1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/of_pci.h> 19 #include <linux/pci.h> 20 #include <linux/pm.h> 21 #include <linux/slab.h> 22 #include <linux/module.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/log2.h> 26 #include <linux/logic_pio.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 DEFINE_MUTEX(pci_slot_mutex); 40 41 const char *pci_power_names[] = { 42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 43 }; 44 EXPORT_SYMBOL_GPL(pci_power_names); 45 46 int isa_dma_bridge_buggy; 47 EXPORT_SYMBOL(isa_dma_bridge_buggy); 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 static void pci_dev_d3_sleep(struct pci_dev *dev) 68 { 69 unsigned int delay = dev->d3_delay; 70 71 if (delay < pci_pm_d3_delay) 72 delay = pci_pm_d3_delay; 73 74 if (delay) 75 msleep(delay); 76 } 77 78 #ifdef CONFIG_PCI_DOMAINS 79 int pci_domains_supported = 1; 80 #endif 81 82 #define DEFAULT_CARDBUS_IO_SIZE (256) 83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 87 88 #define DEFAULT_HOTPLUG_IO_SIZE (256) 89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 91 /* hpiosize=nn can override this */ 92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 93 /* 94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 96 * pci=hpmemsize=nnM overrides both 97 */ 98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 100 101 #define DEFAULT_HOTPLUG_BUS_SIZE 1 102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 103 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 105 106 /* 107 * The default CLS is used if arch didn't set CLS explicitly and not 108 * all pci devices agree on the same value. Arch can override either 109 * the dfl or actual value as it sees fit. Don't forget this is 110 * measured in 32-bit words, not bytes. 111 */ 112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 113 u8 pci_cache_line_size; 114 115 /* 116 * If we set up a device for bus mastering, we need to check the latency 117 * timer as certain BIOSes forget to set it properly. 118 */ 119 unsigned int pcibios_max_latency = 255; 120 121 /* If set, the PCIe ARI capability will not be used. */ 122 static bool pcie_ari_disabled; 123 124 /* If set, the PCIe ATS capability will not be used. */ 125 static bool pcie_ats_disabled; 126 127 /* If set, the PCI config space of each device is printed during boot. */ 128 bool pci_early_dump; 129 130 bool pci_ats_disabled(void) 131 { 132 return pcie_ats_disabled; 133 } 134 EXPORT_SYMBOL_GPL(pci_ats_disabled); 135 136 /* Disable bridge_d3 for all PCIe ports */ 137 static bool pci_bridge_d3_disable; 138 /* Force bridge_d3 for all PCIe ports */ 139 static bool pci_bridge_d3_force; 140 141 static int __init pcie_port_pm_setup(char *str) 142 { 143 if (!strcmp(str, "off")) 144 pci_bridge_d3_disable = true; 145 else if (!strcmp(str, "force")) 146 pci_bridge_d3_force = true; 147 return 1; 148 } 149 __setup("pcie_port_pm=", pcie_port_pm_setup); 150 151 /* Time to wait after a reset for device to become responsive */ 152 #define PCIE_RESET_READY_POLL_MS 60000 153 154 /** 155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 156 * @bus: pointer to PCI bus structure to search 157 * 158 * Given a PCI bus, returns the highest PCI bus number present in the set 159 * including the given PCI bus and its list of child PCI buses. 160 */ 161 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 162 { 163 struct pci_bus *tmp; 164 unsigned char max, n; 165 166 max = bus->busn_res.end; 167 list_for_each_entry(tmp, &bus->children, node) { 168 n = pci_bus_max_busnr(tmp); 169 if (n > max) 170 max = n; 171 } 172 return max; 173 } 174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 175 176 #ifdef CONFIG_HAS_IOMEM 177 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 178 { 179 struct resource *res = &pdev->resource[bar]; 180 181 /* 182 * Make sure the BAR is actually a memory resource, not an IO resource 183 */ 184 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 185 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 186 return NULL; 187 } 188 return ioremap(res->start, resource_size(res)); 189 } 190 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 191 192 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 193 { 194 /* 195 * Make sure the BAR is actually a memory resource, not an IO resource 196 */ 197 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 198 WARN_ON(1); 199 return NULL; 200 } 201 return ioremap_wc(pci_resource_start(pdev, bar), 202 pci_resource_len(pdev, bar)); 203 } 204 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 205 #endif 206 207 /** 208 * pci_dev_str_match_path - test if a path string matches a device 209 * @dev: the PCI device to test 210 * @path: string to match the device against 211 * @endptr: pointer to the string after the match 212 * 213 * Test if a string (typically from a kernel parameter) formatted as a 214 * path of device/function addresses matches a PCI device. The string must 215 * be of the form: 216 * 217 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 218 * 219 * A path for a device can be obtained using 'lspci -t'. Using a path 220 * is more robust against bus renumbering than using only a single bus, 221 * device and function address. 222 * 223 * Returns 1 if the string matches the device, 0 if it does not and 224 * a negative error code if it fails to parse the string. 225 */ 226 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 227 const char **endptr) 228 { 229 int ret; 230 int seg, bus, slot, func; 231 char *wpath, *p; 232 char end; 233 234 *endptr = strchrnul(path, ';'); 235 236 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 237 if (!wpath) 238 return -ENOMEM; 239 240 while (1) { 241 p = strrchr(wpath, '/'); 242 if (!p) 243 break; 244 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 245 if (ret != 2) { 246 ret = -EINVAL; 247 goto free_and_exit; 248 } 249 250 if (dev->devfn != PCI_DEVFN(slot, func)) { 251 ret = 0; 252 goto free_and_exit; 253 } 254 255 /* 256 * Note: we don't need to get a reference to the upstream 257 * bridge because we hold a reference to the top level 258 * device which should hold a reference to the bridge, 259 * and so on. 260 */ 261 dev = pci_upstream_bridge(dev); 262 if (!dev) { 263 ret = 0; 264 goto free_and_exit; 265 } 266 267 *p = 0; 268 } 269 270 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 271 &func, &end); 272 if (ret != 4) { 273 seg = 0; 274 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 275 if (ret != 3) { 276 ret = -EINVAL; 277 goto free_and_exit; 278 } 279 } 280 281 ret = (seg == pci_domain_nr(dev->bus) && 282 bus == dev->bus->number && 283 dev->devfn == PCI_DEVFN(slot, func)); 284 285 free_and_exit: 286 kfree(wpath); 287 return ret; 288 } 289 290 /** 291 * pci_dev_str_match - test if a string matches a device 292 * @dev: the PCI device to test 293 * @p: string to match the device against 294 * @endptr: pointer to the string after the match 295 * 296 * Test if a string (typically from a kernel parameter) matches a specified 297 * PCI device. The string may be of one of the following formats: 298 * 299 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 300 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 301 * 302 * The first format specifies a PCI bus/device/function address which 303 * may change if new hardware is inserted, if motherboard firmware changes, 304 * or due to changes caused in kernel parameters. If the domain is 305 * left unspecified, it is taken to be 0. In order to be robust against 306 * bus renumbering issues, a path of PCI device/function numbers may be used 307 * to address the specific device. The path for a device can be determined 308 * through the use of 'lspci -t'. 309 * 310 * The second format matches devices using IDs in the configuration 311 * space which may match multiple devices in the system. A value of 0 312 * for any field will match all devices. (Note: this differs from 313 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 314 * legacy reasons and convenience so users don't have to specify 315 * FFFFFFFFs on the command line.) 316 * 317 * Returns 1 if the string matches the device, 0 if it does not and 318 * a negative error code if the string cannot be parsed. 319 */ 320 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 321 const char **endptr) 322 { 323 int ret; 324 int count; 325 unsigned short vendor, device, subsystem_vendor, subsystem_device; 326 327 if (strncmp(p, "pci:", 4) == 0) { 328 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 329 p += 4; 330 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 331 &subsystem_vendor, &subsystem_device, &count); 332 if (ret != 4) { 333 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 334 if (ret != 2) 335 return -EINVAL; 336 337 subsystem_vendor = 0; 338 subsystem_device = 0; 339 } 340 341 p += count; 342 343 if ((!vendor || vendor == dev->vendor) && 344 (!device || device == dev->device) && 345 (!subsystem_vendor || 346 subsystem_vendor == dev->subsystem_vendor) && 347 (!subsystem_device || 348 subsystem_device == dev->subsystem_device)) 349 goto found; 350 } else { 351 /* 352 * PCI Bus, Device, Function IDs are specified 353 * (optionally, may include a path of devfns following it) 354 */ 355 ret = pci_dev_str_match_path(dev, p, &p); 356 if (ret < 0) 357 return ret; 358 else if (ret) 359 goto found; 360 } 361 362 *endptr = p; 363 return 0; 364 365 found: 366 *endptr = p; 367 return 1; 368 } 369 370 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 371 u8 pos, int cap, int *ttl) 372 { 373 u8 id; 374 u16 ent; 375 376 pci_bus_read_config_byte(bus, devfn, pos, &pos); 377 378 while ((*ttl)--) { 379 if (pos < 0x40) 380 break; 381 pos &= ~3; 382 pci_bus_read_config_word(bus, devfn, pos, &ent); 383 384 id = ent & 0xff; 385 if (id == 0xff) 386 break; 387 if (id == cap) 388 return pos; 389 pos = (ent >> 8); 390 } 391 return 0; 392 } 393 394 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 395 u8 pos, int cap) 396 { 397 int ttl = PCI_FIND_CAP_TTL; 398 399 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 400 } 401 402 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 403 { 404 return __pci_find_next_cap(dev->bus, dev->devfn, 405 pos + PCI_CAP_LIST_NEXT, cap); 406 } 407 EXPORT_SYMBOL_GPL(pci_find_next_capability); 408 409 static int __pci_bus_find_cap_start(struct pci_bus *bus, 410 unsigned int devfn, u8 hdr_type) 411 { 412 u16 status; 413 414 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 415 if (!(status & PCI_STATUS_CAP_LIST)) 416 return 0; 417 418 switch (hdr_type) { 419 case PCI_HEADER_TYPE_NORMAL: 420 case PCI_HEADER_TYPE_BRIDGE: 421 return PCI_CAPABILITY_LIST; 422 case PCI_HEADER_TYPE_CARDBUS: 423 return PCI_CB_CAPABILITY_LIST; 424 } 425 426 return 0; 427 } 428 429 /** 430 * pci_find_capability - query for devices' capabilities 431 * @dev: PCI device to query 432 * @cap: capability code 433 * 434 * Tell if a device supports a given PCI capability. 435 * Returns the address of the requested capability structure within the 436 * device's PCI configuration space or 0 in case the device does not 437 * support it. Possible values for @cap include: 438 * 439 * %PCI_CAP_ID_PM Power Management 440 * %PCI_CAP_ID_AGP Accelerated Graphics Port 441 * %PCI_CAP_ID_VPD Vital Product Data 442 * %PCI_CAP_ID_SLOTID Slot Identification 443 * %PCI_CAP_ID_MSI Message Signalled Interrupts 444 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 445 * %PCI_CAP_ID_PCIX PCI-X 446 * %PCI_CAP_ID_EXP PCI Express 447 */ 448 int pci_find_capability(struct pci_dev *dev, int cap) 449 { 450 int pos; 451 452 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 453 if (pos) 454 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 455 456 return pos; 457 } 458 EXPORT_SYMBOL(pci_find_capability); 459 460 /** 461 * pci_bus_find_capability - query for devices' capabilities 462 * @bus: the PCI bus to query 463 * @devfn: PCI device to query 464 * @cap: capability code 465 * 466 * Like pci_find_capability() but works for PCI devices that do not have a 467 * pci_dev structure set up yet. 468 * 469 * Returns the address of the requested capability structure within the 470 * device's PCI configuration space or 0 in case the device does not 471 * support it. 472 */ 473 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 474 { 475 int pos; 476 u8 hdr_type; 477 478 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 479 480 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 481 if (pos) 482 pos = __pci_find_next_cap(bus, devfn, pos, cap); 483 484 return pos; 485 } 486 EXPORT_SYMBOL(pci_bus_find_capability); 487 488 /** 489 * pci_find_next_ext_capability - Find an extended capability 490 * @dev: PCI device to query 491 * @start: address at which to start looking (0 to start at beginning of list) 492 * @cap: capability code 493 * 494 * Returns the address of the next matching extended capability structure 495 * within the device's PCI configuration space or 0 if the device does 496 * not support it. Some capabilities can occur several times, e.g., the 497 * vendor-specific capability, and this provides a way to find them all. 498 */ 499 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 500 { 501 u32 header; 502 int ttl; 503 int pos = PCI_CFG_SPACE_SIZE; 504 505 /* minimum 8 bytes per capability */ 506 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 507 508 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 509 return 0; 510 511 if (start) 512 pos = start; 513 514 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 515 return 0; 516 517 /* 518 * If we have no capabilities, this is indicated by cap ID, 519 * cap version and next pointer all being 0. 520 */ 521 if (header == 0) 522 return 0; 523 524 while (ttl-- > 0) { 525 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 526 return pos; 527 528 pos = PCI_EXT_CAP_NEXT(header); 529 if (pos < PCI_CFG_SPACE_SIZE) 530 break; 531 532 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 533 break; 534 } 535 536 return 0; 537 } 538 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 539 540 /** 541 * pci_find_ext_capability - Find an extended capability 542 * @dev: PCI device to query 543 * @cap: capability code 544 * 545 * Returns the address of the requested extended capability structure 546 * within the device's PCI configuration space or 0 if the device does 547 * not support it. Possible values for @cap include: 548 * 549 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 550 * %PCI_EXT_CAP_ID_VC Virtual Channel 551 * %PCI_EXT_CAP_ID_DSN Device Serial Number 552 * %PCI_EXT_CAP_ID_PWR Power Budgeting 553 */ 554 int pci_find_ext_capability(struct pci_dev *dev, int cap) 555 { 556 return pci_find_next_ext_capability(dev, 0, cap); 557 } 558 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 559 560 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 561 { 562 int rc, ttl = PCI_FIND_CAP_TTL; 563 u8 cap, mask; 564 565 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 566 mask = HT_3BIT_CAP_MASK; 567 else 568 mask = HT_5BIT_CAP_MASK; 569 570 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 571 PCI_CAP_ID_HT, &ttl); 572 while (pos) { 573 rc = pci_read_config_byte(dev, pos + 3, &cap); 574 if (rc != PCIBIOS_SUCCESSFUL) 575 return 0; 576 577 if ((cap & mask) == ht_cap) 578 return pos; 579 580 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 581 pos + PCI_CAP_LIST_NEXT, 582 PCI_CAP_ID_HT, &ttl); 583 } 584 585 return 0; 586 } 587 /** 588 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 589 * @dev: PCI device to query 590 * @pos: Position from which to continue searching 591 * @ht_cap: Hypertransport capability code 592 * 593 * To be used in conjunction with pci_find_ht_capability() to search for 594 * all capabilities matching @ht_cap. @pos should always be a value returned 595 * from pci_find_ht_capability(). 596 * 597 * NB. To be 100% safe against broken PCI devices, the caller should take 598 * steps to avoid an infinite loop. 599 */ 600 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 601 { 602 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 603 } 604 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 605 606 /** 607 * pci_find_ht_capability - query a device's Hypertransport capabilities 608 * @dev: PCI device to query 609 * @ht_cap: Hypertransport capability code 610 * 611 * Tell if a device supports a given Hypertransport capability. 612 * Returns an address within the device's PCI configuration space 613 * or 0 in case the device does not support the request capability. 614 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 615 * which has a Hypertransport capability matching @ht_cap. 616 */ 617 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 618 { 619 int pos; 620 621 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 622 if (pos) 623 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 624 625 return pos; 626 } 627 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 628 629 /** 630 * pci_find_parent_resource - return resource region of parent bus of given 631 * region 632 * @dev: PCI device structure contains resources to be searched 633 * @res: child resource record for which parent is sought 634 * 635 * For given resource region of given device, return the resource region of 636 * parent bus the given region is contained in. 637 */ 638 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 639 struct resource *res) 640 { 641 const struct pci_bus *bus = dev->bus; 642 struct resource *r; 643 int i; 644 645 pci_bus_for_each_resource(bus, r, i) { 646 if (!r) 647 continue; 648 if (resource_contains(r, res)) { 649 650 /* 651 * If the window is prefetchable but the BAR is 652 * not, the allocator made a mistake. 653 */ 654 if (r->flags & IORESOURCE_PREFETCH && 655 !(res->flags & IORESOURCE_PREFETCH)) 656 return NULL; 657 658 /* 659 * If we're below a transparent bridge, there may 660 * be both a positively-decoded aperture and a 661 * subtractively-decoded region that contain the BAR. 662 * We want the positively-decoded one, so this depends 663 * on pci_bus_for_each_resource() giving us those 664 * first. 665 */ 666 return r; 667 } 668 } 669 return NULL; 670 } 671 EXPORT_SYMBOL(pci_find_parent_resource); 672 673 /** 674 * pci_find_resource - Return matching PCI device resource 675 * @dev: PCI device to query 676 * @res: Resource to look for 677 * 678 * Goes over standard PCI resources (BARs) and checks if the given resource 679 * is partially or fully contained in any of them. In that case the 680 * matching resource is returned, %NULL otherwise. 681 */ 682 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 683 { 684 int i; 685 686 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 687 struct resource *r = &dev->resource[i]; 688 689 if (r->start && resource_contains(r, res)) 690 return r; 691 } 692 693 return NULL; 694 } 695 EXPORT_SYMBOL(pci_find_resource); 696 697 /** 698 * pci_find_pcie_root_port - return PCIe Root Port 699 * @dev: PCI device to query 700 * 701 * Traverse up the parent chain and return the PCIe Root Port PCI Device 702 * for a given PCI Device. 703 */ 704 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 705 { 706 struct pci_dev *bridge, *highest_pcie_bridge = dev; 707 708 bridge = pci_upstream_bridge(dev); 709 while (bridge && pci_is_pcie(bridge)) { 710 highest_pcie_bridge = bridge; 711 bridge = pci_upstream_bridge(bridge); 712 } 713 714 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 715 return NULL; 716 717 return highest_pcie_bridge; 718 } 719 EXPORT_SYMBOL(pci_find_pcie_root_port); 720 721 /** 722 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 723 * @dev: the PCI device to operate on 724 * @pos: config space offset of status word 725 * @mask: mask of bit(s) to care about in status word 726 * 727 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 728 */ 729 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 730 { 731 int i; 732 733 /* Wait for Transaction Pending bit clean */ 734 for (i = 0; i < 4; i++) { 735 u16 status; 736 if (i) 737 msleep((1 << (i - 1)) * 100); 738 739 pci_read_config_word(dev, pos, &status); 740 if (!(status & mask)) 741 return 1; 742 } 743 744 return 0; 745 } 746 747 /** 748 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 749 * @dev: PCI device to have its BARs restored 750 * 751 * Restore the BAR values for a given device, so as to make it 752 * accessible by its driver. 753 */ 754 static void pci_restore_bars(struct pci_dev *dev) 755 { 756 int i; 757 758 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 759 pci_update_resource(dev, i); 760 } 761 762 static const struct pci_platform_pm_ops *pci_platform_pm; 763 764 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 765 { 766 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 767 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 768 return -EINVAL; 769 pci_platform_pm = ops; 770 return 0; 771 } 772 773 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 774 { 775 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 776 } 777 778 static inline int platform_pci_set_power_state(struct pci_dev *dev, 779 pci_power_t t) 780 { 781 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 782 } 783 784 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 785 { 786 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 787 } 788 789 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 790 { 791 if (pci_platform_pm && pci_platform_pm->refresh_state) 792 pci_platform_pm->refresh_state(dev); 793 } 794 795 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 796 { 797 return pci_platform_pm ? 798 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 799 } 800 801 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 802 { 803 return pci_platform_pm ? 804 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 805 } 806 807 static inline bool platform_pci_need_resume(struct pci_dev *dev) 808 { 809 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 810 } 811 812 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 813 { 814 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 815 } 816 817 /** 818 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 819 * given PCI device 820 * @dev: PCI device to handle. 821 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 822 * 823 * RETURN VALUE: 824 * -EINVAL if the requested state is invalid. 825 * -EIO if device does not support PCI PM or its PM capabilities register has a 826 * wrong version, or device doesn't support the requested state. 827 * 0 if device already is in the requested state. 828 * 0 if device's power state has been successfully changed. 829 */ 830 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 831 { 832 u16 pmcsr; 833 bool need_restore = false; 834 835 /* Check if we're already there */ 836 if (dev->current_state == state) 837 return 0; 838 839 if (!dev->pm_cap) 840 return -EIO; 841 842 if (state < PCI_D0 || state > PCI_D3hot) 843 return -EINVAL; 844 845 /* 846 * Validate transition: We can enter D0 from any state, but if 847 * we're already in a low-power state, we can only go deeper. E.g., 848 * we can go from D1 to D3, but we can't go directly from D3 to D1; 849 * we'd have to go from D3 to D0, then to D1. 850 */ 851 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 852 && dev->current_state > state) { 853 pci_err(dev, "invalid power transition (from %s to %s)\n", 854 pci_power_name(dev->current_state), 855 pci_power_name(state)); 856 return -EINVAL; 857 } 858 859 /* Check if this device supports the desired state */ 860 if ((state == PCI_D1 && !dev->d1_support) 861 || (state == PCI_D2 && !dev->d2_support)) 862 return -EIO; 863 864 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 865 if (pmcsr == (u16) ~0) { 866 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 867 pci_power_name(dev->current_state), 868 pci_power_name(state)); 869 return -EIO; 870 } 871 872 /* 873 * If we're (effectively) in D3, force entire word to 0. 874 * This doesn't affect PME_Status, disables PME_En, and 875 * sets PowerState to 0. 