 
2086 err_out:
2087 	while(--i >= 0)
2088 		if (bars & (1 << i))
2089 			pci_release_region(pdev, i);
2090 
2091 	return -EBUSY;
2092 }
2093 
2094 
2095 /**
2096  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2097  * @pdev: PCI device whose resources are to be reserved
2098  * @bars: Bitmask of BARs to be requested
2099  * @res_name: Name to be associated with resource
2100  */
2101 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2102 				 const char *res_name)
2103 {
2104 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2105 }
2106 
2107 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2108 				 int bars, const char *res_name)
2109 {
2110 	return __pci_request_selected_regions(pdev, bars, res_name,
2111 			IORESOURCE_EXCLUSIVE);
2112 }
2113 
2114 /**
2115  *	pci_release_regions - Release reserved PCI I/O and memory resources
2116  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2117  *
2118  *	Releases all PCI I/O and memory resources previously reserved by a
2119  *	successful call to pci_request_regions.  Call this function only
2120  *	after all use of the PCI regions has ceased.
2121  */
2122 
2123 void pci_release_regions(struct pci_dev *pdev)
2124 {
2125 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2126 }
2127 
2128 /**
2129  *	pci_request_regions - Reserved PCI I/O and memory resources
2130  *	@pdev: PCI device whose resources are to be reserved
2131  *	@res_name: Name to be associated with resource.
2132  *
2133  *	Mark all PCI regions associated with PCI device @pdev as
2134  *	being reserved by owner @res_name.  Do not access any
2135  *	address inside the PCI regions unless this call returns
2136  *	successfully.
2137  *
2138  *	Returns 0 on success, or %EBUSY on error.  A warning
2139  *	message is also printed on failure.
2140  */
2141 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2142 {
2143 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2144 }
2145 
2146 /**
2147  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2148  *	@pdev: PCI device whose resources are to be reserved
2149  *	@res_name: Name to be associated with resource.
2150  *
2151  *	Mark all PCI regions associated with PCI device @pdev as
2152  *	being reserved by owner @res_name.  Do not access any
2153  *	address inside the PCI regions unless this call returns
2154  *	successfully.
2155  *
2156  *	pci_request_regions_exclusive() will mark the region so that
2157  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2158  *
2159  *	Returns 0 on success, or %EBUSY on error.  A warning
2160  *	message is also printed on failure.
2161  */
2162 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2163 {
2164 	return pci_request_selected_regions_exclusive(pdev,
2165 					((1 << 6) - 1), res_name);
2166 }
2167 
2168 static void __pci_set_master(struct pci_dev *dev, bool enable)
2169 {
2170 	u16 old_cmd, cmd;
2171 
2172 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2173 	if (enable)
2174 		cmd = old_cmd | PCI_COMMAND_MASTER;
2175 	else
2176 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2177 	if (cmd != old_cmd) {
2178 		dev_dbg(&dev->dev, "%s bus mastering\n",
2179 			enable ? "enabling" : "disabling");
2180 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2181 	}
2182 	dev->is_busmaster = enable;
2183 }
2184 
2185 /**
2186  * pci_set_master - enables bus-mastering for device dev
2187  * @dev: the PCI device to enable
2188  *
2189  * Enables bus-mastering on the device and calls pcibios_set_master()
2190  * to do the needed arch specific settings.
2191  */
2192 void pci_set_master(struct pci_dev *dev)
2193 {
2194 	__pci_set_master(dev, true);
2195 	pcibios_set_master(dev);
2196 }
2197 
2198 /**
2199  * pci_clear_master - disables bus-mastering for device dev
2200  * @dev: the PCI device to disable
2201  */
2202 void pci_clear_master(struct pci_dev *dev)
2203 {
2204 	__pci_set_master(dev, false);
2205 }
2206 
2207 /**
2208  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2209  * @dev: the PCI device for which MWI is to be enabled
2210  *
2211  * Helper function for pci_set_mwi.
