xref: /openbmc/linux/drivers/pci/pci.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38 
39 DEFINE_MUTEX(pci_slot_mutex);
40 
41 const char *pci_power_names[] = {
42 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 };
44 EXPORT_SYMBOL_GPL(pci_power_names);
45 
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 	unsigned int delay = dev->d3_delay;
70 
71 	if (delay < pci_pm_d3_delay)
72 		delay = pci_pm_d3_delay;
73 
74 	if (delay)
75 		msleep(delay);
76 }
77 
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
80 #endif
81 
82 #define DEFAULT_CARDBUS_IO_SIZE		(256)
83 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87 
88 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
93 /*
94  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96  * pci=hpmemsize=nnM overrides both
97  */
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
100 
101 #define DEFAULT_HOTPLUG_BUS_SIZE	1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103 
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
105 
106 /*
107  * The default CLS is used if arch didn't set CLS explicitly and not
108  * all pci devices agree on the same value.  Arch can override either
109  * the dfl or actual value as it sees fit.  Don't forget this is
110  * measured in 32-bit words, not bytes.
111  */
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
114 
115 /*
116  * If we set up a device for bus mastering, we need to check the latency
117  * timer as certain BIOSes forget to set it properly.
118  */
119 unsigned int pcibios_max_latency = 255;
120 
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
123 
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
126 
127 /* If set, the PCI config space of each device is printed during boot. */
128 bool pci_early_dump;
129 
130 bool pci_ats_disabled(void)
131 {
132 	return pcie_ats_disabled;
133 }
134 EXPORT_SYMBOL_GPL(pci_ats_disabled);
135 
136 /* Disable bridge_d3 for all PCIe ports */
137 static bool pci_bridge_d3_disable;
138 /* Force bridge_d3 for all PCIe ports */
139 static bool pci_bridge_d3_force;
140 
141 static int __init pcie_port_pm_setup(char *str)
142 {
143 	if (!strcmp(str, "off"))
144 		pci_bridge_d3_disable = true;
145 	else if (!strcmp(str, "force"))
146 		pci_bridge_d3_force = true;
147 	return 1;
148 }
149 __setup("pcie_port_pm=", pcie_port_pm_setup);
150 
151 /* Time to wait after a reset for device to become responsive */
152 #define PCIE_RESET_READY_POLL_MS 60000
153 
154 /**
155  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156  * @bus: pointer to PCI bus structure to search
157  *
158  * Given a PCI bus, returns the highest PCI bus number present in the set
159  * including the given PCI bus and its list of child PCI buses.
160  */
161 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
162 {
163 	struct pci_bus *tmp;
164 	unsigned char max, n;
165 
166 	max = bus->busn_res.end;
167 	list_for_each_entry(tmp, &bus->children, node) {
168 		n = pci_bus_max_busnr(tmp);
169 		if (n > max)
170 			max = n;
171 	}
172 	return max;
173 }
174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
175 
176 #ifdef CONFIG_HAS_IOMEM
177 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
178 {
179 	struct resource *res = &pdev->resource[bar];
180 
181 	/*
182 	 * Make sure the BAR is actually a memory resource, not an IO resource
183 	 */
184 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
185 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
186 		return NULL;
187 	}
188 	return ioremap(res->start, resource_size(res));
189 }
190 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
191 
192 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
193 {
194 	/*
195 	 * Make sure the BAR is actually a memory resource, not an IO resource
196 	 */
197 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
198 		WARN_ON(1);
199 		return NULL;
200 	}
201 	return ioremap_wc(pci_resource_start(pdev, bar),
202 			  pci_resource_len(pdev, bar));
203 }
204 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
205 #endif
206 
207 /**
208  * pci_dev_str_match_path - test if a path string matches a device
209  * @dev: the PCI device to test
210  * @path: string to match the device against
211  * @endptr: pointer to the string after the match
212  *
213  * Test if a string (typically from a kernel parameter) formatted as a
214  * path of device/function addresses matches a PCI device. The string must
215  * be of the form:
216  *
217  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
218  *
219  * A path for a device can be obtained using 'lspci -t'.  Using a path
220  * is more robust against bus renumbering than using only a single bus,
221  * device and function address.
222  *
223  * Returns 1 if the string matches the device, 0 if it does not and
224  * a negative error code if it fails to parse the string.
225  */
226 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
227 				  const char **endptr)
228 {
229 	int ret;
230 	int seg, bus, slot, func;
231 	char *wpath, *p;
232 	char end;
233 
234 	*endptr = strchrnul(path, ';');
235 
236 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
237 	if (!wpath)
238 		return -ENOMEM;
239 
240 	while (1) {
241 		p = strrchr(wpath, '/');
242 		if (!p)
243 			break;
244 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
245 		if (ret != 2) {
246 			ret = -EINVAL;
247 			goto free_and_exit;
248 		}
249 
250 		if (dev->devfn != PCI_DEVFN(slot, func)) {
251 			ret = 0;
252 			goto free_and_exit;
253 		}
254 
255 		/*
256 		 * Note: we don't need to get a reference to the upstream
257 		 * bridge because we hold a reference to the top level
258 		 * device which should hold a reference to the bridge,
259 		 * and so on.
260 		 */
261 		dev = pci_upstream_bridge(dev);
262 		if (!dev) {
263 			ret = 0;
264 			goto free_and_exit;
265 		}
266 
267 		*p = 0;
268 	}
269 
270 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
271 		     &func, &end);
272 	if (ret != 4) {
273 		seg = 0;
274 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
275 		if (ret != 3) {
276 			ret = -EINVAL;
277 			goto free_and_exit;
278 		}
279 	}
280 
281 	ret = (seg == pci_domain_nr(dev->bus) &&
282 	       bus == dev->bus->number &&
283 	       dev->devfn == PCI_DEVFN(slot, func));
284 
285 free_and_exit:
286 	kfree(wpath);
287 	return ret;
288 }
289 
290 /**
291  * pci_dev_str_match - test if a string matches a device
292  * @dev: the PCI device to test
293  * @p: string to match the device against
294  * @endptr: pointer to the string after the match
295  *
296  * Test if a string (typically from a kernel parameter) matches a specified
297  * PCI device. The string may be of one of the following formats:
298  *
299  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
300  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
301  *
302  * The first format specifies a PCI bus/device/function address which
303  * may change if new hardware is inserted, if motherboard firmware changes,
304  * or due to changes caused in kernel parameters. If the domain is
305  * left unspecified, it is taken to be 0.  In order to be robust against
306  * bus renumbering issues, a path of PCI device/function numbers may be used
307  * to address the specific device.  The path for a device can be determined
308  * through the use of 'lspci -t'.
309  *
310  * The second format matches devices using IDs in the configuration
311  * space which may match multiple devices in the system. A value of 0
312  * for any field will match all devices. (Note: this differs from
313  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
314  * legacy reasons and convenience so users don't have to specify
315  * FFFFFFFFs on the command line.)
316  *
317  * Returns 1 if the string matches the device, 0 if it does not and
318  * a negative error code if the string cannot be parsed.
319  */
320 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
321 			     const char **endptr)
322 {
323 	int ret;
324 	int count;
325 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
326 
327 	if (strncmp(p, "pci:", 4) == 0) {
328 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
329 		p += 4;
330 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
331 			     &subsystem_vendor, &subsystem_device, &count);
332 		if (ret != 4) {
333 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
334 			if (ret != 2)
335 				return -EINVAL;
336 
337 			subsystem_vendor = 0;
338 			subsystem_device = 0;
339 		}
340 
341 		p += count;
342 
343 		if ((!vendor || vendor == dev->vendor) &&
344 		    (!device || device == dev->device) &&
345 		    (!subsystem_vendor ||
346 			    subsystem_vendor == dev->subsystem_vendor) &&
347 		    (!subsystem_device ||
348 			    subsystem_device == dev->subsystem_device))
349 			goto found;
350 	} else {
351 		/*
352 		 * PCI Bus, Device, Function IDs are specified
353 		 * (optionally, may include a path of devfns following it)
354 		 */
355 		ret = pci_dev_str_match_path(dev, p, &p);
356 		if (ret < 0)
357 			return ret;
358 		else if (ret)
359 			goto found;
360 	}
361 
362 	*endptr = p;
363 	return 0;
364 
365 found:
366 	*endptr = p;
367 	return 1;
368 }
369 
370 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
371 				   u8 pos, int cap, int *ttl)
372 {
373 	u8 id;
374 	u16 ent;
375 
376 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
377 
378 	while ((*ttl)--) {
379 		if (pos < 0x40)
380 			break;
381 		pos &= ~3;
382 		pci_bus_read_config_word(bus, devfn, pos, &ent);
383 
384 		id = ent & 0xff;
385 		if (id == 0xff)
386 			break;
387 		if (id == cap)
388 			return pos;
389 		pos = (ent >> 8);
390 	}
391 	return 0;
392 }
393 
394 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
395 			       u8 pos, int cap)
396 {
397 	int ttl = PCI_FIND_CAP_TTL;
398 
399 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
400 }
401 
402 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
403 {
404 	return __pci_find_next_cap(dev->bus, dev->devfn,
405 				   pos + PCI_CAP_LIST_NEXT, cap);
406 }
407 EXPORT_SYMBOL_GPL(pci_find_next_capability);
408 
409 static int __pci_bus_find_cap_start(struct pci_bus *bus,
410 				    unsigned int devfn, u8 hdr_type)
411 {
412 	u16 status;
413 
414 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
415 	if (!(status & PCI_STATUS_CAP_LIST))
416 		return 0;
417 
418 	switch (hdr_type) {
419 	case PCI_HEADER_TYPE_NORMAL:
420 	case PCI_HEADER_TYPE_BRIDGE:
421 		return PCI_CAPABILITY_LIST;
422 	case PCI_HEADER_TYPE_CARDBUS:
423 		return PCI_CB_CAPABILITY_LIST;
424 	}
425 
426 	return 0;
427 }
428 
429 /**
430  * pci_find_capability - query for devices' capabilities
431  * @dev: PCI device to query
432  * @cap: capability code
433  *
434  * Tell if a device supports a given PCI capability.
435  * Returns the address of the requested capability structure within the
436  * device's PCI configuration space or 0 in case the device does not
437  * support it.  Possible values for @cap include:
438  *
439  *  %PCI_CAP_ID_PM           Power Management
440  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
441  *  %PCI_CAP_ID_VPD          Vital Product Data
442  *  %PCI_CAP_ID_SLOTID       Slot Identification
443  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
444  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
445  *  %PCI_CAP_ID_PCIX         PCI-X
446  *  %PCI_CAP_ID_EXP          PCI Express
447  */
448 int pci_find_capability(struct pci_dev *dev, int cap)
449 {
450 	int pos;
451 
452 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
453 	if (pos)
454 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
455 
456 	return pos;
457 }
458 EXPORT_SYMBOL(pci_find_capability);
459 
460 /**
461  * pci_bus_find_capability - query for devices' capabilities
462  * @bus: the PCI bus to query
463  * @devfn: PCI device to query
464  * @cap: capability code
465  *
466  * Like pci_find_capability() but works for PCI devices that do not have a
467  * pci_dev structure set up yet.
468  *
469  * Returns the address of the requested capability structure within the
470  * device's PCI configuration space or 0 in case the device does not
471  * support it.
472  */
473 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
474 {
475 	int pos;
476 	u8 hdr_type;
477 
478 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
479 
480 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
481 	if (pos)
482 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
483 
484 	return pos;
485 }
486 EXPORT_SYMBOL(pci_bus_find_capability);
487 
488 /**
489  * pci_find_next_ext_capability - Find an extended capability
490  * @dev: PCI device to query
491  * @start: address at which to start looking (0 to start at beginning of list)
492  * @cap: capability code
493  *
494  * Returns the address of the next matching extended capability structure
495  * within the device's PCI configuration space or 0 if the device does
496  * not support it.  Some capabilities can occur several times, e.g., the
497  * vendor-specific capability, and this provides a way to find them all.
498  */
499 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
500 {
501 	u32 header;
502 	int ttl;
503 	int pos = PCI_CFG_SPACE_SIZE;
504 
505 	/* minimum 8 bytes per capability */
506 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
507 
508 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
509 		return 0;
510 
511 	if (start)
512 		pos = start;
513 
514 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
515 		return 0;
516 
517 	/*
518 	 * If we have no capabilities, this is indicated by cap ID,
519 	 * cap version and next pointer all being 0.
520 	 */
521 	if (header == 0)
522 		return 0;
523 
524 	while (ttl-- > 0) {
525 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
526 			return pos;
527 
528 		pos = PCI_EXT_CAP_NEXT(header);
529 		if (pos < PCI_CFG_SPACE_SIZE)
530 			break;
531 
532 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
533 			break;
534 	}
535 
536 	return 0;
537 }
538 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
539 
540 /**
541  * pci_find_ext_capability - Find an extended capability
542  * @dev: PCI device to query
543  * @cap: capability code
544  *
545  * Returns the address of the requested extended capability structure
546  * within the device's PCI configuration space or 0 if the device does
547  * not support it.  Possible values for @cap include:
548  *
549  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
550  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
551  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
552  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
553  */
554 int pci_find_ext_capability(struct pci_dev *dev, int cap)
555 {
556 	return pci_find_next_ext_capability(dev, 0, cap);
557 }
558 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
559 
560 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
561 {
562 	int rc, ttl = PCI_FIND_CAP_TTL;
563 	u8 cap, mask;
564 
565 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
566 		mask = HT_3BIT_CAP_MASK;
567 	else
568 		mask = HT_5BIT_CAP_MASK;
569 
570 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
571 				      PCI_CAP_ID_HT, &ttl);
572 	while (pos) {
573 		rc = pci_read_config_byte(dev, pos + 3, &cap);
574 		if (rc != PCIBIOS_SUCCESSFUL)
575 			return 0;
576 
577 		if ((cap & mask) == ht_cap)
578 			return pos;
579 
580 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
581 					      pos + PCI_CAP_LIST_NEXT,
582 					      PCI_CAP_ID_HT, &ttl);
583 	}
584 
585 	return 0;
586 }
587 /**
588  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
589  * @dev: PCI device to query
590  * @pos: Position from which to continue searching
591  * @ht_cap: Hypertransport capability code
592  *
593  * To be used in conjunction with pci_find_ht_capability() to search for
594  * all capabilities matching @ht_cap. @pos should always be a value returned
595  * from pci_find_ht_capability().
596  *
597  * NB. To be 100% safe against broken PCI devices, the caller should take
598  * steps to avoid an infinite loop.
599  */
600 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
601 {
602 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
603 }
604 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
605 
606 /**
607  * pci_find_ht_capability - query a device's Hypertransport capabilities
608  * @dev: PCI device to query
609  * @ht_cap: Hypertransport capability code
610  *
611  * Tell if a device supports a given Hypertransport capability.
612  * Returns an address within the device's PCI configuration space
613  * or 0 in case the device does not support the request capability.
614  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
615  * which has a Hypertransport capability matching @ht_cap.
616  */
617 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
618 {
619 	int pos;
620 
621 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
622 	if (pos)
623 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
624 
625 	return pos;
626 }
627 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
628 
629 /**
630  * pci_find_parent_resource - return resource region of parent bus of given
631  *			      region
632  * @dev: PCI device structure contains resources to be searched
633  * @res: child resource record for which parent is sought
634  *
635  * For given resource region of given device, return the resource region of
636  * parent bus the given region is contained in.
637  */
638 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
639 					  struct resource *res)
640 {
641 	const struct pci_bus *bus = dev->bus;
642 	struct resource *r;
643 	int i;
644 
645 	pci_bus_for_each_resource(bus, r, i) {
646 		if (!r)
647 			continue;
648 		if (resource_contains(r, res)) {
649 
650 			/*
651 			 * If the window is prefetchable but the BAR is
652 			 * not, the allocator made a mistake.
653 			 */
654 			if (r->flags & IORESOURCE_PREFETCH &&
655 			    !(res->flags & IORESOURCE_PREFETCH))
656 				return NULL;
657 
658 			/*
659 			 * If we're below a transparent bridge, there may
660 			 * be both a positively-decoded aperture and a
661 			 * subtractively-decoded region that contain the BAR.
662 			 * We want the positively-decoded one, so this depends
663 			 * on pci_bus_for_each_resource() giving us those
664 			 * first.
665 			 */
666 			return r;
667 		}
668 	}
669 	return NULL;
670 }
671 EXPORT_SYMBOL(pci_find_parent_resource);
672 
673 /**
674  * pci_find_resource - Return matching PCI device resource
675  * @dev: PCI device to query
676  * @res: Resource to look for
677  *
678  * Goes over standard PCI resources (BARs) and checks if the given resource
679  * is partially or fully contained in any of them. In that case the
680  * matching resource is returned, %NULL otherwise.
681  */
682 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
683 {
684 	int i;
685 
686 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
687 		struct resource *r = &dev->resource[i];
688 
689 		if (r->start && resource_contains(r, res))
690 			return r;
691 	}
692 
693 	return NULL;
694 }
695 EXPORT_SYMBOL(pci_find_resource);
696 
697 /**
698  * pci_find_pcie_root_port - return PCIe Root Port
699  * @dev: PCI device to query
700  *
701  * Traverse up the parent chain and return the PCIe Root Port PCI Device
702  * for a given PCI Device.
703  */
704 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
705 {
706 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
707 
708 	bridge = pci_upstream_bridge(dev);
709 	while (bridge && pci_is_pcie(bridge)) {
710 		highest_pcie_bridge = bridge;
711 		bridge = pci_upstream_bridge(bridge);
712 	}
713 
714 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
715 		return NULL;
716 
717 	return highest_pcie_bridge;
718 }
719 EXPORT_SYMBOL(pci_find_pcie_root_port);
720 
721 /**
722  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
723  * @dev: the PCI device to operate on
724  * @pos: config space offset of status word
725  * @mask: mask of bit(s) to care about in status word
726  *
727  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
728  */
729 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
730 {
731 	int i;
732 
733 	/* Wait for Transaction Pending bit clean */
734 	for (i = 0; i < 4; i++) {
735 		u16 status;
736 		if (i)
737 			msleep((1 << (i - 1)) * 100);
738 
739 		pci_read_config_word(dev, pos, &status);
740 		if (!(status & mask))
741 			return 1;
742 	}
743 
744 	return 0;
745 }
746 
747 /**
748  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
749  * @dev: PCI device to have its BARs restored
750  *
751  * Restore the BAR values for a given device, so as to make it
752  * accessible by its driver.
753  */
754 static void pci_restore_bars(struct pci_dev *dev)
755 {
756 	int i;
757 
758 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
759 		pci_update_resource(dev, i);
760 }
761 
762 static const struct pci_platform_pm_ops *pci_platform_pm;
763 
764 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
765 {
766 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
767 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
768 		return -EINVAL;
769 	pci_platform_pm = ops;
770 	return 0;
771 }
772 
773 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
774 {
775 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
776 }
777 
778 static inline int platform_pci_set_power_state(struct pci_dev *dev,
779 					       pci_power_t t)
780 {
781 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
782 }
783 
784 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
785 {
786 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
787 }
788 
789 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
790 {
791 	if (pci_platform_pm && pci_platform_pm->refresh_state)
792 		pci_platform_pm->refresh_state(dev);
793 }
794 
795 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
796 {
797 	return pci_platform_pm ?
798 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
799 }
800 
801 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
802 {
803 	return pci_platform_pm ?
804 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
805 }
806 
807 static inline bool platform_pci_need_resume(struct pci_dev *dev)
808 {
809 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
810 }
811 
812 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
813 {
814 	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
815 }
816 
817 /**
818  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
819  *			     given PCI device
820  * @dev: PCI device to handle.
821  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
822  *
823  * RETURN VALUE:
824  * -EINVAL if the requested state is invalid.
825  * -EIO if device does not support PCI PM or its PM capabilities register has a
826  * wrong version, or device doesn't support the requested state.
827  * 0 if device already is in the requested state.
828  * 0 if device's power state has been successfully changed.
829  */
830 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
831 {
832 	u16 pmcsr;
833 	bool need_restore = false;
834 
835 	/* Check if we're already there */
836 	if (dev->current_state == state)
837 		return 0;
838 
839 	if (!dev->pm_cap)
840 		return -EIO;
841 
842 	if (state < PCI_D0 || state > PCI_D3hot)
843 		return -EINVAL;
844 
845 	/*
846 	 * Validate transition: We can enter D0 from any state, but if
847 	 * we're already in a low-power state, we can only go deeper.  E.g.,
848 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
849 	 * we'd have to go from D3 to D0, then to D1.
850 	 */
851 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
852 	    && dev->current_state > state) {
853 		pci_err(dev, "invalid power transition (from %s to %s)\n",
854 			pci_power_name(dev->current_state),
855 			pci_power_name(state));
856 		return -EINVAL;
857 	}
858 
859 	/* Check if this device supports the desired state */
860 	if ((state == PCI_D1 && !dev->d1_support)
861 	   || (state == PCI_D2 && !dev->d2_support))
862 		return -EIO;
863 
864 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
865 	if (pmcsr == (u16) ~0) {
866 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
867 			pci_power_name(dev->current_state),
868 			pci_power_name(state));
869 		return -EIO;
870 	}
871 
872 	/*
873 	 * If we're (effectively) in D3, force entire word to 0.
874 	 * This doesn't affect PME_Status, disables PME_En, and
875 	 * sets PowerState to 0.
876 	 */
877 	switch (dev->current_state) {
878 	case PCI_D0:
879 	case PCI_D1:
880 	case PCI_D2:
881 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
882 		pmcsr |= state;
883 		break;
884 	case PCI_D3hot:
885 	case PCI_D3cold:
886 	case PCI_UNKNOWN: /* Boot-up */
887 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
888 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
889 			need_restore = true;
890 		/* Fall-through - force to D0 */
891 	default:
892 		pmcsr = 0;
893 		break;
894 	}
895 
896 	/* Enter specified state */
897 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
898 
899 	/*
900 	 * Mandatory power management transition delays; see PCI PM 1.1
901 	 * 5.6.1 table 18
902 	 */
903 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
904 		pci_dev_d3_sleep(dev);
905 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
906 		msleep(PCI_PM_D2_DELAY);
907 
908 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
909 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
910 	if (dev->current_state != state)
911 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
912 			 pci_power_name(dev->current_state),
913 			 pci_power_name(state));
914 
915 	/*
916 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
917 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
918 	 * from D3hot to D0 _may_ perform an internal reset, thereby
919 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
920 	 * For example, at least some versions of the 3c905B and the
921 	 * 3c556B exhibit this behaviour.
922 	 *
923 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
924 	 * devices in a D3hot state at boot.  Consequently, we need to
925 	 * restore at least the BARs so that the device will be
926 	 * accessible to its driver.
927 	 */
928 	if (need_restore)
929 		pci_restore_bars(dev);
930 
931 	if (dev->bus->self)
932 		pcie_aspm_pm_state_change(dev->bus->self);
933 
934 	return 0;
935 }
936 
937 /**
938  * pci_update_current_state - Read power state of given device and cache it
939  * @dev: PCI device to handle.
940  * @state: State to cache in case the device doesn't have the PM capability
941  *
942  * The power state is read from the PMCSR register, which however is
943  * inaccessible in D3cold.  The platform firmware is therefore queried first
944  * to detect accessibility of the register.  In case the platform firmware
945  * reports an incorrect state or the device isn't power manageable by the
946  * platform at all, we try to detect D3cold by testing accessibility of the
947  * vendor ID in config space.
