xref: /openbmc/linux/drivers/pci/pci.c (revision dea54fba)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pci-ats.h>
32 #include <asm/setup.h>
33 #include <asm/dma.h>
34 #include <linux/aer.h>
35 #include "pci.h"
36 
37 const char *pci_power_names[] = {
38 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 };
40 EXPORT_SYMBOL_GPL(pci_power_names);
41 
42 int isa_dma_bridge_buggy;
43 EXPORT_SYMBOL(isa_dma_bridge_buggy);
44 
45 int pci_pci_problems;
46 EXPORT_SYMBOL(pci_pci_problems);
47 
48 unsigned int pci_pm_d3_delay;
49 
50 static void pci_pme_list_scan(struct work_struct *work);
51 
52 static LIST_HEAD(pci_pme_list);
53 static DEFINE_MUTEX(pci_pme_list_mutex);
54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55 
56 struct pci_pme_device {
57 	struct list_head list;
58 	struct pci_dev *dev;
59 };
60 
61 #define PME_TIMEOUT 1000 /* How long between PME checks */
62 
63 static void pci_dev_d3_sleep(struct pci_dev *dev)
64 {
65 	unsigned int delay = dev->d3_delay;
66 
67 	if (delay < pci_pm_d3_delay)
68 		delay = pci_pm_d3_delay;
69 
70 	if (delay)
71 		msleep(delay);
72 }
73 
74 #ifdef CONFIG_PCI_DOMAINS
75 int pci_domains_supported = 1;
76 #endif
77 
78 #define DEFAULT_CARDBUS_IO_SIZE		(256)
79 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
81 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
82 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
83 
84 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
85 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
87 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
88 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
89 
90 #define DEFAULT_HOTPLUG_BUS_SIZE	1
91 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
92 
93 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
94 
95 /*
96  * The default CLS is used if arch didn't set CLS explicitly and not
97  * all pci devices agree on the same value.  Arch can override either
98  * the dfl or actual value as it sees fit.  Don't forget this is
99  * measured in 32-bit words, not bytes.
100  */
101 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
102 u8 pci_cache_line_size;
103 
104 /*
105  * If we set up a device for bus mastering, we need to check the latency
106  * timer as certain BIOSes forget to set it properly.
107  */
108 unsigned int pcibios_max_latency = 255;
109 
110 /* If set, the PCIe ARI capability will not be used. */
111 static bool pcie_ari_disabled;
112 
113 /* Disable bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_disable;
115 /* Force bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_force;
117 
118 static int __init pcie_port_pm_setup(char *str)
119 {
120 	if (!strcmp(str, "off"))
121 		pci_bridge_d3_disable = true;
122 	else if (!strcmp(str, "force"))
123 		pci_bridge_d3_force = true;
124 	return 1;
125 }
126 __setup("pcie_port_pm=", pcie_port_pm_setup);
127 
128 /**
129  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
130  * @bus: pointer to PCI bus structure to search
131  *
132  * Given a PCI bus, returns the highest PCI bus number present in the set
133  * including the given PCI bus and its list of child PCI buses.
134  */
135 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
136 {
137 	struct pci_bus *tmp;
138 	unsigned char max, n;
139 
140 	max = bus->busn_res.end;
141 	list_for_each_entry(tmp, &bus->children, node) {
142 		n = pci_bus_max_busnr(tmp);
143 		if (n > max)
144 			max = n;
145 	}
146 	return max;
147 }
148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
149 
150 #ifdef CONFIG_HAS_IOMEM
151 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
152 {
153 	struct resource *res = &pdev->resource[bar];
154 
155 	/*
156 	 * Make sure the BAR is actually a memory resource, not an IO resource
157 	 */
158 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
159 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
160 		return NULL;
161 	}
162 	return ioremap_nocache(res->start, resource_size(res));
163 }
164 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
165 
166 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
167 {
168 	/*
169 	 * Make sure the BAR is actually a memory resource, not an IO resource
170 	 */
171 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
172 		WARN_ON(1);
173 		return NULL;
174 	}
175 	return ioremap_wc(pci_resource_start(pdev, bar),
176 			  pci_resource_len(pdev, bar));
177 }
178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
179 #endif
180 
181 
182 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
183 				   u8 pos, int cap, int *ttl)
184 {
185 	u8 id;
186 	u16 ent;
187 
188 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
189 
190 	while ((*ttl)--) {
191 		if (pos < 0x40)
192 			break;
193 		pos &= ~3;
194 		pci_bus_read_config_word(bus, devfn, pos, &ent);
195 
196 		id = ent & 0xff;
197 		if (id == 0xff)
198 			break;
199 		if (id == cap)
200 			return pos;
201 		pos = (ent >> 8);
202 	}
203 	return 0;
204 }
205 
206 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
207 			       u8 pos, int cap)
208 {
209 	int ttl = PCI_FIND_CAP_TTL;
210 
211 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
212 }
213 
214 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
215 {
216 	return __pci_find_next_cap(dev->bus, dev->devfn,
217 				   pos + PCI_CAP_LIST_NEXT, cap);
218 }
219 EXPORT_SYMBOL_GPL(pci_find_next_capability);
220 
221 static int __pci_bus_find_cap_start(struct pci_bus *bus,
222 				    unsigned int devfn, u8 hdr_type)
223 {
224 	u16 status;
225 
226 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
227 	if (!(status & PCI_STATUS_CAP_LIST))
228 		return 0;
229 
230 	switch (hdr_type) {
231 	case PCI_HEADER_TYPE_NORMAL:
232 	case PCI_HEADER_TYPE_BRIDGE:
233 		return PCI_CAPABILITY_LIST;
234 	case PCI_HEADER_TYPE_CARDBUS:
235 		return PCI_CB_CAPABILITY_LIST;
236 	}
237 
238 	return 0;
239 }
240 
241 /**
242  * pci_find_capability - query for devices' capabilities
243  * @dev: PCI device to query
244  * @cap: capability code
245  *
246  * Tell if a device supports a given PCI capability.
247  * Returns the address of the requested capability structure within the
248  * device's PCI configuration space or 0 in case the device does not
249  * support it.  Possible values for @cap:
250  *
251  *  %PCI_CAP_ID_PM           Power Management
252  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
253  *  %PCI_CAP_ID_VPD          Vital Product Data
254  *  %PCI_CAP_ID_SLOTID       Slot Identification
255  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
256  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
257  *  %PCI_CAP_ID_PCIX         PCI-X
258  *  %PCI_CAP_ID_EXP          PCI Express
259  */
260 int pci_find_capability(struct pci_dev *dev, int cap)
261 {
262 	int pos;
263 
264 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
265 	if (pos)
266 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
267 
268 	return pos;
269 }
270 EXPORT_SYMBOL(pci_find_capability);
271 
272 /**
273  * pci_bus_find_capability - query for devices' capabilities
274  * @bus:   the PCI bus to query
275  * @devfn: PCI device to query
276  * @cap:   capability code
277  *
278  * Like pci_find_capability() but works for pci devices that do not have a
279  * pci_dev structure set up yet.
280  *
281  * Returns the address of the requested capability structure within the
282  * device's PCI configuration space or 0 in case the device does not
283  * support it.
284  */
285 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
286 {
287 	int pos;
288 	u8 hdr_type;
289 
290 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
291 
292 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
293 	if (pos)
294 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
295 
296 	return pos;
297 }
298 EXPORT_SYMBOL(pci_bus_find_capability);
299 
300 /**
301  * pci_find_next_ext_capability - Find an extended capability
302  * @dev: PCI device to query
303  * @start: address at which to start looking (0 to start at beginning of list)
304  * @cap: capability code
305  *
306  * Returns the address of the next matching extended capability structure
307  * within the device's PCI configuration space or 0 if the device does
308  * not support it.  Some capabilities can occur several times, e.g., the
309  * vendor-specific capability, and this provides a way to find them all.
310  */
311 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
312 {
313 	u32 header;
314 	int ttl;
315 	int pos = PCI_CFG_SPACE_SIZE;
316 
317 	/* minimum 8 bytes per capability */
318 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
319 
320 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
321 		return 0;
322 
323 	if (start)
324 		pos = start;
325 
326 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
327 		return 0;
328 
329 	/*
330 	 * If we have no capabilities, this is indicated by cap ID,
331 	 * cap version and next pointer all being 0.
332 	 */
333 	if (header == 0)
334 		return 0;
335 
336 	while (ttl-- > 0) {
337 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
338 			return pos;
339 
340 		pos = PCI_EXT_CAP_NEXT(header);
341 		if (pos < PCI_CFG_SPACE_SIZE)
342 			break;
343 
344 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
345 			break;
346 	}
347 
348 	return 0;
349 }
350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
351 
352 /**
353  * pci_find_ext_capability - Find an extended capability
354  * @dev: PCI device to query
355  * @cap: capability code
356  *
357  * Returns the address of the requested extended capability structure
358  * within the device's PCI configuration space or 0 if the device does
359  * not support it.  Possible values for @cap:
360  *
361  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
362  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
363  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
364  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
365  */
366 int pci_find_ext_capability(struct pci_dev *dev, int cap)
367 {
368 	return pci_find_next_ext_capability(dev, 0, cap);
369 }
370 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
371 
372 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
373 {
374 	int rc, ttl = PCI_FIND_CAP_TTL;
375 	u8 cap, mask;
376 
377 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
378 		mask = HT_3BIT_CAP_MASK;
379 	else
380 		mask = HT_5BIT_CAP_MASK;
381 
382 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
383 				      PCI_CAP_ID_HT, &ttl);
384 	while (pos) {
385 		rc = pci_read_config_byte(dev, pos + 3, &cap);
386 		if (rc != PCIBIOS_SUCCESSFUL)
387 			return 0;
388 
389 		if ((cap & mask) == ht_cap)
390 			return pos;
391 
392 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
393 					      pos + PCI_CAP_LIST_NEXT,
394 					      PCI_CAP_ID_HT, &ttl);
395 	}
396 
397 	return 0;
398 }
399 /**
400  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
401  * @dev: PCI device to query
402  * @pos: Position from which to continue searching
403  * @ht_cap: Hypertransport capability code
404  *
405  * To be used in conjunction with pci_find_ht_capability() to search for
406  * all capabilities matching @ht_cap. @pos should always be a value returned
407  * from pci_find_ht_capability().
408  *
409  * NB. To be 100% safe against broken PCI devices, the caller should take
410  * steps to avoid an infinite loop.
411  */
412 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
413 {
414 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
415 }
416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
417 
418 /**
419  * pci_find_ht_capability - query a device's Hypertransport capabilities
420  * @dev: PCI device to query
421  * @ht_cap: Hypertransport capability code
422  *
423  * Tell if a device supports a given Hypertransport capability.
424  * Returns an address within the device's PCI configuration space
425  * or 0 in case the device does not support the request capability.
426  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
427  * which has a Hypertransport capability matching @ht_cap.
428  */
429 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
430 {
431 	int pos;
432 
433 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
434 	if (pos)
435 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
436 
437 	return pos;
438 }
439 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
440 
441 /**
442  * pci_find_parent_resource - return resource region of parent bus of given region
443  * @dev: PCI device structure contains resources to be searched
444  * @res: child resource record for which parent is sought
445  *
446  *  For given resource region of given device, return the resource
447  *  region of parent bus the given region is contained in.
448  */
449 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
450 					  struct resource *res)
451 {
452 	const struct pci_bus *bus = dev->bus;
453 	struct resource *r;
454 	int i;
455 
456 	pci_bus_for_each_resource(bus, r, i) {
457 		if (!r)
458 			continue;
459 		if (resource_contains(r, res)) {
460 
461 			/*
462 			 * If the window is prefetchable but the BAR is
463 			 * not, the allocator made a mistake.
464 			 */
465 			if (r->flags & IORESOURCE_PREFETCH &&
466 			    !(res->flags & IORESOURCE_PREFETCH))
467 				return NULL;
468 
469 			/*
470 			 * If we're below a transparent bridge, there may
471 			 * be both a positively-decoded aperture and a
472 			 * subtractively-decoded region that contain the BAR.
473 			 * We want the positively-decoded one, so this depends
474 			 * on pci_bus_for_each_resource() giving us those
475 			 * first.
476 			 */
477 			return r;
478 		}
479 	}
480 	return NULL;
481 }
482 EXPORT_SYMBOL(pci_find_parent_resource);
483 
484 /**
485  * pci_find_resource - Return matching PCI device resource
486  * @dev: PCI device to query
487  * @res: Resource to look for
488  *
489  * Goes over standard PCI resources (BARs) and checks if the given resource
490  * is partially or fully contained in any of them. In that case the
491  * matching resource is returned, %NULL otherwise.
492  */
493 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
494 {
495 	int i;
496 
497 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
498 		struct resource *r = &dev->resource[i];
499 
500 		if (r->start && resource_contains(r, res))
501 			return r;
502 	}
503 
504 	return NULL;
505 }
506 EXPORT_SYMBOL(pci_find_resource);
507 
508 /**
509  * pci_find_pcie_root_port - return PCIe Root Port
510  * @dev: PCI device to query
511  *
512  * Traverse up the parent chain and return the PCIe Root Port PCI Device
513  * for a given PCI Device.
514  */
515 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
516 {
517 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
518 
519 	bridge = pci_upstream_bridge(dev);
520 	while (bridge && pci_is_pcie(bridge)) {
521 		highest_pcie_bridge = bridge;
522 		bridge = pci_upstream_bridge(bridge);
523 	}
524 
525 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
526 		return NULL;
527 
528 	return highest_pcie_bridge;
529 }
530 EXPORT_SYMBOL(pci_find_pcie_root_port);
531 
532 /**
533  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
534  * @dev: the PCI device to operate on
535  * @pos: config space offset of status word
536  * @mask: mask of bit(s) to care about in status word
537  *
538  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
539  */
540 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
541 {
542 	int i;
543 
544 	/* Wait for Transaction Pending bit clean */
545 	for (i = 0; i < 4; i++) {
546 		u16 status;
547 		if (i)
548 			msleep((1 << (i - 1)) * 100);
549 
550 		pci_read_config_word(dev, pos, &status);
551 		if (!(status & mask))
552 			return 1;
553 	}
554 
555 	return 0;
556 }
557 
558 /**
559  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
560  * @dev: PCI device to have its BARs restored
561  *
562  * Restore the BAR values for a given device, so as to make it
563  * accessible by its driver.
564  */
565 static void pci_restore_bars(struct pci_dev *dev)
566 {
567 	int i;
568 
569 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
570 		pci_update_resource(dev, i);
571 }
572 
573 static const struct pci_platform_pm_ops *pci_platform_pm;
574 
575 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
576 {
577 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
578 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
579 		return -EINVAL;
580 	pci_platform_pm = ops;
581 	return 0;
582 }
583 
584 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585 {
586 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
587 }
588 
589 static inline int platform_pci_set_power_state(struct pci_dev *dev,
590 					       pci_power_t t)
591 {
592 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
593 }
594 
595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596 {
597 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
598 }
599 
600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601 {
602 	return pci_platform_pm ?
603 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
604 }
605 
606 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
607 {
608 	return pci_platform_pm ?
609 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
610 }
611 
612 static inline bool platform_pci_need_resume(struct pci_dev *dev)
613 {
614 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
615 }
616 
617 /**
618  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
619  *                           given PCI device
620  * @dev: PCI device to handle.
621  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
622  *
623  * RETURN VALUE:
624  * -EINVAL if the requested state is invalid.
625  * -EIO if device does not support PCI PM or its PM capabilities register has a
626  * wrong version, or device doesn't support the requested state.
627  * 0 if device already is in the requested state.
628  * 0 if device's power state has been successfully changed.
629  */
630 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
631 {
632 	u16 pmcsr;
633 	bool need_restore = false;
634 
635 	/* Check if we're already there */
636 	if (dev->current_state == state)
637 		return 0;
638 
639 	if (!dev->pm_cap)
640 		return -EIO;
641 
642 	if (state < PCI_D0 || state > PCI_D3hot)
643 		return -EINVAL;
644 
645 	/* Validate current state:
646 	 * Can enter D0 from any state, but if we can only go deeper
647 	 * to sleep if we're already in a low power state
648 	 */
649 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
650 	    && dev->current_state > state) {
651 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
652 			dev->current_state, state);
653 		return -EINVAL;
654 	}
655 
656 	/* check if this device supports the desired state */
657 	if ((state == PCI_D1 && !dev->d1_support)
658 	   || (state == PCI_D2 && !dev->d2_support))
659 		return -EIO;
660 
661 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
662 
663 	/* If we're (effectively) in D3, force entire word to 0.
664 	 * This doesn't affect PME_Status, disables PME_En, and
665 	 * sets PowerState to 0.
666 	 */
667 	switch (dev->current_state) {
668 	case PCI_D0:
669 	case PCI_D1:
670 	case PCI_D2:
671 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
672 		pmcsr |= state;
673 		break;
674 	case PCI_D3hot:
675 	case PCI_D3cold:
676 	case PCI_UNKNOWN: /* Boot-up */
677 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
678 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
679 			need_restore = true;
680 		/* Fall-through: force to D0 */
681 	default:
682 		pmcsr = 0;
683 		break;
684 	}
685 
686 	/* enter specified state */
687 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
688 
689 	/* Mandatory power management transition delays */
690 	/* see PCI PM 1.1 5.6.1 table 18 */
691 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
692 		pci_dev_d3_sleep(dev);
693 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
694 		udelay(PCI_PM_D2_DELAY);
695 
696 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
697 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
698 	if (dev->current_state != state && printk_ratelimit())
699 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
700 			 dev->current_state);
701 
702 	/*
703 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
704 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
705 	 * from D3hot to D0 _may_ perform an internal reset, thereby
706 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
707 	 * For example, at least some versions of the 3c905B and the
708 	 * 3c556B exhibit this behaviour.
709 	 *
710 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
711 	 * devices in a D3hot state at boot.  Consequently, we need to
712 	 * restore at least the BARs so that the device will be
713 	 * accessible to its driver.
714 	 */
715 	if (need_restore)
716 		pci_restore_bars(dev);
717 
718 	if (dev->bus->self)
719 		pcie_aspm_pm_state_change(dev->bus->self);
720 
721 	return 0;
722 }
723 
724 /**
725  * pci_update_current_state - Read power state of given device and cache it
726  * @dev: PCI device to handle.
727  * @state: State to cache in case the device doesn't have the PM capability
728  *
729  * The power state is read from the PMCSR register, which however is
730  * inaccessible in D3cold.  The platform firmware is therefore queried first
731  * to detect accessibility of the register.  In case the platform firmware
732  * reports an incorrect state or the device isn't power manageable by the
733  * platform at all, we try to detect D3cold by testing accessibility of the
734  * vendor ID in config space.
735  */
736 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
737 {
738 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
739 	    !pci_device_is_present(dev)) {
740 		dev->current_state = PCI_D3cold;
741 	} else if (dev->pm_cap) {
742 		u16 pmcsr;
743 
744 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
745 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
746 	} else {
747 		dev->current_state = state;
748 	}
749 }
750 
751 /**
752  * pci_power_up - Put the given device into D0 forcibly
753  * @dev: PCI device to power up
754  */
755 void pci_power_up(struct pci_dev *dev)
756 {
757 	if (platform_pci_power_manageable(dev))
758 		platform_pci_set_power_state(dev, PCI_D0);
759 
760 	pci_raw_set_power_state(dev, PCI_D0);
761 	pci_update_current_state(dev, PCI_D0);
762 }
763 
764 /**
765  * pci_platform_power_transition - Use platform to change device power state
766  * @dev: PCI device to handle.
767  * @state: State to put the device into.
768  */
769 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
770 {
771 	int error;
772 
773 	if (platform_pci_power_manageable(dev)) {
774 		error = platform_pci_set_power_state(dev, state);
775 		if (!error)
776 			pci_update_current_state(dev, state);
777 	} else
778 		error = -ENODEV;
779 
780 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
781 		dev->current_state = PCI_D0;
782 
783 	return error;
784 }
785 
786 /**
787  * pci_wakeup - Wake up a PCI device
788  * @pci_dev: Device to handle.