2212  * Originally copied from drivers/net/acenic.c.
2213  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2214  *
2215  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2216  */
2217 int pci_set_cacheline_size(struct pci_dev *dev)
2218 {
2219 	u8 cacheline_size;
2220 
2221 	if (!pci_cache_line_size)
2222 		return -EINVAL;
2223 
2224 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2225 	   equal to or multiple of the right value. */
2226 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2227 	if (cacheline_size >= pci_cache_line_size &&
2228 	    (cacheline_size % pci_cache_line_size) == 0)
2229 		return 0;
2230 
2231 	/* Write the correct value. */
2232 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2233 	/* Read it back. */
2234 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2235 	if (cacheline_size == pci_cache_line_size)
2236 		return 0;
2237 
2238 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2239 		   "supported\n", pci_cache_line_size << 2);
2240 
2241 	return -EINVAL;
2242 }
2243 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2244 
2245 #ifdef PCI_DISABLE_MWI
2246 int pci_set_mwi(struct pci_dev *dev)
2247 {
2248 	return 0;
2249 }
2250 
2251 int pci_try_set_mwi(struct pci_dev *dev)
2252 {
2253 	return 0;
2254 }
2255 
2256 void pci_clear_mwi(struct pci_dev *dev)
2257 {
2258 }
2259 
2260 #else
2261 
2262 /**
2263  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2264  * @dev: the PCI device for which MWI is enabled
2265  *
2266  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2267  *
2268  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2269  */
2270 int
2271 pci_set_mwi(struct pci_dev *dev)
2272 {
2273 	int rc;
2274 	u16 cmd;
2275 
2276 	rc = pci_set_cacheline_size(dev);
2277 	if (rc)
2278 		return rc;
2279 
2280 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2281 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2282 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2283 		cmd |= PCI_COMMAND_INVALIDATE;
2284 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2285 	}
2286 
2287 	return 0;
2288 }
2289 
2290 /**
2291  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2292  * @dev: the PCI device for which MWI is enabled
2293  *
2294  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2295  * Callers are not required to check the return value.
2296  *
2297  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2298  */
2299 int pci_try_set_mwi(struct pci_dev *dev)
2300 {
2301 	int rc = pci_set_mwi(dev);
2302 	return rc;
2303 }
2304 
2305 /**
2306  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2307  * @dev: the PCI device to disable
2308  *
2309  * Disables PCI Memory-Write-Invalidate transaction on the device
2310  */
2311 void
2312 pci_clear_mwi(struct pci_dev *dev)
2313 {
2314 	u16 cmd;
2315 
2316 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2317 	if (cmd & PCI_COMMAND_INVALIDATE) {
2318 		cmd &= ~PCI_COMMAND_INVALIDATE;
2319 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2320 	}
2321 }
2322 #endif /* ! PCI_DISABLE_MWI */
2323 
2324 /**
2325  * pci_intx - enables/disables PCI INTx for device dev
2326  * @pdev: the PCI device to operate on
2327  * @enable: boolean: whether to enable or disable PCI INTx
2328  *
2329  * Enables/disables PCI INTx for device dev
2330  */
2331 void
2332 pci_intx(struct pci_dev *pdev, int enable)
2333 {
2334 	u16 pci_command, new;
2335 
2336 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2337 
2338 	if (enable) {
2339 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2340 	} else {
2341 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2342 	}
2343 
2344 	if (new != pci_command) {
2345 		struct pci_devres *dr;
2346 
2347 		pci_write_config_word(pdev, PCI_COMMAND, new);
2348 
2349 		dr = find_pci_dr(pdev);
2350 		if (dr && !dr->restore_intx) {
2351 			dr->restore_intx = 1;
2352 			dr->orig_intx = !enable;
2353 		}
2354 	}
2355 }
2356 
2357 /**
2358  * pci_msi_off - disables any msi or msix capabilities
2359  * @dev: the PCI device to operate on
2360  *
2361  * If you want to use msi see pci_enable_msi and friends.
