1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/delay.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/of.h> 16 #include <linux/of_pci.h> 17 #include <linux/pci.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/spinlock.h> 22 #include <linux/string.h> 23 #include <linux/log2.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/pm_wakeup.h> 26 #include <linux/interrupt.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pci-ats.h> 32 #include <asm/setup.h> 33 #include <asm/dma.h> 34 #include <linux/aer.h> 35 #include "pci.h" 36 37 const char *pci_power_names[] = { 38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 39 }; 40 EXPORT_SYMBOL_GPL(pci_power_names); 41 42 int isa_dma_bridge_buggy; 43 EXPORT_SYMBOL(isa_dma_bridge_buggy); 44 45 int pci_pci_problems; 46 EXPORT_SYMBOL(pci_pci_problems); 47 48 unsigned int pci_pm_d3_delay; 49 50 static void pci_pme_list_scan(struct work_struct *work); 51 52 static LIST_HEAD(pci_pme_list); 53 static DEFINE_MUTEX(pci_pme_list_mutex); 54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 55 56 struct pci_pme_device { 57 struct list_head list; 58 struct pci_dev *dev; 59 }; 60 61 #define PME_TIMEOUT 1000 /* How long between PME checks */ 62 63 static void pci_dev_d3_sleep(struct pci_dev *dev) 64 { 65 unsigned int delay = dev->d3_delay; 66 67 if (delay < pci_pm_d3_delay) 68 delay = pci_pm_d3_delay; 69 70 if (delay) 71 msleep(delay); 72 } 73 74 #ifdef CONFIG_PCI_DOMAINS 75 int pci_domains_supported = 1; 76 #endif 77 78 #define DEFAULT_CARDBUS_IO_SIZE (256) 79 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 81 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 82 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 83 84 #define DEFAULT_HOTPLUG_IO_SIZE (256) 85 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 87 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 88 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 89 90 #define DEFAULT_HOTPLUG_BUS_SIZE 1 91 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 92 93 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 94 95 /* 96 * The default CLS is used if arch didn't set CLS explicitly and not 97 * all pci devices agree on the same value. Arch can override either 98 * the dfl or actual value as it sees fit. Don't forget this is 99 * measured in 32-bit words, not bytes. 100 */ 101 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 102 u8 pci_cache_line_size; 103 104 /* 105 * If we set up a device for bus mastering, we need to check the latency 106 * timer as certain BIOSes forget to set it properly. 107 */ 108 unsigned int pcibios_max_latency = 255; 109 110 /* If set, the PCIe ARI capability will not be used. */ 111 static bool pcie_ari_disabled; 112 113 /* Disable bridge_d3 for all PCIe ports */ 114 static bool pci_bridge_d3_disable; 115 /* Force bridge_d3 for all PCIe ports */ 116 static bool pci_bridge_d3_force; 117 118 static int __init pcie_port_pm_setup(char *str) 119 { 120 if (!strcmp(str, "off")) 121 pci_bridge_d3_disable = true; 122 else if (!strcmp(str, "force")) 123 pci_bridge_d3_force = true; 124 return 1; 125 } 126 __setup("pcie_port_pm=", pcie_port_pm_setup); 127 128 /** 129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 130 * @bus: pointer to PCI bus structure to search 131 * 132 * Given a PCI bus, returns the highest PCI bus number present in the set 133 * including the given PCI bus and its list of child PCI buses. 134 */ 135 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 136 { 137 struct pci_bus *tmp; 138 unsigned char max, n; 139 140 max = bus->busn_res.end; 141 list_for_each_entry(tmp, &bus->children, node) { 142 n = pci_bus_max_busnr(tmp); 143 if (n > max) 144 max = n; 145 } 146 return max; 147 } 148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 149 150 #ifdef CONFIG_HAS_IOMEM 151 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 152 { 153 struct resource *res = &pdev->resource[bar]; 154 155 /* 156 * Make sure the BAR is actually a memory resource, not an IO resource 157 */ 158 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 159 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 160 return NULL; 161 } 162 return ioremap_nocache(res->start, resource_size(res)); 163 } 164 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 165 166 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 167 { 168 /* 169 * Make sure the BAR is actually a memory resource, not an IO resource 170 */ 171 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 172 WARN_ON(1); 173 return NULL; 174 } 175 return ioremap_wc(pci_resource_start(pdev, bar), 176 pci_resource_len(pdev, bar)); 177 } 178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 179 #endif 180 181 182 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 183 u8 pos, int cap, int *ttl) 184 { 185 u8 id; 186 u16 ent; 187 188 pci_bus_read_config_byte(bus, devfn, pos, &pos); 189 190 while ((*ttl)--) { 191 if (pos < 0x40) 192 break; 193 pos &= ~3; 194 pci_bus_read_config_word(bus, devfn, pos, &ent); 195 196 id = ent & 0xff; 197 if (id == 0xff) 198 break; 199 if (id == cap) 200 return pos; 201 pos = (ent >> 8); 202 } 203 return 0; 204 } 205 206 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 207 u8 pos, int cap) 208 { 209 int ttl = PCI_FIND_CAP_TTL; 210 211 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 212 } 213 214 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 215 { 216 return __pci_find_next_cap(dev->bus, dev->devfn, 217 pos + PCI_CAP_LIST_NEXT, cap); 218 } 219 EXPORT_SYMBOL_GPL(pci_find_next_capability); 220 221 static int __pci_bus_find_cap_start(struct pci_bus *bus, 222 unsigned int devfn, u8 hdr_type) 223 { 224 u16 status; 225 226 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 227 if (!(status & PCI_STATUS_CAP_LIST)) 228 return 0; 229 230 switch (hdr_type) { 231 case PCI_HEADER_TYPE_NORMAL: 232 case PCI_HEADER_TYPE_BRIDGE: 233 return PCI_CAPABILITY_LIST; 234 case PCI_HEADER_TYPE_CARDBUS: 235 return PCI_CB_CAPABILITY_LIST; 236 } 237 238 return 0; 239 } 240 241 /** 242 * pci_find_capability - query for devices' capabilities 243 * @dev: PCI device to query 244 * @cap: capability code 245 * 246 * Tell if a device supports a given PCI capability. 247 * Returns the address of the requested capability structure within the 248 * device's PCI configuration space or 0 in case the device does not 249 * support it. Possible values for @cap: 250 * 251 * %PCI_CAP_ID_PM Power Management 252 * %PCI_CAP_ID_AGP Accelerated Graphics Port 253 * %PCI_CAP_ID_VPD Vital Product Data 254 * %PCI_CAP_ID_SLOTID Slot Identification 255 * %PCI_CAP_ID_MSI Message Signalled Interrupts 256 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 257 * %PCI_CAP_ID_PCIX PCI-X 258 * %PCI_CAP_ID_EXP PCI Express 259 */ 260 int pci_find_capability(struct pci_dev *dev, int cap) 261 { 262 int pos; 263 264 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 265 if (pos) 266 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 267 268 return pos; 269 } 270 EXPORT_SYMBOL(pci_find_capability); 271 272 /** 273 * pci_bus_find_capability - query for devices' capabilities 274 * @bus: the PCI bus to query 275 * @devfn: PCI device to query 276 * @cap: capability code 277 * 278 * Like pci_find_capability() but works for pci devices that do not have a 279 * pci_dev structure set up yet. 280 * 281 * Returns the address of the requested capability structure within the 282 * device's PCI configuration space or 0 in case the device does not 283 * support it. 284 */ 285 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 286 { 287 int pos; 288 u8 hdr_type; 289 290 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 291 292 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 293 if (pos) 294 pos = __pci_find_next_cap(bus, devfn, pos, cap); 295 296 return pos; 297 } 298 EXPORT_SYMBOL(pci_bus_find_capability); 299 300 /** 301 * pci_find_next_ext_capability - Find an extended capability 302 * @dev: PCI device to query 303 * @start: address at which to start looking (0 to start at beginning of list) 304 * @cap: capability code 305 * 306 * Returns the address of the next matching extended capability structure 307 * within the device's PCI configuration space or 0 if the device does 308 * not support it. Some capabilities can occur several times, e.g., the 309 * vendor-specific capability, and this provides a way to find them all. 310 */ 311 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 312 { 313 u32 header; 314 int ttl; 315 int pos = PCI_CFG_SPACE_SIZE; 316 317 /* minimum 8 bytes per capability */ 318 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 319 320 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 321 return 0; 322 323 if (start) 324 pos = start; 325 326 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 327 return 0; 328 329 /* 330 * If we have no capabilities, this is indicated by cap ID, 331 * cap version and next pointer all being 0. 332 */ 333 if (header == 0) 334 return 0; 335 336 while (ttl-- > 0) { 337 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 338 return pos; 339 340 pos = PCI_EXT_CAP_NEXT(header); 341 if (pos < PCI_CFG_SPACE_SIZE) 342 break; 343 344 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 345 break; 346 } 347 348 return 0; 349 } 350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 351 352 /** 353 * pci_find_ext_capability - Find an extended capability 354 * @dev: PCI device to query 355 * @cap: capability code 356 * 357 * Returns the address of the requested extended capability structure 358 * within the device's PCI configuration space or 0 if the device does 359 * not support it. Possible values for @cap: 360 * 361 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 362 * %PCI_EXT_CAP_ID_VC Virtual Channel 363 * %PCI_EXT_CAP_ID_DSN Device Serial Number 364 * %PCI_EXT_CAP_ID_PWR Power Budgeting 365 */ 366 int pci_find_ext_capability(struct pci_dev *dev, int cap) 367 { 368 return pci_find_next_ext_capability(dev, 0, cap); 369 } 370 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 371 372 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 373 { 374 int rc, ttl = PCI_FIND_CAP_TTL; 375 u8 cap, mask; 376 377 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 378 mask = HT_3BIT_CAP_MASK; 379 else 380 mask = HT_5BIT_CAP_MASK; 381 382 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 383 PCI_CAP_ID_HT, &ttl); 384 while (pos) { 385 rc = pci_read_config_byte(dev, pos + 3, &cap); 386 if (rc != PCIBIOS_SUCCESSFUL) 387 return 0; 388 389 if ((cap & mask) == ht_cap) 390 return pos; 391 392 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 393 pos + PCI_CAP_LIST_NEXT, 394 PCI_CAP_ID_HT, &ttl); 395 } 396 397 return 0; 398 } 399 /** 400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 401 * @dev: PCI device to query 402 * @pos: Position from which to continue searching 403 * @ht_cap: Hypertransport capability code 404 * 405 * To be used in conjunction with pci_find_ht_capability() to search for 406 * all capabilities matching @ht_cap. @pos should always be a value returned 407 * from pci_find_ht_capability(). 408 * 409 * NB. To be 100% safe against broken PCI devices, the caller should take 410 * steps to avoid an infinite loop. 411 */ 412 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 413 { 414 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 415 } 416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 417 418 /** 419 * pci_find_ht_capability - query a device's Hypertransport capabilities 420 * @dev: PCI device to query 421 * @ht_cap: Hypertransport capability code 422 * 423 * Tell if a device supports a given Hypertransport capability. 424 * Returns an address within the device's PCI configuration space 425 * or 0 in case the device does not support the request capability. 426 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 427 * which has a Hypertransport capability matching @ht_cap. 428 */ 429 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 430 { 431 int pos; 432 433 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 434 if (pos) 435 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 436 437 return pos; 438 } 439 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 440 441 /** 442 * pci_find_parent_resource - return resource region of parent bus of given region 443 * @dev: PCI device structure contains resources to be searched 444 * @res: child resource record for which parent is sought 445 * 446 * For given resource region of given device, return the resource 447 * region of parent bus the given region is contained in. 448 */ 449 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 450 struct resource *res) 451 { 452 const struct pci_bus *bus = dev->bus; 453 struct resource *r; 454 int i; 455 456 pci_bus_for_each_resource(bus, r, i) { 457 if (!r) 458 continue; 459 if (resource_contains(r, res)) { 460 461 /* 462 * If the window is prefetchable but the BAR is 463 * not, the allocator made a mistake. 464 */ 465 if (r->flags & IORESOURCE_PREFETCH && 466 !(res->flags & IORESOURCE_PREFETCH)) 467 return NULL; 468 469 /* 470 * If we're below a transparent bridge, there may 471 * be both a positively-decoded aperture and a 472 * subtractively-decoded region that contain the BAR. 473 * We want the positively-decoded one, so this depends 474 * on pci_bus_for_each_resource() giving us those 475 * first. 476 */ 477 return r; 478 } 479 } 480 return NULL; 481 } 482 EXPORT_SYMBOL(pci_find_parent_resource); 483 484 /** 485 * pci_find_resource - Return matching PCI device resource 486 * @dev: PCI device to query 487 * @res: Resource to look for 488 * 489 * Goes over standard PCI resources (BARs) and checks if the given resource 490 * is partially or fully contained in any of them. In that case the 491 * matching resource is returned, %NULL otherwise. 492 */ 493 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 494 { 495 int i; 496 497 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 498 struct resource *r = &dev->resource[i]; 499 500 if (r->start && resource_contains(r, res)) 501 return r; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL(pci_find_resource); 507 508 /** 509 * pci_find_pcie_root_port - return PCIe Root Port 510 * @dev: PCI device to query 511 * 512 * Traverse up the parent chain and return the PCIe Root Port PCI Device 513 * for a given PCI Device. 514 */ 515 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 516 { 517 struct pci_dev *bridge, *highest_pcie_bridge = dev; 518 519 bridge = pci_upstream_bridge(dev); 520 while (bridge && pci_is_pcie(bridge)) { 521 highest_pcie_bridge = bridge; 522 bridge = pci_upstream_bridge(bridge); 523 } 524 525 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 526 return NULL; 527 528 return highest_pcie_bridge; 529 } 530 EXPORT_SYMBOL(pci_find_pcie_root_port); 531 532 /** 533 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 534 * @dev: the PCI device to operate on 535 * @pos: config space offset of status word 536 * @mask: mask of bit(s) to care about in status word 537 * 538 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 539 */ 540 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 541 { 542 int i; 543 544 /* Wait for Transaction Pending bit clean */ 545 for (i = 0; i < 4; i++) { 546 u16 status; 547 if (i) 548 msleep((1 << (i - 1)) * 100); 549 550 pci_read_config_word(dev, pos, &status); 551 if (!(status & mask)) 552 return 1; 553 } 554 555 return 0; 556 } 557 558 /** 559 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 560 * @dev: PCI device to have its BARs restored 561 * 562 * Restore the BAR values for a given device, so as to make it 563 * accessible by its driver. 564 */ 565 static void pci_restore_bars(struct pci_dev *dev) 566 { 567 int i; 568 569 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 570 pci_update_resource(dev, i); 571 } 572 573 static const struct pci_platform_pm_ops *pci_platform_pm; 574 575 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 576 { 577 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 578 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 579 return -EINVAL; 580 pci_platform_pm = ops; 581 return 0; 582 } 583 584 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 585 { 586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 587 } 588 589 static inline int platform_pci_set_power_state(struct pci_dev *dev, 590 pci_power_t t) 591 { 592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 593 } 594 595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 596 { 597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 598 } 599 600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 601 { 602 return pci_platform_pm ? 603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 604 } 605 606 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 607 { 608 return pci_platform_pm ? 609 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 610 } 611 612 static inline bool platform_pci_need_resume(struct pci_dev *dev) 613 { 614 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 615 } 616 617 /** 618 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 619 * given PCI device 620 * @dev: PCI device to handle. 621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 622 * 623 * RETURN VALUE: 624 * -EINVAL if the requested state is invalid. 625 * -EIO if device does not support PCI PM or its PM capabilities register has a 626 * wrong version, or device doesn't support the requested state. 627 * 0 if device already is in the requested state. 628 * 0 if device's power state has been successfully changed. 629 */ 630 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 631 { 632 u16 pmcsr; 633 bool need_restore = false; 634 635 /* Check if we're already there */ 636 if (dev->current_state == state) 637 return 0; 638 639 if (!dev->pm_cap) 640 return -EIO; 641 642 if (state < PCI_D0 || state > PCI_D3hot) 643 return -EINVAL; 644 645 /* Validate current state: 646 * Can enter D0 from any state, but if we can only go deeper 647 * to sleep if we're already in a low power state 648 */ 649 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 650 && dev->current_state > state) { 651 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 652 dev->current_state, state); 653 return -EINVAL; 654 } 655 656 /* check if this device supports the desired state */ 657 if ((state == PCI_D1 && !dev->d1_support) 658 || (state == PCI_D2 && !dev->d2_support)) 659 return -EIO; 660 661 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 662 663 /* If we're (effectively) in D3, force entire word to 0. 664 * This doesn't affect PME_Status, disables PME_En, and 665 * sets PowerState to 0. 666 */ 667 switch (dev->current_state) { 668 case PCI_D0: 669 case PCI_D1: 670 case PCI_D2: 671 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 672 pmcsr |= state; 673 break; 674 case PCI_D3hot: 675 case PCI_D3cold: 676 case PCI_UNKNOWN: /* Boot-up */ 677 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 678 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 679 need_restore = true; 680 /* Fall-through: force to D0 */ 681 default: 682 pmcsr = 0; 683 break; 684 } 685 686 /* enter specified state */ 687 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 688 689 /* Mandatory power management transition delays */ 690 /* see PCI PM 1.1 5.6.1 table 18 */ 691 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 692 pci_dev_d3_sleep(dev); 693 else if (state == PCI_D2 || dev->current_state == PCI_D2) 694 udelay(PCI_PM_D2_DELAY); 695 696 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 697 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 698 if (dev->current_state != state && printk_ratelimit()) 699 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 700 dev->current_state); 701 702 /* 703 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 704 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 705 * from D3hot to D0 _may_ perform an internal reset, thereby 706 * going to "D0 Uninitialized" rather than "D0 Initialized". 707 * For example, at least some versions of the 3c905B and the 708 * 3c556B exhibit this behaviour. 