789  * @ign: ignored parameter
790  */
791 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
792 {
793 	pci_wakeup_event(pci_dev);
794 	pm_request_resume(&pci_dev->dev);
795 	return 0;
796 }
797 
798 /**
799  * pci_wakeup_bus - Walk given bus and wake up devices on it
800  * @bus: Top bus of the subtree to walk.
801  */
802 static void pci_wakeup_bus(struct pci_bus *bus)
803 {
804 	if (bus)
805 		pci_walk_bus(bus, pci_wakeup, NULL);
806 }
807 
808 /**
809  * __pci_start_power_transition - Start power transition of a PCI device
810  * @dev: PCI device to handle.
811  * @state: State to put the device into.
812  */
813 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
814 {
815 	if (state == PCI_D0) {
816 		pci_platform_power_transition(dev, PCI_D0);
817 		/*
818 		 * Mandatory power management transition delays, see
819 		 * PCI Express Base Specification Revision 2.0 Section
820 		 * 6.6.1: Conventional Reset.  Do not delay for
821 		 * devices powered on/off by corresponding bridge,
822 		 * because have already delayed for the bridge.
823 		 */
824 		if (dev->runtime_d3cold) {
825 			if (dev->d3cold_delay)
826 				msleep(dev->d3cold_delay);
827 			/*
828 			 * When powering on a bridge from D3cold, the
829 			 * whole hierarchy may be powered on into
830 			 * D0uninitialized state, resume them to give
831 			 * them a chance to suspend again
832 			 */
833 			pci_wakeup_bus(dev->subordinate);
834 		}
835 	}
836 }
837 
838 /**
839  * __pci_dev_set_current_state - Set current state of a PCI device
840  * @dev: Device to handle
841  * @data: pointer to state to be set
842  */
843 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
844 {
845 	pci_power_t state = *(pci_power_t *)data;
846 
847 	dev->current_state = state;
848 	return 0;
849 }
850 
851 /**
852  * __pci_bus_set_current_state - Walk given bus and set current state of devices
853  * @bus: Top bus of the subtree to walk.
854  * @state: state to be set
855  */
856 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
857 {
858 	if (bus)
859 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
860 }
861 
862 /**
863  * __pci_complete_power_transition - Complete power transition of a PCI device
864  * @dev: PCI device to handle.
865  * @state: State to put the device into.
866  *
867  * This function should not be called directly by device drivers.
868  */
869 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
870 {
871 	int ret;
872 
873 	if (state <= PCI_D0)
874 		return -EINVAL;
875 	ret = pci_platform_power_transition(dev, state);
876 	/* Power off the bridge may power off the whole hierarchy */
877 	if (!ret && state == PCI_D3cold)
878 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
879 	return ret;
880 }
881 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
882 
883 /**
884  * pci_set_power_state - Set the power state of a PCI device
885  * @dev: PCI device to handle.
886  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
887  *
888  * Transition a device to a new power state, using the platform firmware and/or
889  * the device's PCI PM registers.
890  *
891  * RETURN VALUE:
892  * -EINVAL if the requested state is invalid.
893  * -EIO if device does not support PCI PM or its PM capabilities register has a
894  * wrong version, or device doesn't support the requested state.
895  * 0 if device already is in the requested state.
896  * 0 if device's power state has been successfully changed.
897  */
898 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
899 {
900 	int error;
901 
902 	/* bound the state we're entering */
903 	if (state > PCI_D3cold)
904 		state = PCI_D3cold;
905 	else if (state < PCI_D0)
906 		state = PCI_D0;
907 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
908 		/*
909 		 * If the device or the parent bridge do not support PCI PM,
910 		 * ignore the request if we're doing anything other than putting
911 		 * it into D0 (which would only happen on boot).
912 		 */
913 		return 0;
914 
915 	/* Check if we're already there */
916 	if (dev->current_state == state)
917 		return 0;
918 
919 	__pci_start_power_transition(dev, state);
920 
921 	/* This device is quirked not to be put into D3, so
922 	   don't put it in D3 */
923 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
924 		return 0;
925 
926 	/*
927 	 * To put device in D3cold, we put device into D3hot in native
928 	 * way, then put device into D3cold with platform ops
929 	 */
930 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
931 					PCI_D3hot : state);
932 
933 	if (!__pci_complete_power_transition(dev, state))
934 		error = 0;
935 
936 	return error;
937 }
938 EXPORT_SYMBOL(pci_set_power_state);
939 
940 /**
941  * pci_choose_state - Choose the power state of a PCI device
942  * @dev: PCI device to be suspended
943  * @state: target sleep state for the whole system. This is the value
944  *	that is passed to suspend() function.
945  *
946  * Returns PCI power state suitable for given device and given system
947  * message.
948  */
949 
950 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
951 {
952 	pci_power_t ret;
953 
954 	if (!dev->pm_cap)
955 		return PCI_D0;
956 
957 	ret = platform_pci_choose_state(dev);
958 	if (ret != PCI_POWER_ERROR)
959 		return ret;
960 
961 	switch (state.event) {
962 	case PM_EVENT_ON:
963 		return PCI_D0;
964 	case PM_EVENT_FREEZE:
965 	case PM_EVENT_PRETHAW:
966 		/* REVISIT both freeze and pre-thaw "should" use D0 */
967 	case PM_EVENT_SUSPEND:
968 	case PM_EVENT_HIBERNATE:
969 		return PCI_D3hot;
970 	default:
971 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
972 			 state.event);
973 		BUG();
974 	}
975 	return PCI_D0;
976 }
977 EXPORT_SYMBOL(pci_choose_state);
978 
979 #define PCI_EXP_SAVE_REGS	7
980 
981 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
982 						       u16 cap, bool extended)
983 {
984 	struct pci_cap_saved_state *tmp;
985 
986 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
987 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
988 			return tmp;
989 	}
990 	return NULL;
991 }
992 
993 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
994 {
995 	return _pci_find_saved_cap(dev, cap, false);
996 }
997 
998 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
999 {
1000 	return _pci_find_saved_cap(dev, cap, true);
1001 }
1002 
1003 static int pci_save_pcie_state(struct pci_dev *dev)
1004 {
1005 	int i = 0;
1006 	struct pci_cap_saved_state *save_state;
1007 	u16 *cap;
1008 
1009 	if (!pci_is_pcie(dev))
1010 		return 0;
1011 
1012 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1013 	if (!save_state) {
1014 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1015 		return -ENOMEM;
1016 	}
1017 
1018 	cap = (u16 *)&save_state->cap.data[0];
1019 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1020 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1021 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1022 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1023 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1024 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1025 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1026 
1027 	return 0;
1028 }
1029 
1030 static void pci_restore_pcie_state(struct pci_dev *dev)
1031 {
1032 	int i = 0;
1033 	struct pci_cap_saved_state *save_state;
1034 	u16 *cap;
1035 
1036 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1037 	if (!save_state)
1038 		return;
1039 
1040 	cap = (u16 *)&save_state->cap.data[0];
1041 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1042 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1043 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1044 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1045 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1046 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1047 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1048 }
1049 
1050 
1051 static int pci_save_pcix_state(struct pci_dev *dev)
1052 {
1053 	int pos;
1054 	struct pci_cap_saved_state *save_state;
1055 
1056 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1057 	if (!pos)
1058 		return 0;
1059 
1060 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1061 	if (!save_state) {
1062 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1063 		return -ENOMEM;
1064 	}
1065 
1066 	pci_read_config_word(dev, pos + PCI_X_CMD,
1067 			     (u16 *)save_state->cap.data);
1068 
1069 	return 0;
1070 }
1071 
1072 static void pci_restore_pcix_state(struct pci_dev *dev)
1073 {
1074 	int i = 0, pos;
1075 	struct pci_cap_saved_state *save_state;
1076 	u16 *cap;
1077 
1078 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1079 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1080 	if (!save_state || !pos)
1081 		return;
1082 	cap = (u16 *)&save_state->cap.data[0];
1083 
1084 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1085 }
1086 
1087 
1088 /**
1089  * pci_save_state - save the PCI configuration space of a device before suspending
1090  * @dev: - PCI device that we're dealing with
1091  */
1092 int pci_save_state(struct pci_dev *dev)
1093 {
1094 	int i;
1095 	/* XXX: 100% dword access ok here? */
1096 	for (i = 0; i < 16; i++)
1097 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1098 	dev->state_saved = true;
1099 
1100 	i = pci_save_pcie_state(dev);
1101 	if (i != 0)
1102 		return i;
1103 
1104 	i = pci_save_pcix_state(dev);
1105 	if (i != 0)
1106 		return i;
1107 
1108 	return pci_save_vc_state(dev);
1109 }
1110 EXPORT_SYMBOL(pci_save_state);
1111 
1112 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1113 				     u32 saved_val, int retry)
1114 {
1115 	u32 val;
1116 
1117 	pci_read_config_dword(pdev, offset, &val);
1118 	if (val == saved_val)
1119 		return;
1120 
1121 	for (;;) {
1122 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1123 			offset, val, saved_val);
1124 		pci_write_config_dword(pdev, offset, saved_val);
1125 		if (retry-- <= 0)
1126 			return;
1127 
1128 		pci_read_config_dword(pdev, offset, &val);
1129 		if (val == saved_val)
1130 			return;
1131 
1132 		mdelay(1);
1133 	}
1134 }
1135 
1136 static void pci_restore_config_space_range(struct pci_dev *pdev,
1137 					   int start, int end, int retry)
1138 {
1139 	int index;
1140 
1141 	for (index = end; index >= start; index--)
1142 		pci_restore_config_dword(pdev, 4 * index,
1143 					 pdev->saved_config_space[index],
1144 					 retry);
1145 }
1146 
1147 static void pci_restore_config_space(struct pci_dev *pdev)
1148 {
1149 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1150 		pci_restore_config_space_range(pdev, 10, 15, 0);
1151 		/* Restore BARs before the command register. */
1152 		pci_restore_config_space_range(pdev, 4, 9, 10);
1153 		pci_restore_config_space_range(pdev, 0, 3, 0);
1154 	} else {
1155 		pci_restore_config_space_range(pdev, 0, 15, 0);
1156 	}
1157 }
1158 
1159 /**
1160  * pci_restore_state - Restore the saved state of a PCI device
1161  * @dev: - PCI device that we're dealing with
1162  */
1163 void pci_restore_state(struct pci_dev *dev)
1164 {
1165 	if (!dev->state_saved)
1166 		return;
1167 
1168 	/* PCI Express register must be restored first */
1169 	pci_restore_pcie_state(dev);
1170 	pci_restore_pasid_state(dev);
1171 	pci_restore_pri_state(dev);
1172 	pci_restore_ats_state(dev);
1173 	pci_restore_vc_state(dev);
1174 
1175 	pci_cleanup_aer_error_status_regs(dev);
1176 
1177 	pci_restore_config_space(dev);
1178 
1179 	pci_restore_pcix_state(dev);
1180 	pci_restore_msi_state(dev);
1181 
1182 	/* Restore ACS and IOV configuration state */
1183 	pci_enable_acs(dev);
1184 	pci_restore_iov_state(dev);
1185 
1186 	dev->state_saved = false;
1187 }
1188 EXPORT_SYMBOL(pci_restore_state);
1189 
1190 struct pci_saved_state {
1191 	u32 config_space[16];
1192 	struct pci_cap_saved_data cap[0];
1193 };
1194 
1195 /**
1196  * pci_store_saved_state - Allocate and return an opaque struct containing
1197  *			   the device saved state.
1198  * @dev: PCI device that we're dealing with
1199  *
1200  * Return NULL if no state or error.
1201  */
1202 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1203 {
1204 	struct pci_saved_state *state;
1205 	struct pci_cap_saved_state *tmp;
1206 	struct pci_cap_saved_data *cap;
1207 	size_t size;
1208 
1209 	if (!dev->state_saved)
1210 		return NULL;
1211 
1212 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1213 
1214 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1215 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1216 
1217 	state = kzalloc(size, GFP_KERNEL);
1218 	if (!state)
1219 		return NULL;
1220 
1221 	memcpy(state->config_space, dev->saved_config_space,
1222 	       sizeof(state->config_space));
1223 
1224 	cap = state->cap;
1225 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1226 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1227 		memcpy(cap, &tmp->cap, len);
1228 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1229 	}
1230 	/* Empty cap_save terminates list */
1231 
1232 	return state;
1233 }
1234 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1235 
1236 /**
1237  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1238  * @dev: PCI device that we're dealing with
1239  * @state: Saved state returned from pci_store_saved_state()
1240  */
1241 int pci_load_saved_state(struct pci_dev *dev,
1242 			 struct pci_saved_state *state)
1243 {
1244 	struct pci_cap_saved_data *cap;
1245 
1246 	dev->state_saved = false;
1247 
1248 	if (!state)
1249 		return 0;
1250 
1251 	memcpy(dev->saved_config_space, state->config_space,
1252 	       sizeof(state->config_space));
1253 
1254 	cap = state->cap;
1255 	while (cap->size) {
1256 		struct pci_cap_saved_state *tmp;
1257 
1258 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1259 		if (!tmp || tmp->cap.size != cap->size)
1260 			return -EINVAL;
1261 
1262 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1263 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1264 		       sizeof(struct pci_cap_saved_data) + cap->size);
1265 	}
1266 
1267 	dev->state_saved = true;
1268 	return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1271 
1272 /**
1273  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1274  *				   and free the memory allocated for it.
1275  * @dev: PCI device that we're dealing with
1276  * @state: Pointer to saved state returned from pci_store_saved_state()
1277  */
1278 int pci_load_and_free_saved_state(struct pci_dev *dev,
1279 				  struct pci_saved_state **state)
1280 {
1281 	int ret = pci_load_saved_state(dev, *state);
1282 	kfree(*state);
1283 	*state = NULL;
1284 	return ret;
1285 }
1286 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1287 
1288 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1289 {
1290 	return pci_enable_resources(dev, bars);
1291 }
1292 
1293 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1294 {
1295 	int err;
1296 	struct pci_dev *bridge;
1297 	u16 cmd;
1298 	u8 pin;
1299 
1300 	err = pci_set_power_state(dev, PCI_D0);
1301 	if (err < 0 && err != -EIO)
1302 		return err;
1303 
1304 	bridge = pci_upstream_bridge(dev);
1305 	if (bridge)
1306 		pcie_aspm_powersave_config_link(bridge);
1307 
1308 	err = pcibios_enable_device(dev, bars);
1309 	if (err < 0)
1310 		return err;
1311 	pci_fixup_device(pci_fixup_enable, dev);
1312 
1313 	if (dev->msi_enabled || dev->msix_enabled)
1314 		return 0;
1315 
1316 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1317 	if (pin) {
1318 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1319 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1320 			pci_write_config_word(dev, PCI_COMMAND,
1321 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  * pci_reenable_device - Resume abandoned device
1329  * @dev: PCI device to be resumed
1330  *
1331  *  Note this function is a backend of pci_default_resume and is not supposed
1332  *  to be called by normal code, write proper resume handler and use it instead.
1333  */
1334 int pci_reenable_device(struct pci_dev *dev)
1335 {
1336 	if (pci_is_enabled(dev))
1337 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1338 	return 0;
1339 }
1340 EXPORT_SYMBOL(pci_reenable_device);
1341 
1342 static void pci_enable_bridge(struct pci_dev *dev)
1343 {
1344 	struct pci_dev *bridge;
1345 	int retval;
1346 
1347 	bridge = pci_upstream_bridge(dev);
1348 	if (bridge)
1349 		pci_enable_bridge(bridge);
1350 
1351 	if (pci_is_enabled(dev)) {
1352 		if (!dev->is_busmaster)
1353 			pci_set_master(dev);
1354 		return;
1355 	}
1356 
1357 	retval = pci_enable_device(dev);
1358 	if (retval)
1359 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1360 			retval);
1361 	pci_set_master(dev);
1362 }
1363 
1364 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1365 {
1366 	struct pci_dev *bridge;
1367 	int err;
1368 	int i, bars = 0;
1369 
1370 	/*
1371 	 * Power state could be unknown at this point, either due to a fresh
1372 	 * boot or a device removal call.  So get the current power state
1373 	 * so that things like MSI message writing will behave as expected
1374 	 * (e.g. if the device really is in D0 at enable time).
1375 	 */
1376 	if (dev->pm_cap) {
1377 		u16 pmcsr;
1378 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1379 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1380 	}
1381 
1382 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1383 		return 0;		/* already enabled */
1384 
1385 	bridge = pci_upstream_bridge(dev);
1386 	if (bridge)
1387 		pci_enable_bridge(bridge);
1388 
1389 	/* only skip sriov related */
1390 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1391 		if (dev->resource[i].flags & flags)
1392 			bars |= (1 << i);
1393 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1394 		if (dev->resource[i].flags & flags)
1395 			bars |= (1 << i);
1396 
1397 	err = do_pci_enable_device(dev, bars);
1398 	if (err < 0)
1399 		atomic_dec(&dev->enable_cnt);
1400 	return err;
1401 }
1402 
1403 /**
1404  * pci_enable_device_io - Initialize a device for use with IO space
1405  * @dev: PCI device to be initialized
1406  *
1407  *  Initialize device before it's used by a driver. Ask low-level code
1408  *  to enable I/O resources. Wake up the device if it was suspended.
1409  *  Beware, this function can fail.
1410  */
1411 int pci_enable_device_io(struct pci_dev *dev)
1412 {
1413 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1414 }
1415 EXPORT_SYMBOL(pci_enable_device_io);
1416 
1417 /**
1418  * pci_enable_device_mem - Initialize a device for use with Memory space
1419  * @dev: PCI device to be initialized
1420  *
1421  *  Initialize device before it's used by a driver. Ask low-level code
1422  *  to enable Memory resources. Wake up the device if it was suspended.
1423  *  Beware, this function can fail.
1424  */
1425 int pci_enable_device_mem(struct pci_dev *dev)
1426 {
1427 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1428 }
1429 EXPORT_SYMBOL(pci_enable_device_mem);
1430 
1431 /**
1432  * pci_enable_device - Initialize device before it's used by a driver.
1433  * @dev: PCI device to be initialized
1434  *
1435  *  Initialize device before it's used by a driver. Ask low-level code
1436  *  to enable I/O and memory. Wake up the device if it was suspended.
1437  *  Beware, this function can fail.
1438  *
1439  *  Note we don't actually enable the device many times if we call
1440  *  this function repeatedly (we just increment the count).
1441  */
1442 int pci_enable_device(struct pci_dev *dev)
1443 {
1444 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1445 }
1446 EXPORT_SYMBOL(pci_enable_device);
1447 
1448 /*
1449  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1450  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1451  * there's no need to track it separately.  pci_devres is initialized
1452  * when a device is enabled using managed PCI device enable interface.
1453  */
1454 struct pci_devres {
1455 	unsigned int enabled:1;
1456 	unsigned int pinned:1;
1457 	unsigned int orig_intx:1;
1458 	unsigned int restore_intx:1;
1459 	u32 region_mask;
1460 };
1461 
1462 static void pcim_release(struct device *gendev, void *res)
1463 {
1464 	struct pci_dev *dev = to_pci_dev(gendev);
1465 	struct pci_devres *this = res;
1466 	int i;
1467 
1468 	if (dev->msi_enabled)
1469 		pci_disable_msi(dev);
1470 	if (dev->msix_enabled)
1471 		pci_disable_msix(dev);
1472 
1473 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1474 		if (this->region_mask & (1 << i))
1475 			pci_release_region(dev, i);
1476 
1477 	if (this->restore_intx)
1478 		pci_intx(dev, this->orig_intx);
1479 
1480 	if (this->enabled && !this->pinned)
1481 		pci_disable_device(dev);
1482 }
1483 
1484 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1485 {
1486 	struct pci_devres *dr, *new_dr;
1487 
1488 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1489 	if (dr)
1490 		return dr;
1491 
1492 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1493 	if (!new_dr)
1494 		return NULL;
1495 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1496 }
1497 
1498 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1499 {
1500 	if (pci_is_managed(pdev))
1501 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1502 	return NULL;
1503 }
1504 
1505 /**
1506  * pcim_enable_device - Managed pci_enable_device()
1507  * @pdev: PCI device to be initialized
1508  *
1509  * Managed pci_enable_device().