876 */ 877 switch (dev->current_state) { 878 case PCI_D0: 879 case PCI_D1: 880 case PCI_D2: 881 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 882 pmcsr |= state; 883 break; 884 case PCI_D3hot: 885 case PCI_D3cold: 886 case PCI_UNKNOWN: /* Boot-up */ 887 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 888 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 889 need_restore = true; 890 /* Fall-through - force to D0 */ 891 default: 892 pmcsr = 0; 893 break; 894 } 895 896 /* Enter specified state */ 897 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 898 899 /* 900 * Mandatory power management transition delays; see PCI PM 1.1 901 * 5.6.1 table 18 902 */ 903 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 904 pci_dev_d3_sleep(dev); 905 else if (state == PCI_D2 || dev->current_state == PCI_D2) 906 msleep(PCI_PM_D2_DELAY); 907 908 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 909 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 910 if (dev->current_state != state) 911 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 912 pci_power_name(dev->current_state), 913 pci_power_name(state)); 914 915 /* 916 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 917 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 918 * from D3hot to D0 _may_ perform an internal reset, thereby 919 * going to "D0 Uninitialized" rather than "D0 Initialized". 920 * For example, at least some versions of the 3c905B and the 921 * 3c556B exhibit this behaviour. 922 * 923 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 924 * devices in a D3hot state at boot. Consequently, we need to 925 * restore at least the BARs so that the device will be 926 * accessible to its driver. 927 */ 928 if (need_restore) 929 pci_restore_bars(dev); 930 931 if (dev->bus->self) 932 pcie_aspm_pm_state_change(dev->bus->self); 933 934 return 0; 935 } 936 937 /** 938 * pci_update_current_state - Read power state of given device and cache it 939 * @dev: PCI device to handle. 940 * @state: State to cache in case the device doesn't have the PM capability 941 * 942 * The power state is read from the PMCSR register, which however is 943 * inaccessible in D3cold. The platform firmware is therefore queried first 944 * to detect accessibility of the register. In case the platform firmware 945 * reports an incorrect state or the device isn't power manageable by the 946 * platform at all, we try to detect D3cold by testing accessibility of the 947 * vendor ID in config space. 948 */ 949 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 950 { 951 if (platform_pci_get_power_state(dev) == PCI_D3cold || 952 !pci_device_is_present(dev)) { 953 dev->current_state = PCI_D3cold; 954 } else if (dev->pm_cap) { 955 u16 pmcsr; 956 957 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 958 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 959 } else { 960 dev->current_state = state; 961 } 962 } 963 964 /** 965 * pci_refresh_power_state - Refresh the given device's power state data 966 * @dev: Target PCI device. 967 * 968 * Ask the platform to refresh the devices power state information and invoke 969 * pci_update_current_state() to update its current PCI power state. 970 */ 971 void pci_refresh_power_state(struct pci_dev *dev) 972 { 973 if (platform_pci_power_manageable(dev)) 974 platform_pci_refresh_power_state(dev); 975 976 pci_update_current_state(dev, dev->current_state); 977 } 978 979 /** 980 * pci_platform_power_transition - Use platform to change device power state 981 * @dev: PCI device to handle. 982 * @state: State to put the device into. 983 */ 984 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 985 { 986 int error; 987 988 if (platform_pci_power_manageable(dev)) { 989 error = platform_pci_set_power_state(dev, state); 990 if (!error) 991 pci_update_current_state(dev, state); 992 } else 993 error = -ENODEV; 994 995 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 996 dev->current_state = PCI_D0; 997 998 return error; 999 } 1000 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1001 1002 /** 1003 * pci_wakeup - Wake up a PCI device 1004 * @pci_dev: Device to handle. 1005 * @ign: ignored parameter 1006 */ 1007 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1008 { 1009 pci_wakeup_event(pci_dev); 1010 pm_request_resume(&pci_dev->dev); 1011 return 0; 1012 } 1013 1014 /** 1015 * pci_wakeup_bus - Walk given bus and wake up devices on it 1016 * @bus: Top bus of the subtree to walk. 1017 */ 1018 void pci_wakeup_bus(struct pci_bus *bus) 1019 { 1020 if (bus) 1021 pci_walk_bus(bus, pci_wakeup, NULL); 1022 } 1023 1024 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1025 { 1026 int delay = 1; 1027 u32 id; 1028 1029 /* 1030 * After reset, the device should not silently discard config 1031 * requests, but it may still indicate that it needs more time by 1032 * responding to them with CRS completions. The Root Port will 1033 * generally synthesize ~0 data to complete the read (except when 1034 * CRS SV is enabled and the read was for the Vendor ID; in that 1035 * case it synthesizes 0x0001 data). 1036 * 1037 * Wait for the device to return a non-CRS completion. Read the 1038 * Command register instead of Vendor ID so we don't have to 1039 * contend with the CRS SV value. 1040 */ 1041 pci_read_config_dword(dev, PCI_COMMAND, &id); 1042 while (id == ~0) { 1043 if (delay > timeout) { 1044 pci_warn(dev, "not ready %dms after %s; giving up\n", 1045 delay - 1, reset_type); 1046 return -ENOTTY; 1047 } 1048 1049 if (delay > 1000) 1050 pci_info(dev, "not ready %dms after %s; waiting\n", 1051 delay - 1, reset_type); 1052 1053 msleep(delay); 1054 delay *= 2; 1055 pci_read_config_dword(dev, PCI_COMMAND, &id); 1056 } 1057 1058 if (delay > 1000) 1059 pci_info(dev, "ready %dms after %s\n", delay - 1, 1060 reset_type); 1061 1062 return 0; 1063 } 1064 1065 /** 1066 * pci_power_up - Put the given device into D0 1067 * @dev: PCI device to power up 1068 */ 1069 int pci_power_up(struct pci_dev *dev) 1070 { 1071 pci_platform_power_transition(dev, PCI_D0); 1072 1073 /* 1074 * Mandatory power management transition delays are handled in 1075 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1076 * corresponding bridge. 1077 */ 1078 if (dev->runtime_d3cold) { 1079 /* 1080 * When powering on a bridge from D3cold, the whole hierarchy 1081 * may be powered on into D0uninitialized state, resume them to 1082 * give them a chance to suspend again 1083 */ 1084 pci_wakeup_bus(dev->subordinate); 1085 } 1086 1087 return pci_raw_set_power_state(dev, PCI_D0); 1088 } 1089 1090 /** 1091 * __pci_dev_set_current_state - Set current state of a PCI device 1092 * @dev: Device to handle 1093 * @data: pointer to state to be set 1094 */ 1095 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1096 { 1097 pci_power_t state = *(pci_power_t *)data; 1098 1099 dev->current_state = state; 1100 return 0; 1101 } 1102 1103 /** 1104 * pci_bus_set_current_state - Walk given bus and set current state of devices 1105 * @bus: Top bus of the subtree to walk. 1106 * @state: state to be set 1107 */ 1108 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1109 { 1110 if (bus) 1111 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1112 } 1113 1114 /** 1115 * pci_set_power_state - Set the power state of a PCI device 1116 * @dev: PCI device to handle. 1117 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1118 * 1119 * Transition a device to a new power state, using the platform firmware and/or 1120 * the device's PCI PM registers. 1121 * 1122 * RETURN VALUE: 1123 * -EINVAL if the requested state is invalid. 1124 * -EIO if device does not support PCI PM or its PM capabilities register has a 1125 * wrong version, or device doesn't support the requested state. 1126 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1127 * 0 if device already is in the requested state. 1128 * 0 if the transition is to D3 but D3 is not supported. 1129 * 0 if device's power state has been successfully changed. 1130 */ 1131 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1132 { 1133 int error; 1134 1135 /* Bound the state we're entering */ 1136 if (state > PCI_D3cold) 1137 state = PCI_D3cold; 1138 else if (state < PCI_D0) 1139 state = PCI_D0; 1140 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1141 1142 /* 1143 * If the device or the parent bridge do not support PCI 1144 * PM, ignore the request if we're doing anything other 1145 * than putting it into D0 (which would only happen on 1146 * boot). 1147 */ 1148 return 0; 1149 1150 /* Check if we're already there */ 1151 if (dev->current_state == state) 1152 return 0; 1153 1154 if (state == PCI_D0) 1155 return pci_power_up(dev); 1156 1157 /* 1158 * This device is quirked not to be put into D3, so don't put it in 1159 * D3 1160 */ 1161 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1162 return 0; 1163 1164 /* 1165 * To put device in D3cold, we put device into D3hot in native 1166 * way, then put device into D3cold with platform ops 1167 */ 1168 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1169 PCI_D3hot : state); 1170 1171 if (pci_platform_power_transition(dev, state)) 1172 return error; 1173 1174 /* Powering off a bridge may power off the whole hierarchy */ 1175 if (state == PCI_D3cold) 1176 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1177 1178 return 0; 1179 } 1180 EXPORT_SYMBOL(pci_set_power_state); 1181 1182 /** 1183 * pci_choose_state - Choose the power state of a PCI device 1184 * @dev: PCI device to be suspended 1185 * @state: target sleep state for the whole system. This is the value 1186 * that is passed to suspend() function. 1187 * 1188 * Returns PCI power state suitable for given device and given system 1189 * message. 1190 */ 1191 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1192 { 1193 pci_power_t ret; 1194 1195 if (!dev->pm_cap) 1196 return PCI_D0; 1197 1198 ret = platform_pci_choose_state(dev); 1199 if (ret != PCI_POWER_ERROR) 1200 return ret; 1201 1202 switch (state.event) { 1203 case PM_EVENT_ON: 1204 return PCI_D0; 1205 case PM_EVENT_FREEZE: 1206 case PM_EVENT_PRETHAW: 1207 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1208 case PM_EVENT_SUSPEND: 1209 case PM_EVENT_HIBERNATE: 1210 return PCI_D3hot; 1211 default: 1212 pci_info(dev, "unrecognized suspend event %d\n", 1213 state.event); 1214 BUG(); 1215 } 1216 return PCI_D0; 1217 } 1218 EXPORT_SYMBOL(pci_choose_state); 1219 1220 #define PCI_EXP_SAVE_REGS 7 1221 1222 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1223 u16 cap, bool extended) 1224 { 1225 struct pci_cap_saved_state *tmp; 1226 1227 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1228 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1229 return tmp; 1230 } 1231 return NULL; 1232 } 1233 1234 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1235 { 1236 return _pci_find_saved_cap(dev, cap, false); 1237 } 1238 1239 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1240 { 1241 return _pci_find_saved_cap(dev, cap, true); 1242 } 1243 1244 static int pci_save_pcie_state(struct pci_dev *dev) 1245 { 1246 int i = 0; 1247 struct pci_cap_saved_state *save_state; 1248 u16 *cap; 1249 1250 if (!pci_is_pcie(dev)) 1251 return 0; 1252 1253 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1254 if (!save_state) { 1255 pci_err(dev, "buffer not found in %s\n", __func__); 1256 return -ENOMEM; 1257 } 1258 1259 cap = (u16 *)&save_state->cap.data[0]; 1260 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1261 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1262 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1263 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1264 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1265 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1266 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1267 1268 return 0; 1269 } 1270 1271 static void pci_restore_pcie_state(struct pci_dev *dev) 1272 { 1273 int i = 0; 1274 struct pci_cap_saved_state *save_state; 1275 u16 *cap; 1276 1277 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1278 if (!save_state) 1279 return; 1280 1281 cap = (u16 *)&save_state->cap.data[0]; 1282 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1283 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1284 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1285 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1286 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1287 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1288 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1289 } 1290 1291 static int pci_save_pcix_state(struct pci_dev *dev) 1292 { 1293 int pos; 1294 struct pci_cap_saved_state *save_state; 1295 1296 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1297 if (!pos) 1298 return 0; 1299 1300 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1301 if (!save_state) { 1302 pci_err(dev, "buffer not found in %s\n", __func__); 1303 return -ENOMEM; 1304 } 1305 1306 pci_read_config_word(dev, pos + PCI_X_CMD, 1307 (u16 *)save_state->cap.data); 1308 1309 return 0; 1310 } 1311 1312 static void pci_restore_pcix_state(struct pci_dev *dev) 1313 { 1314 int i = 0, pos; 1315 struct pci_cap_saved_state *save_state; 1316 u16 *cap; 1317 1318 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1319 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1320 if (!save_state || !pos) 1321 return; 1322 cap = (u16 *)&save_state->cap.data[0]; 1323 1324 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1325 } 1326 1327 static void pci_save_ltr_state(struct pci_dev *dev) 1328 { 1329 int ltr; 1330 struct pci_cap_saved_state *save_state; 1331 u16 *cap; 1332 1333 if (!pci_is_pcie(dev)) 1334 return; 1335 1336 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1337 if (!ltr) 1338 return; 1339 1340 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1341 if (!save_state) { 1342 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1343 return; 1344 } 1345 1346 cap = (u16 *)&save_state->cap.data[0]; 1347 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1348 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1349 } 1350 1351 static void pci_restore_ltr_state(struct pci_dev *dev) 1352 { 1353 struct pci_cap_saved_state *save_state; 1354 int ltr; 1355 u16 *cap; 1356 1357 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1358 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1359 if (!save_state || !ltr) 1360 return; 1361 1362 cap = (u16 *)&save_state->cap.data[0]; 1363 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1364 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1365 } 1366 1367 /** 1368 * pci_save_state - save the PCI configuration space of a device before 1369 * suspending 1370 * @dev: PCI device that we're dealing with 1371 */ 1372 int pci_save_state(struct pci_dev *dev) 1373 { 1374 int i; 1375 /* XXX: 100% dword access ok here? */ 1376 for (i = 0; i < 16; i++) { 1377 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1378 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1379 i * 4, dev->saved_config_space[i]); 1380 } 1381 dev->state_saved = true; 1382 1383 i = pci_save_pcie_state(dev); 1384 if (i != 0) 1385 return i; 1386 1387 i = pci_save_pcix_state(dev); 1388 if (i != 0) 1389 return i; 1390 1391 pci_save_ltr_state(dev); 1392 pci_save_dpc_state(dev); 1393 pci_save_aer_state(dev); 1394 return pci_save_vc_state(dev); 1395 } 1396 EXPORT_SYMBOL(pci_save_state); 1397 1398 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1399 u32 saved_val, int retry, bool force) 1400 { 1401 u32 val; 1402 1403 pci_read_config_dword(pdev, offset, &val); 1404 if (!force && val == saved_val) 1405 return; 1406 1407 for (;;) { 1408 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1409 offset, val, saved_val); 1410 pci_write_config_dword(pdev, offset, saved_val); 1411 if (retry-- <= 0) 1412 return; 1413 1414 pci_read_config_dword(pdev, offset, &val); 1415 if (val == saved_val) 1416 return; 1417 1418 mdelay(1); 1419 } 1420 } 1421 1422 static void pci_restore_config_space_range(struct pci_dev *pdev, 1423 int start, int end, int retry, 1424 bool force) 1425 { 1426 int index; 1427 1428 for (index = end; index >= start; index--) 1429 pci_restore_config_dword(pdev, 4 * index, 1430 pdev->saved_config_space[index], 1431 retry, force); 1432 } 1433 1434 static void pci_restore_config_space(struct pci_dev *pdev) 1435 { 1436 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1437 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1438 /* Restore BARs before the command register. */ 1439 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1440 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1441 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1442 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1443 1444 /* 1445 * Force rewriting of prefetch registers to avoid S3 resume 1446 * issues on Intel PCI bridges that occur when these 1447 * registers are not explicitly written. 1448 */ 1449 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1450 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1451 } else { 1452 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1453 } 1454 } 1455 1456 static void pci_restore_rebar_state(struct pci_dev *pdev) 1457 { 1458 unsigned int pos, nbars, i; 1459 u32 ctrl; 1460 1461 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1462 if (!pos) 1463 return; 1464 1465 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1466 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1467 PCI_REBAR_CTRL_NBAR_SHIFT; 1468 1469 for (i = 0; i < nbars; i++, pos += 8) { 1470 struct resource *res; 1471 int bar_idx, size; 1472 1473 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1474 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1475 res = pdev->resource + bar_idx; 1476 size = ilog2(resource_size(res)) - 20; 1477 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1478 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1479 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1480 } 1481 } 1482 1483 /** 1484 * pci_restore_state - Restore the saved state of a PCI device 1485 * @dev: PCI device that we're dealing with 1486 */ 1487 void pci_restore_state(struct pci_dev *dev) 1488 { 1489 if (!dev->state_saved) 1490 return; 1491 1492 /* 1493 * Restore max latencies (in the LTR capability) before enabling 1494 * LTR itself (in the PCIe capability). 1495 */ 1496 pci_restore_ltr_state(dev); 1497 1498 pci_restore_pcie_state(dev); 1499 pci_restore_pasid_state(dev); 1500 pci_restore_pri_state(dev); 1501 pci_restore_ats_state(dev); 1502 pci_restore_vc_state(dev); 1503 pci_restore_rebar_state(dev); 1504 pci_restore_dpc_state(dev); 1505 1506 pci_cleanup_aer_error_status_regs(dev); 1507 pci_restore_aer_state(dev); 1508 1509 pci_restore_config_space(dev); 1510 1511 pci_restore_pcix_state(dev); 1512 pci_restore_msi_state(dev); 1513 1514 /* Restore ACS and IOV configuration state */ 1515 pci_enable_acs(dev); 1516 pci_restore_iov_state(dev); 1517 1518 dev->state_saved = false; 1519 } 1520 EXPORT_SYMBOL(pci_restore_state); 1521 1522 struct pci_saved_state { 1523 u32 config_space[16]; 1524 struct pci_cap_saved_data cap[0]; 1525 }; 1526 1527 /** 1528 * pci_store_saved_state - Allocate and return an opaque struct containing 1529 * the device saved state. 1530 * @dev: PCI device that we're dealing with 1531 * 1532 * Return NULL if no state or error. 1533 */ 1534 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1535 { 1536 struct pci_saved_state *state; 1537 struct pci_cap_saved_state *tmp; 1538 struct pci_cap_saved_data *cap; 1539 size_t size; 1540 1541 if (!dev->state_saved) 1542 return NULL; 1543 1544 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1545 1546 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1547 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1548 1549 state = kzalloc(size, GFP_KERNEL); 1550 if (!state) 1551 return NULL; 1552 1553 memcpy(state->config_space, dev->saved_config_space, 1554 sizeof(state->config_space)); 1555 1556 cap = state->cap; 1557 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1558 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1559 memcpy(cap, &tmp->cap, len); 1560 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1561 } 1562 /* Empty cap_save terminates list */ 1563 1564 return state; 1565 } 1566 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1567 1568 /** 1569 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1570 * @dev: PCI device that we're dealing with 1571 * @state: Saved state returned from pci_store_saved_state() 1572 */ 1573 int pci_load_saved_state(struct pci_dev *dev, 1574 struct pci_saved_state *state) 1575 { 1576 struct pci_cap_saved_data *cap; 1577 1578 dev->state_saved = false; 1579 1580 if (!state) 1581 return 0; 1582 1583 memcpy(dev->saved_config_space, state->config_space, 1584 sizeof(state->config_space)); 1585 1586 cap = state->cap; 1587 while (cap->size) { 1588 struct pci_cap_saved_state *tmp; 1589 1590 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1591 if (!tmp || tmp->cap.size != cap->size) 1592 return -EINVAL; 1593 1594 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1595 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1596 sizeof(struct pci_cap_saved_data) + cap->size); 1597 } 1598 1599 dev->state_saved = true; 1600 return 0; 1601 } 1602 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1603 1604 /** 1605 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1606 * and free the memory allocated for it. 1607 * @dev: PCI device that we're dealing with 1608 * @state: Pointer to saved state returned from pci_store_saved_state() 1609 */ 1610 int pci_load_and_free_saved_state(struct pci_dev *dev, 1611 struct pci_saved_state **state) 1612 { 1613 int ret = pci_load_saved_state(dev, *state); 1614 kfree(*state); 1615 *state = NULL; 1616 return ret; 1617 } 1618 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1619 1620 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1621 { 1622 return pci_enable_resources(dev, bars); 1623 } 1624 1625 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1626 { 1627 int err; 1628 struct pci_dev *bridge; 1629 u16 cmd; 1630 u8 pin; 1631 1632 err = pci_set_power_state(dev, PCI_D0); 1633 if (err < 0 && err != -EIO) 1634 return err; 1635 1636 bridge = pci_upstream_bridge(dev); 1637 if (bridge) 1638 pcie_aspm_powersave_config_link(bridge); 1639 1640 err = pcibios_enable_device(dev, bars); 1641 if (err < 0) 1642 return err; 1643 pci_fixup_device(pci_fixup_enable, dev); 1644 1645 if (dev->msi_enabled || dev->msix_enabled) 1646 return 0; 1647 1648 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1649 if (pin) { 1650 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1651 if (cmd & PCI_COMMAND_INTX_DISABLE) 1652 pci_write_config_word(dev, PCI_COMMAND, 1653 cmd & ~PCI_COMMAND_INTX_DISABLE); 1654 } 1655 1656 return 0; 1657 } 1658 1659 /** 1660 * pci_reenable_device - Resume abandoned device 1661 * @dev: PCI device to be resumed 1662 * 1663 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1664 * to be called by normal code, write proper resume handler and use it instead. 1665 */ 1666 int pci_reenable_device(struct pci_dev *dev) 1667 { 1668 if (pci_is_enabled(dev)) 1669 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1670 return 0; 1671 } 1672 EXPORT_SYMBOL(pci_reenable_device); 1673 1674 static void pci_enable_bridge(struct pci_dev *dev) 1675 { 1676 struct pci_dev *bridge; 1677 int retval; 1678 1679 bridge = pci_upstream_bridge(dev); 1680 if (bridge) 1681 pci_enable_bridge(bridge); 1682 1683 if (pci_is_enabled(dev)) { 1684 if (!dev->is_busmaster) 1685 pci_set_master(dev); 1686 return; 1687 } 1688 1689 retval = pci_enable_device(dev); 1690 if (retval) 1691 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1692 retval); 1693 pci_set_master(dev); 1694 } 1695 1696 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1697 { 1698 struct pci_dev *bridge; 1699 int err; 1700 int i, bars = 0; 1701 1702 /* 1703 * Power state could be unknown at this point, either due to a fresh 1704 * boot or a device removal call. So get the current power state 1705 * so that things like MSI message writing will behave as expected 1706 * (e.g. if the device really is in D0 at enable time). 