709 * 710 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 711 * devices in a D3hot state at boot. Consequently, we need to 712 * restore at least the BARs so that the device will be 713 * accessible to its driver. 714 */ 715 if (need_restore) 716 pci_restore_bars(dev); 717 718 if (dev->bus->self) 719 pcie_aspm_pm_state_change(dev->bus->self); 720 721 return 0; 722 } 723 724 /** 725 * pci_update_current_state - Read power state of given device and cache it 726 * @dev: PCI device to handle. 727 * @state: State to cache in case the device doesn't have the PM capability 728 * 729 * The power state is read from the PMCSR register, which however is 730 * inaccessible in D3cold. The platform firmware is therefore queried first 731 * to detect accessibility of the register. In case the platform firmware 732 * reports an incorrect state or the device isn't power manageable by the 733 * platform at all, we try to detect D3cold by testing accessibility of the 734 * vendor ID in config space. 735 */ 736 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 737 { 738 if (platform_pci_get_power_state(dev) == PCI_D3cold || 739 !pci_device_is_present(dev)) { 740 dev->current_state = PCI_D3cold; 741 } else if (dev->pm_cap) { 742 u16 pmcsr; 743 744 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 745 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 746 } else { 747 dev->current_state = state; 748 } 749 } 750 751 /** 752 * pci_power_up - Put the given device into D0 forcibly 753 * @dev: PCI device to power up 754 */ 755 void pci_power_up(struct pci_dev *dev) 756 { 757 if (platform_pci_power_manageable(dev)) 758 platform_pci_set_power_state(dev, PCI_D0); 759 760 pci_raw_set_power_state(dev, PCI_D0); 761 pci_update_current_state(dev, PCI_D0); 762 } 763 764 /** 765 * pci_platform_power_transition - Use platform to change device power state 766 * @dev: PCI device to handle. 767 * @state: State to put the device into. 768 */ 769 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 770 { 771 int error; 772 773 if (platform_pci_power_manageable(dev)) { 774 error = platform_pci_set_power_state(dev, state); 775 if (!error) 776 pci_update_current_state(dev, state); 777 } else 778 error = -ENODEV; 779 780 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 781 dev->current_state = PCI_D0; 782 783 return error; 784 } 785 786 /** 787 * pci_wakeup - Wake up a PCI device 788 * @pci_dev: Device to handle. 789 * @ign: ignored parameter 790 */ 791 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 792 { 793 pci_wakeup_event(pci_dev); 794 pm_request_resume(&pci_dev->dev); 795 return 0; 796 } 797 798 /** 799 * pci_wakeup_bus - Walk given bus and wake up devices on it 800 * @bus: Top bus of the subtree to walk. 801 */ 802 static void pci_wakeup_bus(struct pci_bus *bus) 803 { 804 if (bus) 805 pci_walk_bus(bus, pci_wakeup, NULL); 806 } 807 808 /** 809 * __pci_start_power_transition - Start power transition of a PCI device 810 * @dev: PCI device to handle. 811 * @state: State to put the device into. 812 */ 813 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 814 { 815 if (state == PCI_D0) { 816 pci_platform_power_transition(dev, PCI_D0); 817 /* 818 * Mandatory power management transition delays, see 819 * PCI Express Base Specification Revision 2.0 Section 820 * 6.6.1: Conventional Reset. Do not delay for 821 * devices powered on/off by corresponding bridge, 822 * because have already delayed for the bridge. 823 */ 824 if (dev->runtime_d3cold) { 825 if (dev->d3cold_delay) 826 msleep(dev->d3cold_delay); 827 /* 828 * When powering on a bridge from D3cold, the 829 * whole hierarchy may be powered on into 830 * D0uninitialized state, resume them to give 831 * them a chance to suspend again 832 */ 833 pci_wakeup_bus(dev->subordinate); 834 } 835 } 836 } 837 838 /** 839 * __pci_dev_set_current_state - Set current state of a PCI device 840 * @dev: Device to handle 841 * @data: pointer to state to be set 842 */ 843 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 844 { 845 pci_power_t state = *(pci_power_t *)data; 846 847 dev->current_state = state; 848 return 0; 849 } 850 851 /** 852 * __pci_bus_set_current_state - Walk given bus and set current state of devices 853 * @bus: Top bus of the subtree to walk. 854 * @state: state to be set 855 */ 856 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 857 { 858 if (bus) 859 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 860 } 861 862 /** 863 * __pci_complete_power_transition - Complete power transition of a PCI device 864 * @dev: PCI device to handle. 865 * @state: State to put the device into. 866 * 867 * This function should not be called directly by device drivers. 868 */ 869 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 870 { 871 int ret; 872 873 if (state <= PCI_D0) 874 return -EINVAL; 875 ret = pci_platform_power_transition(dev, state); 876 /* Power off the bridge may power off the whole hierarchy */ 877 if (!ret && state == PCI_D3cold) 878 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 879 return ret; 880 } 881 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 882 883 /** 884 * pci_set_power_state - Set the power state of a PCI device 885 * @dev: PCI device to handle. 886 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 887 * 888 * Transition a device to a new power state, using the platform firmware and/or 889 * the device's PCI PM registers. 890 * 891 * RETURN VALUE: 892 * -EINVAL if the requested state is invalid. 893 * -EIO if device does not support PCI PM or its PM capabilities register has a 894 * wrong version, or device doesn't support the requested state. 895 * 0 if device already is in the requested state. 896 * 0 if device's power state has been successfully changed. 897 */ 898 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 899 { 900 int error; 901 902 /* bound the state we're entering */ 903 if (state > PCI_D3cold) 904 state = PCI_D3cold; 905 else if (state < PCI_D0) 906 state = PCI_D0; 907 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 908 /* 909 * If the device or the parent bridge do not support PCI PM, 910 * ignore the request if we're doing anything other than putting 911 * it into D0 (which would only happen on boot). 912 */ 913 return 0; 914 915 /* Check if we're already there */ 916 if (dev->current_state == state) 917 return 0; 918 919 __pci_start_power_transition(dev, state); 920 921 /* This device is quirked not to be put into D3, so 922 don't put it in D3 */ 923 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 924 return 0; 925 926 /* 927 * To put device in D3cold, we put device into D3hot in native 928 * way, then put device into D3cold with platform ops 929 */ 930 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 931 PCI_D3hot : state); 932 933 if (!__pci_complete_power_transition(dev, state)) 934 error = 0; 935 936 return error; 937 } 938 EXPORT_SYMBOL(pci_set_power_state); 939 940 /** 941 * pci_choose_state - Choose the power state of a PCI device 942 * @dev: PCI device to be suspended 943 * @state: target sleep state for the whole system. This is the value 944 * that is passed to suspend() function. 945 * 946 * Returns PCI power state suitable for given device and given system 947 * message. 948 */ 949 950 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 951 { 952 pci_power_t ret; 953 954 if (!dev->pm_cap) 955 return PCI_D0; 956 957 ret = platform_pci_choose_state(dev); 958 if (ret != PCI_POWER_ERROR) 959 return ret; 960 961 switch (state.event) { 962 case PM_EVENT_ON: 963 return PCI_D0; 964 case PM_EVENT_FREEZE: 965 case PM_EVENT_PRETHAW: 966 /* REVISIT both freeze and pre-thaw "should" use D0 */ 967 case PM_EVENT_SUSPEND: 968 case PM_EVENT_HIBERNATE: 969 return PCI_D3hot; 970 default: 971 dev_info(&dev->dev, "unrecognized suspend event %d\n", 972 state.event); 973 BUG(); 974 } 975 return PCI_D0; 976 } 977 EXPORT_SYMBOL(pci_choose_state); 978 979 #define PCI_EXP_SAVE_REGS 7 980 981 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 982 u16 cap, bool extended) 983 { 984 struct pci_cap_saved_state *tmp; 985 986 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 987 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 988 return tmp; 989 } 990 return NULL; 991 } 992 993 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 994 { 995 return _pci_find_saved_cap(dev, cap, false); 996 } 997 998 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 999 { 1000 return _pci_find_saved_cap(dev, cap, true); 1001 } 1002 1003 static int pci_save_pcie_state(struct pci_dev *dev) 1004 { 1005 int i = 0; 1006 struct pci_cap_saved_state *save_state; 1007 u16 *cap; 1008 1009 if (!pci_is_pcie(dev)) 1010 return 0; 1011 1012 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1013 if (!save_state) { 1014 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1015 return -ENOMEM; 1016 } 1017 1018 cap = (u16 *)&save_state->cap.data[0]; 1019 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1020 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1021 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1022 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1023 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1024 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1025 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1026 1027 return 0; 1028 } 1029 1030 static void pci_restore_pcie_state(struct pci_dev *dev) 1031 { 1032 int i = 0; 1033 struct pci_cap_saved_state *save_state; 1034 u16 *cap; 1035 1036 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1037 if (!save_state) 1038 return; 1039 1040 cap = (u16 *)&save_state->cap.data[0]; 1041 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1042 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1043 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1044 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1045 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1046 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1047 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1048 } 1049 1050 1051 static int pci_save_pcix_state(struct pci_dev *dev) 1052 { 1053 int pos; 1054 struct pci_cap_saved_state *save_state; 1055 1056 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1057 if (!pos) 1058 return 0; 1059 1060 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1061 if (!save_state) { 1062 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1063 return -ENOMEM; 1064 } 1065 1066 pci_read_config_word(dev, pos + PCI_X_CMD, 1067 (u16 *)save_state->cap.data); 1068 1069 return 0; 1070 } 1071 1072 static void pci_restore_pcix_state(struct pci_dev *dev) 1073 { 1074 int i = 0, pos; 1075 struct pci_cap_saved_state *save_state; 1076 u16 *cap; 1077 1078 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1079 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1080 if (!save_state || !pos) 1081 return; 1082 cap = (u16 *)&save_state->cap.data[0]; 1083 1084 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1085 } 1086 1087 1088 /** 1089 * pci_save_state - save the PCI configuration space of a device before suspending 1090 * @dev: - PCI device that we're dealing with 1091 */ 1092 int pci_save_state(struct pci_dev *dev) 1093 { 1094 int i; 1095 /* XXX: 100% dword access ok here? */ 1096 for (i = 0; i < 16; i++) 1097 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1098 dev->state_saved = true; 1099 1100 i = pci_save_pcie_state(dev); 1101 if (i != 0) 1102 return i; 1103 1104 i = pci_save_pcix_state(dev); 1105 if (i != 0) 1106 return i; 1107 1108 return pci_save_vc_state(dev); 1109 } 1110 EXPORT_SYMBOL(pci_save_state); 1111 1112 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1113 u32 saved_val, int retry) 1114 { 1115 u32 val; 1116 1117 pci_read_config_dword(pdev, offset, &val); 1118 if (val == saved_val) 1119 return; 1120 1121 for (;;) { 1122 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1123 offset, val, saved_val); 1124 pci_write_config_dword(pdev, offset, saved_val); 1125 if (retry-- <= 0) 1126 return; 1127 1128 pci_read_config_dword(pdev, offset, &val); 1129 if (val == saved_val) 1130 return; 1131 1132 mdelay(1); 1133 } 1134 } 1135 1136 static void pci_restore_config_space_range(struct pci_dev *pdev, 1137 int start, int end, int retry) 1138 { 1139 int index; 1140 1141 for (index = end; index >= start; index--) 1142 pci_restore_config_dword(pdev, 4 * index, 1143 pdev->saved_config_space[index], 1144 retry); 1145 } 1146 1147 static void pci_restore_config_space(struct pci_dev *pdev) 1148 { 1149 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1150 pci_restore_config_space_range(pdev, 10, 15, 0); 1151 /* Restore BARs before the command register. */ 1152 pci_restore_config_space_range(pdev, 4, 9, 10); 1153 pci_restore_config_space_range(pdev, 0, 3, 0); 1154 } else { 1155 pci_restore_config_space_range(pdev, 0, 15, 0); 1156 } 1157 } 1158 1159 /** 1160 * pci_restore_state - Restore the saved state of a PCI device 1161 * @dev: - PCI device that we're dealing with 1162 */ 1163 void pci_restore_state(struct pci_dev *dev) 1164 { 1165 if (!dev->state_saved) 1166 return; 1167 1168 /* PCI Express register must be restored first */ 1169 pci_restore_pcie_state(dev); 1170 pci_restore_pasid_state(dev); 1171 pci_restore_pri_state(dev); 1172 pci_restore_ats_state(dev); 1173 pci_restore_vc_state(dev); 1174 1175 pci_cleanup_aer_error_status_regs(dev); 1176 1177 pci_restore_config_space(dev); 1178 1179 pci_restore_pcix_state(dev); 1180 pci_restore_msi_state(dev); 1181 1182 /* Restore ACS and IOV configuration state */ 1183 pci_enable_acs(dev); 1184 pci_restore_iov_state(dev); 1185 1186 dev->state_saved = false; 1187 } 1188 EXPORT_SYMBOL(pci_restore_state); 1189 1190 struct pci_saved_state { 1191 u32 config_space[16]; 1192 struct pci_cap_saved_data cap[0]; 1193 }; 1194 1195 /** 1196 * pci_store_saved_state - Allocate and return an opaque struct containing 1197 * the device saved state. 1198 * @dev: PCI device that we're dealing with 1199 * 1200 * Return NULL if no state or error. 1201 */ 1202 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1203 { 1204 struct pci_saved_state *state; 1205 struct pci_cap_saved_state *tmp; 1206 struct pci_cap_saved_data *cap; 1207 size_t size; 1208 1209 if (!dev->state_saved) 1210 return NULL; 1211 1212 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1213 1214 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1215 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1216 1217 state = kzalloc(size, GFP_KERNEL); 1218 if (!state) 1219 return NULL; 1220 1221 memcpy(state->config_space, dev->saved_config_space, 1222 sizeof(state->config_space)); 1223 1224 cap = state->cap; 1225 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1226 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1227 memcpy(cap, &tmp->cap, len); 1228 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1229 } 1230 /* Empty cap_save terminates list */ 1231 1232 return state; 1233 } 1234 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1235 1236 /** 1237 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1238 * @dev: PCI device that we're dealing with 1239 * @state: Saved state returned from pci_store_saved_state() 1240 */ 1241 int pci_load_saved_state(struct pci_dev *dev, 1242 struct pci_saved_state *state) 1243 { 1244 struct pci_cap_saved_data *cap; 1245 1246 dev->state_saved = false; 1247 1248 if (!state) 1249 return 0; 1250 1251 memcpy(dev->saved_config_space, state->config_space, 1252 sizeof(state->config_space)); 1253 1254 cap = state->cap; 1255 while (cap->size) { 1256 struct pci_cap_saved_state *tmp; 1257 1258 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1259 if (!tmp || tmp->cap.size != cap->size) 1260 return -EINVAL; 1261 1262 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1263 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1264 sizeof(struct pci_cap_saved_data) + cap->size); 1265 } 1266 1267 dev->state_saved = true; 1268 return 0; 1269 } 1270 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1271 1272 /** 1273 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1274 * and free the memory allocated for it. 1275 * @dev: PCI device that we're dealing with 1276 * @state: Pointer to saved state returned from pci_store_saved_state() 1277 */ 1278 int pci_load_and_free_saved_state(struct pci_dev *dev, 1279 struct pci_saved_state **state) 1280 { 1281 int ret = pci_load_saved_state(dev, *state); 1282 kfree(*state); 1283 *state = NULL; 1284 return ret; 1285 } 1286 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1287 1288 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1289 { 1290 return pci_enable_resources(dev, bars); 1291 } 1292 1293 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1294 { 1295 int err; 1296 struct pci_dev *bridge; 1297 u16 cmd; 1298 u8 pin; 1299 1300 err = pci_set_power_state(dev, PCI_D0); 1301 if (err < 0 && err != -EIO) 1302 return err; 1303 1304 bridge = pci_upstream_bridge(dev); 1305 if (bridge) 1306 pcie_aspm_powersave_config_link(bridge); 1307 1308 err = pcibios_enable_device(dev, bars); 1309 if (err < 0) 1310 return err; 1311 pci_fixup_device(pci_fixup_enable, dev); 1312 1313 if (dev->msi_enabled || dev->msix_enabled) 1314 return 0; 1315 1316 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1317 if (pin) { 1318 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1319 if (cmd & PCI_COMMAND_INTX_DISABLE) 1320 pci_write_config_word(dev, PCI_COMMAND, 1321 cmd & ~PCI_COMMAND_INTX_DISABLE); 1322 } 1323 1324 return 0; 1325 } 1326 1327 /** 1328 * pci_reenable_device - Resume abandoned device 1329 * @dev: PCI device to be resumed 1330 * 1331 * Note this function is a backend of pci_default_resume and is not supposed 1332 * to be called by normal code, write proper resume handler and use it instead. 1333 */ 1334 int pci_reenable_device(struct pci_dev *dev) 1335 { 1336 if (pci_is_enabled(dev)) 1337 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1338 return 0; 1339 } 1340 EXPORT_SYMBOL(pci_reenable_device); 1341 1342 static void pci_enable_bridge(struct pci_dev *dev) 1343 { 1344 struct pci_dev *bridge; 1345 int retval; 1346 1347 bridge = pci_upstream_bridge(dev); 1348 if (bridge) 1349 pci_enable_bridge(bridge); 1350 1351 if (pci_is_enabled(dev)) { 1352 if (!dev->is_busmaster) 1353 pci_set_master(dev); 1354 return; 1355 } 1356 1357 retval = pci_enable_device(dev); 1358 if (retval) 1359 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1360 retval); 1361 pci_set_master(dev); 1362 } 1363 1364 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1365 { 1366 struct pci_dev *bridge; 1367 int err; 1368 int i, bars = 0; 1369 1370 /* 1371 * Power state could be unknown at this point, either due to a fresh 1372 * boot or a device removal call. So get the current power state 1373 * so that things like MSI message writing will behave as expected 1374 * (e.g. if the device really is in D0 at enable time). 1375 */ 1376 if (dev->pm_cap) { 1377 u16 pmcsr; 1378 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1379 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1380 } 1381 1382 if (atomic_inc_return(&dev->enable_cnt) > 1) 1383 return 0; /* already enabled */ 1384 1385 bridge = pci_upstream_bridge(dev); 1386 if (bridge) 1387 pci_enable_bridge(bridge); 1388 1389 /* only skip sriov related */ 1390 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1391 if (dev->resource[i].flags & flags) 1392 bars |= (1 << i); 1393 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1394 if (dev->resource[i].flags & flags) 1395 bars |= (1 << i); 1396 1397 err = do_pci_enable_device(dev, bars); 1398 if (err < 0) 1399 atomic_dec(&dev->enable_cnt); 1400 return err; 1401 } 1402 1403 /** 1404 * pci_enable_device_io - Initialize a device for use with IO space 1405 * @dev: PCI device to be initialized 1406 * 1407 * Initialize device before it's used by a driver. Ask low-level code 1408 * to enable I/O resources. Wake up the device if it was suspended. 