948  */
949 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
950 {
951 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
952 	    !pci_device_is_present(dev)) {
953 		dev->current_state = PCI_D3cold;
954 	} else if (dev->pm_cap) {
955 		u16 pmcsr;
956 
957 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
958 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
959 	} else {
960 		dev->current_state = state;
961 	}
962 }
963 
964 /**
965  * pci_refresh_power_state - Refresh the given device's power state data
966  * @dev: Target PCI device.
967  *
968  * Ask the platform to refresh the devices power state information and invoke
969  * pci_update_current_state() to update its current PCI power state.
970  */
971 void pci_refresh_power_state(struct pci_dev *dev)
972 {
973 	if (platform_pci_power_manageable(dev))
974 		platform_pci_refresh_power_state(dev);
975 
976 	pci_update_current_state(dev, dev->current_state);
977 }
978 
979 /**
980  * pci_platform_power_transition - Use platform to change device power state
981  * @dev: PCI device to handle.
982  * @state: State to put the device into.
983  */
984 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
985 {
986 	int error;
987 
988 	if (platform_pci_power_manageable(dev)) {
989 		error = platform_pci_set_power_state(dev, state);
990 		if (!error)
991 			pci_update_current_state(dev, state);
992 	} else
993 		error = -ENODEV;
994 
995 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
996 		dev->current_state = PCI_D0;
997 
998 	return error;
999 }
1000 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1001 
1002 /**
1003  * pci_wakeup - Wake up a PCI device
1004  * @pci_dev: Device to handle.
1005  * @ign: ignored parameter
1006  */
1007 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1008 {
1009 	pci_wakeup_event(pci_dev);
1010 	pm_request_resume(&pci_dev->dev);
1011 	return 0;
1012 }
1013 
1014 /**
1015  * pci_wakeup_bus - Walk given bus and wake up devices on it
1016  * @bus: Top bus of the subtree to walk.
1017  */
1018 void pci_wakeup_bus(struct pci_bus *bus)
1019 {
1020 	if (bus)
1021 		pci_walk_bus(bus, pci_wakeup, NULL);
1022 }
1023 
1024 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1025 {
1026 	int delay = 1;
1027 	u32 id;
1028 
1029 	/*
1030 	 * After reset, the device should not silently discard config
1031 	 * requests, but it may still indicate that it needs more time by
1032 	 * responding to them with CRS completions.  The Root Port will
1033 	 * generally synthesize ~0 data to complete the read (except when
1034 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1035 	 * case it synthesizes 0x0001 data).
1036 	 *
1037 	 * Wait for the device to return a non-CRS completion.  Read the
1038 	 * Command register instead of Vendor ID so we don't have to
1039 	 * contend with the CRS SV value.
1040 	 */
1041 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1042 	while (id == ~0) {
1043 		if (delay > timeout) {
1044 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1045 				 delay - 1, reset_type);
1046 			return -ENOTTY;
1047 		}
1048 
1049 		if (delay > 1000)
1050 			pci_info(dev, "not ready %dms after %s; waiting\n",
1051 				 delay - 1, reset_type);
1052 
1053 		msleep(delay);
1054 		delay *= 2;
1055 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1056 	}
1057 
1058 	if (delay > 1000)
1059 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1060 			 reset_type);
1061 
1062 	return 0;
1063 }
1064 
1065 /**
1066  * pci_power_up - Put the given device into D0
1067  * @dev: PCI device to power up
1068  */
1069 int pci_power_up(struct pci_dev *dev)
1070 {
1071 	pci_platform_power_transition(dev, PCI_D0);
1072 
1073 	/*
1074 	 * Mandatory power management transition delays are handled in
1075 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1076 	 * corresponding bridge.
1077 	 */
1078 	if (dev->runtime_d3cold) {
1079 		/*
1080 		 * When powering on a bridge from D3cold, the whole hierarchy
1081 		 * may be powered on into D0uninitialized state, resume them to
1082 		 * give them a chance to suspend again
1083 		 */
1084 		pci_wakeup_bus(dev->subordinate);
1085 	}
1086 
1087 	return pci_raw_set_power_state(dev, PCI_D0);
1088 }
1089 
1090 /**
1091  * __pci_dev_set_current_state - Set current state of a PCI device
1092  * @dev: Device to handle
1093  * @data: pointer to state to be set
1094  */
1095 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1096 {
1097 	pci_power_t state = *(pci_power_t *)data;
1098 
1099 	dev->current_state = state;
1100 	return 0;
1101 }
1102 
1103 /**
1104  * pci_bus_set_current_state - Walk given bus and set current state of devices
1105  * @bus: Top bus of the subtree to walk.
1106  * @state: state to be set
1107  */
1108 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1109 {
1110 	if (bus)
1111 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1112 }
1113 
1114 /**
1115  * pci_set_power_state - Set the power state of a PCI device
1116  * @dev: PCI device to handle.
1117  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1118  *
1119  * Transition a device to a new power state, using the platform firmware and/or
1120  * the device's PCI PM registers.
1121  *
1122  * RETURN VALUE:
1123  * -EINVAL if the requested state is invalid.
1124  * -EIO if device does not support PCI PM or its PM capabilities register has a
1125  * wrong version, or device doesn't support the requested state.
1126  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1127  * 0 if device already is in the requested state.
1128  * 0 if the transition is to D3 but D3 is not supported.
1129  * 0 if device's power state has been successfully changed.
1130  */
1131 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1132 {
1133 	int error;
1134 
1135 	/* Bound the state we're entering */
1136 	if (state > PCI_D3cold)
1137 		state = PCI_D3cold;
1138 	else if (state < PCI_D0)
1139 		state = PCI_D0;
1140 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1141 
1142 		/*
1143 		 * If the device or the parent bridge do not support PCI
1144 		 * PM, ignore the request if we're doing anything other
1145 		 * than putting it into D0 (which would only happen on
1146 		 * boot).
1147 		 */
1148 		return 0;
1149 
1150 	/* Check if we're already there */
1151 	if (dev->current_state == state)
1152 		return 0;
1153 
1154 	if (state == PCI_D0)
1155 		return pci_power_up(dev);
1156 
1157 	/*
1158 	 * This device is quirked not to be put into D3, so don't put it in
1159 	 * D3
1160 	 */
1161 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1162 		return 0;
1163 
1164 	/*
1165 	 * To put device in D3cold, we put device into D3hot in native
1166 	 * way, then put device into D3cold with platform ops
1167 	 */
1168 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1169 					PCI_D3hot : state);
1170 
1171 	if (pci_platform_power_transition(dev, state))
1172 		return error;
1173 
1174 	/* Powering off a bridge may power off the whole hierarchy */
1175 	if (state == PCI_D3cold)
1176 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1177 
1178 	return 0;
1179 }
1180 EXPORT_SYMBOL(pci_set_power_state);
1181 
1182 /**
1183  * pci_choose_state - Choose the power state of a PCI device
1184  * @dev: PCI device to be suspended
1185  * @state: target sleep state for the whole system. This is the value
1186  *	   that is passed to suspend() function.
1187  *
1188  * Returns PCI power state suitable for given device and given system
1189  * message.
1190  */
1191 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1192 {
1193 	pci_power_t ret;
1194 
1195 	if (!dev->pm_cap)
1196 		return PCI_D0;
1197 
1198 	ret = platform_pci_choose_state(dev);
1199 	if (ret != PCI_POWER_ERROR)
1200 		return ret;
1201 
1202 	switch (state.event) {
1203 	case PM_EVENT_ON:
1204 		return PCI_D0;
1205 	case PM_EVENT_FREEZE:
1206 	case PM_EVENT_PRETHAW:
1207 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1208 	case PM_EVENT_SUSPEND:
1209 	case PM_EVENT_HIBERNATE:
1210 		return PCI_D3hot;
1211 	default:
1212 		pci_info(dev, "unrecognized suspend event %d\n",
1213 			 state.event);
1214 		BUG();
1215 	}
1216 	return PCI_D0;
1217 }
1218 EXPORT_SYMBOL(pci_choose_state);
1219 
1220 #define PCI_EXP_SAVE_REGS	7
1221 
1222 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1223 						       u16 cap, bool extended)
1224 {
1225 	struct pci_cap_saved_state *tmp;
1226 
1227 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1228 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1229 			return tmp;
1230 	}
1231 	return NULL;
1232 }
1233 
1234 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1235 {
1236 	return _pci_find_saved_cap(dev, cap, false);
1237 }
1238 
1239 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1240 {
1241 	return _pci_find_saved_cap(dev, cap, true);
1242 }
1243 
1244 static int pci_save_pcie_state(struct pci_dev *dev)
1245 {
1246 	int i = 0;
1247 	struct pci_cap_saved_state *save_state;
1248 	u16 *cap;
1249 
1250 	if (!pci_is_pcie(dev))
1251 		return 0;
1252 
1253 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1254 	if (!save_state) {
1255 		pci_err(dev, "buffer not found in %s\n", __func__);
1256 		return -ENOMEM;
1257 	}
1258 
1259 	cap = (u16 *)&save_state->cap.data[0];
1260 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1261 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1262 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1263 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1264 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1265 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1266 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1267 
1268 	return 0;
1269 }
1270 
1271 static void pci_restore_pcie_state(struct pci_dev *dev)
1272 {
1273 	int i = 0;
1274 	struct pci_cap_saved_state *save_state;
1275 	u16 *cap;
1276 
1277 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1278 	if (!save_state)
1279 		return;
1280 
1281 	cap = (u16 *)&save_state->cap.data[0];
1282 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1283 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1284 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1285 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1286 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1287 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1288 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1289 }
1290 
1291 static int pci_save_pcix_state(struct pci_dev *dev)
1292 {
1293 	int pos;
1294 	struct pci_cap_saved_state *save_state;
1295 
1296 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1297 	if (!pos)
1298 		return 0;
1299 
1300 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1301 	if (!save_state) {
1302 		pci_err(dev, "buffer not found in %s\n", __func__);
1303 		return -ENOMEM;
1304 	}
1305 
1306 	pci_read_config_word(dev, pos + PCI_X_CMD,
1307 			     (u16 *)save_state->cap.data);
1308 
1309 	return 0;
1310 }
1311 
1312 static void pci_restore_pcix_state(struct pci_dev *dev)
1313 {
1314 	int i = 0, pos;
1315 	struct pci_cap_saved_state *save_state;
1316 	u16 *cap;
1317 
1318 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1319 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1320 	if (!save_state || !pos)
1321 		return;
1322 	cap = (u16 *)&save_state->cap.data[0];
1323 
1324 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1325 }
1326 
1327 static void pci_save_ltr_state(struct pci_dev *dev)
1328 {
1329 	int ltr;
1330 	struct pci_cap_saved_state *save_state;
1331 	u16 *cap;
1332 
1333 	if (!pci_is_pcie(dev))
1334 		return;
1335 
1336 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1337 	if (!ltr)
1338 		return;
1339 
1340 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1341 	if (!save_state) {
1342 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1343 		return;
1344 	}
1345 
1346 	cap = (u16 *)&save_state->cap.data[0];
1347 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1348 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1349 }
1350 
1351 static void pci_restore_ltr_state(struct pci_dev *dev)
1352 {
1353 	struct pci_cap_saved_state *save_state;
1354 	int ltr;
1355 	u16 *cap;
1356 
1357 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1358 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1359 	if (!save_state || !ltr)
1360 		return;
1361 
1362 	cap = (u16 *)&save_state->cap.data[0];
1363 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1364 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1365 }
1366 
1367 /**
1368  * pci_save_state - save the PCI configuration space of a device before
1369  *		    suspending
1370  * @dev: PCI device that we're dealing with
1371  */
1372 int pci_save_state(struct pci_dev *dev)
1373 {
1374 	int i;
1375 	/* XXX: 100% dword access ok here? */
1376 	for (i = 0; i < 16; i++) {
1377 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1378 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1379 			i * 4, dev->saved_config_space[i]);
1380 	}
1381 	dev->state_saved = true;
1382 
1383 	i = pci_save_pcie_state(dev);
1384 	if (i != 0)
1385 		return i;
1386 
1387 	i = pci_save_pcix_state(dev);
1388 	if (i != 0)
1389 		return i;
1390 
1391 	pci_save_ltr_state(dev);
1392 	pci_save_dpc_state(dev);
1393 	pci_save_aer_state(dev);
1394 	return pci_save_vc_state(dev);
1395 }
1396 EXPORT_SYMBOL(pci_save_state);
1397 
1398 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1399 				     u32 saved_val, int retry, bool force)
1400 {
1401 	u32 val;
1402 
1403 	pci_read_config_dword(pdev, offset, &val);
1404 	if (!force && val == saved_val)
1405 		return;
1406 
1407 	for (;;) {
1408 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1409 			offset, val, saved_val);
1410 		pci_write_config_dword(pdev, offset, saved_val);
1411 		if (retry-- <= 0)
1412 			return;
1413 
1414 		pci_read_config_dword(pdev, offset, &val);
1415 		if (val == saved_val)
1416 			return;
1417 
1418 		mdelay(1);
1419 	}
1420 }
1421 
1422 static void pci_restore_config_space_range(struct pci_dev *pdev,
1423 					   int start, int end, int retry,
1424 					   bool force)
1425 {
1426 	int index;
1427 
1428 	for (index = end; index >= start; index--)
1429 		pci_restore_config_dword(pdev, 4 * index,
1430 					 pdev->saved_config_space[index],
1431 					 retry, force);
1432 }
1433 
1434 static void pci_restore_config_space(struct pci_dev *pdev)
1435 {
1436 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1437 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1438 		/* Restore BARs before the command register. */
1439 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1440 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1441 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1442 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1443 
1444 		/*
1445 		 * Force rewriting of prefetch registers to avoid S3 resume
1446 		 * issues on Intel PCI bridges that occur when these
1447 		 * registers are not explicitly written.
1448 		 */
1449 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1450 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1451 	} else {
1452 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1453 	}
1454 }
1455 
1456 static void pci_restore_rebar_state(struct pci_dev *pdev)
1457 {
1458 	unsigned int pos, nbars, i;
1459 	u32 ctrl;
1460 
1461 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1462 	if (!pos)
1463 		return;
1464 
1465 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1466 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1467 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1468 
1469 	for (i = 0; i < nbars; i++, pos += 8) {
1470 		struct resource *res;
1471 		int bar_idx, size;
1472 
1473 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1474 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1475 		res = pdev->resource + bar_idx;
1476 		size = ilog2(resource_size(res)) - 20;
1477 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1478 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1479 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1480 	}
1481 }
1482 
1483 /**
1484  * pci_restore_state - Restore the saved state of a PCI device
1485  * @dev: PCI device that we're dealing with
1486  */
1487 void pci_restore_state(struct pci_dev *dev)
1488 {
1489 	if (!dev->state_saved)
1490 		return;
1491 
1492 	/*
1493 	 * Restore max latencies (in the LTR capability) before enabling
1494 	 * LTR itself (in the PCIe capability).
1495 	 */
1496 	pci_restore_ltr_state(dev);
1497 
1498 	pci_restore_pcie_state(dev);
1499 	pci_restore_pasid_state(dev);
1500 	pci_restore_pri_state(dev);
1501 	pci_restore_ats_state(dev);
1502 	pci_restore_vc_state(dev);
1503 	pci_restore_rebar_state(dev);
1504 	pci_restore_dpc_state(dev);
1505 
1506 	pci_cleanup_aer_error_status_regs(dev);
1507 	pci_restore_aer_state(dev);
1508 
1509 	pci_restore_config_space(dev);
1510 
1511 	pci_restore_pcix_state(dev);
1512 	pci_restore_msi_state(dev);
1513 
1514 	/* Restore ACS and IOV configuration state */
1515 	pci_enable_acs(dev);
1516 	pci_restore_iov_state(dev);
1517 
1518 	dev->state_saved = false;
1519 }
1520 EXPORT_SYMBOL(pci_restore_state);
1521 
1522 struct pci_saved_state {
1523 	u32 config_space[16];
1524 	struct pci_cap_saved_data cap[0];
1525 };
1526 
1527 /**
1528  * pci_store_saved_state - Allocate and return an opaque struct containing
1529  *			   the device saved state.
1530  * @dev: PCI device that we're dealing with
1531  *
1532  * Return NULL if no state or error.
1533  */
1534 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1535 {
1536 	struct pci_saved_state *state;
1537 	struct pci_cap_saved_state *tmp;
1538 	struct pci_cap_saved_data *cap;
1539 	size_t size;
1540 
1541 	if (!dev->state_saved)
1542 		return NULL;
1543 
1544 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1545 
1546 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1547 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1548 
1549 	state = kzalloc(size, GFP_KERNEL);
1550 	if (!state)
1551 		return NULL;
1552 
1553 	memcpy(state->config_space, dev->saved_config_space,
1554 	       sizeof(state->config_space));
1555 
1556 	cap = state->cap;
1557 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1558 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1559 		memcpy(cap, &tmp->cap, len);
1560 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1561 	}
1562 	/* Empty cap_save terminates list */
1563 
1564 	return state;
1565 }
1566 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1567 
1568 /**
1569  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1570  * @dev: PCI device that we're dealing with
1571  * @state: Saved state returned from pci_store_saved_state()
1572  */
1573 int pci_load_saved_state(struct pci_dev *dev,
1574 			 struct pci_saved_state *state)
1575 {
1576 	struct pci_cap_saved_data *cap;
1577 
1578 	dev->state_saved = false;
1579 
1580 	if (!state)
1581 		return 0;
1582 
1583 	memcpy(dev->saved_config_space, state->config_space,
1584 	       sizeof(state->config_space));
1585 
1586 	cap = state->cap;
1587 	while (cap->size) {
1588 		struct pci_cap_saved_state *tmp;
1589 
1590 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1591 		if (!tmp || tmp->cap.size != cap->size)
1592 			return -EINVAL;
1593 
1594 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1595 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1596 		       sizeof(struct pci_cap_saved_data) + cap->size);
1597 	}
1598 
1599 	dev->state_saved = true;
1600 	return 0;
1601 }
1602 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1603 
1604 /**
1605  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1606  *				   and free the memory allocated for it.
1607  * @dev: PCI device that we're dealing with
1608  * @state: Pointer to saved state returned from pci_store_saved_state()
1609  */
1610 int pci_load_and_free_saved_state(struct pci_dev *dev,
1611 				  struct pci_saved_state **state)
1612 {
1613 	int ret = pci_load_saved_state(dev, *state);
1614 	kfree(*state);
1615 	*state = NULL;
1616 	return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1619 
1620 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1621 {
1622 	return pci_enable_resources(dev, bars);
1623 }
1624 
1625 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1626 {
1627 	int err;
1628 	struct pci_dev *bridge;
1629 	u16 cmd;
1630 	u8 pin;
1631 
1632 	err = pci_set_power_state(dev, PCI_D0);
1633 	if (err < 0 && err != -EIO)
1634 		return err;
1635 
1636 	bridge = pci_upstream_bridge(dev);
1637 	if (bridge)
1638 		pcie_aspm_powersave_config_link(bridge);
1639 
1640 	err = pcibios_enable_device(dev, bars);
1641 	if (err < 0)
1642 		return err;
1643 	pci_fixup_device(pci_fixup_enable, dev);
1644 
1645 	if (dev->msi_enabled || dev->msix_enabled)
1646 		return 0;
1647 
1648 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1649 	if (pin) {
1650 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1651 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1652 			pci_write_config_word(dev, PCI_COMMAND,
1653 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 /**
1660  * pci_reenable_device - Resume abandoned device
1661  * @dev: PCI device to be resumed
1662  *
1663  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1664  * to be called by normal code, write proper resume handler and use it instead.
1665  */
1666 int pci_reenable_device(struct pci_dev *dev)
1667 {
1668 	if (pci_is_enabled(dev))
1669 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1670 	return 0;
1671 }
1672 EXPORT_SYMBOL(pci_reenable_device);
1673 
1674 static void pci_enable_bridge(struct pci_dev *dev)
1675 {
1676 	struct pci_dev *bridge;
1677 	int retval;
1678 
1679 	bridge = pci_upstream_bridge(dev);
1680 	if (bridge)
1681 		pci_enable_bridge(bridge);
1682 
1683 	if (pci_is_enabled(dev)) {
1684 		if (!dev->is_busmaster)
1685 			pci_set_master(dev);
1686 		return;
1687 	}
1688 
1689 	retval = pci_enable_device(dev);
1690 	if (retval)
1691 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1692 			retval);
1693 	pci_set_master(dev);
1694 }
1695 
1696 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1697 {
1698 	struct pci_dev *bridge;
1699 	int err;
1700 	int i, bars = 0;
1701 
1702 	/*
1703 	 * Power state could be unknown at this point, either due to a fresh
1704 	 * boot or a device removal call.  So get the current power state
1705 	 * so that things like MSI message writing will behave as expected
1706 	 * (e.g. if the device really is in D0 at enable time).
1707 	 */
1708 	if (dev->pm_cap) {
1709 		u16 pmcsr;
1710 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1711 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1712 	}
1713 
1714 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1715 		return 0;		/* already enabled */
1716 
1717 	bridge = pci_upstream_bridge(dev);
1718 	if (bridge)
1719 		pci_enable_bridge(bridge);
1720 
1721 	/* only skip sriov related */
1722 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1723 		if (dev->resource[i].flags & flags)
1724 			bars |= (1 << i);
1725 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1726 		if (dev->resource[i].flags & flags)
1727 			bars |= (1 << i);
1728 
1729 	err = do_pci_enable_device(dev, bars);
1730 	if (err < 0)
1731 		atomic_dec(&dev->enable_cnt);
1732 	return err;
1733 }
1734 
1735 /**
1736  * pci_enable_device_io - Initialize a device for use with IO space
1737  * @dev: PCI device to be initialized
1738  *
1739  * Initialize device before it's used by a driver. Ask low-level code
1740  * to enable I/O resources. Wake up the device if it was suspended.
1741  * Beware, this function can fail.
1742  */
1743 int pci_enable_device_io(struct pci_dev *dev)
1744 {
1745 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1746 }
1747 EXPORT_SYMBOL(pci_enable_device_io);
1748 
1749 /**
1750  * pci_enable_device_mem - Initialize a device for use with Memory space
1751  * @dev: PCI device to be initialized
1752  *
1753  * Initialize device before it's used by a driver. Ask low-level code
1754  * to enable Memory resources. Wake up the device if it was suspended.
1755  * Beware, this function can fail.
1756  */
1757 int pci_enable_device_mem(struct pci_dev *dev)
1758 {
1759 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1760 }
1761 EXPORT_SYMBOL(pci_enable_device_mem);
1762 
1763 /**
1764  * pci_enable_device - Initialize device before it's used by a driver.
1765  * @dev: PCI device to be initialized
1766  *
1767  * Initialize device before it's used by a driver. Ask low-level code
1768  * to enable I/O and memory. Wake up the device if it was suspended.
1769  * Beware, this function can fail.
1770  *
1771  * Note we don't actually enable the device many times if we call
1772  * this function repeatedly (we just increment the count).
1773  */
1774 int pci_enable_device(struct pci_dev *dev)
1775 {
1776 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1777 }
1778 EXPORT_SYMBOL(pci_enable_device);
1779 
1780 /*
1781  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1782  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1783  * there's no need to track it separately.  pci_devres is initialized
1784  * when a device is enabled using managed PCI device enable interface.