2362  * This is a lower level primitive that allows us to disable
2363  * msi operation at the device level.
2364  */
2365 void pci_msi_off(struct pci_dev *dev)
2366 {
2367 	int pos;
2368 	u16 control;
2369 
2370 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2371 	if (pos) {
2372 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2373 		control &= ~PCI_MSI_FLAGS_ENABLE;
2374 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2375 	}
2376 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2377 	if (pos) {
2378 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2379 		control &= ~PCI_MSIX_FLAGS_ENABLE;
2380 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2381 	}
2382 }
2383 EXPORT_SYMBOL_GPL(pci_msi_off);
2384 
2385 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2386 {
2387 	return dma_set_max_seg_size(&dev->dev, size);
2388 }
2389 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2390 
2391 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2392 {
2393 	return dma_set_seg_boundary(&dev->dev, mask);
2394 }
2395 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2396 
2397 static int pcie_flr(struct pci_dev *dev, int probe)
2398 {
2399 	int i;
2400 	int pos;
2401 	u32 cap;
2402 	u16 status, control;
2403 
2404 	pos = pci_pcie_cap(dev);
2405 	if (!pos)
2406 		return -ENOTTY;
2407 
2408 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2409 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2410 		return -ENOTTY;
2411 
2412 	if (probe)
2413 		return 0;
2414 
2415 	/* Wait for Transaction Pending bit clean */
2416 	for (i = 0; i < 4; i++) {
2417 		if (i)
2418 			msleep((1 << (i - 1)) * 100);
2419 
2420 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2421 		if (!(status & PCI_EXP_DEVSTA_TRPND))
2422 			goto clear;
2423 	}
2424 
2425 	dev_err(&dev->dev, "transaction is not cleared; "
2426 			"proceeding with reset anyway\n");
2427 
2428 clear:
2429 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2430 	control |= PCI_EXP_DEVCTL_BCR_FLR;
2431 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2432 
2433 	msleep(100);
2434 
2435 	return 0;
2436 }
2437 
2438 static int pci_af_flr(struct pci_dev *dev, int probe)
2439 {
2440 	int i;
2441 	int pos;
2442 	u8 cap;
2443 	u8 status;
2444 
2445 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2446 	if (!pos)
2447 		return -ENOTTY;
2448 
2449 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2450 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2451 		return -ENOTTY;
2452 
2453 	if (probe)
2454 		return 0;
2455 
2456 	/* Wait for Transaction Pending bit clean */
2457 	for (i = 0; i < 4; i++) {
2458 		if (i)
2459 			msleep((1 << (i - 1)) * 100);
2460 
2461 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2462 		if (!(status & PCI_AF_STATUS_TP))
2463 			goto clear;
2464 	}
2465 
2466 	dev_err(&dev->dev, "transaction is not cleared; "
2467 			"proceeding with reset anyway\n");
2468 
2469 clear:
2470 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2471 	msleep(100);
2472 
2473 	return 0;
2474 }
2475 
2476 static int pci_pm_reset(struct pci_dev *dev, int probe)
2477 {
2478 	u16 csr;
2479 
2480 	if (!dev->pm_cap)
2481 		return -ENOTTY;
2482 
2483 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2484 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2485 		return -ENOTTY;
2486 
2487 	if (probe)
2488 		return 0;
2489 
2490 	if (dev->current_state != PCI_D0)
2491 		return -EINVAL;
2492 
2493 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2494 	csr |= PCI_D3hot;
2495 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2496 	pci_dev_d3_sleep(dev);
2497 
2498 	csr &= ~PCI_PM_CTRL_STATE_MASK;
2499 	csr |= PCI_D0;
2500 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2501 	pci_dev_d3_sleep(dev);
2502 
2503 	return 0;
2504 }
2505 
2506 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2507 {
2508 	u16 ctrl;
2509 	struct pci_dev *pdev;
2510 
2511 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2512 		return -ENOTTY;