1409 * Beware, this function can fail. 1410 */ 1411 int pci_enable_device_io(struct pci_dev *dev) 1412 { 1413 return pci_enable_device_flags(dev, IORESOURCE_IO); 1414 } 1415 EXPORT_SYMBOL(pci_enable_device_io); 1416 1417 /** 1418 * pci_enable_device_mem - Initialize a device for use with Memory space 1419 * @dev: PCI device to be initialized 1420 * 1421 * Initialize device before it's used by a driver. Ask low-level code 1422 * to enable Memory resources. Wake up the device if it was suspended. 1423 * Beware, this function can fail. 1424 */ 1425 int pci_enable_device_mem(struct pci_dev *dev) 1426 { 1427 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1428 } 1429 EXPORT_SYMBOL(pci_enable_device_mem); 1430 1431 /** 1432 * pci_enable_device - Initialize device before it's used by a driver. 1433 * @dev: PCI device to be initialized 1434 * 1435 * Initialize device before it's used by a driver. Ask low-level code 1436 * to enable I/O and memory. Wake up the device if it was suspended. 1437 * Beware, this function can fail. 1438 * 1439 * Note we don't actually enable the device many times if we call 1440 * this function repeatedly (we just increment the count). 1441 */ 1442 int pci_enable_device(struct pci_dev *dev) 1443 { 1444 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1445 } 1446 EXPORT_SYMBOL(pci_enable_device); 1447 1448 /* 1449 * Managed PCI resources. This manages device on/off, intx/msi/msix 1450 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1451 * there's no need to track it separately. pci_devres is initialized 1452 * when a device is enabled using managed PCI device enable interface. 1453 */ 1454 struct pci_devres { 1455 unsigned int enabled:1; 1456 unsigned int pinned:1; 1457 unsigned int orig_intx:1; 1458 unsigned int restore_intx:1; 1459 u32 region_mask; 1460 }; 1461 1462 static void pcim_release(struct device *gendev, void *res) 1463 { 1464 struct pci_dev *dev = to_pci_dev(gendev); 1465 struct pci_devres *this = res; 1466 int i; 1467 1468 if (dev->msi_enabled) 1469 pci_disable_msi(dev); 1470 if (dev->msix_enabled) 1471 pci_disable_msix(dev); 1472 1473 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1474 if (this->region_mask & (1 << i)) 1475 pci_release_region(dev, i); 1476 1477 if (this->restore_intx) 1478 pci_intx(dev, this->orig_intx); 1479 1480 if (this->enabled && !this->pinned) 1481 pci_disable_device(dev); 1482 } 1483 1484 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1485 { 1486 struct pci_devres *dr, *new_dr; 1487 1488 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1489 if (dr) 1490 return dr; 1491 1492 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1493 if (!new_dr) 1494 return NULL; 1495 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1496 } 1497 1498 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1499 { 1500 if (pci_is_managed(pdev)) 1501 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1502 return NULL; 1503 } 1504 1505 /** 1506 * pcim_enable_device - Managed pci_enable_device() 1507 * @pdev: PCI device to be initialized 1508 * 1509 * Managed pci_enable_device(). 1510 */ 1511 int pcim_enable_device(struct pci_dev *pdev) 1512 { 1513 struct pci_devres *dr; 1514 int rc; 1515 1516 dr = get_pci_dr(pdev); 1517 if (unlikely(!dr)) 1518 return -ENOMEM; 1519 if (dr->enabled) 1520 return 0; 1521 1522 rc = pci_enable_device(pdev); 1523 if (!rc) { 1524 pdev->is_managed = 1; 1525 dr->enabled = 1; 1526 } 1527 return rc; 1528 } 1529 EXPORT_SYMBOL(pcim_enable_device); 1530 1531 /** 1532 * pcim_pin_device - Pin managed PCI device 1533 * @pdev: PCI device to pin 1534 * 1535 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1536 * driver detach. @pdev must have been enabled with 1537 * pcim_enable_device(). 1538 */ 1539 void pcim_pin_device(struct pci_dev *pdev) 1540 { 1541 struct pci_devres *dr; 1542 1543 dr = find_pci_dr(pdev); 1544 WARN_ON(!dr || !dr->enabled); 1545 if (dr) 1546 dr->pinned = 1; 1547 } 1548 EXPORT_SYMBOL(pcim_pin_device); 1549 1550 /* 1551 * pcibios_add_device - provide arch specific hooks when adding device dev 1552 * @dev: the PCI device being added 1553 * 1554 * Permits the platform to provide architecture specific functionality when 1555 * devices are added. This is the default implementation. Architecture 1556 * implementations can override this. 1557 */ 1558 int __weak pcibios_add_device(struct pci_dev *dev) 1559 { 1560 return 0; 1561 } 1562 1563 /** 1564 * pcibios_release_device - provide arch specific hooks when releasing device dev 1565 * @dev: the PCI device being released 1566 * 1567 * Permits the platform to provide architecture specific functionality when 1568 * devices are released. This is the default implementation. Architecture 1569 * implementations can override this. 1570 */ 1571 void __weak pcibios_release_device(struct pci_dev *dev) {} 1572 1573 /** 1574 * pcibios_disable_device - disable arch specific PCI resources for device dev 1575 * @dev: the PCI device to disable 1576 * 1577 * Disables architecture specific PCI resources for the device. This 1578 * is the default implementation. Architecture implementations can 1579 * override this. 1580 */ 1581 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1582 1583 /** 1584 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1585 * @irq: ISA IRQ to penalize 1586 * @active: IRQ active or not 1587 * 1588 * Permits the platform to provide architecture-specific functionality when 1589 * penalizing ISA IRQs. This is the default implementation. Architecture 1590 * implementations can override this. 1591 */ 1592 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1593 1594 static void do_pci_disable_device(struct pci_dev *dev) 1595 { 1596 u16 pci_command; 1597 1598 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1599 if (pci_command & PCI_COMMAND_MASTER) { 1600 pci_command &= ~PCI_COMMAND_MASTER; 1601 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1602 } 1603 1604 pcibios_disable_device(dev); 1605 } 1606 1607 /** 1608 * pci_disable_enabled_device - Disable device without updating enable_cnt 1609 * @dev: PCI device to disable 1610 * 1611 * NOTE: This function is a backend of PCI power management routines and is 1612 * not supposed to be called drivers. 1613 */ 1614 void pci_disable_enabled_device(struct pci_dev *dev) 1615 { 1616 if (pci_is_enabled(dev)) 1617 do_pci_disable_device(dev); 1618 } 1619 1620 /** 1621 * pci_disable_device - Disable PCI device after use 1622 * @dev: PCI device to be disabled 1623 * 1624 * Signal to the system that the PCI device is not in use by the system 1625 * anymore. This only involves disabling PCI bus-mastering, if active. 1626 * 1627 * Note we don't actually disable the device until all callers of 1628 * pci_enable_device() have called pci_disable_device(). 1629 */ 1630 void pci_disable_device(struct pci_dev *dev) 1631 { 1632 struct pci_devres *dr; 1633 1634 dr = find_pci_dr(dev); 1635 if (dr) 1636 dr->enabled = 0; 1637 1638 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1639 "disabling already-disabled device"); 1640 1641 if (atomic_dec_return(&dev->enable_cnt) != 0) 1642 return; 1643 1644 do_pci_disable_device(dev); 1645 1646 dev->is_busmaster = 0; 1647 } 1648 EXPORT_SYMBOL(pci_disable_device); 1649 1650 /** 1651 * pcibios_set_pcie_reset_state - set reset state for device dev 1652 * @dev: the PCIe device reset 1653 * @state: Reset state to enter into 1654 * 1655 * 1656 * Sets the PCIe reset state for the device. This is the default 1657 * implementation. Architecture implementations can override this. 1658 */ 1659 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1660 enum pcie_reset_state state) 1661 { 1662 return -EINVAL; 1663 } 1664 1665 /** 1666 * pci_set_pcie_reset_state - set reset state for device dev 1667 * @dev: the PCIe device reset 1668 * @state: Reset state to enter into 1669 * 1670 * 1671 * Sets the PCI reset state for the device. 1672 */ 1673 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1674 { 1675 return pcibios_set_pcie_reset_state(dev, state); 1676 } 1677 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1678 1679 /** 1680 * pci_check_pme_status - Check if given device has generated PME. 1681 * @dev: Device to check. 1682 * 1683 * Check the PME status of the device and if set, clear it and clear PME enable 1684 * (if set). Return 'true' if PME status and PME enable were both set or 1685 * 'false' otherwise. 1686 */ 1687 bool pci_check_pme_status(struct pci_dev *dev) 1688 { 1689 int pmcsr_pos; 1690 u16 pmcsr; 1691 bool ret = false; 1692 1693 if (!dev->pm_cap) 1694 return false; 1695 1696 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1697 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1698 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1699 return false; 1700 1701 /* Clear PME status. */ 1702 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1703 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1704 /* Disable PME to avoid interrupt flood. */ 1705 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1706 ret = true; 1707 } 1708 1709 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1710 1711 return ret; 1712 } 1713 1714 /** 1715 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1716 * @dev: Device to handle. 1717 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1718 * 1719 * Check if @dev has generated PME and queue a resume request for it in that 1720 * case. 1721 */ 1722 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1723 { 1724 if (pme_poll_reset && dev->pme_poll) 1725 dev->pme_poll = false; 1726 1727 if (pci_check_pme_status(dev)) { 1728 pci_wakeup_event(dev); 1729 pm_request_resume(&dev->dev); 1730 } 1731 return 0; 1732 } 1733 1734 /** 1735 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1736 * @bus: Top bus of the subtree to walk. 1737 */ 1738 void pci_pme_wakeup_bus(struct pci_bus *bus) 1739 { 1740 if (bus) 1741 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1742 } 1743 1744 1745 /** 1746 * pci_pme_capable - check the capability of PCI device to generate PME# 1747 * @dev: PCI device to handle. 1748 * @state: PCI state from which device will issue PME#. 1749 */ 1750 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1751 { 1752 if (!dev->pm_cap) 1753 return false; 1754 1755 return !!(dev->pme_support & (1 << state)); 1756 } 1757 EXPORT_SYMBOL(pci_pme_capable); 1758 1759 static void pci_pme_list_scan(struct work_struct *work) 1760 { 1761 struct pci_pme_device *pme_dev, *n; 1762 1763 mutex_lock(&pci_pme_list_mutex); 1764 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1765 if (pme_dev->dev->pme_poll) { 1766 struct pci_dev *bridge; 1767 1768 bridge = pme_dev->dev->bus->self; 1769 /* 1770 * If bridge is in low power state, the 1771 * configuration space of subordinate devices 1772 * may be not accessible 1773 */ 1774 if (bridge && bridge->current_state != PCI_D0) 1775 continue; 1776 pci_pme_wakeup(pme_dev->dev, NULL); 1777 } else { 1778 list_del(&pme_dev->list); 1779 kfree(pme_dev); 1780 } 1781 } 1782 if (!list_empty(&pci_pme_list)) 1783 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1784 msecs_to_jiffies(PME_TIMEOUT)); 1785 mutex_unlock(&pci_pme_list_mutex); 1786 } 1787 1788 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1789 { 1790 u16 pmcsr; 1791 1792 if (!dev->pme_support) 1793 return; 1794 1795 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1796 /* Clear PME_Status by writing 1 to it and enable PME# */ 1797 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1798 if (!enable) 1799 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1800 1801 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1802 } 1803 1804 /** 1805 * pci_pme_restore - Restore PME configuration after config space restore. 1806 * @dev: PCI device to update. 1807 */ 1808 void pci_pme_restore(struct pci_dev *dev) 1809 { 1810 u16 pmcsr; 1811 1812 if (!dev->pme_support) 1813 return; 1814 1815 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1816 if (dev->wakeup_prepared) { 1817 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1818 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1819 } else { 1820 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1821 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1822 } 1823 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1824 } 1825 1826 /** 1827 * pci_pme_active - enable or disable PCI device's PME# function 1828 * @dev: PCI device to handle. 1829 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1830 * 1831 * The caller must verify that the device is capable of generating PME# before 1832 * calling this function with @enable equal to 'true'. 1833 */ 1834 void pci_pme_active(struct pci_dev *dev, bool enable) 1835 { 1836 __pci_pme_active(dev, enable); 1837 1838 /* 1839 * PCI (as opposed to PCIe) PME requires that the device have 1840 * its PME# line hooked up correctly. Not all hardware vendors 1841 * do this, so the PME never gets delivered and the device 1842 * remains asleep. The easiest way around this is to 1843 * periodically walk the list of suspended devices and check 1844 * whether any have their PME flag set. The assumption is that 1845 * we'll wake up often enough anyway that this won't be a huge 1846 * hit, and the power savings from the devices will still be a 1847 * win. 1848 * 1849 * Although PCIe uses in-band PME message instead of PME# line 1850 * to report PME, PME does not work for some PCIe devices in 1851 * reality. For example, there are devices that set their PME 1852 * status bits, but don't really bother to send a PME message; 1853 * there are PCI Express Root Ports that don't bother to 1854 * trigger interrupts when they receive PME messages from the 1855 * devices below. So PME poll is used for PCIe devices too. 1856 */ 1857 1858 if (dev->pme_poll) { 1859 struct pci_pme_device *pme_dev; 1860 if (enable) { 1861 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1862 GFP_KERNEL); 1863 if (!pme_dev) { 1864 dev_warn(&dev->dev, "can't enable PME#\n"); 1865 return; 1866 } 1867 pme_dev->dev = dev; 1868 mutex_lock(&pci_pme_list_mutex); 1869 list_add(&pme_dev->list, &pci_pme_list); 1870 if (list_is_singular(&pci_pme_list)) 1871 queue_delayed_work(system_freezable_wq, 1872 &pci_pme_work, 1873 msecs_to_jiffies(PME_TIMEOUT)); 1874 mutex_unlock(&pci_pme_list_mutex); 1875 } else { 1876 mutex_lock(&pci_pme_list_mutex); 1877 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1878 if (pme_dev->dev == dev) { 1879 list_del(&pme_dev->list); 1880 kfree(pme_dev); 1881 break; 1882 } 1883 } 1884 mutex_unlock(&pci_pme_list_mutex); 1885 } 1886 } 1887 1888 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1889 } 1890 EXPORT_SYMBOL(pci_pme_active); 1891 1892 /** 1893 * pci_enable_wake - enable PCI device as wakeup event source 1894 * @dev: PCI device affected 1895 * @state: PCI state from which device will issue wakeup events 1896 * @enable: True to enable event generation; false to disable 1897 * 1898 * This enables the device as a wakeup event source, or disables it. 1899 * When such events involves platform-specific hooks, those hooks are 1900 * called automatically by this routine. 1901 * 1902 * Devices with legacy power management (no standard PCI PM capabilities) 1903 * always require such platform hooks. 1904 * 1905 * RETURN VALUE: 1906 * 0 is returned on success 1907 * -EINVAL is returned if device is not supposed to wake up the system 1908 * Error code depending on the platform is returned if both the platform and 1909 * the native mechanism fail to enable the generation of wake-up events 1910 */ 1911 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1912 { 1913 int ret = 0; 1914 1915 /* Don't do the same thing twice in a row for one device. */ 1916 if (!!enable == !!dev->wakeup_prepared) 1917 return 0; 1918 1919 /* 1920 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1921 * Anderson we should be doing PME# wake enable followed by ACPI wake 1922 * enable. To disable wake-up we call the platform first, for symmetry. 1923 */ 1924 1925 if (enable) { 1926 int error; 1927 1928 if (pci_pme_capable(dev, state)) 1929 pci_pme_active(dev, true); 1930 else 1931 ret = 1; 1932 error = platform_pci_set_wakeup(dev, true); 1933 if (ret) 1934 ret = error; 1935 if (!ret) 1936 dev->wakeup_prepared = true; 1937 } else { 1938 platform_pci_set_wakeup(dev, false); 1939 pci_pme_active(dev, false); 1940 dev->wakeup_prepared = false; 1941 } 1942 1943 return ret; 1944 } 1945 EXPORT_SYMBOL(pci_enable_wake); 1946 1947 /** 1948 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1949 * @dev: PCI device to prepare 1950 * @enable: True to enable wake-up event generation; false to disable 1951 * 1952 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1953 * and this function allows them to set that up cleanly - pci_enable_wake() 1954 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1955 * ordering constraints. 1956 * 1957 * This function only returns error code if the device is not capable of 1958 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1959 * enable wake-up power for it. 1960 */ 1961 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1962 { 1963 return pci_pme_capable(dev, PCI_D3cold) ? 1964 pci_enable_wake(dev, PCI_D3cold, enable) : 1965 pci_enable_wake(dev, PCI_D3hot, enable); 1966 } 1967 EXPORT_SYMBOL(pci_wake_from_d3); 1968 1969 /** 1970 * pci_target_state - find an appropriate low power state for a given PCI dev 1971 * @dev: PCI device 1972 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 1973 * 1974 * Use underlying platform code to find a supported low power state for @dev. 1975 * If the platform can't manage @dev, return the deepest state from which it 1976 * can generate wake events, based on any available PME info. 1977 */ 1978 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 1979 { 1980 pci_power_t target_state = PCI_D3hot; 1981 1982 if (platform_pci_power_manageable(dev)) { 1983 /* 1984 * Call the platform to choose the target state of the device 1985 * and enable wake-up from this state if supported. 1986 */ 1987 pci_power_t state = platform_pci_choose_state(dev); 1988 1989 switch (state) { 1990 case PCI_POWER_ERROR: 1991 case PCI_UNKNOWN: 1992 break; 1993 case PCI_D1: 1994 case PCI_D2: 1995 if (pci_no_d1d2(dev)) 1996 break; 1997 default: 1998 target_state = state; 1999 } 2000 2001 return target_state; 2002 } 2003 2004 if (!dev->pm_cap) 2005 target_state = PCI_D0; 2006 2007 /* 2008 * If the device is in D3cold even though it's not power-manageable by 2009 * the platform, it may have been powered down by non-standard means. 2010 * Best to let it slumber. 2011 */ 2012 if (dev->current_state == PCI_D3cold) 2013 target_state = PCI_D3cold; 2014 2015 if (wakeup) { 2016 /* 2017 * Find the deepest state from which the device can generate 2018 * wake-up events, make it the target state and enable device 2019 * to generate PME#. 2020 */ 2021 if (dev->pme_support) { 2022 while (target_state 2023 && !(dev->pme_support & (1 << target_state))) 2024 target_state--; 2025 } 2026 } 2027 2028 return target_state; 2029 } 2030 2031 /** 2032 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2033 * @dev: Device to handle. 2034 * 2035 * Choose the power state appropriate for the device depending on whether 2036 * it can wake up the system and/or is power manageable by the platform 2037 * (PCI_D3hot is the default) and put the device into that state. 2038 */ 2039 int pci_prepare_to_sleep(struct pci_dev *dev) 2040 { 2041 bool wakeup = device_may_wakeup(&dev->dev); 2042 pci_power_t target_state = pci_target_state(dev, wakeup); 2043 int error; 2044 2045 if (target_state == PCI_POWER_ERROR) 2046 return -EIO; 2047 2048 pci_enable_wake(dev, target_state, wakeup); 2049 2050 error = pci_set_power_state(dev, target_state); 2051 2052 if (error) 2053 pci_enable_wake(dev, target_state, false); 2054 2055 return error; 2056 } 2057 EXPORT_SYMBOL(pci_prepare_to_sleep); 2058 2059 /** 2060 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2061 * @dev: Device to handle. 2062 * 2063 * Disable device's system wake-up capability and put it into D0. 2064 */ 2065 int pci_back_from_sleep(struct pci_dev *dev) 2066 { 2067 pci_enable_wake(dev, PCI_D0, false); 2068 return pci_set_power_state(dev, PCI_D0); 2069 } 2070 EXPORT_SYMBOL(pci_back_from_sleep); 2071 2072 /** 2073 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2074 * @dev: PCI device being suspended. 