1785  */
1786 struct pci_devres {
1787 	unsigned int enabled:1;
1788 	unsigned int pinned:1;
1789 	unsigned int orig_intx:1;
1790 	unsigned int restore_intx:1;
1791 	unsigned int mwi:1;
1792 	u32 region_mask;
1793 };
1794 
1795 static void pcim_release(struct device *gendev, void *res)
1796 {
1797 	struct pci_dev *dev = to_pci_dev(gendev);
1798 	struct pci_devres *this = res;
1799 	int i;
1800 
1801 	if (dev->msi_enabled)
1802 		pci_disable_msi(dev);
1803 	if (dev->msix_enabled)
1804 		pci_disable_msix(dev);
1805 
1806 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1807 		if (this->region_mask & (1 << i))
1808 			pci_release_region(dev, i);
1809 
1810 	if (this->mwi)
1811 		pci_clear_mwi(dev);
1812 
1813 	if (this->restore_intx)
1814 		pci_intx(dev, this->orig_intx);
1815 
1816 	if (this->enabled && !this->pinned)
1817 		pci_disable_device(dev);
1818 }
1819 
1820 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1821 {
1822 	struct pci_devres *dr, *new_dr;
1823 
1824 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1825 	if (dr)
1826 		return dr;
1827 
1828 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1829 	if (!new_dr)
1830 		return NULL;
1831 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1832 }
1833 
1834 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1835 {
1836 	if (pci_is_managed(pdev))
1837 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1838 	return NULL;
1839 }
1840 
1841 /**
1842  * pcim_enable_device - Managed pci_enable_device()
1843  * @pdev: PCI device to be initialized
1844  *
1845  * Managed pci_enable_device().
1846  */
1847 int pcim_enable_device(struct pci_dev *pdev)
1848 {
1849 	struct pci_devres *dr;
1850 	int rc;
1851 
1852 	dr = get_pci_dr(pdev);
1853 	if (unlikely(!dr))
1854 		return -ENOMEM;
1855 	if (dr->enabled)
1856 		return 0;
1857 
1858 	rc = pci_enable_device(pdev);
1859 	if (!rc) {
1860 		pdev->is_managed = 1;
1861 		dr->enabled = 1;
1862 	}
1863 	return rc;
1864 }
1865 EXPORT_SYMBOL(pcim_enable_device);
1866 
1867 /**
1868  * pcim_pin_device - Pin managed PCI device
1869  * @pdev: PCI device to pin
1870  *
1871  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1872  * driver detach.  @pdev must have been enabled with
1873  * pcim_enable_device().
1874  */
1875 void pcim_pin_device(struct pci_dev *pdev)
1876 {
1877 	struct pci_devres *dr;
1878 
1879 	dr = find_pci_dr(pdev);
1880 	WARN_ON(!dr || !dr->enabled);
1881 	if (dr)
1882 		dr->pinned = 1;
1883 }
1884 EXPORT_SYMBOL(pcim_pin_device);
1885 
1886 /*
1887  * pcibios_add_device - provide arch specific hooks when adding device dev
1888  * @dev: the PCI device being added
1889  *
1890  * Permits the platform to provide architecture specific functionality when
1891  * devices are added. This is the default implementation. Architecture
1892  * implementations can override this.
1893  */
1894 int __weak pcibios_add_device(struct pci_dev *dev)
1895 {
1896 	return 0;
1897 }
1898 
1899 /**
1900  * pcibios_release_device - provide arch specific hooks when releasing
1901  *			    device dev
1902  * @dev: the PCI device being released
1903  *
1904  * Permits the platform to provide architecture specific functionality when
1905  * devices are released. This is the default implementation. Architecture
1906  * implementations can override this.
1907  */
1908 void __weak pcibios_release_device(struct pci_dev *dev) {}
1909 
1910 /**
1911  * pcibios_disable_device - disable arch specific PCI resources for device dev
1912  * @dev: the PCI device to disable
1913  *
1914  * Disables architecture specific PCI resources for the device. This
1915  * is the default implementation. Architecture implementations can
1916  * override this.
1917  */
1918 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1919 
1920 /**
1921  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1922  * @irq: ISA IRQ to penalize
1923  * @active: IRQ active or not
1924  *
1925  * Permits the platform to provide architecture-specific functionality when
1926  * penalizing ISA IRQs. This is the default implementation. Architecture
1927  * implementations can override this.
1928  */
1929 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1930 
1931 static void do_pci_disable_device(struct pci_dev *dev)
1932 {
1933 	u16 pci_command;
1934 
1935 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1936 	if (pci_command & PCI_COMMAND_MASTER) {
1937 		pci_command &= ~PCI_COMMAND_MASTER;
1938 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1939 	}
1940 
1941 	pcibios_disable_device(dev);
1942 }
1943 
1944 /**
1945  * pci_disable_enabled_device - Disable device without updating enable_cnt
1946  * @dev: PCI device to disable
1947  *
1948  * NOTE: This function is a backend of PCI power management routines and is
1949  * not supposed to be called drivers.
1950  */
1951 void pci_disable_enabled_device(struct pci_dev *dev)
1952 {
1953 	if (pci_is_enabled(dev))
1954 		do_pci_disable_device(dev);
1955 }
1956 
1957 /**
1958  * pci_disable_device - Disable PCI device after use
1959  * @dev: PCI device to be disabled
1960  *
1961  * Signal to the system that the PCI device is not in use by the system
1962  * anymore.  This only involves disabling PCI bus-mastering, if active.
1963  *
1964  * Note we don't actually disable the device until all callers of
1965  * pci_enable_device() have called pci_disable_device().
1966  */
1967 void pci_disable_device(struct pci_dev *dev)
1968 {
1969 	struct pci_devres *dr;
1970 
1971 	dr = find_pci_dr(dev);
1972 	if (dr)
1973 		dr->enabled = 0;
1974 
1975 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1976 		      "disabling already-disabled device");
1977 
1978 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1979 		return;
1980 
1981 	do_pci_disable_device(dev);
1982 
1983 	dev->is_busmaster = 0;
1984 }
1985 EXPORT_SYMBOL(pci_disable_device);
1986 
1987 /**
1988  * pcibios_set_pcie_reset_state - set reset state for device dev
1989  * @dev: the PCIe device reset
1990  * @state: Reset state to enter into
1991  *
1992  * Set the PCIe reset state for the device. This is the default
1993  * implementation. Architecture implementations can override this.
1994  */
1995 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1996 					enum pcie_reset_state state)
1997 {
1998 	return -EINVAL;
1999 }
2000 
2001 /**
2002  * pci_set_pcie_reset_state - set reset state for device dev
2003  * @dev: the PCIe device reset
2004  * @state: Reset state to enter into
2005  *
2006  * Sets the PCI reset state for the device.
2007  */
2008 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2009 {
2010 	return pcibios_set_pcie_reset_state(dev, state);
2011 }
2012 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2013 
2014 /**
2015  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2016  * @dev: PCIe root port or event collector.
2017  */
2018 void pcie_clear_root_pme_status(struct pci_dev *dev)
2019 {
2020 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2021 }
2022 
2023 /**
2024  * pci_check_pme_status - Check if given device has generated PME.
2025  * @dev: Device to check.
2026  *
2027  * Check the PME status of the device and if set, clear it and clear PME enable
2028  * (if set).  Return 'true' if PME status and PME enable were both set or
2029  * 'false' otherwise.
2030  */
2031 bool pci_check_pme_status(struct pci_dev *dev)
2032 {
2033 	int pmcsr_pos;
2034 	u16 pmcsr;
2035 	bool ret = false;
2036 
2037 	if (!dev->pm_cap)
2038 		return false;
2039 
2040 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2041 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2042 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2043 		return false;
2044 
2045 	/* Clear PME status. */
2046 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2047 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2048 		/* Disable PME to avoid interrupt flood. */
2049 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2050 		ret = true;
2051 	}
2052 
2053 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2054 
2055 	return ret;
2056 }
2057 
2058 /**
2059  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2060  * @dev: Device to handle.
2061  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2062  *
2063  * Check if @dev has generated PME and queue a resume request for it in that
2064  * case.
2065  */
2066 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2067 {
2068 	if (pme_poll_reset && dev->pme_poll)
2069 		dev->pme_poll = false;
2070 
2071 	if (pci_check_pme_status(dev)) {
2072 		pci_wakeup_event(dev);
2073 		pm_request_resume(&dev->dev);
2074 	}
2075 	return 0;
2076 }
2077 
2078 /**
2079  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2080  * @bus: Top bus of the subtree to walk.
2081  */
2082 void pci_pme_wakeup_bus(struct pci_bus *bus)
2083 {
2084 	if (bus)
2085 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2086 }
2087 
2088 
2089 /**
2090  * pci_pme_capable - check the capability of PCI device to generate PME#
2091  * @dev: PCI device to handle.
2092  * @state: PCI state from which device will issue PME#.
2093  */
2094 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2095 {
2096 	if (!dev->pm_cap)
2097 		return false;
2098 
2099 	return !!(dev->pme_support & (1 << state));
2100 }
2101 EXPORT_SYMBOL(pci_pme_capable);
2102 
2103 static void pci_pme_list_scan(struct work_struct *work)
2104 {
2105 	struct pci_pme_device *pme_dev, *n;
2106 
2107 	mutex_lock(&pci_pme_list_mutex);
2108 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2109 		if (pme_dev->dev->pme_poll) {
2110 			struct pci_dev *bridge;
2111 
2112 			bridge = pme_dev->dev->bus->self;
2113 			/*
2114 			 * If bridge is in low power state, the
2115 			 * configuration space of subordinate devices
2116 			 * may be not accessible
2117 			 */
2118 			if (bridge && bridge->current_state != PCI_D0)
2119 				continue;
2120 			/*
2121 			 * If the device is in D3cold it should not be
2122 			 * polled either.
2123 			 */
2124 			if (pme_dev->dev->current_state == PCI_D3cold)
2125 				continue;
2126 
2127 			pci_pme_wakeup(pme_dev->dev, NULL);
2128 		} else {
2129 			list_del(&pme_dev->list);
2130 			kfree(pme_dev);
2131 		}
2132 	}
2133 	if (!list_empty(&pci_pme_list))
2134 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2135 				   msecs_to_jiffies(PME_TIMEOUT));
2136 	mutex_unlock(&pci_pme_list_mutex);
2137 }
2138 
2139 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2140 {
2141 	u16 pmcsr;
2142 
2143 	if (!dev->pme_support)
2144 		return;
2145 
2146 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2147 	/* Clear PME_Status by writing 1 to it and enable PME# */
2148 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2149 	if (!enable)
2150 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2151 
2152 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2153 }
2154 
2155 /**
2156  * pci_pme_restore - Restore PME configuration after config space restore.
2157  * @dev: PCI device to update.
2158  */
2159 void pci_pme_restore(struct pci_dev *dev)
2160 {
2161 	u16 pmcsr;
2162 
2163 	if (!dev->pme_support)
2164 		return;
2165 
2166 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2167 	if (dev->wakeup_prepared) {
2168 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2169 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2170 	} else {
2171 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2172 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2173 	}
2174 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2175 }
2176 
2177 /**
2178  * pci_pme_active - enable or disable PCI device's PME# function
2179  * @dev: PCI device to handle.
2180  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2181  *
2182  * The caller must verify that the device is capable of generating PME# before
2183  * calling this function with @enable equal to 'true'.
2184  */
2185 void pci_pme_active(struct pci_dev *dev, bool enable)
2186 {
2187 	__pci_pme_active(dev, enable);
2188 
2189 	/*
2190 	 * PCI (as opposed to PCIe) PME requires that the device have
2191 	 * its PME# line hooked up correctly. Not all hardware vendors
2192 	 * do this, so the PME never gets delivered and the device
2193 	 * remains asleep. The easiest way around this is to
2194 	 * periodically walk the list of suspended devices and check
2195 	 * whether any have their PME flag set. The assumption is that
2196 	 * we'll wake up often enough anyway that this won't be a huge
2197 	 * hit, and the power savings from the devices will still be a
2198 	 * win.
2199 	 *
2200 	 * Although PCIe uses in-band PME message instead of PME# line
2201 	 * to report PME, PME does not work for some PCIe devices in
2202 	 * reality.  For example, there are devices that set their PME
2203 	 * status bits, but don't really bother to send a PME message;
2204 	 * there are PCI Express Root Ports that don't bother to
2205 	 * trigger interrupts when they receive PME messages from the
2206 	 * devices below.  So PME poll is used for PCIe devices too.
2207 	 */
2208 
2209 	if (dev->pme_poll) {
2210 		struct pci_pme_device *pme_dev;
2211 		if (enable) {
2212 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2213 					  GFP_KERNEL);
2214 			if (!pme_dev) {
2215 				pci_warn(dev, "can't enable PME#\n");
2216 				return;
2217 			}
2218 			pme_dev->dev = dev;
2219 			mutex_lock(&pci_pme_list_mutex);
2220 			list_add(&pme_dev->list, &pci_pme_list);
2221 			if (list_is_singular(&pci_pme_list))
2222 				queue_delayed_work(system_freezable_wq,
2223 						   &pci_pme_work,
2224 						   msecs_to_jiffies(PME_TIMEOUT));
2225 			mutex_unlock(&pci_pme_list_mutex);
2226 		} else {
2227 			mutex_lock(&pci_pme_list_mutex);
2228 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2229 				if (pme_dev->dev == dev) {
2230 					list_del(&pme_dev->list);
2231 					kfree(pme_dev);
2232 					break;
2233 				}
2234 			}
2235 			mutex_unlock(&pci_pme_list_mutex);
2236 		}
2237 	}
2238 
2239 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2240 }
2241 EXPORT_SYMBOL(pci_pme_active);
2242 
2243 /**
2244  * __pci_enable_wake - enable PCI device as wakeup event source
2245  * @dev: PCI device affected
2246  * @state: PCI state from which device will issue wakeup events
2247  * @enable: True to enable event generation; false to disable
2248  *
2249  * This enables the device as a wakeup event source, or disables it.
2250  * When such events involves platform-specific hooks, those hooks are
2251  * called automatically by this routine.
2252  *
2253  * Devices with legacy power management (no standard PCI PM capabilities)
2254  * always require such platform hooks.
2255  *
2256  * RETURN VALUE:
2257  * 0 is returned on success
2258  * -EINVAL is returned if device is not supposed to wake up the system
2259  * Error code depending on the platform is returned if both the platform and
2260  * the native mechanism fail to enable the generation of wake-up events
2261  */
2262 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2263 {
2264 	int ret = 0;
2265 
2266 	/*
2267 	 * Bridges that are not power-manageable directly only signal
2268 	 * wakeup on behalf of subordinate devices which is set up
2269 	 * elsewhere, so skip them. However, bridges that are
2270 	 * power-manageable may signal wakeup for themselves (for example,
2271 	 * on a hotplug event) and they need to be covered here.
2272 	 */
2273 	if (!pci_power_manageable(dev))
2274 		return 0;
2275 
2276 	/* Don't do the same thing twice in a row for one device. */
2277 	if (!!enable == !!dev->wakeup_prepared)
2278 		return 0;
2279 
2280 	/*
2281 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2282 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2283 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2284 	 */
2285 
2286 	if (enable) {
2287 		int error;
2288 
2289 		if (pci_pme_capable(dev, state))
2290 			pci_pme_active(dev, true);
2291 		else
2292 			ret = 1;
2293 		error = platform_pci_set_wakeup(dev, true);
2294 		if (ret)
2295 			ret = error;
2296 		if (!ret)
2297 			dev->wakeup_prepared = true;
2298 	} else {
2299 		platform_pci_set_wakeup(dev, false);
2300 		pci_pme_active(dev, false);
2301 		dev->wakeup_prepared = false;
2302 	}
2303 
2304 	return ret;
2305 }
2306 
2307 /**
2308  * pci_enable_wake - change wakeup settings for a PCI device
2309  * @pci_dev: Target device
2310  * @state: PCI state from which device will issue wakeup events
2311  * @enable: Whether or not to enable event generation
2312  *
2313  * If @enable is set, check device_may_wakeup() for the device before calling
2314  * __pci_enable_wake() for it.
2315  */
2316 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2317 {
2318 	if (enable && !device_may_wakeup(&pci_dev->dev))
2319 		return -EINVAL;
2320 
2321 	return __pci_enable_wake(pci_dev, state, enable);
2322 }
2323 EXPORT_SYMBOL(pci_enable_wake);
2324 
2325 /**
2326  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2327  * @dev: PCI device to prepare
2328  * @enable: True to enable wake-up event generation; false to disable
2329  *
2330  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2331  * and this function allows them to set that up cleanly - pci_enable_wake()
2332  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2333  * ordering constraints.
2334  *
2335  * This function only returns error code if the device is not allowed to wake
2336  * up the system from sleep or it is not capable of generating PME# from both
2337  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2338  */
2339 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2340 {
2341 	return pci_pme_capable(dev, PCI_D3cold) ?
2342 			pci_enable_wake(dev, PCI_D3cold, enable) :
2343 			pci_enable_wake(dev, PCI_D3hot, enable);
2344 }
2345 EXPORT_SYMBOL(pci_wake_from_d3);
2346 
2347 /**
2348  * pci_target_state - find an appropriate low power state for a given PCI dev
2349  * @dev: PCI device
2350  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2351  *
2352  * Use underlying platform code to find a supported low power state for @dev.
2353  * If the platform can't manage @dev, return the deepest state from which it
2354  * can generate wake events, based on any available PME info.
2355  */
2356 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2357 {
2358 	pci_power_t target_state = PCI_D3hot;
2359 
2360 	if (platform_pci_power_manageable(dev)) {
2361 		/*
2362 		 * Call the platform to find the target state for the device.
2363 		 */
2364 		pci_power_t state = platform_pci_choose_state(dev);
2365 
2366 		switch (state) {
2367 		case PCI_POWER_ERROR:
2368 		case PCI_UNKNOWN:
2369 			break;
2370 		case PCI_D1:
2371 		case PCI_D2:
2372 			if (pci_no_d1d2(dev))
2373 				break;
2374 			/* else, fall through */
2375 		default:
2376 			target_state = state;
2377 		}
2378 
2379 		return target_state;
2380 	}
2381 
2382 	if (!dev->pm_cap)
2383 		target_state = PCI_D0;
2384 
2385 	/*
2386 	 * If the device is in D3cold even though it's not power-manageable by
2387 	 * the platform, it may have been powered down by non-standard means.
2388 	 * Best to let it slumber.
2389 	 */
2390 	if (dev->current_state == PCI_D3cold)
2391 		target_state = PCI_D3cold;
2392 
2393 	if (wakeup) {
2394 		/*
2395 		 * Find the deepest state from which the device can generate
2396 		 * PME#.
2397 		 */
2398 		if (dev->pme_support) {
2399 			while (target_state
2400 			      && !(dev->pme_support & (1 << target_state)))
2401 				target_state--;
2402 		}
2403 	}
2404 
2405 	return target_state;
2406 }
2407 
2408 /**
2409  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2410  *			  into a sleep state
2411  * @dev: Device to handle.
2412  *
2413  * Choose the power state appropriate for the device depending on whether
2414  * it can wake up the system and/or is power manageable by the platform
2415  * (PCI_D3hot is the default) and put the device into that state.
2416  */
2417 int pci_prepare_to_sleep(struct pci_dev *dev)
2418 {
2419 	bool wakeup = device_may_wakeup(&dev->dev);
2420 	pci_power_t target_state = pci_target_state(dev, wakeup);
2421 	int error;
2422 
2423 	if (target_state == PCI_POWER_ERROR)
2424 		return -EIO;
2425 
2426 	pci_enable_wake(dev, target_state, wakeup);
2427 
2428 	error = pci_set_power_state(dev, target_state);
2429 
2430 	if (error)
2431 		pci_enable_wake(dev, target_state, false);
2432 
2433 	return error;
2434 }
2435 EXPORT_SYMBOL(pci_prepare_to_sleep);
2436 
2437 /**
2438  * pci_back_from_sleep - turn PCI device on during system-wide transition
2439  *			 into working state
2440  * @dev: Device to handle.
2441  *
2442  * Disable device's system wake-up capability and put it into D0.
2443  */
2444 int pci_back_from_sleep(struct pci_dev *dev)
2445 {
2446 	pci_enable_wake(dev, PCI_D0, false);
2447 	return pci_set_power_state(dev, PCI_D0);
2448 }
2449 EXPORT_SYMBOL(pci_back_from_sleep);
2450 
2451 /**
2452  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2453  * @dev: PCI device being suspended.
2454  *
2455  * Prepare @dev to generate wake-up events at run time and put it into a low
2456  * power state.
2457  */
2458 int pci_finish_runtime_suspend(struct pci_dev *dev)
2459 {
2460 	pci_power_t target_state;
2461 	int error;
2462 
2463 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2464 	if (target_state == PCI_POWER_ERROR)
2465 		return -EIO;
2466 
2467 	dev->runtime_d3cold = target_state == PCI_D3cold;
2468 
2469 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2470 
2471 	error = pci_set_power_state(dev, target_state);
2472 
2473 	if (error) {
2474 		pci_enable_wake(dev, target_state, false);
2475 		dev->runtime_d3cold = false;
2476 	}
2477 
2478 	return error;
2479 }
2480 
2481 /**
2482  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2483  * @dev: Device to check.
2484  *
2485  * Return true if the device itself is capable of generating wake-up events
2486  * (through the platform or using the native PCIe PME) or if the device supports
2487  * PME and one of its upstream bridges can generate wake-up events.
2488  */
2489 bool pci_dev_run_wake(struct pci_dev *dev)
2490 {
2491 	struct pci_bus *bus = dev->bus;
2492 
2493 	if (!dev->pme_support)
2494 		return false;
2495 
2496 	/* PME-capable in principle, but not from the target power state */
2497 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2498 		return false;
2499 
2500 	if (device_can_wakeup(&dev->dev))
2501 		return true;
2502 
2503 	while (bus->parent) {
2504 		struct pci_dev *bridge = bus->self;
2505 
2506 		if (device_can_wakeup(&bridge->dev))
2507 			return true;
2508 
2509 		bus = bus->parent;
2510 	}
2511 
2512 	/* We have reached the root bus. */
2513 	if (bus->bridge)
2514 		return device_can_wakeup(bus->bridge);
2515 
2516 	return false;
2517 }
2518 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2519 
2520 /**
2521  * pci_dev_need_resume - Check if it is necessary to resume the device.
2522  * @pci_dev: Device to check.
2523  *
2524  * Return 'true' if the device is not runtime-suspended or it has to be
2525  * reconfigured due to wakeup settings difference between system and runtime
2526  * suspend, or the current power state of it is not suitable for the upcoming
2527  * (system-wide) transition.
2528  */
2529 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2530 {
2531 	struct device *dev = &pci_dev->dev;
2532 	pci_power_t target_state;
2533 
2534 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2535 		return true;
2536 
2537 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2538 
2539 	/*
2540 	 * If the earlier platform check has not triggered, D3cold is just power
2541 	 * removal on top of D3hot, so no need to resume the device in that
2542 	 * case.
2543 	 */
2544 	return target_state != pci_dev->current_state &&
2545 		target_state != PCI_D3cold &&
2546 		pci_dev->current_state != PCI_D3hot;
2547 }
2548 
2549 /**
2550  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2551  * @pci_dev: Device to check.