1510  */
1511 int pcim_enable_device(struct pci_dev *pdev)
1512 {
1513 	struct pci_devres *dr;
1514 	int rc;
1515 
1516 	dr = get_pci_dr(pdev);
1517 	if (unlikely(!dr))
1518 		return -ENOMEM;
1519 	if (dr->enabled)
1520 		return 0;
1521 
1522 	rc = pci_enable_device(pdev);
1523 	if (!rc) {
1524 		pdev->is_managed = 1;
1525 		dr->enabled = 1;
1526 	}
1527 	return rc;
1528 }
1529 EXPORT_SYMBOL(pcim_enable_device);
1530 
1531 /**
1532  * pcim_pin_device - Pin managed PCI device
1533  * @pdev: PCI device to pin
1534  *
1535  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1536  * driver detach.  @pdev must have been enabled with
1537  * pcim_enable_device().
1538  */
1539 void pcim_pin_device(struct pci_dev *pdev)
1540 {
1541 	struct pci_devres *dr;
1542 
1543 	dr = find_pci_dr(pdev);
1544 	WARN_ON(!dr || !dr->enabled);
1545 	if (dr)
1546 		dr->pinned = 1;
1547 }
1548 EXPORT_SYMBOL(pcim_pin_device);
1549 
1550 /*
1551  * pcibios_add_device - provide arch specific hooks when adding device dev
1552  * @dev: the PCI device being added
1553  *
1554  * Permits the platform to provide architecture specific functionality when
1555  * devices are added. This is the default implementation. Architecture
1556  * implementations can override this.
1557  */
1558 int __weak pcibios_add_device(struct pci_dev *dev)
1559 {
1560 	return 0;
1561 }
1562 
1563 /**
1564  * pcibios_release_device - provide arch specific hooks when releasing device dev
1565  * @dev: the PCI device being released
1566  *
1567  * Permits the platform to provide architecture specific functionality when
1568  * devices are released. This is the default implementation. Architecture
1569  * implementations can override this.
1570  */
1571 void __weak pcibios_release_device(struct pci_dev *dev) {}
1572 
1573 /**
1574  * pcibios_disable_device - disable arch specific PCI resources for device dev
1575  * @dev: the PCI device to disable
1576  *
1577  * Disables architecture specific PCI resources for the device. This
1578  * is the default implementation. Architecture implementations can
1579  * override this.
1580  */
1581 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1582 
1583 /**
1584  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1585  * @irq: ISA IRQ to penalize
1586  * @active: IRQ active or not
1587  *
1588  * Permits the platform to provide architecture-specific functionality when
1589  * penalizing ISA IRQs. This is the default implementation. Architecture
1590  * implementations can override this.
1591  */
1592 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1593 
1594 static void do_pci_disable_device(struct pci_dev *dev)
1595 {
1596 	u16 pci_command;
1597 
1598 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1599 	if (pci_command & PCI_COMMAND_MASTER) {
1600 		pci_command &= ~PCI_COMMAND_MASTER;
1601 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1602 	}
1603 
1604 	pcibios_disable_device(dev);
1605 }
1606 
1607 /**
1608  * pci_disable_enabled_device - Disable device without updating enable_cnt
1609  * @dev: PCI device to disable
1610  *
1611  * NOTE: This function is a backend of PCI power management routines and is
1612  * not supposed to be called drivers.
1613  */
1614 void pci_disable_enabled_device(struct pci_dev *dev)
1615 {
1616 	if (pci_is_enabled(dev))
1617 		do_pci_disable_device(dev);
1618 }
1619 
1620 /**
1621  * pci_disable_device - Disable PCI device after use
1622  * @dev: PCI device to be disabled
1623  *
1624  * Signal to the system that the PCI device is not in use by the system
1625  * anymore.  This only involves disabling PCI bus-mastering, if active.
1626  *
1627  * Note we don't actually disable the device until all callers of
1628  * pci_enable_device() have called pci_disable_device().
1629  */
1630 void pci_disable_device(struct pci_dev *dev)
1631 {
1632 	struct pci_devres *dr;
1633 
1634 	dr = find_pci_dr(dev);
1635 	if (dr)
1636 		dr->enabled = 0;
1637 
1638 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1639 		      "disabling already-disabled device");
1640 
1641 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1642 		return;
1643 
1644 	do_pci_disable_device(dev);
1645 
1646 	dev->is_busmaster = 0;
1647 }
1648 EXPORT_SYMBOL(pci_disable_device);
1649 
1650 /**
1651  * pcibios_set_pcie_reset_state - set reset state for device dev
1652  * @dev: the PCIe device reset
1653  * @state: Reset state to enter into
1654  *
1655  *
1656  * Sets the PCIe reset state for the device. This is the default
1657  * implementation. Architecture implementations can override this.
1658  */
1659 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1660 					enum pcie_reset_state state)
1661 {
1662 	return -EINVAL;
1663 }
1664 
1665 /**
1666  * pci_set_pcie_reset_state - set reset state for device dev
1667  * @dev: the PCIe device reset
1668  * @state: Reset state to enter into
1669  *
1670  *
1671  * Sets the PCI reset state for the device.
1672  */
1673 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1674 {
1675 	return pcibios_set_pcie_reset_state(dev, state);
1676 }
1677 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1678 
1679 /**
1680  * pci_check_pme_status - Check if given device has generated PME.
1681  * @dev: Device to check.
1682  *
1683  * Check the PME status of the device and if set, clear it and clear PME enable
1684  * (if set).  Return 'true' if PME status and PME enable were both set or
1685  * 'false' otherwise.
1686  */
1687 bool pci_check_pme_status(struct pci_dev *dev)
1688 {
1689 	int pmcsr_pos;
1690 	u16 pmcsr;
1691 	bool ret = false;
1692 
1693 	if (!dev->pm_cap)
1694 		return false;
1695 
1696 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1697 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1698 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1699 		return false;
1700 
1701 	/* Clear PME status. */
1702 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1703 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1704 		/* Disable PME to avoid interrupt flood. */
1705 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1706 		ret = true;
1707 	}
1708 
1709 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1710 
1711 	return ret;
1712 }
1713 
1714 /**
1715  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1716  * @dev: Device to handle.
1717  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1718  *
1719  * Check if @dev has generated PME and queue a resume request for it in that
1720  * case.
1721  */
1722 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1723 {
1724 	if (pme_poll_reset && dev->pme_poll)
1725 		dev->pme_poll = false;
1726 
1727 	if (pci_check_pme_status(dev)) {
1728 		pci_wakeup_event(dev);
1729 		pm_request_resume(&dev->dev);
1730 	}
1731 	return 0;
1732 }
1733 
1734 /**
1735  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1736  * @bus: Top bus of the subtree to walk.
1737  */
1738 void pci_pme_wakeup_bus(struct pci_bus *bus)
1739 {
1740 	if (bus)
1741 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1742 }
1743 
1744 
1745 /**
1746  * pci_pme_capable - check the capability of PCI device to generate PME#
1747  * @dev: PCI device to handle.
1748  * @state: PCI state from which device will issue PME#.
1749  */
1750 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1751 {
1752 	if (!dev->pm_cap)
1753 		return false;
1754 
1755 	return !!(dev->pme_support & (1 << state));
1756 }
1757 EXPORT_SYMBOL(pci_pme_capable);
1758 
1759 static void pci_pme_list_scan(struct work_struct *work)
1760 {
1761 	struct pci_pme_device *pme_dev, *n;
1762 
1763 	mutex_lock(&pci_pme_list_mutex);
1764 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1765 		if (pme_dev->dev->pme_poll) {
1766 			struct pci_dev *bridge;
1767 
1768 			bridge = pme_dev->dev->bus->self;
1769 			/*
1770 			 * If bridge is in low power state, the
1771 			 * configuration space of subordinate devices
1772 			 * may be not accessible
1773 			 */
1774 			if (bridge && bridge->current_state != PCI_D0)
1775 				continue;
1776 			pci_pme_wakeup(pme_dev->dev, NULL);
1777 		} else {
1778 			list_del(&pme_dev->list);
1779 			kfree(pme_dev);
1780 		}
1781 	}
1782 	if (!list_empty(&pci_pme_list))
1783 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1784 				   msecs_to_jiffies(PME_TIMEOUT));
1785 	mutex_unlock(&pci_pme_list_mutex);
1786 }
1787 
1788 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1789 {
1790 	u16 pmcsr;
1791 
1792 	if (!dev->pme_support)
1793 		return;
1794 
1795 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1796 	/* Clear PME_Status by writing 1 to it and enable PME# */
1797 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1798 	if (!enable)
1799 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1800 
1801 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1802 }
1803 
1804 /**
1805  * pci_pme_restore - Restore PME configuration after config space restore.
1806  * @dev: PCI device to update.
1807  */
1808 void pci_pme_restore(struct pci_dev *dev)
1809 {
1810 	u16 pmcsr;
1811 
1812 	if (!dev->pme_support)
1813 		return;
1814 
1815 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816 	if (dev->wakeup_prepared) {
1817 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1818 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1819 	} else {
1820 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1821 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1822 	}
1823 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1824 }
1825 
1826 /**
1827  * pci_pme_active - enable or disable PCI device's PME# function
1828  * @dev: PCI device to handle.
1829  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1830  *
1831  * The caller must verify that the device is capable of generating PME# before
1832  * calling this function with @enable equal to 'true'.
1833  */
1834 void pci_pme_active(struct pci_dev *dev, bool enable)
1835 {
1836 	__pci_pme_active(dev, enable);
1837 
1838 	/*
1839 	 * PCI (as opposed to PCIe) PME requires that the device have
1840 	 * its PME# line hooked up correctly. Not all hardware vendors
1841 	 * do this, so the PME never gets delivered and the device
1842 	 * remains asleep. The easiest way around this is to
1843 	 * periodically walk the list of suspended devices and check
1844 	 * whether any have their PME flag set. The assumption is that
1845 	 * we'll wake up often enough anyway that this won't be a huge
1846 	 * hit, and the power savings from the devices will still be a
1847 	 * win.
1848 	 *
1849 	 * Although PCIe uses in-band PME message instead of PME# line
1850 	 * to report PME, PME does not work for some PCIe devices in
1851 	 * reality.  For example, there are devices that set their PME
1852 	 * status bits, but don't really bother to send a PME message;
1853 	 * there are PCI Express Root Ports that don't bother to
1854 	 * trigger interrupts when they receive PME messages from the
1855 	 * devices below.  So PME poll is used for PCIe devices too.
1856 	 */
1857 
1858 	if (dev->pme_poll) {
1859 		struct pci_pme_device *pme_dev;
1860 		if (enable) {
1861 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1862 					  GFP_KERNEL);
1863 			if (!pme_dev) {
1864 				dev_warn(&dev->dev, "can't enable PME#\n");
1865 				return;
1866 			}
1867 			pme_dev->dev = dev;
1868 			mutex_lock(&pci_pme_list_mutex);
1869 			list_add(&pme_dev->list, &pci_pme_list);
1870 			if (list_is_singular(&pci_pme_list))
1871 				queue_delayed_work(system_freezable_wq,
1872 						   &pci_pme_work,
1873 						   msecs_to_jiffies(PME_TIMEOUT));
1874 			mutex_unlock(&pci_pme_list_mutex);
1875 		} else {
1876 			mutex_lock(&pci_pme_list_mutex);
1877 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1878 				if (pme_dev->dev == dev) {
1879 					list_del(&pme_dev->list);
1880 					kfree(pme_dev);
1881 					break;
1882 				}
1883 			}
1884 			mutex_unlock(&pci_pme_list_mutex);
1885 		}
1886 	}
1887 
1888 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1889 }
1890 EXPORT_SYMBOL(pci_pme_active);
1891 
1892 /**
1893  * pci_enable_wake - enable PCI device as wakeup event source
1894  * @dev: PCI device affected
1895  * @state: PCI state from which device will issue wakeup events
1896  * @enable: True to enable event generation; false to disable
1897  *
1898  * This enables the device as a wakeup event source, or disables it.
1899  * When such events involves platform-specific hooks, those hooks are
1900  * called automatically by this routine.
1901  *
1902  * Devices with legacy power management (no standard PCI PM capabilities)
1903  * always require such platform hooks.
1904  *
1905  * RETURN VALUE:
1906  * 0 is returned on success
1907  * -EINVAL is returned if device is not supposed to wake up the system
1908  * Error code depending on the platform is returned if both the platform and
1909  * the native mechanism fail to enable the generation of wake-up events
1910  */
1911 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1912 {
1913 	int ret = 0;
1914 
1915 	/* Don't do the same thing twice in a row for one device. */
1916 	if (!!enable == !!dev->wakeup_prepared)
1917 		return 0;
1918 
1919 	/*
1920 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1921 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1922 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1923 	 */
1924 
1925 	if (enable) {
1926 		int error;
1927 
1928 		if (pci_pme_capable(dev, state))
1929 			pci_pme_active(dev, true);
1930 		else
1931 			ret = 1;
1932 		error = platform_pci_set_wakeup(dev, true);
1933 		if (ret)
1934 			ret = error;
1935 		if (!ret)
1936 			dev->wakeup_prepared = true;
1937 	} else {
1938 		platform_pci_set_wakeup(dev, false);
1939 		pci_pme_active(dev, false);
1940 		dev->wakeup_prepared = false;
1941 	}
1942 
1943 	return ret;
1944 }
1945 EXPORT_SYMBOL(pci_enable_wake);
1946 
1947 /**
1948  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1949  * @dev: PCI device to prepare
1950  * @enable: True to enable wake-up event generation; false to disable
1951  *
1952  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1953  * and this function allows them to set that up cleanly - pci_enable_wake()
1954  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1955  * ordering constraints.
1956  *
1957  * This function only returns error code if the device is not capable of
1958  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1959  * enable wake-up power for it.
1960  */
1961 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1962 {
1963 	return pci_pme_capable(dev, PCI_D3cold) ?
1964 			pci_enable_wake(dev, PCI_D3cold, enable) :
1965 			pci_enable_wake(dev, PCI_D3hot, enable);
1966 }
1967 EXPORT_SYMBOL(pci_wake_from_d3);
1968 
1969 /**
1970  * pci_target_state - find an appropriate low power state for a given PCI dev
1971  * @dev: PCI device
1972  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1973  *
1974  * Use underlying platform code to find a supported low power state for @dev.
1975  * If the platform can't manage @dev, return the deepest state from which it
1976  * can generate wake events, based on any available PME info.
1977  */
1978 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1979 {
1980 	pci_power_t target_state = PCI_D3hot;
1981 
1982 	if (platform_pci_power_manageable(dev)) {
1983 		/*
1984 		 * Call the platform to choose the target state of the device
1985 		 * and enable wake-up from this state if supported.
1986 		 */
1987 		pci_power_t state = platform_pci_choose_state(dev);
1988 
1989 		switch (state) {
1990 		case PCI_POWER_ERROR:
1991 		case PCI_UNKNOWN:
1992 			break;
1993 		case PCI_D1:
1994 		case PCI_D2:
1995 			if (pci_no_d1d2(dev))
1996 				break;
1997 		default:
1998 			target_state = state;
1999 		}
2000 
2001 		return target_state;
2002 	}
2003 
2004 	if (!dev->pm_cap)
2005 		target_state = PCI_D0;
2006 
2007 	/*
2008 	 * If the device is in D3cold even though it's not power-manageable by
2009 	 * the platform, it may have been powered down by non-standard means.
2010 	 * Best to let it slumber.
2011 	 */
2012 	if (dev->current_state == PCI_D3cold)
2013 		target_state = PCI_D3cold;
2014 
2015 	if (wakeup) {
2016 		/*
2017 		 * Find the deepest state from which the device can generate
2018 		 * wake-up events, make it the target state and enable device
2019 		 * to generate PME#.
2020 		 */
2021 		if (dev->pme_support) {
2022 			while (target_state
2023 			      && !(dev->pme_support & (1 << target_state)))
2024 				target_state--;
2025 		}
2026 	}
2027 
2028 	return target_state;
2029 }
2030 
2031 /**
2032  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2033  * @dev: Device to handle.
2034  *
2035  * Choose the power state appropriate for the device depending on whether
2036  * it can wake up the system and/or is power manageable by the platform
2037  * (PCI_D3hot is the default) and put the device into that state.
2038  */
2039 int pci_prepare_to_sleep(struct pci_dev *dev)
2040 {
2041 	bool wakeup = device_may_wakeup(&dev->dev);
2042 	pci_power_t target_state = pci_target_state(dev, wakeup);
2043 	int error;
2044 
2045 	if (target_state == PCI_POWER_ERROR)
2046 		return -EIO;
2047 
2048 	pci_enable_wake(dev, target_state, wakeup);
2049 
2050 	error = pci_set_power_state(dev, target_state);
2051 
2052 	if (error)
2053 		pci_enable_wake(dev, target_state, false);
2054 
2055 	return error;
2056 }
2057 EXPORT_SYMBOL(pci_prepare_to_sleep);
2058 
2059 /**
2060  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2061  * @dev: Device to handle.
2062  *
2063  * Disable device's system wake-up capability and put it into D0.
2064  */
2065 int pci_back_from_sleep(struct pci_dev *dev)
2066 {
2067 	pci_enable_wake(dev, PCI_D0, false);
2068 	return pci_set_power_state(dev, PCI_D0);
2069 }
2070 EXPORT_SYMBOL(pci_back_from_sleep);
2071 
2072 /**
2073  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2074  * @dev: PCI device being suspended.
2075  *
2076  * Prepare @dev to generate wake-up events at run time and put it into a low
2077  * power state.
2078  */
2079 int pci_finish_runtime_suspend(struct pci_dev *dev)
2080 {
2081 	pci_power_t target_state;
2082 	int error;
2083 
2084 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2085 	if (target_state == PCI_POWER_ERROR)
2086 		return -EIO;
2087 
2088 	dev->runtime_d3cold = target_state == PCI_D3cold;
2089 
2090 	pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2091 
2092 	error = pci_set_power_state(dev, target_state);
2093 
2094 	if (error) {
2095 		pci_enable_wake(dev, target_state, false);
2096 		dev->runtime_d3cold = false;
2097 	}
2098 
2099 	return error;
2100 }
2101 
2102 /**
2103  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2104  * @dev: Device to check.
2105  *
2106  * Return true if the device itself is capable of generating wake-up events
2107  * (through the platform or using the native PCIe PME) or if the device supports
2108  * PME and one of its upstream bridges can generate wake-up events.
2109  */
2110 bool pci_dev_run_wake(struct pci_dev *dev)
2111 {
2112 	struct pci_bus *bus = dev->bus;
2113 
2114 	if (device_can_wakeup(&dev->dev))
2115 		return true;
2116 
2117 	if (!dev->pme_support)
2118 		return false;
2119 
2120 	/* PME-capable in principle, but not from the target power state */
2121 	if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2122 		return false;
2123 
2124 	while (bus->parent) {
2125 		struct pci_dev *bridge = bus->self;
2126 
2127 		if (device_can_wakeup(&bridge->dev))
2128 			return true;
2129 
2130 		bus = bus->parent;
2131 	}
2132 
2133 	/* We have reached the root bus. */
2134 	if (bus->bridge)
2135 		return device_can_wakeup(bus->bridge);
2136 
2137 	return false;
2138 }
2139 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2140 
2141 /**
2142  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2143  * @pci_dev: Device to check.
2144  *
2145  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2146  * reconfigured due to wakeup settings difference between system and runtime
2147  * suspend and the current power state of it is suitable for the upcoming
2148  * (system) transition.