2075 * 2076 * Prepare @dev to generate wake-up events at run time and put it into a low 2077 * power state. 2078 */ 2079 int pci_finish_runtime_suspend(struct pci_dev *dev) 2080 { 2081 pci_power_t target_state; 2082 int error; 2083 2084 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2085 if (target_state == PCI_POWER_ERROR) 2086 return -EIO; 2087 2088 dev->runtime_d3cold = target_state == PCI_D3cold; 2089 2090 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2091 2092 error = pci_set_power_state(dev, target_state); 2093 2094 if (error) { 2095 pci_enable_wake(dev, target_state, false); 2096 dev->runtime_d3cold = false; 2097 } 2098 2099 return error; 2100 } 2101 2102 /** 2103 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2104 * @dev: Device to check. 2105 * 2106 * Return true if the device itself is capable of generating wake-up events 2107 * (through the platform or using the native PCIe PME) or if the device supports 2108 * PME and one of its upstream bridges can generate wake-up events. 2109 */ 2110 bool pci_dev_run_wake(struct pci_dev *dev) 2111 { 2112 struct pci_bus *bus = dev->bus; 2113 2114 if (device_can_wakeup(&dev->dev)) 2115 return true; 2116 2117 if (!dev->pme_support) 2118 return false; 2119 2120 /* PME-capable in principle, but not from the target power state */ 2121 if (!pci_pme_capable(dev, pci_target_state(dev, false))) 2122 return false; 2123 2124 while (bus->parent) { 2125 struct pci_dev *bridge = bus->self; 2126 2127 if (device_can_wakeup(&bridge->dev)) 2128 return true; 2129 2130 bus = bus->parent; 2131 } 2132 2133 /* We have reached the root bus. */ 2134 if (bus->bridge) 2135 return device_can_wakeup(bus->bridge); 2136 2137 return false; 2138 } 2139 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2140 2141 /** 2142 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2143 * @pci_dev: Device to check. 2144 * 2145 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2146 * reconfigured due to wakeup settings difference between system and runtime 2147 * suspend and the current power state of it is suitable for the upcoming 2148 * (system) transition. 2149 * 2150 * If the device is not configured for system wakeup, disable PME for it before 2151 * returning 'true' to prevent it from waking up the system unnecessarily. 2152 */ 2153 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2154 { 2155 struct device *dev = &pci_dev->dev; 2156 bool wakeup = device_may_wakeup(dev); 2157 2158 if (!pm_runtime_suspended(dev) 2159 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2160 || platform_pci_need_resume(pci_dev) 2161 || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME)) 2162 return false; 2163 2164 /* 2165 * At this point the device is good to go unless it's been configured 2166 * to generate PME at the runtime suspend time, but it is not supposed 2167 * to wake up the system. In that case, simply disable PME for it 2168 * (it will have to be re-enabled on exit from system resume). 2169 * 2170 * If the device's power state is D3cold and the platform check above 2171 * hasn't triggered, the device's configuration is suitable and we don't 2172 * need to manipulate it at all. 2173 */ 2174 spin_lock_irq(&dev->power.lock); 2175 2176 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2177 !wakeup) 2178 __pci_pme_active(pci_dev, false); 2179 2180 spin_unlock_irq(&dev->power.lock); 2181 return true; 2182 } 2183 2184 /** 2185 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2186 * @pci_dev: Device to handle. 2187 * 2188 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2189 * it might have been disabled during the prepare phase of system suspend if 2190 * the device was not configured for system wakeup. 2191 */ 2192 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2193 { 2194 struct device *dev = &pci_dev->dev; 2195 2196 if (!pci_dev_run_wake(pci_dev)) 2197 return; 2198 2199 spin_lock_irq(&dev->power.lock); 2200 2201 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2202 __pci_pme_active(pci_dev, true); 2203 2204 spin_unlock_irq(&dev->power.lock); 2205 } 2206 2207 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2208 { 2209 struct device *dev = &pdev->dev; 2210 struct device *parent = dev->parent; 2211 2212 if (parent) 2213 pm_runtime_get_sync(parent); 2214 pm_runtime_get_noresume(dev); 2215 /* 2216 * pdev->current_state is set to PCI_D3cold during suspending, 2217 * so wait until suspending completes 2218 */ 2219 pm_runtime_barrier(dev); 2220 /* 2221 * Only need to resume devices in D3cold, because config 2222 * registers are still accessible for devices suspended but 2223 * not in D3cold. 2224 */ 2225 if (pdev->current_state == PCI_D3cold) 2226 pm_runtime_resume(dev); 2227 } 2228 2229 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2230 { 2231 struct device *dev = &pdev->dev; 2232 struct device *parent = dev->parent; 2233 2234 pm_runtime_put(dev); 2235 if (parent) 2236 pm_runtime_put_sync(parent); 2237 } 2238 2239 /** 2240 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2241 * @bridge: Bridge to check 2242 * 2243 * This function checks if it is possible to move the bridge to D3. 2244 * Currently we only allow D3 for recent enough PCIe ports. 2245 */ 2246 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2247 { 2248 unsigned int year; 2249 2250 if (!pci_is_pcie(bridge)) 2251 return false; 2252 2253 switch (pci_pcie_type(bridge)) { 2254 case PCI_EXP_TYPE_ROOT_PORT: 2255 case PCI_EXP_TYPE_UPSTREAM: 2256 case PCI_EXP_TYPE_DOWNSTREAM: 2257 if (pci_bridge_d3_disable) 2258 return false; 2259 2260 /* 2261 * Hotplug interrupts cannot be delivered if the link is down, 2262 * so parents of a hotplug port must stay awake. In addition, 2263 * hotplug ports handled by firmware in System Management Mode 2264 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2265 * For simplicity, disallow in general for now. 2266 */ 2267 if (bridge->is_hotplug_bridge) 2268 return false; 2269 2270 if (pci_bridge_d3_force) 2271 return true; 2272 2273 /* 2274 * It should be safe to put PCIe ports from 2015 or newer 2275 * to D3. 2276 */ 2277 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && 2278 year >= 2015) { 2279 return true; 2280 } 2281 break; 2282 } 2283 2284 return false; 2285 } 2286 2287 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2288 { 2289 bool *d3cold_ok = data; 2290 2291 if (/* The device needs to be allowed to go D3cold ... */ 2292 dev->no_d3cold || !dev->d3cold_allowed || 2293 2294 /* ... and if it is wakeup capable to do so from D3cold. */ 2295 (device_may_wakeup(&dev->dev) && 2296 !pci_pme_capable(dev, PCI_D3cold)) || 2297 2298 /* If it is a bridge it must be allowed to go to D3. */ 2299 !pci_power_manageable(dev)) 2300 2301 *d3cold_ok = false; 2302 2303 return !*d3cold_ok; 2304 } 2305 2306 /* 2307 * pci_bridge_d3_update - Update bridge D3 capabilities 2308 * @dev: PCI device which is changed 2309 * 2310 * Update upstream bridge PM capabilities accordingly depending on if the 2311 * device PM configuration was changed or the device is being removed. The 2312 * change is also propagated upstream. 2313 */ 2314 void pci_bridge_d3_update(struct pci_dev *dev) 2315 { 2316 bool remove = !device_is_registered(&dev->dev); 2317 struct pci_dev *bridge; 2318 bool d3cold_ok = true; 2319 2320 bridge = pci_upstream_bridge(dev); 2321 if (!bridge || !pci_bridge_d3_possible(bridge)) 2322 return; 2323 2324 /* 2325 * If D3 is currently allowed for the bridge, removing one of its 2326 * children won't change that. 2327 */ 2328 if (remove && bridge->bridge_d3) 2329 return; 2330 2331 /* 2332 * If D3 is currently allowed for the bridge and a child is added or 2333 * changed, disallowance of D3 can only be caused by that child, so 2334 * we only need to check that single device, not any of its siblings. 2335 * 2336 * If D3 is currently not allowed for the bridge, checking the device 2337 * first may allow us to skip checking its siblings. 2338 */ 2339 if (!remove) 2340 pci_dev_check_d3cold(dev, &d3cold_ok); 2341 2342 /* 2343 * If D3 is currently not allowed for the bridge, this may be caused 2344 * either by the device being changed/removed or any of its siblings, 2345 * so we need to go through all children to find out if one of them 2346 * continues to block D3. 2347 */ 2348 if (d3cold_ok && !bridge->bridge_d3) 2349 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2350 &d3cold_ok); 2351 2352 if (bridge->bridge_d3 != d3cold_ok) { 2353 bridge->bridge_d3 = d3cold_ok; 2354 /* Propagate change to upstream bridges */ 2355 pci_bridge_d3_update(bridge); 2356 } 2357 } 2358 2359 /** 2360 * pci_d3cold_enable - Enable D3cold for device 2361 * @dev: PCI device to handle 2362 * 2363 * This function can be used in drivers to enable D3cold from the device 2364 * they handle. It also updates upstream PCI bridge PM capabilities 2365 * accordingly. 2366 */ 2367 void pci_d3cold_enable(struct pci_dev *dev) 2368 { 2369 if (dev->no_d3cold) { 2370 dev->no_d3cold = false; 2371 pci_bridge_d3_update(dev); 2372 } 2373 } 2374 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2375 2376 /** 2377 * pci_d3cold_disable - Disable D3cold for device 2378 * @dev: PCI device to handle 2379 * 2380 * This function can be used in drivers to disable D3cold from the device 2381 * they handle. It also updates upstream PCI bridge PM capabilities 2382 * accordingly. 2383 */ 2384 void pci_d3cold_disable(struct pci_dev *dev) 2385 { 2386 if (!dev->no_d3cold) { 2387 dev->no_d3cold = true; 2388 pci_bridge_d3_update(dev); 2389 } 2390 } 2391 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2392 2393 /** 2394 * pci_pm_init - Initialize PM functions of given PCI device 2395 * @dev: PCI device to handle. 2396 */ 2397 void pci_pm_init(struct pci_dev *dev) 2398 { 2399 int pm; 2400 u16 pmc; 2401 2402 pm_runtime_forbid(&dev->dev); 2403 pm_runtime_set_active(&dev->dev); 2404 pm_runtime_enable(&dev->dev); 2405 device_enable_async_suspend(&dev->dev); 2406 dev->wakeup_prepared = false; 2407 2408 dev->pm_cap = 0; 2409 dev->pme_support = 0; 2410 2411 /* find PCI PM capability in list */ 2412 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2413 if (!pm) 2414 return; 2415 /* Check device's ability to generate PME# */ 2416 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2417 2418 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2419 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2420 pmc & PCI_PM_CAP_VER_MASK); 2421 return; 2422 } 2423 2424 dev->pm_cap = pm; 2425 dev->d3_delay = PCI_PM_D3_WAIT; 2426 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2427 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2428 dev->d3cold_allowed = true; 2429 2430 dev->d1_support = false; 2431 dev->d2_support = false; 2432 if (!pci_no_d1d2(dev)) { 2433 if (pmc & PCI_PM_CAP_D1) 2434 dev->d1_support = true; 2435 if (pmc & PCI_PM_CAP_D2) 2436 dev->d2_support = true; 2437 2438 if (dev->d1_support || dev->d2_support) 2439 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2440 dev->d1_support ? " D1" : "", 2441 dev->d2_support ? " D2" : ""); 2442 } 2443 2444 pmc &= PCI_PM_CAP_PME_MASK; 2445 if (pmc) { 2446 dev_printk(KERN_DEBUG, &dev->dev, 2447 "PME# supported from%s%s%s%s%s\n", 2448 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2449 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2450 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2451 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2452 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2453 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2454 dev->pme_poll = true; 2455 /* 2456 * Make device's PM flags reflect the wake-up capability, but 2457 * let the user space enable it to wake up the system as needed. 2458 */ 2459 device_set_wakeup_capable(&dev->dev, true); 2460 /* Disable the PME# generation functionality */ 2461 pci_pme_active(dev, false); 2462 } 2463 } 2464 2465 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2466 { 2467 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2468 2469 switch (prop) { 2470 case PCI_EA_P_MEM: 2471 case PCI_EA_P_VF_MEM: 2472 flags |= IORESOURCE_MEM; 2473 break; 2474 case PCI_EA_P_MEM_PREFETCH: 2475 case PCI_EA_P_VF_MEM_PREFETCH: 2476 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2477 break; 2478 case PCI_EA_P_IO: 2479 flags |= IORESOURCE_IO; 2480 break; 2481 default: 2482 return 0; 2483 } 2484 2485 return flags; 2486 } 2487 2488 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2489 u8 prop) 2490 { 2491 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2492 return &dev->resource[bei]; 2493 #ifdef CONFIG_PCI_IOV 2494 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2495 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2496 return &dev->resource[PCI_IOV_RESOURCES + 2497 bei - PCI_EA_BEI_VF_BAR0]; 2498 #endif 2499 else if (bei == PCI_EA_BEI_ROM) 2500 return &dev->resource[PCI_ROM_RESOURCE]; 2501 else 2502 return NULL; 2503 } 2504 2505 /* Read an Enhanced Allocation (EA) entry */ 2506 static int pci_ea_read(struct pci_dev *dev, int offset) 2507 { 2508 struct resource *res; 2509 int ent_size, ent_offset = offset; 2510 resource_size_t start, end; 2511 unsigned long flags; 2512 u32 dw0, bei, base, max_offset; 2513 u8 prop; 2514 bool support_64 = (sizeof(resource_size_t) >= 8); 2515 2516 pci_read_config_dword(dev, ent_offset, &dw0); 2517 ent_offset += 4; 2518 2519 /* Entry size field indicates DWORDs after 1st */ 2520 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2521 2522 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2523 goto out; 2524 2525 bei = (dw0 & PCI_EA_BEI) >> 4; 2526 prop = (dw0 & PCI_EA_PP) >> 8; 2527 2528 /* 2529 * If the Property is in the reserved range, try the Secondary 2530 * Property instead. 2531 */ 2532 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2533 prop = (dw0 & PCI_EA_SP) >> 16; 2534 if (prop > PCI_EA_P_BRIDGE_IO) 2535 goto out; 2536 2537 res = pci_ea_get_resource(dev, bei, prop); 2538 if (!res) { 2539 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); 2540 goto out; 2541 } 2542 2543 flags = pci_ea_flags(dev, prop); 2544 if (!flags) { 2545 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); 2546 goto out; 2547 } 2548 2549 /* Read Base */ 2550 pci_read_config_dword(dev, ent_offset, &base); 2551 start = (base & PCI_EA_FIELD_MASK); 2552 ent_offset += 4; 2553 2554 /* Read MaxOffset */ 2555 pci_read_config_dword(dev, ent_offset, &max_offset); 2556 ent_offset += 4; 2557 2558 /* Read Base MSBs (if 64-bit entry) */ 2559 if (base & PCI_EA_IS_64) { 2560 u32 base_upper; 2561 2562 pci_read_config_dword(dev, ent_offset, &base_upper); 2563 ent_offset += 4; 2564 2565 flags |= IORESOURCE_MEM_64; 2566 2567 /* entry starts above 32-bit boundary, can't use */ 2568 if (!support_64 && base_upper) 2569 goto out; 2570 2571 if (support_64) 2572 start |= ((u64)base_upper << 32); 2573 } 2574 2575 end = start + (max_offset | 0x03); 2576 2577 /* Read MaxOffset MSBs (if 64-bit entry) */ 2578 if (max_offset & PCI_EA_IS_64) { 2579 u32 max_offset_upper; 2580 2581 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2582 ent_offset += 4; 2583 2584 flags |= IORESOURCE_MEM_64; 2585 2586 /* entry too big, can't use */ 2587 if (!support_64 && max_offset_upper) 2588 goto out; 2589 2590 if (support_64) 2591 end += ((u64)max_offset_upper << 32); 2592 } 2593 2594 if (end < start) { 2595 dev_err(&dev->dev, "EA Entry crosses address boundary\n"); 2596 goto out; 2597 } 2598 2599 if (ent_size != ent_offset - offset) { 2600 dev_err(&dev->dev, 2601 "EA Entry Size (%d) does not match length read (%d)\n", 2602 ent_size, ent_offset - offset); 2603 goto out; 2604 } 2605 2606 res->name = pci_name(dev); 2607 res->start = start; 2608 res->end = end; 2609 res->flags = flags; 2610 2611 if (bei <= PCI_EA_BEI_BAR5) 2612 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2613 bei, res, prop); 2614 else if (bei == PCI_EA_BEI_ROM) 2615 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2616 res, prop); 2617 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2618 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2619 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2620 else 2621 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2622 bei, res, prop); 2623 2624 out: 2625 return offset + ent_size; 2626 } 2627 2628 /* Enhanced Allocation Initialization */ 2629 void pci_ea_init(struct pci_dev *dev) 2630 { 2631 int ea; 2632 u8 num_ent; 2633 int offset; 2634 int i; 2635 2636 /* find PCI EA capability in list */ 2637 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2638 if (!ea) 2639 return; 2640 2641 /* determine the number of entries */ 2642 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2643 &num_ent); 2644 num_ent &= PCI_EA_NUM_ENT_MASK; 2645 2646 offset = ea + PCI_EA_FIRST_ENT; 2647 2648 /* Skip DWORD 2 for type 1 functions */ 2649 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2650 offset += 4; 2651 2652 /* parse each EA entry */ 2653 for (i = 0; i < num_ent; ++i) 2654 offset = pci_ea_read(dev, offset); 2655 } 2656 2657 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2658 struct pci_cap_saved_state *new_cap) 2659 { 2660 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2661 } 2662 2663 /** 2664 * _pci_add_cap_save_buffer - allocate buffer for saving given 2665 * capability registers 2666 * @dev: the PCI device 2667 * @cap: the capability to allocate the buffer for 2668 * @extended: Standard or Extended capability ID 2669 * @size: requested size of the buffer 2670 */ 2671 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2672 bool extended, unsigned int size) 2673 { 2674 int pos; 2675 struct pci_cap_saved_state *save_state; 2676 2677 if (extended) 2678 pos = pci_find_ext_capability(dev, cap); 2679 else 2680 pos = pci_find_capability(dev, cap); 2681 2682 if (!pos) 2683 return 0; 2684 2685 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2686 if (!save_state) 2687 return -ENOMEM; 2688 2689 save_state->cap.cap_nr = cap; 2690 save_state->cap.cap_extended = extended; 2691 save_state->cap.size = size; 2692 pci_add_saved_cap(dev, save_state); 2693 2694 return 0; 2695 } 2696 2697 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2698 { 2699 return _pci_add_cap_save_buffer(dev, cap, false, size); 2700 } 2701 2702 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2703 { 2704 return _pci_add_cap_save_buffer(dev, cap, true, size); 2705 } 2706 2707 /** 2708 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2709 * @dev: the PCI device 2710 */ 2711 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2712 { 2713 int error; 2714 2715 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2716 PCI_EXP_SAVE_REGS * sizeof(u16)); 2717 if (error) 2718 dev_err(&dev->dev, 2719 "unable to preallocate PCI Express save buffer\n"); 2720 2721 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2722 if (error) 2723 dev_err(&dev->dev, 2724 "unable to preallocate PCI-X save buffer\n"); 2725 2726 pci_allocate_vc_save_buffers(dev); 2727 } 2728 2729 void pci_free_cap_save_buffers(struct pci_dev *dev) 2730 { 2731 struct pci_cap_saved_state *tmp; 2732 struct hlist_node *n; 2733 2734 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2735 kfree(tmp); 2736 } 2737 2738 /** 2739 * pci_configure_ari - enable or disable ARI forwarding 2740 * @dev: the PCI device 2741 * 2742 * If @dev and its upstream bridge both support ARI, enable ARI in the 2743 * bridge. Otherwise, disable ARI in the bridge. 