2552  *
2553  * If the device is suspended and it is not configured for system wakeup,
2554  * disable PME for it to prevent it from waking up the system unnecessarily.
2555  *
2556  * Note that if the device's power state is D3cold and the platform check in
2557  * pci_dev_need_resume() has not triggered, the device's configuration need not
2558  * be changed.
2559  */
2560 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2561 {
2562 	struct device *dev = &pci_dev->dev;
2563 
2564 	spin_lock_irq(&dev->power.lock);
2565 
2566 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2567 	    pci_dev->current_state < PCI_D3cold)
2568 		__pci_pme_active(pci_dev, false);
2569 
2570 	spin_unlock_irq(&dev->power.lock);
2571 }
2572 
2573 /**
2574  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2575  * @pci_dev: Device to handle.
2576  *
2577  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2578  * it might have been disabled during the prepare phase of system suspend if
2579  * the device was not configured for system wakeup.
2580  */
2581 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2582 {
2583 	struct device *dev = &pci_dev->dev;
2584 
2585 	if (!pci_dev_run_wake(pci_dev))
2586 		return;
2587 
2588 	spin_lock_irq(&dev->power.lock);
2589 
2590 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2591 		__pci_pme_active(pci_dev, true);
2592 
2593 	spin_unlock_irq(&dev->power.lock);
2594 }
2595 
2596 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2597 {
2598 	struct device *dev = &pdev->dev;
2599 	struct device *parent = dev->parent;
2600 
2601 	if (parent)
2602 		pm_runtime_get_sync(parent);
2603 	pm_runtime_get_noresume(dev);
2604 	/*
2605 	 * pdev->current_state is set to PCI_D3cold during suspending,
2606 	 * so wait until suspending completes
2607 	 */
2608 	pm_runtime_barrier(dev);
2609 	/*
2610 	 * Only need to resume devices in D3cold, because config
2611 	 * registers are still accessible for devices suspended but
2612 	 * not in D3cold.
2613 	 */
2614 	if (pdev->current_state == PCI_D3cold)
2615 		pm_runtime_resume(dev);
2616 }
2617 
2618 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2619 {
2620 	struct device *dev = &pdev->dev;
2621 	struct device *parent = dev->parent;
2622 
2623 	pm_runtime_put(dev);
2624 	if (parent)
2625 		pm_runtime_put_sync(parent);
2626 }
2627 
2628 static const struct dmi_system_id bridge_d3_blacklist[] = {
2629 #ifdef CONFIG_X86
2630 	{
2631 		/*
2632 		 * Gigabyte X299 root port is not marked as hotplug capable
2633 		 * which allows Linux to power manage it.  However, this
2634 		 * confuses the BIOS SMI handler so don't power manage root
2635 		 * ports on that system.
2636 		 */
2637 		.ident = "X299 DESIGNARE EX-CF",
2638 		.matches = {
2639 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2640 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2641 		},
2642 	},
2643 #endif
2644 	{ }
2645 };
2646 
2647 /**
2648  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2649  * @bridge: Bridge to check
2650  *
2651  * This function checks if it is possible to move the bridge to D3.
2652  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2653  */
2654 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2655 {
2656 	if (!pci_is_pcie(bridge))
2657 		return false;
2658 
2659 	switch (pci_pcie_type(bridge)) {
2660 	case PCI_EXP_TYPE_ROOT_PORT:
2661 	case PCI_EXP_TYPE_UPSTREAM:
2662 	case PCI_EXP_TYPE_DOWNSTREAM:
2663 		if (pci_bridge_d3_disable)
2664 			return false;
2665 
2666 		/*
2667 		 * Hotplug ports handled by firmware in System Management Mode
2668 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2669 		 */
2670 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2671 			return false;
2672 
2673 		if (pci_bridge_d3_force)
2674 			return true;
2675 
2676 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2677 		if (bridge->is_thunderbolt)
2678 			return true;
2679 
2680 		/* Platform might know better if the bridge supports D3 */
2681 		if (platform_pci_bridge_d3(bridge))
2682 			return true;
2683 
2684 		/*
2685 		 * Hotplug ports handled natively by the OS were not validated
2686 		 * by vendors for runtime D3 at least until 2018 because there
2687 		 * was no OS support.
2688 		 */
2689 		if (bridge->is_hotplug_bridge)
2690 			return false;
2691 
2692 		if (dmi_check_system(bridge_d3_blacklist))
2693 			return false;
2694 
2695 		/*
2696 		 * It should be safe to put PCIe ports from 2015 or newer
2697 		 * to D3.
2698 		 */
2699 		if (dmi_get_bios_year() >= 2015)
2700 			return true;
2701 		break;
2702 	}
2703 
2704 	return false;
2705 }
2706 
2707 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2708 {
2709 	bool *d3cold_ok = data;
2710 
2711 	if (/* The device needs to be allowed to go D3cold ... */
2712 	    dev->no_d3cold || !dev->d3cold_allowed ||
2713 
2714 	    /* ... and if it is wakeup capable to do so from D3cold. */
2715 	    (device_may_wakeup(&dev->dev) &&
2716 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2717 
2718 	    /* If it is a bridge it must be allowed to go to D3. */
2719 	    !pci_power_manageable(dev))
2720 
2721 		*d3cold_ok = false;
2722 
2723 	return !*d3cold_ok;
2724 }
2725 
2726 /*
2727  * pci_bridge_d3_update - Update bridge D3 capabilities
2728  * @dev: PCI device which is changed
2729  *
2730  * Update upstream bridge PM capabilities accordingly depending on if the
2731  * device PM configuration was changed or the device is being removed.  The
2732  * change is also propagated upstream.
2733  */
2734 void pci_bridge_d3_update(struct pci_dev *dev)
2735 {
2736 	bool remove = !device_is_registered(&dev->dev);
2737 	struct pci_dev *bridge;
2738 	bool d3cold_ok = true;
2739 
2740 	bridge = pci_upstream_bridge(dev);
2741 	if (!bridge || !pci_bridge_d3_possible(bridge))
2742 		return;
2743 
2744 	/*
2745 	 * If D3 is currently allowed for the bridge, removing one of its
2746 	 * children won't change that.
2747 	 */
2748 	if (remove && bridge->bridge_d3)
2749 		return;
2750 
2751 	/*
2752 	 * If D3 is currently allowed for the bridge and a child is added or
2753 	 * changed, disallowance of D3 can only be caused by that child, so
2754 	 * we only need to check that single device, not any of its siblings.
2755 	 *
2756 	 * If D3 is currently not allowed for the bridge, checking the device
2757 	 * first may allow us to skip checking its siblings.
2758 	 */
2759 	if (!remove)
2760 		pci_dev_check_d3cold(dev, &d3cold_ok);
2761 
2762 	/*
2763 	 * If D3 is currently not allowed for the bridge, this may be caused
2764 	 * either by the device being changed/removed or any of its siblings,
2765 	 * so we need to go through all children to find out if one of them
2766 	 * continues to block D3.
2767 	 */
2768 	if (d3cold_ok && !bridge->bridge_d3)
2769 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2770 			     &d3cold_ok);
2771 
2772 	if (bridge->bridge_d3 != d3cold_ok) {
2773 		bridge->bridge_d3 = d3cold_ok;
2774 		/* Propagate change to upstream bridges */
2775 		pci_bridge_d3_update(bridge);
2776 	}
2777 }
2778 
2779 /**
2780  * pci_d3cold_enable - Enable D3cold for device
2781  * @dev: PCI device to handle
2782  *
2783  * This function can be used in drivers to enable D3cold from the device
2784  * they handle.  It also updates upstream PCI bridge PM capabilities
2785  * accordingly.
2786  */
2787 void pci_d3cold_enable(struct pci_dev *dev)
2788 {
2789 	if (dev->no_d3cold) {
2790 		dev->no_d3cold = false;
2791 		pci_bridge_d3_update(dev);
2792 	}
2793 }
2794 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2795 
2796 /**
2797  * pci_d3cold_disable - Disable D3cold for device
2798  * @dev: PCI device to handle
2799  *
2800  * This function can be used in drivers to disable D3cold from the device
2801  * they handle.  It also updates upstream PCI bridge PM capabilities
2802  * accordingly.
2803  */
2804 void pci_d3cold_disable(struct pci_dev *dev)
2805 {
2806 	if (!dev->no_d3cold) {
2807 		dev->no_d3cold = true;
2808 		pci_bridge_d3_update(dev);
2809 	}
2810 }
2811 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2812 
2813 /**
2814  * pci_pm_init - Initialize PM functions of given PCI device
2815  * @dev: PCI device to handle.
2816  */
2817 void pci_pm_init(struct pci_dev *dev)
2818 {
2819 	int pm;
2820 	u16 status;
2821 	u16 pmc;
2822 
2823 	pm_runtime_forbid(&dev->dev);
2824 	pm_runtime_set_active(&dev->dev);
2825 	pm_runtime_enable(&dev->dev);
2826 	device_enable_async_suspend(&dev->dev);
2827 	dev->wakeup_prepared = false;
2828 
2829 	dev->pm_cap = 0;
2830 	dev->pme_support = 0;
2831 
2832 	/* find PCI PM capability in list */
2833 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2834 	if (!pm)
2835 		return;
2836 	/* Check device's ability to generate PME# */
2837 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2838 
2839 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2840 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2841 			pmc & PCI_PM_CAP_VER_MASK);
2842 		return;
2843 	}
2844 
2845 	dev->pm_cap = pm;
2846 	dev->d3_delay = PCI_PM_D3_WAIT;
2847 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2848 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2849 	dev->d3cold_allowed = true;
2850 
2851 	dev->d1_support = false;
2852 	dev->d2_support = false;
2853 	if (!pci_no_d1d2(dev)) {
2854 		if (pmc & PCI_PM_CAP_D1)
2855 			dev->d1_support = true;
2856 		if (pmc & PCI_PM_CAP_D2)
2857 			dev->d2_support = true;
2858 
2859 		if (dev->d1_support || dev->d2_support)
2860 			pci_info(dev, "supports%s%s\n",
2861 				   dev->d1_support ? " D1" : "",
2862 				   dev->d2_support ? " D2" : "");
2863 	}
2864 
2865 	pmc &= PCI_PM_CAP_PME_MASK;
2866 	if (pmc) {
2867 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2868 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2869 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2870 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2871 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2872 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2873 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2874 		dev->pme_poll = true;
2875 		/*
2876 		 * Make device's PM flags reflect the wake-up capability, but
2877 		 * let the user space enable it to wake up the system as needed.
2878 		 */
2879 		device_set_wakeup_capable(&dev->dev, true);
2880 		/* Disable the PME# generation functionality */
2881 		pci_pme_active(dev, false);
2882 	}
2883 
2884 	pci_read_config_word(dev, PCI_STATUS, &status);
2885 	if (status & PCI_STATUS_IMM_READY)
2886 		dev->imm_ready = 1;
2887 }
2888 
2889 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2890 {
2891 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2892 
2893 	switch (prop) {
2894 	case PCI_EA_P_MEM:
2895 	case PCI_EA_P_VF_MEM:
2896 		flags |= IORESOURCE_MEM;
2897 		break;
2898 	case PCI_EA_P_MEM_PREFETCH:
2899 	case PCI_EA_P_VF_MEM_PREFETCH:
2900 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2901 		break;
2902 	case PCI_EA_P_IO:
2903 		flags |= IORESOURCE_IO;
2904 		break;
2905 	default:
2906 		return 0;
2907 	}
2908 
2909 	return flags;
2910 }
2911 
2912 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2913 					    u8 prop)
2914 {
2915 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2916 		return &dev->resource[bei];
2917 #ifdef CONFIG_PCI_IOV
2918 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2919 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2920 		return &dev->resource[PCI_IOV_RESOURCES +
2921 				      bei - PCI_EA_BEI_VF_BAR0];
2922 #endif
2923 	else if (bei == PCI_EA_BEI_ROM)
2924 		return &dev->resource[PCI_ROM_RESOURCE];
2925 	else
2926 		return NULL;
2927 }
2928 
2929 /* Read an Enhanced Allocation (EA) entry */
2930 static int pci_ea_read(struct pci_dev *dev, int offset)
2931 {
2932 	struct resource *res;
2933 	int ent_size, ent_offset = offset;
2934 	resource_size_t start, end;
2935 	unsigned long flags;
2936 	u32 dw0, bei, base, max_offset;
2937 	u8 prop;
2938 	bool support_64 = (sizeof(resource_size_t) >= 8);
2939 
2940 	pci_read_config_dword(dev, ent_offset, &dw0);
2941 	ent_offset += 4;
2942 
2943 	/* Entry size field indicates DWORDs after 1st */
2944 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2945 
2946 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2947 		goto out;
2948 
2949 	bei = (dw0 & PCI_EA_BEI) >> 4;
2950 	prop = (dw0 & PCI_EA_PP) >> 8;
2951 
2952 	/*
2953 	 * If the Property is in the reserved range, try the Secondary
2954 	 * Property instead.
2955 	 */
2956 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2957 		prop = (dw0 & PCI_EA_SP) >> 16;
2958 	if (prop > PCI_EA_P_BRIDGE_IO)
2959 		goto out;
2960 
2961 	res = pci_ea_get_resource(dev, bei, prop);
2962 	if (!res) {
2963 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2964 		goto out;
2965 	}
2966 
2967 	flags = pci_ea_flags(dev, prop);
2968 	if (!flags) {
2969 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2970 		goto out;
2971 	}
2972 
2973 	/* Read Base */
2974 	pci_read_config_dword(dev, ent_offset, &base);
2975 	start = (base & PCI_EA_FIELD_MASK);
2976 	ent_offset += 4;
2977 
2978 	/* Read MaxOffset */
2979 	pci_read_config_dword(dev, ent_offset, &max_offset);
2980 	ent_offset += 4;
2981 
2982 	/* Read Base MSBs (if 64-bit entry) */
2983 	if (base & PCI_EA_IS_64) {
2984 		u32 base_upper;
2985 
2986 		pci_read_config_dword(dev, ent_offset, &base_upper);
2987 		ent_offset += 4;
2988 
2989 		flags |= IORESOURCE_MEM_64;
2990 
2991 		/* entry starts above 32-bit boundary, can't use */
2992 		if (!support_64 && base_upper)
2993 			goto out;
2994 
2995 		if (support_64)
2996 			start |= ((u64)base_upper << 32);
2997 	}
2998 
2999 	end = start + (max_offset | 0x03);
3000 
3001 	/* Read MaxOffset MSBs (if 64-bit entry) */
3002 	if (max_offset & PCI_EA_IS_64) {
3003 		u32 max_offset_upper;
3004 
3005 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3006 		ent_offset += 4;
3007 
3008 		flags |= IORESOURCE_MEM_64;
3009 
3010 		/* entry too big, can't use */
3011 		if (!support_64 && max_offset_upper)
3012 			goto out;
3013 
3014 		if (support_64)
3015 			end += ((u64)max_offset_upper << 32);
3016 	}
3017 
3018 	if (end < start) {
3019 		pci_err(dev, "EA Entry crosses address boundary\n");
3020 		goto out;
3021 	}
3022 
3023 	if (ent_size != ent_offset - offset) {
3024 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3025 			ent_size, ent_offset - offset);
3026 		goto out;
3027 	}
3028 
3029 	res->name = pci_name(dev);
3030 	res->start = start;
3031 	res->end = end;
3032 	res->flags = flags;
3033 
3034 	if (bei <= PCI_EA_BEI_BAR5)
3035 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3036 			   bei, res, prop);
3037 	else if (bei == PCI_EA_BEI_ROM)
3038 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3039 			   res, prop);
3040 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3041 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3042 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3043 	else
3044 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3045 			   bei, res, prop);
3046 
3047 out:
3048 	return offset + ent_size;
3049 }
3050 
3051 /* Enhanced Allocation Initialization */
3052 void pci_ea_init(struct pci_dev *dev)
3053 {
3054 	int ea;
3055 	u8 num_ent;
3056 	int offset;
3057 	int i;
3058 
3059 	/* find PCI EA capability in list */
3060 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3061 	if (!ea)
3062 		return;
3063 
3064 	/* determine the number of entries */
3065 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3066 					&num_ent);
3067 	num_ent &= PCI_EA_NUM_ENT_MASK;
3068 
3069 	offset = ea + PCI_EA_FIRST_ENT;
3070 
3071 	/* Skip DWORD 2 for type 1 functions */
3072 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3073 		offset += 4;
3074 
3075 	/* parse each EA entry */
3076 	for (i = 0; i < num_ent; ++i)
3077 		offset = pci_ea_read(dev, offset);
3078 }
3079 
3080 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3081 	struct pci_cap_saved_state *new_cap)
3082 {
3083 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3084 }
3085 
3086 /**
3087  * _pci_add_cap_save_buffer - allocate buffer for saving given
3088  *			      capability registers
3089  * @dev: the PCI device
3090  * @cap: the capability to allocate the buffer for
3091  * @extended: Standard or Extended capability ID
3092  * @size: requested size of the buffer
3093  */
3094 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3095 				    bool extended, unsigned int size)
3096 {
3097 	int pos;
3098 	struct pci_cap_saved_state *save_state;
3099 
3100 	if (extended)
3101 		pos = pci_find_ext_capability(dev, cap);
3102 	else
3103 		pos = pci_find_capability(dev, cap);
3104 
3105 	if (!pos)
3106 		return 0;
3107 
3108 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3109 	if (!save_state)
3110 		return -ENOMEM;
3111 
3112 	save_state->cap.cap_nr = cap;
3113 	save_state->cap.cap_extended = extended;
3114 	save_state->cap.size = size;
3115 	pci_add_saved_cap(dev, save_state);
3116 
3117 	return 0;
3118 }
3119 
3120 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3121 {
3122 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3123 }
3124 
3125 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3126 {
3127 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3128 }
3129 
3130 /**
3131  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3132  * @dev: the PCI device
3133  */
3134 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3135 {
3136 	int error;
3137 
3138 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3139 					PCI_EXP_SAVE_REGS * sizeof(u16));
3140 	if (error)
3141 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3142 
3143 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3144 	if (error)
3145 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3146 
3147 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3148 					    2 * sizeof(u16));
3149 	if (error)
3150 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3151 
3152 	pci_allocate_vc_save_buffers(dev);
3153 }
3154 
3155 void pci_free_cap_save_buffers(struct pci_dev *dev)
3156 {
3157 	struct pci_cap_saved_state *tmp;
3158 	struct hlist_node *n;
3159 
3160 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3161 		kfree(tmp);
3162 }
3163 
3164 /**
3165  * pci_configure_ari - enable or disable ARI forwarding
3166  * @dev: the PCI device
3167  *
3168  * If @dev and its upstream bridge both support ARI, enable ARI in the
3169  * bridge.  Otherwise, disable ARI in the bridge.
3170  */
3171 void pci_configure_ari(struct pci_dev *dev)
3172 {
3173 	u32 cap;
3174 	struct pci_dev *bridge;
3175 
3176 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3177 		return;
3178 
3179 	bridge = dev->bus->self;
3180 	if (!bridge)
3181 		return;
3182 
3183 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3184 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3185 		return;
3186 
3187 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3188 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3189 					 PCI_EXP_DEVCTL2_ARI);
3190 		bridge->ari_enabled = 1;
3191 	} else {
3192 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3193 					   PCI_EXP_DEVCTL2_ARI);
3194 		bridge->ari_enabled = 0;
3195 	}
3196 }
3197 
3198 static int pci_acs_enable;
3199 
3200 /**
3201  * pci_request_acs - ask for ACS to be enabled if supported
3202  */
3203 void pci_request_acs(void)
3204 {
3205 	pci_acs_enable = 1;
3206 }
3207 
3208 static const char *disable_acs_redir_param;
3209 
3210 /**
3211  * pci_disable_acs_redir - disable ACS redirect capabilities
3212  * @dev: the PCI device
3213  *
3214  * For only devices specified in the disable_acs_redir parameter.
3215  */
3216 static void pci_disable_acs_redir(struct pci_dev *dev)
3217 {
3218 	int ret = 0;
3219 	const char *p;
3220 	int pos;
3221 	u16 ctrl;
3222 
3223 	if (!disable_acs_redir_param)
3224 		return;
3225 
3226 	p = disable_acs_redir_param;
3227 	while (*p) {
3228 		ret = pci_dev_str_match(dev, p, &p);
3229 		if (ret < 0) {
3230 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3231 				     disable_acs_redir_param);
3232 
3233 			break;
3234 		} else if (ret == 1) {
3235 			/* Found a match */
3236 			break;
3237 		}
3238 
3239 		if (*p != ';' && *p != ',') {
3240 			/* End of param or invalid format */
3241 			break;
3242 		}
3243 		p++;
3244 	}
3245 
3246 	if (ret != 1)
3247 		return;
3248 
3249 	if (!pci_dev_specific_disable_acs_redir(dev))
3250 		return;
3251 
3252 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3253 	if (!pos) {
3254 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3255 		return;
3256 	}
3257 
3258 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3259 
3260 	/* P2P Request & Completion Redirect */
3261 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3262 
3263 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3264 
3265 	pci_info(dev, "disabled ACS redirect\n");
3266 }
3267 
3268 /**
3269  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3270  * @dev: the PCI device
3271  */
3272 static void pci_std_enable_acs(struct pci_dev *dev)
3273 {
3274 	int pos;
3275 	u16 cap;
3276 	u16 ctrl;
3277 
3278 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3279 	if (!pos)
3280 		return;
3281 
3282 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3283 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3284 
3285 	/* Source Validation */
3286 	ctrl |= (cap & PCI_ACS_SV);
3287 
3288 	/* P2P Request Redirect */
3289 	ctrl |= (cap & PCI_ACS_RR);
3290 
3291 	/* P2P Completion Redirect */
3292 	ctrl |= (cap & PCI_ACS_CR);
3293 
3294 	/* Upstream Forwarding */
3295 	ctrl |= (cap & PCI_ACS_UF);
3296 
3297 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3298 }
3299 
3300 /**
3301  * pci_enable_acs - enable ACS if hardware support it
3302  * @dev: the PCI device
3303  */
3304 void pci_enable_acs(struct pci_dev *dev)
3305 {
3306 	if (!pci_acs_enable)
3307 		goto disable_acs_redir;
3308 
3309 	if (!pci_dev_specific_enable_acs(dev))
3310 		goto disable_acs_redir;
3311 
3312 	pci_std_enable_acs(dev);
3313 
3314 disable_acs_redir:
3315 	/*
3316 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3317 	 * enabled by the kernel because it may have been enabled by
3318 	 * platform firmware.  So if we are told to disable it, we should
3319 	 * always disable it after setting the kernel's default
3320 	 * preferences.
3321 	 */
3322 	pci_disable_acs_redir(dev);
3323 }
3324 
3325 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3326 {
3327 	int pos;
3328 	u16 cap, ctrl;
3329 
3330 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3331 	if (!pos)
3332 		return false;
3333 
3334 	/*
3335 	 * Except for egress control, capabilities are either required
3336 	 * or only required if controllable.  Features missing from the
3337 	 * capability field can therefore be assumed as hard-wired enabled.