2149  *
2150  * If the device is not configured for system wakeup, disable PME for it before
2151  * returning 'true' to prevent it from waking up the system unnecessarily.
2152  */
2153 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2154 {
2155 	struct device *dev = &pci_dev->dev;
2156 	bool wakeup = device_may_wakeup(dev);
2157 
2158 	if (!pm_runtime_suspended(dev)
2159 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2160 	    || platform_pci_need_resume(pci_dev)
2161 	    || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2162 		return false;
2163 
2164 	/*
2165 	 * At this point the device is good to go unless it's been configured
2166 	 * to generate PME at the runtime suspend time, but it is not supposed
2167 	 * to wake up the system.  In that case, simply disable PME for it
2168 	 * (it will have to be re-enabled on exit from system resume).
2169 	 *
2170 	 * If the device's power state is D3cold and the platform check above
2171 	 * hasn't triggered, the device's configuration is suitable and we don't
2172 	 * need to manipulate it at all.
2173 	 */
2174 	spin_lock_irq(&dev->power.lock);
2175 
2176 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2177 	    !wakeup)
2178 		__pci_pme_active(pci_dev, false);
2179 
2180 	spin_unlock_irq(&dev->power.lock);
2181 	return true;
2182 }
2183 
2184 /**
2185  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2186  * @pci_dev: Device to handle.
2187  *
2188  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2189  * it might have been disabled during the prepare phase of system suspend if
2190  * the device was not configured for system wakeup.
2191  */
2192 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2193 {
2194 	struct device *dev = &pci_dev->dev;
2195 
2196 	if (!pci_dev_run_wake(pci_dev))
2197 		return;
2198 
2199 	spin_lock_irq(&dev->power.lock);
2200 
2201 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2202 		__pci_pme_active(pci_dev, true);
2203 
2204 	spin_unlock_irq(&dev->power.lock);
2205 }
2206 
2207 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2208 {
2209 	struct device *dev = &pdev->dev;
2210 	struct device *parent = dev->parent;
2211 
2212 	if (parent)
2213 		pm_runtime_get_sync(parent);
2214 	pm_runtime_get_noresume(dev);
2215 	/*
2216 	 * pdev->current_state is set to PCI_D3cold during suspending,
2217 	 * so wait until suspending completes
2218 	 */
2219 	pm_runtime_barrier(dev);
2220 	/*
2221 	 * Only need to resume devices in D3cold, because config
2222 	 * registers are still accessible for devices suspended but
2223 	 * not in D3cold.
2224 	 */
2225 	if (pdev->current_state == PCI_D3cold)
2226 		pm_runtime_resume(dev);
2227 }
2228 
2229 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2230 {
2231 	struct device *dev = &pdev->dev;
2232 	struct device *parent = dev->parent;
2233 
2234 	pm_runtime_put(dev);
2235 	if (parent)
2236 		pm_runtime_put_sync(parent);
2237 }
2238 
2239 /**
2240  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2241  * @bridge: Bridge to check
2242  *
2243  * This function checks if it is possible to move the bridge to D3.
2244  * Currently we only allow D3 for recent enough PCIe ports.
2245  */
2246 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2247 {
2248 	unsigned int year;
2249 
2250 	if (!pci_is_pcie(bridge))
2251 		return false;
2252 
2253 	switch (pci_pcie_type(bridge)) {
2254 	case PCI_EXP_TYPE_ROOT_PORT:
2255 	case PCI_EXP_TYPE_UPSTREAM:
2256 	case PCI_EXP_TYPE_DOWNSTREAM:
2257 		if (pci_bridge_d3_disable)
2258 			return false;
2259 
2260 		/*
2261 		 * Hotplug interrupts cannot be delivered if the link is down,
2262 		 * so parents of a hotplug port must stay awake. In addition,
2263 		 * hotplug ports handled by firmware in System Management Mode
2264 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2265 		 * For simplicity, disallow in general for now.
2266 		 */
2267 		if (bridge->is_hotplug_bridge)
2268 			return false;
2269 
2270 		if (pci_bridge_d3_force)
2271 			return true;
2272 
2273 		/*
2274 		 * It should be safe to put PCIe ports from 2015 or newer
2275 		 * to D3.
2276 		 */
2277 		if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2278 		    year >= 2015) {
2279 			return true;
2280 		}
2281 		break;
2282 	}
2283 
2284 	return false;
2285 }
2286 
2287 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2288 {
2289 	bool *d3cold_ok = data;
2290 
2291 	if (/* The device needs to be allowed to go D3cold ... */
2292 	    dev->no_d3cold || !dev->d3cold_allowed ||
2293 
2294 	    /* ... and if it is wakeup capable to do so from D3cold. */
2295 	    (device_may_wakeup(&dev->dev) &&
2296 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2297 
2298 	    /* If it is a bridge it must be allowed to go to D3. */
2299 	    !pci_power_manageable(dev))
2300 
2301 		*d3cold_ok = false;
2302 
2303 	return !*d3cold_ok;
2304 }
2305 
2306 /*
2307  * pci_bridge_d3_update - Update bridge D3 capabilities
2308  * @dev: PCI device which is changed
2309  *
2310  * Update upstream bridge PM capabilities accordingly depending on if the
2311  * device PM configuration was changed or the device is being removed.  The
2312  * change is also propagated upstream.
2313  */
2314 void pci_bridge_d3_update(struct pci_dev *dev)
2315 {
2316 	bool remove = !device_is_registered(&dev->dev);
2317 	struct pci_dev *bridge;
2318 	bool d3cold_ok = true;
2319 
2320 	bridge = pci_upstream_bridge(dev);
2321 	if (!bridge || !pci_bridge_d3_possible(bridge))
2322 		return;
2323 
2324 	/*
2325 	 * If D3 is currently allowed for the bridge, removing one of its
2326 	 * children won't change that.
2327 	 */
2328 	if (remove && bridge->bridge_d3)
2329 		return;
2330 
2331 	/*
2332 	 * If D3 is currently allowed for the bridge and a child is added or
2333 	 * changed, disallowance of D3 can only be caused by that child, so
2334 	 * we only need to check that single device, not any of its siblings.
2335 	 *
2336 	 * If D3 is currently not allowed for the bridge, checking the device
2337 	 * first may allow us to skip checking its siblings.
2338 	 */
2339 	if (!remove)
2340 		pci_dev_check_d3cold(dev, &d3cold_ok);
2341 
2342 	/*
2343 	 * If D3 is currently not allowed for the bridge, this may be caused
2344 	 * either by the device being changed/removed or any of its siblings,
2345 	 * so we need to go through all children to find out if one of them
2346 	 * continues to block D3.
2347 	 */
2348 	if (d3cold_ok && !bridge->bridge_d3)
2349 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2350 			     &d3cold_ok);
2351 
2352 	if (bridge->bridge_d3 != d3cold_ok) {
2353 		bridge->bridge_d3 = d3cold_ok;
2354 		/* Propagate change to upstream bridges */
2355 		pci_bridge_d3_update(bridge);
2356 	}
2357 }
2358 
2359 /**
2360  * pci_d3cold_enable - Enable D3cold for device
2361  * @dev: PCI device to handle
2362  *
2363  * This function can be used in drivers to enable D3cold from the device
2364  * they handle.  It also updates upstream PCI bridge PM capabilities
2365  * accordingly.
2366  */
2367 void pci_d3cold_enable(struct pci_dev *dev)
2368 {
2369 	if (dev->no_d3cold) {
2370 		dev->no_d3cold = false;
2371 		pci_bridge_d3_update(dev);
2372 	}
2373 }
2374 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2375 
2376 /**
2377  * pci_d3cold_disable - Disable D3cold for device
2378  * @dev: PCI device to handle
2379  *
2380  * This function can be used in drivers to disable D3cold from the device
2381  * they handle.  It also updates upstream PCI bridge PM capabilities
2382  * accordingly.
2383  */
2384 void pci_d3cold_disable(struct pci_dev *dev)
2385 {
2386 	if (!dev->no_d3cold) {
2387 		dev->no_d3cold = true;
2388 		pci_bridge_d3_update(dev);
2389 	}
2390 }
2391 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2392 
2393 /**
2394  * pci_pm_init - Initialize PM functions of given PCI device
2395  * @dev: PCI device to handle.
2396  */
2397 void pci_pm_init(struct pci_dev *dev)
2398 {
2399 	int pm;
2400 	u16 pmc;
2401 
2402 	pm_runtime_forbid(&dev->dev);
2403 	pm_runtime_set_active(&dev->dev);
2404 	pm_runtime_enable(&dev->dev);
2405 	device_enable_async_suspend(&dev->dev);
2406 	dev->wakeup_prepared = false;
2407 
2408 	dev->pm_cap = 0;
2409 	dev->pme_support = 0;
2410 
2411 	/* find PCI PM capability in list */
2412 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2413 	if (!pm)
2414 		return;
2415 	/* Check device's ability to generate PME# */
2416 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2417 
2418 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2419 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2420 			pmc & PCI_PM_CAP_VER_MASK);
2421 		return;
2422 	}
2423 
2424 	dev->pm_cap = pm;
2425 	dev->d3_delay = PCI_PM_D3_WAIT;
2426 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2427 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2428 	dev->d3cold_allowed = true;
2429 
2430 	dev->d1_support = false;
2431 	dev->d2_support = false;
2432 	if (!pci_no_d1d2(dev)) {
2433 		if (pmc & PCI_PM_CAP_D1)
2434 			dev->d1_support = true;
2435 		if (pmc & PCI_PM_CAP_D2)
2436 			dev->d2_support = true;
2437 
2438 		if (dev->d1_support || dev->d2_support)
2439 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2440 				   dev->d1_support ? " D1" : "",
2441 				   dev->d2_support ? " D2" : "");
2442 	}
2443 
2444 	pmc &= PCI_PM_CAP_PME_MASK;
2445 	if (pmc) {
2446 		dev_printk(KERN_DEBUG, &dev->dev,
2447 			 "PME# supported from%s%s%s%s%s\n",
2448 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2449 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2450 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2451 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2452 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2453 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2454 		dev->pme_poll = true;
2455 		/*
2456 		 * Make device's PM flags reflect the wake-up capability, but
2457 		 * let the user space enable it to wake up the system as needed.
2458 		 */
2459 		device_set_wakeup_capable(&dev->dev, true);
2460 		/* Disable the PME# generation functionality */
2461 		pci_pme_active(dev, false);
2462 	}
2463 }
2464 
2465 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2466 {
2467 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2468 
2469 	switch (prop) {
2470 	case PCI_EA_P_MEM:
2471 	case PCI_EA_P_VF_MEM:
2472 		flags |= IORESOURCE_MEM;
2473 		break;
2474 	case PCI_EA_P_MEM_PREFETCH:
2475 	case PCI_EA_P_VF_MEM_PREFETCH:
2476 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2477 		break;
2478 	case PCI_EA_P_IO:
2479 		flags |= IORESOURCE_IO;
2480 		break;
2481 	default:
2482 		return 0;
2483 	}
2484 
2485 	return flags;
2486 }
2487 
2488 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2489 					    u8 prop)
2490 {
2491 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2492 		return &dev->resource[bei];
2493 #ifdef CONFIG_PCI_IOV
2494 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2495 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2496 		return &dev->resource[PCI_IOV_RESOURCES +
2497 				      bei - PCI_EA_BEI_VF_BAR0];
2498 #endif
2499 	else if (bei == PCI_EA_BEI_ROM)
2500 		return &dev->resource[PCI_ROM_RESOURCE];
2501 	else
2502 		return NULL;
2503 }
2504 
2505 /* Read an Enhanced Allocation (EA) entry */
2506 static int pci_ea_read(struct pci_dev *dev, int offset)
2507 {
2508 	struct resource *res;
2509 	int ent_size, ent_offset = offset;
2510 	resource_size_t start, end;
2511 	unsigned long flags;
2512 	u32 dw0, bei, base, max_offset;
2513 	u8 prop;
2514 	bool support_64 = (sizeof(resource_size_t) >= 8);
2515 
2516 	pci_read_config_dword(dev, ent_offset, &dw0);
2517 	ent_offset += 4;
2518 
2519 	/* Entry size field indicates DWORDs after 1st */
2520 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2521 
2522 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2523 		goto out;
2524 
2525 	bei = (dw0 & PCI_EA_BEI) >> 4;
2526 	prop = (dw0 & PCI_EA_PP) >> 8;
2527 
2528 	/*
2529 	 * If the Property is in the reserved range, try the Secondary
2530 	 * Property instead.
2531 	 */
2532 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2533 		prop = (dw0 & PCI_EA_SP) >> 16;
2534 	if (prop > PCI_EA_P_BRIDGE_IO)
2535 		goto out;
2536 
2537 	res = pci_ea_get_resource(dev, bei, prop);
2538 	if (!res) {
2539 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2540 		goto out;
2541 	}
2542 
2543 	flags = pci_ea_flags(dev, prop);
2544 	if (!flags) {
2545 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2546 		goto out;
2547 	}
2548 
2549 	/* Read Base */
2550 	pci_read_config_dword(dev, ent_offset, &base);
2551 	start = (base & PCI_EA_FIELD_MASK);
2552 	ent_offset += 4;
2553 
2554 	/* Read MaxOffset */
2555 	pci_read_config_dword(dev, ent_offset, &max_offset);
2556 	ent_offset += 4;
2557 
2558 	/* Read Base MSBs (if 64-bit entry) */
2559 	if (base & PCI_EA_IS_64) {
2560 		u32 base_upper;
2561 
2562 		pci_read_config_dword(dev, ent_offset, &base_upper);
2563 		ent_offset += 4;
2564 
2565 		flags |= IORESOURCE_MEM_64;
2566 
2567 		/* entry starts above 32-bit boundary, can't use */
2568 		if (!support_64 && base_upper)
2569 			goto out;
2570 
2571 		if (support_64)
2572 			start |= ((u64)base_upper << 32);
2573 	}
2574 
2575 	end = start + (max_offset | 0x03);
2576 
2577 	/* Read MaxOffset MSBs (if 64-bit entry) */
2578 	if (max_offset & PCI_EA_IS_64) {
2579 		u32 max_offset_upper;
2580 
2581 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2582 		ent_offset += 4;
2583 
2584 		flags |= IORESOURCE_MEM_64;
2585 
2586 		/* entry too big, can't use */
2587 		if (!support_64 && max_offset_upper)
2588 			goto out;
2589 
2590 		if (support_64)
2591 			end += ((u64)max_offset_upper << 32);
2592 	}
2593 
2594 	if (end < start) {
2595 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2596 		goto out;
2597 	}
2598 
2599 	if (ent_size != ent_offset - offset) {
2600 		dev_err(&dev->dev,
2601 			"EA Entry Size (%d) does not match length read (%d)\n",
2602 			ent_size, ent_offset - offset);
2603 		goto out;
2604 	}
2605 
2606 	res->name = pci_name(dev);
2607 	res->start = start;
2608 	res->end = end;
2609 	res->flags = flags;
2610 
2611 	if (bei <= PCI_EA_BEI_BAR5)
2612 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2613 			   bei, res, prop);
2614 	else if (bei == PCI_EA_BEI_ROM)
2615 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2616 			   res, prop);
2617 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2618 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2619 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2620 	else
2621 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2622 			   bei, res, prop);
2623 
2624 out:
2625 	return offset + ent_size;
2626 }
2627 
2628 /* Enhanced Allocation Initialization */
2629 void pci_ea_init(struct pci_dev *dev)
2630 {
2631 	int ea;
2632 	u8 num_ent;
2633 	int offset;
2634 	int i;
2635 
2636 	/* find PCI EA capability in list */
2637 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2638 	if (!ea)
2639 		return;
2640 
2641 	/* determine the number of entries */
2642 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2643 					&num_ent);
2644 	num_ent &= PCI_EA_NUM_ENT_MASK;
2645 
2646 	offset = ea + PCI_EA_FIRST_ENT;
2647 
2648 	/* Skip DWORD 2 for type 1 functions */
2649 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2650 		offset += 4;
2651 
2652 	/* parse each EA entry */
2653 	for (i = 0; i < num_ent; ++i)
2654 		offset = pci_ea_read(dev, offset);
2655 }
2656 
2657 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2658 	struct pci_cap_saved_state *new_cap)
2659 {
2660 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2661 }
2662 
2663 /**
2664  * _pci_add_cap_save_buffer - allocate buffer for saving given
2665  *                            capability registers
2666  * @dev: the PCI device
2667  * @cap: the capability to allocate the buffer for
2668  * @extended: Standard or Extended capability ID
2669  * @size: requested size of the buffer
2670  */
2671 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2672 				    bool extended, unsigned int size)
2673 {
2674 	int pos;
2675 	struct pci_cap_saved_state *save_state;
2676 
2677 	if (extended)
2678 		pos = pci_find_ext_capability(dev, cap);
2679 	else
2680 		pos = pci_find_capability(dev, cap);
2681 
2682 	if (!pos)
2683 		return 0;
2684 
2685 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2686 	if (!save_state)
2687 		return -ENOMEM;
2688 
2689 	save_state->cap.cap_nr = cap;
2690 	save_state->cap.cap_extended = extended;
2691 	save_state->cap.size = size;
2692 	pci_add_saved_cap(dev, save_state);
2693 
2694 	return 0;
2695 }
2696 
2697 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2698 {
2699 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2700 }
2701 
2702 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2703 {
2704 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2705 }
2706 
2707 /**
2708  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2709  * @dev: the PCI device
2710  */
2711 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2712 {
2713 	int error;
2714 
2715 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2716 					PCI_EXP_SAVE_REGS * sizeof(u16));
2717 	if (error)
2718 		dev_err(&dev->dev,
2719 			"unable to preallocate PCI Express save buffer\n");
2720 
2721 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2722 	if (error)
2723 		dev_err(&dev->dev,
2724 			"unable to preallocate PCI-X save buffer\n");
2725 
2726 	pci_allocate_vc_save_buffers(dev);
2727 }
2728 
2729 void pci_free_cap_save_buffers(struct pci_dev *dev)
2730 {
2731 	struct pci_cap_saved_state *tmp;
2732 	struct hlist_node *n;
2733 
2734 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2735 		kfree(tmp);
2736 }
2737 
2738 /**
2739  * pci_configure_ari - enable or disable ARI forwarding
2740  * @dev: the PCI device
2741  *
2742  * If @dev and its upstream bridge both support ARI, enable ARI in the
2743  * bridge.  Otherwise, disable ARI in the bridge.
2744  */
2745 void pci_configure_ari(struct pci_dev *dev)
2746 {
2747 	u32 cap;
2748 	struct pci_dev *bridge;
2749 
2750 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2751 		return;
2752 
2753 	bridge = dev->bus->self;
2754 	if (!bridge)
2755 		return;
2756 
2757 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2758 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2759 		return;
2760 
2761 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2762 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2763 					 PCI_EXP_DEVCTL2_ARI);
2764 		bridge->ari_enabled = 1;
2765 	} else {
2766 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2767 					   PCI_EXP_DEVCTL2_ARI);
2768 		bridge->ari_enabled = 0;
2769 	}
2770 }
2771 
2772 static int pci_acs_enable;
2773 
2774 /**
2775  * pci_request_acs - ask for ACS to be enabled if supported
2776  */
2777 void pci_request_acs(void)
2778 {
2779 	pci_acs_enable = 1;
2780 }
2781 
2782 /**
2783  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2784  * @dev: the PCI device
2785  */
2786 static void pci_std_enable_acs(struct pci_dev *dev)
2787 {
2788 	int pos;
2789 	u16 cap;
2790 	u16 ctrl;
2791 
2792 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2793 	if (!pos)
2794 		return;
2795 
2796 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2797 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2798 
2799 	/* Source Validation */
2800 	ctrl |= (cap & PCI_ACS_SV);
2801 
2802 	/* P2P Request Redirect */
2803 	ctrl |= (cap & PCI_ACS_RR);
2804 
2805 	/* P2P Completion Redirect */
2806 	ctrl |= (cap & PCI_ACS_CR);
2807 
2808 	/* Upstream Forwarding */
2809 	ctrl |= (cap & PCI_ACS_UF);
2810 
2811 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2812 }
2813 
2814 /**
2815  * pci_enable_acs - enable ACS if hardware support it
2816  * @dev: the PCI device
2817  */
2818 void pci_enable_acs(struct pci_dev *dev)
2819 {
2820 	if (!pci_acs_enable)
2821 		return;
2822 
2823 	if (!pci_dev_specific_enable_acs(dev))
2824 		return;
2825 
2826 	pci_std_enable_acs(dev);
2827 }
2828 
2829 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2830 {
2831 	int pos;
2832 	u16 cap, ctrl;
2833 
2834 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2835 	if (!pos)
2836 		return false;
2837 
2838 	/*
2839 	 * Except for egress control, capabilities are either required
2840 	 * or only required if controllable.  Features missing from the
2841 	 * capability field can therefore be assumed as hard-wired enabled.