2513 
2514 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2515 		if (pdev != dev)
2516 			return -ENOTTY;
2517 
2518 	if (probe)
2519 		return 0;
2520 
2521 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2522 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2523 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2524 	msleep(100);
2525 
2526 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2527 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2528 	msleep(100);
2529 
2530 	return 0;
2531 }
2532 
2533 static int pci_dev_reset(struct pci_dev *dev, int probe)
2534 {
2535 	int rc;
2536 
2537 	might_sleep();
2538 
2539 	if (!probe) {
2540 		pci_block_user_cfg_access(dev);
2541 		/* block PM suspend, driver probe, etc. */
2542 		device_lock(&dev->dev);
2543 	}
2544 
2545 	rc = pci_dev_specific_reset(dev, probe);
2546 	if (rc != -ENOTTY)
2547 		goto done;
2548 
2549 	rc = pcie_flr(dev, probe);
2550 	if (rc != -ENOTTY)
2551 		goto done;
2552 
2553 	rc = pci_af_flr(dev, probe);
2554 	if (rc != -ENOTTY)
2555 		goto done;
2556 
2557 	rc = pci_pm_reset(dev, probe);
2558 	if (rc != -ENOTTY)
2559 		goto done;
2560 
2561 	rc = pci_parent_bus_reset(dev, probe);
2562 done:
2563 	if (!probe) {
2564 		device_unlock(&dev->dev);
2565 		pci_unblock_user_cfg_access(dev);
2566 	}
2567 
2568 	return rc;
2569 }
2570 
2571 /**
2572  * __pci_reset_function - reset a PCI device function
2573  * @dev: PCI device to reset
2574  *
2575  * Some devices allow an individual function to be reset without affecting
2576  * other functions in the same device.  The PCI device must be responsive
2577  * to PCI config space in order to use this function.
2578  *
2579  * The device function is presumed to be unused when this function is called.
2580  * Resetting the device will make the contents of PCI configuration space
2581  * random, so any caller of this must be prepared to reinitialise the
2582  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2583  * etc.
2584  *
2585  * Returns 0 if the device function was successfully reset or negative if the
2586  * device doesn't support resetting a single function.
2587  */
2588 int __pci_reset_function(struct pci_dev *dev)
2589 {
2590 	return pci_dev_reset(dev, 0);
2591 }
2592 EXPORT_SYMBOL_GPL(__pci_reset_function);
2593 
2594 /**
2595  * pci_probe_reset_function - check whether the device can be safely reset
2596  * @dev: PCI device to reset
2597  *
2598  * Some devices allow an individual function to be reset without affecting
2599  * other functions in the same device.  The PCI device must be responsive
2600  * to PCI config space in order to use this function.
2601  *
2602  * Returns 0 if the device function can be reset or negative if the
2603  * device doesn't support resetting a single function.
2604  */
2605 int pci_probe_reset_function(struct pci_dev *dev)
2606 {
2607 	return pci_dev_reset(dev, 1);
2608 }
2609 
2610 /**
2611  * pci_reset_function - quiesce and reset a PCI device function
2612  * @dev: PCI device to reset
2613  *
2614  * Some devices allow an individual function to be reset without affecting
2615  * other functions in the same device.  The PCI device must be responsive
2616  * to PCI config space in order to use this function.
2617  *
2618  * This function does not just reset the PCI portion of a device, but
2619  * clears all the state associated with the device.  This function differs
2620  * from __pci_reset_function in that it saves and restores device state
2621  * over the reset.
2622  *
2623  * Returns 0 if the device function was successfully reset or negative if the
2624  * device doesn't support resetting a single function.
2625  */
2626 int pci_reset_function(struct pci_dev *dev)
2627 {
2628 	int rc;
2629 
2630 	rc = pci_dev_reset(dev, 1);
2631 	if (rc)
2632 		return rc;
2633 
2634 	pci_save_state(dev);
2635 
2636 	/*
2637 	 * both INTx and MSI are disabled after the Interrupt Disable bit
2638 	 * is set and the Bus Master bit is cleared.