3338 	 */
3339 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3340 	acs_flags &= (cap | PCI_ACS_EC);
3341 
3342 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3343 	return (ctrl & acs_flags) == acs_flags;
3344 }
3345 
3346 /**
3347  * pci_acs_enabled - test ACS against required flags for a given device
3348  * @pdev: device to test
3349  * @acs_flags: required PCI ACS flags
3350  *
3351  * Return true if the device supports the provided flags.  Automatically
3352  * filters out flags that are not implemented on multifunction devices.
3353  *
3354  * Note that this interface checks the effective ACS capabilities of the
3355  * device rather than the actual capabilities.  For instance, most single
3356  * function endpoints are not required to support ACS because they have no
3357  * opportunity for peer-to-peer access.  We therefore return 'true'
3358  * regardless of whether the device exposes an ACS capability.  This makes
3359  * it much easier for callers of this function to ignore the actual type
3360  * or topology of the device when testing ACS support.
3361  */
3362 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3363 {
3364 	int ret;
3365 
3366 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3367 	if (ret >= 0)
3368 		return ret > 0;
3369 
3370 	/*
3371 	 * Conventional PCI and PCI-X devices never support ACS, either
3372 	 * effectively or actually.  The shared bus topology implies that
3373 	 * any device on the bus can receive or snoop DMA.
3374 	 */
3375 	if (!pci_is_pcie(pdev))
3376 		return false;
3377 
3378 	switch (pci_pcie_type(pdev)) {
3379 	/*
3380 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3381 	 * but since their primary interface is PCI/X, we conservatively
3382 	 * handle them as we would a non-PCIe device.
3383 	 */
3384 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3385 	/*
3386 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3387 	 * applicable... must never implement an ACS Extended Capability...".
3388 	 * This seems arbitrary, but we take a conservative interpretation
3389 	 * of this statement.
3390 	 */
3391 	case PCI_EXP_TYPE_PCI_BRIDGE:
3392 	case PCI_EXP_TYPE_RC_EC:
3393 		return false;
3394 	/*
3395 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3396 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3397 	 * regardless of whether they are single- or multi-function devices.
3398 	 */
3399 	case PCI_EXP_TYPE_DOWNSTREAM:
3400 	case PCI_EXP_TYPE_ROOT_PORT:
3401 		return pci_acs_flags_enabled(pdev, acs_flags);
3402 	/*
3403 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3404 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3405 	 * capabilities, but only when they are part of a multifunction
3406 	 * device.  The footnote for section 6.12 indicates the specific
3407 	 * PCIe types included here.
3408 	 */
3409 	case PCI_EXP_TYPE_ENDPOINT:
3410 	case PCI_EXP_TYPE_UPSTREAM:
3411 	case PCI_EXP_TYPE_LEG_END:
3412 	case PCI_EXP_TYPE_RC_END:
3413 		if (!pdev->multifunction)
3414 			break;
3415 
3416 		return pci_acs_flags_enabled(pdev, acs_flags);
3417 	}
3418 
3419 	/*
3420 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3421 	 * to single function devices with the exception of downstream ports.
3422 	 */
3423 	return true;
3424 }
3425 
3426 /**
3427  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3428  * @start: starting downstream device
3429  * @end: ending upstream device or NULL to search to the root bus
3430  * @acs_flags: required flags
3431  *
3432  * Walk up a device tree from start to end testing PCI ACS support.  If
3433  * any step along the way does not support the required flags, return false.
3434  */
3435 bool pci_acs_path_enabled(struct pci_dev *start,
3436 			  struct pci_dev *end, u16 acs_flags)
3437 {
3438 	struct pci_dev *pdev, *parent = start;
3439 
3440 	do {
3441 		pdev = parent;
3442 
3443 		if (!pci_acs_enabled(pdev, acs_flags))
3444 			return false;
3445 
3446 		if (pci_is_root_bus(pdev->bus))
3447 			return (end == NULL);
3448 
3449 		parent = pdev->bus->self;
3450 	} while (pdev != end);
3451 
3452 	return true;
3453 }
3454 
3455 /**
3456  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3457  * @pdev: PCI device
3458  * @bar: BAR to find
3459  *
3460  * Helper to find the position of the ctrl register for a BAR.
3461  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3462  * Returns -ENOENT if no ctrl register for the BAR could be found.
3463  */
3464 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3465 {
3466 	unsigned int pos, nbars, i;
3467 	u32 ctrl;
3468 
3469 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3470 	if (!pos)
3471 		return -ENOTSUPP;
3472 
3473 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3474 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3475 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3476 
3477 	for (i = 0; i < nbars; i++, pos += 8) {
3478 		int bar_idx;
3479 
3480 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3481 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3482 		if (bar_idx == bar)
3483 			return pos;
3484 	}
3485 
3486 	return -ENOENT;
3487 }
3488 
3489 /**
3490  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3491  * @pdev: PCI device
3492  * @bar: BAR to query
3493  *
3494  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3495  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3496  */
3497 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3498 {
3499 	int pos;
3500 	u32 cap;
3501 
3502 	pos = pci_rebar_find_pos(pdev, bar);
3503 	if (pos < 0)
3504 		return 0;
3505 
3506 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3507 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3508 }
3509 
3510 /**
3511  * pci_rebar_get_current_size - get the current size of a BAR
3512  * @pdev: PCI device
3513  * @bar: BAR to set size to
3514  *
3515  * Read the size of a BAR from the resizable BAR config.
3516  * Returns size if found or negative error code.
3517  */
3518 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3519 {
3520 	int pos;
3521 	u32 ctrl;
3522 
3523 	pos = pci_rebar_find_pos(pdev, bar);
3524 	if (pos < 0)
3525 		return pos;
3526 
3527 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3528 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3529 }
3530 
3531 /**
3532  * pci_rebar_set_size - set a new size for a BAR
3533  * @pdev: PCI device
3534  * @bar: BAR to set size to
3535  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3536  *
3537  * Set the new size of a BAR as defined in the spec.
3538  * Returns zero if resizing was successful, error code otherwise.
3539  */
3540 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3541 {
3542 	int pos;
3543 	u32 ctrl;
3544 
3545 	pos = pci_rebar_find_pos(pdev, bar);
3546 	if (pos < 0)
3547 		return pos;
3548 
3549 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3550 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3551 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3552 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3553 	return 0;
3554 }
3555 
3556 /**
3557  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3558  * @dev: the PCI device
3559  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3560  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3561  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3562  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3563  *
3564  * Return 0 if all upstream bridges support AtomicOp routing, egress
3565  * blocking is disabled on all upstream ports, and the root port supports
3566  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3567  * AtomicOp completion), or negative otherwise.
3568  */
3569 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3570 {
3571 	struct pci_bus *bus = dev->bus;
3572 	struct pci_dev *bridge;
3573 	u32 cap, ctl2;
3574 
3575 	if (!pci_is_pcie(dev))
3576 		return -EINVAL;
3577 
3578 	/*
3579 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3580 	 * AtomicOp requesters.  For now, we only support endpoints as
3581 	 * requesters and root ports as completers.  No endpoints as
3582 	 * completers, and no peer-to-peer.
3583 	 */
3584 
3585 	switch (pci_pcie_type(dev)) {
3586 	case PCI_EXP_TYPE_ENDPOINT:
3587 	case PCI_EXP_TYPE_LEG_END:
3588 	case PCI_EXP_TYPE_RC_END:
3589 		break;
3590 	default:
3591 		return -EINVAL;
3592 	}
3593 
3594 	while (bus->parent) {
3595 		bridge = bus->self;
3596 
3597 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3598 
3599 		switch (pci_pcie_type(bridge)) {
3600 		/* Ensure switch ports support AtomicOp routing */
3601 		case PCI_EXP_TYPE_UPSTREAM:
3602 		case PCI_EXP_TYPE_DOWNSTREAM:
3603 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3604 				return -EINVAL;
3605 			break;
3606 
3607 		/* Ensure root port supports all the sizes we care about */
3608 		case PCI_EXP_TYPE_ROOT_PORT:
3609 			if ((cap & cap_mask) != cap_mask)
3610 				return -EINVAL;
3611 			break;
3612 		}
3613 
3614 		/* Ensure upstream ports don't block AtomicOps on egress */
3615 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3616 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3617 						   &ctl2);
3618 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3619 				return -EINVAL;
3620 		}
3621 
3622 		bus = bus->parent;
3623 	}
3624 
3625 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3626 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3627 	return 0;
3628 }
3629 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3630 
3631 /**
3632  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3633  * @dev: the PCI device
3634  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3635  *
3636  * Perform INTx swizzling for a device behind one level of bridge.  This is
3637  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3638  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3639  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3640  * the PCI Express Base Specification, Revision 2.1)
3641  */
3642 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3643 {
3644 	int slot;
3645 
3646 	if (pci_ari_enabled(dev->bus))
3647 		slot = 0;
3648 	else
3649 		slot = PCI_SLOT(dev->devfn);
3650 
3651 	return (((pin - 1) + slot) % 4) + 1;
3652 }
3653 
3654 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3655 {
3656 	u8 pin;
3657 
3658 	pin = dev->pin;
3659 	if (!pin)
3660 		return -1;
3661 
3662 	while (!pci_is_root_bus(dev->bus)) {
3663 		pin = pci_swizzle_interrupt_pin(dev, pin);
3664 		dev = dev->bus->self;
3665 	}
3666 	*bridge = dev;
3667 	return pin;
3668 }
3669 
3670 /**
3671  * pci_common_swizzle - swizzle INTx all the way to root bridge
3672  * @dev: the PCI device
3673  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3674  *
3675  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3676  * bridges all the way up to a PCI root bus.
3677  */
3678 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3679 {
3680 	u8 pin = *pinp;
3681 
3682 	while (!pci_is_root_bus(dev->bus)) {
3683 		pin = pci_swizzle_interrupt_pin(dev, pin);
3684 		dev = dev->bus->self;
3685 	}
3686 	*pinp = pin;
3687 	return PCI_SLOT(dev->devfn);
3688 }
3689 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3690 
3691 /**
3692  * pci_release_region - Release a PCI bar
3693  * @pdev: PCI device whose resources were previously reserved by
3694  *	  pci_request_region()
3695  * @bar: BAR to release
3696  *
3697  * Releases the PCI I/O and memory resources previously reserved by a
3698  * successful call to pci_request_region().  Call this function only
3699  * after all use of the PCI regions has ceased.
3700  */
3701 void pci_release_region(struct pci_dev *pdev, int bar)
3702 {
3703 	struct pci_devres *dr;
3704 
3705 	if (pci_resource_len(pdev, bar) == 0)
3706 		return;
3707 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3708 		release_region(pci_resource_start(pdev, bar),
3709 				pci_resource_len(pdev, bar));
3710 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3711 		release_mem_region(pci_resource_start(pdev, bar),
3712 				pci_resource_len(pdev, bar));
3713 
3714 	dr = find_pci_dr(pdev);
3715 	if (dr)
3716 		dr->region_mask &= ~(1 << bar);
3717 }
3718 EXPORT_SYMBOL(pci_release_region);
3719 
3720 /**
3721  * __pci_request_region - Reserved PCI I/O and memory resource
3722  * @pdev: PCI device whose resources are to be reserved
3723  * @bar: BAR to be reserved
3724  * @res_name: Name to be associated with resource.
3725  * @exclusive: whether the region access is exclusive or not
3726  *
3727  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3728  * being reserved by owner @res_name.  Do not access any
3729  * address inside the PCI regions unless this call returns
3730  * successfully.
3731  *
3732  * If @exclusive is set, then the region is marked so that userspace
3733  * is explicitly not allowed to map the resource via /dev/mem or
3734  * sysfs MMIO access.
3735  *
3736  * Returns 0 on success, or %EBUSY on error.  A warning
3737  * message is also printed on failure.
3738  */
3739 static int __pci_request_region(struct pci_dev *pdev, int bar,
3740 				const char *res_name, int exclusive)
3741 {
3742 	struct pci_devres *dr;
3743 
3744 	if (pci_resource_len(pdev, bar) == 0)
3745 		return 0;
3746 
3747 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3748 		if (!request_region(pci_resource_start(pdev, bar),
3749 			    pci_resource_len(pdev, bar), res_name))
3750 			goto err_out;
3751 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3752 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3753 					pci_resource_len(pdev, bar), res_name,
3754 					exclusive))
3755 			goto err_out;
3756 	}
3757 
3758 	dr = find_pci_dr(pdev);
3759 	if (dr)
3760 		dr->region_mask |= 1 << bar;
3761 
3762 	return 0;
3763 
3764 err_out:
3765 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3766 		 &pdev->resource[bar]);
3767 	return -EBUSY;
3768 }
3769 
3770 /**
3771  * pci_request_region - Reserve PCI I/O and memory resource
3772  * @pdev: PCI device whose resources are to be reserved
3773  * @bar: BAR to be reserved
3774  * @res_name: Name to be associated with resource
3775  *
3776  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3777  * being reserved by owner @res_name.  Do not access any
3778  * address inside the PCI regions unless this call returns
3779  * successfully.
3780  *
3781  * Returns 0 on success, or %EBUSY on error.  A warning
3782  * message is also printed on failure.
3783  */
3784 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3785 {
3786 	return __pci_request_region(pdev, bar, res_name, 0);
3787 }
3788 EXPORT_SYMBOL(pci_request_region);
3789 
3790 /**
3791  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3792  * @pdev: PCI device whose resources were previously reserved
3793  * @bars: Bitmask of BARs to be released
3794  *
3795  * Release selected PCI I/O and memory resources previously reserved.
3796  * Call this function only after all use of the PCI regions has ceased.
3797  */
3798 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3799 {
3800 	int i;
3801 
3802 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3803 		if (bars & (1 << i))
3804 			pci_release_region(pdev, i);
3805 }
3806 EXPORT_SYMBOL(pci_release_selected_regions);
3807 
3808 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3809 					  const char *res_name, int excl)
3810 {
3811 	int i;
3812 
3813 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3814 		if (bars & (1 << i))
3815 			if (__pci_request_region(pdev, i, res_name, excl))
3816 				goto err_out;
3817 	return 0;
3818 
3819 err_out:
3820 	while (--i >= 0)
3821 		if (bars & (1 << i))
3822 			pci_release_region(pdev, i);
3823 
3824 	return -EBUSY;
3825 }
3826 
3827 
3828 /**
3829  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3830  * @pdev: PCI device whose resources are to be reserved
3831  * @bars: Bitmask of BARs to be requested
3832  * @res_name: Name to be associated with resource
3833  */
3834 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3835 				 const char *res_name)
3836 {
3837 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3838 }
3839 EXPORT_SYMBOL(pci_request_selected_regions);
3840 
3841 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3842 					   const char *res_name)
3843 {
3844 	return __pci_request_selected_regions(pdev, bars, res_name,
3845 			IORESOURCE_EXCLUSIVE);
3846 }
3847 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3848 
3849 /**
3850  * pci_release_regions - Release reserved PCI I/O and memory resources
3851  * @pdev: PCI device whose resources were previously reserved by
3852  *	  pci_request_regions()
3853  *
3854  * Releases all PCI I/O and memory resources previously reserved by a
3855  * successful call to pci_request_regions().  Call this function only
3856  * after all use of the PCI regions has ceased.
3857  */
3858 
3859 void pci_release_regions(struct pci_dev *pdev)
3860 {
3861 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3862 }
3863 EXPORT_SYMBOL(pci_release_regions);
3864 
3865 /**
3866  * pci_request_regions - Reserve PCI I/O and memory resources
3867  * @pdev: PCI device whose resources are to be reserved
3868  * @res_name: Name to be associated with resource.
3869  *
3870  * Mark all PCI regions associated with PCI device @pdev as
3871  * being reserved by owner @res_name.  Do not access any
3872  * address inside the PCI regions unless this call returns
3873  * successfully.
3874  *
3875  * Returns 0 on success, or %EBUSY on error.  A warning
3876  * message is also printed on failure.
3877  */
3878 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3879 {
3880 	return pci_request_selected_regions(pdev,
3881 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3882 }
3883 EXPORT_SYMBOL(pci_request_regions);
3884 
3885 /**
3886  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3887  * @pdev: PCI device whose resources are to be reserved
3888  * @res_name: Name to be associated with resource.
3889  *
3890  * Mark all PCI regions associated with PCI device @pdev as being reserved
3891  * by owner @res_name.  Do not access any address inside the PCI regions
3892  * unless this call returns successfully.
3893  *
3894  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3895  * and the sysfs MMIO access will not be allowed.
3896  *
3897  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3898  * printed on failure.
3899  */
3900 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3901 {
3902 	return pci_request_selected_regions_exclusive(pdev,
3903 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3904 }
3905 EXPORT_SYMBOL(pci_request_regions_exclusive);
3906 
3907 /*
3908  * Record the PCI IO range (expressed as CPU physical address + size).
3909  * Return a negative value if an error has occurred, zero otherwise
3910  */
3911 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3912 			resource_size_t	size)
3913 {
3914 	int ret = 0;
3915 #ifdef PCI_IOBASE
3916 	struct logic_pio_hwaddr *range;
3917 
3918 	if (!size || addr + size < addr)
3919 		return -EINVAL;
3920 
3921 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3922 	if (!range)
3923 		return -ENOMEM;
3924 
3925 	range->fwnode = fwnode;
3926 	range->size = size;
3927 	range->hw_start = addr;
3928 	range->flags = LOGIC_PIO_CPU_MMIO;
3929 
3930 	ret = logic_pio_register_range(range);
3931 	if (ret)
3932 		kfree(range);
3933 #endif
3934 
3935 	return ret;
3936 }
3937 
3938 phys_addr_t pci_pio_to_address(unsigned long pio)
3939 {
3940 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3941 
3942 #ifdef PCI_IOBASE
3943 	if (pio >= MMIO_UPPER_LIMIT)
3944 		return address;
3945 
3946 	address = logic_pio_to_hwaddr(pio);
3947 #endif
3948 
3949 	return address;
3950 }
3951 
3952 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3953 {
3954 #ifdef PCI_IOBASE
3955 	return logic_pio_trans_cpuaddr(address);
3956 #else
3957 	if (address > IO_SPACE_LIMIT)
3958 		return (unsigned long)-1;
3959 
3960 	return (unsigned long) address;
3961 #endif
3962 }
3963 
3964 /**
3965  * pci_remap_iospace - Remap the memory mapped I/O space
3966  * @res: Resource describing the I/O space
3967  * @phys_addr: physical address of range to be mapped
3968  *
3969  * Remap the memory mapped I/O space described by the @res and the CPU
3970  * physical address @phys_addr into virtual address space.  Only
3971  * architectures that have memory mapped IO functions defined (and the
3972  * PCI_IOBASE value defined) should call this function.
3973  */
3974 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3975 {
3976 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3977 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3978 
3979 	if (!(res->flags & IORESOURCE_IO))
3980 		return -EINVAL;
3981 
3982 	if (res->end > IO_SPACE_LIMIT)
3983 		return -EINVAL;
3984 
3985 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3986 				  pgprot_device(PAGE_KERNEL));
3987 #else
3988 	/*
3989 	 * This architecture does not have memory mapped I/O space,
3990 	 * so this function should never be called
3991 	 */
3992 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3993 	return -ENODEV;
3994 #endif
3995 }
3996 EXPORT_SYMBOL(pci_remap_iospace);
3997 
3998 /**
3999  * pci_unmap_iospace - Unmap the memory mapped I/O space
4000  * @res: resource to be unmapped
4001  *
4002  * Unmap the CPU virtual address @res from virtual address space.  Only
4003  * architectures that have memory mapped IO functions defined (and the
4004  * PCI_IOBASE value defined) should call this function.
4005  */
4006 void pci_unmap_iospace(struct resource *res)
4007 {
4008 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4009 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4010 
4011 	unmap_kernel_range(vaddr, resource_size(res));
4012 #endif
4013 }
4014 EXPORT_SYMBOL(pci_unmap_iospace);
4015 
4016 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4017 {
4018 	struct resource **res = ptr;
4019 
4020 	pci_unmap_iospace(*res);
4021 }
4022 
4023 /**
4024  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4025  * @dev: Generic device to remap IO address for
4026  * @res: Resource describing the I/O space
4027  * @phys_addr: physical address of range to be mapped
4028  *
4029  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4030  * detach.
4031  */
4032 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4033 			   phys_addr_t phys_addr)
4034 {
4035 	const struct resource **ptr;
4036 	int error;
4037 
4038 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4039 	if (!ptr)
4040 		return -ENOMEM;
4041 
4042 	error = pci_remap_iospace(res, phys_addr);
4043 	if (error) {
4044 		devres_free(ptr);
4045 	} else	{
4046 		*ptr = res;
4047 		devres_add(dev, ptr);
4048 	}
4049 
4050 	return error;
4051 }
4052 EXPORT_SYMBOL(devm_pci_remap_iospace);
4053 
4054 /**
4055  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4056  * @dev: Generic device to remap IO address for
4057  * @offset: Resource address to map
4058  * @size: Size of map
4059  *
4060  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4061  * detach.
4062  */
4063 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4064 				      resource_size_t offset,
4065 				      resource_size_t size)
4066 {
4067 	void __iomem **ptr, *addr;
4068 
4069 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4070 	if (!ptr)
4071 		return NULL;
4072 
4073 	addr = pci_remap_cfgspace(offset, size);
4074 	if (addr) {
4075 		*ptr = addr;
4076 		devres_add(dev, ptr);
4077 	} else
4078 		devres_free(ptr);
4079 
4080 	return addr;
4081 }
4082 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4083 
4084 /**
4085  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4086  * @dev: generic device to handle the resource for
4087  * @res: configuration space resource to be handled
4088  *
4089  * Checks that a resource is a valid memory region, requests the memory
4090  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4091  * proper PCI configuration space memory attributes are guaranteed.
4092  *
4093  * All operations are managed and will be undone on driver detach.
4094  *
4095  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4096  * on failure. Usage example::
4097  *
4098  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4099  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4100  *	if (IS_ERR(base))
4101  *		return PTR_ERR(base);
4102  */
4103 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4104 					  struct resource *res)
4105 {
4106 	resource_size_t size;
4107 	const char *name;
4108 	void __iomem *dest_ptr;
4109 
4110 	BUG_ON(!dev);
4111 
4112 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4113 		dev_err(dev, "invalid resource\n");
4114 		return IOMEM_ERR_PTR(-EINVAL);
4115 	}
4116 
4117 	size = resource_size(res);
4118 	name = res->name ?: dev_name(dev);
4119 
4120 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4121 		dev_err(dev, "can't request region for resource %pR\n", res);
4122 		return IOMEM_ERR_PTR(-EBUSY);
4123 	}
4124 
4125 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4126 	if (!dest_ptr) {
4127 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4128 		devm_release_mem_region(dev, res->start, size);
4129 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4130 	}
4131 
4132 	return dest_ptr;
4133 }
4134 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4135 
4136 static void __pci_set_master(struct pci_dev *dev, bool enable)
4137 {
4138 	u16 old_cmd, cmd;
4139 
4140 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4141 	if (enable)
4142 		cmd = old_cmd | PCI_COMMAND_MASTER;
4143 	else
4144 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4145 	if (cmd != old_cmd) {
4146 		pci_dbg(dev, "%s bus mastering\n",
4147 			enable ? "enabling" : "disabling");
4148 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4149 	}
4150 	dev->is_busmaster = enable;
4151 }
4152 
4153 /**
4154  * pcibios_setup - process "pci=" kernel boot arguments
4155  * @str: string used to pass in "pci=" kernel boot arguments
4156  *
4157  * Process kernel boot arguments.  This is the default implementation.