2842 	 */
2843 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2844 	acs_flags &= (cap | PCI_ACS_EC);
2845 
2846 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2847 	return (ctrl & acs_flags) == acs_flags;
2848 }
2849 
2850 /**
2851  * pci_acs_enabled - test ACS against required flags for a given device
2852  * @pdev: device to test
2853  * @acs_flags: required PCI ACS flags
2854  *
2855  * Return true if the device supports the provided flags.  Automatically
2856  * filters out flags that are not implemented on multifunction devices.
2857  *
2858  * Note that this interface checks the effective ACS capabilities of the
2859  * device rather than the actual capabilities.  For instance, most single
2860  * function endpoints are not required to support ACS because they have no
2861  * opportunity for peer-to-peer access.  We therefore return 'true'
2862  * regardless of whether the device exposes an ACS capability.  This makes
2863  * it much easier for callers of this function to ignore the actual type
2864  * or topology of the device when testing ACS support.
2865  */
2866 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2867 {
2868 	int ret;
2869 
2870 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2871 	if (ret >= 0)
2872 		return ret > 0;
2873 
2874 	/*
2875 	 * Conventional PCI and PCI-X devices never support ACS, either
2876 	 * effectively or actually.  The shared bus topology implies that
2877 	 * any device on the bus can receive or snoop DMA.
2878 	 */
2879 	if (!pci_is_pcie(pdev))
2880 		return false;
2881 
2882 	switch (pci_pcie_type(pdev)) {
2883 	/*
2884 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2885 	 * but since their primary interface is PCI/X, we conservatively
2886 	 * handle them as we would a non-PCIe device.
2887 	 */
2888 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2889 	/*
2890 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2891 	 * applicable... must never implement an ACS Extended Capability...".
2892 	 * This seems arbitrary, but we take a conservative interpretation
2893 	 * of this statement.
2894 	 */
2895 	case PCI_EXP_TYPE_PCI_BRIDGE:
2896 	case PCI_EXP_TYPE_RC_EC:
2897 		return false;
2898 	/*
2899 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2900 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2901 	 * regardless of whether they are single- or multi-function devices.
2902 	 */
2903 	case PCI_EXP_TYPE_DOWNSTREAM:
2904 	case PCI_EXP_TYPE_ROOT_PORT:
2905 		return pci_acs_flags_enabled(pdev, acs_flags);
2906 	/*
2907 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2908 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2909 	 * capabilities, but only when they are part of a multifunction
2910 	 * device.  The footnote for section 6.12 indicates the specific
2911 	 * PCIe types included here.
2912 	 */
2913 	case PCI_EXP_TYPE_ENDPOINT:
2914 	case PCI_EXP_TYPE_UPSTREAM:
2915 	case PCI_EXP_TYPE_LEG_END:
2916 	case PCI_EXP_TYPE_RC_END:
2917 		if (!pdev->multifunction)
2918 			break;
2919 
2920 		return pci_acs_flags_enabled(pdev, acs_flags);
2921 	}
2922 
2923 	/*
2924 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2925 	 * to single function devices with the exception of downstream ports.
2926 	 */
2927 	return true;
2928 }
2929 
2930 /**
2931  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2932  * @start: starting downstream device
2933  * @end: ending upstream device or NULL to search to the root bus
2934  * @acs_flags: required flags
2935  *
2936  * Walk up a device tree from start to end testing PCI ACS support.  If
2937  * any step along the way does not support the required flags, return false.
2938  */
2939 bool pci_acs_path_enabled(struct pci_dev *start,
2940 			  struct pci_dev *end, u16 acs_flags)
2941 {
2942 	struct pci_dev *pdev, *parent = start;
2943 
2944 	do {
2945 		pdev = parent;
2946 
2947 		if (!pci_acs_enabled(pdev, acs_flags))
2948 			return false;
2949 
2950 		if (pci_is_root_bus(pdev->bus))
2951 			return (end == NULL);
2952 
2953 		parent = pdev->bus->self;
2954 	} while (pdev != end);
2955 
2956 	return true;
2957 }
2958 
2959 /**
2960  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2961  * @dev: the PCI device
2962  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2963  *
2964  * Perform INTx swizzling for a device behind one level of bridge.  This is
2965  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2966  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2967  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2968  * the PCI Express Base Specification, Revision 2.1)
2969  */
2970 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2971 {
2972 	int slot;
2973 
2974 	if (pci_ari_enabled(dev->bus))
2975 		slot = 0;
2976 	else
2977 		slot = PCI_SLOT(dev->devfn);
2978 
2979 	return (((pin - 1) + slot) % 4) + 1;
2980 }
2981 
2982 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2983 {
2984 	u8 pin;
2985 
2986 	pin = dev->pin;
2987 	if (!pin)
2988 		return -1;
2989 
2990 	while (!pci_is_root_bus(dev->bus)) {
2991 		pin = pci_swizzle_interrupt_pin(dev, pin);
2992 		dev = dev->bus->self;
2993 	}
2994 	*bridge = dev;
2995 	return pin;
2996 }
2997 
2998 /**
2999  * pci_common_swizzle - swizzle INTx all the way to root bridge
3000  * @dev: the PCI device
3001  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3002  *
3003  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3004  * bridges all the way up to a PCI root bus.
3005  */
3006 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3007 {
3008 	u8 pin = *pinp;
3009 
3010 	while (!pci_is_root_bus(dev->bus)) {
3011 		pin = pci_swizzle_interrupt_pin(dev, pin);
3012 		dev = dev->bus->self;
3013 	}
3014 	*pinp = pin;
3015 	return PCI_SLOT(dev->devfn);
3016 }
3017 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3018 
3019 /**
3020  *	pci_release_region - Release a PCI bar
3021  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3022  *	@bar: BAR to release
3023  *
3024  *	Releases the PCI I/O and memory resources previously reserved by a
3025  *	successful call to pci_request_region.  Call this function only
3026  *	after all use of the PCI regions has ceased.
3027  */
3028 void pci_release_region(struct pci_dev *pdev, int bar)
3029 {
3030 	struct pci_devres *dr;
3031 
3032 	if (pci_resource_len(pdev, bar) == 0)
3033 		return;
3034 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3035 		release_region(pci_resource_start(pdev, bar),
3036 				pci_resource_len(pdev, bar));
3037 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3038 		release_mem_region(pci_resource_start(pdev, bar),
3039 				pci_resource_len(pdev, bar));
3040 
3041 	dr = find_pci_dr(pdev);
3042 	if (dr)
3043 		dr->region_mask &= ~(1 << bar);
3044 }
3045 EXPORT_SYMBOL(pci_release_region);
3046 
3047 /**
3048  *	__pci_request_region - Reserved PCI I/O and memory resource
3049  *	@pdev: PCI device whose resources are to be reserved
3050  *	@bar: BAR to be reserved
3051  *	@res_name: Name to be associated with resource.
3052  *	@exclusive: whether the region access is exclusive or not
3053  *
3054  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3055  *	being reserved by owner @res_name.  Do not access any
3056  *	address inside the PCI regions unless this call returns
3057  *	successfully.
3058  *
3059  *	If @exclusive is set, then the region is marked so that userspace
3060  *	is explicitly not allowed to map the resource via /dev/mem or
3061  *	sysfs MMIO access.
3062  *
3063  *	Returns 0 on success, or %EBUSY on error.  A warning
3064  *	message is also printed on failure.
3065  */
3066 static int __pci_request_region(struct pci_dev *pdev, int bar,
3067 				const char *res_name, int exclusive)
3068 {
3069 	struct pci_devres *dr;
3070 
3071 	if (pci_resource_len(pdev, bar) == 0)
3072 		return 0;
3073 
3074 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3075 		if (!request_region(pci_resource_start(pdev, bar),
3076 			    pci_resource_len(pdev, bar), res_name))
3077 			goto err_out;
3078 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3079 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3080 					pci_resource_len(pdev, bar), res_name,
3081 					exclusive))
3082 			goto err_out;
3083 	}
3084 
3085 	dr = find_pci_dr(pdev);
3086 	if (dr)
3087 		dr->region_mask |= 1 << bar;
3088 
3089 	return 0;
3090 
3091 err_out:
3092 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3093 		 &pdev->resource[bar]);
3094 	return -EBUSY;
3095 }
3096 
3097 /**
3098  *	pci_request_region - Reserve PCI I/O and memory resource
3099  *	@pdev: PCI device whose resources are to be reserved
3100  *	@bar: BAR to be reserved
3101  *	@res_name: Name to be associated with resource
3102  *
3103  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3104  *	being reserved by owner @res_name.  Do not access any
3105  *	address inside the PCI regions unless this call returns
3106  *	successfully.
3107  *
3108  *	Returns 0 on success, or %EBUSY on error.  A warning
3109  *	message is also printed on failure.
3110  */
3111 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3112 {
3113 	return __pci_request_region(pdev, bar, res_name, 0);
3114 }
3115 EXPORT_SYMBOL(pci_request_region);
3116 
3117 /**
3118  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3119  *	@pdev: PCI device whose resources are to be reserved
3120  *	@bar: BAR to be reserved
3121  *	@res_name: Name to be associated with resource.
3122  *
3123  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3124  *	being reserved by owner @res_name.  Do not access any
3125  *	address inside the PCI regions unless this call returns
3126  *	successfully.
3127  *
3128  *	Returns 0 on success, or %EBUSY on error.  A warning
3129  *	message is also printed on failure.
3130  *
3131  *	The key difference that _exclusive makes it that userspace is
3132  *	explicitly not allowed to map the resource via /dev/mem or
3133  *	sysfs.
3134  */
3135 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3136 				 const char *res_name)
3137 {
3138 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3139 }
3140 EXPORT_SYMBOL(pci_request_region_exclusive);
3141 
3142 /**
3143  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3144  * @pdev: PCI device whose resources were previously reserved
3145  * @bars: Bitmask of BARs to be released
3146  *
3147  * Release selected PCI I/O and memory resources previously reserved.
3148  * Call this function only after all use of the PCI regions has ceased.
3149  */
3150 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3151 {
3152 	int i;
3153 
3154 	for (i = 0; i < 6; i++)
3155 		if (bars & (1 << i))
3156 			pci_release_region(pdev, i);
3157 }
3158 EXPORT_SYMBOL(pci_release_selected_regions);
3159 
3160 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3161 					  const char *res_name, int excl)
3162 {
3163 	int i;
3164 
3165 	for (i = 0; i < 6; i++)
3166 		if (bars & (1 << i))
3167 			if (__pci_request_region(pdev, i, res_name, excl))
3168 				goto err_out;
3169 	return 0;
3170 
3171 err_out:
3172 	while (--i >= 0)
3173 		if (bars & (1 << i))
3174 			pci_release_region(pdev, i);
3175 
3176 	return -EBUSY;
3177 }
3178 
3179 
3180 /**
3181  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3182  * @pdev: PCI device whose resources are to be reserved
3183  * @bars: Bitmask of BARs to be requested
3184  * @res_name: Name to be associated with resource
3185  */
3186 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3187 				 const char *res_name)
3188 {
3189 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3190 }
3191 EXPORT_SYMBOL(pci_request_selected_regions);
3192 
3193 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3194 					   const char *res_name)
3195 {
3196 	return __pci_request_selected_regions(pdev, bars, res_name,
3197 			IORESOURCE_EXCLUSIVE);
3198 }
3199 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3200 
3201 /**
3202  *	pci_release_regions - Release reserved PCI I/O and memory resources
3203  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3204  *
3205  *	Releases all PCI I/O and memory resources previously reserved by a
3206  *	successful call to pci_request_regions.  Call this function only
3207  *	after all use of the PCI regions has ceased.
3208  */
3209 
3210 void pci_release_regions(struct pci_dev *pdev)
3211 {
3212 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3213 }
3214 EXPORT_SYMBOL(pci_release_regions);
3215 
3216 /**
3217  *	pci_request_regions - Reserved PCI I/O and memory resources
3218  *	@pdev: PCI device whose resources are to be reserved
3219  *	@res_name: Name to be associated with resource.
3220  *
3221  *	Mark all PCI regions associated with PCI device @pdev as
3222  *	being reserved by owner @res_name.  Do not access any
3223  *	address inside the PCI regions unless this call returns
3224  *	successfully.
3225  *
3226  *	Returns 0 on success, or %EBUSY on error.  A warning
3227  *	message is also printed on failure.
3228  */
3229 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3230 {
3231 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3232 }
3233 EXPORT_SYMBOL(pci_request_regions);
3234 
3235 /**
3236  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3237  *	@pdev: PCI device whose resources are to be reserved
3238  *	@res_name: Name to be associated with resource.
3239  *
3240  *	Mark all PCI regions associated with PCI device @pdev as
3241  *	being reserved by owner @res_name.  Do not access any
3242  *	address inside the PCI regions unless this call returns
3243  *	successfully.
3244  *
3245  *	pci_request_regions_exclusive() will mark the region so that
3246  *	/dev/mem and the sysfs MMIO access will not be allowed.
3247  *
3248  *	Returns 0 on success, or %EBUSY on error.  A warning
3249  *	message is also printed on failure.
3250  */
3251 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3252 {
3253 	return pci_request_selected_regions_exclusive(pdev,
3254 					((1 << 6) - 1), res_name);
3255 }
3256 EXPORT_SYMBOL(pci_request_regions_exclusive);
3257 
3258 #ifdef PCI_IOBASE
3259 struct io_range {
3260 	struct list_head list;
3261 	phys_addr_t start;
3262 	resource_size_t size;
3263 };
3264 
3265 static LIST_HEAD(io_range_list);
3266 static DEFINE_SPINLOCK(io_range_lock);
3267 #endif
3268 
3269 /*
3270  * Record the PCI IO range (expressed as CPU physical address + size).
3271  * Return a negative value if an error has occured, zero otherwise
3272  */
3273 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3274 {
3275 	int err = 0;
3276 
3277 #ifdef PCI_IOBASE
3278 	struct io_range *range;
3279 	resource_size_t allocated_size = 0;
3280 
3281 	/* check if the range hasn't been previously recorded */
3282 	spin_lock(&io_range_lock);
3283 	list_for_each_entry(range, &io_range_list, list) {
3284 		if (addr >= range->start && addr + size <= range->start + size) {
3285 			/* range already registered, bail out */
3286 			goto end_register;
3287 		}
3288 		allocated_size += range->size;
3289 	}
3290 
3291 	/* range not registed yet, check for available space */
3292 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3293 		/* if it's too big check if 64K space can be reserved */
3294 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3295 			err = -E2BIG;
3296 			goto end_register;
3297 		}
3298 
3299 		size = SZ_64K;
3300 		pr_warn("Requested IO range too big, new size set to 64K\n");
3301 	}
3302 
3303 	/* add the range to the list */
3304 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3305 	if (!range) {
3306 		err = -ENOMEM;
3307 		goto end_register;
3308 	}
3309 
3310 	range->start = addr;
3311 	range->size = size;
3312 
3313 	list_add_tail(&range->list, &io_range_list);
3314 
3315 end_register:
3316 	spin_unlock(&io_range_lock);
3317 #endif
3318 
3319 	return err;
3320 }
3321 
3322 phys_addr_t pci_pio_to_address(unsigned long pio)
3323 {
3324 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3325 
3326 #ifdef PCI_IOBASE
3327 	struct io_range *range;
3328 	resource_size_t allocated_size = 0;
3329 
3330 	if (pio > IO_SPACE_LIMIT)
3331 		return address;
3332 
3333 	spin_lock(&io_range_lock);
3334 	list_for_each_entry(range, &io_range_list, list) {
3335 		if (pio >= allocated_size && pio < allocated_size + range->size) {
3336 			address = range->start + pio - allocated_size;
3337 			break;
3338 		}
3339 		allocated_size += range->size;
3340 	}
3341 	spin_unlock(&io_range_lock);
3342 #endif
3343 
3344 	return address;
3345 }
3346 
3347 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3348 {
3349 #ifdef PCI_IOBASE
3350 	struct io_range *res;
3351 	resource_size_t offset = 0;
3352 	unsigned long addr = -1;
3353 
3354 	spin_lock(&io_range_lock);
3355 	list_for_each_entry(res, &io_range_list, list) {
3356 		if (address >= res->start && address < res->start + res->size) {
3357 			addr = address - res->start + offset;
3358 			break;
3359 		}
3360 		offset += res->size;
3361 	}
3362 	spin_unlock(&io_range_lock);
3363 
3364 	return addr;
3365 #else
3366 	if (address > IO_SPACE_LIMIT)
3367 		return (unsigned long)-1;
3368 
3369 	return (unsigned long) address;
3370 #endif
3371 }
3372 
3373 /**
3374  *	pci_remap_iospace - Remap the memory mapped I/O space
3375  *	@res: Resource describing the I/O space
3376  *	@phys_addr: physical address of range to be mapped
3377  *
3378  *	Remap the memory mapped I/O space described by the @res
3379  *	and the CPU physical address @phys_addr into virtual address space.
3380  *	Only architectures that have memory mapped IO functions defined
3381  *	(and the PCI_IOBASE value defined) should call this function.
3382  */
3383 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3384 {
3385 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3386 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3387 
3388 	if (!(res->flags & IORESOURCE_IO))
3389 		return -EINVAL;
3390 
3391 	if (res->end > IO_SPACE_LIMIT)
3392 		return -EINVAL;
3393 
3394 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3395 				  pgprot_device(PAGE_KERNEL));
3396 #else
3397 	/* this architecture does not have memory mapped I/O space,
3398 	   so this function should never be called */
3399 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3400 	return -ENODEV;
3401 #endif
3402 }
3403 EXPORT_SYMBOL(pci_remap_iospace);
3404 
3405 /**
3406  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3407  *	@res: resource to be unmapped
3408  *
3409  *	Unmap the CPU virtual address @res from virtual address space.
3410  *	Only architectures that have memory mapped IO functions defined
3411  *	(and the PCI_IOBASE value defined) should call this function.
3412  */
3413 void pci_unmap_iospace(struct resource *res)
3414 {
3415 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3416 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3417 
3418 	unmap_kernel_range(vaddr, resource_size(res));
3419 #endif
3420 }
3421 EXPORT_SYMBOL(pci_unmap_iospace);
3422 
3423 /**
3424  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3425  * @dev: Generic device to remap IO address for
3426  * @offset: Resource address to map
3427  * @size: Size of map
3428  *
3429  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3430  * detach.
3431  */
3432 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3433 				      resource_size_t offset,
3434 				      resource_size_t size)
3435 {
3436 	void __iomem **ptr, *addr;
3437 
3438 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3439 	if (!ptr)
3440 		return NULL;
3441 
3442 	addr = pci_remap_cfgspace(offset, size);
3443 	if (addr) {
3444 		*ptr = addr;
3445 		devres_add(dev, ptr);
3446 	} else
3447 		devres_free(ptr);
3448 
3449 	return addr;
3450 }
3451 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3452 
3453 /**
3454  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3455  * @dev: generic device to handle the resource for
3456  * @res: configuration space resource to be handled
3457  *
3458  * Checks that a resource is a valid memory region, requests the memory
3459  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3460  * proper PCI configuration space memory attributes are guaranteed.