2639 	 */
2640 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2641 
2642 	rc = pci_dev_reset(dev, 0);
2643 
2644 	pci_restore_state(dev);
2645 
2646 	return rc;
2647 }
2648 EXPORT_SYMBOL_GPL(pci_reset_function);
2649 
2650 /**
2651  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2652  * @dev: PCI device to query
2653  *
2654  * Returns mmrbc: maximum designed memory read count in bytes
2655  *    or appropriate error value.
2656  */
2657 int pcix_get_max_mmrbc(struct pci_dev *dev)
2658 {
2659 	int cap;
2660 	u32 stat;
2661 
2662 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2663 	if (!cap)
2664 		return -EINVAL;
2665 
2666 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2667 		return -EINVAL;
2668 
2669 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
2670 }
2671 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2672 
2673 /**
2674  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2675  * @dev: PCI device to query
2676  *
2677  * Returns mmrbc: maximum memory read count in bytes
2678  *    or appropriate error value.
2679  */
2680 int pcix_get_mmrbc(struct pci_dev *dev)
2681 {
2682 	int cap;
2683 	u16 cmd;
2684 
2685 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2686 	if (!cap)
2687 		return -EINVAL;
2688 
2689 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2690 		return -EINVAL;
2691 
2692 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2693 }
2694 EXPORT_SYMBOL(pcix_get_mmrbc);
2695 
2696 /**
2697  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2698  * @dev: PCI device to query
2699  * @mmrbc: maximum memory read count in bytes
2700  *    valid values are 512, 1024, 2048, 4096
2701  *
2702  * If possible sets maximum memory read byte count, some bridges have erratas
2703  * that prevent this.
2704  */
2705 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2706 {
2707 	int cap;
2708 	u32 stat, v, o;
2709 	u16 cmd;
2710 
2711 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2712 		return -EINVAL;
2713 
2714 	v = ffs(mmrbc) - 10;
2715 
2716 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2717 	if (!cap)
2718 		return -EINVAL;
2719 
2720 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2721 		return -EINVAL;
2722 
2723 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2724 		return -E2BIG;
2725 
2726 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2727 		return -EINVAL;
2728 
2729 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2730 	if (o != v) {
2731 		if (v > o && dev->bus &&
2732 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2733 			return -EIO;
2734 
2735 		cmd &= ~PCI_X_CMD_MAX_READ;
2736 		cmd |= v << 2;
2737 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
2738 			return -EIO;
2739 	}
2740 	return 0;
2741 }
2742 EXPORT_SYMBOL(pcix_set_mmrbc);
2743 
2744 /**
2745  * pcie_get_readrq - get PCI Express read request size
2746  * @dev: PCI device to query
2747  *
2748  * Returns maximum memory read request in bytes
2749  *    or appropriate error value.
2750  */
2751 int pcie_get_readrq(struct pci_dev *dev)
2752 {
2753 	int ret, cap;
2754 	u16 ctl;
2755 
2756 	cap = pci_pcie_cap(dev);
2757 	if (!cap)
2758 		return -EINVAL;
2759 
2760 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2761 	if (!ret)
2762 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2763 
2764 	return ret;
2765 }
2766 EXPORT_SYMBOL(pcie_get_readrq);
2767 
2768 /**
2769  * pcie_set_readrq - set PCI Express maximum memory read request
2770  * @dev: PCI device to query
2771  * @rq: maximum memory read count in bytes
2772  *    valid values are 128, 256, 512, 1024, 2048, 4096
2773  *
2774  * If possible sets maximum read byte count
2775  */
2776 int pcie_set_readrq(struct pci_dev *dev, int rq)
2777 {
2778 	int cap, err = -EINVAL;
2779 	u16 ctl, v;
2780 
2781 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2782 		goto out;
2783 
2784 	v = (ffs(rq) - 8) << 12;
2785 
2786 	cap = pci_pcie_cap(dev);
2787 	if (!cap)
2788 		goto out;
2789 
2790 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2791 	if (err)
2792 		goto out;
2793 
2794 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2795 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
2796 		ctl |= v;
2797 		err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2798 	}
2799 
2800 out:
2801 	return err;
2802 }
2803 EXPORT_SYMBOL(pcie_set_readrq);
2804 
2805 /**
2806  * pci_select_bars - Make BAR mask from the type of resource
2807  * @dev: the PCI device for which BAR mask is made
2808  * @flags: resource type mask to be selected
2809  *
2810  * This helper routine makes bar mask from the type of resource.