4158  * Architecture specific implementations can override this as necessary.
4159  */
4160 char * __weak __init pcibios_setup(char *str)
4161 {
4162 	return str;
4163 }
4164 
4165 /**
4166  * pcibios_set_master - enable PCI bus-mastering for device dev
4167  * @dev: the PCI device to enable
4168  *
4169  * Enables PCI bus-mastering for the device.  This is the default
4170  * implementation.  Architecture specific implementations can override
4171  * this if necessary.
4172  */
4173 void __weak pcibios_set_master(struct pci_dev *dev)
4174 {
4175 	u8 lat;
4176 
4177 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4178 	if (pci_is_pcie(dev))
4179 		return;
4180 
4181 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4182 	if (lat < 16)
4183 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4184 	else if (lat > pcibios_max_latency)
4185 		lat = pcibios_max_latency;
4186 	else
4187 		return;
4188 
4189 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4190 }
4191 
4192 /**
4193  * pci_set_master - enables bus-mastering for device dev
4194  * @dev: the PCI device to enable
4195  *
4196  * Enables bus-mastering on the device and calls pcibios_set_master()
4197  * to do the needed arch specific settings.
4198  */
4199 void pci_set_master(struct pci_dev *dev)
4200 {
4201 	__pci_set_master(dev, true);
4202 	pcibios_set_master(dev);
4203 }
4204 EXPORT_SYMBOL(pci_set_master);
4205 
4206 /**
4207  * pci_clear_master - disables bus-mastering for device dev
4208  * @dev: the PCI device to disable
4209  */
4210 void pci_clear_master(struct pci_dev *dev)
4211 {
4212 	__pci_set_master(dev, false);
4213 }
4214 EXPORT_SYMBOL(pci_clear_master);
4215 
4216 /**
4217  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4218  * @dev: the PCI device for which MWI is to be enabled
4219  *
4220  * Helper function for pci_set_mwi.
4221  * Originally copied from drivers/net/acenic.c.
4222  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4223  *
4224  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4225  */
4226 int pci_set_cacheline_size(struct pci_dev *dev)
4227 {
4228 	u8 cacheline_size;
4229 
4230 	if (!pci_cache_line_size)
4231 		return -EINVAL;
4232 
4233 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4234 	   equal to or multiple of the right value. */
4235 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4236 	if (cacheline_size >= pci_cache_line_size &&
4237 	    (cacheline_size % pci_cache_line_size) == 0)
4238 		return 0;
4239 
4240 	/* Write the correct value. */
4241 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4242 	/* Read it back. */
4243 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4244 	if (cacheline_size == pci_cache_line_size)
4245 		return 0;
4246 
4247 	pci_info(dev, "cache line size of %d is not supported\n",
4248 		   pci_cache_line_size << 2);
4249 
4250 	return -EINVAL;
4251 }
4252 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4253 
4254 /**
4255  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4256  * @dev: the PCI device for which MWI is enabled
4257  *
4258  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4259  *
4260  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4261  */
4262 int pci_set_mwi(struct pci_dev *dev)
4263 {
4264 #ifdef PCI_DISABLE_MWI
4265 	return 0;
4266 #else
4267 	int rc;
4268 	u16 cmd;
4269 
4270 	rc = pci_set_cacheline_size(dev);
4271 	if (rc)
4272 		return rc;
4273 
4274 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4275 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4276 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4277 		cmd |= PCI_COMMAND_INVALIDATE;
4278 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4279 	}
4280 	return 0;
4281 #endif
4282 }
4283 EXPORT_SYMBOL(pci_set_mwi);
4284 
4285 /**
4286  * pcim_set_mwi - a device-managed pci_set_mwi()
4287  * @dev: the PCI device for which MWI is enabled
4288  *
4289  * Managed pci_set_mwi().
4290  *
4291  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4292  */
4293 int pcim_set_mwi(struct pci_dev *dev)
4294 {
4295 	struct pci_devres *dr;
4296 
4297 	dr = find_pci_dr(dev);
4298 	if (!dr)
4299 		return -ENOMEM;
4300 
4301 	dr->mwi = 1;
4302 	return pci_set_mwi(dev);
4303 }
4304 EXPORT_SYMBOL(pcim_set_mwi);
4305 
4306 /**
4307  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4308  * @dev: the PCI device for which MWI is enabled
4309  *
4310  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4311  * Callers are not required to check the return value.
4312  *
4313  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4314  */
4315 int pci_try_set_mwi(struct pci_dev *dev)
4316 {
4317 #ifdef PCI_DISABLE_MWI
4318 	return 0;
4319 #else
4320 	return pci_set_mwi(dev);
4321 #endif
4322 }
4323 EXPORT_SYMBOL(pci_try_set_mwi);
4324 
4325 /**
4326  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4327  * @dev: the PCI device to disable
4328  *
4329  * Disables PCI Memory-Write-Invalidate transaction on the device
4330  */
4331 void pci_clear_mwi(struct pci_dev *dev)
4332 {
4333 #ifndef PCI_DISABLE_MWI
4334 	u16 cmd;
4335 
4336 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4337 	if (cmd & PCI_COMMAND_INVALIDATE) {
4338 		cmd &= ~PCI_COMMAND_INVALIDATE;
4339 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4340 	}
4341 #endif
4342 }
4343 EXPORT_SYMBOL(pci_clear_mwi);
4344 
4345 /**
4346  * pci_intx - enables/disables PCI INTx for device dev
4347  * @pdev: the PCI device to operate on
4348  * @enable: boolean: whether to enable or disable PCI INTx
4349  *
4350  * Enables/disables PCI INTx for device @pdev
4351  */
4352 void pci_intx(struct pci_dev *pdev, int enable)
4353 {
4354 	u16 pci_command, new;
4355 
4356 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4357 
4358 	if (enable)
4359 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4360 	else
4361 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4362 
4363 	if (new != pci_command) {
4364 		struct pci_devres *dr;
4365 
4366 		pci_write_config_word(pdev, PCI_COMMAND, new);
4367 
4368 		dr = find_pci_dr(pdev);
4369 		if (dr && !dr->restore_intx) {
4370 			dr->restore_intx = 1;
4371 			dr->orig_intx = !enable;
4372 		}
4373 	}
4374 }
4375 EXPORT_SYMBOL_GPL(pci_intx);
4376 
4377 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4378 {
4379 	struct pci_bus *bus = dev->bus;
4380 	bool mask_updated = true;
4381 	u32 cmd_status_dword;
4382 	u16 origcmd, newcmd;
4383 	unsigned long flags;
4384 	bool irq_pending;
4385 
4386 	/*
4387 	 * We do a single dword read to retrieve both command and status.
4388 	 * Document assumptions that make this possible.
4389 	 */
4390 	BUILD_BUG_ON(PCI_COMMAND % 4);
4391 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4392 
4393 	raw_spin_lock_irqsave(&pci_lock, flags);
4394 
4395 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4396 
4397 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4398 
4399 	/*
4400 	 * Check interrupt status register to see whether our device
4401 	 * triggered the interrupt (when masking) or the next IRQ is
4402 	 * already pending (when unmasking).
4403 	 */
4404 	if (mask != irq_pending) {
4405 		mask_updated = false;
4406 		goto done;
4407 	}
4408 
4409 	origcmd = cmd_status_dword;
4410 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4411 	if (mask)
4412 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4413 	if (newcmd != origcmd)
4414 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4415 
4416 done:
4417 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4418 
4419 	return mask_updated;
4420 }
4421 
4422 /**
4423  * pci_check_and_mask_intx - mask INTx on pending interrupt
4424  * @dev: the PCI device to operate on
4425  *
4426  * Check if the device dev has its INTx line asserted, mask it and return
4427  * true in that case. False is returned if no interrupt was pending.
4428  */
4429 bool pci_check_and_mask_intx(struct pci_dev *dev)
4430 {
4431 	return pci_check_and_set_intx_mask(dev, true);
4432 }
4433 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4434 
4435 /**
4436  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4437  * @dev: the PCI device to operate on
4438  *
4439  * Check if the device dev has its INTx line asserted, unmask it if not and
4440  * return true. False is returned and the mask remains active if there was
4441  * still an interrupt pending.
4442  */
4443 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4444 {
4445 	return pci_check_and_set_intx_mask(dev, false);
4446 }
4447 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4448 
4449 /**
4450  * pci_wait_for_pending_transaction - wait for pending transaction
4451  * @dev: the PCI device to operate on
4452  *
4453  * Return 0 if transaction is pending 1 otherwise.
4454  */
4455 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4456 {
4457 	if (!pci_is_pcie(dev))
4458 		return 1;
4459 
4460 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4461 				    PCI_EXP_DEVSTA_TRPND);
4462 }
4463 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4464 
4465 /**
4466  * pcie_has_flr - check if a device supports function level resets
4467  * @dev: device to check
4468  *
4469  * Returns true if the device advertises support for PCIe function level
4470  * resets.
4471  */
4472 bool pcie_has_flr(struct pci_dev *dev)
4473 {
4474 	u32 cap;
4475 
4476 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4477 		return false;
4478 
4479 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4480 	return cap & PCI_EXP_DEVCAP_FLR;
4481 }
4482 EXPORT_SYMBOL_GPL(pcie_has_flr);
4483 
4484 /**
4485  * pcie_flr - initiate a PCIe function level reset
4486  * @dev: device to reset
4487  *
4488  * Initiate a function level reset on @dev.  The caller should ensure the
4489  * device supports FLR before calling this function, e.g. by using the
4490  * pcie_has_flr() helper.
4491  */
4492 int pcie_flr(struct pci_dev *dev)
4493 {
4494 	if (!pci_wait_for_pending_transaction(dev))
4495 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4496 
4497 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4498 
4499 	if (dev->imm_ready)
4500 		return 0;
4501 
4502 	/*
4503 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4504 	 * 100ms, but may silently discard requests while the FLR is in
4505 	 * progress.  Wait 100ms before trying to access the device.
4506 	 */
4507 	msleep(100);
4508 
4509 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4510 }
4511 EXPORT_SYMBOL_GPL(pcie_flr);
4512 
4513 static int pci_af_flr(struct pci_dev *dev, int probe)
4514 {
4515 	int pos;
4516 	u8 cap;
4517 
4518 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4519 	if (!pos)
4520 		return -ENOTTY;
4521 
4522 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4523 		return -ENOTTY;
4524 
4525 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4526 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4527 		return -ENOTTY;
4528 
4529 	if (probe)
4530 		return 0;
4531 
4532 	/*
4533 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4534 	 * is used, so we use the control offset rather than status and shift
4535 	 * the test bit to match.
4536 	 */
4537 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4538 				 PCI_AF_STATUS_TP << 8))
4539 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4540 
4541 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4542 
4543 	if (dev->imm_ready)
4544 		return 0;
4545 
4546 	/*
4547 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4548 	 * updated 27 July 2006; a device must complete an FLR within
4549 	 * 100ms, but may silently discard requests while the FLR is in
4550 	 * progress.  Wait 100ms before trying to access the device.
4551 	 */
4552 	msleep(100);
4553 
4554 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4555 }
4556 
4557 /**
4558  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4559  * @dev: Device to reset.
4560  * @probe: If set, only check if the device can be reset this way.
4561  *
4562  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4563  * unset, it will be reinitialized internally when going from PCI_D3hot to
4564  * PCI_D0.  If that's the case and the device is not in a low-power state
4565  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4566  *
4567  * NOTE: This causes the caller to sleep for twice the device power transition
4568  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4569  * by default (i.e. unless the @dev's d3_delay field has a different value).
4570  * Moreover, only devices in D0 can be reset by this function.
4571  */
4572 static int pci_pm_reset(struct pci_dev *dev, int probe)
4573 {
4574 	u16 csr;
4575 
4576 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4577 		return -ENOTTY;
4578 
4579 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4580 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4581 		return -ENOTTY;
4582 
4583 	if (probe)
4584 		return 0;
4585 
4586 	if (dev->current_state != PCI_D0)
4587 		return -EINVAL;
4588 
4589 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4590 	csr |= PCI_D3hot;
4591 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4592 	pci_dev_d3_sleep(dev);
4593 
4594 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4595 	csr |= PCI_D0;
4596 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4597 	pci_dev_d3_sleep(dev);
4598 
4599 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4600 }
4601 
4602 /**
4603  * pcie_wait_for_link_delay - Wait until link is active or inactive
4604  * @pdev: Bridge device
4605  * @active: waiting for active or inactive?
4606  * @delay: Delay to wait after link has become active (in ms)
4607  *
4608  * Use this to wait till link becomes active or inactive.
4609  */
4610 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4611 				     int delay)
4612 {
4613 	int timeout = 1000;
4614 	bool ret;
4615 	u16 lnk_status;
4616 
4617 	/*
4618 	 * Some controllers might not implement link active reporting. In this
4619 	 * case, we wait for 1000 + 100 ms.
4620 	 */
4621 	if (!pdev->link_active_reporting) {
4622 		msleep(1100);
4623 		return true;
4624 	}
4625 
4626 	/*
4627 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4628 	 * after which we should expect an link active if the reset was
4629 	 * successful. If so, software must wait a minimum 100ms before sending
4630 	 * configuration requests to devices downstream this port.
4631 	 *
4632 	 * If the link fails to activate, either the device was physically
4633 	 * removed or the link is permanently failed.
4634 	 */
4635 	if (active)
4636 		msleep(20);
4637 	for (;;) {
4638 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4639 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4640 		if (ret == active)
4641 			break;
4642 		if (timeout <= 0)
4643 			break;
4644 		msleep(10);
4645 		timeout -= 10;
4646 	}
4647 	if (active && ret)
4648 		msleep(delay);
4649 	else if (ret != active)
4650 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4651 			active ? "set" : "cleared");
4652 	return ret == active;
4653 }
4654 
4655 /**
4656  * pcie_wait_for_link - Wait until link is active or inactive
4657  * @pdev: Bridge device
4658  * @active: waiting for active or inactive?
4659  *
4660  * Use this to wait till link becomes active or inactive.
4661  */
4662 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4663 {
4664 	return pcie_wait_for_link_delay(pdev, active, 100);
4665 }
4666 
4667 /*
4668  * Find maximum D3cold delay required by all the devices on the bus.  The
4669  * spec says 100 ms, but firmware can lower it and we allow drivers to
4670  * increase it as well.
4671  *
4672  * Called with @pci_bus_sem locked for reading.
4673  */
4674 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4675 {
4676 	const struct pci_dev *pdev;
4677 	int min_delay = 100;
4678 	int max_delay = 0;
4679 
4680 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4681 		if (pdev->d3cold_delay < min_delay)
4682 			min_delay = pdev->d3cold_delay;
4683 		if (pdev->d3cold_delay > max_delay)
4684 			max_delay = pdev->d3cold_delay;
4685 	}
4686 
4687 	return max(min_delay, max_delay);
4688 }
4689 
4690 /**
4691  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4692  * @dev: PCI bridge
4693  *
4694  * Handle necessary delays before access to the devices on the secondary
4695  * side of the bridge are permitted after D3cold to D0 transition.
4696  *
4697  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4698  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4699  * 4.3.2.
4700  */
4701 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4702 {
4703 	struct pci_dev *child;
4704 	int delay;
4705 
4706 	if (pci_dev_is_disconnected(dev))
4707 		return;
4708 
4709 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4710 		return;
4711 
4712 	down_read(&pci_bus_sem);
4713 
4714 	/*
4715 	 * We only deal with devices that are present currently on the bus.
4716 	 * For any hot-added devices the access delay is handled in pciehp
4717 	 * board_added(). In case of ACPI hotplug the firmware is expected
4718 	 * to configure the devices before OS is notified.
4719 	 */
4720 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4721 		up_read(&pci_bus_sem);
4722 		return;
4723 	}
4724 
4725 	/* Take d3cold_delay requirements into account */
4726 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4727 	if (!delay) {
4728 		up_read(&pci_bus_sem);
4729 		return;
4730 	}
4731 
4732 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4733 				 bus_list);
4734 	up_read(&pci_bus_sem);
4735 
4736 	/*
4737 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4738 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4739 	 * practice this should not be needed because we don't do power
4740 	 * management for them (see pci_bridge_d3_possible()).
4741 	 */
4742 	if (!pci_is_pcie(dev)) {
4743 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4744 		msleep(1000 + delay);
4745 		return;
4746 	}
4747 
4748 	/*
4749 	 * For PCIe downstream and root ports that do not support speeds
4750 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4751 	 * speeds (gen3) we need to wait first for the data link layer to
4752 	 * become active.
4753 	 *
4754 	 * However, 100 ms is the minimum and the PCIe spec says the
4755 	 * software must allow at least 1s before it can determine that the
4756 	 * device that did not respond is a broken device. There is
4757 	 * evidence that 100 ms is not always enough, for example certain
4758 	 * Titan Ridge xHCI controller does not always respond to
4759 	 * configuration requests if we only wait for 100 ms (see
4760 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4761 	 *
4762 	 * Therefore we wait for 100 ms and check for the device presence.
4763 	 * If it is still not present give it an additional 100 ms.
4764 	 */
4765 	if (!pcie_downstream_port(dev))
4766 		return;
4767 
4768 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4769 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4770 		msleep(delay);
4771 	} else {
4772 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4773 			delay);
4774 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4775 			/* Did not train, no need to wait any further */
4776 			return;
4777 		}
4778 	}
4779 
4780 	if (!pci_device_is_present(child)) {
4781 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4782 		msleep(delay);
4783 	}
4784 }
4785 
4786 void pci_reset_secondary_bus(struct pci_dev *dev)
4787 {
4788 	u16 ctrl;
4789 
4790 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4791 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4792 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4793 
4794 	/*
4795 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4796 	 * this to 2ms to ensure that we meet the minimum requirement.
4797 	 */
4798 	msleep(2);
4799 
4800 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4801 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4802 
4803 	/*
4804 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4805 	 * Assuming a minimum 33MHz clock this results in a 1s
4806 	 * delay before we can consider subordinate devices to
4807 	 * be re-initialized.  PCIe has some ways to shorten this,
4808 	 * but we don't make use of them yet.
4809 	 */
4810 	ssleep(1);
4811 }
4812 
4813 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4814 {
4815 	pci_reset_secondary_bus(dev);
4816 }
4817 
4818 /**
4819  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4820  * @dev: Bridge device
4821  *
4822  * Use the bridge control register to assert reset on the secondary bus.
4823  * Devices on the secondary bus are left in power-on state.
4824  */
4825 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4826 {
4827 	pcibios_reset_secondary_bus(dev);
4828 
4829 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4830 }
4831 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4832 
4833 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4834 {
4835 	struct pci_dev *pdev;
4836 
4837 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4838 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4839 		return -ENOTTY;
4840 
4841 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4842 		if (pdev != dev)
4843 			return -ENOTTY;
4844 
4845 	if (probe)
4846 		return 0;
4847 
4848 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4849 }
4850 
4851 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4852 {
4853 	int rc = -ENOTTY;
4854 
4855 	if (!hotplug || !try_module_get(hotplug->owner))
4856 		return rc;
4857 
4858 	if (hotplug->ops->reset_slot)
4859 		rc = hotplug->ops->reset_slot(hotplug, probe);
4860 
4861 	module_put(hotplug->owner);
4862 
4863 	return rc;
4864 }
4865 
4866 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4867 {
4868 	struct pci_dev *pdev;
4869 
4870 	if (dev->subordinate || !dev->slot ||
4871 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4872 		return -ENOTTY;
4873 
4874 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4875 		if (pdev != dev && pdev->slot == dev->slot)
4876 			return -ENOTTY;
4877 
4878 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4879 }
4880 
4881 static void pci_dev_lock(struct pci_dev *dev)
4882 {
4883 	pci_cfg_access_lock(dev);
4884 	/* block PM suspend, driver probe, etc. */
4885 	device_lock(&dev->dev);
4886 }
4887 
4888 /* Return 1 on successful lock, 0 on contention */
4889 static int pci_dev_trylock(struct pci_dev *dev)
4890 {
4891 	if (pci_cfg_access_trylock(dev)) {
4892 		if (device_trylock(&dev->dev))
4893 			return 1;
4894 		pci_cfg_access_unlock(dev);
4895 	}
4896 
4897 	return 0;
4898 }
4899 
4900 static void pci_dev_unlock(struct pci_dev *dev)
4901 {
4902 	device_unlock(&dev->dev);
4903 	pci_cfg_access_unlock(dev);
4904 }
4905 
4906 static void pci_dev_save_and_disable(struct pci_dev *dev)
4907 {
4908 	const struct pci_error_handlers *err_handler =
4909 			dev->driver ? dev->driver->err_handler : NULL;
4910 
4911 	/*
4912 	 * dev->driver->err_handler->reset_prepare() is protected against
4913 	 * races with ->remove() by the device lock, which must be held by
4914 	 * the caller.
4915 	 */
4916 	if (err_handler && err_handler->reset_prepare)
4917 		err_handler->reset_prepare(dev);
4918 
4919 	/*
4920 	 * Wake-up device prior to save.  PM registers default to D0 after
4921 	 * reset and a simple register restore doesn't reliably return
4922 	 * to a non-D0 state anyway.
4923 	 */
4924 	pci_set_power_state(dev, PCI_D0);
4925 
4926 	pci_save_state(dev);
4927 	/*
4928 	 * Disable the device by clearing the Command register, except for
4929 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4930 	 * BARs, but also prevents the device from being Bus Master, preventing
4931 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4932 	 * compliant devices, INTx-disable prevents legacy interrupts.
4933 	 */
4934 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4935 }
4936 
4937 static void pci_dev_restore(struct pci_dev *dev)
4938 {
4939 	const struct pci_error_handlers *err_handler =
4940 			dev->driver ? dev->driver->err_handler : NULL;
4941 
4942 	pci_restore_state(dev);
4943 
4944 	/*
4945 	 * dev->driver->err_handler->reset_done() is protected against
4946 	 * races with ->remove() by the device lock, which must be held by
4947 	 * the caller.
4948 	 */
4949 	if (err_handler && err_handler->reset_done)
4950 		err_handler->reset_done(dev);
4951 }
4952 
4953 /**
4954  * __pci_reset_function_locked - reset a PCI device function while holding
4955  * the @dev mutex lock.
4956  * @dev: PCI device to reset
4957  *
4958  * Some devices allow an individual function to be reset without affecting
4959  * other functions in the same device.  The PCI device must be responsive
4960  * to PCI config space in order to use this function.
4961  *
4962  * The device function is presumed to be unused and the caller is holding
4963  * the device mutex lock when this function is called.
4964  *
4965  * Resetting the device will make the contents of PCI configuration space
4966  * random, so any caller of this must be prepared to reinitialise the
4967  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4968  * etc.
4969  *
4970  * Returns 0 if the device function was successfully reset or negative if the
4971  * device doesn't support resetting a single function.
4972  */
4973 int __pci_reset_function_locked(struct pci_dev *dev)
4974 {
4975 	int rc;
4976 
4977 	might_sleep();
4978 
4979 	/*
4980 	 * A reset method returns -ENOTTY if it doesn't support this device
4981 	 * and we should try the next method.
4982 	 *
4983 	 * If it returns 0 (success), we're finished.  If it returns any
4984 	 * other error, we're also finished: this indicates that further
4985 	 * reset mechanisms might be broken on the device.