3461  *
3462  * All operations are managed and will be undone on driver detach.
3463  *
3464  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3465  * on failure. Usage example:
3466  *
3467  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3468  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3469  *	if (IS_ERR(base))
3470  *		return PTR_ERR(base);
3471  */
3472 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3473 					  struct resource *res)
3474 {
3475 	resource_size_t size;
3476 	const char *name;
3477 	void __iomem *dest_ptr;
3478 
3479 	BUG_ON(!dev);
3480 
3481 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3482 		dev_err(dev, "invalid resource\n");
3483 		return IOMEM_ERR_PTR(-EINVAL);
3484 	}
3485 
3486 	size = resource_size(res);
3487 	name = res->name ?: dev_name(dev);
3488 
3489 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3490 		dev_err(dev, "can't request region for resource %pR\n", res);
3491 		return IOMEM_ERR_PTR(-EBUSY);
3492 	}
3493 
3494 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3495 	if (!dest_ptr) {
3496 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3497 		devm_release_mem_region(dev, res->start, size);
3498 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3499 	}
3500 
3501 	return dest_ptr;
3502 }
3503 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3504 
3505 static void __pci_set_master(struct pci_dev *dev, bool enable)
3506 {
3507 	u16 old_cmd, cmd;
3508 
3509 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3510 	if (enable)
3511 		cmd = old_cmd | PCI_COMMAND_MASTER;
3512 	else
3513 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3514 	if (cmd != old_cmd) {
3515 		dev_dbg(&dev->dev, "%s bus mastering\n",
3516 			enable ? "enabling" : "disabling");
3517 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3518 	}
3519 	dev->is_busmaster = enable;
3520 }
3521 
3522 /**
3523  * pcibios_setup - process "pci=" kernel boot arguments
3524  * @str: string used to pass in "pci=" kernel boot arguments
3525  *
3526  * Process kernel boot arguments.  This is the default implementation.
3527  * Architecture specific implementations can override this as necessary.
3528  */
3529 char * __weak __init pcibios_setup(char *str)
3530 {
3531 	return str;
3532 }
3533 
3534 /**
3535  * pcibios_set_master - enable PCI bus-mastering for device dev
3536  * @dev: the PCI device to enable
3537  *
3538  * Enables PCI bus-mastering for the device.  This is the default
3539  * implementation.  Architecture specific implementations can override
3540  * this if necessary.
3541  */
3542 void __weak pcibios_set_master(struct pci_dev *dev)
3543 {
3544 	u8 lat;
3545 
3546 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3547 	if (pci_is_pcie(dev))
3548 		return;
3549 
3550 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3551 	if (lat < 16)
3552 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3553 	else if (lat > pcibios_max_latency)
3554 		lat = pcibios_max_latency;
3555 	else
3556 		return;
3557 
3558 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3559 }
3560 
3561 /**
3562  * pci_set_master - enables bus-mastering for device dev
3563  * @dev: the PCI device to enable
3564  *
3565  * Enables bus-mastering on the device and calls pcibios_set_master()
3566  * to do the needed arch specific settings.
3567  */
3568 void pci_set_master(struct pci_dev *dev)
3569 {
3570 	__pci_set_master(dev, true);
3571 	pcibios_set_master(dev);
3572 }
3573 EXPORT_SYMBOL(pci_set_master);
3574 
3575 /**
3576  * pci_clear_master - disables bus-mastering for device dev
3577  * @dev: the PCI device to disable
3578  */
3579 void pci_clear_master(struct pci_dev *dev)
3580 {
3581 	__pci_set_master(dev, false);
3582 }
3583 EXPORT_SYMBOL(pci_clear_master);
3584 
3585 /**
3586  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3587  * @dev: the PCI device for which MWI is to be enabled
3588  *
3589  * Helper function for pci_set_mwi.
3590  * Originally copied from drivers/net/acenic.c.
3591  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3592  *
3593  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3594  */
3595 int pci_set_cacheline_size(struct pci_dev *dev)
3596 {
3597 	u8 cacheline_size;
3598 
3599 	if (!pci_cache_line_size)
3600 		return -EINVAL;
3601 
3602 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3603 	   equal to or multiple of the right value. */
3604 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3605 	if (cacheline_size >= pci_cache_line_size &&
3606 	    (cacheline_size % pci_cache_line_size) == 0)
3607 		return 0;
3608 
3609 	/* Write the correct value. */
3610 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3611 	/* Read it back. */
3612 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3613 	if (cacheline_size == pci_cache_line_size)
3614 		return 0;
3615 
3616 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3617 		   pci_cache_line_size << 2);
3618 
3619 	return -EINVAL;
3620 }
3621 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3622 
3623 /**
3624  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3625  * @dev: the PCI device for which MWI is enabled
3626  *
3627  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3628  *
3629  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3630  */
3631 int pci_set_mwi(struct pci_dev *dev)
3632 {
3633 #ifdef PCI_DISABLE_MWI
3634 	return 0;
3635 #else
3636 	int rc;
3637 	u16 cmd;
3638 
3639 	rc = pci_set_cacheline_size(dev);
3640 	if (rc)
3641 		return rc;
3642 
3643 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3644 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3645 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3646 		cmd |= PCI_COMMAND_INVALIDATE;
3647 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3648 	}
3649 	return 0;
3650 #endif
3651 }
3652 EXPORT_SYMBOL(pci_set_mwi);
3653 
3654 /**
3655  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3656  * @dev: the PCI device for which MWI is enabled
3657  *
3658  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3659  * Callers are not required to check the return value.
3660  *
3661  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3662  */
3663 int pci_try_set_mwi(struct pci_dev *dev)
3664 {
3665 #ifdef PCI_DISABLE_MWI
3666 	return 0;
3667 #else
3668 	return pci_set_mwi(dev);
3669 #endif
3670 }
3671 EXPORT_SYMBOL(pci_try_set_mwi);
3672 
3673 /**
3674  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3675  * @dev: the PCI device to disable
3676  *
3677  * Disables PCI Memory-Write-Invalidate transaction on the device
3678  */
3679 void pci_clear_mwi(struct pci_dev *dev)
3680 {
3681 #ifndef PCI_DISABLE_MWI
3682 	u16 cmd;
3683 
3684 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3685 	if (cmd & PCI_COMMAND_INVALIDATE) {
3686 		cmd &= ~PCI_COMMAND_INVALIDATE;
3687 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3688 	}
3689 #endif
3690 }
3691 EXPORT_SYMBOL(pci_clear_mwi);
3692 
3693 /**
3694  * pci_intx - enables/disables PCI INTx for device dev
3695  * @pdev: the PCI device to operate on
3696  * @enable: boolean: whether to enable or disable PCI INTx
3697  *
3698  * Enables/disables PCI INTx for device dev
3699  */
3700 void pci_intx(struct pci_dev *pdev, int enable)
3701 {
3702 	u16 pci_command, new;
3703 
3704 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3705 
3706 	if (enable)
3707 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3708 	else
3709 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3710 
3711 	if (new != pci_command) {
3712 		struct pci_devres *dr;
3713 
3714 		pci_write_config_word(pdev, PCI_COMMAND, new);
3715 
3716 		dr = find_pci_dr(pdev);
3717 		if (dr && !dr->restore_intx) {
3718 			dr->restore_intx = 1;
3719 			dr->orig_intx = !enable;
3720 		}
3721 	}
3722 }
3723 EXPORT_SYMBOL_GPL(pci_intx);
3724 
3725 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3726 {
3727 	struct pci_bus *bus = dev->bus;
3728 	bool mask_updated = true;
3729 	u32 cmd_status_dword;
3730 	u16 origcmd, newcmd;
3731 	unsigned long flags;
3732 	bool irq_pending;
3733 
3734 	/*
3735 	 * We do a single dword read to retrieve both command and status.
3736 	 * Document assumptions that make this possible.
3737 	 */
3738 	BUILD_BUG_ON(PCI_COMMAND % 4);
3739 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3740 
3741 	raw_spin_lock_irqsave(&pci_lock, flags);
3742 
3743 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3744 
3745 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3746 
3747 	/*
3748 	 * Check interrupt status register to see whether our device
3749 	 * triggered the interrupt (when masking) or the next IRQ is
3750 	 * already pending (when unmasking).
3751 	 */
3752 	if (mask != irq_pending) {
3753 		mask_updated = false;
3754 		goto done;
3755 	}
3756 
3757 	origcmd = cmd_status_dword;
3758 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3759 	if (mask)
3760 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3761 	if (newcmd != origcmd)
3762 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3763 
3764 done:
3765 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3766 
3767 	return mask_updated;
3768 }
3769 
3770 /**
3771  * pci_check_and_mask_intx - mask INTx on pending interrupt
3772  * @dev: the PCI device to operate on
3773  *
3774  * Check if the device dev has its INTx line asserted, mask it and
3775  * return true in that case. False is returned if no interrupt was
3776  * pending.
3777  */
3778 bool pci_check_and_mask_intx(struct pci_dev *dev)
3779 {
3780 	return pci_check_and_set_intx_mask(dev, true);
3781 }
3782 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3783 
3784 /**
3785  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3786  * @dev: the PCI device to operate on
3787  *
3788  * Check if the device dev has its INTx line asserted, unmask it if not
3789  * and return true. False is returned and the mask remains active if
3790  * there was still an interrupt pending.
3791  */
3792 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3793 {
3794 	return pci_check_and_set_intx_mask(dev, false);
3795 }
3796 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3797 
3798 /**
3799  * pci_wait_for_pending_transaction - waits for pending transaction
3800  * @dev: the PCI device to operate on
3801  *
3802  * Return 0 if transaction is pending 1 otherwise.
3803  */
3804 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3805 {
3806 	if (!pci_is_pcie(dev))
3807 		return 1;
3808 
3809 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3810 				    PCI_EXP_DEVSTA_TRPND);
3811 }
3812 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3813 
3814 /*
3815  * We should only need to wait 100ms after FLR, but some devices take longer.
3816  * Wait for up to 1000ms for config space to return something other than -1.
3817  * Intel IGD requires this when an LCD panel is attached.  We read the 2nd
3818  * dword because VFs don't implement the 1st dword.
3819  */
3820 static void pci_flr_wait(struct pci_dev *dev)
3821 {
3822 	int i = 0;
3823 	u32 id;
3824 
3825 	do {
3826 		msleep(100);
3827 		pci_read_config_dword(dev, PCI_COMMAND, &id);
3828 	} while (i++ < 10 && id == ~0);
3829 
3830 	if (id == ~0)
3831 		dev_warn(&dev->dev, "Failed to return from FLR\n");
3832 	else if (i > 1)
3833 		dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3834 			 (i - 1) * 100);
3835 }
3836 
3837 /**
3838  * pcie_has_flr - check if a device supports function level resets
3839  * @dev:	device to check
3840  *
3841  * Returns true if the device advertises support for PCIe function level
3842  * resets.
3843  */
3844 static bool pcie_has_flr(struct pci_dev *dev)
3845 {
3846 	u32 cap;
3847 
3848 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3849 		return false;
3850 
3851 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3852 	return cap & PCI_EXP_DEVCAP_FLR;
3853 }
3854 
3855 /**
3856  * pcie_flr - initiate a PCIe function level reset
3857  * @dev:	device to reset
3858  *
3859  * Initiate a function level reset on @dev.  The caller should ensure the
3860  * device supports FLR before calling this function, e.g. by using the
3861  * pcie_has_flr() helper.
3862  */
3863 void pcie_flr(struct pci_dev *dev)
3864 {
3865 	if (!pci_wait_for_pending_transaction(dev))
3866 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3867 
3868 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3869 	pci_flr_wait(dev);
3870 }
3871 EXPORT_SYMBOL_GPL(pcie_flr);
3872 
3873 static int pci_af_flr(struct pci_dev *dev, int probe)
3874 {
3875 	int pos;
3876 	u8 cap;
3877 
3878 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3879 	if (!pos)
3880 		return -ENOTTY;
3881 
3882 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3883 		return -ENOTTY;
3884 
3885 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3886 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3887 		return -ENOTTY;
3888 
3889 	if (probe)
3890 		return 0;
3891 
3892 	/*
3893 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3894 	 * is used, so we use the conrol offset rather than status and shift
3895 	 * the test bit to match.
3896 	 */
3897 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3898 				 PCI_AF_STATUS_TP << 8))
3899 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3900 
3901 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3902 	pci_flr_wait(dev);
3903 	return 0;
3904 }
3905 
3906 /**
3907  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3908  * @dev: Device to reset.
3909  * @probe: If set, only check if the device can be reset this way.
3910  *
3911  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3912  * unset, it will be reinitialized internally when going from PCI_D3hot to
3913  * PCI_D0.  If that's the case and the device is not in a low-power state
3914  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3915  *
3916  * NOTE: This causes the caller to sleep for twice the device power transition
3917  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3918  * by default (i.e. unless the @dev's d3_delay field has a different value).
3919  * Moreover, only devices in D0 can be reset by this function.
3920  */
3921 static int pci_pm_reset(struct pci_dev *dev, int probe)
3922 {
3923 	u16 csr;
3924 
3925 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3926 		return -ENOTTY;
3927 
3928 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3929 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3930 		return -ENOTTY;
3931 
3932 	if (probe)
3933 		return 0;
3934 
3935 	if (dev->current_state != PCI_D0)
3936 		return -EINVAL;
3937 
3938 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3939 	csr |= PCI_D3hot;
3940 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3941 	pci_dev_d3_sleep(dev);
3942 
3943 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3944 	csr |= PCI_D0;
3945 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3946 	pci_dev_d3_sleep(dev);
3947 
3948 	return 0;
3949 }
3950 
3951 void pci_reset_secondary_bus(struct pci_dev *dev)
3952 {
3953 	u16 ctrl;
3954 
3955 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3956 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3957 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3958 	/*
3959 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3960 	 * this to 2ms to ensure that we meet the minimum requirement.
3961 	 */
3962 	msleep(2);
3963 
3964 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3965 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3966 
3967 	/*
3968 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3969 	 * Assuming a minimum 33MHz clock this results in a 1s
3970 	 * delay before we can consider subordinate devices to
3971 	 * be re-initialized.  PCIe has some ways to shorten this,
3972 	 * but we don't make use of them yet.
3973 	 */
3974 	ssleep(1);
3975 }
3976 
3977 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3978 {
3979 	pci_reset_secondary_bus(dev);
3980 }
3981 
3982 /**
3983  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3984  * @dev: Bridge device
3985  *
3986  * Use the bridge control register to assert reset on the secondary bus.
3987  * Devices on the secondary bus are left in power-on state.
3988  */
3989 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3990 {
3991 	pcibios_reset_secondary_bus(dev);
3992 }
3993 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3994 
3995 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3996 {
3997 	struct pci_dev *pdev;
3998 
3999 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4000 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4001 		return -ENOTTY;
4002 
4003 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4004 		if (pdev != dev)
4005 			return -ENOTTY;
4006 
4007 	if (probe)
4008 		return 0;
4009 
4010 	pci_reset_bridge_secondary_bus(dev->bus->self);
4011 
4012 	return 0;
4013 }
4014 
4015 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4016 {
4017 	int rc = -ENOTTY;
4018 
4019 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4020 		return rc;
4021 
4022 	if (hotplug->ops->reset_slot)
4023 		rc = hotplug->ops->reset_slot(hotplug, probe);
4024 
4025 	module_put(hotplug->ops->owner);
4026 
4027 	return rc;
4028 }
4029 
4030 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4031 {
4032 	struct pci_dev *pdev;
4033 
4034 	if (dev->subordinate || !dev->slot ||
4035 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4036 		return -ENOTTY;
4037 
4038 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4039 		if (pdev != dev && pdev->slot == dev->slot)
4040 			return -ENOTTY;
4041 
4042 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4043 }
4044 
4045 static void pci_dev_lock(struct pci_dev *dev)
4046 {
4047 	pci_cfg_access_lock(dev);
4048 	/* block PM suspend, driver probe, etc. */
4049 	device_lock(&dev->dev);
4050 }
4051 
4052 /* Return 1 on successful lock, 0 on contention */
4053 static int pci_dev_trylock(struct pci_dev *dev)
4054 {
4055 	if (pci_cfg_access_trylock(dev)) {
4056 		if (device_trylock(&dev->dev))
4057 			return 1;
4058 		pci_cfg_access_unlock(dev);
4059 	}
4060 
4061 	return 0;
4062 }
4063 
4064 static void pci_dev_unlock(struct pci_dev *dev)
4065 {
4066 	device_unlock(&dev->dev);
4067 	pci_cfg_access_unlock(dev);
4068 }
4069 
4070 static void pci_dev_save_and_disable(struct pci_dev *dev)
4071 {
4072 	const struct pci_error_handlers *err_handler =
4073 			dev->driver ? dev->driver->err_handler : NULL;
4074 
4075 	/*
4076 	 * dev->driver->err_handler->reset_prepare() is protected against
4077 	 * races with ->remove() by the device lock, which must be held by
4078 	 * the caller.
4079 	 */
4080 	if (err_handler && err_handler->reset_prepare)
4081 		err_handler->reset_prepare(dev);
4082 
4083 	/*
4084 	 * Wake-up device prior to save.  PM registers default to D0 after
4085 	 * reset and a simple register restore doesn't reliably return
4086 	 * to a non-D0 state anyway.
4087 	 */
4088 	pci_set_power_state(dev, PCI_D0);
4089 
4090 	pci_save_state(dev);
4091 	/*
4092 	 * Disable the device by clearing the Command register, except for
4093 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4094 	 * BARs, but also prevents the device from being Bus Master, preventing
4095 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4096 	 * compliant devices, INTx-disable prevents legacy interrupts.
4097 	 */
4098 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4099 }
4100 
4101 static void pci_dev_restore(struct pci_dev *dev)
4102 {
4103 	const struct pci_error_handlers *err_handler =
4104 			dev->driver ? dev->driver->err_handler : NULL;
4105 
4106 	pci_restore_state(dev);
4107 
4108 	/*
4109 	 * dev->driver->err_handler->reset_done() is protected against
4110 	 * races with ->remove() by the device lock, which must be held by
4111 	 * the caller.
4112 	 */
4113 	if (err_handler && err_handler->reset_done)
4114 		err_handler->reset_done(dev);
4115 }
4116 
4117 /**
4118  * __pci_reset_function - reset a PCI device function
4119  * @dev: PCI device to reset
4120  *
4121  * Some devices allow an individual function to be reset without affecting
4122  * other functions in the same device.  The PCI device must be responsive
4123  * to PCI config space in order to use this function.
4124  *
4125  * The device function is presumed to be unused when this function is called.
4126  * Resetting the device will make the contents of PCI configuration space
4127  * random, so any caller of this must be prepared to reinitialise the
4128  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4129  * etc.
4130  *
4131  * Returns 0 if the device function was successfully reset or negative if the
4132  * device doesn't support resetting a single function.
4133  */
4134 int __pci_reset_function(struct pci_dev *dev)
4135 {
4136 	int ret;
4137 
4138 	pci_dev_lock(dev);
4139 	ret = __pci_reset_function_locked(dev);
4140 	pci_dev_unlock(dev);
4141 
4142 	return ret;
4143 }
4144 EXPORT_SYMBOL_GPL(__pci_reset_function);
4145 
4146 /**
4147  * __pci_reset_function_locked - reset a PCI device function while holding
4148  * the @dev mutex lock.
4149  * @dev: PCI device to reset
4150  *
4151  * Some devices allow an individual function to be reset without affecting
4152  * other functions in the same device.  The PCI device must be responsive
4153  * to PCI config space in order to use this function.
4154  *
4155  * The device function is presumed to be unused and the caller is holding
4156  * the device mutex lock when this function is called.