2744 */ 2745 void pci_configure_ari(struct pci_dev *dev) 2746 { 2747 u32 cap; 2748 struct pci_dev *bridge; 2749 2750 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2751 return; 2752 2753 bridge = dev->bus->self; 2754 if (!bridge) 2755 return; 2756 2757 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2758 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2759 return; 2760 2761 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2762 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2763 PCI_EXP_DEVCTL2_ARI); 2764 bridge->ari_enabled = 1; 2765 } else { 2766 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2767 PCI_EXP_DEVCTL2_ARI); 2768 bridge->ari_enabled = 0; 2769 } 2770 } 2771 2772 static int pci_acs_enable; 2773 2774 /** 2775 * pci_request_acs - ask for ACS to be enabled if supported 2776 */ 2777 void pci_request_acs(void) 2778 { 2779 pci_acs_enable = 1; 2780 } 2781 2782 /** 2783 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2784 * @dev: the PCI device 2785 */ 2786 static void pci_std_enable_acs(struct pci_dev *dev) 2787 { 2788 int pos; 2789 u16 cap; 2790 u16 ctrl; 2791 2792 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2793 if (!pos) 2794 return; 2795 2796 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2797 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2798 2799 /* Source Validation */ 2800 ctrl |= (cap & PCI_ACS_SV); 2801 2802 /* P2P Request Redirect */ 2803 ctrl |= (cap & PCI_ACS_RR); 2804 2805 /* P2P Completion Redirect */ 2806 ctrl |= (cap & PCI_ACS_CR); 2807 2808 /* Upstream Forwarding */ 2809 ctrl |= (cap & PCI_ACS_UF); 2810 2811 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2812 } 2813 2814 /** 2815 * pci_enable_acs - enable ACS if hardware support it 2816 * @dev: the PCI device 2817 */ 2818 void pci_enable_acs(struct pci_dev *dev) 2819 { 2820 if (!pci_acs_enable) 2821 return; 2822 2823 if (!pci_dev_specific_enable_acs(dev)) 2824 return; 2825 2826 pci_std_enable_acs(dev); 2827 } 2828 2829 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2830 { 2831 int pos; 2832 u16 cap, ctrl; 2833 2834 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2835 if (!pos) 2836 return false; 2837 2838 /* 2839 * Except for egress control, capabilities are either required 2840 * or only required if controllable. Features missing from the 2841 * capability field can therefore be assumed as hard-wired enabled. 2842 */ 2843 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2844 acs_flags &= (cap | PCI_ACS_EC); 2845 2846 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2847 return (ctrl & acs_flags) == acs_flags; 2848 } 2849 2850 /** 2851 * pci_acs_enabled - test ACS against required flags for a given device 2852 * @pdev: device to test 2853 * @acs_flags: required PCI ACS flags 2854 * 2855 * Return true if the device supports the provided flags. Automatically 2856 * filters out flags that are not implemented on multifunction devices. 2857 * 2858 * Note that this interface checks the effective ACS capabilities of the 2859 * device rather than the actual capabilities. For instance, most single 2860 * function endpoints are not required to support ACS because they have no 2861 * opportunity for peer-to-peer access. We therefore return 'true' 2862 * regardless of whether the device exposes an ACS capability. This makes 2863 * it much easier for callers of this function to ignore the actual type 2864 * or topology of the device when testing ACS support. 2865 */ 2866 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2867 { 2868 int ret; 2869 2870 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2871 if (ret >= 0) 2872 return ret > 0; 2873 2874 /* 2875 * Conventional PCI and PCI-X devices never support ACS, either 2876 * effectively or actually. The shared bus topology implies that 2877 * any device on the bus can receive or snoop DMA. 2878 */ 2879 if (!pci_is_pcie(pdev)) 2880 return false; 2881 2882 switch (pci_pcie_type(pdev)) { 2883 /* 2884 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2885 * but since their primary interface is PCI/X, we conservatively 2886 * handle them as we would a non-PCIe device. 2887 */ 2888 case PCI_EXP_TYPE_PCIE_BRIDGE: 2889 /* 2890 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2891 * applicable... must never implement an ACS Extended Capability...". 2892 * This seems arbitrary, but we take a conservative interpretation 2893 * of this statement. 2894 */ 2895 case PCI_EXP_TYPE_PCI_BRIDGE: 2896 case PCI_EXP_TYPE_RC_EC: 2897 return false; 2898 /* 2899 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2900 * implement ACS in order to indicate their peer-to-peer capabilities, 2901 * regardless of whether they are single- or multi-function devices. 2902 */ 2903 case PCI_EXP_TYPE_DOWNSTREAM: 2904 case PCI_EXP_TYPE_ROOT_PORT: 2905 return pci_acs_flags_enabled(pdev, acs_flags); 2906 /* 2907 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2908 * implemented by the remaining PCIe types to indicate peer-to-peer 2909 * capabilities, but only when they are part of a multifunction 2910 * device. The footnote for section 6.12 indicates the specific 2911 * PCIe types included here. 2912 */ 2913 case PCI_EXP_TYPE_ENDPOINT: 2914 case PCI_EXP_TYPE_UPSTREAM: 2915 case PCI_EXP_TYPE_LEG_END: 2916 case PCI_EXP_TYPE_RC_END: 2917 if (!pdev->multifunction) 2918 break; 2919 2920 return pci_acs_flags_enabled(pdev, acs_flags); 2921 } 2922 2923 /* 2924 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2925 * to single function devices with the exception of downstream ports. 2926 */ 2927 return true; 2928 } 2929 2930 /** 2931 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2932 * @start: starting downstream device 2933 * @end: ending upstream device or NULL to search to the root bus 2934 * @acs_flags: required flags 2935 * 2936 * Walk up a device tree from start to end testing PCI ACS support. If 2937 * any step along the way does not support the required flags, return false. 2938 */ 2939 bool pci_acs_path_enabled(struct pci_dev *start, 2940 struct pci_dev *end, u16 acs_flags) 2941 { 2942 struct pci_dev *pdev, *parent = start; 2943 2944 do { 2945 pdev = parent; 2946 2947 if (!pci_acs_enabled(pdev, acs_flags)) 2948 return false; 2949 2950 if (pci_is_root_bus(pdev->bus)) 2951 return (end == NULL); 2952 2953 parent = pdev->bus->self; 2954 } while (pdev != end); 2955 2956 return true; 2957 } 2958 2959 /** 2960 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2961 * @dev: the PCI device 2962 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2963 * 2964 * Perform INTx swizzling for a device behind one level of bridge. This is 2965 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2966 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2967 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2968 * the PCI Express Base Specification, Revision 2.1) 2969 */ 2970 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2971 { 2972 int slot; 2973 2974 if (pci_ari_enabled(dev->bus)) 2975 slot = 0; 2976 else 2977 slot = PCI_SLOT(dev->devfn); 2978 2979 return (((pin - 1) + slot) % 4) + 1; 2980 } 2981 2982 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2983 { 2984 u8 pin; 2985 2986 pin = dev->pin; 2987 if (!pin) 2988 return -1; 2989 2990 while (!pci_is_root_bus(dev->bus)) { 2991 pin = pci_swizzle_interrupt_pin(dev, pin); 2992 dev = dev->bus->self; 2993 } 2994 *bridge = dev; 2995 return pin; 2996 } 2997 2998 /** 2999 * pci_common_swizzle - swizzle INTx all the way to root bridge 3000 * @dev: the PCI device 3001 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3002 * 3003 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3004 * bridges all the way up to a PCI root bus. 3005 */ 3006 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3007 { 3008 u8 pin = *pinp; 3009 3010 while (!pci_is_root_bus(dev->bus)) { 3011 pin = pci_swizzle_interrupt_pin(dev, pin); 3012 dev = dev->bus->self; 3013 } 3014 *pinp = pin; 3015 return PCI_SLOT(dev->devfn); 3016 } 3017 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3018 3019 /** 3020 * pci_release_region - Release a PCI bar 3021 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3022 * @bar: BAR to release 3023 * 3024 * Releases the PCI I/O and memory resources previously reserved by a 3025 * successful call to pci_request_region. Call this function only 3026 * after all use of the PCI regions has ceased. 3027 */ 3028 void pci_release_region(struct pci_dev *pdev, int bar) 3029 { 3030 struct pci_devres *dr; 3031 3032 if (pci_resource_len(pdev, bar) == 0) 3033 return; 3034 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3035 release_region(pci_resource_start(pdev, bar), 3036 pci_resource_len(pdev, bar)); 3037 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3038 release_mem_region(pci_resource_start(pdev, bar), 3039 pci_resource_len(pdev, bar)); 3040 3041 dr = find_pci_dr(pdev); 3042 if (dr) 3043 dr->region_mask &= ~(1 << bar); 3044 } 3045 EXPORT_SYMBOL(pci_release_region); 3046 3047 /** 3048 * __pci_request_region - Reserved PCI I/O and memory resource 3049 * @pdev: PCI device whose resources are to be reserved 3050 * @bar: BAR to be reserved 3051 * @res_name: Name to be associated with resource. 3052 * @exclusive: whether the region access is exclusive or not 3053 * 3054 * Mark the PCI region associated with PCI device @pdev BR @bar as 3055 * being reserved by owner @res_name. Do not access any 3056 * address inside the PCI regions unless this call returns 3057 * successfully. 3058 * 3059 * If @exclusive is set, then the region is marked so that userspace 3060 * is explicitly not allowed to map the resource via /dev/mem or 3061 * sysfs MMIO access. 3062 * 3063 * Returns 0 on success, or %EBUSY on error. A warning 3064 * message is also printed on failure. 3065 */ 3066 static int __pci_request_region(struct pci_dev *pdev, int bar, 3067 const char *res_name, int exclusive) 3068 { 3069 struct pci_devres *dr; 3070 3071 if (pci_resource_len(pdev, bar) == 0) 3072 return 0; 3073 3074 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3075 if (!request_region(pci_resource_start(pdev, bar), 3076 pci_resource_len(pdev, bar), res_name)) 3077 goto err_out; 3078 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3079 if (!__request_mem_region(pci_resource_start(pdev, bar), 3080 pci_resource_len(pdev, bar), res_name, 3081 exclusive)) 3082 goto err_out; 3083 } 3084 3085 dr = find_pci_dr(pdev); 3086 if (dr) 3087 dr->region_mask |= 1 << bar; 3088 3089 return 0; 3090 3091 err_out: 3092 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 3093 &pdev->resource[bar]); 3094 return -EBUSY; 3095 } 3096 3097 /** 3098 * pci_request_region - Reserve PCI I/O and memory resource 3099 * @pdev: PCI device whose resources are to be reserved 3100 * @bar: BAR to be reserved 3101 * @res_name: Name to be associated with resource 3102 * 3103 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3104 * being reserved by owner @res_name. Do not access any 3105 * address inside the PCI regions unless this call returns 3106 * successfully. 3107 * 3108 * Returns 0 on success, or %EBUSY on error. A warning 3109 * message is also printed on failure. 3110 */ 3111 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3112 { 3113 return __pci_request_region(pdev, bar, res_name, 0); 3114 } 3115 EXPORT_SYMBOL(pci_request_region); 3116 3117 /** 3118 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3119 * @pdev: PCI device whose resources are to be reserved 3120 * @bar: BAR to be reserved 3121 * @res_name: Name to be associated with resource. 3122 * 3123 * Mark the PCI region associated with PCI device @pdev BR @bar as 3124 * being reserved by owner @res_name. Do not access any 3125 * address inside the PCI regions unless this call returns 3126 * successfully. 3127 * 3128 * Returns 0 on success, or %EBUSY on error. A warning 3129 * message is also printed on failure. 3130 * 3131 * The key difference that _exclusive makes it that userspace is 3132 * explicitly not allowed to map the resource via /dev/mem or 3133 * sysfs. 3134 */ 3135 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3136 const char *res_name) 3137 { 3138 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3139 } 3140 EXPORT_SYMBOL(pci_request_region_exclusive); 3141 3142 /** 3143 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3144 * @pdev: PCI device whose resources were previously reserved 3145 * @bars: Bitmask of BARs to be released 3146 * 3147 * Release selected PCI I/O and memory resources previously reserved. 3148 * Call this function only after all use of the PCI regions has ceased. 3149 */ 3150 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3151 { 3152 int i; 3153 3154 for (i = 0; i < 6; i++) 3155 if (bars & (1 << i)) 3156 pci_release_region(pdev, i); 3157 } 3158 EXPORT_SYMBOL(pci_release_selected_regions); 3159 3160 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3161 const char *res_name, int excl) 3162 { 3163 int i; 3164 3165 for (i = 0; i < 6; i++) 3166 if (bars & (1 << i)) 3167 if (__pci_request_region(pdev, i, res_name, excl)) 3168 goto err_out; 3169 return 0; 3170 3171 err_out: 3172 while (--i >= 0) 3173 if (bars & (1 << i)) 3174 pci_release_region(pdev, i); 3175 3176 return -EBUSY; 3177 } 3178 3179 3180 /** 3181 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3182 * @pdev: PCI device whose resources are to be reserved 3183 * @bars: Bitmask of BARs to be requested 3184 * @res_name: Name to be associated with resource 3185 */ 3186 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3187 const char *res_name) 3188 { 3189 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3190 } 3191 EXPORT_SYMBOL(pci_request_selected_regions); 3192 3193 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3194 const char *res_name) 3195 { 3196 return __pci_request_selected_regions(pdev, bars, res_name, 3197 IORESOURCE_EXCLUSIVE); 3198 } 3199 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3200 3201 /** 3202 * pci_release_regions - Release reserved PCI I/O and memory resources 3203 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3204 * 3205 * Releases all PCI I/O and memory resources previously reserved by a 3206 * successful call to pci_request_regions. Call this function only 3207 * after all use of the PCI regions has ceased. 3208 */ 3209 3210 void pci_release_regions(struct pci_dev *pdev) 3211 { 3212 pci_release_selected_regions(pdev, (1 << 6) - 1); 3213 } 3214 EXPORT_SYMBOL(pci_release_regions); 3215 3216 /** 3217 * pci_request_regions - Reserved PCI I/O and memory resources 3218 * @pdev: PCI device whose resources are to be reserved 3219 * @res_name: Name to be associated with resource. 3220 * 3221 * Mark all PCI regions associated with PCI device @pdev as 3222 * being reserved by owner @res_name. Do not access any 3223 * address inside the PCI regions unless this call returns 3224 * successfully. 3225 * 3226 * Returns 0 on success, or %EBUSY on error. A warning 3227 * message is also printed on failure. 3228 */ 3229 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3230 { 3231 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3232 } 3233 EXPORT_SYMBOL(pci_request_regions); 3234 3235 /** 3236 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3237 * @pdev: PCI device whose resources are to be reserved 3238 * @res_name: Name to be associated with resource. 3239 * 3240 * Mark all PCI regions associated with PCI device @pdev as 3241 * being reserved by owner @res_name. Do not access any 3242 * address inside the PCI regions unless this call returns 3243 * successfully. 3244 * 3245 * pci_request_regions_exclusive() will mark the region so that 3246 * /dev/mem and the sysfs MMIO access will not be allowed. 3247 * 3248 * Returns 0 on success, or %EBUSY on error. A warning 3249 * message is also printed on failure. 3250 */ 3251 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3252 { 3253 return pci_request_selected_regions_exclusive(pdev, 3254 ((1 << 6) - 1), res_name); 3255 } 3256 EXPORT_SYMBOL(pci_request_regions_exclusive); 3257 3258 #ifdef PCI_IOBASE 3259 struct io_range { 3260 struct list_head list; 3261 phys_addr_t start; 3262 resource_size_t size; 3263 }; 3264 3265 static LIST_HEAD(io_range_list); 3266 static DEFINE_SPINLOCK(io_range_lock); 3267 #endif 3268 3269 /* 3270 * Record the PCI IO range (expressed as CPU physical address + size). 3271 * Return a negative value if an error has occured, zero otherwise 3272 */ 3273 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3274 { 3275 int err = 0; 3276 3277 #ifdef PCI_IOBASE 3278 struct io_range *range; 3279 resource_size_t allocated_size = 0; 3280 3281 /* check if the range hasn't been previously recorded */ 3282 spin_lock(&io_range_lock); 3283 list_for_each_entry(range, &io_range_list, list) { 3284 if (addr >= range->start && addr + size <= range->start + size) { 3285 /* range already registered, bail out */ 3286 goto end_register; 3287 } 3288 allocated_size += range->size; 3289 } 3290 3291 /* range not registed yet, check for available space */ 3292 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3293 /* if it's too big check if 64K space can be reserved */ 3294 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3295 err = -E2BIG; 3296 goto end_register; 3297 } 3298 3299 size = SZ_64K; 3300 pr_warn("Requested IO range too big, new size set to 64K\n"); 3301 } 3302 3303 /* add the range to the list */ 3304 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3305 if (!range) { 3306 err = -ENOMEM; 3307 goto end_register; 3308 } 3309 3310 range->start = addr; 3311 range->size = size; 3312 3313 list_add_tail(&range->list, &io_range_list); 3314 3315 end_register: 3316 spin_unlock(&io_range_lock); 3317 #endif 3318 3319 return err; 3320 } 3321 3322 phys_addr_t pci_pio_to_address(unsigned long pio) 3323 { 3324 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3325 3326 #ifdef PCI_IOBASE 3327 struct io_range *range; 3328 resource_size_t allocated_size = 0; 3329 3330 if (pio > IO_SPACE_LIMIT) 3331 return address; 3332 3333 spin_lock(&io_range_lock); 3334 list_for_each_entry(range, &io_range_list, list) { 3335 if (pio >= allocated_size && pio < allocated_size + range->size) { 3336 address = range->start + pio - allocated_size; 3337 break; 3338 } 3339 allocated_size += range->size; 3340 } 3341 spin_unlock(&io_range_lock); 3342 #endif 3343 3344 return address; 3345 } 3346 3347 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3348 { 3349 #ifdef PCI_IOBASE 3350 struct io_range *res; 3351 resource_size_t offset = 0; 3352 unsigned long addr = -1; 3353 3354 spin_lock(&io_range_lock); 3355 list_for_each_entry(res, &io_range_list, list) { 3356 if (address >= res->start && address < res->start + res->size) { 3357 addr = address - res->start + offset; 3358 break; 3359 } 3360 offset += res->size; 3361 } 3362 spin_unlock(&io_range_lock); 3363 3364 return addr; 3365 #else 3366 if (address > IO_SPACE_LIMIT) 3367 return (unsigned long)-1; 3368 3369 return (unsigned long) address; 3370 #endif 3371 } 3372 3373 /** 3374 * pci_remap_iospace - Remap the memory mapped I/O space 3375 * @res: Resource describing the I/O space 3376 * @phys_addr: physical address of range to be mapped 3377 * 3378 * Remap the memory mapped I/O space described by the @res 3379 * and the CPU physical address @phys_addr into virtual address space. 3380 * Only architectures that have memory mapped IO functions defined 3381 * (and the PCI_IOBASE value defined) should call this function. 3382 */ 3383 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3384 { 3385 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3386 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3387 3388 if (!(res->flags & IORESOURCE_IO)) 3389 return -EINVAL; 3390 3391 if (res->end > IO_SPACE_LIMIT) 3392 return -EINVAL; 3393 3394 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3395 pgprot_device(PAGE_KERNEL)); 3396 #else 3397 /* this architecture does not have memory mapped I/O space, 3398 so this function should never be called */ 3399 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3400 return -ENODEV; 3401 #endif 3402 } 3403 EXPORT_SYMBOL(pci_remap_iospace); 3404 3405 /** 3406 * pci_unmap_iospace - Unmap the memory mapped I/O space 3407 * @res: resource to be unmapped 3408 * 3409 * Unmap the CPU virtual address @res from virtual address space. 3410 * Only architectures that have memory mapped IO functions defined 3411 * (and the PCI_IOBASE value defined) should call this function. 