4986 	 */
4987 	rc = pci_dev_specific_reset(dev, 0);
4988 	if (rc != -ENOTTY)
4989 		return rc;
4990 	if (pcie_has_flr(dev)) {
4991 		rc = pcie_flr(dev);
4992 		if (rc != -ENOTTY)
4993 			return rc;
4994 	}
4995 	rc = pci_af_flr(dev, 0);
4996 	if (rc != -ENOTTY)
4997 		return rc;
4998 	rc = pci_pm_reset(dev, 0);
4999 	if (rc != -ENOTTY)
5000 		return rc;
5001 	rc = pci_dev_reset_slot_function(dev, 0);
5002 	if (rc != -ENOTTY)
5003 		return rc;
5004 	return pci_parent_bus_reset(dev, 0);
5005 }
5006 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5007 
5008 /**
5009  * pci_probe_reset_function - check whether the device can be safely reset
5010  * @dev: PCI device to reset
5011  *
5012  * Some devices allow an individual function to be reset without affecting
5013  * other functions in the same device.  The PCI device must be responsive
5014  * to PCI config space in order to use this function.
5015  *
5016  * Returns 0 if the device function can be reset or negative if the
5017  * device doesn't support resetting a single function.
5018  */
5019 int pci_probe_reset_function(struct pci_dev *dev)
5020 {
5021 	int rc;
5022 
5023 	might_sleep();
5024 
5025 	rc = pci_dev_specific_reset(dev, 1);
5026 	if (rc != -ENOTTY)
5027 		return rc;
5028 	if (pcie_has_flr(dev))
5029 		return 0;
5030 	rc = pci_af_flr(dev, 1);
5031 	if (rc != -ENOTTY)
5032 		return rc;
5033 	rc = pci_pm_reset(dev, 1);
5034 	if (rc != -ENOTTY)
5035 		return rc;
5036 	rc = pci_dev_reset_slot_function(dev, 1);
5037 	if (rc != -ENOTTY)
5038 		return rc;
5039 
5040 	return pci_parent_bus_reset(dev, 1);
5041 }
5042 
5043 /**
5044  * pci_reset_function - quiesce and reset a PCI device function
5045  * @dev: PCI device to reset
5046  *
5047  * Some devices allow an individual function to be reset without affecting
5048  * other functions in the same device.  The PCI device must be responsive
5049  * to PCI config space in order to use this function.
5050  *
5051  * This function does not just reset the PCI portion of a device, but
5052  * clears all the state associated with the device.  This function differs
5053  * from __pci_reset_function_locked() in that it saves and restores device state
5054  * over the reset and takes the PCI device lock.
5055  *
5056  * Returns 0 if the device function was successfully reset or negative if the
5057  * device doesn't support resetting a single function.
5058  */
5059 int pci_reset_function(struct pci_dev *dev)
5060 {
5061 	int rc;
5062 
5063 	if (!dev->reset_fn)
5064 		return -ENOTTY;
5065 
5066 	pci_dev_lock(dev);
5067 	pci_dev_save_and_disable(dev);
5068 
5069 	rc = __pci_reset_function_locked(dev);
5070 
5071 	pci_dev_restore(dev);
5072 	pci_dev_unlock(dev);
5073 
5074 	return rc;
5075 }
5076 EXPORT_SYMBOL_GPL(pci_reset_function);
5077 
5078 /**
5079  * pci_reset_function_locked - quiesce and reset a PCI device function
5080  * @dev: PCI device to reset
5081  *
5082  * Some devices allow an individual function to be reset without affecting
5083  * other functions in the same device.  The PCI device must be responsive
5084  * to PCI config space in order to use this function.
5085  *
5086  * This function does not just reset the PCI portion of a device, but
5087  * clears all the state associated with the device.  This function differs
5088  * from __pci_reset_function_locked() in that it saves and restores device state
5089  * over the reset.  It also differs from pci_reset_function() in that it
5090  * requires the PCI device lock to be held.
5091  *
5092  * Returns 0 if the device function was successfully reset or negative if the
5093  * device doesn't support resetting a single function.
5094  */
5095 int pci_reset_function_locked(struct pci_dev *dev)
5096 {
5097 	int rc;
5098 
5099 	if (!dev->reset_fn)
5100 		return -ENOTTY;
5101 
5102 	pci_dev_save_and_disable(dev);
5103 
5104 	rc = __pci_reset_function_locked(dev);
5105 
5106 	pci_dev_restore(dev);
5107 
5108 	return rc;
5109 }
5110 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5111 
5112 /**
5113  * pci_try_reset_function - quiesce and reset a PCI device function
5114  * @dev: PCI device to reset
5115  *
5116  * Same as above, except return -EAGAIN if unable to lock device.
5117  */
5118 int pci_try_reset_function(struct pci_dev *dev)
5119 {
5120 	int rc;
5121 
5122 	if (!dev->reset_fn)
5123 		return -ENOTTY;
5124 
5125 	if (!pci_dev_trylock(dev))
5126 		return -EAGAIN;
5127 
5128 	pci_dev_save_and_disable(dev);
5129 	rc = __pci_reset_function_locked(dev);
5130 	pci_dev_restore(dev);
5131 	pci_dev_unlock(dev);
5132 
5133 	return rc;
5134 }
5135 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5136 
5137 /* Do any devices on or below this bus prevent a bus reset? */
5138 static bool pci_bus_resetable(struct pci_bus *bus)
5139 {
5140 	struct pci_dev *dev;
5141 
5142 
5143 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5144 		return false;
5145 
5146 	list_for_each_entry(dev, &bus->devices, bus_list) {
5147 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5148 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5149 			return false;
5150 	}
5151 
5152 	return true;
5153 }
5154 
5155 /* Lock devices from the top of the tree down */
5156 static void pci_bus_lock(struct pci_bus *bus)
5157 {
5158 	struct pci_dev *dev;
5159 
5160 	list_for_each_entry(dev, &bus->devices, bus_list) {
5161 		pci_dev_lock(dev);
5162 		if (dev->subordinate)
5163 			pci_bus_lock(dev->subordinate);
5164 	}
5165 }
5166 
5167 /* Unlock devices from the bottom of the tree up */
5168 static void pci_bus_unlock(struct pci_bus *bus)
5169 {
5170 	struct pci_dev *dev;
5171 
5172 	list_for_each_entry(dev, &bus->devices, bus_list) {
5173 		if (dev->subordinate)
5174 			pci_bus_unlock(dev->subordinate);
5175 		pci_dev_unlock(dev);
5176 	}
5177 }
5178 
5179 /* Return 1 on successful lock, 0 on contention */
5180 static int pci_bus_trylock(struct pci_bus *bus)
5181 {
5182 	struct pci_dev *dev;
5183 
5184 	list_for_each_entry(dev, &bus->devices, bus_list) {
5185 		if (!pci_dev_trylock(dev))
5186 			goto unlock;
5187 		if (dev->subordinate) {
5188 			if (!pci_bus_trylock(dev->subordinate)) {
5189 				pci_dev_unlock(dev);
5190 				goto unlock;
5191 			}
5192 		}
5193 	}
5194 	return 1;
5195 
5196 unlock:
5197 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5198 		if (dev->subordinate)
5199 			pci_bus_unlock(dev->subordinate);
5200 		pci_dev_unlock(dev);
5201 	}
5202 	return 0;
5203 }
5204 
5205 /* Do any devices on or below this slot prevent a bus reset? */
5206 static bool pci_slot_resetable(struct pci_slot *slot)
5207 {
5208 	struct pci_dev *dev;
5209 
5210 	if (slot->bus->self &&
5211 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5212 		return false;
5213 
5214 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215 		if (!dev->slot || dev->slot != slot)
5216 			continue;
5217 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5218 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5219 			return false;
5220 	}
5221 
5222 	return true;
5223 }
5224 
5225 /* Lock devices from the top of the tree down */
5226 static void pci_slot_lock(struct pci_slot *slot)
5227 {
5228 	struct pci_dev *dev;
5229 
5230 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5231 		if (!dev->slot || dev->slot != slot)
5232 			continue;
5233 		pci_dev_lock(dev);
5234 		if (dev->subordinate)
5235 			pci_bus_lock(dev->subordinate);
5236 	}
5237 }
5238 
5239 /* Unlock devices from the bottom of the tree up */
5240 static void pci_slot_unlock(struct pci_slot *slot)
5241 {
5242 	struct pci_dev *dev;
5243 
5244 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5245 		if (!dev->slot || dev->slot != slot)
5246 			continue;
5247 		if (dev->subordinate)
5248 			pci_bus_unlock(dev->subordinate);
5249 		pci_dev_unlock(dev);
5250 	}
5251 }
5252 
5253 /* Return 1 on successful lock, 0 on contention */
5254 static int pci_slot_trylock(struct pci_slot *slot)
5255 {
5256 	struct pci_dev *dev;
5257 
5258 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5259 		if (!dev->slot || dev->slot != slot)
5260 			continue;
5261 		if (!pci_dev_trylock(dev))
5262 			goto unlock;
5263 		if (dev->subordinate) {
5264 			if (!pci_bus_trylock(dev->subordinate)) {
5265 				pci_dev_unlock(dev);
5266 				goto unlock;
5267 			}
5268 		}
5269 	}
5270 	return 1;
5271 
5272 unlock:
5273 	list_for_each_entry_continue_reverse(dev,
5274 					     &slot->bus->devices, bus_list) {
5275 		if (!dev->slot || dev->slot != slot)
5276 			continue;
5277 		if (dev->subordinate)
5278 			pci_bus_unlock(dev->subordinate);
5279 		pci_dev_unlock(dev);
5280 	}
5281 	return 0;
5282 }
5283 
5284 /*
5285  * Save and disable devices from the top of the tree down while holding
5286  * the @dev mutex lock for the entire tree.
5287  */
5288 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5289 {
5290 	struct pci_dev *dev;
5291 
5292 	list_for_each_entry(dev, &bus->devices, bus_list) {
5293 		pci_dev_save_and_disable(dev);
5294 		if (dev->subordinate)
5295 			pci_bus_save_and_disable_locked(dev->subordinate);
5296 	}
5297 }
5298 
5299 /*
5300  * Restore devices from top of the tree down while holding @dev mutex lock
5301  * for the entire tree.  Parent bridges need to be restored before we can
5302  * get to subordinate devices.
5303  */
5304 static void pci_bus_restore_locked(struct pci_bus *bus)
5305 {
5306 	struct pci_dev *dev;
5307 
5308 	list_for_each_entry(dev, &bus->devices, bus_list) {
5309 		pci_dev_restore(dev);
5310 		if (dev->subordinate)
5311 			pci_bus_restore_locked(dev->subordinate);
5312 	}
5313 }
5314 
5315 /*
5316  * Save and disable devices from the top of the tree down while holding
5317  * the @dev mutex lock for the entire tree.
5318  */
5319 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5320 {
5321 	struct pci_dev *dev;
5322 
5323 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5324 		if (!dev->slot || dev->slot != slot)
5325 			continue;
5326 		pci_dev_save_and_disable(dev);
5327 		if (dev->subordinate)
5328 			pci_bus_save_and_disable_locked(dev->subordinate);
5329 	}
5330 }
5331 
5332 /*
5333  * Restore devices from top of the tree down while holding @dev mutex lock
5334  * for the entire tree.  Parent bridges need to be restored before we can
5335  * get to subordinate devices.
5336  */
5337 static void pci_slot_restore_locked(struct pci_slot *slot)
5338 {
5339 	struct pci_dev *dev;
5340 
5341 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5342 		if (!dev->slot || dev->slot != slot)
5343 			continue;
5344 		pci_dev_restore(dev);
5345 		if (dev->subordinate)
5346 			pci_bus_restore_locked(dev->subordinate);
5347 	}
5348 }
5349 
5350 static int pci_slot_reset(struct pci_slot *slot, int probe)
5351 {
5352 	int rc;
5353 
5354 	if (!slot || !pci_slot_resetable(slot))
5355 		return -ENOTTY;
5356 
5357 	if (!probe)
5358 		pci_slot_lock(slot);
5359 
5360 	might_sleep();
5361 
5362 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5363 
5364 	if (!probe)
5365 		pci_slot_unlock(slot);
5366 
5367 	return rc;
5368 }
5369 
5370 /**
5371  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5372  * @slot: PCI slot to probe
5373  *
5374  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5375  */
5376 int pci_probe_reset_slot(struct pci_slot *slot)
5377 {
5378 	return pci_slot_reset(slot, 1);
5379 }
5380 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5381 
5382 /**
5383  * __pci_reset_slot - Try to reset a PCI slot
5384  * @slot: PCI slot to reset
5385  *
5386  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5387  * independent of other slots.  For instance, some slots may support slot power
5388  * control.  In the case of a 1:1 bus to slot architecture, this function may
5389  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5390  * Generally a slot reset should be attempted before a bus reset.  All of the
5391  * function of the slot and any subordinate buses behind the slot are reset
5392  * through this function.  PCI config space of all devices in the slot and
5393  * behind the slot is saved before and restored after reset.
5394  *
5395  * Same as above except return -EAGAIN if the slot cannot be locked
5396  */
5397 static int __pci_reset_slot(struct pci_slot *slot)
5398 {
5399 	int rc;
5400 
5401 	rc = pci_slot_reset(slot, 1);
5402 	if (rc)
5403 		return rc;
5404 
5405 	if (pci_slot_trylock(slot)) {
5406 		pci_slot_save_and_disable_locked(slot);
5407 		might_sleep();
5408 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5409 		pci_slot_restore_locked(slot);
5410 		pci_slot_unlock(slot);
5411 	} else
5412 		rc = -EAGAIN;
5413 
5414 	return rc;
5415 }
5416 
5417 static int pci_bus_reset(struct pci_bus *bus, int probe)
5418 {
5419 	int ret;
5420 
5421 	if (!bus->self || !pci_bus_resetable(bus))
5422 		return -ENOTTY;
5423 
5424 	if (probe)
5425 		return 0;
5426 
5427 	pci_bus_lock(bus);
5428 
5429 	might_sleep();
5430 
5431 	ret = pci_bridge_secondary_bus_reset(bus->self);
5432 
5433 	pci_bus_unlock(bus);
5434 
5435 	return ret;
5436 }
5437 
5438 /**
5439  * pci_bus_error_reset - reset the bridge's subordinate bus
5440  * @bridge: The parent device that connects to the bus to reset
5441  *
5442  * This function will first try to reset the slots on this bus if the method is
5443  * available. If slot reset fails or is not available, this will fall back to a
5444  * secondary bus reset.
5445  */
5446 int pci_bus_error_reset(struct pci_dev *bridge)
5447 {
5448 	struct pci_bus *bus = bridge->subordinate;
5449 	struct pci_slot *slot;
5450 
5451 	if (!bus)
5452 		return -ENOTTY;
5453 
5454 	mutex_lock(&pci_slot_mutex);
5455 	if (list_empty(&bus->slots))
5456 		goto bus_reset;
5457 
5458 	list_for_each_entry(slot, &bus->slots, list)
5459 		if (pci_probe_reset_slot(slot))
5460 			goto bus_reset;
5461 
5462 	list_for_each_entry(slot, &bus->slots, list)
5463 		if (pci_slot_reset(slot, 0))
5464 			goto bus_reset;
5465 
5466 	mutex_unlock(&pci_slot_mutex);
5467 	return 0;
5468 bus_reset:
5469 	mutex_unlock(&pci_slot_mutex);
5470 	return pci_bus_reset(bridge->subordinate, 0);
5471 }
5472 
5473 /**
5474  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5475  * @bus: PCI bus to probe
5476  *
5477  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5478  */
5479 int pci_probe_reset_bus(struct pci_bus *bus)
5480 {
5481 	return pci_bus_reset(bus, 1);
5482 }
5483 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5484 
5485 /**
5486  * __pci_reset_bus - Try to reset a PCI bus
5487  * @bus: top level PCI bus to reset
5488  *
5489  * Same as above except return -EAGAIN if the bus cannot be locked
5490  */
5491 static int __pci_reset_bus(struct pci_bus *bus)
5492 {
5493 	int rc;
5494 
5495 	rc = pci_bus_reset(bus, 1);
5496 	if (rc)
5497 		return rc;
5498 
5499 	if (pci_bus_trylock(bus)) {
5500 		pci_bus_save_and_disable_locked(bus);
5501 		might_sleep();
5502 		rc = pci_bridge_secondary_bus_reset(bus->self);
5503 		pci_bus_restore_locked(bus);
5504 		pci_bus_unlock(bus);
5505 	} else
5506 		rc = -EAGAIN;
5507 
5508 	return rc;
5509 }
5510 
5511 /**
5512  * pci_reset_bus - Try to reset a PCI bus
5513  * @pdev: top level PCI device to reset via slot/bus
5514  *
5515  * Same as above except return -EAGAIN if the bus cannot be locked
5516  */
5517 int pci_reset_bus(struct pci_dev *pdev)
5518 {
5519 	return (!pci_probe_reset_slot(pdev->slot)) ?
5520 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5521 }
5522 EXPORT_SYMBOL_GPL(pci_reset_bus);
5523 
5524 /**
5525  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5526  * @dev: PCI device to query
5527  *
5528  * Returns mmrbc: maximum designed memory read count in bytes or
5529  * appropriate error value.
5530  */
5531 int pcix_get_max_mmrbc(struct pci_dev *dev)
5532 {
5533 	int cap;
5534 	u32 stat;
5535 
5536 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5537 	if (!cap)
5538 		return -EINVAL;
5539 
5540 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5541 		return -EINVAL;
5542 
5543 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5544 }
5545 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5546 
5547 /**
5548  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5549  * @dev: PCI device to query
5550  *
5551  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5552  * value.
5553  */
5554 int pcix_get_mmrbc(struct pci_dev *dev)
5555 {
5556 	int cap;
5557 	u16 cmd;
5558 
5559 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5560 	if (!cap)
5561 		return -EINVAL;
5562 
5563 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5564 		return -EINVAL;
5565 
5566 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5567 }
5568 EXPORT_SYMBOL(pcix_get_mmrbc);
5569 
5570 /**
5571  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5572  * @dev: PCI device to query
5573  * @mmrbc: maximum memory read count in bytes
5574  *    valid values are 512, 1024, 2048, 4096
5575  *
5576  * If possible sets maximum memory read byte count, some bridges have errata
5577  * that prevent this.
5578  */
5579 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5580 {
5581 	int cap;
5582 	u32 stat, v, o;
5583 	u16 cmd;
5584 
5585 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5586 		return -EINVAL;
5587 
5588 	v = ffs(mmrbc) - 10;
5589 
5590 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5591 	if (!cap)
5592 		return -EINVAL;
5593 
5594 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5595 		return -EINVAL;
5596 
5597 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5598 		return -E2BIG;
5599 
5600 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5601 		return -EINVAL;
5602 
5603 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5604 	if (o != v) {
5605 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5606 			return -EIO;
5607 
5608 		cmd &= ~PCI_X_CMD_MAX_READ;
5609 		cmd |= v << 2;
5610 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5611 			return -EIO;
5612 	}
5613 	return 0;
5614 }
5615 EXPORT_SYMBOL(pcix_set_mmrbc);
5616 
5617 /**
5618  * pcie_get_readrq - get PCI Express read request size
5619  * @dev: PCI device to query
5620  *
5621  * Returns maximum memory read request in bytes or appropriate error value.
5622  */
5623 int pcie_get_readrq(struct pci_dev *dev)
5624 {
5625 	u16 ctl;
5626 
5627 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5628 
5629 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5630 }
5631 EXPORT_SYMBOL(pcie_get_readrq);
5632 
5633 /**
5634  * pcie_set_readrq - set PCI Express maximum memory read request
5635  * @dev: PCI device to query
5636  * @rq: maximum memory read count in bytes
5637  *    valid values are 128, 256, 512, 1024, 2048, 4096
5638  *
5639  * If possible sets maximum memory read request in bytes
5640  */
5641 int pcie_set_readrq(struct pci_dev *dev, int rq)
5642 {
5643 	u16 v;
5644 
5645 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5646 		return -EINVAL;
5647 
5648 	/*
5649 	 * If using the "performance" PCIe config, we clamp the read rq
5650 	 * size to the max packet size to keep the host bridge from
5651 	 * generating requests larger than we can cope with.
5652 	 */
5653 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5654 		int mps = pcie_get_mps(dev);
5655 
5656 		if (mps < rq)
5657 			rq = mps;
5658 	}
5659 
5660 	v = (ffs(rq) - 8) << 12;
5661 
5662 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5663 						  PCI_EXP_DEVCTL_READRQ, v);
5664 }
5665 EXPORT_SYMBOL(pcie_set_readrq);
5666 
5667 /**
5668  * pcie_get_mps - get PCI Express maximum payload size
5669  * @dev: PCI device to query
5670  *
5671  * Returns maximum payload size in bytes
5672  */
5673 int pcie_get_mps(struct pci_dev *dev)
5674 {
5675 	u16 ctl;
5676 
5677 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5678 
5679 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5680 }
5681 EXPORT_SYMBOL(pcie_get_mps);
5682 
5683 /**
5684  * pcie_set_mps - set PCI Express maximum payload size
5685  * @dev: PCI device to query
5686  * @mps: maximum payload size in bytes
5687  *    valid values are 128, 256, 512, 1024, 2048, 4096
5688  *
5689  * If possible sets maximum payload size
5690  */
5691 int pcie_set_mps(struct pci_dev *dev, int mps)
5692 {
5693 	u16 v;
5694 
5695 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5696 		return -EINVAL;
5697 
5698 	v = ffs(mps) - 8;
5699 	if (v > dev->pcie_mpss)
5700 		return -EINVAL;
5701 	v <<= 5;
5702 
5703 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5704 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5705 }
5706 EXPORT_SYMBOL(pcie_set_mps);
5707 
5708 /**
5709  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5710  *			      device and its bandwidth limitation
5711  * @dev: PCI device to query
5712  * @limiting_dev: storage for device causing the bandwidth limitation
5713  * @speed: storage for speed of limiting device
5714  * @width: storage for width of limiting device
5715  *
5716  * Walk up the PCI device chain and find the point where the minimum
5717  * bandwidth is available.  Return the bandwidth available there and (if
5718  * limiting_dev, speed, and width pointers are supplied) information about
5719  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5720  * raw bandwidth.
5721  */
5722 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5723 			     enum pci_bus_speed *speed,
5724 			     enum pcie_link_width *width)
5725 {
5726 	u16 lnksta;
5727 	enum pci_bus_speed next_speed;
5728 	enum pcie_link_width next_width;
5729 	u32 bw, next_bw;
5730 
5731 	if (speed)
5732 		*speed = PCI_SPEED_UNKNOWN;
5733 	if (width)
5734 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5735 
5736 	bw = 0;
5737 
5738 	while (dev) {
5739 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5740 
5741 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5742 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5743 			PCI_EXP_LNKSTA_NLW_SHIFT;
5744 
5745 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5746 
5747 		/* Check if current device limits the total bandwidth */
5748 		if (!bw || next_bw <= bw) {
5749 			bw = next_bw;
5750 
5751 			if (limiting_dev)
5752 				*limiting_dev = dev;
5753 			if (speed)
5754 				*speed = next_speed;
5755 			if (width)
5756 				*width = next_width;
5757 		}
5758 
5759 		dev = pci_upstream_bridge(dev);
5760 	}
5761 
5762 	return bw;
5763 }
5764 EXPORT_SYMBOL(pcie_bandwidth_available);
5765 
5766 /**
5767  * pcie_get_speed_cap - query for the PCI device's link speed capability
5768  * @dev: PCI device to query
5769  *
5770  * Query the PCI device speed capability.  Return the maximum link speed
5771  * supported by the device.