1707 */ 1708 if (dev->pm_cap) { 1709 u16 pmcsr; 1710 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1711 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1712 } 1713 1714 if (atomic_inc_return(&dev->enable_cnt) > 1) 1715 return 0; /* already enabled */ 1716 1717 bridge = pci_upstream_bridge(dev); 1718 if (bridge) 1719 pci_enable_bridge(bridge); 1720 1721 /* only skip sriov related */ 1722 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1723 if (dev->resource[i].flags & flags) 1724 bars |= (1 << i); 1725 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1726 if (dev->resource[i].flags & flags) 1727 bars |= (1 << i); 1728 1729 err = do_pci_enable_device(dev, bars); 1730 if (err < 0) 1731 atomic_dec(&dev->enable_cnt); 1732 return err; 1733 } 1734 1735 /** 1736 * pci_enable_device_io - Initialize a device for use with IO space 1737 * @dev: PCI device to be initialized 1738 * 1739 * Initialize device before it's used by a driver. Ask low-level code 1740 * to enable I/O resources. Wake up the device if it was suspended. 1741 * Beware, this function can fail. 1742 */ 1743 int pci_enable_device_io(struct pci_dev *dev) 1744 { 1745 return pci_enable_device_flags(dev, IORESOURCE_IO); 1746 } 1747 EXPORT_SYMBOL(pci_enable_device_io); 1748 1749 /** 1750 * pci_enable_device_mem - Initialize a device for use with Memory space 1751 * @dev: PCI device to be initialized 1752 * 1753 * Initialize device before it's used by a driver. Ask low-level code 1754 * to enable Memory resources. Wake up the device if it was suspended. 1755 * Beware, this function can fail. 1756 */ 1757 int pci_enable_device_mem(struct pci_dev *dev) 1758 { 1759 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1760 } 1761 EXPORT_SYMBOL(pci_enable_device_mem); 1762 1763 /** 1764 * pci_enable_device - Initialize device before it's used by a driver. 1765 * @dev: PCI device to be initialized 1766 * 1767 * Initialize device before it's used by a driver. Ask low-level code 1768 * to enable I/O and memory. Wake up the device if it was suspended. 1769 * Beware, this function can fail. 1770 * 1771 * Note we don't actually enable the device many times if we call 1772 * this function repeatedly (we just increment the count). 1773 */ 1774 int pci_enable_device(struct pci_dev *dev) 1775 { 1776 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1777 } 1778 EXPORT_SYMBOL(pci_enable_device); 1779 1780 /* 1781 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1782 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1783 * there's no need to track it separately. pci_devres is initialized 1784 * when a device is enabled using managed PCI device enable interface. 1785 */ 1786 struct pci_devres { 1787 unsigned int enabled:1; 1788 unsigned int pinned:1; 1789 unsigned int orig_intx:1; 1790 unsigned int restore_intx:1; 1791 unsigned int mwi:1; 1792 u32 region_mask; 1793 }; 1794 1795 static void pcim_release(struct device *gendev, void *res) 1796 { 1797 struct pci_dev *dev = to_pci_dev(gendev); 1798 struct pci_devres *this = res; 1799 int i; 1800 1801 if (dev->msi_enabled) 1802 pci_disable_msi(dev); 1803 if (dev->msix_enabled) 1804 pci_disable_msix(dev); 1805 1806 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1807 if (this->region_mask & (1 << i)) 1808 pci_release_region(dev, i); 1809 1810 if (this->mwi) 1811 pci_clear_mwi(dev); 1812 1813 if (this->restore_intx) 1814 pci_intx(dev, this->orig_intx); 1815 1816 if (this->enabled && !this->pinned) 1817 pci_disable_device(dev); 1818 } 1819 1820 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1821 { 1822 struct pci_devres *dr, *new_dr; 1823 1824 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1825 if (dr) 1826 return dr; 1827 1828 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1829 if (!new_dr) 1830 return NULL; 1831 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1832 } 1833 1834 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1835 { 1836 if (pci_is_managed(pdev)) 1837 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1838 return NULL; 1839 } 1840 1841 /** 1842 * pcim_enable_device - Managed pci_enable_device() 1843 * @pdev: PCI device to be initialized 1844 * 1845 * Managed pci_enable_device(). 1846 */ 1847 int pcim_enable_device(struct pci_dev *pdev) 1848 { 1849 struct pci_devres *dr; 1850 int rc; 1851 1852 dr = get_pci_dr(pdev); 1853 if (unlikely(!dr)) 1854 return -ENOMEM; 1855 if (dr->enabled) 1856 return 0; 1857 1858 rc = pci_enable_device(pdev); 1859 if (!rc) { 1860 pdev->is_managed = 1; 1861 dr->enabled = 1; 1862 } 1863 return rc; 1864 } 1865 EXPORT_SYMBOL(pcim_enable_device); 1866 1867 /** 1868 * pcim_pin_device - Pin managed PCI device 1869 * @pdev: PCI device to pin 1870 * 1871 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1872 * driver detach. @pdev must have been enabled with 1873 * pcim_enable_device(). 1874 */ 1875 void pcim_pin_device(struct pci_dev *pdev) 1876 { 1877 struct pci_devres *dr; 1878 1879 dr = find_pci_dr(pdev); 1880 WARN_ON(!dr || !dr->enabled); 1881 if (dr) 1882 dr->pinned = 1; 1883 } 1884 EXPORT_SYMBOL(pcim_pin_device); 1885 1886 /* 1887 * pcibios_add_device - provide arch specific hooks when adding device dev 1888 * @dev: the PCI device being added 1889 * 1890 * Permits the platform to provide architecture specific functionality when 1891 * devices are added. This is the default implementation. Architecture 1892 * implementations can override this. 1893 */ 1894 int __weak pcibios_add_device(struct pci_dev *dev) 1895 { 1896 return 0; 1897 } 1898 1899 /** 1900 * pcibios_release_device - provide arch specific hooks when releasing 1901 * device dev 1902 * @dev: the PCI device being released 1903 * 1904 * Permits the platform to provide architecture specific functionality when 1905 * devices are released. This is the default implementation. Architecture 1906 * implementations can override this. 1907 */ 1908 void __weak pcibios_release_device(struct pci_dev *dev) {} 1909 1910 /** 1911 * pcibios_disable_device - disable arch specific PCI resources for device dev 1912 * @dev: the PCI device to disable 1913 * 1914 * Disables architecture specific PCI resources for the device. This 1915 * is the default implementation. Architecture implementations can 1916 * override this. 1917 */ 1918 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1919 1920 /** 1921 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1922 * @irq: ISA IRQ to penalize 1923 * @active: IRQ active or not 1924 * 1925 * Permits the platform to provide architecture-specific functionality when 1926 * penalizing ISA IRQs. This is the default implementation. Architecture 1927 * implementations can override this. 1928 */ 1929 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1930 1931 static void do_pci_disable_device(struct pci_dev *dev) 1932 { 1933 u16 pci_command; 1934 1935 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1936 if (pci_command & PCI_COMMAND_MASTER) { 1937 pci_command &= ~PCI_COMMAND_MASTER; 1938 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1939 } 1940 1941 pcibios_disable_device(dev); 1942 } 1943 1944 /** 1945 * pci_disable_enabled_device - Disable device without updating enable_cnt 1946 * @dev: PCI device to disable 1947 * 1948 * NOTE: This function is a backend of PCI power management routines and is 1949 * not supposed to be called drivers. 1950 */ 1951 void pci_disable_enabled_device(struct pci_dev *dev) 1952 { 1953 if (pci_is_enabled(dev)) 1954 do_pci_disable_device(dev); 1955 } 1956 1957 /** 1958 * pci_disable_device - Disable PCI device after use 1959 * @dev: PCI device to be disabled 1960 * 1961 * Signal to the system that the PCI device is not in use by the system 1962 * anymore. This only involves disabling PCI bus-mastering, if active. 1963 * 1964 * Note we don't actually disable the device until all callers of 1965 * pci_enable_device() have called pci_disable_device(). 1966 */ 1967 void pci_disable_device(struct pci_dev *dev) 1968 { 1969 struct pci_devres *dr; 1970 1971 dr = find_pci_dr(dev); 1972 if (dr) 1973 dr->enabled = 0; 1974 1975 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1976 "disabling already-disabled device"); 1977 1978 if (atomic_dec_return(&dev->enable_cnt) != 0) 1979 return; 1980 1981 do_pci_disable_device(dev); 1982 1983 dev->is_busmaster = 0; 1984 } 1985 EXPORT_SYMBOL(pci_disable_device); 1986 1987 /** 1988 * pcibios_set_pcie_reset_state - set reset state for device dev 1989 * @dev: the PCIe device reset 1990 * @state: Reset state to enter into 1991 * 1992 * Set the PCIe reset state for the device. This is the default 1993 * implementation. Architecture implementations can override this. 1994 */ 1995 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1996 enum pcie_reset_state state) 1997 { 1998 return -EINVAL; 1999 } 2000 2001 /** 2002 * pci_set_pcie_reset_state - set reset state for device dev 2003 * @dev: the PCIe device reset 2004 * @state: Reset state to enter into 2005 * 2006 * Sets the PCI reset state for the device. 2007 */ 2008 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2009 { 2010 return pcibios_set_pcie_reset_state(dev, state); 2011 } 2012 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2013 2014 /** 2015 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2016 * @dev: PCIe root port or event collector. 2017 */ 2018 void pcie_clear_root_pme_status(struct pci_dev *dev) 2019 { 2020 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2021 } 2022 2023 /** 2024 * pci_check_pme_status - Check if given device has generated PME. 2025 * @dev: Device to check. 2026 * 2027 * Check the PME status of the device and if set, clear it and clear PME enable 2028 * (if set). Return 'true' if PME status and PME enable were both set or 2029 * 'false' otherwise. 2030 */ 2031 bool pci_check_pme_status(struct pci_dev *dev) 2032 { 2033 int pmcsr_pos; 2034 u16 pmcsr; 2035 bool ret = false; 2036 2037 if (!dev->pm_cap) 2038 return false; 2039 2040 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2041 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2042 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2043 return false; 2044 2045 /* Clear PME status. */ 2046 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2047 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2048 /* Disable PME to avoid interrupt flood. */ 2049 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2050 ret = true; 2051 } 2052 2053 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2054 2055 return ret; 2056 } 2057 2058 /** 2059 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2060 * @dev: Device to handle. 2061 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2062 * 2063 * Check if @dev has generated PME and queue a resume request for it in that 2064 * case. 2065 */ 2066 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2067 { 2068 if (pme_poll_reset && dev->pme_poll) 2069 dev->pme_poll = false; 2070 2071 if (pci_check_pme_status(dev)) { 2072 pci_wakeup_event(dev); 2073 pm_request_resume(&dev->dev); 2074 } 2075 return 0; 2076 } 2077 2078 /** 2079 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2080 * @bus: Top bus of the subtree to walk. 2081 */ 2082 void pci_pme_wakeup_bus(struct pci_bus *bus) 2083 { 2084 if (bus) 2085 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2086 } 2087 2088 2089 /** 2090 * pci_pme_capable - check the capability of PCI device to generate PME# 2091 * @dev: PCI device to handle. 2092 * @state: PCI state from which device will issue PME#. 2093 */ 2094 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2095 { 2096 if (!dev->pm_cap) 2097 return false; 2098 2099 return !!(dev->pme_support & (1 << state)); 2100 } 2101 EXPORT_SYMBOL(pci_pme_capable); 2102 2103 static void pci_pme_list_scan(struct work_struct *work) 2104 { 2105 struct pci_pme_device *pme_dev, *n; 2106 2107 mutex_lock(&pci_pme_list_mutex); 2108 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2109 if (pme_dev->dev->pme_poll) { 2110 struct pci_dev *bridge; 2111 2112 bridge = pme_dev->dev->bus->self; 2113 /* 2114 * If bridge is in low power state, the 2115 * configuration space of subordinate devices 2116 * may be not accessible 2117 */ 2118 if (bridge && bridge->current_state != PCI_D0) 2119 continue; 2120 /* 2121 * If the device is in D3cold it should not be 2122 * polled either. 2123 */ 2124 if (pme_dev->dev->current_state == PCI_D3cold) 2125 continue; 2126 2127 pci_pme_wakeup(pme_dev->dev, NULL); 2128 } else { 2129 list_del(&pme_dev->list); 2130 kfree(pme_dev); 2131 } 2132 } 2133 if (!list_empty(&pci_pme_list)) 2134 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2135 msecs_to_jiffies(PME_TIMEOUT)); 2136 mutex_unlock(&pci_pme_list_mutex); 2137 } 2138 2139 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2140 { 2141 u16 pmcsr; 2142 2143 if (!dev->pme_support) 2144 return; 2145 2146 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2147 /* Clear PME_Status by writing 1 to it and enable PME# */ 2148 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2149 if (!enable) 2150 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2151 2152 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2153 } 2154 2155 /** 2156 * pci_pme_restore - Restore PME configuration after config space restore. 2157 * @dev: PCI device to update. 2158 */ 2159 void pci_pme_restore(struct pci_dev *dev) 2160 { 2161 u16 pmcsr; 2162 2163 if (!dev->pme_support) 2164 return; 2165 2166 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2167 if (dev->wakeup_prepared) { 2168 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2169 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2170 } else { 2171 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2172 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2173 } 2174 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2175 } 2176 2177 /** 2178 * pci_pme_active - enable or disable PCI device's PME# function 2179 * @dev: PCI device to handle. 2180 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2181 * 2182 * The caller must verify that the device is capable of generating PME# before 2183 * calling this function with @enable equal to 'true'. 2184 */ 2185 void pci_pme_active(struct pci_dev *dev, bool enable) 2186 { 2187 __pci_pme_active(dev, enable); 2188 2189 /* 2190 * PCI (as opposed to PCIe) PME requires that the device have 2191 * its PME# line hooked up correctly. Not all hardware vendors 2192 * do this, so the PME never gets delivered and the device 2193 * remains asleep. The easiest way around this is to 2194 * periodically walk the list of suspended devices and check 2195 * whether any have their PME flag set. The assumption is that 2196 * we'll wake up often enough anyway that this won't be a huge 2197 * hit, and the power savings from the devices will still be a 2198 * win. 2199 * 2200 * Although PCIe uses in-band PME message instead of PME# line 2201 * to report PME, PME does not work for some PCIe devices in 2202 * reality. For example, there are devices that set their PME 2203 * status bits, but don't really bother to send a PME message; 2204 * there are PCI Express Root Ports that don't bother to 2205 * trigger interrupts when they receive PME messages from the 2206 * devices below. So PME poll is used for PCIe devices too. 2207 */ 2208 2209 if (dev->pme_poll) { 2210 struct pci_pme_device *pme_dev; 2211 if (enable) { 2212 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2213 GFP_KERNEL); 2214 if (!pme_dev) { 2215 pci_warn(dev, "can't enable PME#\n"); 2216 return; 2217 } 2218 pme_dev->dev = dev; 2219 mutex_lock(&pci_pme_list_mutex); 2220 list_add(&pme_dev->list, &pci_pme_list); 2221 if (list_is_singular(&pci_pme_list)) 2222 queue_delayed_work(system_freezable_wq, 2223 &pci_pme_work, 2224 msecs_to_jiffies(PME_TIMEOUT)); 2225 mutex_unlock(&pci_pme_list_mutex); 2226 } else { 2227 mutex_lock(&pci_pme_list_mutex); 2228 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2229 if (pme_dev->dev == dev) { 2230 list_del(&pme_dev->list); 2231 kfree(pme_dev); 2232 break; 2233 } 2234 } 2235 mutex_unlock(&pci_pme_list_mutex); 2236 } 2237 } 2238 2239 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2240 } 2241 EXPORT_SYMBOL(pci_pme_active); 2242 2243 /** 2244 * __pci_enable_wake - enable PCI device as wakeup event source 2245 * @dev: PCI device affected 2246 * @state: PCI state from which device will issue wakeup events 2247 * @enable: True to enable event generation; false to disable 2248 * 2249 * This enables the device as a wakeup event source, or disables it. 2250 * When such events involves platform-specific hooks, those hooks are 2251 * called automatically by this routine. 2252 * 2253 * Devices with legacy power management (no standard PCI PM capabilities) 2254 * always require such platform hooks. 2255 * 2256 * RETURN VALUE: 2257 * 0 is returned on success 2258 * -EINVAL is returned if device is not supposed to wake up the system 2259 * Error code depending on the platform is returned if both the platform and 2260 * the native mechanism fail to enable the generation of wake-up events 2261 */ 2262 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2263 { 2264 int ret = 0; 2265 2266 /* 2267 * Bridges that are not power-manageable directly only signal 2268 * wakeup on behalf of subordinate devices which is set up 2269 * elsewhere, so skip them. However, bridges that are 2270 * power-manageable may signal wakeup for themselves (for example, 2271 * on a hotplug event) and they need to be covered here. 2272 */ 2273 if (!pci_power_manageable(dev)) 2274 return 0; 2275 2276 /* Don't do the same thing twice in a row for one device. */ 2277 if (!!enable == !!dev->wakeup_prepared) 2278 return 0; 2279 2280 /* 2281 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2282 * Anderson we should be doing PME# wake enable followed by ACPI wake 2283 * enable. To disable wake-up we call the platform first, for symmetry. 2284 */ 2285 2286 if (enable) { 2287 int error; 2288 2289 if (pci_pme_capable(dev, state)) 2290 pci_pme_active(dev, true); 2291 else 2292 ret = 1; 2293 error = platform_pci_set_wakeup(dev, true); 2294 if (ret) 2295 ret = error; 2296 if (!ret) 2297 dev->wakeup_prepared = true; 2298 } else { 2299 platform_pci_set_wakeup(dev, false); 2300 pci_pme_active(dev, false); 2301 dev->wakeup_prepared = false; 2302 } 2303 2304 return ret; 2305 } 2306 2307 /** 2308 * pci_enable_wake - change wakeup settings for a PCI device 2309 * @pci_dev: Target device 2310 * @state: PCI state from which device will issue wakeup events 2311 * @enable: Whether or not to enable event generation 2312 * 2313 * If @enable is set, check device_may_wakeup() for the device before calling 2314 * __pci_enable_wake() for it. 2315 */ 2316 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2317 { 2318 if (enable && !device_may_wakeup(&pci_dev->dev)) 2319 return -EINVAL; 2320 2321 return __pci_enable_wake(pci_dev, state, enable); 2322 } 2323 EXPORT_SYMBOL(pci_enable_wake); 2324 2325 /** 2326 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2327 * @dev: PCI device to prepare 2328 * @enable: True to enable wake-up event generation; false to disable 2329 * 2330 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2331 * and this function allows them to set that up cleanly - pci_enable_wake() 2332 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2333 * ordering constraints. 2334 * 2335 * This function only returns error code if the device is not allowed to wake 2336 * up the system from sleep or it is not capable of generating PME# from both 2337 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2338 */ 2339 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2340 { 2341 return pci_pme_capable(dev, PCI_D3cold) ? 2342 pci_enable_wake(dev, PCI_D3cold, enable) : 2343 pci_enable_wake(dev, PCI_D3hot, enable); 2344 } 2345 EXPORT_SYMBOL(pci_wake_from_d3); 2346 2347 /** 2348 * pci_target_state - find an appropriate low power state for a given PCI dev 2349 * @dev: PCI device 2350 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2351 * 2352 * Use underlying platform code to find a supported low power state for @dev. 2353 * If the platform can't manage @dev, return the deepest state from which it 2354 * can generate wake events, based on any available PME info. 2355 */ 2356 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2357 { 2358 pci_power_t target_state = PCI_D3hot; 2359 2360 if (platform_pci_power_manageable(dev)) { 2361 /* 2362 * Call the platform to find the target state for the device. 2363 */ 2364 pci_power_t state = platform_pci_choose_state(dev); 2365 2366 switch (state) { 2367 case PCI_POWER_ERROR: 2368 case PCI_UNKNOWN: 2369 break; 2370 case PCI_D1: 2371 case PCI_D2: 2372 if (pci_no_d1d2(dev)) 2373 break; 2374 /* else, fall through */ 2375 default: 2376 target_state = state; 2377 } 2378 2379 return target_state; 2380 } 2381 2382 if (!dev->pm_cap) 2383 target_state = PCI_D0; 2384 2385 /* 2386 * If the device is in D3cold even though it's not power-manageable by 2387 * the platform, it may have been powered down by non-standard means. 2388 * Best to let it slumber. 2389 */ 2390 if (dev->current_state == PCI_D3cold) 2391 target_state = PCI_D3cold; 2392 2393 if (wakeup) { 2394 /* 2395 * Find the deepest state from which the device can generate 2396 * PME#. 2397 */ 2398 if (dev->pme_support) { 2399 while (target_state 2400 && !(dev->pme_support & (1 << target_state))) 2401 target_state--; 2402 } 2403 } 2404 2405 return target_state; 2406 } 2407 2408 /** 2409 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2410 * into a sleep state 2411 * @dev: Device to handle. 2412 * 2413 * Choose the power state appropriate for the device depending on whether 2414 * it can wake up the system and/or is power manageable by the platform 2415 * (PCI_D3hot is the default) and put the device into that state. 2416 */ 2417 int pci_prepare_to_sleep(struct pci_dev *dev) 2418 { 2419 bool wakeup = device_may_wakeup(&dev->dev); 2420 pci_power_t target_state = pci_target_state(dev, wakeup); 2421 int error; 2422 2423 if (target_state == PCI_POWER_ERROR) 2424 return -EIO; 2425 2426 pci_enable_wake(dev, target_state, wakeup); 2427 2428 error = pci_set_power_state(dev, target_state); 2429 2430 if (error) 2431 pci_enable_wake(dev, target_state, false); 2432 2433 return error; 2434 } 2435 EXPORT_SYMBOL(pci_prepare_to_sleep); 2436 2437 /** 2438 * pci_back_from_sleep - turn PCI device on during system-wide transition 2439 * into working state 2440 * @dev: Device to handle. 2441 * 2442 * Disable device's system wake-up capability and put it into D0. 2443 */ 2444 int pci_back_from_sleep(struct pci_dev *dev) 2445 { 2446 pci_enable_wake(dev, PCI_D0, false); 2447 return pci_set_power_state(dev, PCI_D0); 2448 } 2449 EXPORT_SYMBOL(pci_back_from_sleep); 2450 2451 /** 2452 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2453 * @dev: PCI device being suspended. 2454 * 2455 * Prepare @dev to generate wake-up events at run time and put it into a low 2456 * power state. 2457 */ 2458 int pci_finish_runtime_suspend(struct pci_dev *dev) 2459 { 2460 pci_power_t target_state; 2461 int error; 2462 2463 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2464 if (target_state == PCI_POWER_ERROR) 2465 return -EIO; 2466 2467 dev->runtime_d3cold = target_state == PCI_D3cold; 2468 2469 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2470 2471 error = pci_set_power_state(dev, target_state); 2472 2473 if (error) { 2474 pci_enable_wake(dev, target_state, false); 2475 dev->runtime_d3cold = false; 2476 } 2477 2478 return error; 2479 } 2480 2481 /** 2482 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2483 * @dev: Device to check. 2484 * 2485 * Return true if the device itself is capable of generating wake-up events 2486 * (through the platform or using the native PCIe PME) or if the device supports 2487 * PME and one of its upstream bridges can generate wake-up events. 