3412 */ 3413 void pci_unmap_iospace(struct resource *res) 3414 { 3415 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3416 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3417 3418 unmap_kernel_range(vaddr, resource_size(res)); 3419 #endif 3420 } 3421 EXPORT_SYMBOL(pci_unmap_iospace); 3422 3423 /** 3424 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3425 * @dev: Generic device to remap IO address for 3426 * @offset: Resource address to map 3427 * @size: Size of map 3428 * 3429 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3430 * detach. 3431 */ 3432 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3433 resource_size_t offset, 3434 resource_size_t size) 3435 { 3436 void __iomem **ptr, *addr; 3437 3438 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3439 if (!ptr) 3440 return NULL; 3441 3442 addr = pci_remap_cfgspace(offset, size); 3443 if (addr) { 3444 *ptr = addr; 3445 devres_add(dev, ptr); 3446 } else 3447 devres_free(ptr); 3448 3449 return addr; 3450 } 3451 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3452 3453 /** 3454 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3455 * @dev: generic device to handle the resource for 3456 * @res: configuration space resource to be handled 3457 * 3458 * Checks that a resource is a valid memory region, requests the memory 3459 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3460 * proper PCI configuration space memory attributes are guaranteed. 3461 * 3462 * All operations are managed and will be undone on driver detach. 3463 * 3464 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3465 * on failure. Usage example: 3466 * 3467 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3468 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3469 * if (IS_ERR(base)) 3470 * return PTR_ERR(base); 3471 */ 3472 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3473 struct resource *res) 3474 { 3475 resource_size_t size; 3476 const char *name; 3477 void __iomem *dest_ptr; 3478 3479 BUG_ON(!dev); 3480 3481 if (!res || resource_type(res) != IORESOURCE_MEM) { 3482 dev_err(dev, "invalid resource\n"); 3483 return IOMEM_ERR_PTR(-EINVAL); 3484 } 3485 3486 size = resource_size(res); 3487 name = res->name ?: dev_name(dev); 3488 3489 if (!devm_request_mem_region(dev, res->start, size, name)) { 3490 dev_err(dev, "can't request region for resource %pR\n", res); 3491 return IOMEM_ERR_PTR(-EBUSY); 3492 } 3493 3494 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3495 if (!dest_ptr) { 3496 dev_err(dev, "ioremap failed for resource %pR\n", res); 3497 devm_release_mem_region(dev, res->start, size); 3498 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3499 } 3500 3501 return dest_ptr; 3502 } 3503 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3504 3505 static void __pci_set_master(struct pci_dev *dev, bool enable) 3506 { 3507 u16 old_cmd, cmd; 3508 3509 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3510 if (enable) 3511 cmd = old_cmd | PCI_COMMAND_MASTER; 3512 else 3513 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3514 if (cmd != old_cmd) { 3515 dev_dbg(&dev->dev, "%s bus mastering\n", 3516 enable ? "enabling" : "disabling"); 3517 pci_write_config_word(dev, PCI_COMMAND, cmd); 3518 } 3519 dev->is_busmaster = enable; 3520 } 3521 3522 /** 3523 * pcibios_setup - process "pci=" kernel boot arguments 3524 * @str: string used to pass in "pci=" kernel boot arguments 3525 * 3526 * Process kernel boot arguments. This is the default implementation. 3527 * Architecture specific implementations can override this as necessary. 3528 */ 3529 char * __weak __init pcibios_setup(char *str) 3530 { 3531 return str; 3532 } 3533 3534 /** 3535 * pcibios_set_master - enable PCI bus-mastering for device dev 3536 * @dev: the PCI device to enable 3537 * 3538 * Enables PCI bus-mastering for the device. This is the default 3539 * implementation. Architecture specific implementations can override 3540 * this if necessary. 3541 */ 3542 void __weak pcibios_set_master(struct pci_dev *dev) 3543 { 3544 u8 lat; 3545 3546 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3547 if (pci_is_pcie(dev)) 3548 return; 3549 3550 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3551 if (lat < 16) 3552 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3553 else if (lat > pcibios_max_latency) 3554 lat = pcibios_max_latency; 3555 else 3556 return; 3557 3558 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3559 } 3560 3561 /** 3562 * pci_set_master - enables bus-mastering for device dev 3563 * @dev: the PCI device to enable 3564 * 3565 * Enables bus-mastering on the device and calls pcibios_set_master() 3566 * to do the needed arch specific settings. 3567 */ 3568 void pci_set_master(struct pci_dev *dev) 3569 { 3570 __pci_set_master(dev, true); 3571 pcibios_set_master(dev); 3572 } 3573 EXPORT_SYMBOL(pci_set_master); 3574 3575 /** 3576 * pci_clear_master - disables bus-mastering for device dev 3577 * @dev: the PCI device to disable 3578 */ 3579 void pci_clear_master(struct pci_dev *dev) 3580 { 3581 __pci_set_master(dev, false); 3582 } 3583 EXPORT_SYMBOL(pci_clear_master); 3584 3585 /** 3586 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3587 * @dev: the PCI device for which MWI is to be enabled 3588 * 3589 * Helper function for pci_set_mwi. 3590 * Originally copied from drivers/net/acenic.c. 3591 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3592 * 3593 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3594 */ 3595 int pci_set_cacheline_size(struct pci_dev *dev) 3596 { 3597 u8 cacheline_size; 3598 3599 if (!pci_cache_line_size) 3600 return -EINVAL; 3601 3602 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3603 equal to or multiple of the right value. */ 3604 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3605 if (cacheline_size >= pci_cache_line_size && 3606 (cacheline_size % pci_cache_line_size) == 0) 3607 return 0; 3608 3609 /* Write the correct value. */ 3610 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3611 /* Read it back. */ 3612 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3613 if (cacheline_size == pci_cache_line_size) 3614 return 0; 3615 3616 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 3617 pci_cache_line_size << 2); 3618 3619 return -EINVAL; 3620 } 3621 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3622 3623 /** 3624 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3625 * @dev: the PCI device for which MWI is enabled 3626 * 3627 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3628 * 3629 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3630 */ 3631 int pci_set_mwi(struct pci_dev *dev) 3632 { 3633 #ifdef PCI_DISABLE_MWI 3634 return 0; 3635 #else 3636 int rc; 3637 u16 cmd; 3638 3639 rc = pci_set_cacheline_size(dev); 3640 if (rc) 3641 return rc; 3642 3643 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3644 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3645 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 3646 cmd |= PCI_COMMAND_INVALIDATE; 3647 pci_write_config_word(dev, PCI_COMMAND, cmd); 3648 } 3649 return 0; 3650 #endif 3651 } 3652 EXPORT_SYMBOL(pci_set_mwi); 3653 3654 /** 3655 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3656 * @dev: the PCI device for which MWI is enabled 3657 * 3658 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3659 * Callers are not required to check the return value. 3660 * 3661 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3662 */ 3663 int pci_try_set_mwi(struct pci_dev *dev) 3664 { 3665 #ifdef PCI_DISABLE_MWI 3666 return 0; 3667 #else 3668 return pci_set_mwi(dev); 3669 #endif 3670 } 3671 EXPORT_SYMBOL(pci_try_set_mwi); 3672 3673 /** 3674 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3675 * @dev: the PCI device to disable 3676 * 3677 * Disables PCI Memory-Write-Invalidate transaction on the device 3678 */ 3679 void pci_clear_mwi(struct pci_dev *dev) 3680 { 3681 #ifndef PCI_DISABLE_MWI 3682 u16 cmd; 3683 3684 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3685 if (cmd & PCI_COMMAND_INVALIDATE) { 3686 cmd &= ~PCI_COMMAND_INVALIDATE; 3687 pci_write_config_word(dev, PCI_COMMAND, cmd); 3688 } 3689 #endif 3690 } 3691 EXPORT_SYMBOL(pci_clear_mwi); 3692 3693 /** 3694 * pci_intx - enables/disables PCI INTx for device dev 3695 * @pdev: the PCI device to operate on 3696 * @enable: boolean: whether to enable or disable PCI INTx 3697 * 3698 * Enables/disables PCI INTx for device dev 3699 */ 3700 void pci_intx(struct pci_dev *pdev, int enable) 3701 { 3702 u16 pci_command, new; 3703 3704 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3705 3706 if (enable) 3707 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3708 else 3709 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3710 3711 if (new != pci_command) { 3712 struct pci_devres *dr; 3713 3714 pci_write_config_word(pdev, PCI_COMMAND, new); 3715 3716 dr = find_pci_dr(pdev); 3717 if (dr && !dr->restore_intx) { 3718 dr->restore_intx = 1; 3719 dr->orig_intx = !enable; 3720 } 3721 } 3722 } 3723 EXPORT_SYMBOL_GPL(pci_intx); 3724 3725 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3726 { 3727 struct pci_bus *bus = dev->bus; 3728 bool mask_updated = true; 3729 u32 cmd_status_dword; 3730 u16 origcmd, newcmd; 3731 unsigned long flags; 3732 bool irq_pending; 3733 3734 /* 3735 * We do a single dword read to retrieve both command and status. 3736 * Document assumptions that make this possible. 3737 */ 3738 BUILD_BUG_ON(PCI_COMMAND % 4); 3739 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3740 3741 raw_spin_lock_irqsave(&pci_lock, flags); 3742 3743 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3744 3745 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3746 3747 /* 3748 * Check interrupt status register to see whether our device 3749 * triggered the interrupt (when masking) or the next IRQ is 3750 * already pending (when unmasking). 3751 */ 3752 if (mask != irq_pending) { 3753 mask_updated = false; 3754 goto done; 3755 } 3756 3757 origcmd = cmd_status_dword; 3758 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3759 if (mask) 3760 newcmd |= PCI_COMMAND_INTX_DISABLE; 3761 if (newcmd != origcmd) 3762 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3763 3764 done: 3765 raw_spin_unlock_irqrestore(&pci_lock, flags); 3766 3767 return mask_updated; 3768 } 3769 3770 /** 3771 * pci_check_and_mask_intx - mask INTx on pending interrupt 3772 * @dev: the PCI device to operate on 3773 * 3774 * Check if the device dev has its INTx line asserted, mask it and 3775 * return true in that case. False is returned if no interrupt was 3776 * pending. 3777 */ 3778 bool pci_check_and_mask_intx(struct pci_dev *dev) 3779 { 3780 return pci_check_and_set_intx_mask(dev, true); 3781 } 3782 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3783 3784 /** 3785 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3786 * @dev: the PCI device to operate on 3787 * 3788 * Check if the device dev has its INTx line asserted, unmask it if not 3789 * and return true. False is returned and the mask remains active if 3790 * there was still an interrupt pending. 3791 */ 3792 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3793 { 3794 return pci_check_and_set_intx_mask(dev, false); 3795 } 3796 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3797 3798 /** 3799 * pci_wait_for_pending_transaction - waits for pending transaction 3800 * @dev: the PCI device to operate on 3801 * 3802 * Return 0 if transaction is pending 1 otherwise. 3803 */ 3804 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3805 { 3806 if (!pci_is_pcie(dev)) 3807 return 1; 3808 3809 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3810 PCI_EXP_DEVSTA_TRPND); 3811 } 3812 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3813 3814 /* 3815 * We should only need to wait 100ms after FLR, but some devices take longer. 3816 * Wait for up to 1000ms for config space to return something other than -1. 3817 * Intel IGD requires this when an LCD panel is attached. We read the 2nd 3818 * dword because VFs don't implement the 1st dword. 3819 */ 3820 static void pci_flr_wait(struct pci_dev *dev) 3821 { 3822 int i = 0; 3823 u32 id; 3824 3825 do { 3826 msleep(100); 3827 pci_read_config_dword(dev, PCI_COMMAND, &id); 3828 } while (i++ < 10 && id == ~0); 3829 3830 if (id == ~0) 3831 dev_warn(&dev->dev, "Failed to return from FLR\n"); 3832 else if (i > 1) 3833 dev_info(&dev->dev, "Required additional %dms to return from FLR\n", 3834 (i - 1) * 100); 3835 } 3836 3837 /** 3838 * pcie_has_flr - check if a device supports function level resets 3839 * @dev: device to check 3840 * 3841 * Returns true if the device advertises support for PCIe function level 3842 * resets. 3843 */ 3844 static bool pcie_has_flr(struct pci_dev *dev) 3845 { 3846 u32 cap; 3847 3848 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 3849 return false; 3850 3851 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3852 return cap & PCI_EXP_DEVCAP_FLR; 3853 } 3854 3855 /** 3856 * pcie_flr - initiate a PCIe function level reset 3857 * @dev: device to reset 3858 * 3859 * Initiate a function level reset on @dev. The caller should ensure the 3860 * device supports FLR before calling this function, e.g. by using the 3861 * pcie_has_flr() helper. 3862 */ 3863 void pcie_flr(struct pci_dev *dev) 3864 { 3865 if (!pci_wait_for_pending_transaction(dev)) 3866 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3867 3868 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3869 pci_flr_wait(dev); 3870 } 3871 EXPORT_SYMBOL_GPL(pcie_flr); 3872 3873 static int pci_af_flr(struct pci_dev *dev, int probe) 3874 { 3875 int pos; 3876 u8 cap; 3877 3878 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3879 if (!pos) 3880 return -ENOTTY; 3881 3882 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 3883 return -ENOTTY; 3884 3885 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3886 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3887 return -ENOTTY; 3888 3889 if (probe) 3890 return 0; 3891 3892 /* 3893 * Wait for Transaction Pending bit to clear. A word-aligned test 3894 * is used, so we use the conrol offset rather than status and shift 3895 * the test bit to match. 3896 */ 3897 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3898 PCI_AF_STATUS_TP << 8)) 3899 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3900 3901 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3902 pci_flr_wait(dev); 3903 return 0; 3904 } 3905 3906 /** 3907 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3908 * @dev: Device to reset. 3909 * @probe: If set, only check if the device can be reset this way. 3910 * 3911 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3912 * unset, it will be reinitialized internally when going from PCI_D3hot to 3913 * PCI_D0. If that's the case and the device is not in a low-power state 3914 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3915 * 3916 * NOTE: This causes the caller to sleep for twice the device power transition 3917 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3918 * by default (i.e. unless the @dev's d3_delay field has a different value). 3919 * Moreover, only devices in D0 can be reset by this function. 3920 */ 3921 static int pci_pm_reset(struct pci_dev *dev, int probe) 3922 { 3923 u16 csr; 3924 3925 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 3926 return -ENOTTY; 3927 3928 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3929 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3930 return -ENOTTY; 3931 3932 if (probe) 3933 return 0; 3934 3935 if (dev->current_state != PCI_D0) 3936 return -EINVAL; 3937 3938 csr &= ~PCI_PM_CTRL_STATE_MASK; 3939 csr |= PCI_D3hot; 3940 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3941 pci_dev_d3_sleep(dev); 3942 3943 csr &= ~PCI_PM_CTRL_STATE_MASK; 3944 csr |= PCI_D0; 3945 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3946 pci_dev_d3_sleep(dev); 3947 3948 return 0; 3949 } 3950 3951 void pci_reset_secondary_bus(struct pci_dev *dev) 3952 { 3953 u16 ctrl; 3954 3955 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3956 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3957 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3958 /* 3959 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3960 * this to 2ms to ensure that we meet the minimum requirement. 3961 */ 3962 msleep(2); 3963 3964 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3965 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3966 3967 /* 3968 * Trhfa for conventional PCI is 2^25 clock cycles. 3969 * Assuming a minimum 33MHz clock this results in a 1s 3970 * delay before we can consider subordinate devices to 3971 * be re-initialized. PCIe has some ways to shorten this, 3972 * but we don't make use of them yet. 3973 */ 3974 ssleep(1); 3975 } 3976 3977 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 3978 { 3979 pci_reset_secondary_bus(dev); 3980 } 3981 3982 /** 3983 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3984 * @dev: Bridge device 3985 * 3986 * Use the bridge control register to assert reset on the secondary bus. 3987 * Devices on the secondary bus are left in power-on state. 3988 */ 3989 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3990 { 3991 pcibios_reset_secondary_bus(dev); 3992 } 3993 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3994 3995 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3996 { 3997 struct pci_dev *pdev; 3998 3999 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4000 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4001 return -ENOTTY; 4002 4003 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4004 if (pdev != dev) 4005 return -ENOTTY; 4006 4007 if (probe) 4008 return 0; 4009 4010 pci_reset_bridge_secondary_bus(dev->bus->self); 4011 4012 return 0; 4013 } 4014 4015 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4016 { 4017 int rc = -ENOTTY; 4018 4019 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4020 return rc; 4021 4022 if (hotplug->ops->reset_slot) 4023 rc = hotplug->ops->reset_slot(hotplug, probe); 4024 4025 module_put(hotplug->ops->owner); 4026 4027 return rc; 4028 } 4029 4030 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4031 { 4032 struct pci_dev *pdev; 4033 4034 if (dev->subordinate || !dev->slot || 4035 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4036 return -ENOTTY; 4037 4038 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4039 if (pdev != dev && pdev->slot == dev->slot) 4040 return -ENOTTY; 4041 4042 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4043 } 4044 4045 static void pci_dev_lock(struct pci_dev *dev) 4046 { 4047 pci_cfg_access_lock(dev); 4048 /* block PM suspend, driver probe, etc. */ 4049 device_lock(&dev->dev); 4050 } 4051 4052 /* Return 1 on successful lock, 0 on contention */ 4053 static int pci_dev_trylock(struct pci_dev *dev) 4054 { 4055 if (pci_cfg_access_trylock(dev)) { 4056 if (device_trylock(&dev->dev)) 4057 return 1; 4058 pci_cfg_access_unlock(dev); 4059 } 4060 4061 return 0; 4062 } 4063 4064 static void pci_dev_unlock(struct pci_dev *dev) 4065 { 4066 device_unlock(&dev->dev); 4067 pci_cfg_access_unlock(dev); 4068 } 4069 4070 static void pci_dev_save_and_disable(struct pci_dev *dev) 4071 { 4072 const struct pci_error_handlers *err_handler = 4073 dev->driver ? dev->driver->err_handler : NULL; 4074 4075 /* 4076 * dev->driver->err_handler->reset_prepare() is protected against 4077 * races with ->remove() by the device lock, which must be held by 4078 * the caller. 4079 */ 4080 if (err_handler && err_handler->reset_prepare) 4081 err_handler->reset_prepare(dev); 4082 4083 /* 4084 * Wake-up device prior to save. PM registers default to D0 after 4085 * reset and a simple register restore doesn't reliably return 4086 * to a non-D0 state anyway. 4087 */ 4088 pci_set_power_state(dev, PCI_D0); 4089 4090 pci_save_state(dev); 4091 /* 4092 * Disable the device by clearing the Command register, except for 4093 * INTx-disable which is set. This not only disables MMIO and I/O port 4094 * BARs, but also prevents the device from being Bus Master, preventing 4095 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4096 * compliant devices, INTx-disable prevents legacy interrupts. 