4157  * Resetting the device will make the contents of PCI configuration space
4158  * random, so any caller of this must be prepared to reinitialise the
4159  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4160  * etc.
4161  *
4162  * Returns 0 if the device function was successfully reset or negative if the
4163  * device doesn't support resetting a single function.
4164  */
4165 int __pci_reset_function_locked(struct pci_dev *dev)
4166 {
4167 	int rc;
4168 
4169 	might_sleep();
4170 
4171 	rc = pci_dev_specific_reset(dev, 0);
4172 	if (rc != -ENOTTY)
4173 		return rc;
4174 	if (pcie_has_flr(dev)) {
4175 		pcie_flr(dev);
4176 		return 0;
4177 	}
4178 	rc = pci_af_flr(dev, 0);
4179 	if (rc != -ENOTTY)
4180 		return rc;
4181 	rc = pci_pm_reset(dev, 0);
4182 	if (rc != -ENOTTY)
4183 		return rc;
4184 	rc = pci_dev_reset_slot_function(dev, 0);
4185 	if (rc != -ENOTTY)
4186 		return rc;
4187 	return pci_parent_bus_reset(dev, 0);
4188 }
4189 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4190 
4191 /**
4192  * pci_probe_reset_function - check whether the device can be safely reset
4193  * @dev: PCI device to reset
4194  *
4195  * Some devices allow an individual function to be reset without affecting
4196  * other functions in the same device.  The PCI device must be responsive
4197  * to PCI config space in order to use this function.
4198  *
4199  * Returns 0 if the device function can be reset or negative if the
4200  * device doesn't support resetting a single function.
4201  */
4202 int pci_probe_reset_function(struct pci_dev *dev)
4203 {
4204 	int rc;
4205 
4206 	might_sleep();
4207 
4208 	rc = pci_dev_specific_reset(dev, 1);
4209 	if (rc != -ENOTTY)
4210 		return rc;
4211 	if (pcie_has_flr(dev))
4212 		return 0;
4213 	rc = pci_af_flr(dev, 1);
4214 	if (rc != -ENOTTY)
4215 		return rc;
4216 	rc = pci_pm_reset(dev, 1);
4217 	if (rc != -ENOTTY)
4218 		return rc;
4219 	rc = pci_dev_reset_slot_function(dev, 1);
4220 	if (rc != -ENOTTY)
4221 		return rc;
4222 
4223 	return pci_parent_bus_reset(dev, 1);
4224 }
4225 
4226 /**
4227  * pci_reset_function - quiesce and reset a PCI device function
4228  * @dev: PCI device to reset
4229  *
4230  * Some devices allow an individual function to be reset without affecting
4231  * other functions in the same device.  The PCI device must be responsive
4232  * to PCI config space in order to use this function.
4233  *
4234  * This function does not just reset the PCI portion of a device, but
4235  * clears all the state associated with the device.  This function differs
4236  * from __pci_reset_function in that it saves and restores device state
4237  * over the reset.
4238  *
4239  * Returns 0 if the device function was successfully reset or negative if the
4240  * device doesn't support resetting a single function.
4241  */
4242 int pci_reset_function(struct pci_dev *dev)
4243 {
4244 	int rc;
4245 
4246 	rc = pci_probe_reset_function(dev);
4247 	if (rc)
4248 		return rc;
4249 
4250 	pci_dev_lock(dev);
4251 	pci_dev_save_and_disable(dev);
4252 
4253 	rc = __pci_reset_function_locked(dev);
4254 
4255 	pci_dev_restore(dev);
4256 	pci_dev_unlock(dev);
4257 
4258 	return rc;
4259 }
4260 EXPORT_SYMBOL_GPL(pci_reset_function);
4261 
4262 /**
4263  * pci_reset_function_locked - quiesce and reset a PCI device function
4264  * @dev: PCI device to reset
4265  *
4266  * Some devices allow an individual function to be reset without affecting
4267  * other functions in the same device.  The PCI device must be responsive
4268  * to PCI config space in order to use this function.
4269  *
4270  * This function does not just reset the PCI portion of a device, but
4271  * clears all the state associated with the device.  This function differs
4272  * from __pci_reset_function() in that it saves and restores device state
4273  * over the reset.  It also differs from pci_reset_function() in that it
4274  * requires the PCI device lock to be held.
4275  *
4276  * Returns 0 if the device function was successfully reset or negative if the
4277  * device doesn't support resetting a single function.
4278  */
4279 int pci_reset_function_locked(struct pci_dev *dev)
4280 {
4281 	int rc;
4282 
4283 	rc = pci_probe_reset_function(dev);
4284 	if (rc)
4285 		return rc;
4286 
4287 	pci_dev_save_and_disable(dev);
4288 
4289 	rc = __pci_reset_function_locked(dev);
4290 
4291 	pci_dev_restore(dev);
4292 
4293 	return rc;
4294 }
4295 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4296 
4297 /**
4298  * pci_try_reset_function - quiesce and reset a PCI device function
4299  * @dev: PCI device to reset
4300  *
4301  * Same as above, except return -EAGAIN if unable to lock device.
4302  */
4303 int pci_try_reset_function(struct pci_dev *dev)
4304 {
4305 	int rc;
4306 
4307 	rc = pci_probe_reset_function(dev);
4308 	if (rc)
4309 		return rc;
4310 
4311 	if (!pci_dev_trylock(dev))
4312 		return -EAGAIN;
4313 
4314 	pci_dev_save_and_disable(dev);
4315 	rc = __pci_reset_function_locked(dev);
4316 	pci_dev_unlock(dev);
4317 
4318 	pci_dev_restore(dev);
4319 	return rc;
4320 }
4321 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4322 
4323 /* Do any devices on or below this bus prevent a bus reset? */
4324 static bool pci_bus_resetable(struct pci_bus *bus)
4325 {
4326 	struct pci_dev *dev;
4327 
4328 	list_for_each_entry(dev, &bus->devices, bus_list) {
4329 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4330 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4331 			return false;
4332 	}
4333 
4334 	return true;
4335 }
4336 
4337 /* Lock devices from the top of the tree down */
4338 static void pci_bus_lock(struct pci_bus *bus)
4339 {
4340 	struct pci_dev *dev;
4341 
4342 	list_for_each_entry(dev, &bus->devices, bus_list) {
4343 		pci_dev_lock(dev);
4344 		if (dev->subordinate)
4345 			pci_bus_lock(dev->subordinate);
4346 	}
4347 }
4348 
4349 /* Unlock devices from the bottom of the tree up */
4350 static void pci_bus_unlock(struct pci_bus *bus)
4351 {
4352 	struct pci_dev *dev;
4353 
4354 	list_for_each_entry(dev, &bus->devices, bus_list) {
4355 		if (dev->subordinate)
4356 			pci_bus_unlock(dev->subordinate);
4357 		pci_dev_unlock(dev);
4358 	}
4359 }
4360 
4361 /* Return 1 on successful lock, 0 on contention */
4362 static int pci_bus_trylock(struct pci_bus *bus)
4363 {
4364 	struct pci_dev *dev;
4365 
4366 	list_for_each_entry(dev, &bus->devices, bus_list) {
4367 		if (!pci_dev_trylock(dev))
4368 			goto unlock;
4369 		if (dev->subordinate) {
4370 			if (!pci_bus_trylock(dev->subordinate)) {
4371 				pci_dev_unlock(dev);
4372 				goto unlock;
4373 			}
4374 		}
4375 	}
4376 	return 1;
4377 
4378 unlock:
4379 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4380 		if (dev->subordinate)
4381 			pci_bus_unlock(dev->subordinate);
4382 		pci_dev_unlock(dev);
4383 	}
4384 	return 0;
4385 }
4386 
4387 /* Do any devices on or below this slot prevent a bus reset? */
4388 static bool pci_slot_resetable(struct pci_slot *slot)
4389 {
4390 	struct pci_dev *dev;
4391 
4392 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4393 		if (!dev->slot || dev->slot != slot)
4394 			continue;
4395 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4396 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4397 			return false;
4398 	}
4399 
4400 	return true;
4401 }
4402 
4403 /* Lock devices from the top of the tree down */
4404 static void pci_slot_lock(struct pci_slot *slot)
4405 {
4406 	struct pci_dev *dev;
4407 
4408 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4409 		if (!dev->slot || dev->slot != slot)
4410 			continue;
4411 		pci_dev_lock(dev);
4412 		if (dev->subordinate)
4413 			pci_bus_lock(dev->subordinate);
4414 	}
4415 }
4416 
4417 /* Unlock devices from the bottom of the tree up */
4418 static void pci_slot_unlock(struct pci_slot *slot)
4419 {
4420 	struct pci_dev *dev;
4421 
4422 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4423 		if (!dev->slot || dev->slot != slot)
4424 			continue;
4425 		if (dev->subordinate)
4426 			pci_bus_unlock(dev->subordinate);
4427 		pci_dev_unlock(dev);
4428 	}
4429 }
4430 
4431 /* Return 1 on successful lock, 0 on contention */
4432 static int pci_slot_trylock(struct pci_slot *slot)
4433 {
4434 	struct pci_dev *dev;
4435 
4436 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4437 		if (!dev->slot || dev->slot != slot)
4438 			continue;
4439 		if (!pci_dev_trylock(dev))
4440 			goto unlock;
4441 		if (dev->subordinate) {
4442 			if (!pci_bus_trylock(dev->subordinate)) {
4443 				pci_dev_unlock(dev);
4444 				goto unlock;
4445 			}
4446 		}
4447 	}
4448 	return 1;
4449 
4450 unlock:
4451 	list_for_each_entry_continue_reverse(dev,
4452 					     &slot->bus->devices, bus_list) {
4453 		if (!dev->slot || dev->slot != slot)
4454 			continue;
4455 		if (dev->subordinate)
4456 			pci_bus_unlock(dev->subordinate);
4457 		pci_dev_unlock(dev);
4458 	}
4459 	return 0;
4460 }
4461 
4462 /* Save and disable devices from the top of the tree down */
4463 static void pci_bus_save_and_disable(struct pci_bus *bus)
4464 {
4465 	struct pci_dev *dev;
4466 
4467 	list_for_each_entry(dev, &bus->devices, bus_list) {
4468 		pci_dev_lock(dev);
4469 		pci_dev_save_and_disable(dev);
4470 		pci_dev_unlock(dev);
4471 		if (dev->subordinate)
4472 			pci_bus_save_and_disable(dev->subordinate);
4473 	}
4474 }
4475 
4476 /*
4477  * Restore devices from top of the tree down - parent bridges need to be
4478  * restored before we can get to subordinate devices.
4479  */
4480 static void pci_bus_restore(struct pci_bus *bus)
4481 {
4482 	struct pci_dev *dev;
4483 
4484 	list_for_each_entry(dev, &bus->devices, bus_list) {
4485 		pci_dev_lock(dev);
4486 		pci_dev_restore(dev);
4487 		pci_dev_unlock(dev);
4488 		if (dev->subordinate)
4489 			pci_bus_restore(dev->subordinate);
4490 	}
4491 }
4492 
4493 /* Save and disable devices from the top of the tree down */
4494 static void pci_slot_save_and_disable(struct pci_slot *slot)
4495 {
4496 	struct pci_dev *dev;
4497 
4498 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4499 		if (!dev->slot || dev->slot != slot)
4500 			continue;
4501 		pci_dev_save_and_disable(dev);
4502 		if (dev->subordinate)
4503 			pci_bus_save_and_disable(dev->subordinate);
4504 	}
4505 }
4506 
4507 /*
4508  * Restore devices from top of the tree down - parent bridges need to be
4509  * restored before we can get to subordinate devices.
4510  */
4511 static void pci_slot_restore(struct pci_slot *slot)
4512 {
4513 	struct pci_dev *dev;
4514 
4515 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4516 		if (!dev->slot || dev->slot != slot)
4517 			continue;
4518 		pci_dev_restore(dev);
4519 		if (dev->subordinate)
4520 			pci_bus_restore(dev->subordinate);
4521 	}
4522 }
4523 
4524 static int pci_slot_reset(struct pci_slot *slot, int probe)
4525 {
4526 	int rc;
4527 
4528 	if (!slot || !pci_slot_resetable(slot))
4529 		return -ENOTTY;
4530 
4531 	if (!probe)
4532 		pci_slot_lock(slot);
4533 
4534 	might_sleep();
4535 
4536 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4537 
4538 	if (!probe)
4539 		pci_slot_unlock(slot);
4540 
4541 	return rc;
4542 }
4543 
4544 /**
4545  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4546  * @slot: PCI slot to probe
4547  *
4548  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4549  */
4550 int pci_probe_reset_slot(struct pci_slot *slot)
4551 {
4552 	return pci_slot_reset(slot, 1);
4553 }
4554 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4555 
4556 /**
4557  * pci_reset_slot - reset a PCI slot
4558  * @slot: PCI slot to reset
4559  *
4560  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4561  * independent of other slots.  For instance, some slots may support slot power
4562  * control.  In the case of a 1:1 bus to slot architecture, this function may
4563  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4564  * Generally a slot reset should be attempted before a bus reset.  All of the
4565  * function of the slot and any subordinate buses behind the slot are reset
4566  * through this function.  PCI config space of all devices in the slot and
4567  * behind the slot is saved before and restored after reset.
4568  *
4569  * Return 0 on success, non-zero on error.
4570  */
4571 int pci_reset_slot(struct pci_slot *slot)
4572 {
4573 	int rc;
4574 
4575 	rc = pci_slot_reset(slot, 1);
4576 	if (rc)
4577 		return rc;
4578 
4579 	pci_slot_save_and_disable(slot);
4580 
4581 	rc = pci_slot_reset(slot, 0);
4582 
4583 	pci_slot_restore(slot);
4584 
4585 	return rc;
4586 }
4587 EXPORT_SYMBOL_GPL(pci_reset_slot);
4588 
4589 /**
4590  * pci_try_reset_slot - Try to reset a PCI slot
4591  * @slot: PCI slot to reset
4592  *
4593  * Same as above except return -EAGAIN if the slot cannot be locked
4594  */
4595 int pci_try_reset_slot(struct pci_slot *slot)
4596 {
4597 	int rc;
4598 
4599 	rc = pci_slot_reset(slot, 1);
4600 	if (rc)
4601 		return rc;
4602 
4603 	pci_slot_save_and_disable(slot);
4604 
4605 	if (pci_slot_trylock(slot)) {
4606 		might_sleep();
4607 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4608 		pci_slot_unlock(slot);
4609 	} else
4610 		rc = -EAGAIN;
4611 
4612 	pci_slot_restore(slot);
4613 
4614 	return rc;
4615 }
4616 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4617 
4618 static int pci_bus_reset(struct pci_bus *bus, int probe)
4619 {
4620 	if (!bus->self || !pci_bus_resetable(bus))
4621 		return -ENOTTY;
4622 
4623 	if (probe)
4624 		return 0;
4625 
4626 	pci_bus_lock(bus);
4627 
4628 	might_sleep();
4629 
4630 	pci_reset_bridge_secondary_bus(bus->self);
4631 
4632 	pci_bus_unlock(bus);
4633 
4634 	return 0;
4635 }
4636 
4637 /**
4638  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4639  * @bus: PCI bus to probe
4640  *
4641  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4642  */
4643 int pci_probe_reset_bus(struct pci_bus *bus)
4644 {
4645 	return pci_bus_reset(bus, 1);
4646 }
4647 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4648 
4649 /**
4650  * pci_reset_bus - reset a PCI bus
4651  * @bus: top level PCI bus to reset
4652  *
4653  * Do a bus reset on the given bus and any subordinate buses, saving
4654  * and restoring state of all devices.
4655  *
4656  * Return 0 on success, non-zero on error.
4657  */
4658 int pci_reset_bus(struct pci_bus *bus)
4659 {
4660 	int rc;
4661 
4662 	rc = pci_bus_reset(bus, 1);
4663 	if (rc)
4664 		return rc;
4665 
4666 	pci_bus_save_and_disable(bus);
4667 
4668 	rc = pci_bus_reset(bus, 0);
4669 
4670 	pci_bus_restore(bus);
4671 
4672 	return rc;
4673 }
4674 EXPORT_SYMBOL_GPL(pci_reset_bus);
4675 
4676 /**
4677  * pci_try_reset_bus - Try to reset a PCI bus
4678  * @bus: top level PCI bus to reset
4679  *
4680  * Same as above except return -EAGAIN if the bus cannot be locked
4681  */
4682 int pci_try_reset_bus(struct pci_bus *bus)
4683 {
4684 	int rc;
4685 
4686 	rc = pci_bus_reset(bus, 1);
4687 	if (rc)
4688 		return rc;
4689 
4690 	pci_bus_save_and_disable(bus);
4691 
4692 	if (pci_bus_trylock(bus)) {
4693 		might_sleep();
4694 		pci_reset_bridge_secondary_bus(bus->self);
4695 		pci_bus_unlock(bus);
4696 	} else
4697 		rc = -EAGAIN;
4698 
4699 	pci_bus_restore(bus);
4700 
4701 	return rc;
4702 }
4703 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4704 
4705 /**
4706  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4707  * @dev: PCI device to query
4708  *
4709  * Returns mmrbc: maximum designed memory read count in bytes
4710  *    or appropriate error value.
4711  */
4712 int pcix_get_max_mmrbc(struct pci_dev *dev)
4713 {
4714 	int cap;
4715 	u32 stat;
4716 
4717 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4718 	if (!cap)
4719 		return -EINVAL;
4720 
4721 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4722 		return -EINVAL;
4723 
4724 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4725 }
4726 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4727 
4728 /**
4729  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4730  * @dev: PCI device to query
4731  *
4732  * Returns mmrbc: maximum memory read count in bytes
4733  *    or appropriate error value.
4734  */
4735 int pcix_get_mmrbc(struct pci_dev *dev)
4736 {
4737 	int cap;
4738 	u16 cmd;
4739 
4740 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4741 	if (!cap)
4742 		return -EINVAL;
4743 
4744 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4745 		return -EINVAL;
4746 
4747 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4748 }
4749 EXPORT_SYMBOL(pcix_get_mmrbc);
4750 
4751 /**
4752  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4753  * @dev: PCI device to query
4754  * @mmrbc: maximum memory read count in bytes
4755  *    valid values are 512, 1024, 2048, 4096
4756  *
4757  * If possible sets maximum memory read byte count, some bridges have erratas
4758  * that prevent this.
4759  */
4760 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4761 {
4762 	int cap;
4763 	u32 stat, v, o;
4764 	u16 cmd;
4765 
4766 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4767 		return -EINVAL;
4768 
4769 	v = ffs(mmrbc) - 10;
4770 
4771 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4772 	if (!cap)
4773 		return -EINVAL;
4774 
4775 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4776 		return -EINVAL;
4777 
4778 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4779 		return -E2BIG;
4780 
4781 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4782 		return -EINVAL;
4783 
4784 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4785 	if (o != v) {
4786 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4787 			return -EIO;
4788 
4789 		cmd &= ~PCI_X_CMD_MAX_READ;
4790 		cmd |= v << 2;
4791 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4792 			return -EIO;
4793 	}
4794 	return 0;
4795 }
4796 EXPORT_SYMBOL(pcix_set_mmrbc);
4797 
4798 /**
4799  * pcie_get_readrq - get PCI Express read request size
4800  * @dev: PCI device to query
4801  *
4802  * Returns maximum memory read request in bytes
4803  *    or appropriate error value.