2488 */ 2489 bool pci_dev_run_wake(struct pci_dev *dev) 2490 { 2491 struct pci_bus *bus = dev->bus; 2492 2493 if (!dev->pme_support) 2494 return false; 2495 2496 /* PME-capable in principle, but not from the target power state */ 2497 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2498 return false; 2499 2500 if (device_can_wakeup(&dev->dev)) 2501 return true; 2502 2503 while (bus->parent) { 2504 struct pci_dev *bridge = bus->self; 2505 2506 if (device_can_wakeup(&bridge->dev)) 2507 return true; 2508 2509 bus = bus->parent; 2510 } 2511 2512 /* We have reached the root bus. */ 2513 if (bus->bridge) 2514 return device_can_wakeup(bus->bridge); 2515 2516 return false; 2517 } 2518 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2519 2520 /** 2521 * pci_dev_need_resume - Check if it is necessary to resume the device. 2522 * @pci_dev: Device to check. 2523 * 2524 * Return 'true' if the device is not runtime-suspended or it has to be 2525 * reconfigured due to wakeup settings difference between system and runtime 2526 * suspend, or the current power state of it is not suitable for the upcoming 2527 * (system-wide) transition. 2528 */ 2529 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2530 { 2531 struct device *dev = &pci_dev->dev; 2532 pci_power_t target_state; 2533 2534 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2535 return true; 2536 2537 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2538 2539 /* 2540 * If the earlier platform check has not triggered, D3cold is just power 2541 * removal on top of D3hot, so no need to resume the device in that 2542 * case. 2543 */ 2544 return target_state != pci_dev->current_state && 2545 target_state != PCI_D3cold && 2546 pci_dev->current_state != PCI_D3hot; 2547 } 2548 2549 /** 2550 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2551 * @pci_dev: Device to check. 2552 * 2553 * If the device is suspended and it is not configured for system wakeup, 2554 * disable PME for it to prevent it from waking up the system unnecessarily. 2555 * 2556 * Note that if the device's power state is D3cold and the platform check in 2557 * pci_dev_need_resume() has not triggered, the device's configuration need not 2558 * be changed. 2559 */ 2560 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2561 { 2562 struct device *dev = &pci_dev->dev; 2563 2564 spin_lock_irq(&dev->power.lock); 2565 2566 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2567 pci_dev->current_state < PCI_D3cold) 2568 __pci_pme_active(pci_dev, false); 2569 2570 spin_unlock_irq(&dev->power.lock); 2571 } 2572 2573 /** 2574 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2575 * @pci_dev: Device to handle. 2576 * 2577 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2578 * it might have been disabled during the prepare phase of system suspend if 2579 * the device was not configured for system wakeup. 2580 */ 2581 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2582 { 2583 struct device *dev = &pci_dev->dev; 2584 2585 if (!pci_dev_run_wake(pci_dev)) 2586 return; 2587 2588 spin_lock_irq(&dev->power.lock); 2589 2590 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2591 __pci_pme_active(pci_dev, true); 2592 2593 spin_unlock_irq(&dev->power.lock); 2594 } 2595 2596 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2597 { 2598 struct device *dev = &pdev->dev; 2599 struct device *parent = dev->parent; 2600 2601 if (parent) 2602 pm_runtime_get_sync(parent); 2603 pm_runtime_get_noresume(dev); 2604 /* 2605 * pdev->current_state is set to PCI_D3cold during suspending, 2606 * so wait until suspending completes 2607 */ 2608 pm_runtime_barrier(dev); 2609 /* 2610 * Only need to resume devices in D3cold, because config 2611 * registers are still accessible for devices suspended but 2612 * not in D3cold. 2613 */ 2614 if (pdev->current_state == PCI_D3cold) 2615 pm_runtime_resume(dev); 2616 } 2617 2618 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2619 { 2620 struct device *dev = &pdev->dev; 2621 struct device *parent = dev->parent; 2622 2623 pm_runtime_put(dev); 2624 if (parent) 2625 pm_runtime_put_sync(parent); 2626 } 2627 2628 static const struct dmi_system_id bridge_d3_blacklist[] = { 2629 #ifdef CONFIG_X86 2630 { 2631 /* 2632 * Gigabyte X299 root port is not marked as hotplug capable 2633 * which allows Linux to power manage it. However, this 2634 * confuses the BIOS SMI handler so don't power manage root 2635 * ports on that system. 2636 */ 2637 .ident = "X299 DESIGNARE EX-CF", 2638 .matches = { 2639 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2640 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2641 }, 2642 }, 2643 #endif 2644 { } 2645 }; 2646 2647 /** 2648 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2649 * @bridge: Bridge to check 2650 * 2651 * This function checks if it is possible to move the bridge to D3. 2652 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2653 */ 2654 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2655 { 2656 if (!pci_is_pcie(bridge)) 2657 return false; 2658 2659 switch (pci_pcie_type(bridge)) { 2660 case PCI_EXP_TYPE_ROOT_PORT: 2661 case PCI_EXP_TYPE_UPSTREAM: 2662 case PCI_EXP_TYPE_DOWNSTREAM: 2663 if (pci_bridge_d3_disable) 2664 return false; 2665 2666 /* 2667 * Hotplug ports handled by firmware in System Management Mode 2668 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2669 */ 2670 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2671 return false; 2672 2673 if (pci_bridge_d3_force) 2674 return true; 2675 2676 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2677 if (bridge->is_thunderbolt) 2678 return true; 2679 2680 /* Platform might know better if the bridge supports D3 */ 2681 if (platform_pci_bridge_d3(bridge)) 2682 return true; 2683 2684 /* 2685 * Hotplug ports handled natively by the OS were not validated 2686 * by vendors for runtime D3 at least until 2018 because there 2687 * was no OS support. 2688 */ 2689 if (bridge->is_hotplug_bridge) 2690 return false; 2691 2692 if (dmi_check_system(bridge_d3_blacklist)) 2693 return false; 2694 2695 /* 2696 * It should be safe to put PCIe ports from 2015 or newer 2697 * to D3. 2698 */ 2699 if (dmi_get_bios_year() >= 2015) 2700 return true; 2701 break; 2702 } 2703 2704 return false; 2705 } 2706 2707 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2708 { 2709 bool *d3cold_ok = data; 2710 2711 if (/* The device needs to be allowed to go D3cold ... */ 2712 dev->no_d3cold || !dev->d3cold_allowed || 2713 2714 /* ... and if it is wakeup capable to do so from D3cold. */ 2715 (device_may_wakeup(&dev->dev) && 2716 !pci_pme_capable(dev, PCI_D3cold)) || 2717 2718 /* If it is a bridge it must be allowed to go to D3. */ 2719 !pci_power_manageable(dev)) 2720 2721 *d3cold_ok = false; 2722 2723 return !*d3cold_ok; 2724 } 2725 2726 /* 2727 * pci_bridge_d3_update - Update bridge D3 capabilities 2728 * @dev: PCI device which is changed 2729 * 2730 * Update upstream bridge PM capabilities accordingly depending on if the 2731 * device PM configuration was changed or the device is being removed. The 2732 * change is also propagated upstream. 2733 */ 2734 void pci_bridge_d3_update(struct pci_dev *dev) 2735 { 2736 bool remove = !device_is_registered(&dev->dev); 2737 struct pci_dev *bridge; 2738 bool d3cold_ok = true; 2739 2740 bridge = pci_upstream_bridge(dev); 2741 if (!bridge || !pci_bridge_d3_possible(bridge)) 2742 return; 2743 2744 /* 2745 * If D3 is currently allowed for the bridge, removing one of its 2746 * children won't change that. 2747 */ 2748 if (remove && bridge->bridge_d3) 2749 return; 2750 2751 /* 2752 * If D3 is currently allowed for the bridge and a child is added or 2753 * changed, disallowance of D3 can only be caused by that child, so 2754 * we only need to check that single device, not any of its siblings. 2755 * 2756 * If D3 is currently not allowed for the bridge, checking the device 2757 * first may allow us to skip checking its siblings. 2758 */ 2759 if (!remove) 2760 pci_dev_check_d3cold(dev, &d3cold_ok); 2761 2762 /* 2763 * If D3 is currently not allowed for the bridge, this may be caused 2764 * either by the device being changed/removed or any of its siblings, 2765 * so we need to go through all children to find out if one of them 2766 * continues to block D3. 2767 */ 2768 if (d3cold_ok && !bridge->bridge_d3) 2769 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2770 &d3cold_ok); 2771 2772 if (bridge->bridge_d3 != d3cold_ok) { 2773 bridge->bridge_d3 = d3cold_ok; 2774 /* Propagate change to upstream bridges */ 2775 pci_bridge_d3_update(bridge); 2776 } 2777 } 2778 2779 /** 2780 * pci_d3cold_enable - Enable D3cold for device 2781 * @dev: PCI device to handle 2782 * 2783 * This function can be used in drivers to enable D3cold from the device 2784 * they handle. It also updates upstream PCI bridge PM capabilities 2785 * accordingly. 2786 */ 2787 void pci_d3cold_enable(struct pci_dev *dev) 2788 { 2789 if (dev->no_d3cold) { 2790 dev->no_d3cold = false; 2791 pci_bridge_d3_update(dev); 2792 } 2793 } 2794 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2795 2796 /** 2797 * pci_d3cold_disable - Disable D3cold for device 2798 * @dev: PCI device to handle 2799 * 2800 * This function can be used in drivers to disable D3cold from the device 2801 * they handle. It also updates upstream PCI bridge PM capabilities 2802 * accordingly. 2803 */ 2804 void pci_d3cold_disable(struct pci_dev *dev) 2805 { 2806 if (!dev->no_d3cold) { 2807 dev->no_d3cold = true; 2808 pci_bridge_d3_update(dev); 2809 } 2810 } 2811 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2812 2813 /** 2814 * pci_pm_init - Initialize PM functions of given PCI device 2815 * @dev: PCI device to handle. 2816 */ 2817 void pci_pm_init(struct pci_dev *dev) 2818 { 2819 int pm; 2820 u16 status; 2821 u16 pmc; 2822 2823 pm_runtime_forbid(&dev->dev); 2824 pm_runtime_set_active(&dev->dev); 2825 pm_runtime_enable(&dev->dev); 2826 device_enable_async_suspend(&dev->dev); 2827 dev->wakeup_prepared = false; 2828 2829 dev->pm_cap = 0; 2830 dev->pme_support = 0; 2831 2832 /* find PCI PM capability in list */ 2833 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2834 if (!pm) 2835 return; 2836 /* Check device's ability to generate PME# */ 2837 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2838 2839 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2840 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2841 pmc & PCI_PM_CAP_VER_MASK); 2842 return; 2843 } 2844 2845 dev->pm_cap = pm; 2846 dev->d3_delay = PCI_PM_D3_WAIT; 2847 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2848 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2849 dev->d3cold_allowed = true; 2850 2851 dev->d1_support = false; 2852 dev->d2_support = false; 2853 if (!pci_no_d1d2(dev)) { 2854 if (pmc & PCI_PM_CAP_D1) 2855 dev->d1_support = true; 2856 if (pmc & PCI_PM_CAP_D2) 2857 dev->d2_support = true; 2858 2859 if (dev->d1_support || dev->d2_support) 2860 pci_info(dev, "supports%s%s\n", 2861 dev->d1_support ? " D1" : "", 2862 dev->d2_support ? " D2" : ""); 2863 } 2864 2865 pmc &= PCI_PM_CAP_PME_MASK; 2866 if (pmc) { 2867 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 2868 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2869 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2870 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2871 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2872 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2873 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2874 dev->pme_poll = true; 2875 /* 2876 * Make device's PM flags reflect the wake-up capability, but 2877 * let the user space enable it to wake up the system as needed. 2878 */ 2879 device_set_wakeup_capable(&dev->dev, true); 2880 /* Disable the PME# generation functionality */ 2881 pci_pme_active(dev, false); 2882 } 2883 2884 pci_read_config_word(dev, PCI_STATUS, &status); 2885 if (status & PCI_STATUS_IMM_READY) 2886 dev->imm_ready = 1; 2887 } 2888 2889 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2890 { 2891 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2892 2893 switch (prop) { 2894 case PCI_EA_P_MEM: 2895 case PCI_EA_P_VF_MEM: 2896 flags |= IORESOURCE_MEM; 2897 break; 2898 case PCI_EA_P_MEM_PREFETCH: 2899 case PCI_EA_P_VF_MEM_PREFETCH: 2900 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2901 break; 2902 case PCI_EA_P_IO: 2903 flags |= IORESOURCE_IO; 2904 break; 2905 default: 2906 return 0; 2907 } 2908 2909 return flags; 2910 } 2911 2912 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2913 u8 prop) 2914 { 2915 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2916 return &dev->resource[bei]; 2917 #ifdef CONFIG_PCI_IOV 2918 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2919 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2920 return &dev->resource[PCI_IOV_RESOURCES + 2921 bei - PCI_EA_BEI_VF_BAR0]; 2922 #endif 2923 else if (bei == PCI_EA_BEI_ROM) 2924 return &dev->resource[PCI_ROM_RESOURCE]; 2925 else 2926 return NULL; 2927 } 2928 2929 /* Read an Enhanced Allocation (EA) entry */ 2930 static int pci_ea_read(struct pci_dev *dev, int offset) 2931 { 2932 struct resource *res; 2933 int ent_size, ent_offset = offset; 2934 resource_size_t start, end; 2935 unsigned long flags; 2936 u32 dw0, bei, base, max_offset; 2937 u8 prop; 2938 bool support_64 = (sizeof(resource_size_t) >= 8); 2939 2940 pci_read_config_dword(dev, ent_offset, &dw0); 2941 ent_offset += 4; 2942 2943 /* Entry size field indicates DWORDs after 1st */ 2944 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2945 2946 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2947 goto out; 2948 2949 bei = (dw0 & PCI_EA_BEI) >> 4; 2950 prop = (dw0 & PCI_EA_PP) >> 8; 2951 2952 /* 2953 * If the Property is in the reserved range, try the Secondary 2954 * Property instead. 2955 */ 2956 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2957 prop = (dw0 & PCI_EA_SP) >> 16; 2958 if (prop > PCI_EA_P_BRIDGE_IO) 2959 goto out; 2960 2961 res = pci_ea_get_resource(dev, bei, prop); 2962 if (!res) { 2963 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2964 goto out; 2965 } 2966 2967 flags = pci_ea_flags(dev, prop); 2968 if (!flags) { 2969 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2970 goto out; 2971 } 2972 2973 /* Read Base */ 2974 pci_read_config_dword(dev, ent_offset, &base); 2975 start = (base & PCI_EA_FIELD_MASK); 2976 ent_offset += 4; 2977 2978 /* Read MaxOffset */ 2979 pci_read_config_dword(dev, ent_offset, &max_offset); 2980 ent_offset += 4; 2981 2982 /* Read Base MSBs (if 64-bit entry) */ 2983 if (base & PCI_EA_IS_64) { 2984 u32 base_upper; 2985 2986 pci_read_config_dword(dev, ent_offset, &base_upper); 2987 ent_offset += 4; 2988 2989 flags |= IORESOURCE_MEM_64; 2990 2991 /* entry starts above 32-bit boundary, can't use */ 2992 if (!support_64 && base_upper) 2993 goto out; 2994 2995 if (support_64) 2996 start |= ((u64)base_upper << 32); 2997 } 2998 2999 end = start + (max_offset | 0x03); 3000 3001 /* Read MaxOffset MSBs (if 64-bit entry) */ 3002 if (max_offset & PCI_EA_IS_64) { 3003 u32 max_offset_upper; 3004 3005 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3006 ent_offset += 4; 3007 3008 flags |= IORESOURCE_MEM_64; 3009 3010 /* entry too big, can't use */ 3011 if (!support_64 && max_offset_upper) 3012 goto out; 3013 3014 if (support_64) 3015 end += ((u64)max_offset_upper << 32); 3016 } 3017 3018 if (end < start) { 3019 pci_err(dev, "EA Entry crosses address boundary\n"); 3020 goto out; 3021 } 3022 3023 if (ent_size != ent_offset - offset) { 3024 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3025 ent_size, ent_offset - offset); 3026 goto out; 3027 } 3028 3029 res->name = pci_name(dev); 3030 res->start = start; 3031 res->end = end; 3032 res->flags = flags; 3033 3034 if (bei <= PCI_EA_BEI_BAR5) 3035 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3036 bei, res, prop); 3037 else if (bei == PCI_EA_BEI_ROM) 3038 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3039 res, prop); 3040 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3041 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3042 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3043 else 3044 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3045 bei, res, prop); 3046 3047 out: 3048 return offset + ent_size; 3049 } 3050 3051 /* Enhanced Allocation Initialization */ 3052 void pci_ea_init(struct pci_dev *dev) 3053 { 3054 int ea; 3055 u8 num_ent; 3056 int offset; 3057 int i; 3058 3059 /* find PCI EA capability in list */ 3060 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3061 if (!ea) 3062 return; 3063 3064 /* determine the number of entries */ 3065 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3066 &num_ent); 3067 num_ent &= PCI_EA_NUM_ENT_MASK; 3068 3069 offset = ea + PCI_EA_FIRST_ENT; 3070 3071 /* Skip DWORD 2 for type 1 functions */ 3072 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3073 offset += 4; 3074 3075 /* parse each EA entry */ 3076 for (i = 0; i < num_ent; ++i) 3077 offset = pci_ea_read(dev, offset); 3078 } 3079 3080 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3081 struct pci_cap_saved_state *new_cap) 3082 { 3083 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3084 } 3085 3086 /** 3087 * _pci_add_cap_save_buffer - allocate buffer for saving given 3088 * capability registers 3089 * @dev: the PCI device 3090 * @cap: the capability to allocate the buffer for 3091 * @extended: Standard or Extended capability ID 3092 * @size: requested size of the buffer 3093 */ 3094 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3095 bool extended, unsigned int size) 3096 { 3097 int pos; 3098 struct pci_cap_saved_state *save_state; 3099 3100 if (extended) 3101 pos = pci_find_ext_capability(dev, cap); 3102 else 3103 pos = pci_find_capability(dev, cap); 3104 3105 if (!pos) 3106 return 0; 3107 3108 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3109 if (!save_state) 3110 return -ENOMEM; 3111 3112 save_state->cap.cap_nr = cap; 3113 save_state->cap.cap_extended = extended; 3114 save_state->cap.size = size; 3115 pci_add_saved_cap(dev, save_state); 3116 3117 return 0; 3118 } 3119 3120 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3121 { 3122 return _pci_add_cap_save_buffer(dev, cap, false, size); 3123 } 3124 3125 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3126 { 3127 return _pci_add_cap_save_buffer(dev, cap, true, size); 3128 } 3129 3130 /** 3131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3132 * @dev: the PCI device 3133 */ 3134 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3135 { 3136 int error; 3137 3138 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3139 PCI_EXP_SAVE_REGS * sizeof(u16)); 3140 if (error) 3141 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3142 3143 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3144 if (error) 3145 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3146 3147 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3148 2 * sizeof(u16)); 3149 if (error) 3150 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3151 3152 pci_allocate_vc_save_buffers(dev); 3153 } 3154 3155 void pci_free_cap_save_buffers(struct pci_dev *dev) 3156 { 3157 struct pci_cap_saved_state *tmp; 3158 struct hlist_node *n; 3159 3160 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3161 kfree(tmp); 3162 } 3163 3164 /** 3165 * pci_configure_ari - enable or disable ARI forwarding 3166 * @dev: the PCI device 3167 * 3168 * If @dev and its upstream bridge both support ARI, enable ARI in the 3169 * bridge. Otherwise, disable ARI in the bridge. 3170 */ 3171 void pci_configure_ari(struct pci_dev *dev) 3172 { 3173 u32 cap; 3174 struct pci_dev *bridge; 3175 3176 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3177 return; 3178 3179 bridge = dev->bus->self; 3180 if (!bridge) 3181 return; 3182 3183 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3184 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3185 return; 3186 3187 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3188 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3189 PCI_EXP_DEVCTL2_ARI); 3190 bridge->ari_enabled = 1; 3191 } else { 3192 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3193 PCI_EXP_DEVCTL2_ARI); 3194 bridge->ari_enabled = 0; 3195 } 3196 } 3197 3198 static int pci_acs_enable; 3199 3200 /** 3201 * pci_request_acs - ask for ACS to be enabled if supported 3202 */ 3203 void pci_request_acs(void) 3204 { 3205 pci_acs_enable = 1; 3206 } 3207 3208 static const char *disable_acs_redir_param; 3209 3210 /** 3211 * pci_disable_acs_redir - disable ACS redirect capabilities 3212 * @dev: the PCI device 3213 * 3214 * For only devices specified in the disable_acs_redir parameter. 3215 */ 3216 static void pci_disable_acs_redir(struct pci_dev *dev) 3217 { 3218 int ret = 0; 3219 const char *p; 3220 int pos; 3221 u16 ctrl; 3222 3223 if (!disable_acs_redir_param) 3224 return; 3225 3226 p = disable_acs_redir_param; 3227 while (*p) { 3228 ret = pci_dev_str_match(dev, p, &p); 3229 if (ret < 0) { 3230 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3231 disable_acs_redir_param); 3232 3233 break; 3234 } else if (ret == 1) { 3235 /* Found a match */ 3236 break; 3237 } 3238 3239 if (*p != ';' && *p != ',') { 3240 /* End of param or invalid format */ 3241 break; 3242 } 3243 p++; 3244 } 3245 3246 if (ret != 1) 3247 return; 3248 3249 if (!pci_dev_specific_disable_acs_redir(dev)) 3250 return; 3251 3252 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3253 if (!pos) { 3254 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3255 return; 3256 } 3257 3258 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3259 3260 /* P2P Request & Completion Redirect */ 3261 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3262 3263 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3264 3265 pci_info(dev, "disabled ACS redirect\n"); 3266 } 3267 3268 /** 3269 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 3270 * @dev: the PCI device 3271 */ 3272 static void pci_std_enable_acs(struct pci_dev *dev) 3273 { 3274 int pos; 3275 u16 cap; 3276 u16 ctrl; 3277 3278 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3279 if (!pos) 3280 return; 3281 3282 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3283 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3284 3285 /* Source Validation */ 3286 ctrl |= (cap & PCI_ACS_SV); 3287 3288 /* P2P Request Redirect */ 3289 ctrl |= (cap & PCI_ACS_RR); 3290 3291 /* P2P Completion Redirect */ 3292 ctrl |= (cap & PCI_ACS_CR); 3293 3294 /* Upstream Forwarding */ 3295 ctrl |= (cap & PCI_ACS_UF); 3296 3297 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3298 } 3299 3300 /** 3301 * pci_enable_acs - enable ACS if hardware support it 3302 * @dev: the PCI device 3303 */ 3304 void pci_enable_acs(struct pci_dev *dev) 3305 { 3306 if (!pci_acs_enable) 3307 goto disable_acs_redir; 3308 3309 if (!pci_dev_specific_enable_acs(dev)) 3310 goto disable_acs_redir; 3311 3312 pci_std_enable_acs(dev); 3313 3314 disable_acs_redir: 3315 /* 3316 * Note: pci_disable_acs_redir() must be called even if ACS was not 3317 * enabled by the kernel because it may have been enabled by 3318 * platform firmware. So if we are told to disable it, we should 3319 * always disable it after setting the kernel's default 3320 * preferences. 3321 */ 3322 pci_disable_acs_redir(dev); 3323 } 3324 3325 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3326 { 3327 int pos; 3328 u16 cap, ctrl; 3329 3330 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3331 if (!pos) 3332 return false; 3333 3334 /* 3335 * Except for egress control, capabilities are either required 3336 * or only required if controllable. Features missing from the 3337 * capability field can therefore be assumed as hard-wired enabled. 