4097 */ 4098 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4099 } 4100 4101 static void pci_dev_restore(struct pci_dev *dev) 4102 { 4103 const struct pci_error_handlers *err_handler = 4104 dev->driver ? dev->driver->err_handler : NULL; 4105 4106 pci_restore_state(dev); 4107 4108 /* 4109 * dev->driver->err_handler->reset_done() is protected against 4110 * races with ->remove() by the device lock, which must be held by 4111 * the caller. 4112 */ 4113 if (err_handler && err_handler->reset_done) 4114 err_handler->reset_done(dev); 4115 } 4116 4117 /** 4118 * __pci_reset_function - reset a PCI device function 4119 * @dev: PCI device to reset 4120 * 4121 * Some devices allow an individual function to be reset without affecting 4122 * other functions in the same device. The PCI device must be responsive 4123 * to PCI config space in order to use this function. 4124 * 4125 * The device function is presumed to be unused when this function is called. 4126 * Resetting the device will make the contents of PCI configuration space 4127 * random, so any caller of this must be prepared to reinitialise the 4128 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4129 * etc. 4130 * 4131 * Returns 0 if the device function was successfully reset or negative if the 4132 * device doesn't support resetting a single function. 4133 */ 4134 int __pci_reset_function(struct pci_dev *dev) 4135 { 4136 int ret; 4137 4138 pci_dev_lock(dev); 4139 ret = __pci_reset_function_locked(dev); 4140 pci_dev_unlock(dev); 4141 4142 return ret; 4143 } 4144 EXPORT_SYMBOL_GPL(__pci_reset_function); 4145 4146 /** 4147 * __pci_reset_function_locked - reset a PCI device function while holding 4148 * the @dev mutex lock. 4149 * @dev: PCI device to reset 4150 * 4151 * Some devices allow an individual function to be reset without affecting 4152 * other functions in the same device. The PCI device must be responsive 4153 * to PCI config space in order to use this function. 4154 * 4155 * The device function is presumed to be unused and the caller is holding 4156 * the device mutex lock when this function is called. 4157 * Resetting the device will make the contents of PCI configuration space 4158 * random, so any caller of this must be prepared to reinitialise the 4159 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4160 * etc. 4161 * 4162 * Returns 0 if the device function was successfully reset or negative if the 4163 * device doesn't support resetting a single function. 4164 */ 4165 int __pci_reset_function_locked(struct pci_dev *dev) 4166 { 4167 int rc; 4168 4169 might_sleep(); 4170 4171 rc = pci_dev_specific_reset(dev, 0); 4172 if (rc != -ENOTTY) 4173 return rc; 4174 if (pcie_has_flr(dev)) { 4175 pcie_flr(dev); 4176 return 0; 4177 } 4178 rc = pci_af_flr(dev, 0); 4179 if (rc != -ENOTTY) 4180 return rc; 4181 rc = pci_pm_reset(dev, 0); 4182 if (rc != -ENOTTY) 4183 return rc; 4184 rc = pci_dev_reset_slot_function(dev, 0); 4185 if (rc != -ENOTTY) 4186 return rc; 4187 return pci_parent_bus_reset(dev, 0); 4188 } 4189 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4190 4191 /** 4192 * pci_probe_reset_function - check whether the device can be safely reset 4193 * @dev: PCI device to reset 4194 * 4195 * Some devices allow an individual function to be reset without affecting 4196 * other functions in the same device. The PCI device must be responsive 4197 * to PCI config space in order to use this function. 4198 * 4199 * Returns 0 if the device function can be reset or negative if the 4200 * device doesn't support resetting a single function. 4201 */ 4202 int pci_probe_reset_function(struct pci_dev *dev) 4203 { 4204 int rc; 4205 4206 might_sleep(); 4207 4208 rc = pci_dev_specific_reset(dev, 1); 4209 if (rc != -ENOTTY) 4210 return rc; 4211 if (pcie_has_flr(dev)) 4212 return 0; 4213 rc = pci_af_flr(dev, 1); 4214 if (rc != -ENOTTY) 4215 return rc; 4216 rc = pci_pm_reset(dev, 1); 4217 if (rc != -ENOTTY) 4218 return rc; 4219 rc = pci_dev_reset_slot_function(dev, 1); 4220 if (rc != -ENOTTY) 4221 return rc; 4222 4223 return pci_parent_bus_reset(dev, 1); 4224 } 4225 4226 /** 4227 * pci_reset_function - quiesce and reset a PCI device function 4228 * @dev: PCI device to reset 4229 * 4230 * Some devices allow an individual function to be reset without affecting 4231 * other functions in the same device. The PCI device must be responsive 4232 * to PCI config space in order to use this function. 4233 * 4234 * This function does not just reset the PCI portion of a device, but 4235 * clears all the state associated with the device. This function differs 4236 * from __pci_reset_function in that it saves and restores device state 4237 * over the reset. 4238 * 4239 * Returns 0 if the device function was successfully reset or negative if the 4240 * device doesn't support resetting a single function. 4241 */ 4242 int pci_reset_function(struct pci_dev *dev) 4243 { 4244 int rc; 4245 4246 rc = pci_probe_reset_function(dev); 4247 if (rc) 4248 return rc; 4249 4250 pci_dev_lock(dev); 4251 pci_dev_save_and_disable(dev); 4252 4253 rc = __pci_reset_function_locked(dev); 4254 4255 pci_dev_restore(dev); 4256 pci_dev_unlock(dev); 4257 4258 return rc; 4259 } 4260 EXPORT_SYMBOL_GPL(pci_reset_function); 4261 4262 /** 4263 * pci_reset_function_locked - quiesce and reset a PCI device function 4264 * @dev: PCI device to reset 4265 * 4266 * Some devices allow an individual function to be reset without affecting 4267 * other functions in the same device. The PCI device must be responsive 4268 * to PCI config space in order to use this function. 4269 * 4270 * This function does not just reset the PCI portion of a device, but 4271 * clears all the state associated with the device. This function differs 4272 * from __pci_reset_function() in that it saves and restores device state 4273 * over the reset. It also differs from pci_reset_function() in that it 4274 * requires the PCI device lock to be held. 4275 * 4276 * Returns 0 if the device function was successfully reset or negative if the 4277 * device doesn't support resetting a single function. 4278 */ 4279 int pci_reset_function_locked(struct pci_dev *dev) 4280 { 4281 int rc; 4282 4283 rc = pci_probe_reset_function(dev); 4284 if (rc) 4285 return rc; 4286 4287 pci_dev_save_and_disable(dev); 4288 4289 rc = __pci_reset_function_locked(dev); 4290 4291 pci_dev_restore(dev); 4292 4293 return rc; 4294 } 4295 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4296 4297 /** 4298 * pci_try_reset_function - quiesce and reset a PCI device function 4299 * @dev: PCI device to reset 4300 * 4301 * Same as above, except return -EAGAIN if unable to lock device. 4302 */ 4303 int pci_try_reset_function(struct pci_dev *dev) 4304 { 4305 int rc; 4306 4307 rc = pci_probe_reset_function(dev); 4308 if (rc) 4309 return rc; 4310 4311 if (!pci_dev_trylock(dev)) 4312 return -EAGAIN; 4313 4314 pci_dev_save_and_disable(dev); 4315 rc = __pci_reset_function_locked(dev); 4316 pci_dev_unlock(dev); 4317 4318 pci_dev_restore(dev); 4319 return rc; 4320 } 4321 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4322 4323 /* Do any devices on or below this bus prevent a bus reset? */ 4324 static bool pci_bus_resetable(struct pci_bus *bus) 4325 { 4326 struct pci_dev *dev; 4327 4328 list_for_each_entry(dev, &bus->devices, bus_list) { 4329 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4330 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4331 return false; 4332 } 4333 4334 return true; 4335 } 4336 4337 /* Lock devices from the top of the tree down */ 4338 static void pci_bus_lock(struct pci_bus *bus) 4339 { 4340 struct pci_dev *dev; 4341 4342 list_for_each_entry(dev, &bus->devices, bus_list) { 4343 pci_dev_lock(dev); 4344 if (dev->subordinate) 4345 pci_bus_lock(dev->subordinate); 4346 } 4347 } 4348 4349 /* Unlock devices from the bottom of the tree up */ 4350 static void pci_bus_unlock(struct pci_bus *bus) 4351 { 4352 struct pci_dev *dev; 4353 4354 list_for_each_entry(dev, &bus->devices, bus_list) { 4355 if (dev->subordinate) 4356 pci_bus_unlock(dev->subordinate); 4357 pci_dev_unlock(dev); 4358 } 4359 } 4360 4361 /* Return 1 on successful lock, 0 on contention */ 4362 static int pci_bus_trylock(struct pci_bus *bus) 4363 { 4364 struct pci_dev *dev; 4365 4366 list_for_each_entry(dev, &bus->devices, bus_list) { 4367 if (!pci_dev_trylock(dev)) 4368 goto unlock; 4369 if (dev->subordinate) { 4370 if (!pci_bus_trylock(dev->subordinate)) { 4371 pci_dev_unlock(dev); 4372 goto unlock; 4373 } 4374 } 4375 } 4376 return 1; 4377 4378 unlock: 4379 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4380 if (dev->subordinate) 4381 pci_bus_unlock(dev->subordinate); 4382 pci_dev_unlock(dev); 4383 } 4384 return 0; 4385 } 4386 4387 /* Do any devices on or below this slot prevent a bus reset? */ 4388 static bool pci_slot_resetable(struct pci_slot *slot) 4389 { 4390 struct pci_dev *dev; 4391 4392 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4393 if (!dev->slot || dev->slot != slot) 4394 continue; 4395 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4396 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4397 return false; 4398 } 4399 4400 return true; 4401 } 4402 4403 /* Lock devices from the top of the tree down */ 4404 static void pci_slot_lock(struct pci_slot *slot) 4405 { 4406 struct pci_dev *dev; 4407 4408 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4409 if (!dev->slot || dev->slot != slot) 4410 continue; 4411 pci_dev_lock(dev); 4412 if (dev->subordinate) 4413 pci_bus_lock(dev->subordinate); 4414 } 4415 } 4416 4417 /* Unlock devices from the bottom of the tree up */ 4418 static void pci_slot_unlock(struct pci_slot *slot) 4419 { 4420 struct pci_dev *dev; 4421 4422 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4423 if (!dev->slot || dev->slot != slot) 4424 continue; 4425 if (dev->subordinate) 4426 pci_bus_unlock(dev->subordinate); 4427 pci_dev_unlock(dev); 4428 } 4429 } 4430 4431 /* Return 1 on successful lock, 0 on contention */ 4432 static int pci_slot_trylock(struct pci_slot *slot) 4433 { 4434 struct pci_dev *dev; 4435 4436 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4437 if (!dev->slot || dev->slot != slot) 4438 continue; 4439 if (!pci_dev_trylock(dev)) 4440 goto unlock; 4441 if (dev->subordinate) { 4442 if (!pci_bus_trylock(dev->subordinate)) { 4443 pci_dev_unlock(dev); 4444 goto unlock; 4445 } 4446 } 4447 } 4448 return 1; 4449 4450 unlock: 4451 list_for_each_entry_continue_reverse(dev, 4452 &slot->bus->devices, bus_list) { 4453 if (!dev->slot || dev->slot != slot) 4454 continue; 4455 if (dev->subordinate) 4456 pci_bus_unlock(dev->subordinate); 4457 pci_dev_unlock(dev); 4458 } 4459 return 0; 4460 } 4461 4462 /* Save and disable devices from the top of the tree down */ 4463 static void pci_bus_save_and_disable(struct pci_bus *bus) 4464 { 4465 struct pci_dev *dev; 4466 4467 list_for_each_entry(dev, &bus->devices, bus_list) { 4468 pci_dev_lock(dev); 4469 pci_dev_save_and_disable(dev); 4470 pci_dev_unlock(dev); 4471 if (dev->subordinate) 4472 pci_bus_save_and_disable(dev->subordinate); 4473 } 4474 } 4475 4476 /* 4477 * Restore devices from top of the tree down - parent bridges need to be 4478 * restored before we can get to subordinate devices. 4479 */ 4480 static void pci_bus_restore(struct pci_bus *bus) 4481 { 4482 struct pci_dev *dev; 4483 4484 list_for_each_entry(dev, &bus->devices, bus_list) { 4485 pci_dev_lock(dev); 4486 pci_dev_restore(dev); 4487 pci_dev_unlock(dev); 4488 if (dev->subordinate) 4489 pci_bus_restore(dev->subordinate); 4490 } 4491 } 4492 4493 /* Save and disable devices from the top of the tree down */ 4494 static void pci_slot_save_and_disable(struct pci_slot *slot) 4495 { 4496 struct pci_dev *dev; 4497 4498 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4499 if (!dev->slot || dev->slot != slot) 4500 continue; 4501 pci_dev_save_and_disable(dev); 4502 if (dev->subordinate) 4503 pci_bus_save_and_disable(dev->subordinate); 4504 } 4505 } 4506 4507 /* 4508 * Restore devices from top of the tree down - parent bridges need to be 4509 * restored before we can get to subordinate devices. 4510 */ 4511 static void pci_slot_restore(struct pci_slot *slot) 4512 { 4513 struct pci_dev *dev; 4514 4515 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4516 if (!dev->slot || dev->slot != slot) 4517 continue; 4518 pci_dev_restore(dev); 4519 if (dev->subordinate) 4520 pci_bus_restore(dev->subordinate); 4521 } 4522 } 4523 4524 static int pci_slot_reset(struct pci_slot *slot, int probe) 4525 { 4526 int rc; 4527 4528 if (!slot || !pci_slot_resetable(slot)) 4529 return -ENOTTY; 4530 4531 if (!probe) 4532 pci_slot_lock(slot); 4533 4534 might_sleep(); 4535 4536 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4537 4538 if (!probe) 4539 pci_slot_unlock(slot); 4540 4541 return rc; 4542 } 4543 4544 /** 4545 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4546 * @slot: PCI slot to probe 4547 * 4548 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4549 */ 4550 int pci_probe_reset_slot(struct pci_slot *slot) 4551 { 4552 return pci_slot_reset(slot, 1); 4553 } 4554 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4555 4556 /** 4557 * pci_reset_slot - reset a PCI slot 4558 * @slot: PCI slot to reset 4559 * 4560 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4561 * independent of other slots. For instance, some slots may support slot power 4562 * control. In the case of a 1:1 bus to slot architecture, this function may 4563 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4564 * Generally a slot reset should be attempted before a bus reset. All of the 4565 * function of the slot and any subordinate buses behind the slot are reset 4566 * through this function. PCI config space of all devices in the slot and 4567 * behind the slot is saved before and restored after reset. 4568 * 4569 * Return 0 on success, non-zero on error. 4570 */ 4571 int pci_reset_slot(struct pci_slot *slot) 4572 { 4573 int rc; 4574 4575 rc = pci_slot_reset(slot, 1); 4576 if (rc) 4577 return rc; 4578 4579 pci_slot_save_and_disable(slot); 4580 4581 rc = pci_slot_reset(slot, 0); 4582 4583 pci_slot_restore(slot); 4584 4585 return rc; 4586 } 4587 EXPORT_SYMBOL_GPL(pci_reset_slot); 4588 4589 /** 4590 * pci_try_reset_slot - Try to reset a PCI slot 4591 * @slot: PCI slot to reset 4592 * 4593 * Same as above except return -EAGAIN if the slot cannot be locked 4594 */ 4595 int pci_try_reset_slot(struct pci_slot *slot) 4596 { 4597 int rc; 4598 4599 rc = pci_slot_reset(slot, 1); 4600 if (rc) 4601 return rc; 4602 4603 pci_slot_save_and_disable(slot); 4604 4605 if (pci_slot_trylock(slot)) { 4606 might_sleep(); 4607 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4608 pci_slot_unlock(slot); 4609 } else 4610 rc = -EAGAIN; 4611 4612 pci_slot_restore(slot); 4613 4614 return rc; 4615 } 4616 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4617 4618 static int pci_bus_reset(struct pci_bus *bus, int probe) 4619 { 4620 if (!bus->self || !pci_bus_resetable(bus)) 4621 return -ENOTTY; 4622 4623 if (probe) 4624 return 0; 4625 4626 pci_bus_lock(bus); 4627 4628 might_sleep(); 4629 4630 pci_reset_bridge_secondary_bus(bus->self); 4631 4632 pci_bus_unlock(bus); 4633 4634 return 0; 4635 } 4636 4637 /** 4638 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4639 * @bus: PCI bus to probe 4640 * 4641 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4642 */ 4643 int pci_probe_reset_bus(struct pci_bus *bus) 4644 { 4645 return pci_bus_reset(bus, 1); 4646 } 4647 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4648 4649 /** 4650 * pci_reset_bus - reset a PCI bus 4651 * @bus: top level PCI bus to reset 4652 * 4653 * Do a bus reset on the given bus and any subordinate buses, saving 4654 * and restoring state of all devices. 4655 * 4656 * Return 0 on success, non-zero on error. 4657 */ 4658 int pci_reset_bus(struct pci_bus *bus) 4659 { 4660 int rc; 4661 4662 rc = pci_bus_reset(bus, 1); 4663 if (rc) 4664 return rc; 4665 4666 pci_bus_save_and_disable(bus); 4667 4668 rc = pci_bus_reset(bus, 0); 4669 4670 pci_bus_restore(bus); 4671 4672 return rc; 4673 } 4674 EXPORT_SYMBOL_GPL(pci_reset_bus); 4675 4676 /** 4677 * pci_try_reset_bus - Try to reset a PCI bus 4678 * @bus: top level PCI bus to reset 4679 * 4680 * Same as above except return -EAGAIN if the bus cannot be locked 4681 */ 4682 int pci_try_reset_bus(struct pci_bus *bus) 4683 { 4684 int rc; 4685 4686 rc = pci_bus_reset(bus, 1); 4687 if (rc) 4688 return rc; 4689 4690 pci_bus_save_and_disable(bus); 4691 4692 if (pci_bus_trylock(bus)) { 4693 might_sleep(); 4694 pci_reset_bridge_secondary_bus(bus->self); 4695 pci_bus_unlock(bus); 4696 } else 4697 rc = -EAGAIN; 4698 4699 pci_bus_restore(bus); 4700 4701 return rc; 4702 } 4703 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4704 4705 /** 4706 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4707 * @dev: PCI device to query 4708 * 4709 * Returns mmrbc: maximum designed memory read count in bytes 4710 * or appropriate error value. 4711 */ 4712 int pcix_get_max_mmrbc(struct pci_dev *dev) 4713 { 4714 int cap; 4715 u32 stat; 4716 4717 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4718 if (!cap) 4719 return -EINVAL; 4720 4721 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4722 return -EINVAL; 4723 4724 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4725 } 4726 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4727 4728 /** 4729 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4730 * @dev: PCI device to query 4731 * 4732 * Returns mmrbc: maximum memory read count in bytes 4733 * or appropriate error value. 4734 */ 4735 int pcix_get_mmrbc(struct pci_dev *dev) 4736 { 4737 int cap; 4738 u16 cmd; 4739 4740 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4741 if (!cap) 4742 return -EINVAL; 4743 4744 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4745 return -EINVAL; 4746 4747 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4748 } 4749 EXPORT_SYMBOL(pcix_get_mmrbc); 4750 4751 /** 4752 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4753 * @dev: PCI device to query 4754 * @mmrbc: maximum memory read count in bytes 4755 * valid values are 512, 1024, 2048, 4096 4756 * 4757 * If possible sets maximum memory read byte count, some bridges have erratas 4758 * that prevent this. 4759 */ 4760 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4761 { 4762 int cap; 4763 u32 stat, v, o; 4764 u16 cmd; 4765 4766 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4767 return -EINVAL; 4768 4769 v = ffs(mmrbc) - 10; 4770 4771 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4772 if (!cap) 4773 return -EINVAL; 4774 4775 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4776 return -EINVAL; 4777 4778 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4779 return -E2BIG; 4780 4781 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4782 return -EINVAL; 4783 4784 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4785 if (o != v) { 4786 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4787 return -EIO; 4788 4789 cmd &= ~PCI_X_CMD_MAX_READ; 4790 cmd |= v << 2; 4791 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4792 return -EIO; 4793 } 4794 return 0; 4795 } 4796 EXPORT_SYMBOL(pcix_set_mmrbc); 4797 4798 /** 4799 * pcie_get_readrq - get PCI Express read request size 4800 * @dev: PCI device to query 4801 * 4802 * Returns maximum memory read request in bytes 4803 * or appropriate error value. 