4804  */
4805 int pcie_get_readrq(struct pci_dev *dev)
4806 {
4807 	u16 ctl;
4808 
4809 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4810 
4811 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4812 }
4813 EXPORT_SYMBOL(pcie_get_readrq);
4814 
4815 /**
4816  * pcie_set_readrq - set PCI Express maximum memory read request
4817  * @dev: PCI device to query
4818  * @rq: maximum memory read count in bytes
4819  *    valid values are 128, 256, 512, 1024, 2048, 4096
4820  *
4821  * If possible sets maximum memory read request in bytes
4822  */
4823 int pcie_set_readrq(struct pci_dev *dev, int rq)
4824 {
4825 	u16 v;
4826 
4827 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4828 		return -EINVAL;
4829 
4830 	/*
4831 	 * If using the "performance" PCIe config, we clamp the
4832 	 * read rq size to the max packet size to prevent the
4833 	 * host bridge generating requests larger than we can
4834 	 * cope with
4835 	 */
4836 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4837 		int mps = pcie_get_mps(dev);
4838 
4839 		if (mps < rq)
4840 			rq = mps;
4841 	}
4842 
4843 	v = (ffs(rq) - 8) << 12;
4844 
4845 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4846 						  PCI_EXP_DEVCTL_READRQ, v);
4847 }
4848 EXPORT_SYMBOL(pcie_set_readrq);
4849 
4850 /**
4851  * pcie_get_mps - get PCI Express maximum payload size
4852  * @dev: PCI device to query
4853  *
4854  * Returns maximum payload size in bytes
4855  */
4856 int pcie_get_mps(struct pci_dev *dev)
4857 {
4858 	u16 ctl;
4859 
4860 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4861 
4862 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4863 }
4864 EXPORT_SYMBOL(pcie_get_mps);
4865 
4866 /**
4867  * pcie_set_mps - set PCI Express maximum payload size
4868  * @dev: PCI device to query
4869  * @mps: maximum payload size in bytes
4870  *    valid values are 128, 256, 512, 1024, 2048, 4096
4871  *
4872  * If possible sets maximum payload size
4873  */
4874 int pcie_set_mps(struct pci_dev *dev, int mps)
4875 {
4876 	u16 v;
4877 
4878 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4879 		return -EINVAL;
4880 
4881 	v = ffs(mps) - 8;
4882 	if (v > dev->pcie_mpss)
4883 		return -EINVAL;
4884 	v <<= 5;
4885 
4886 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4887 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4888 }
4889 EXPORT_SYMBOL(pcie_set_mps);
4890 
4891 /**
4892  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4893  * @dev: PCI device to query
4894  * @speed: storage for minimum speed
4895  * @width: storage for minimum width
4896  *
4897  * This function will walk up the PCI device chain and determine the minimum
4898  * link width and speed of the device.
4899  */
4900 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4901 			  enum pcie_link_width *width)
4902 {
4903 	int ret;
4904 
4905 	*speed = PCI_SPEED_UNKNOWN;
4906 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4907 
4908 	while (dev) {
4909 		u16 lnksta;
4910 		enum pci_bus_speed next_speed;
4911 		enum pcie_link_width next_width;
4912 
4913 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4914 		if (ret)
4915 			return ret;
4916 
4917 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4918 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4919 			PCI_EXP_LNKSTA_NLW_SHIFT;
4920 
4921 		if (next_speed < *speed)
4922 			*speed = next_speed;
4923 
4924 		if (next_width < *width)
4925 			*width = next_width;
4926 
4927 		dev = dev->bus->self;
4928 	}
4929 
4930 	return 0;
4931 }
4932 EXPORT_SYMBOL(pcie_get_minimum_link);
4933 
4934 /**
4935  * pci_select_bars - Make BAR mask from the type of resource
4936  * @dev: the PCI device for which BAR mask is made
4937  * @flags: resource type mask to be selected
4938  *
4939  * This helper routine makes bar mask from the type of resource.
4940  */
4941 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4942 {
4943 	int i, bars = 0;
4944 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4945 		if (pci_resource_flags(dev, i) & flags)
4946 			bars |= (1 << i);
4947 	return bars;
4948 }
4949 EXPORT_SYMBOL(pci_select_bars);
4950 
4951 /* Some architectures require additional programming to enable VGA */
4952 static arch_set_vga_state_t arch_set_vga_state;
4953 
4954 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4955 {
4956 	arch_set_vga_state = func;	/* NULL disables */
4957 }
4958 
4959 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4960 				  unsigned int command_bits, u32 flags)
4961 {
4962 	if (arch_set_vga_state)
4963 		return arch_set_vga_state(dev, decode, command_bits,
4964 						flags);
4965 	return 0;
4966 }
4967 
4968 /**
4969  * pci_set_vga_state - set VGA decode state on device and parents if requested
4970  * @dev: the PCI device
4971  * @decode: true = enable decoding, false = disable decoding
4972  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4973  * @flags: traverse ancestors and change bridges
4974  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4975  */
4976 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4977 		      unsigned int command_bits, u32 flags)
4978 {
4979 	struct pci_bus *bus;
4980 	struct pci_dev *bridge;
4981 	u16 cmd;
4982 	int rc;
4983 
4984 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4985 
4986 	/* ARCH specific VGA enables */
4987 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4988 	if (rc)
4989 		return rc;
4990 
4991 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4992 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4993 		if (decode == true)
4994 			cmd |= command_bits;
4995 		else
4996 			cmd &= ~command_bits;
4997 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4998 	}
4999 
5000 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5001 		return 0;
5002 
5003 	bus = dev->bus;
5004 	while (bus) {
5005 		bridge = bus->self;
5006 		if (bridge) {
5007 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5008 					     &cmd);
5009 			if (decode == true)
5010 				cmd |= PCI_BRIDGE_CTL_VGA;
5011 			else
5012 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5013 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5014 					      cmd);
5015 		}
5016 		bus = bus->parent;
5017 	}
5018 	return 0;
5019 }
5020 
5021 /**
5022  * pci_add_dma_alias - Add a DMA devfn alias for a device
5023  * @dev: the PCI device for which alias is added
5024  * @devfn: alias slot and function
5025  *
5026  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5027  * It should be called early, preferably as PCI fixup header quirk.
5028  */
5029 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5030 {
5031 	if (!dev->dma_alias_mask)
5032 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5033 					      sizeof(long), GFP_KERNEL);
5034 	if (!dev->dma_alias_mask) {
5035 		dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5036 		return;
5037 	}
5038 
5039 	set_bit(devfn, dev->dma_alias_mask);
5040 	dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5041 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5042 }
5043 
5044 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5045 {
5046 	return (dev1->dma_alias_mask &&
5047 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5048 	       (dev2->dma_alias_mask &&
5049 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5050 }
5051 
5052 bool pci_device_is_present(struct pci_dev *pdev)
5053 {
5054 	u32 v;
5055 
5056 	if (pci_dev_is_disconnected(pdev))
5057 		return false;
5058 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5059 }
5060 EXPORT_SYMBOL_GPL(pci_device_is_present);
5061 
5062 void pci_ignore_hotplug(struct pci_dev *dev)
5063 {
5064 	struct pci_dev *bridge = dev->bus->self;
5065 
5066 	dev->ignore_hotplug = 1;
5067 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5068 	if (bridge)
5069 		bridge->ignore_hotplug = 1;
5070 }
5071 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5072 
5073 resource_size_t __weak pcibios_default_alignment(void)
5074 {
5075 	return 0;
5076 }
5077 
5078 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5079 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5080 static DEFINE_SPINLOCK(resource_alignment_lock);
5081 
5082 /**
5083  * pci_specified_resource_alignment - get resource alignment specified by user.
5084  * @dev: the PCI device to get
5085  * @resize: whether or not to change resources' size when reassigning alignment
5086  *
5087  * RETURNS: Resource alignment if it is specified.
5088  *          Zero if it is not specified.
5089  */
5090 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5091 							bool *resize)
5092 {
5093 	int seg, bus, slot, func, align_order, count;
5094 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5095 	resource_size_t align = pcibios_default_alignment();
5096 	char *p;
5097 
5098 	spin_lock(&resource_alignment_lock);
5099 	p = resource_alignment_param;
5100 	if (!*p && !align)
5101 		goto out;
5102 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5103 		align = 0;
5104 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5105 		goto out;
5106 	}
5107 
5108 	while (*p) {
5109 		count = 0;
5110 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5111 							p[count] == '@') {
5112 			p += count + 1;
5113 		} else {
5114 			align_order = -1;
5115 		}
5116 		if (strncmp(p, "pci:", 4) == 0) {
5117 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5118 			p += 4;
5119 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5120 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5121 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5122 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5123 						p);
5124 					break;
5125 				}
5126 				subsystem_vendor = subsystem_device = 0;
5127 			}
5128 			p += count;
5129 			if ((!vendor || (vendor == dev->vendor)) &&
5130 				(!device || (device == dev->device)) &&
5131 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5132 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5133 				*resize = true;
5134 				if (align_order == -1)
5135 					align = PAGE_SIZE;
5136 				else
5137 					align = 1 << align_order;
5138 				/* Found */
5139 				break;
5140 			}
5141 		}
5142 		else {
5143 			if (sscanf(p, "%x:%x:%x.%x%n",
5144 				&seg, &bus, &slot, &func, &count) != 4) {
5145 				seg = 0;
5146 				if (sscanf(p, "%x:%x.%x%n",
5147 						&bus, &slot, &func, &count) != 3) {
5148 					/* Invalid format */
5149 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5150 						p);
5151 					break;
5152 				}
5153 			}
5154 			p += count;
5155 			if (seg == pci_domain_nr(dev->bus) &&
5156 				bus == dev->bus->number &&
5157 				slot == PCI_SLOT(dev->devfn) &&
5158 				func == PCI_FUNC(dev->devfn)) {
5159 				*resize = true;
5160 				if (align_order == -1)
5161 					align = PAGE_SIZE;
5162 				else
5163 					align = 1 << align_order;
5164 				/* Found */
5165 				break;
5166 			}
5167 		}
5168 		if (*p != ';' && *p != ',') {
5169 			/* End of param or invalid format */
5170 			break;
5171 		}
5172 		p++;
5173 	}
5174 out:
5175 	spin_unlock(&resource_alignment_lock);
5176 	return align;
5177 }
5178 
5179 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5180 					   resource_size_t align, bool resize)
5181 {
5182 	struct resource *r = &dev->resource[bar];
5183 	resource_size_t size;
5184 
5185 	if (!(r->flags & IORESOURCE_MEM))
5186 		return;
5187 
5188 	if (r->flags & IORESOURCE_PCI_FIXED) {
5189 		dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5190 			 bar, r, (unsigned long long)align);
5191 		return;
5192 	}
5193 
5194 	size = resource_size(r);
5195 	if (size >= align)
5196 		return;
5197 
5198 	/*
5199 	 * Increase the alignment of the resource.  There are two ways we
5200 	 * can do this:
5201 	 *
5202 	 * 1) Increase the size of the resource.  BARs are aligned on their
5203 	 *    size, so when we reallocate space for this resource, we'll
5204 	 *    allocate it with the larger alignment.  This also prevents
5205 	 *    assignment of any other BARs inside the alignment region, so
5206 	 *    if we're requesting page alignment, this means no other BARs
5207 	 *    will share the page.
5208 	 *
5209 	 *    The disadvantage is that this makes the resource larger than
5210 	 *    the hardware BAR, which may break drivers that compute things
5211 	 *    based on the resource size, e.g., to find registers at a
5212 	 *    fixed offset before the end of the BAR.
5213 	 *
5214 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5215 	 *    set r->start to the desired alignment.  By itself this
5216 	 *    doesn't prevent other BARs being put inside the alignment
5217 	 *    region, but if we realign *every* resource of every device in
5218 	 *    the system, none of them will share an alignment region.
5219 	 *
5220 	 * When the user has requested alignment for only some devices via
5221 	 * the "pci=resource_alignment" argument, "resize" is true and we
5222 	 * use the first method.  Otherwise we assume we're aligning all
5223 	 * devices and we use the second.
5224 	 */
5225 
5226 	dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5227 		 bar, r, (unsigned long long)align);
5228 
5229 	if (resize) {
5230 		r->start = 0;
5231 		r->end = align - 1;
5232 	} else {
5233 		r->flags &= ~IORESOURCE_SIZEALIGN;
5234 		r->flags |= IORESOURCE_STARTALIGN;
5235 		r->start = align;
5236 		r->end = r->start + size - 1;
5237 	}
5238 	r->flags |= IORESOURCE_UNSET;
5239 }
5240 
5241 /*
5242  * This function disables memory decoding and releases memory resources
5243  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5244  * It also rounds up size to specified alignment.
5245  * Later on, the kernel will assign page-aligned memory resource back
5246  * to the device.
5247  */
5248 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5249 {
5250 	int i;
5251 	struct resource *r;
5252 	resource_size_t align;
5253 	u16 command;
5254 	bool resize = false;
5255 
5256 	/*
5257 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5258 	 * 3.4.1.11.  Their resources are allocated from the space
5259 	 * described by the VF BARx register in the PF's SR-IOV capability.
5260 	 * We can't influence their alignment here.
5261 	 */
5262 	if (dev->is_virtfn)
5263 		return;
5264 
5265 	/* check if specified PCI is target device to reassign */
5266 	align = pci_specified_resource_alignment(dev, &resize);
5267 	if (!align)
5268 		return;
5269 
5270 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5271 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5272 		dev_warn(&dev->dev,
5273 			"Can't reassign resources to host bridge.\n");
5274 		return;
5275 	}
5276 
5277 	dev_info(&dev->dev,
5278 		"Disabling memory decoding and releasing memory resources.\n");
5279 	pci_read_config_word(dev, PCI_COMMAND, &command);
5280 	command &= ~PCI_COMMAND_MEMORY;
5281 	pci_write_config_word(dev, PCI_COMMAND, command);
5282 
5283 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5284 		pci_request_resource_alignment(dev, i, align, resize);
5285 
5286 	/*
5287 	 * Need to disable bridge's resource window,
5288 	 * to enable the kernel to reassign new resource
5289 	 * window later on.
5290 	 */
5291 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5292 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5293 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5294 			r = &dev->resource[i];
5295 			if (!(r->flags & IORESOURCE_MEM))
5296 				continue;
5297 			r->flags |= IORESOURCE_UNSET;
5298 			r->end = resource_size(r) - 1;
5299 			r->start = 0;
5300 		}
5301 		pci_disable_bridge_window(dev);
5302 	}
5303 }
5304 
5305 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5306 {
5307 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5308 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5309 	spin_lock(&resource_alignment_lock);
5310 	strncpy(resource_alignment_param, buf, count);
5311 	resource_alignment_param[count] = '\0';
5312 	spin_unlock(&resource_alignment_lock);
5313 	return count;
5314 }
5315 
5316 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5317 {
5318 	size_t count;
5319 	spin_lock(&resource_alignment_lock);
5320 	count = snprintf(buf, size, "%s", resource_alignment_param);
5321 	spin_unlock(&resource_alignment_lock);
5322 	return count;
5323 }
5324 
5325 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5326 {
5327 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5328 }
5329 
5330 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5331 					const char *buf, size_t count)
5332 {
5333 	return pci_set_resource_alignment_param(buf, count);
5334 }
5335 
5336 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5337 					pci_resource_alignment_store);
5338 
5339 static int __init pci_resource_alignment_sysfs_init(void)
5340 {
5341 	return bus_create_file(&pci_bus_type,
5342 					&bus_attr_resource_alignment);
5343 }
5344 late_initcall(pci_resource_alignment_sysfs_init);
5345 
5346 static void pci_no_domains(void)
5347 {
5348 #ifdef CONFIG_PCI_DOMAINS
5349 	pci_domains_supported = 0;
5350 #endif
5351 }
5352 
5353 #ifdef CONFIG_PCI_DOMAINS
5354 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5355 
5356 int pci_get_new_domain_nr(void)
5357 {
5358 	return atomic_inc_return(&__domain_nr);
5359 }
5360 
5361 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5362 static int of_pci_bus_find_domain_nr(struct device *parent)
5363 {
5364 	static int use_dt_domains = -1;
5365 	int domain = -1;
5366 
5367 	if (parent)
5368 		domain = of_get_pci_domain_nr(parent->of_node);
5369 	/*
5370 	 * Check DT domain and use_dt_domains values.
5371 	 *
5372 	 * If DT domain property is valid (domain >= 0) and
5373 	 * use_dt_domains != 0, the DT assignment is valid since this means
5374 	 * we have not previously allocated a domain number by using
5375 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5376 	 * 1, to indicate that we have just assigned a domain number from
5377 	 * DT.
5378 	 *
5379 	 * If DT domain property value is not valid (ie domain < 0), and we
5380 	 * have not previously assigned a domain number from DT
5381 	 * (use_dt_domains != 1) we should assign a domain number by
5382 	 * using the:
5383 	 *
5384 	 * pci_get_new_domain_nr()
5385 	 *
5386 	 * API and update the use_dt_domains value to keep track of method we
5387 	 * are using to assign domain numbers (use_dt_domains = 0).
5388 	 *
5389 	 * All other combinations imply we have a platform that is trying
5390 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5391 	 * which is a recipe for domain mishandling and it is prevented by
5392 	 * invalidating the domain value (domain = -1) and printing a
5393 	 * corresponding error.
5394 	 */
5395 	if (domain >= 0 && use_dt_domains) {
5396 		use_dt_domains = 1;
5397 	} else if (domain < 0 && use_dt_domains != 1) {
5398 		use_dt_domains = 0;
5399 		domain = pci_get_new_domain_nr();
5400 	} else {
5401 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5402 			parent->of_node->full_name);
5403 		domain = -1;
5404 	}
5405 
5406 	return domain;
5407 }
5408 
5409 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5410 {
5411 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5412 			       acpi_pci_bus_find_domain_nr(bus);
5413 }
5414 #endif
5415 #endif
5416 
5417 /**
5418  * pci_ext_cfg_avail - can we access extended PCI config space?
5419  *
5420  * Returns 1 if we can access PCI extended config space (offsets
5421  * greater than 0xff). This is the default implementation. Architecture
5422  * implementations can override this.
5423  */
5424 int __weak pci_ext_cfg_avail(void)
5425 {
5426 	return 1;
5427 }
5428 
5429 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5430 {
5431 }
5432 EXPORT_SYMBOL(pci_fixup_cardbus);
5433 
5434 static int __init pci_setup(char *str)
5435 {
5436 	while (str) {
5437 		char *k = strchr(str, ',');
5438 		if (k)
5439 			*k++ = 0;
5440 		if (*str && (str = pcibios_setup(str)) && *str) {
5441 			if (!strcmp(str, "nomsi")) {
5442 				pci_no_msi();
5443 			} else if (!strcmp(str, "noaer")) {
5444 				pci_no_aer();
5445 			} else if (!strncmp(str, "realloc=", 8)) {
5446 				pci_realloc_get_opt(str + 8);
5447 			} else if (!strncmp(str, "realloc", 7)) {
5448 				pci_realloc_get_opt("on");
5449 			} else if (!strcmp(str, "nodomains")) {
5450 				pci_no_domains();
5451 			} else if (!strncmp(str, "noari", 5)) {
5452 				pcie_ari_disabled = true;
5453 			} else if (!strncmp(str, "cbiosize=", 9)) {
5454 				pci_cardbus_io_size = memparse(str + 9, &str);
5455 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5456 				pci_cardbus_mem_size = memparse(str + 10, &str);
5457 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5458 				pci_set_resource_alignment_param(str + 19,
5459 							strlen(str + 19));
5460 			} else if (!strncmp(str, "ecrc=", 5)) {
5461 				pcie_ecrc_get_policy(str + 5);
5462 			} else if (!strncmp(str, "hpiosize=", 9)) {
5463 				pci_hotplug_io_size = memparse(str + 9, &str);
5464 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5465 				pci_hotplug_mem_size = memparse(str + 10, &str);
5466 			} else if (!strncmp(str, "hpbussize=", 10)) {
5467 				pci_hotplug_bus_size =
5468 					simple_strtoul(str + 10, &str, 0);
5469 				if (pci_hotplug_bus_size > 0xff)
5470 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5471 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5472 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5473 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5474 				pcie_bus_config = PCIE_BUS_SAFE;
5475 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5476 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5477 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5478 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5479 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5480 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5481 			} else {
5482 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5483 						str);
5484 			}
5485 		}
5486 		str = k;
5487 	}
5488 	return 0;
5489 }
5490 early_param("pci", pci_setup);
5491