2811  */
2812 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2813 {
2814 	int i, bars = 0;
2815 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
2816 		if (pci_resource_flags(dev, i) & flags)
2817 			bars |= (1 << i);
2818 	return bars;
2819 }
2820 
2821 /**
2822  * pci_resource_bar - get position of the BAR associated with a resource
2823  * @dev: the PCI device
2824  * @resno: the resource number
2825  * @type: the BAR type to be filled in
2826  *
2827  * Returns BAR position in config space, or 0 if the BAR is invalid.
2828  */
2829 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2830 {
2831 	int reg;
2832 
2833 	if (resno < PCI_ROM_RESOURCE) {
2834 		*type = pci_bar_unknown;
2835 		return PCI_BASE_ADDRESS_0 + 4 * resno;
2836 	} else if (resno == PCI_ROM_RESOURCE) {
2837 		*type = pci_bar_mem32;
2838 		return dev->rom_base_reg;
2839 	} else if (resno < PCI_BRIDGE_RESOURCES) {
2840 		/* device specific resource */
2841 		reg = pci_iov_resource_bar(dev, resno, type);
2842 		if (reg)
2843 			return reg;
2844 	}
2845 
2846 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2847 	return 0;
2848 }
2849 
2850 /* Some architectures require additional programming to enable VGA */
2851 static arch_set_vga_state_t arch_set_vga_state;
2852 
2853 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
2854 {
2855 	arch_set_vga_state = func;	/* NULL disables */
2856 }
2857 
2858 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
2859 		      unsigned int command_bits, bool change_bridge)
2860 {
2861 	if (arch_set_vga_state)
2862 		return arch_set_vga_state(dev, decode, command_bits,
2863 						change_bridge);
2864 	return 0;
2865 }
2866 
2867 /**
2868  * pci_set_vga_state - set VGA decode state on device and parents if requested
2869  * @dev: the PCI device
2870  * @decode: true = enable decoding, false = disable decoding
2871  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2872  * @change_bridge: traverse ancestors and change bridges
2873  */
2874 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2875 		      unsigned int command_bits, bool change_bridge)
2876 {
2877 	struct pci_bus *bus;
2878 	struct pci_dev *bridge;
2879 	u16 cmd;
2880 	int rc;
2881 
2882 	WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2883 
2884 	/* ARCH specific VGA enables */
2885 	rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge);
2886 	if (rc)
2887 		return rc;
2888 
2889 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2890 	if (decode == true)
2891 		cmd |= command_bits;
2892 	else
2893 		cmd &= ~command_bits;
2894 	pci_write_config_word(dev, PCI_COMMAND, cmd);
2895 
2896 	if (change_bridge == false)
2897 		return 0;
2898 
2899 	bus = dev->bus;
2900 	while (bus) {
2901 		bridge = bus->self;
2902 		if (bridge) {
2903 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2904 					     &cmd);
2905 			if (decode == true)
2906 				cmd |= PCI_BRIDGE_CTL_VGA;
2907 			else
2908 				cmd &= ~PCI_BRIDGE_CTL_VGA;
2909 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2910 					      cmd);
2911 		}
2912 		bus = bus->parent;
2913 	}
2914 	return 0;
2915 }
2916 
2917 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2918 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2919 static DEFINE_SPINLOCK(resource_alignment_lock);
2920 
2921 /**
2922  * pci_specified_resource_alignment - get resource alignment specified by user.