4804 */ 4805 int pcie_get_readrq(struct pci_dev *dev) 4806 { 4807 u16 ctl; 4808 4809 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4810 4811 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4812 } 4813 EXPORT_SYMBOL(pcie_get_readrq); 4814 4815 /** 4816 * pcie_set_readrq - set PCI Express maximum memory read request 4817 * @dev: PCI device to query 4818 * @rq: maximum memory read count in bytes 4819 * valid values are 128, 256, 512, 1024, 2048, 4096 4820 * 4821 * If possible sets maximum memory read request in bytes 4822 */ 4823 int pcie_set_readrq(struct pci_dev *dev, int rq) 4824 { 4825 u16 v; 4826 4827 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4828 return -EINVAL; 4829 4830 /* 4831 * If using the "performance" PCIe config, we clamp the 4832 * read rq size to the max packet size to prevent the 4833 * host bridge generating requests larger than we can 4834 * cope with 4835 */ 4836 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4837 int mps = pcie_get_mps(dev); 4838 4839 if (mps < rq) 4840 rq = mps; 4841 } 4842 4843 v = (ffs(rq) - 8) << 12; 4844 4845 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4846 PCI_EXP_DEVCTL_READRQ, v); 4847 } 4848 EXPORT_SYMBOL(pcie_set_readrq); 4849 4850 /** 4851 * pcie_get_mps - get PCI Express maximum payload size 4852 * @dev: PCI device to query 4853 * 4854 * Returns maximum payload size in bytes 4855 */ 4856 int pcie_get_mps(struct pci_dev *dev) 4857 { 4858 u16 ctl; 4859 4860 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4861 4862 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4863 } 4864 EXPORT_SYMBOL(pcie_get_mps); 4865 4866 /** 4867 * pcie_set_mps - set PCI Express maximum payload size 4868 * @dev: PCI device to query 4869 * @mps: maximum payload size in bytes 4870 * valid values are 128, 256, 512, 1024, 2048, 4096 4871 * 4872 * If possible sets maximum payload size 4873 */ 4874 int pcie_set_mps(struct pci_dev *dev, int mps) 4875 { 4876 u16 v; 4877 4878 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4879 return -EINVAL; 4880 4881 v = ffs(mps) - 8; 4882 if (v > dev->pcie_mpss) 4883 return -EINVAL; 4884 v <<= 5; 4885 4886 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4887 PCI_EXP_DEVCTL_PAYLOAD, v); 4888 } 4889 EXPORT_SYMBOL(pcie_set_mps); 4890 4891 /** 4892 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4893 * @dev: PCI device to query 4894 * @speed: storage for minimum speed 4895 * @width: storage for minimum width 4896 * 4897 * This function will walk up the PCI device chain and determine the minimum 4898 * link width and speed of the device. 4899 */ 4900 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4901 enum pcie_link_width *width) 4902 { 4903 int ret; 4904 4905 *speed = PCI_SPEED_UNKNOWN; 4906 *width = PCIE_LNK_WIDTH_UNKNOWN; 4907 4908 while (dev) { 4909 u16 lnksta; 4910 enum pci_bus_speed next_speed; 4911 enum pcie_link_width next_width; 4912 4913 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4914 if (ret) 4915 return ret; 4916 4917 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4918 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4919 PCI_EXP_LNKSTA_NLW_SHIFT; 4920 4921 if (next_speed < *speed) 4922 *speed = next_speed; 4923 4924 if (next_width < *width) 4925 *width = next_width; 4926 4927 dev = dev->bus->self; 4928 } 4929 4930 return 0; 4931 } 4932 EXPORT_SYMBOL(pcie_get_minimum_link); 4933 4934 /** 4935 * pci_select_bars - Make BAR mask from the type of resource 4936 * @dev: the PCI device for which BAR mask is made 4937 * @flags: resource type mask to be selected 4938 * 4939 * This helper routine makes bar mask from the type of resource. 4940 */ 4941 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4942 { 4943 int i, bars = 0; 4944 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4945 if (pci_resource_flags(dev, i) & flags) 4946 bars |= (1 << i); 4947 return bars; 4948 } 4949 EXPORT_SYMBOL(pci_select_bars); 4950 4951 /* Some architectures require additional programming to enable VGA */ 4952 static arch_set_vga_state_t arch_set_vga_state; 4953 4954 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4955 { 4956 arch_set_vga_state = func; /* NULL disables */ 4957 } 4958 4959 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4960 unsigned int command_bits, u32 flags) 4961 { 4962 if (arch_set_vga_state) 4963 return arch_set_vga_state(dev, decode, command_bits, 4964 flags); 4965 return 0; 4966 } 4967 4968 /** 4969 * pci_set_vga_state - set VGA decode state on device and parents if requested 4970 * @dev: the PCI device 4971 * @decode: true = enable decoding, false = disable decoding 4972 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4973 * @flags: traverse ancestors and change bridges 4974 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4975 */ 4976 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4977 unsigned int command_bits, u32 flags) 4978 { 4979 struct pci_bus *bus; 4980 struct pci_dev *bridge; 4981 u16 cmd; 4982 int rc; 4983 4984 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4985 4986 /* ARCH specific VGA enables */ 4987 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4988 if (rc) 4989 return rc; 4990 4991 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4992 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4993 if (decode == true) 4994 cmd |= command_bits; 4995 else 4996 cmd &= ~command_bits; 4997 pci_write_config_word(dev, PCI_COMMAND, cmd); 4998 } 4999 5000 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5001 return 0; 5002 5003 bus = dev->bus; 5004 while (bus) { 5005 bridge = bus->self; 5006 if (bridge) { 5007 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5008 &cmd); 5009 if (decode == true) 5010 cmd |= PCI_BRIDGE_CTL_VGA; 5011 else 5012 cmd &= ~PCI_BRIDGE_CTL_VGA; 5013 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5014 cmd); 5015 } 5016 bus = bus->parent; 5017 } 5018 return 0; 5019 } 5020 5021 /** 5022 * pci_add_dma_alias - Add a DMA devfn alias for a device 5023 * @dev: the PCI device for which alias is added 5024 * @devfn: alias slot and function 5025 * 5026 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5027 * It should be called early, preferably as PCI fixup header quirk. 5028 */ 5029 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5030 { 5031 if (!dev->dma_alias_mask) 5032 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5033 sizeof(long), GFP_KERNEL); 5034 if (!dev->dma_alias_mask) { 5035 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n"); 5036 return; 5037 } 5038 5039 set_bit(devfn, dev->dma_alias_mask); 5040 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n", 5041 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5042 } 5043 5044 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5045 { 5046 return (dev1->dma_alias_mask && 5047 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5048 (dev2->dma_alias_mask && 5049 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5050 } 5051 5052 bool pci_device_is_present(struct pci_dev *pdev) 5053 { 5054 u32 v; 5055 5056 if (pci_dev_is_disconnected(pdev)) 5057 return false; 5058 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5059 } 5060 EXPORT_SYMBOL_GPL(pci_device_is_present); 5061 5062 void pci_ignore_hotplug(struct pci_dev *dev) 5063 { 5064 struct pci_dev *bridge = dev->bus->self; 5065 5066 dev->ignore_hotplug = 1; 5067 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5068 if (bridge) 5069 bridge->ignore_hotplug = 1; 5070 } 5071 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5072 5073 resource_size_t __weak pcibios_default_alignment(void) 5074 { 5075 return 0; 5076 } 5077 5078 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5079 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5080 static DEFINE_SPINLOCK(resource_alignment_lock); 5081 5082 /** 5083 * pci_specified_resource_alignment - get resource alignment specified by user. 5084 * @dev: the PCI device to get 5085 * @resize: whether or not to change resources' size when reassigning alignment 5086 * 5087 * RETURNS: Resource alignment if it is specified. 5088 * Zero if it is not specified. 5089 */ 5090 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5091 bool *resize) 5092 { 5093 int seg, bus, slot, func, align_order, count; 5094 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5095 resource_size_t align = pcibios_default_alignment(); 5096 char *p; 5097 5098 spin_lock(&resource_alignment_lock); 5099 p = resource_alignment_param; 5100 if (!*p && !align) 5101 goto out; 5102 if (pci_has_flag(PCI_PROBE_ONLY)) { 5103 align = 0; 5104 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5105 goto out; 5106 } 5107 5108 while (*p) { 5109 count = 0; 5110 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5111 p[count] == '@') { 5112 p += count + 1; 5113 } else { 5114 align_order = -1; 5115 } 5116 if (strncmp(p, "pci:", 4) == 0) { 5117 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5118 p += 4; 5119 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5120 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5121 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5122 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5123 p); 5124 break; 5125 } 5126 subsystem_vendor = subsystem_device = 0; 5127 } 5128 p += count; 5129 if ((!vendor || (vendor == dev->vendor)) && 5130 (!device || (device == dev->device)) && 5131 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5132 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5133 *resize = true; 5134 if (align_order == -1) 5135 align = PAGE_SIZE; 5136 else 5137 align = 1 << align_order; 5138 /* Found */ 5139 break; 5140 } 5141 } 5142 else { 5143 if (sscanf(p, "%x:%x:%x.%x%n", 5144 &seg, &bus, &slot, &func, &count) != 4) { 5145 seg = 0; 5146 if (sscanf(p, "%x:%x.%x%n", 5147 &bus, &slot, &func, &count) != 3) { 5148 /* Invalid format */ 5149 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5150 p); 5151 break; 5152 } 5153 } 5154 p += count; 5155 if (seg == pci_domain_nr(dev->bus) && 5156 bus == dev->bus->number && 5157 slot == PCI_SLOT(dev->devfn) && 5158 func == PCI_FUNC(dev->devfn)) { 5159 *resize = true; 5160 if (align_order == -1) 5161 align = PAGE_SIZE; 5162 else 5163 align = 1 << align_order; 5164 /* Found */ 5165 break; 5166 } 5167 } 5168 if (*p != ';' && *p != ',') { 5169 /* End of param or invalid format */ 5170 break; 5171 } 5172 p++; 5173 } 5174 out: 5175 spin_unlock(&resource_alignment_lock); 5176 return align; 5177 } 5178 5179 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5180 resource_size_t align, bool resize) 5181 { 5182 struct resource *r = &dev->resource[bar]; 5183 resource_size_t size; 5184 5185 if (!(r->flags & IORESOURCE_MEM)) 5186 return; 5187 5188 if (r->flags & IORESOURCE_PCI_FIXED) { 5189 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5190 bar, r, (unsigned long long)align); 5191 return; 5192 } 5193 5194 size = resource_size(r); 5195 if (size >= align) 5196 return; 5197 5198 /* 5199 * Increase the alignment of the resource. There are two ways we 5200 * can do this: 5201 * 5202 * 1) Increase the size of the resource. BARs are aligned on their 5203 * size, so when we reallocate space for this resource, we'll 5204 * allocate it with the larger alignment. This also prevents 5205 * assignment of any other BARs inside the alignment region, so 5206 * if we're requesting page alignment, this means no other BARs 5207 * will share the page. 5208 * 5209 * The disadvantage is that this makes the resource larger than 5210 * the hardware BAR, which may break drivers that compute things 5211 * based on the resource size, e.g., to find registers at a 5212 * fixed offset before the end of the BAR. 5213 * 5214 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5215 * set r->start to the desired alignment. By itself this 5216 * doesn't prevent other BARs being put inside the alignment 5217 * region, but if we realign *every* resource of every device in 5218 * the system, none of them will share an alignment region. 5219 * 5220 * When the user has requested alignment for only some devices via 5221 * the "pci=resource_alignment" argument, "resize" is true and we 5222 * use the first method. Otherwise we assume we're aligning all 5223 * devices and we use the second. 5224 */ 5225 5226 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n", 5227 bar, r, (unsigned long long)align); 5228 5229 if (resize) { 5230 r->start = 0; 5231 r->end = align - 1; 5232 } else { 5233 r->flags &= ~IORESOURCE_SIZEALIGN; 5234 r->flags |= IORESOURCE_STARTALIGN; 5235 r->start = align; 5236 r->end = r->start + size - 1; 5237 } 5238 r->flags |= IORESOURCE_UNSET; 5239 } 5240 5241 /* 5242 * This function disables memory decoding and releases memory resources 5243 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5244 * It also rounds up size to specified alignment. 5245 * Later on, the kernel will assign page-aligned memory resource back 5246 * to the device. 5247 */ 5248 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5249 { 5250 int i; 5251 struct resource *r; 5252 resource_size_t align; 5253 u16 command; 5254 bool resize = false; 5255 5256 /* 5257 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5258 * 3.4.1.11. Their resources are allocated from the space 5259 * described by the VF BARx register in the PF's SR-IOV capability. 5260 * We can't influence their alignment here. 5261 */ 5262 if (dev->is_virtfn) 5263 return; 5264 5265 /* check if specified PCI is target device to reassign */ 5266 align = pci_specified_resource_alignment(dev, &resize); 5267 if (!align) 5268 return; 5269 5270 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5271 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5272 dev_warn(&dev->dev, 5273 "Can't reassign resources to host bridge.\n"); 5274 return; 5275 } 5276 5277 dev_info(&dev->dev, 5278 "Disabling memory decoding and releasing memory resources.\n"); 5279 pci_read_config_word(dev, PCI_COMMAND, &command); 5280 command &= ~PCI_COMMAND_MEMORY; 5281 pci_write_config_word(dev, PCI_COMMAND, command); 5282 5283 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5284 pci_request_resource_alignment(dev, i, align, resize); 5285 5286 /* 5287 * Need to disable bridge's resource window, 5288 * to enable the kernel to reassign new resource 5289 * window later on. 5290 */ 5291 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5292 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5293 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5294 r = &dev->resource[i]; 5295 if (!(r->flags & IORESOURCE_MEM)) 5296 continue; 5297 r->flags |= IORESOURCE_UNSET; 5298 r->end = resource_size(r) - 1; 5299 r->start = 0; 5300 } 5301 pci_disable_bridge_window(dev); 5302 } 5303 } 5304 5305 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5306 { 5307 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5308 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5309 spin_lock(&resource_alignment_lock); 5310 strncpy(resource_alignment_param, buf, count); 5311 resource_alignment_param[count] = '\0'; 5312 spin_unlock(&resource_alignment_lock); 5313 return count; 5314 } 5315 5316 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5317 { 5318 size_t count; 5319 spin_lock(&resource_alignment_lock); 5320 count = snprintf(buf, size, "%s", resource_alignment_param); 5321 spin_unlock(&resource_alignment_lock); 5322 return count; 5323 } 5324 5325 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5326 { 5327 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5328 } 5329 5330 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5331 const char *buf, size_t count) 5332 { 5333 return pci_set_resource_alignment_param(buf, count); 5334 } 5335 5336 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5337 pci_resource_alignment_store); 5338 5339 static int __init pci_resource_alignment_sysfs_init(void) 5340 { 5341 return bus_create_file(&pci_bus_type, 5342 &bus_attr_resource_alignment); 5343 } 5344 late_initcall(pci_resource_alignment_sysfs_init); 5345 5346 static void pci_no_domains(void) 5347 { 5348 #ifdef CONFIG_PCI_DOMAINS 5349 pci_domains_supported = 0; 5350 #endif 5351 } 5352 5353 #ifdef CONFIG_PCI_DOMAINS 5354 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5355 5356 int pci_get_new_domain_nr(void) 5357 { 5358 return atomic_inc_return(&__domain_nr); 5359 } 5360 5361 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5362 static int of_pci_bus_find_domain_nr(struct device *parent) 5363 { 5364 static int use_dt_domains = -1; 5365 int domain = -1; 5366 5367 if (parent) 5368 domain = of_get_pci_domain_nr(parent->of_node); 5369 /* 5370 * Check DT domain and use_dt_domains values. 5371 * 5372 * If DT domain property is valid (domain >= 0) and 5373 * use_dt_domains != 0, the DT assignment is valid since this means 5374 * we have not previously allocated a domain number by using 5375 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5376 * 1, to indicate that we have just assigned a domain number from 5377 * DT. 5378 * 5379 * If DT domain property value is not valid (ie domain < 0), and we 5380 * have not previously assigned a domain number from DT 5381 * (use_dt_domains != 1) we should assign a domain number by 5382 * using the: 5383 * 5384 * pci_get_new_domain_nr() 5385 * 5386 * API and update the use_dt_domains value to keep track of method we 5387 * are using to assign domain numbers (use_dt_domains = 0). 5388 * 5389 * All other combinations imply we have a platform that is trying 5390 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5391 * which is a recipe for domain mishandling and it is prevented by 5392 * invalidating the domain value (domain = -1) and printing a 5393 * corresponding error. 5394 */ 5395 if (domain >= 0 && use_dt_domains) { 5396 use_dt_domains = 1; 5397 } else if (domain < 0 && use_dt_domains != 1) { 5398 use_dt_domains = 0; 5399 domain = pci_get_new_domain_nr(); 5400 } else { 5401 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n", 5402 parent->of_node->full_name); 5403 domain = -1; 5404 } 5405 5406 return domain; 5407 } 5408 5409 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5410 { 5411 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5412 acpi_pci_bus_find_domain_nr(bus); 5413 } 5414 #endif 5415 #endif 5416 5417 /** 5418 * pci_ext_cfg_avail - can we access extended PCI config space? 5419 * 5420 * Returns 1 if we can access PCI extended config space (offsets 5421 * greater than 0xff). This is the default implementation. Architecture 5422 * implementations can override this. 5423 */ 5424 int __weak pci_ext_cfg_avail(void) 5425 { 5426 return 1; 5427 } 5428 5429 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5430 { 5431 } 5432 EXPORT_SYMBOL(pci_fixup_cardbus); 5433 5434 static int __init pci_setup(char *str) 5435 { 5436 while (str) { 5437 char *k = strchr(str, ','); 5438 if (k) 5439 *k++ = 0; 5440 if (*str && (str = pcibios_setup(str)) && *str) { 5441 if (!strcmp(str, "nomsi")) { 5442 pci_no_msi(); 5443 } else if (!strcmp(str, "noaer")) { 5444 pci_no_aer(); 5445 } else if (!strncmp(str, "realloc=", 8)) { 5446 pci_realloc_get_opt(str + 8); 5447 } else if (!strncmp(str, "realloc", 7)) { 5448 pci_realloc_get_opt("on"); 5449 } else if (!strcmp(str, "nodomains")) { 5450 pci_no_domains(); 5451 } else if (!strncmp(str, "noari", 5)) { 5452 pcie_ari_disabled = true; 5453 } else if (!strncmp(str, "cbiosize=", 9)) { 5454 pci_cardbus_io_size = memparse(str + 9, &str); 5455 } else if (!strncmp(str, "cbmemsize=", 10)) { 5456 pci_cardbus_mem_size = memparse(str + 10, &str); 5457 } else if (!strncmp(str, "resource_alignment=", 19)) { 5458 pci_set_resource_alignment_param(str + 19, 5459 strlen(str + 19)); 5460 } else if (!strncmp(str, "ecrc=", 5)) { 5461 pcie_ecrc_get_policy(str + 5); 5462 } else if (!strncmp(str, "hpiosize=", 9)) { 5463 pci_hotplug_io_size = memparse(str + 9, &str); 5464 } else if (!strncmp(str, "hpmemsize=", 10)) { 5465 pci_hotplug_mem_size = memparse(str + 10, &str); 5466 } else if (!strncmp(str, "hpbussize=", 10)) { 5467 pci_hotplug_bus_size = 5468 simple_strtoul(str + 10, &str, 0); 5469 if (pci_hotplug_bus_size > 0xff) 5470 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5471 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5472 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5473 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5474 pcie_bus_config = PCIE_BUS_SAFE; 5475 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5476 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5477 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5478 pcie_bus_config = PCIE_BUS_PEER2PEER; 5479 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5480 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5481 } else { 5482 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5483 str); 5484 } 5485 } 5486 str = k; 5487 } 5488 return 0; 5489 } 5490 early_param("pci", pci_setup); 5491