3338 */ 3339 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3340 acs_flags &= (cap | PCI_ACS_EC); 3341 3342 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3343 return (ctrl & acs_flags) == acs_flags; 3344 } 3345 3346 /** 3347 * pci_acs_enabled - test ACS against required flags for a given device 3348 * @pdev: device to test 3349 * @acs_flags: required PCI ACS flags 3350 * 3351 * Return true if the device supports the provided flags. Automatically 3352 * filters out flags that are not implemented on multifunction devices. 3353 * 3354 * Note that this interface checks the effective ACS capabilities of the 3355 * device rather than the actual capabilities. For instance, most single 3356 * function endpoints are not required to support ACS because they have no 3357 * opportunity for peer-to-peer access. We therefore return 'true' 3358 * regardless of whether the device exposes an ACS capability. This makes 3359 * it much easier for callers of this function to ignore the actual type 3360 * or topology of the device when testing ACS support. 3361 */ 3362 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3363 { 3364 int ret; 3365 3366 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3367 if (ret >= 0) 3368 return ret > 0; 3369 3370 /* 3371 * Conventional PCI and PCI-X devices never support ACS, either 3372 * effectively or actually. The shared bus topology implies that 3373 * any device on the bus can receive or snoop DMA. 3374 */ 3375 if (!pci_is_pcie(pdev)) 3376 return false; 3377 3378 switch (pci_pcie_type(pdev)) { 3379 /* 3380 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3381 * but since their primary interface is PCI/X, we conservatively 3382 * handle them as we would a non-PCIe device. 3383 */ 3384 case PCI_EXP_TYPE_PCIE_BRIDGE: 3385 /* 3386 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3387 * applicable... must never implement an ACS Extended Capability...". 3388 * This seems arbitrary, but we take a conservative interpretation 3389 * of this statement. 3390 */ 3391 case PCI_EXP_TYPE_PCI_BRIDGE: 3392 case PCI_EXP_TYPE_RC_EC: 3393 return false; 3394 /* 3395 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3396 * implement ACS in order to indicate their peer-to-peer capabilities, 3397 * regardless of whether they are single- or multi-function devices. 3398 */ 3399 case PCI_EXP_TYPE_DOWNSTREAM: 3400 case PCI_EXP_TYPE_ROOT_PORT: 3401 return pci_acs_flags_enabled(pdev, acs_flags); 3402 /* 3403 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3404 * implemented by the remaining PCIe types to indicate peer-to-peer 3405 * capabilities, but only when they are part of a multifunction 3406 * device. The footnote for section 6.12 indicates the specific 3407 * PCIe types included here. 3408 */ 3409 case PCI_EXP_TYPE_ENDPOINT: 3410 case PCI_EXP_TYPE_UPSTREAM: 3411 case PCI_EXP_TYPE_LEG_END: 3412 case PCI_EXP_TYPE_RC_END: 3413 if (!pdev->multifunction) 3414 break; 3415 3416 return pci_acs_flags_enabled(pdev, acs_flags); 3417 } 3418 3419 /* 3420 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3421 * to single function devices with the exception of downstream ports. 3422 */ 3423 return true; 3424 } 3425 3426 /** 3427 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3428 * @start: starting downstream device 3429 * @end: ending upstream device or NULL to search to the root bus 3430 * @acs_flags: required flags 3431 * 3432 * Walk up a device tree from start to end testing PCI ACS support. If 3433 * any step along the way does not support the required flags, return false. 3434 */ 3435 bool pci_acs_path_enabled(struct pci_dev *start, 3436 struct pci_dev *end, u16 acs_flags) 3437 { 3438 struct pci_dev *pdev, *parent = start; 3439 3440 do { 3441 pdev = parent; 3442 3443 if (!pci_acs_enabled(pdev, acs_flags)) 3444 return false; 3445 3446 if (pci_is_root_bus(pdev->bus)) 3447 return (end == NULL); 3448 3449 parent = pdev->bus->self; 3450 } while (pdev != end); 3451 3452 return true; 3453 } 3454 3455 /** 3456 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3457 * @pdev: PCI device 3458 * @bar: BAR to find 3459 * 3460 * Helper to find the position of the ctrl register for a BAR. 3461 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3462 * Returns -ENOENT if no ctrl register for the BAR could be found. 3463 */ 3464 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3465 { 3466 unsigned int pos, nbars, i; 3467 u32 ctrl; 3468 3469 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3470 if (!pos) 3471 return -ENOTSUPP; 3472 3473 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3474 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3475 PCI_REBAR_CTRL_NBAR_SHIFT; 3476 3477 for (i = 0; i < nbars; i++, pos += 8) { 3478 int bar_idx; 3479 3480 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3481 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3482 if (bar_idx == bar) 3483 return pos; 3484 } 3485 3486 return -ENOENT; 3487 } 3488 3489 /** 3490 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3491 * @pdev: PCI device 3492 * @bar: BAR to query 3493 * 3494 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3495 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3496 */ 3497 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3498 { 3499 int pos; 3500 u32 cap; 3501 3502 pos = pci_rebar_find_pos(pdev, bar); 3503 if (pos < 0) 3504 return 0; 3505 3506 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3507 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3508 } 3509 3510 /** 3511 * pci_rebar_get_current_size - get the current size of a BAR 3512 * @pdev: PCI device 3513 * @bar: BAR to set size to 3514 * 3515 * Read the size of a BAR from the resizable BAR config. 3516 * Returns size if found or negative error code. 3517 */ 3518 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3519 { 3520 int pos; 3521 u32 ctrl; 3522 3523 pos = pci_rebar_find_pos(pdev, bar); 3524 if (pos < 0) 3525 return pos; 3526 3527 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3528 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3529 } 3530 3531 /** 3532 * pci_rebar_set_size - set a new size for a BAR 3533 * @pdev: PCI device 3534 * @bar: BAR to set size to 3535 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3536 * 3537 * Set the new size of a BAR as defined in the spec. 3538 * Returns zero if resizing was successful, error code otherwise. 3539 */ 3540 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3541 { 3542 int pos; 3543 u32 ctrl; 3544 3545 pos = pci_rebar_find_pos(pdev, bar); 3546 if (pos < 0) 3547 return pos; 3548 3549 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3550 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3551 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3552 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3553 return 0; 3554 } 3555 3556 /** 3557 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3558 * @dev: the PCI device 3559 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3560 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3561 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3562 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3563 * 3564 * Return 0 if all upstream bridges support AtomicOp routing, egress 3565 * blocking is disabled on all upstream ports, and the root port supports 3566 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3567 * AtomicOp completion), or negative otherwise. 3568 */ 3569 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3570 { 3571 struct pci_bus *bus = dev->bus; 3572 struct pci_dev *bridge; 3573 u32 cap, ctl2; 3574 3575 if (!pci_is_pcie(dev)) 3576 return -EINVAL; 3577 3578 /* 3579 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3580 * AtomicOp requesters. For now, we only support endpoints as 3581 * requesters and root ports as completers. No endpoints as 3582 * completers, and no peer-to-peer. 3583 */ 3584 3585 switch (pci_pcie_type(dev)) { 3586 case PCI_EXP_TYPE_ENDPOINT: 3587 case PCI_EXP_TYPE_LEG_END: 3588 case PCI_EXP_TYPE_RC_END: 3589 break; 3590 default: 3591 return -EINVAL; 3592 } 3593 3594 while (bus->parent) { 3595 bridge = bus->self; 3596 3597 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3598 3599 switch (pci_pcie_type(bridge)) { 3600 /* Ensure switch ports support AtomicOp routing */ 3601 case PCI_EXP_TYPE_UPSTREAM: 3602 case PCI_EXP_TYPE_DOWNSTREAM: 3603 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3604 return -EINVAL; 3605 break; 3606 3607 /* Ensure root port supports all the sizes we care about */ 3608 case PCI_EXP_TYPE_ROOT_PORT: 3609 if ((cap & cap_mask) != cap_mask) 3610 return -EINVAL; 3611 break; 3612 } 3613 3614 /* Ensure upstream ports don't block AtomicOps on egress */ 3615 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3616 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3617 &ctl2); 3618 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3619 return -EINVAL; 3620 } 3621 3622 bus = bus->parent; 3623 } 3624 3625 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3626 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3627 return 0; 3628 } 3629 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3630 3631 /** 3632 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3633 * @dev: the PCI device 3634 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3635 * 3636 * Perform INTx swizzling for a device behind one level of bridge. This is 3637 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3638 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3639 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3640 * the PCI Express Base Specification, Revision 2.1) 3641 */ 3642 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3643 { 3644 int slot; 3645 3646 if (pci_ari_enabled(dev->bus)) 3647 slot = 0; 3648 else 3649 slot = PCI_SLOT(dev->devfn); 3650 3651 return (((pin - 1) + slot) % 4) + 1; 3652 } 3653 3654 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3655 { 3656 u8 pin; 3657 3658 pin = dev->pin; 3659 if (!pin) 3660 return -1; 3661 3662 while (!pci_is_root_bus(dev->bus)) { 3663 pin = pci_swizzle_interrupt_pin(dev, pin); 3664 dev = dev->bus->self; 3665 } 3666 *bridge = dev; 3667 return pin; 3668 } 3669 3670 /** 3671 * pci_common_swizzle - swizzle INTx all the way to root bridge 3672 * @dev: the PCI device 3673 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3674 * 3675 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3676 * bridges all the way up to a PCI root bus. 3677 */ 3678 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3679 { 3680 u8 pin = *pinp; 3681 3682 while (!pci_is_root_bus(dev->bus)) { 3683 pin = pci_swizzle_interrupt_pin(dev, pin); 3684 dev = dev->bus->self; 3685 } 3686 *pinp = pin; 3687 return PCI_SLOT(dev->devfn); 3688 } 3689 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3690 3691 /** 3692 * pci_release_region - Release a PCI bar 3693 * @pdev: PCI device whose resources were previously reserved by 3694 * pci_request_region() 3695 * @bar: BAR to release 3696 * 3697 * Releases the PCI I/O and memory resources previously reserved by a 3698 * successful call to pci_request_region(). Call this function only 3699 * after all use of the PCI regions has ceased. 3700 */ 3701 void pci_release_region(struct pci_dev *pdev, int bar) 3702 { 3703 struct pci_devres *dr; 3704 3705 if (pci_resource_len(pdev, bar) == 0) 3706 return; 3707 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3708 release_region(pci_resource_start(pdev, bar), 3709 pci_resource_len(pdev, bar)); 3710 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3711 release_mem_region(pci_resource_start(pdev, bar), 3712 pci_resource_len(pdev, bar)); 3713 3714 dr = find_pci_dr(pdev); 3715 if (dr) 3716 dr->region_mask &= ~(1 << bar); 3717 } 3718 EXPORT_SYMBOL(pci_release_region); 3719 3720 /** 3721 * __pci_request_region - Reserved PCI I/O and memory resource 3722 * @pdev: PCI device whose resources are to be reserved 3723 * @bar: BAR to be reserved 3724 * @res_name: Name to be associated with resource. 3725 * @exclusive: whether the region access is exclusive or not 3726 * 3727 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3728 * being reserved by owner @res_name. Do not access any 3729 * address inside the PCI regions unless this call returns 3730 * successfully. 3731 * 3732 * If @exclusive is set, then the region is marked so that userspace 3733 * is explicitly not allowed to map the resource via /dev/mem or 3734 * sysfs MMIO access. 3735 * 3736 * Returns 0 on success, or %EBUSY on error. A warning 3737 * message is also printed on failure. 3738 */ 3739 static int __pci_request_region(struct pci_dev *pdev, int bar, 3740 const char *res_name, int exclusive) 3741 { 3742 struct pci_devres *dr; 3743 3744 if (pci_resource_len(pdev, bar) == 0) 3745 return 0; 3746 3747 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3748 if (!request_region(pci_resource_start(pdev, bar), 3749 pci_resource_len(pdev, bar), res_name)) 3750 goto err_out; 3751 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3752 if (!__request_mem_region(pci_resource_start(pdev, bar), 3753 pci_resource_len(pdev, bar), res_name, 3754 exclusive)) 3755 goto err_out; 3756 } 3757 3758 dr = find_pci_dr(pdev); 3759 if (dr) 3760 dr->region_mask |= 1 << bar; 3761 3762 return 0; 3763 3764 err_out: 3765 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3766 &pdev->resource[bar]); 3767 return -EBUSY; 3768 } 3769 3770 /** 3771 * pci_request_region - Reserve PCI I/O and memory resource 3772 * @pdev: PCI device whose resources are to be reserved 3773 * @bar: BAR to be reserved 3774 * @res_name: Name to be associated with resource 3775 * 3776 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3777 * being reserved by owner @res_name. Do not access any 3778 * address inside the PCI regions unless this call returns 3779 * successfully. 3780 * 3781 * Returns 0 on success, or %EBUSY on error. A warning 3782 * message is also printed on failure. 3783 */ 3784 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3785 { 3786 return __pci_request_region(pdev, bar, res_name, 0); 3787 } 3788 EXPORT_SYMBOL(pci_request_region); 3789 3790 /** 3791 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3792 * @pdev: PCI device whose resources were previously reserved 3793 * @bars: Bitmask of BARs to be released 3794 * 3795 * Release selected PCI I/O and memory resources previously reserved. 3796 * Call this function only after all use of the PCI regions has ceased. 3797 */ 3798 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3799 { 3800 int i; 3801 3802 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3803 if (bars & (1 << i)) 3804 pci_release_region(pdev, i); 3805 } 3806 EXPORT_SYMBOL(pci_release_selected_regions); 3807 3808 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3809 const char *res_name, int excl) 3810 { 3811 int i; 3812 3813 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3814 if (bars & (1 << i)) 3815 if (__pci_request_region(pdev, i, res_name, excl)) 3816 goto err_out; 3817 return 0; 3818 3819 err_out: 3820 while (--i >= 0) 3821 if (bars & (1 << i)) 3822 pci_release_region(pdev, i); 3823 3824 return -EBUSY; 3825 } 3826 3827 3828 /** 3829 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3830 * @pdev: PCI device whose resources are to be reserved 3831 * @bars: Bitmask of BARs to be requested 3832 * @res_name: Name to be associated with resource 3833 */ 3834 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3835 const char *res_name) 3836 { 3837 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3838 } 3839 EXPORT_SYMBOL(pci_request_selected_regions); 3840 3841 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3842 const char *res_name) 3843 { 3844 return __pci_request_selected_regions(pdev, bars, res_name, 3845 IORESOURCE_EXCLUSIVE); 3846 } 3847 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3848 3849 /** 3850 * pci_release_regions - Release reserved PCI I/O and memory resources 3851 * @pdev: PCI device whose resources were previously reserved by 3852 * pci_request_regions() 3853 * 3854 * Releases all PCI I/O and memory resources previously reserved by a 3855 * successful call to pci_request_regions(). Call this function only 3856 * after all use of the PCI regions has ceased. 3857 */ 3858 3859 void pci_release_regions(struct pci_dev *pdev) 3860 { 3861 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3862 } 3863 EXPORT_SYMBOL(pci_release_regions); 3864 3865 /** 3866 * pci_request_regions - Reserve PCI I/O and memory resources 3867 * @pdev: PCI device whose resources are to be reserved 3868 * @res_name: Name to be associated with resource. 3869 * 3870 * Mark all PCI regions associated with PCI device @pdev as 3871 * being reserved by owner @res_name. Do not access any 3872 * address inside the PCI regions unless this call returns 3873 * successfully. 3874 * 3875 * Returns 0 on success, or %EBUSY on error. A warning 3876 * message is also printed on failure. 3877 */ 3878 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3879 { 3880 return pci_request_selected_regions(pdev, 3881 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3882 } 3883 EXPORT_SYMBOL(pci_request_regions); 3884 3885 /** 3886 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3887 * @pdev: PCI device whose resources are to be reserved 3888 * @res_name: Name to be associated with resource. 3889 * 3890 * Mark all PCI regions associated with PCI device @pdev as being reserved 3891 * by owner @res_name. Do not access any address inside the PCI regions 3892 * unless this call returns successfully. 3893 * 3894 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3895 * and the sysfs MMIO access will not be allowed. 3896 * 3897 * Returns 0 on success, or %EBUSY on error. A warning message is also 3898 * printed on failure. 3899 */ 3900 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3901 { 3902 return pci_request_selected_regions_exclusive(pdev, 3903 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3904 } 3905 EXPORT_SYMBOL(pci_request_regions_exclusive); 3906 3907 /* 3908 * Record the PCI IO range (expressed as CPU physical address + size). 3909 * Return a negative value if an error has occurred, zero otherwise 3910 */ 3911 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3912 resource_size_t size) 3913 { 3914 int ret = 0; 3915 #ifdef PCI_IOBASE 3916 struct logic_pio_hwaddr *range; 3917 3918 if (!size || addr + size < addr) 3919 return -EINVAL; 3920 3921 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3922 if (!range) 3923 return -ENOMEM; 3924 3925 range->fwnode = fwnode; 3926 range->size = size; 3927 range->hw_start = addr; 3928 range->flags = LOGIC_PIO_CPU_MMIO; 3929 3930 ret = logic_pio_register_range(range); 3931 if (ret) 3932 kfree(range); 3933 #endif 3934 3935 return ret; 3936 } 3937 3938 phys_addr_t pci_pio_to_address(unsigned long pio) 3939 { 3940 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3941 3942 #ifdef PCI_IOBASE 3943 if (pio >= MMIO_UPPER_LIMIT) 3944 return address; 3945 3946 address = logic_pio_to_hwaddr(pio); 3947 #endif 3948 3949 return address; 3950 } 3951 3952 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3953 { 3954 #ifdef PCI_IOBASE 3955 return logic_pio_trans_cpuaddr(address); 3956 #else 3957 if (address > IO_SPACE_LIMIT) 3958 return (unsigned long)-1; 3959 3960 return (unsigned long) address; 3961 #endif 3962 } 3963 3964 /** 3965 * pci_remap_iospace - Remap the memory mapped I/O space 3966 * @res: Resource describing the I/O space 3967 * @phys_addr: physical address of range to be mapped 3968 * 3969 * Remap the memory mapped I/O space described by the @res and the CPU 3970 * physical address @phys_addr into virtual address space. Only 3971 * architectures that have memory mapped IO functions defined (and the 3972 * PCI_IOBASE value defined) should call this function. 3973 */ 3974 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3975 { 3976 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3977 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3978 3979 if (!(res->flags & IORESOURCE_IO)) 3980 return -EINVAL; 3981 3982 if (res->end > IO_SPACE_LIMIT) 3983 return -EINVAL; 3984 3985 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3986 pgprot_device(PAGE_KERNEL)); 3987 #else 3988 /* 3989 * This architecture does not have memory mapped I/O space, 3990 * so this function should never be called 3991 */ 3992 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3993 return -ENODEV; 3994 #endif 3995 } 3996 EXPORT_SYMBOL(pci_remap_iospace); 3997 3998 /** 3999 * pci_unmap_iospace - Unmap the memory mapped I/O space 4000 * @res: resource to be unmapped 4001 * 4002 * Unmap the CPU virtual address @res from virtual address space. Only 4003 * architectures that have memory mapped IO functions defined (and the 4004 * PCI_IOBASE value defined) should call this function. 4005 */ 4006 void pci_unmap_iospace(struct resource *res) 4007 { 4008 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4009 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4010 4011 unmap_kernel_range(vaddr, resource_size(res)); 4012 #endif 4013 } 4014 EXPORT_SYMBOL(pci_unmap_iospace); 4015 4016 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4017 { 4018 struct resource **res = ptr; 4019 4020 pci_unmap_iospace(*res); 4021 } 4022 4023 /** 4024 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4025 * @dev: Generic device to remap IO address for 4026 * @res: Resource describing the I/O space 4027 * @phys_addr: physical address of range to be mapped 4028 * 4029 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4030 * detach. 4031 */ 4032 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4033 phys_addr_t phys_addr) 4034 { 4035 const struct resource **ptr; 4036 int error; 4037 4038 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4039 if (!ptr) 4040 return -ENOMEM; 4041 4042 error = pci_remap_iospace(res, phys_addr); 4043 if (error) { 4044 devres_free(ptr); 4045 } else { 4046 *ptr = res; 4047 devres_add(dev, ptr); 4048 } 4049 4050 return error; 4051 } 4052 EXPORT_SYMBOL(devm_pci_remap_iospace); 4053 4054 /** 4055 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4056 * @dev: Generic device to remap IO address for 4057 * @offset: Resource address to map 4058 * @size: Size of map 4059 * 4060 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4061 * detach. 4062 */ 4063 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4064 resource_size_t offset, 4065 resource_size_t size) 4066 { 4067 void __iomem **ptr, *addr; 4068 4069 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4070 if (!ptr) 4071 return NULL; 4072 4073 addr = pci_remap_cfgspace(offset, size); 4074 if (addr) { 4075 *ptr = addr; 4076 devres_add(dev, ptr); 4077 } else 4078 devres_free(ptr); 4079 4080 return addr; 4081 } 4082 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4083 4084 /** 4085 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4086 * @dev: generic device to handle the resource for 4087 * @res: configuration space resource to be handled 4088 * 4089 * Checks that a resource is a valid memory region, requests the memory 4090 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4091 * proper PCI configuration space memory attributes are guaranteed. 4092 * 4093 * All operations are managed and will be undone on driver detach. 