2923  * @dev: the PCI device to get
2924  *
2925  * RETURNS: Resource alignment if it is specified.
2926  *          Zero if it is not specified.
2927  */
2928 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2929 {
2930 	int seg, bus, slot, func, align_order, count;
2931 	resource_size_t align = 0;
2932 	char *p;
2933 
2934 	spin_lock(&resource_alignment_lock);
2935 	p = resource_alignment_param;
2936 	while (*p) {
2937 		count = 0;
2938 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2939 							p[count] == '@') {
2940 			p += count + 1;
2941 		} else {
2942 			align_order = -1;
2943 		}
2944 		if (sscanf(p, "%x:%x:%x.%x%n",
2945 			&seg, &bus, &slot, &func, &count) != 4) {
2946 			seg = 0;
2947 			if (sscanf(p, "%x:%x.%x%n",
2948 					&bus, &slot, &func, &count) != 3) {
2949 				/* Invalid format */
2950 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2951 					p);
2952 				break;
2953 			}
2954 		}
2955 		p += count;
2956 		if (seg == pci_domain_nr(dev->bus) &&
2957 			bus == dev->bus->number &&
2958 			slot == PCI_SLOT(dev->devfn) &&
2959 			func == PCI_FUNC(dev->devfn)) {
2960 			if (align_order == -1) {
2961 				align = PAGE_SIZE;
2962 			} else {
2963 				align = 1 << align_order;
2964 			}
2965 			/* Found */
2966 			break;
2967 		}
2968 		if (*p != ';' && *p != ',') {
2969 			/* End of param or invalid format */
2970 			break;
2971 		}
2972 		p++;
2973 	}
2974 	spin_unlock(&resource_alignment_lock);
2975 	return align;
2976 }
2977 
2978 /**
2979  * pci_is_reassigndev - check if specified PCI is target device to reassign
2980  * @dev: the PCI device to check
2981  *
2982  * RETURNS: non-zero for PCI device is a target device to reassign,
2983  *          or zero is not.
2984  */
2985 int pci_is_reassigndev(struct pci_dev *dev)
2986 {
2987 	return (pci_specified_resource_alignment(dev) != 0);
2988 }
2989 
2990 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2991 {
2992 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2993 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2994 	spin_lock(&resource_alignment_lock);
2995 	strncpy(resource_alignment_param, buf, count);
2996 	resource_alignment_param[count] = '\0';
2997 	spin_unlock(&resource_alignment_lock);
2998 	return count;
2999 }
3000 
3001 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3002 {
3003 	size_t count;
3004 	spin_lock(&resource_alignment_lock);
3005 	count = snprintf(buf, size, "%s", resource_alignment_param);
3006 	spin_unlock(&resource_alignment_lock);
3007 	return count;
3008 }
3009 
3010 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3011 {
3012 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3013 }
3014 
3015 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3016 					const char *buf, size_t count)
3017 {
3018 	return pci_set_resource_alignment_param(buf, count);
3019 }
3020 
3021 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3022 					pci_resource_alignment_store);
3023 
3024 static int __init pci_resource_alignment_sysfs_init(void)
3025 {
3026 	return bus_create_file(&pci_bus_type,
3027 					&bus_attr_resource_alignment);
3028 }
3029 
3030 late_initcall(pci_resource_alignment_sysfs_init);
3031 
3032 static void __devinit pci_no_domains(void)
3033 {
3034 #ifdef CONFIG_PCI_DOMAINS
3035 	pci_domains_supported = 0;
3036 #endif
3037 }
3038 
3039 /**
3040  * pci_ext_cfg_enabled - can we access extended PCI config space?
3041  * @dev: The PCI device of the root bridge.
3042  *
3043  * Returns 1 if we can access PCI extended config space (offsets
3044  * greater than 0xff). This is the default implementation. Architecture
3045  * implementations can override this.