5772  */
5773 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5774 {
5775 	u32 lnkcap2, lnkcap;
5776 
5777 	/*
5778 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5779 	 * implementation note there recommends using the Supported Link
5780 	 * Speeds Vector in Link Capabilities 2 when supported.
5781 	 *
5782 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5783 	 * should use the Supported Link Speeds field in Link Capabilities,
5784 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5785 	 */
5786 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5787 	if (lnkcap2) { /* PCIe r3.0-compliant */
5788 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5789 			return PCIE_SPEED_32_0GT;
5790 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5791 			return PCIE_SPEED_16_0GT;
5792 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5793 			return PCIE_SPEED_8_0GT;
5794 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5795 			return PCIE_SPEED_5_0GT;
5796 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5797 			return PCIE_SPEED_2_5GT;
5798 		return PCI_SPEED_UNKNOWN;
5799 	}
5800 
5801 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5802 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5803 		return PCIE_SPEED_5_0GT;
5804 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5805 		return PCIE_SPEED_2_5GT;
5806 
5807 	return PCI_SPEED_UNKNOWN;
5808 }
5809 EXPORT_SYMBOL(pcie_get_speed_cap);
5810 
5811 /**
5812  * pcie_get_width_cap - query for the PCI device's link width capability
5813  * @dev: PCI device to query
5814  *
5815  * Query the PCI device width capability.  Return the maximum link width
5816  * supported by the device.
5817  */
5818 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5819 {
5820 	u32 lnkcap;
5821 
5822 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5823 	if (lnkcap)
5824 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5825 
5826 	return PCIE_LNK_WIDTH_UNKNOWN;
5827 }
5828 EXPORT_SYMBOL(pcie_get_width_cap);
5829 
5830 /**
5831  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5832  * @dev: PCI device
5833  * @speed: storage for link speed
5834  * @width: storage for link width
5835  *
5836  * Calculate a PCI device's link bandwidth by querying for its link speed
5837  * and width, multiplying them, and applying encoding overhead.  The result
5838  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5839  */
5840 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5841 			   enum pcie_link_width *width)
5842 {
5843 	*speed = pcie_get_speed_cap(dev);
5844 	*width = pcie_get_width_cap(dev);
5845 
5846 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5847 		return 0;
5848 
5849 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5850 }
5851 
5852 /**
5853  * __pcie_print_link_status - Report the PCI device's link speed and width
5854  * @dev: PCI device to query
5855  * @verbose: Print info even when enough bandwidth is available
5856  *
5857  * If the available bandwidth at the device is less than the device is
5858  * capable of, report the device's maximum possible bandwidth and the
5859  * upstream link that limits its performance.  If @verbose, always print
5860  * the available bandwidth, even if the device isn't constrained.
5861  */
5862 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5863 {
5864 	enum pcie_link_width width, width_cap;
5865 	enum pci_bus_speed speed, speed_cap;
5866 	struct pci_dev *limiting_dev = NULL;
5867 	u32 bw_avail, bw_cap;
5868 
5869 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5870 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5871 
5872 	if (bw_avail >= bw_cap && verbose)
5873 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5874 			 bw_cap / 1000, bw_cap % 1000,
5875 			 PCIE_SPEED2STR(speed_cap), width_cap);
5876 	else if (bw_avail < bw_cap)
5877 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5878 			 bw_avail / 1000, bw_avail % 1000,
5879 			 PCIE_SPEED2STR(speed), width,
5880 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5881 			 bw_cap / 1000, bw_cap % 1000,
5882 			 PCIE_SPEED2STR(speed_cap), width_cap);
5883 }
5884 
5885 /**
5886  * pcie_print_link_status - Report the PCI device's link speed and width
5887  * @dev: PCI device to query
5888  *
5889  * Report the available bandwidth at the device.
5890  */
5891 void pcie_print_link_status(struct pci_dev *dev)
5892 {
5893 	__pcie_print_link_status(dev, true);
5894 }
5895 EXPORT_SYMBOL(pcie_print_link_status);
5896 
5897 /**
5898  * pci_select_bars - Make BAR mask from the type of resource
5899  * @dev: the PCI device for which BAR mask is made
5900  * @flags: resource type mask to be selected
5901  *
5902  * This helper routine makes bar mask from the type of resource.
5903  */
5904 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5905 {
5906 	int i, bars = 0;
5907 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5908 		if (pci_resource_flags(dev, i) & flags)
5909 			bars |= (1 << i);
5910 	return bars;
5911 }
5912 EXPORT_SYMBOL(pci_select_bars);
5913 
5914 /* Some architectures require additional programming to enable VGA */
5915 static arch_set_vga_state_t arch_set_vga_state;
5916 
5917 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5918 {
5919 	arch_set_vga_state = func;	/* NULL disables */
5920 }
5921 
5922 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5923 				  unsigned int command_bits, u32 flags)
5924 {
5925 	if (arch_set_vga_state)
5926 		return arch_set_vga_state(dev, decode, command_bits,
5927 						flags);
5928 	return 0;
5929 }
5930 
5931 /**
5932  * pci_set_vga_state - set VGA decode state on device and parents if requested
5933  * @dev: the PCI device
5934  * @decode: true = enable decoding, false = disable decoding
5935  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5936  * @flags: traverse ancestors and change bridges
5937  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5938  */
5939 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5940 		      unsigned int command_bits, u32 flags)
5941 {
5942 	struct pci_bus *bus;
5943 	struct pci_dev *bridge;
5944 	u16 cmd;
5945 	int rc;
5946 
5947 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5948 
5949 	/* ARCH specific VGA enables */
5950 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5951 	if (rc)
5952 		return rc;
5953 
5954 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5955 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5956 		if (decode == true)
5957 			cmd |= command_bits;
5958 		else
5959 			cmd &= ~command_bits;
5960 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5961 	}
5962 
5963 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5964 		return 0;
5965 
5966 	bus = dev->bus;
5967 	while (bus) {
5968 		bridge = bus->self;
5969 		if (bridge) {
5970 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5971 					     &cmd);
5972 			if (decode == true)
5973 				cmd |= PCI_BRIDGE_CTL_VGA;
5974 			else
5975 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5976 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5977 					      cmd);
5978 		}
5979 		bus = bus->parent;
5980 	}
5981 	return 0;
5982 }
5983 
5984 #ifdef CONFIG_ACPI
5985 bool pci_pr3_present(struct pci_dev *pdev)
5986 {
5987 	struct acpi_device *adev;
5988 
5989 	if (acpi_disabled)
5990 		return false;
5991 
5992 	adev = ACPI_COMPANION(&pdev->dev);
5993 	if (!adev)
5994 		return false;
5995 
5996 	return adev->power.flags.power_resources &&
5997 		acpi_has_method(adev->handle, "_PR3");
5998 }
5999 EXPORT_SYMBOL_GPL(pci_pr3_present);
6000 #endif
6001 
6002 /**
6003  * pci_add_dma_alias - Add a DMA devfn alias for a device
6004  * @dev: the PCI device for which alias is added
6005  * @devfn_from: alias slot and function
6006  * @nr_devfns: number of subsequent devfns to alias
6007  *
6008  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6009  * which is used to program permissible bus-devfn source addresses for DMA
6010  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6011  * and are useful for devices generating DMA requests beyond or different
6012  * from their logical bus-devfn.  Examples include device quirks where the
6013  * device simply uses the wrong devfn, as well as non-transparent bridges
6014  * where the alias may be a proxy for devices in another domain.
6015  *
6016  * IOMMU group creation is performed during device discovery or addition,
6017  * prior to any potential DMA mapping and therefore prior to driver probing
6018  * (especially for userspace assigned devices where IOMMU group definition
6019  * cannot be left as a userspace activity).  DMA aliases should therefore
6020  * be configured via quirks, such as the PCI fixup header quirk.
6021  */
6022 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6023 {
6024 	int devfn_to;
6025 
6026 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6027 	devfn_to = devfn_from + nr_devfns - 1;
6028 
6029 	if (!dev->dma_alias_mask)
6030 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6031 	if (!dev->dma_alias_mask) {
6032 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6033 		return;
6034 	}
6035 
6036 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6037 
6038 	if (nr_devfns == 1)
6039 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6040 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6041 	else if (nr_devfns > 1)
6042 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6043 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6044 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6045 }
6046 
6047 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6048 {
6049 	return (dev1->dma_alias_mask &&
6050 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6051 	       (dev2->dma_alias_mask &&
6052 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6053 	       pci_real_dma_dev(dev1) == dev2 ||
6054 	       pci_real_dma_dev(dev2) == dev1;
6055 }
6056 
6057 bool pci_device_is_present(struct pci_dev *pdev)
6058 {
6059 	u32 v;
6060 
6061 	if (pci_dev_is_disconnected(pdev))
6062 		return false;
6063 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6064 }
6065 EXPORT_SYMBOL_GPL(pci_device_is_present);
6066 
6067 void pci_ignore_hotplug(struct pci_dev *dev)
6068 {
6069 	struct pci_dev *bridge = dev->bus->self;
6070 
6071 	dev->ignore_hotplug = 1;
6072 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6073 	if (bridge)
6074 		bridge->ignore_hotplug = 1;
6075 }
6076 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6077 
6078 /**
6079  * pci_real_dma_dev - Get PCI DMA device for PCI device
6080  * @dev: the PCI device that may have a PCI DMA alias
6081  *
6082  * Permits the platform to provide architecture-specific functionality to
6083  * devices needing to alias DMA to another PCI device on another PCI bus. If
6084  * the PCI device is on the same bus, it is recommended to use
6085  * pci_add_dma_alias(). This is the default implementation. Architecture
6086  * implementations can override this.
6087  */
6088 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6089 {
6090 	return dev;
6091 }
6092 
6093 resource_size_t __weak pcibios_default_alignment(void)
6094 {
6095 	return 0;
6096 }
6097 
6098 /*
6099  * Arches that don't want to expose struct resource to userland as-is in
6100  * sysfs and /proc can implement their own pci_resource_to_user().
6101  */
6102 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6103 				 const struct resource *rsrc,
6104 				 resource_size_t *start, resource_size_t *end)
6105 {
6106 	*start = rsrc->start;
6107 	*end = rsrc->end;
6108 }
6109 
6110 static char *resource_alignment_param;
6111 static DEFINE_SPINLOCK(resource_alignment_lock);
6112 
6113 /**
6114  * pci_specified_resource_alignment - get resource alignment specified by user.
6115  * @dev: the PCI device to get
6116  * @resize: whether or not to change resources' size when reassigning alignment
6117  *
6118  * RETURNS: Resource alignment if it is specified.
6119  *          Zero if it is not specified.
6120  */
6121 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6122 							bool *resize)
6123 {
6124 	int align_order, count;
6125 	resource_size_t align = pcibios_default_alignment();
6126 	const char *p;
6127 	int ret;
6128 
6129 	spin_lock(&resource_alignment_lock);
6130 	p = resource_alignment_param;
6131 	if (!p || !*p)
6132 		goto out;
6133 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6134 		align = 0;
6135 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6136 		goto out;
6137 	}
6138 
6139 	while (*p) {
6140 		count = 0;
6141 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6142 							p[count] == '@') {
6143 			p += count + 1;
6144 		} else {
6145 			align_order = -1;
6146 		}
6147 
6148 		ret = pci_dev_str_match(dev, p, &p);
6149 		if (ret == 1) {
6150 			*resize = true;
6151 			if (align_order == -1)
6152 				align = PAGE_SIZE;
6153 			else
6154 				align = 1 << align_order;
6155 			break;
6156 		} else if (ret < 0) {
6157 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6158 			       p);
6159 			break;
6160 		}
6161 
6162 		if (*p != ';' && *p != ',') {
6163 			/* End of param or invalid format */
6164 			break;
6165 		}
6166 		p++;
6167 	}
6168 out:
6169 	spin_unlock(&resource_alignment_lock);
6170 	return align;
6171 }
6172 
6173 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6174 					   resource_size_t align, bool resize)
6175 {
6176 	struct resource *r = &dev->resource[bar];
6177 	resource_size_t size;
6178 
6179 	if (!(r->flags & IORESOURCE_MEM))
6180 		return;
6181 
6182 	if (r->flags & IORESOURCE_PCI_FIXED) {
6183 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6184 			 bar, r, (unsigned long long)align);
6185 		return;
6186 	}
6187 
6188 	size = resource_size(r);
6189 	if (size >= align)
6190 		return;
6191 
6192 	/*
6193 	 * Increase the alignment of the resource.  There are two ways we
6194 	 * can do this:
6195 	 *
6196 	 * 1) Increase the size of the resource.  BARs are aligned on their
6197 	 *    size, so when we reallocate space for this resource, we'll
6198 	 *    allocate it with the larger alignment.  This also prevents
6199 	 *    assignment of any other BARs inside the alignment region, so
6200 	 *    if we're requesting page alignment, this means no other BARs
6201 	 *    will share the page.
6202 	 *
6203 	 *    The disadvantage is that this makes the resource larger than
6204 	 *    the hardware BAR, which may break drivers that compute things
6205 	 *    based on the resource size, e.g., to find registers at a
6206 	 *    fixed offset before the end of the BAR.
6207 	 *
6208 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6209 	 *    set r->start to the desired alignment.  By itself this
6210 	 *    doesn't prevent other BARs being put inside the alignment
6211 	 *    region, but if we realign *every* resource of every device in
6212 	 *    the system, none of them will share an alignment region.
6213 	 *
6214 	 * When the user has requested alignment for only some devices via
6215 	 * the "pci=resource_alignment" argument, "resize" is true and we
6216 	 * use the first method.  Otherwise we assume we're aligning all
6217 	 * devices and we use the second.
6218 	 */
6219 
6220 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6221 		 bar, r, (unsigned long long)align);
6222 
6223 	if (resize) {
6224 		r->start = 0;
6225 		r->end = align - 1;
6226 	} else {
6227 		r->flags &= ~IORESOURCE_SIZEALIGN;
6228 		r->flags |= IORESOURCE_STARTALIGN;
6229 		r->start = align;
6230 		r->end = r->start + size - 1;
6231 	}
6232 	r->flags |= IORESOURCE_UNSET;
6233 }
6234 
6235 /*
6236  * This function disables memory decoding and releases memory resources
6237  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6238  * It also rounds up size to specified alignment.
6239  * Later on, the kernel will assign page-aligned memory resource back
6240  * to the device.
6241  */
6242 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6243 {
6244 	int i;
6245 	struct resource *r;
6246 	resource_size_t align;
6247 	u16 command;
6248 	bool resize = false;
6249 
6250 	/*
6251 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6252 	 * 3.4.1.11.  Their resources are allocated from the space
6253 	 * described by the VF BARx register in the PF's SR-IOV capability.
6254 	 * We can't influence their alignment here.
6255 	 */
6256 	if (dev->is_virtfn)
6257 		return;
6258 
6259 	/* check if specified PCI is target device to reassign */
6260 	align = pci_specified_resource_alignment(dev, &resize);
6261 	if (!align)
6262 		return;
6263 
6264 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6265 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6266 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6267 		return;
6268 	}
6269 
6270 	pci_read_config_word(dev, PCI_COMMAND, &command);
6271 	command &= ~PCI_COMMAND_MEMORY;
6272 	pci_write_config_word(dev, PCI_COMMAND, command);
6273 
6274 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6275 		pci_request_resource_alignment(dev, i, align, resize);
6276 
6277 	/*
6278 	 * Need to disable bridge's resource window,
6279 	 * to enable the kernel to reassign new resource
6280 	 * window later on.
6281 	 */
6282 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6283 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6284 			r = &dev->resource[i];
6285 			if (!(r->flags & IORESOURCE_MEM))
6286 				continue;
6287 			r->flags |= IORESOURCE_UNSET;
6288 			r->end = resource_size(r) - 1;
6289 			r->start = 0;
6290 		}
6291 		pci_disable_bridge_window(dev);
6292 	}
6293 }
6294 
6295 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6296 {
6297 	size_t count = 0;
6298 
6299 	spin_lock(&resource_alignment_lock);
6300 	if (resource_alignment_param)
6301 		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6302 	spin_unlock(&resource_alignment_lock);
6303 
6304 	/*
6305 	 * When set by the command line, resource_alignment_param will not
6306 	 * have a trailing line feed, which is ugly. So conditionally add
6307 	 * it here.
6308 	 */
6309 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6310 		buf[count - 1] = '\n';
6311 		buf[count++] = 0;
6312 	}
6313 
6314 	return count;
6315 }
6316 
6317 static ssize_t resource_alignment_store(struct bus_type *bus,
6318 					const char *buf, size_t count)
6319 {
6320 	char *param = kstrndup(buf, count, GFP_KERNEL);
6321 
6322 	if (!param)
6323 		return -ENOMEM;
6324 
6325 	spin_lock(&resource_alignment_lock);
6326 	kfree(resource_alignment_param);
6327 	resource_alignment_param = param;
6328 	spin_unlock(&resource_alignment_lock);
6329 	return count;
6330 }
6331 
6332 static BUS_ATTR_RW(resource_alignment);
6333 
6334 static int __init pci_resource_alignment_sysfs_init(void)
6335 {
6336 	return bus_create_file(&pci_bus_type,
6337 					&bus_attr_resource_alignment);
6338 }
6339 late_initcall(pci_resource_alignment_sysfs_init);
6340 
6341 static void pci_no_domains(void)
6342 {
6343 #ifdef CONFIG_PCI_DOMAINS
6344 	pci_domains_supported = 0;
6345 #endif
6346 }
6347 
6348 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6349 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6350 
6351 static int pci_get_new_domain_nr(void)
6352 {
6353 	return atomic_inc_return(&__domain_nr);
6354 }
6355 
6356 static int of_pci_bus_find_domain_nr(struct device *parent)
6357 {
6358 	static int use_dt_domains = -1;
6359 	int domain = -1;
6360 
6361 	if (parent)
6362 		domain = of_get_pci_domain_nr(parent->of_node);
6363 
6364 	/*
6365 	 * Check DT domain and use_dt_domains values.
6366 	 *
6367 	 * If DT domain property is valid (domain >= 0) and
6368 	 * use_dt_domains != 0, the DT assignment is valid since this means
6369 	 * we have not previously allocated a domain number by using
6370 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6371 	 * 1, to indicate that we have just assigned a domain number from
6372 	 * DT.
6373 	 *
6374 	 * If DT domain property value is not valid (ie domain < 0), and we
6375 	 * have not previously assigned a domain number from DT
6376 	 * (use_dt_domains != 1) we should assign a domain number by
6377 	 * using the:
6378 	 *
6379 	 * pci_get_new_domain_nr()
6380 	 *
6381 	 * API and update the use_dt_domains value to keep track of method we
6382 	 * are using to assign domain numbers (use_dt_domains = 0).
6383 	 *
6384 	 * All other combinations imply we have a platform that is trying
6385 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6386 	 * which is a recipe for domain mishandling and it is prevented by
6387 	 * invalidating the domain value (domain = -1) and printing a
6388 	 * corresponding error.
6389 	 */
6390 	if (domain >= 0 && use_dt_domains) {
6391 		use_dt_domains = 1;
6392 	} else if (domain < 0 && use_dt_domains != 1) {
6393 		use_dt_domains = 0;
6394 		domain = pci_get_new_domain_nr();
6395 	} else {
6396 		if (parent)
6397 			pr_err("Node %pOF has ", parent->of_node);
6398 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6399 		domain = -1;
6400 	}
6401 
6402 	return domain;
6403 }
6404 
6405 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6406 {
6407 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6408 			       acpi_pci_bus_find_domain_nr(bus);
6409 }
6410 #endif
6411 
6412 /**
6413  * pci_ext_cfg_avail - can we access extended PCI config space?
6414  *
6415  * Returns 1 if we can access PCI extended config space (offsets
6416  * greater than 0xff). This is the default implementation. Architecture
6417  * implementations can override this.
6418  */
6419 int __weak pci_ext_cfg_avail(void)
6420 {
6421 	return 1;
6422 }
6423 
6424 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6425 {
6426 }
6427 EXPORT_SYMBOL(pci_fixup_cardbus);
6428 
6429 static int __init pci_setup(char *str)
6430 {
6431 	while (str) {
6432 		char *k = strchr(str, ',');
6433 		if (k)
6434 			*k++ = 0;
6435 		if (*str && (str = pcibios_setup(str)) && *str) {
6436 			if (!strcmp(str, "nomsi")) {
6437 				pci_no_msi();
6438 			} else if (!strncmp(str, "noats", 5)) {
6439 				pr_info("PCIe: ATS is disabled\n");
6440 				pcie_ats_disabled = true;
6441 			} else if (!strcmp(str, "noaer")) {
6442 				pci_no_aer();
6443 			} else if (!strcmp(str, "earlydump")) {
6444 				pci_early_dump = true;
6445 			} else if (!strncmp(str, "realloc=", 8)) {
6446 				pci_realloc_get_opt(str + 8);
6447 			} else if (!strncmp(str, "realloc", 7)) {
6448 				pci_realloc_get_opt("on");
6449 			} else if (!strcmp(str, "nodomains")) {
6450 				pci_no_domains();
6451 			} else if (!strncmp(str, "noari", 5)) {
6452 				pcie_ari_disabled = true;
6453 			} else if (!strncmp(str, "cbiosize=", 9)) {
6454 				pci_cardbus_io_size = memparse(str + 9, &str);
6455 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6456 				pci_cardbus_mem_size = memparse(str + 10, &str);
6457 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6458 				resource_alignment_param = str + 19;
6459 			} else if (!strncmp(str, "ecrc=", 5)) {
6460 				pcie_ecrc_get_policy(str + 5);
6461 			} else if (!strncmp(str, "hpiosize=", 9)) {
6462 				pci_hotplug_io_size = memparse(str + 9, &str);
6463 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6464 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6465 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6466 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6467 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6468 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6469 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6470 			} else if (!strncmp(str, "hpbussize=", 10)) {
6471 				pci_hotplug_bus_size =
6472 					simple_strtoul(str + 10, &str, 0);
6473 				if (pci_hotplug_bus_size > 0xff)
6474 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6475 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6476 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6477 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6478 				pcie_bus_config = PCIE_BUS_SAFE;
6479 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6480 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6481 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6482 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6483 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6484 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6485 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6486 				disable_acs_redir_param = str + 18;
6487 			} else {
6488 				pr_err("PCI: Unknown option `%s'\n", str);
6489 			}
6490 		}
6491 		str = k;
6492 	}
6493 	return 0;
6494 }
6495 early_param("pci", pci_setup);
6496 
6497 /*
6498  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6499  * in pci_setup(), above, to point to data in the __initdata section which
6500  * will be freed after the init sequence is complete. We can't allocate memory
6501  * in pci_setup() because some architectures do not have any memory allocation
6502  * service available during an early_param() call. So we allocate memory and
6503  * copy the variable here before the init section is freed.
6504  *
6505  */
6506 static int __init pci_realloc_setup_params(void)
6507 {
6508 	resource_alignment_param = kstrdup(resource_alignment_param,
6509 					   GFP_KERNEL);
6510 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6511 
6512 	return 0;
6513 }
6514 pure_initcall(pci_realloc_setup_params);
6515