4094 * 4095 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4096 * on failure. Usage example:: 4097 * 4098 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4099 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4100 * if (IS_ERR(base)) 4101 * return PTR_ERR(base); 4102 */ 4103 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4104 struct resource *res) 4105 { 4106 resource_size_t size; 4107 const char *name; 4108 void __iomem *dest_ptr; 4109 4110 BUG_ON(!dev); 4111 4112 if (!res || resource_type(res) != IORESOURCE_MEM) { 4113 dev_err(dev, "invalid resource\n"); 4114 return IOMEM_ERR_PTR(-EINVAL); 4115 } 4116 4117 size = resource_size(res); 4118 name = res->name ?: dev_name(dev); 4119 4120 if (!devm_request_mem_region(dev, res->start, size, name)) { 4121 dev_err(dev, "can't request region for resource %pR\n", res); 4122 return IOMEM_ERR_PTR(-EBUSY); 4123 } 4124 4125 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4126 if (!dest_ptr) { 4127 dev_err(dev, "ioremap failed for resource %pR\n", res); 4128 devm_release_mem_region(dev, res->start, size); 4129 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4130 } 4131 4132 return dest_ptr; 4133 } 4134 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4135 4136 static void __pci_set_master(struct pci_dev *dev, bool enable) 4137 { 4138 u16 old_cmd, cmd; 4139 4140 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4141 if (enable) 4142 cmd = old_cmd | PCI_COMMAND_MASTER; 4143 else 4144 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4145 if (cmd != old_cmd) { 4146 pci_dbg(dev, "%s bus mastering\n", 4147 enable ? "enabling" : "disabling"); 4148 pci_write_config_word(dev, PCI_COMMAND, cmd); 4149 } 4150 dev->is_busmaster = enable; 4151 } 4152 4153 /** 4154 * pcibios_setup - process "pci=" kernel boot arguments 4155 * @str: string used to pass in "pci=" kernel boot arguments 4156 * 4157 * Process kernel boot arguments. This is the default implementation. 4158 * Architecture specific implementations can override this as necessary. 4159 */ 4160 char * __weak __init pcibios_setup(char *str) 4161 { 4162 return str; 4163 } 4164 4165 /** 4166 * pcibios_set_master - enable PCI bus-mastering for device dev 4167 * @dev: the PCI device to enable 4168 * 4169 * Enables PCI bus-mastering for the device. This is the default 4170 * implementation. Architecture specific implementations can override 4171 * this if necessary. 4172 */ 4173 void __weak pcibios_set_master(struct pci_dev *dev) 4174 { 4175 u8 lat; 4176 4177 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4178 if (pci_is_pcie(dev)) 4179 return; 4180 4181 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4182 if (lat < 16) 4183 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4184 else if (lat > pcibios_max_latency) 4185 lat = pcibios_max_latency; 4186 else 4187 return; 4188 4189 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4190 } 4191 4192 /** 4193 * pci_set_master - enables bus-mastering for device dev 4194 * @dev: the PCI device to enable 4195 * 4196 * Enables bus-mastering on the device and calls pcibios_set_master() 4197 * to do the needed arch specific settings. 4198 */ 4199 void pci_set_master(struct pci_dev *dev) 4200 { 4201 __pci_set_master(dev, true); 4202 pcibios_set_master(dev); 4203 } 4204 EXPORT_SYMBOL(pci_set_master); 4205 4206 /** 4207 * pci_clear_master - disables bus-mastering for device dev 4208 * @dev: the PCI device to disable 4209 */ 4210 void pci_clear_master(struct pci_dev *dev) 4211 { 4212 __pci_set_master(dev, false); 4213 } 4214 EXPORT_SYMBOL(pci_clear_master); 4215 4216 /** 4217 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4218 * @dev: the PCI device for which MWI is to be enabled 4219 * 4220 * Helper function for pci_set_mwi. 4221 * Originally copied from drivers/net/acenic.c. 4222 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4223 * 4224 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4225 */ 4226 int pci_set_cacheline_size(struct pci_dev *dev) 4227 { 4228 u8 cacheline_size; 4229 4230 if (!pci_cache_line_size) 4231 return -EINVAL; 4232 4233 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4234 equal to or multiple of the right value. */ 4235 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4236 if (cacheline_size >= pci_cache_line_size && 4237 (cacheline_size % pci_cache_line_size) == 0) 4238 return 0; 4239 4240 /* Write the correct value. */ 4241 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4242 /* Read it back. */ 4243 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4244 if (cacheline_size == pci_cache_line_size) 4245 return 0; 4246 4247 pci_info(dev, "cache line size of %d is not supported\n", 4248 pci_cache_line_size << 2); 4249 4250 return -EINVAL; 4251 } 4252 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4253 4254 /** 4255 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4256 * @dev: the PCI device for which MWI is enabled 4257 * 4258 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4259 * 4260 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4261 */ 4262 int pci_set_mwi(struct pci_dev *dev) 4263 { 4264 #ifdef PCI_DISABLE_MWI 4265 return 0; 4266 #else 4267 int rc; 4268 u16 cmd; 4269 4270 rc = pci_set_cacheline_size(dev); 4271 if (rc) 4272 return rc; 4273 4274 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4275 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4276 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4277 cmd |= PCI_COMMAND_INVALIDATE; 4278 pci_write_config_word(dev, PCI_COMMAND, cmd); 4279 } 4280 return 0; 4281 #endif 4282 } 4283 EXPORT_SYMBOL(pci_set_mwi); 4284 4285 /** 4286 * pcim_set_mwi - a device-managed pci_set_mwi() 4287 * @dev: the PCI device for which MWI is enabled 4288 * 4289 * Managed pci_set_mwi(). 4290 * 4291 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4292 */ 4293 int pcim_set_mwi(struct pci_dev *dev) 4294 { 4295 struct pci_devres *dr; 4296 4297 dr = find_pci_dr(dev); 4298 if (!dr) 4299 return -ENOMEM; 4300 4301 dr->mwi = 1; 4302 return pci_set_mwi(dev); 4303 } 4304 EXPORT_SYMBOL(pcim_set_mwi); 4305 4306 /** 4307 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4308 * @dev: the PCI device for which MWI is enabled 4309 * 4310 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4311 * Callers are not required to check the return value. 4312 * 4313 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4314 */ 4315 int pci_try_set_mwi(struct pci_dev *dev) 4316 { 4317 #ifdef PCI_DISABLE_MWI 4318 return 0; 4319 #else 4320 return pci_set_mwi(dev); 4321 #endif 4322 } 4323 EXPORT_SYMBOL(pci_try_set_mwi); 4324 4325 /** 4326 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4327 * @dev: the PCI device to disable 4328 * 4329 * Disables PCI Memory-Write-Invalidate transaction on the device 4330 */ 4331 void pci_clear_mwi(struct pci_dev *dev) 4332 { 4333 #ifndef PCI_DISABLE_MWI 4334 u16 cmd; 4335 4336 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4337 if (cmd & PCI_COMMAND_INVALIDATE) { 4338 cmd &= ~PCI_COMMAND_INVALIDATE; 4339 pci_write_config_word(dev, PCI_COMMAND, cmd); 4340 } 4341 #endif 4342 } 4343 EXPORT_SYMBOL(pci_clear_mwi); 4344 4345 /** 4346 * pci_intx - enables/disables PCI INTx for device dev 4347 * @pdev: the PCI device to operate on 4348 * @enable: boolean: whether to enable or disable PCI INTx 4349 * 4350 * Enables/disables PCI INTx for device @pdev 4351 */ 4352 void pci_intx(struct pci_dev *pdev, int enable) 4353 { 4354 u16 pci_command, new; 4355 4356 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4357 4358 if (enable) 4359 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4360 else 4361 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4362 4363 if (new != pci_command) { 4364 struct pci_devres *dr; 4365 4366 pci_write_config_word(pdev, PCI_COMMAND, new); 4367 4368 dr = find_pci_dr(pdev); 4369 if (dr && !dr->restore_intx) { 4370 dr->restore_intx = 1; 4371 dr->orig_intx = !enable; 4372 } 4373 } 4374 } 4375 EXPORT_SYMBOL_GPL(pci_intx); 4376 4377 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4378 { 4379 struct pci_bus *bus = dev->bus; 4380 bool mask_updated = true; 4381 u32 cmd_status_dword; 4382 u16 origcmd, newcmd; 4383 unsigned long flags; 4384 bool irq_pending; 4385 4386 /* 4387 * We do a single dword read to retrieve both command and status. 4388 * Document assumptions that make this possible. 4389 */ 4390 BUILD_BUG_ON(PCI_COMMAND % 4); 4391 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4392 4393 raw_spin_lock_irqsave(&pci_lock, flags); 4394 4395 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4396 4397 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4398 4399 /* 4400 * Check interrupt status register to see whether our device 4401 * triggered the interrupt (when masking) or the next IRQ is 4402 * already pending (when unmasking). 4403 */ 4404 if (mask != irq_pending) { 4405 mask_updated = false; 4406 goto done; 4407 } 4408 4409 origcmd = cmd_status_dword; 4410 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4411 if (mask) 4412 newcmd |= PCI_COMMAND_INTX_DISABLE; 4413 if (newcmd != origcmd) 4414 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4415 4416 done: 4417 raw_spin_unlock_irqrestore(&pci_lock, flags); 4418 4419 return mask_updated; 4420 } 4421 4422 /** 4423 * pci_check_and_mask_intx - mask INTx on pending interrupt 4424 * @dev: the PCI device to operate on 4425 * 4426 * Check if the device dev has its INTx line asserted, mask it and return 4427 * true in that case. False is returned if no interrupt was pending. 4428 */ 4429 bool pci_check_and_mask_intx(struct pci_dev *dev) 4430 { 4431 return pci_check_and_set_intx_mask(dev, true); 4432 } 4433 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4434 4435 /** 4436 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4437 * @dev: the PCI device to operate on 4438 * 4439 * Check if the device dev has its INTx line asserted, unmask it if not and 4440 * return true. False is returned and the mask remains active if there was 4441 * still an interrupt pending. 4442 */ 4443 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4444 { 4445 return pci_check_and_set_intx_mask(dev, false); 4446 } 4447 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4448 4449 /** 4450 * pci_wait_for_pending_transaction - wait for pending transaction 4451 * @dev: the PCI device to operate on 4452 * 4453 * Return 0 if transaction is pending 1 otherwise. 4454 */ 4455 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4456 { 4457 if (!pci_is_pcie(dev)) 4458 return 1; 4459 4460 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4461 PCI_EXP_DEVSTA_TRPND); 4462 } 4463 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4464 4465 /** 4466 * pcie_has_flr - check if a device supports function level resets 4467 * @dev: device to check 4468 * 4469 * Returns true if the device advertises support for PCIe function level 4470 * resets. 4471 */ 4472 bool pcie_has_flr(struct pci_dev *dev) 4473 { 4474 u32 cap; 4475 4476 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4477 return false; 4478 4479 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4480 return cap & PCI_EXP_DEVCAP_FLR; 4481 } 4482 EXPORT_SYMBOL_GPL(pcie_has_flr); 4483 4484 /** 4485 * pcie_flr - initiate a PCIe function level reset 4486 * @dev: device to reset 4487 * 4488 * Initiate a function level reset on @dev. The caller should ensure the 4489 * device supports FLR before calling this function, e.g. by using the 4490 * pcie_has_flr() helper. 4491 */ 4492 int pcie_flr(struct pci_dev *dev) 4493 { 4494 if (!pci_wait_for_pending_transaction(dev)) 4495 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4496 4497 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4498 4499 if (dev->imm_ready) 4500 return 0; 4501 4502 /* 4503 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4504 * 100ms, but may silently discard requests while the FLR is in 4505 * progress. Wait 100ms before trying to access the device. 4506 */ 4507 msleep(100); 4508 4509 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4510 } 4511 EXPORT_SYMBOL_GPL(pcie_flr); 4512 4513 static int pci_af_flr(struct pci_dev *dev, int probe) 4514 { 4515 int pos; 4516 u8 cap; 4517 4518 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4519 if (!pos) 4520 return -ENOTTY; 4521 4522 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4523 return -ENOTTY; 4524 4525 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4526 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4527 return -ENOTTY; 4528 4529 if (probe) 4530 return 0; 4531 4532 /* 4533 * Wait for Transaction Pending bit to clear. A word-aligned test 4534 * is used, so we use the control offset rather than status and shift 4535 * the test bit to match. 4536 */ 4537 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4538 PCI_AF_STATUS_TP << 8)) 4539 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4540 4541 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4542 4543 if (dev->imm_ready) 4544 return 0; 4545 4546 /* 4547 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4548 * updated 27 July 2006; a device must complete an FLR within 4549 * 100ms, but may silently discard requests while the FLR is in 4550 * progress. Wait 100ms before trying to access the device. 4551 */ 4552 msleep(100); 4553 4554 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4555 } 4556 4557 /** 4558 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4559 * @dev: Device to reset. 4560 * @probe: If set, only check if the device can be reset this way. 4561 * 4562 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4563 * unset, it will be reinitialized internally when going from PCI_D3hot to 4564 * PCI_D0. If that's the case and the device is not in a low-power state 4565 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4566 * 4567 * NOTE: This causes the caller to sleep for twice the device power transition 4568 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4569 * by default (i.e. unless the @dev's d3_delay field has a different value). 4570 * Moreover, only devices in D0 can be reset by this function. 4571 */ 4572 static int pci_pm_reset(struct pci_dev *dev, int probe) 4573 { 4574 u16 csr; 4575 4576 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4577 return -ENOTTY; 4578 4579 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4580 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4581 return -ENOTTY; 4582 4583 if (probe) 4584 return 0; 4585 4586 if (dev->current_state != PCI_D0) 4587 return -EINVAL; 4588 4589 csr &= ~PCI_PM_CTRL_STATE_MASK; 4590 csr |= PCI_D3hot; 4591 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4592 pci_dev_d3_sleep(dev); 4593 4594 csr &= ~PCI_PM_CTRL_STATE_MASK; 4595 csr |= PCI_D0; 4596 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4597 pci_dev_d3_sleep(dev); 4598 4599 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4600 } 4601 4602 /** 4603 * pcie_wait_for_link_delay - Wait until link is active or inactive 4604 * @pdev: Bridge device 4605 * @active: waiting for active or inactive? 4606 * @delay: Delay to wait after link has become active (in ms) 4607 * 4608 * Use this to wait till link becomes active or inactive. 4609 */ 4610 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4611 int delay) 4612 { 4613 int timeout = 1000; 4614 bool ret; 4615 u16 lnk_status; 4616 4617 /* 4618 * Some controllers might not implement link active reporting. In this 4619 * case, we wait for 1000 + 100 ms. 4620 */ 4621 if (!pdev->link_active_reporting) { 4622 msleep(1100); 4623 return true; 4624 } 4625 4626 /* 4627 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4628 * after which we should expect an link active if the reset was 4629 * successful. If so, software must wait a minimum 100ms before sending 4630 * configuration requests to devices downstream this port. 4631 * 4632 * If the link fails to activate, either the device was physically 4633 * removed or the link is permanently failed. 4634 */ 4635 if (active) 4636 msleep(20); 4637 for (;;) { 4638 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4639 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4640 if (ret == active) 4641 break; 4642 if (timeout <= 0) 4643 break; 4644 msleep(10); 4645 timeout -= 10; 4646 } 4647 if (active && ret) 4648 msleep(delay); 4649 else if (ret != active) 4650 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4651 active ? "set" : "cleared"); 4652 return ret == active; 4653 } 4654 4655 /** 4656 * pcie_wait_for_link - Wait until link is active or inactive 4657 * @pdev: Bridge device 4658 * @active: waiting for active or inactive? 4659 * 4660 * Use this to wait till link becomes active or inactive. 4661 */ 4662 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4663 { 4664 return pcie_wait_for_link_delay(pdev, active, 100); 4665 } 4666 4667 /* 4668 * Find maximum D3cold delay required by all the devices on the bus. The 4669 * spec says 100 ms, but firmware can lower it and we allow drivers to 4670 * increase it as well. 4671 * 4672 * Called with @pci_bus_sem locked for reading. 4673 */ 4674 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4675 { 4676 const struct pci_dev *pdev; 4677 int min_delay = 100; 4678 int max_delay = 0; 4679 4680 list_for_each_entry(pdev, &bus->devices, bus_list) { 4681 if (pdev->d3cold_delay < min_delay) 4682 min_delay = pdev->d3cold_delay; 4683 if (pdev->d3cold_delay > max_delay) 4684 max_delay = pdev->d3cold_delay; 4685 } 4686 4687 return max(min_delay, max_delay); 4688 } 4689 4690 /** 4691 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4692 * @dev: PCI bridge 4693 * 4694 * Handle necessary delays before access to the devices on the secondary 4695 * side of the bridge are permitted after D3cold to D0 transition. 4696 * 4697 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4698 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4699 * 4.3.2. 4700 */ 4701 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4702 { 4703 struct pci_dev *child; 4704 int delay; 4705 4706 if (pci_dev_is_disconnected(dev)) 4707 return; 4708 4709 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4710 return; 4711 4712 down_read(&pci_bus_sem); 4713 4714 /* 4715 * We only deal with devices that are present currently on the bus. 4716 * For any hot-added devices the access delay is handled in pciehp 4717 * board_added(). In case of ACPI hotplug the firmware is expected 4718 * to configure the devices before OS is notified. 4719 */ 4720 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4721 up_read(&pci_bus_sem); 4722 return; 4723 } 4724 4725 /* Take d3cold_delay requirements into account */ 4726 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4727 if (!delay) { 4728 up_read(&pci_bus_sem); 4729 return; 4730 } 4731 4732 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4733 bus_list); 4734 up_read(&pci_bus_sem); 4735 4736 /* 4737 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4738 * accessing the device after reset (that is 1000 ms + 100 ms). In 4739 * practice this should not be needed because we don't do power 4740 * management for them (see pci_bridge_d3_possible()). 4741 */ 4742 if (!pci_is_pcie(dev)) { 4743 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4744 msleep(1000 + delay); 4745 return; 4746 } 4747 4748 /* 4749 * For PCIe downstream and root ports that do not support speeds 4750 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4751 * speeds (gen3) we need to wait first for the data link layer to 4752 * become active. 4753 * 4754 * However, 100 ms is the minimum and the PCIe spec says the 4755 * software must allow at least 1s before it can determine that the 4756 * device that did not respond is a broken device. There is 4757 * evidence that 100 ms is not always enough, for example certain 4758 * Titan Ridge xHCI controller does not always respond to 4759 * configuration requests if we only wait for 100 ms (see 4760 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4761 * 4762 * Therefore we wait for 100 ms and check for the device presence. 4763 * If it is still not present give it an additional 100 ms. 4764 */ 4765 if (!pcie_downstream_port(dev)) 4766 return; 4767 4768 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4769 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4770 msleep(delay); 4771 } else { 4772 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4773 delay); 4774 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4775 /* Did not train, no need to wait any further */ 4776 return; 4777 } 4778 } 4779 4780 if (!pci_device_is_present(child)) { 4781 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4782 msleep(delay); 4783 } 4784 } 4785 4786 void pci_reset_secondary_bus(struct pci_dev *dev) 4787 { 4788 u16 ctrl; 4789 4790 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4791 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4792 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4793 4794 /* 4795 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4796 * this to 2ms to ensure that we meet the minimum requirement. 4797 */ 4798 msleep(2); 4799 4800 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4801 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4802 4803 /* 4804 * Trhfa for conventional PCI is 2^25 clock cycles. 4805 * Assuming a minimum 33MHz clock this results in a 1s 4806 * delay before we can consider subordinate devices to 4807 * be re-initialized. PCIe has some ways to shorten this, 4808 * but we don't make use of them yet. 4809 */ 4810 ssleep(1); 4811 } 4812 4813 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4814 { 4815 pci_reset_secondary_bus(dev); 4816 } 4817 4818 /** 4819 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4820 * @dev: Bridge device 4821 * 4822 * Use the bridge control register to assert reset on the secondary bus. 4823 * Devices on the secondary bus are left in power-on state. 4824 */ 4825 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4826 { 4827 pcibios_reset_secondary_bus(dev); 4828 4829 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4830 } 4831 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4832 4833 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4834 { 4835 struct pci_dev *pdev; 4836 4837 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4838 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4839 return -ENOTTY; 4840 4841 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4842 if (pdev != dev) 4843 return -ENOTTY; 4844 4845 if (probe) 4846 return 0; 4847 4848 return pci_bridge_secondary_bus_reset(dev->bus->self); 4849 } 4850 4851 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4852 { 4853 int rc = -ENOTTY; 4854 4855 if (!hotplug || !try_module_get(hotplug->owner)) 4856 return rc; 4857 4858 if (hotplug->ops->reset_slot) 4859 rc = hotplug->ops->reset_slot(hotplug, probe); 4860 4861 module_put(hotplug->owner); 4862 4863 return rc; 4864 } 4865 4866 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4867 { 4868 struct pci_dev *pdev; 4869 4870 if (dev->subordinate || !dev->slot || 4871 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4872 return -ENOTTY; 4873 4874 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4875 if (pdev != dev && pdev->slot == dev->slot) 4876 return -ENOTTY; 4877 4878 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4879 } 4880 4881 static void pci_dev_lock(struct pci_dev *dev) 4882 { 4883 pci_cfg_access_lock(dev); 4884 /* block PM suspend, driver probe, etc. */ 4885 device_lock(&dev->dev); 4886 } 4887 4888 /* Return 1 on successful lock, 0 on contention */ 4889 static int pci_dev_trylock(struct pci_dev *dev) 4890 { 4891 if (pci_cfg_access_trylock(dev)) { 4892 if (device_trylock(&dev->dev)) 4893 return 1; 4894 pci_cfg_access_unlock(dev); 4895 } 4896 4897 return 0; 4898 } 4899 4900 static void pci_dev_unlock(struct pci_dev *dev) 4901 { 4902 device_unlock(&dev->dev); 4903 pci_cfg_access_unlock(dev); 4904 } 4905 4906 static void pci_dev_save_and_disable(struct pci_dev *dev) 4907 { 4908 const struct pci_error_handlers *err_handler = 4909 dev->driver ? dev->driver->err_handler : NULL; 4910 4911 /* 4912 * dev->driver->err_handler->reset_prepare() is protected against 4913 * races with ->remove() by the device lock, which must be held by 4914 * the caller. 4915 */ 4916 if (err_handler && err_handler->reset_prepare) 4917 err_handler->reset_prepare(dev); 4918 4919 /* 4920 * Wake-up device prior to save. PM registers default to D0 after 4921 * reset and a simple register restore doesn't reliably return 4922 * to a non-D0 state anyway. 4923 */ 4924 pci_set_power_state(dev, PCI_D0); 4925 4926 pci_save_state(dev); 4927 /* 4928 * Disable the device by clearing the Command register, except for 4929 * INTx-disable which is set. This not only disables MMIO and I/O port 4930 * BARs, but also prevents the device from being Bus Master, preventing 4931 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4932 * compliant devices, INTx-disable prevents legacy interrupts. 