3046  */
3047 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3048 {
3049 	return 1;
3050 }
3051 
3052 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3053 {
3054 }
3055 EXPORT_SYMBOL(pci_fixup_cardbus);
3056 
3057 static int __init pci_setup(char *str)
3058 {
3059 	while (str) {
3060 		char *k = strchr(str, ',');
3061 		if (k)
3062 			*k++ = 0;
3063 		if (*str && (str = pcibios_setup(str)) && *str) {
3064 			if (!strcmp(str, "nomsi")) {
3065 				pci_no_msi();
3066 			} else if (!strcmp(str, "noaer")) {
3067 				pci_no_aer();
3068 			} else if (!strcmp(str, "nodomains")) {
3069 				pci_no_domains();
3070 			} else if (!strncmp(str, "cbiosize=", 9)) {
3071 				pci_cardbus_io_size = memparse(str + 9, &str);
3072 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3073 				pci_cardbus_mem_size = memparse(str + 10, &str);
3074 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3075 				pci_set_resource_alignment_param(str + 19,
3076 							strlen(str + 19));
3077 			} else if (!strncmp(str, "ecrc=", 5)) {
3078 				pcie_ecrc_get_policy(str + 5);
3079 			} else if (!strncmp(str, "hpiosize=", 9)) {
3080 				pci_hotplug_io_size = memparse(str + 9, &str);
3081 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3082 				pci_hotplug_mem_size = memparse(str + 10, &str);
3083 			} else {
3084 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3085 						str);
3086 			}
3087 		}
3088 		str = k;
3089 	}
3090 	return 0;
3091 }
3092 early_param("pci", pci_setup);
3093 
3094 EXPORT_SYMBOL(pci_reenable_device);
3095 EXPORT_SYMBOL(pci_enable_device_io);
3096 EXPORT_SYMBOL(pci_enable_device_mem);
3097 EXPORT_SYMBOL(pci_enable_device);
3098 EXPORT_SYMBOL(pcim_enable_device);
3099 EXPORT_SYMBOL(pcim_pin_device);
3100 EXPORT_SYMBOL(pci_disable_device);
3101 EXPORT_SYMBOL(pci_find_capability);
3102 EXPORT_SYMBOL(pci_bus_find_capability);
3103 EXPORT_SYMBOL(pci_release_regions);
3104 EXPORT_SYMBOL(pci_request_regions);
3105 EXPORT_SYMBOL(pci_request_regions_exclusive);
3106 EXPORT_SYMBOL(pci_release_region);
3107 EXPORT_SYMBOL(pci_request_region);
3108 EXPORT_SYMBOL(pci_request_region_exclusive);
3109 EXPORT_SYMBOL(pci_release_selected_regions);
3110 EXPORT_SYMBOL(pci_request_selected_regions);
3111 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3112 EXPORT_SYMBOL(pci_set_master);
3113 EXPORT_SYMBOL(pci_clear_master);
3114 EXPORT_SYMBOL(pci_set_mwi);
3115 EXPORT_SYMBOL(pci_try_set_mwi);
3116 EXPORT_SYMBOL(pci_clear_mwi);
3117 EXPORT_SYMBOL_GPL(pci_intx);
3118 EXPORT_SYMBOL(pci_assign_resource);
3119 EXPORT_SYMBOL(pci_find_parent_resource);
3120 EXPORT_SYMBOL(pci_select_bars);
3121 
3122 EXPORT_SYMBOL(pci_set_power_state);
3123 EXPORT_SYMBOL(pci_save_state);
3124 EXPORT_SYMBOL(pci_restore_state);
3125 EXPORT_SYMBOL(pci_pme_capable);
3126 EXPORT_SYMBOL(pci_pme_active);
3127 EXPORT_SYMBOL(pci_wake_from_d3);
3128 EXPORT_SYMBOL(pci_target_state);
3129 EXPORT_SYMBOL(pci_prepare_to_sleep);
3130 EXPORT_SYMBOL(pci_back_from_sleep);
3131 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3132