4933 */ 4934 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4935 } 4936 4937 static void pci_dev_restore(struct pci_dev *dev) 4938 { 4939 const struct pci_error_handlers *err_handler = 4940 dev->driver ? dev->driver->err_handler : NULL; 4941 4942 pci_restore_state(dev); 4943 4944 /* 4945 * dev->driver->err_handler->reset_done() is protected against 4946 * races with ->remove() by the device lock, which must be held by 4947 * the caller. 4948 */ 4949 if (err_handler && err_handler->reset_done) 4950 err_handler->reset_done(dev); 4951 } 4952 4953 /** 4954 * __pci_reset_function_locked - reset a PCI device function while holding 4955 * the @dev mutex lock. 4956 * @dev: PCI device to reset 4957 * 4958 * Some devices allow an individual function to be reset without affecting 4959 * other functions in the same device. The PCI device must be responsive 4960 * to PCI config space in order to use this function. 4961 * 4962 * The device function is presumed to be unused and the caller is holding 4963 * the device mutex lock when this function is called. 4964 * 4965 * Resetting the device will make the contents of PCI configuration space 4966 * random, so any caller of this must be prepared to reinitialise the 4967 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4968 * etc. 4969 * 4970 * Returns 0 if the device function was successfully reset or negative if the 4971 * device doesn't support resetting a single function. 4972 */ 4973 int __pci_reset_function_locked(struct pci_dev *dev) 4974 { 4975 int rc; 4976 4977 might_sleep(); 4978 4979 /* 4980 * A reset method returns -ENOTTY if it doesn't support this device 4981 * and we should try the next method. 4982 * 4983 * If it returns 0 (success), we're finished. If it returns any 4984 * other error, we're also finished: this indicates that further 4985 * reset mechanisms might be broken on the device. 4986 */ 4987 rc = pci_dev_specific_reset(dev, 0); 4988 if (rc != -ENOTTY) 4989 return rc; 4990 if (pcie_has_flr(dev)) { 4991 rc = pcie_flr(dev); 4992 if (rc != -ENOTTY) 4993 return rc; 4994 } 4995 rc = pci_af_flr(dev, 0); 4996 if (rc != -ENOTTY) 4997 return rc; 4998 rc = pci_pm_reset(dev, 0); 4999 if (rc != -ENOTTY) 5000 return rc; 5001 rc = pci_dev_reset_slot_function(dev, 0); 5002 if (rc != -ENOTTY) 5003 return rc; 5004 return pci_parent_bus_reset(dev, 0); 5005 } 5006 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5007 5008 /** 5009 * pci_probe_reset_function - check whether the device can be safely reset 5010 * @dev: PCI device to reset 5011 * 5012 * Some devices allow an individual function to be reset without affecting 5013 * other functions in the same device. The PCI device must be responsive 5014 * to PCI config space in order to use this function. 5015 * 5016 * Returns 0 if the device function can be reset or negative if the 5017 * device doesn't support resetting a single function. 5018 */ 5019 int pci_probe_reset_function(struct pci_dev *dev) 5020 { 5021 int rc; 5022 5023 might_sleep(); 5024 5025 rc = pci_dev_specific_reset(dev, 1); 5026 if (rc != -ENOTTY) 5027 return rc; 5028 if (pcie_has_flr(dev)) 5029 return 0; 5030 rc = pci_af_flr(dev, 1); 5031 if (rc != -ENOTTY) 5032 return rc; 5033 rc = pci_pm_reset(dev, 1); 5034 if (rc != -ENOTTY) 5035 return rc; 5036 rc = pci_dev_reset_slot_function(dev, 1); 5037 if (rc != -ENOTTY) 5038 return rc; 5039 5040 return pci_parent_bus_reset(dev, 1); 5041 } 5042 5043 /** 5044 * pci_reset_function - quiesce and reset a PCI device function 5045 * @dev: PCI device to reset 5046 * 5047 * Some devices allow an individual function to be reset without affecting 5048 * other functions in the same device. The PCI device must be responsive 5049 * to PCI config space in order to use this function. 5050 * 5051 * This function does not just reset the PCI portion of a device, but 5052 * clears all the state associated with the device. This function differs 5053 * from __pci_reset_function_locked() in that it saves and restores device state 5054 * over the reset and takes the PCI device lock. 5055 * 5056 * Returns 0 if the device function was successfully reset or negative if the 5057 * device doesn't support resetting a single function. 5058 */ 5059 int pci_reset_function(struct pci_dev *dev) 5060 { 5061 int rc; 5062 5063 if (!dev->reset_fn) 5064 return -ENOTTY; 5065 5066 pci_dev_lock(dev); 5067 pci_dev_save_and_disable(dev); 5068 5069 rc = __pci_reset_function_locked(dev); 5070 5071 pci_dev_restore(dev); 5072 pci_dev_unlock(dev); 5073 5074 return rc; 5075 } 5076 EXPORT_SYMBOL_GPL(pci_reset_function); 5077 5078 /** 5079 * pci_reset_function_locked - quiesce and reset a PCI device function 5080 * @dev: PCI device to reset 5081 * 5082 * Some devices allow an individual function to be reset without affecting 5083 * other functions in the same device. The PCI device must be responsive 5084 * to PCI config space in order to use this function. 5085 * 5086 * This function does not just reset the PCI portion of a device, but 5087 * clears all the state associated with the device. This function differs 5088 * from __pci_reset_function_locked() in that it saves and restores device state 5089 * over the reset. It also differs from pci_reset_function() in that it 5090 * requires the PCI device lock to be held. 5091 * 5092 * Returns 0 if the device function was successfully reset or negative if the 5093 * device doesn't support resetting a single function. 5094 */ 5095 int pci_reset_function_locked(struct pci_dev *dev) 5096 { 5097 int rc; 5098 5099 if (!dev->reset_fn) 5100 return -ENOTTY; 5101 5102 pci_dev_save_and_disable(dev); 5103 5104 rc = __pci_reset_function_locked(dev); 5105 5106 pci_dev_restore(dev); 5107 5108 return rc; 5109 } 5110 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5111 5112 /** 5113 * pci_try_reset_function - quiesce and reset a PCI device function 5114 * @dev: PCI device to reset 5115 * 5116 * Same as above, except return -EAGAIN if unable to lock device. 5117 */ 5118 int pci_try_reset_function(struct pci_dev *dev) 5119 { 5120 int rc; 5121 5122 if (!dev->reset_fn) 5123 return -ENOTTY; 5124 5125 if (!pci_dev_trylock(dev)) 5126 return -EAGAIN; 5127 5128 pci_dev_save_and_disable(dev); 5129 rc = __pci_reset_function_locked(dev); 5130 pci_dev_restore(dev); 5131 pci_dev_unlock(dev); 5132 5133 return rc; 5134 } 5135 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5136 5137 /* Do any devices on or below this bus prevent a bus reset? */ 5138 static bool pci_bus_resetable(struct pci_bus *bus) 5139 { 5140 struct pci_dev *dev; 5141 5142 5143 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5144 return false; 5145 5146 list_for_each_entry(dev, &bus->devices, bus_list) { 5147 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5148 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5149 return false; 5150 } 5151 5152 return true; 5153 } 5154 5155 /* Lock devices from the top of the tree down */ 5156 static void pci_bus_lock(struct pci_bus *bus) 5157 { 5158 struct pci_dev *dev; 5159 5160 list_for_each_entry(dev, &bus->devices, bus_list) { 5161 pci_dev_lock(dev); 5162 if (dev->subordinate) 5163 pci_bus_lock(dev->subordinate); 5164 } 5165 } 5166 5167 /* Unlock devices from the bottom of the tree up */ 5168 static void pci_bus_unlock(struct pci_bus *bus) 5169 { 5170 struct pci_dev *dev; 5171 5172 list_for_each_entry(dev, &bus->devices, bus_list) { 5173 if (dev->subordinate) 5174 pci_bus_unlock(dev->subordinate); 5175 pci_dev_unlock(dev); 5176 } 5177 } 5178 5179 /* Return 1 on successful lock, 0 on contention */ 5180 static int pci_bus_trylock(struct pci_bus *bus) 5181 { 5182 struct pci_dev *dev; 5183 5184 list_for_each_entry(dev, &bus->devices, bus_list) { 5185 if (!pci_dev_trylock(dev)) 5186 goto unlock; 5187 if (dev->subordinate) { 5188 if (!pci_bus_trylock(dev->subordinate)) { 5189 pci_dev_unlock(dev); 5190 goto unlock; 5191 } 5192 } 5193 } 5194 return 1; 5195 5196 unlock: 5197 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5198 if (dev->subordinate) 5199 pci_bus_unlock(dev->subordinate); 5200 pci_dev_unlock(dev); 5201 } 5202 return 0; 5203 } 5204 5205 /* Do any devices on or below this slot prevent a bus reset? */ 5206 static bool pci_slot_resetable(struct pci_slot *slot) 5207 { 5208 struct pci_dev *dev; 5209 5210 if (slot->bus->self && 5211 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5212 return false; 5213 5214 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5215 if (!dev->slot || dev->slot != slot) 5216 continue; 5217 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5218 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5219 return false; 5220 } 5221 5222 return true; 5223 } 5224 5225 /* Lock devices from the top of the tree down */ 5226 static void pci_slot_lock(struct pci_slot *slot) 5227 { 5228 struct pci_dev *dev; 5229 5230 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5231 if (!dev->slot || dev->slot != slot) 5232 continue; 5233 pci_dev_lock(dev); 5234 if (dev->subordinate) 5235 pci_bus_lock(dev->subordinate); 5236 } 5237 } 5238 5239 /* Unlock devices from the bottom of the tree up */ 5240 static void pci_slot_unlock(struct pci_slot *slot) 5241 { 5242 struct pci_dev *dev; 5243 5244 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5245 if (!dev->slot || dev->slot != slot) 5246 continue; 5247 if (dev->subordinate) 5248 pci_bus_unlock(dev->subordinate); 5249 pci_dev_unlock(dev); 5250 } 5251 } 5252 5253 /* Return 1 on successful lock, 0 on contention */ 5254 static int pci_slot_trylock(struct pci_slot *slot) 5255 { 5256 struct pci_dev *dev; 5257 5258 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5259 if (!dev->slot || dev->slot != slot) 5260 continue; 5261 if (!pci_dev_trylock(dev)) 5262 goto unlock; 5263 if (dev->subordinate) { 5264 if (!pci_bus_trylock(dev->subordinate)) { 5265 pci_dev_unlock(dev); 5266 goto unlock; 5267 } 5268 } 5269 } 5270 return 1; 5271 5272 unlock: 5273 list_for_each_entry_continue_reverse(dev, 5274 &slot->bus->devices, bus_list) { 5275 if (!dev->slot || dev->slot != slot) 5276 continue; 5277 if (dev->subordinate) 5278 pci_bus_unlock(dev->subordinate); 5279 pci_dev_unlock(dev); 5280 } 5281 return 0; 5282 } 5283 5284 /* 5285 * Save and disable devices from the top of the tree down while holding 5286 * the @dev mutex lock for the entire tree. 5287 */ 5288 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5289 { 5290 struct pci_dev *dev; 5291 5292 list_for_each_entry(dev, &bus->devices, bus_list) { 5293 pci_dev_save_and_disable(dev); 5294 if (dev->subordinate) 5295 pci_bus_save_and_disable_locked(dev->subordinate); 5296 } 5297 } 5298 5299 /* 5300 * Restore devices from top of the tree down while holding @dev mutex lock 5301 * for the entire tree. Parent bridges need to be restored before we can 5302 * get to subordinate devices. 5303 */ 5304 static void pci_bus_restore_locked(struct pci_bus *bus) 5305 { 5306 struct pci_dev *dev; 5307 5308 list_for_each_entry(dev, &bus->devices, bus_list) { 5309 pci_dev_restore(dev); 5310 if (dev->subordinate) 5311 pci_bus_restore_locked(dev->subordinate); 5312 } 5313 } 5314 5315 /* 5316 * Save and disable devices from the top of the tree down while holding 5317 * the @dev mutex lock for the entire tree. 5318 */ 5319 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5320 { 5321 struct pci_dev *dev; 5322 5323 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5324 if (!dev->slot || dev->slot != slot) 5325 continue; 5326 pci_dev_save_and_disable(dev); 5327 if (dev->subordinate) 5328 pci_bus_save_and_disable_locked(dev->subordinate); 5329 } 5330 } 5331 5332 /* 5333 * Restore devices from top of the tree down while holding @dev mutex lock 5334 * for the entire tree. Parent bridges need to be restored before we can 5335 * get to subordinate devices. 5336 */ 5337 static void pci_slot_restore_locked(struct pci_slot *slot) 5338 { 5339 struct pci_dev *dev; 5340 5341 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5342 if (!dev->slot || dev->slot != slot) 5343 continue; 5344 pci_dev_restore(dev); 5345 if (dev->subordinate) 5346 pci_bus_restore_locked(dev->subordinate); 5347 } 5348 } 5349 5350 static int pci_slot_reset(struct pci_slot *slot, int probe) 5351 { 5352 int rc; 5353 5354 if (!slot || !pci_slot_resetable(slot)) 5355 return -ENOTTY; 5356 5357 if (!probe) 5358 pci_slot_lock(slot); 5359 5360 might_sleep(); 5361 5362 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5363 5364 if (!probe) 5365 pci_slot_unlock(slot); 5366 5367 return rc; 5368 } 5369 5370 /** 5371 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5372 * @slot: PCI slot to probe 5373 * 5374 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5375 */ 5376 int pci_probe_reset_slot(struct pci_slot *slot) 5377 { 5378 return pci_slot_reset(slot, 1); 5379 } 5380 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5381 5382 /** 5383 * __pci_reset_slot - Try to reset a PCI slot 5384 * @slot: PCI slot to reset 5385 * 5386 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5387 * independent of other slots. For instance, some slots may support slot power 5388 * control. In the case of a 1:1 bus to slot architecture, this function may 5389 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5390 * Generally a slot reset should be attempted before a bus reset. All of the 5391 * function of the slot and any subordinate buses behind the slot are reset 5392 * through this function. PCI config space of all devices in the slot and 5393 * behind the slot is saved before and restored after reset. 5394 * 5395 * Same as above except return -EAGAIN if the slot cannot be locked 5396 */ 5397 static int __pci_reset_slot(struct pci_slot *slot) 5398 { 5399 int rc; 5400 5401 rc = pci_slot_reset(slot, 1); 5402 if (rc) 5403 return rc; 5404 5405 if (pci_slot_trylock(slot)) { 5406 pci_slot_save_and_disable_locked(slot); 5407 might_sleep(); 5408 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5409 pci_slot_restore_locked(slot); 5410 pci_slot_unlock(slot); 5411 } else 5412 rc = -EAGAIN; 5413 5414 return rc; 5415 } 5416 5417 static int pci_bus_reset(struct pci_bus *bus, int probe) 5418 { 5419 int ret; 5420 5421 if (!bus->self || !pci_bus_resetable(bus)) 5422 return -ENOTTY; 5423 5424 if (probe) 5425 return 0; 5426 5427 pci_bus_lock(bus); 5428 5429 might_sleep(); 5430 5431 ret = pci_bridge_secondary_bus_reset(bus->self); 5432 5433 pci_bus_unlock(bus); 5434 5435 return ret; 5436 } 5437 5438 /** 5439 * pci_bus_error_reset - reset the bridge's subordinate bus 5440 * @bridge: The parent device that connects to the bus to reset 5441 * 5442 * This function will first try to reset the slots on this bus if the method is 5443 * available. If slot reset fails or is not available, this will fall back to a 5444 * secondary bus reset. 5445 */ 5446 int pci_bus_error_reset(struct pci_dev *bridge) 5447 { 5448 struct pci_bus *bus = bridge->subordinate; 5449 struct pci_slot *slot; 5450 5451 if (!bus) 5452 return -ENOTTY; 5453 5454 mutex_lock(&pci_slot_mutex); 5455 if (list_empty(&bus->slots)) 5456 goto bus_reset; 5457 5458 list_for_each_entry(slot, &bus->slots, list) 5459 if (pci_probe_reset_slot(slot)) 5460 goto bus_reset; 5461 5462 list_for_each_entry(slot, &bus->slots, list) 5463 if (pci_slot_reset(slot, 0)) 5464 goto bus_reset; 5465 5466 mutex_unlock(&pci_slot_mutex); 5467 return 0; 5468 bus_reset: 5469 mutex_unlock(&pci_slot_mutex); 5470 return pci_bus_reset(bridge->subordinate, 0); 5471 } 5472 5473 /** 5474 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5475 * @bus: PCI bus to probe 5476 * 5477 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5478 */ 5479 int pci_probe_reset_bus(struct pci_bus *bus) 5480 { 5481 return pci_bus_reset(bus, 1); 5482 } 5483 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5484 5485 /** 5486 * __pci_reset_bus - Try to reset a PCI bus 5487 * @bus: top level PCI bus to reset 5488 * 5489 * Same as above except return -EAGAIN if the bus cannot be locked 5490 */ 5491 static int __pci_reset_bus(struct pci_bus *bus) 5492 { 5493 int rc; 5494 5495 rc = pci_bus_reset(bus, 1); 5496 if (rc) 5497 return rc; 5498 5499 if (pci_bus_trylock(bus)) { 5500 pci_bus_save_and_disable_locked(bus); 5501 might_sleep(); 5502 rc = pci_bridge_secondary_bus_reset(bus->self); 5503 pci_bus_restore_locked(bus); 5504 pci_bus_unlock(bus); 5505 } else 5506 rc = -EAGAIN; 5507 5508 return rc; 5509 } 5510 5511 /** 5512 * pci_reset_bus - Try to reset a PCI bus 5513 * @pdev: top level PCI device to reset via slot/bus 5514 * 5515 * Same as above except return -EAGAIN if the bus cannot be locked 5516 */ 5517 int pci_reset_bus(struct pci_dev *pdev) 5518 { 5519 return (!pci_probe_reset_slot(pdev->slot)) ? 5520 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5521 } 5522 EXPORT_SYMBOL_GPL(pci_reset_bus); 5523 5524 /** 5525 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5526 * @dev: PCI device to query 5527 * 5528 * Returns mmrbc: maximum designed memory read count in bytes or 5529 * appropriate error value. 5530 */ 5531 int pcix_get_max_mmrbc(struct pci_dev *dev) 5532 { 5533 int cap; 5534 u32 stat; 5535 5536 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5537 if (!cap) 5538 return -EINVAL; 5539 5540 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5541 return -EINVAL; 5542 5543 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5544 } 5545 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5546 5547 /** 5548 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5549 * @dev: PCI device to query 5550 * 5551 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5552 * value. 5553 */ 5554 int pcix_get_mmrbc(struct pci_dev *dev) 5555 { 5556 int cap; 5557 u16 cmd; 5558 5559 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5560 if (!cap) 5561 return -EINVAL; 5562 5563 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5564 return -EINVAL; 5565 5566 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5567 } 5568 EXPORT_SYMBOL(pcix_get_mmrbc); 5569 5570 /** 5571 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5572 * @dev: PCI device to query 5573 * @mmrbc: maximum memory read count in bytes 5574 * valid values are 512, 1024, 2048, 4096 5575 * 5576 * If possible sets maximum memory read byte count, some bridges have errata 5577 * that prevent this. 5578 */ 5579 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5580 { 5581 int cap; 5582 u32 stat, v, o; 5583 u16 cmd; 5584 5585 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5586 return -EINVAL; 5587 5588 v = ffs(mmrbc) - 10; 5589 5590 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5591 if (!cap) 5592 return -EINVAL; 5593 5594 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5595 return -EINVAL; 5596 5597 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5598 return -E2BIG; 5599 5600 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5601 return -EINVAL; 5602 5603 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5604 if (o != v) { 5605 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5606 return -EIO; 5607 5608 cmd &= ~PCI_X_CMD_MAX_READ; 5609 cmd |= v << 2; 5610 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5611 return -EIO; 5612 } 5613 return 0; 5614 } 5615 EXPORT_SYMBOL(pcix_set_mmrbc); 5616 5617 /** 5618 * pcie_get_readrq - get PCI Express read request size 5619 * @dev: PCI device to query 5620 * 5621 * Returns maximum memory read request in bytes or appropriate error value. 5622 */ 5623 int pcie_get_readrq(struct pci_dev *dev) 5624 { 5625 u16 ctl; 5626 5627 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5628 5629 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5630 } 5631 EXPORT_SYMBOL(pcie_get_readrq); 5632 5633 /** 5634 * pcie_set_readrq - set PCI Express maximum memory read request 5635 * @dev: PCI device to query 5636 * @rq: maximum memory read count in bytes 5637 * valid values are 128, 256, 512, 1024, 2048, 4096 5638 * 5639 * If possible sets maximum memory read request in bytes 5640 */ 5641 int pcie_set_readrq(struct pci_dev *dev, int rq) 5642 { 5643 u16 v; 5644 5645 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5646 return -EINVAL; 5647 5648 /* 5649 * If using the "performance" PCIe config, we clamp the read rq 5650 * size to the max packet size to keep the host bridge from 5651 * generating requests larger than we can cope with. 5652 */ 5653 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5654 int mps = pcie_get_mps(dev); 5655 5656 if (mps < rq) 5657 rq = mps; 5658 } 5659 5660 v = (ffs(rq) - 8) << 12; 5661 5662 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5663 PCI_EXP_DEVCTL_READRQ, v); 5664 } 5665 EXPORT_SYMBOL(pcie_set_readrq); 5666 5667 /** 5668 * pcie_get_mps - get PCI Express maximum payload size 5669 * @dev: PCI device to query 5670 * 5671 * Returns maximum payload size in bytes 5672 */ 5673 int pcie_get_mps(struct pci_dev *dev) 5674 { 5675 u16 ctl; 5676 5677 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5678 5679 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5680 } 5681 EXPORT_SYMBOL(pcie_get_mps); 5682 5683 /** 5684 * pcie_set_mps - set PCI Express maximum payload size 5685 * @dev: PCI device to query 5686 * @mps: maximum payload size in bytes 5687 * valid values are 128, 256, 512, 1024, 2048, 4096 5688 * 5689 * If possible sets maximum payload size 5690 */ 5691 int pcie_set_mps(struct pci_dev *dev, int mps) 5692 { 5693 u16 v; 5694 5695 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5696 return -EINVAL; 5697 5698 v = ffs(mps) - 8; 5699 if (v > dev->pcie_mpss) 5700 return -EINVAL; 5701 v <<= 5; 5702 5703 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5704 PCI_EXP_DEVCTL_PAYLOAD, v); 5705 } 5706 EXPORT_SYMBOL(pcie_set_mps); 5707 5708 /** 5709 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5710 * device and its bandwidth limitation 5711 * @dev: PCI device to query 5712 * @limiting_dev: storage for device causing the bandwidth limitation 5713 * @speed: storage for speed of limiting device 5714 * @width: storage for width of limiting device 5715 * 5716 * Walk up the PCI device chain and find the point where the minimum 5717 * bandwidth is available. Return the bandwidth available there and (if 5718 * limiting_dev, speed, and width pointers are supplied) information about 5719 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5720 * raw bandwidth. 5721 */ 5722 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5723 enum pci_bus_speed *speed, 5724 enum pcie_link_width *width) 5725 { 5726 u16 lnksta; 5727 enum pci_bus_speed next_speed; 5728 enum pcie_link_width next_width; 5729 u32 bw, next_bw; 5730 5731 if (speed) 5732 *speed = PCI_SPEED_UNKNOWN; 5733 if (width) 5734 *width = PCIE_LNK_WIDTH_UNKNOWN; 5735 5736 bw = 0; 5737 5738 while (dev) { 5739 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5740 5741 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5742 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5743 PCI_EXP_LNKSTA_NLW_SHIFT; 5744 5745 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5746 5747 /* Check if current device limits the total bandwidth */ 5748 if (!bw || next_bw <= bw) { 5749 bw = next_bw; 5750 5751 if (limiting_dev) 5752 *limiting_dev = dev; 5753 if (speed) 5754 *speed = next_speed; 5755 if (width) 5756 *width = next_width; 5757 } 5758 5759 dev = pci_upstream_bridge(dev); 5760 } 5761 5762 return bw; 5763 } 5764 EXPORT_SYMBOL(pcie_bandwidth_available); 5765 5766 /** 5767 * pcie_get_speed_cap - query for the PCI device's link speed capability 5768 * @dev: PCI device to query 5769 * 5770 * Query the PCI device speed capability. Return the maximum link speed 5771 * supported by the device. 5772 */ 5773 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5774 { 5775 u32 lnkcap2, lnkcap; 5776 5777 /* 5778 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5779 * implementation note there recommends using the Supported Link 5780 * Speeds Vector in Link Capabilities 2 when supported. 5781 * 5782 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5783 * should use the Supported Link Speeds field in Link Capabilities, 5784 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5785 */ 5786 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5787 if (lnkcap2) { /* PCIe r3.0-compliant */ 5788 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB) 5789 return PCIE_SPEED_32_0GT; 5790 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5791 return PCIE_SPEED_16_0GT; 5792 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5793 return PCIE_SPEED_8_0GT; 5794 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5795 return PCIE_SPEED_5_0GT; 5796 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5797 return PCIE_SPEED_2_5GT; 5798 return PCI_SPEED_UNKNOWN; 5799 } 5800 5801 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5802 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5803 return PCIE_SPEED_5_0GT; 5804 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5805 return PCIE_SPEED_2_5GT; 5806 5807 return PCI_SPEED_UNKNOWN; 5808 } 5809 EXPORT_SYMBOL(pcie_get_speed_cap); 5810 5811 /** 5812 * pcie_get_width_cap - query for the PCI device's link width capability 5813 * @dev: PCI device to query 5814 * 5815 * Query the PCI device width capability. Return the maximum link width 5816 * supported by the device. 5817 */ 5818 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5819 { 5820 u32 lnkcap; 5821 5822 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5823 if (lnkcap) 5824 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5825 5826 return PCIE_LNK_WIDTH_UNKNOWN; 5827 } 5828 EXPORT_SYMBOL(pcie_get_width_cap); 5829 5830 /** 5831 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5832 * @dev: PCI device 5833 * @speed: storage for link speed 5834 * @width: storage for link width 5835 * 5836 * Calculate a PCI device's link bandwidth by querying for its link speed 5837 * and width, multiplying them, and applying encoding overhead. The result 5838 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5839 */ 5840 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5841 enum pcie_link_width *width) 5842 { 5843 *speed = pcie_get_speed_cap(dev); 5844 *width = pcie_get_width_cap(dev); 5845 5846 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5847 return 0; 5848 5849 return *width * PCIE_SPEED2MBS_ENC(*speed); 5850 } 5851 5852 /** 5853 * __pcie_print_link_status - Report the PCI device's link speed and width 5854 * @dev: PCI device to query 5855 * @verbose: Print info even when enough bandwidth is available 5856 * 5857 * If the available bandwidth at the device is less than the device is 5858 * capable of, report the device's maximum possible bandwidth and the 5859 * upstream link that limits its performance. If @verbose, always print 5860 * the available bandwidth, even if the device isn't constrained. 5861 */ 5862 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5863 { 5864 enum pcie_link_width width, width_cap; 5865 enum pci_bus_speed speed, speed_cap; 5866 struct pci_dev *limiting_dev = NULL; 5867 u32 bw_avail, bw_cap; 5868 5869 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5870 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5871 5872 if (bw_avail >= bw_cap && verbose) 5873 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5874 bw_cap / 1000, bw_cap % 1000, 5875 PCIE_SPEED2STR(speed_cap), width_cap); 5876 else if (bw_avail < bw_cap) 5877 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5878 bw_avail / 1000, bw_avail % 1000, 5879 PCIE_SPEED2STR(speed), width, 5880 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5881 bw_cap / 1000, bw_cap % 1000, 5882 PCIE_SPEED2STR(speed_cap), width_cap); 5883 } 5884 5885 /** 5886 * pcie_print_link_status - Report the PCI device's link speed and width 5887 * @dev: PCI device to query 5888 * 5889 * Report the available bandwidth at the device. 5890 */ 5891 void pcie_print_link_status(struct pci_dev *dev) 5892 { 5893 __pcie_print_link_status(dev, true); 5894 } 5895 EXPORT_SYMBOL(pcie_print_link_status); 5896 5897 /** 5898 * pci_select_bars - Make BAR mask from the type of resource 5899 * @dev: the PCI device for which BAR mask is made 5900 * @flags: resource type mask to be selected 5901 * 5902 * This helper routine makes bar mask from the type of resource. 5903 */ 5904 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5905 { 5906 int i, bars = 0; 5907 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5908 if (pci_resource_flags(dev, i) & flags) 5909 bars |= (1 << i); 5910 return bars; 5911 } 5912 EXPORT_SYMBOL(pci_select_bars); 5913 5914 /* Some architectures require additional programming to enable VGA */ 5915 static arch_set_vga_state_t arch_set_vga_state; 5916 5917 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5918 { 5919 arch_set_vga_state = func; /* NULL disables */ 5920 } 5921 5922 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5923 unsigned int command_bits, u32 flags) 5924 { 5925 if (arch_set_vga_state) 5926 return arch_set_vga_state(dev, decode, command_bits, 5927 flags); 5928 return 0; 5929 } 5930 5931 /** 5932 * pci_set_vga_state - set VGA decode state on device and parents if requested 5933 * @dev: the PCI device 5934 * @decode: true = enable decoding, false = disable decoding 5935 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5936 * @flags: traverse ancestors and change bridges 5937 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5938 */ 5939 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5940 unsigned int command_bits, u32 flags) 5941 { 5942 struct pci_bus *bus; 5943 struct pci_dev *bridge; 5944 u16 cmd; 5945 int rc; 5946 5947 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5948 5949 /* ARCH specific VGA enables */ 5950 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5951 if (rc) 5952 return rc; 5953 5954 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5955 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5956 if (decode == true) 5957 cmd |= command_bits; 5958 else 5959 cmd &= ~command_bits; 5960 pci_write_config_word(dev, PCI_COMMAND, cmd); 5961 } 5962 5963 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5964 return 0; 5965 5966 bus = dev->bus; 5967 while (bus) { 5968 bridge = bus->self; 5969 if (bridge) { 5970 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5971 &cmd); 5972 if (decode == true) 5973 cmd |= PCI_BRIDGE_CTL_VGA; 5974 else 5975 cmd &= ~PCI_BRIDGE_CTL_VGA; 5976 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5977 cmd); 5978 } 5979 bus = bus->parent; 5980 } 5981 return 0; 5982 } 5983 5984 #ifdef CONFIG_ACPI 5985 bool pci_pr3_present(struct pci_dev *pdev) 5986 { 5987 struct acpi_device *adev; 5988 5989 if (acpi_disabled) 5990 return false; 5991 5992 adev = ACPI_COMPANION(&pdev->dev); 5993 if (!adev) 5994 return false; 5995 5996 return adev->power.flags.power_resources && 5997 acpi_has_method(adev->handle, "_PR3"); 5998 } 5999 EXPORT_SYMBOL_GPL(pci_pr3_present); 6000 #endif 6001 6002 /** 6003 * pci_add_dma_alias - Add a DMA devfn alias for a device 6004 * @dev: the PCI device for which alias is added 6005 * @devfn_from: alias slot and function 6006 * @nr_devfns: number of subsequent devfns to alias 6007 * 6008 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6009 * which is used to program permissible bus-devfn source addresses for DMA 6010 * requests in an IOMMU. These aliases factor into IOMMU group creation 6011 * and are useful for devices generating DMA requests beyond or different 6012 * from their logical bus-devfn. Examples include device quirks where the 6013 * device simply uses the wrong devfn, as well as non-transparent bridges 6014 * where the alias may be a proxy for devices in another domain. 6015 * 6016 * IOMMU group creation is performed during device discovery or addition, 6017 * prior to any potential DMA mapping and therefore prior to driver probing 6018 * (especially for userspace assigned devices where IOMMU group definition 6019 * cannot be left as a userspace activity). DMA aliases should therefore 6020 * be configured via quirks, such as the PCI fixup header quirk. 6021 */ 6022 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6023 { 6024 int devfn_to; 6025 6026 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6027 devfn_to = devfn_from + nr_devfns - 1; 6028 6029 if (!dev->dma_alias_mask) 6030 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6031 if (!dev->dma_alias_mask) { 6032 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6033 return; 6034 } 6035 6036 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6037 6038 if (nr_devfns == 1) 6039 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6040 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6041 else if (nr_devfns > 1) 6042 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6043 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6044 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6045 } 6046 6047 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6048 { 6049 return (dev1->dma_alias_mask && 6050 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6051 (dev2->dma_alias_mask && 6052 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6053 pci_real_dma_dev(dev1) == dev2 || 6054 pci_real_dma_dev(dev2) == dev1; 6055 } 6056 6057 bool pci_device_is_present(struct pci_dev *pdev) 6058 { 6059 u32 v; 6060 6061 if (pci_dev_is_disconnected(pdev)) 6062 return false; 6063 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6064 } 6065 EXPORT_SYMBOL_GPL(pci_device_is_present); 6066 6067 void pci_ignore_hotplug(struct pci_dev *dev) 6068 { 6069 struct pci_dev *bridge = dev->bus->self; 6070 6071 dev->ignore_hotplug = 1; 6072 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6073 if (bridge) 6074 bridge->ignore_hotplug = 1; 6075 } 6076 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6077 6078 /** 6079 * pci_real_dma_dev - Get PCI DMA device for PCI device 6080 * @dev: the PCI device that may have a PCI DMA alias 6081 * 6082 * Permits the platform to provide architecture-specific functionality to 6083 * devices needing to alias DMA to another PCI device on another PCI bus. If 6084 * the PCI device is on the same bus, it is recommended to use 6085 * pci_add_dma_alias(). This is the default implementation. Architecture 6086 * implementations can override this. 6087 */ 6088 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6089 { 6090 return dev; 6091 } 6092 6093 resource_size_t __weak pcibios_default_alignment(void) 6094 { 6095 return 0; 6096 } 6097 6098 /* 6099 * Arches that don't want to expose struct resource to userland as-is in 6100 * sysfs and /proc can implement their own pci_resource_to_user(). 6101 */ 6102 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6103 const struct resource *rsrc, 6104 resource_size_t *start, resource_size_t *end) 6105 { 6106 *start = rsrc->start; 6107 *end = rsrc->end; 6108 } 6109 6110 static char *resource_alignment_param; 6111 static DEFINE_SPINLOCK(resource_alignment_lock); 6112 6113 /** 6114 * pci_specified_resource_alignment - get resource alignment specified by user. 6115 * @dev: the PCI device to get 6116 * @resize: whether or not to change resources' size when reassigning alignment 6117 * 6118 * RETURNS: Resource alignment if it is specified. 6119 * Zero if it is not specified. 6120 */ 6121 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6122 bool *resize) 6123 { 6124 int align_order, count; 6125 resource_size_t align = pcibios_default_alignment(); 6126 const char *p; 6127 int ret; 6128 6129 spin_lock(&resource_alignment_lock); 6130 p = resource_alignment_param; 6131 if (!p || !*p) 6132 goto out; 6133 if (pci_has_flag(PCI_PROBE_ONLY)) { 6134 align = 0; 6135 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6136 goto out; 6137 } 6138 6139 while (*p) { 6140 count = 0; 6141 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6142 p[count] == '@') { 6143 p += count + 1; 6144 } else { 6145 align_order = -1; 6146 } 6147 6148 ret = pci_dev_str_match(dev, p, &p); 6149 if (ret == 1) { 6150 *resize = true; 6151 if (align_order == -1) 6152 align = PAGE_SIZE; 6153 else 6154 align = 1 << align_order; 6155 break; 6156 } else if (ret < 0) { 6157 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6158 p); 6159 break; 6160 } 6161 6162 if (*p != ';' && *p != ',') { 6163 /* End of param or invalid format */ 6164 break; 6165 } 6166 p++; 6167 } 6168 out: 6169 spin_unlock(&resource_alignment_lock); 6170 return align; 6171 } 6172 6173 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6174 resource_size_t align, bool resize) 6175 { 6176 struct resource *r = &dev->resource[bar]; 6177 resource_size_t size; 6178 6179 if (!(r->flags & IORESOURCE_MEM)) 6180 return; 6181 6182 if (r->flags & IORESOURCE_PCI_FIXED) { 6183 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6184 bar, r, (unsigned long long)align); 6185 return; 6186 } 6187 6188 size = resource_size(r); 6189 if (size >= align) 6190 return; 6191 6192 /* 6193 * Increase the alignment of the resource. There are two ways we 6194 * can do this: 6195 * 6196 * 1) Increase the size of the resource. BARs are aligned on their 6197 * size, so when we reallocate space for this resource, we'll 6198 * allocate it with the larger alignment. This also prevents 6199 * assignment of any other BARs inside the alignment region, so 6200 * if we're requesting page alignment, this means no other BARs 6201 * will share the page. 6202 * 6203 * The disadvantage is that this makes the resource larger than 6204 * the hardware BAR, which may break drivers that compute things 6205 * based on the resource size, e.g., to find registers at a 6206 * fixed offset before the end of the BAR. 6207 * 6208 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6209 * set r->start to the desired alignment. By itself this 6210 * doesn't prevent other BARs being put inside the alignment 6211 * region, but if we realign *every* resource of every device in 6212 * the system, none of them will share an alignment region. 6213 * 6214 * When the user has requested alignment for only some devices via 6215 * the "pci=resource_alignment" argument, "resize" is true and we 6216 * use the first method. Otherwise we assume we're aligning all 6217 * devices and we use the second. 6218 */ 6219 6220 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6221 bar, r, (unsigned long long)align); 6222 6223 if (resize) { 6224 r->start = 0; 6225 r->end = align - 1; 6226 } else { 6227 r->flags &= ~IORESOURCE_SIZEALIGN; 6228 r->flags |= IORESOURCE_STARTALIGN; 6229 r->start = align; 6230 r->end = r->start + size - 1; 6231 } 6232 r->flags |= IORESOURCE_UNSET; 6233 } 6234 6235 /* 6236 * This function disables memory decoding and releases memory resources 6237 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6238 * It also rounds up size to specified alignment. 6239 * Later on, the kernel will assign page-aligned memory resource back 6240 * to the device. 6241 */ 6242 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6243 { 6244 int i; 6245 struct resource *r; 6246 resource_size_t align; 6247 u16 command; 6248 bool resize = false; 6249 6250 /* 6251 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6252 * 3.4.1.11. Their resources are allocated from the space 6253 * described by the VF BARx register in the PF's SR-IOV capability. 6254 * We can't influence their alignment here. 6255 */ 6256 if (dev->is_virtfn) 6257 return; 6258 6259 /* check if specified PCI is target device to reassign */ 6260 align = pci_specified_resource_alignment(dev, &resize); 6261 if (!align) 6262 return; 6263 6264 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6265 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6266 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6267 return; 6268 } 6269 6270 pci_read_config_word(dev, PCI_COMMAND, &command); 6271 command &= ~PCI_COMMAND_MEMORY; 6272 pci_write_config_word(dev, PCI_COMMAND, command); 6273 6274 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6275 pci_request_resource_alignment(dev, i, align, resize); 6276 6277 /* 6278 * Need to disable bridge's resource window, 6279 * to enable the kernel to reassign new resource 6280 * window later on. 6281 */ 6282 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6283 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6284 r = &dev->resource[i]; 6285 if (!(r->flags & IORESOURCE_MEM)) 6286 continue; 6287 r->flags |= IORESOURCE_UNSET; 6288 r->end = resource_size(r) - 1; 6289 r->start = 0; 6290 } 6291 pci_disable_bridge_window(dev); 6292 } 6293 } 6294 6295 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6296 { 6297 size_t count = 0; 6298 6299 spin_lock(&resource_alignment_lock); 6300 if (resource_alignment_param) 6301 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6302 spin_unlock(&resource_alignment_lock); 6303 6304 /* 6305 * When set by the command line, resource_alignment_param will not 6306 * have a trailing line feed, which is ugly. So conditionally add 6307 * it here. 6308 */ 6309 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6310 buf[count - 1] = '\n'; 6311 buf[count++] = 0; 6312 } 6313 6314 return count; 6315 } 6316 6317 static ssize_t resource_alignment_store(struct bus_type *bus, 6318 const char *buf, size_t count) 6319 { 6320 char *param = kstrndup(buf, count, GFP_KERNEL); 6321 6322 if (!param) 6323 return -ENOMEM; 6324 6325 spin_lock(&resource_alignment_lock); 6326 kfree(resource_alignment_param); 6327 resource_alignment_param = param; 6328 spin_unlock(&resource_alignment_lock); 6329 return count; 6330 } 6331 6332 static BUS_ATTR_RW(resource_alignment); 6333 6334 static int __init pci_resource_alignment_sysfs_init(void) 6335 { 6336 return bus_create_file(&pci_bus_type, 6337 &bus_attr_resource_alignment); 6338 } 6339 late_initcall(pci_resource_alignment_sysfs_init); 6340 6341 static void pci_no_domains(void) 6342 { 6343 #ifdef CONFIG_PCI_DOMAINS 6344 pci_domains_supported = 0; 6345 #endif 6346 } 6347 6348 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6349 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6350 6351 static int pci_get_new_domain_nr(void) 6352 { 6353 return atomic_inc_return(&__domain_nr); 6354 } 6355 6356 static int of_pci_bus_find_domain_nr(struct device *parent) 6357 { 6358 static int use_dt_domains = -1; 6359 int domain = -1; 6360 6361 if (parent) 6362 domain = of_get_pci_domain_nr(parent->of_node); 6363 6364 /* 6365 * Check DT domain and use_dt_domains values. 6366 * 6367 * If DT domain property is valid (domain >= 0) and 6368 * use_dt_domains != 0, the DT assignment is valid since this means 6369 * we have not previously allocated a domain number by using 6370 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6371 * 1, to indicate that we have just assigned a domain number from 6372 * DT. 6373 * 6374 * If DT domain property value is not valid (ie domain < 0), and we 6375 * have not previously assigned a domain number from DT 6376 * (use_dt_domains != 1) we should assign a domain number by 6377 * using the: 6378 * 6379 * pci_get_new_domain_nr() 6380 * 6381 * API and update the use_dt_domains value to keep track of method we 6382 * are using to assign domain numbers (use_dt_domains = 0). 6383 * 6384 * All other combinations imply we have a platform that is trying 6385 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6386 * which is a recipe for domain mishandling and it is prevented by 6387 * invalidating the domain value (domain = -1) and printing a 6388 * corresponding error. 6389 */ 6390 if (domain >= 0 && use_dt_domains) { 6391 use_dt_domains = 1; 6392 } else if (domain < 0 && use_dt_domains != 1) { 6393 use_dt_domains = 0; 6394 domain = pci_get_new_domain_nr(); 6395 } else { 6396 if (parent) 6397 pr_err("Node %pOF has ", parent->of_node); 6398 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6399 domain = -1; 6400 } 6401 6402 return domain; 6403 } 6404 6405 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6406 { 6407 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6408 acpi_pci_bus_find_domain_nr(bus); 6409 } 6410 #endif 6411 6412 /** 6413 * pci_ext_cfg_avail - can we access extended PCI config space? 6414 * 6415 * Returns 1 if we can access PCI extended config space (offsets 6416 * greater than 0xff). This is the default implementation. Architecture 6417 * implementations can override this. 6418 */ 6419 int __weak pci_ext_cfg_avail(void) 6420 { 6421 return 1; 6422 } 6423 6424 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6425 { 6426 } 6427 EXPORT_SYMBOL(pci_fixup_cardbus); 6428 6429 static int __init pci_setup(char *str) 6430 { 6431 while (str) { 6432 char *k = strchr(str, ','); 6433 if (k) 6434 *k++ = 0; 6435 if (*str && (str = pcibios_setup(str)) && *str) { 6436 if (!strcmp(str, "nomsi")) { 6437 pci_no_msi(); 6438 } else if (!strncmp(str, "noats", 5)) { 6439 pr_info("PCIe: ATS is disabled\n"); 6440 pcie_ats_disabled = true; 6441 } else if (!strcmp(str, "noaer")) { 6442 pci_no_aer(); 6443 } else if (!strcmp(str, "earlydump")) { 6444 pci_early_dump = true; 6445 } else if (!strncmp(str, "realloc=", 8)) { 6446 pci_realloc_get_opt(str + 8); 6447 } else if (!strncmp(str, "realloc", 7)) { 6448 pci_realloc_get_opt("on"); 6449 } else if (!strcmp(str, "nodomains")) { 6450 pci_no_domains(); 6451 } else if (!strncmp(str, "noari", 5)) { 6452 pcie_ari_disabled = true; 6453 } else if (!strncmp(str, "cbiosize=", 9)) { 6454 pci_cardbus_io_size = memparse(str + 9, &str); 6455 } else if (!strncmp(str, "cbmemsize=", 10)) { 6456 pci_cardbus_mem_size = memparse(str + 10, &str); 6457 } else if (!strncmp(str, "resource_alignment=", 19)) { 6458 resource_alignment_param = str + 19; 6459 } else if (!strncmp(str, "ecrc=", 5)) { 6460 pcie_ecrc_get_policy(str + 5); 6461 } else if (!strncmp(str, "hpiosize=", 9)) { 6462 pci_hotplug_io_size = memparse(str + 9, &str); 6463 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6464 pci_hotplug_mmio_size = memparse(str + 11, &str); 6465 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6466 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6467 } else if (!strncmp(str, "hpmemsize=", 10)) { 6468 pci_hotplug_mmio_size = memparse(str + 10, &str); 6469 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6470 } else if (!strncmp(str, "hpbussize=", 10)) { 6471 pci_hotplug_bus_size = 6472 simple_strtoul(str + 10, &str, 0); 6473 if (pci_hotplug_bus_size > 0xff) 6474 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6475 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6476 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6477 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6478 pcie_bus_config = PCIE_BUS_SAFE; 6479 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6480 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6481 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6482 pcie_bus_config = PCIE_BUS_PEER2PEER; 6483 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6484 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6485 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6486 disable_acs_redir_param = str + 18; 6487 } else { 6488 pr_err("PCI: Unknown option `%s'\n", str); 6489 } 6490 } 6491 str = k; 6492 } 6493 return 0; 6494 } 6495 early_param("pci", pci_setup); 6496 6497 /* 6498 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6499 * in pci_setup(), above, to point to data in the __initdata section which 6500 * will be freed after the init sequence is complete. We can't allocate memory 6501 * in pci_setup() because some architectures do not have any memory allocation 6502 * service available during an early_param() call. So we allocate memory and 6503 * copy the variable here before the init section is freed. 6504 * 6505 */ 6506 static int __init pci_realloc_setup_params(void) 6507 { 6508 resource_alignment_param = kstrdup(resource_alignment_param, 6509 GFP_KERNEL); 6510 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6511 6512 return 0; 6513 } 6514 pure_initcall(pci_realloc_setup_params); 6515