xref: /openbmc/linux/drivers/pci/pci.c (revision da1d9caf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3hot_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3hot_delay;
68 
69 	if (delay < pci_pm_d3hot_delay)
70 		delay = pci_pm_d3hot_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 	return dev->reset_methods[0] != 0;
79 }
80 
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84 
85 #define DEFAULT_CARDBUS_IO_SIZE		(256)
86 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90 
91 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99  * pci=hpmemsize=nnM overrides both
100  */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103 
104 #define DEFAULT_HOTPLUG_BUS_SIZE	1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106 
107 
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120 
121 /*
122  * The default CLS is used if arch didn't set CLS explicitly and not
123  * all pci devices agree on the same value.  Arch can override either
124  * the dfl or actual value as it sees fit.  Don't forget this is
125  * measured in 32-bit words, not bytes.
126  */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129 
130 /*
131  * If we set up a device for bus mastering, we need to check the latency
132  * timer as certain BIOSes forget to set it properly.
133  */
134 unsigned int pcibios_max_latency = 255;
135 
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138 
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141 
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144 
145 bool pci_ats_disabled(void)
146 {
147 	return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150 
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155 
156 static int __init pcie_port_pm_setup(char *str)
157 {
158 	if (!strcmp(str, "off"))
159 		pci_bridge_d3_disable = true;
160 	else if (!strcmp(str, "force"))
161 		pci_bridge_d3_force = true;
162 	return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165 
166 /* Time to wait after a reset for device to become responsive */
167 #define PCIE_RESET_READY_POLL_MS 60000
168 
169 /**
170  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
171  * @bus: pointer to PCI bus structure to search
172  *
173  * Given a PCI bus, returns the highest PCI bus number present in the set
174  * including the given PCI bus and its list of child PCI buses.
175  */
176 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
177 {
178 	struct pci_bus *tmp;
179 	unsigned char max, n;
180 
181 	max = bus->busn_res.end;
182 	list_for_each_entry(tmp, &bus->children, node) {
183 		n = pci_bus_max_busnr(tmp);
184 		if (n > max)
185 			max = n;
186 	}
187 	return max;
188 }
189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
190 
191 /**
192  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
193  * @pdev: the PCI device
194  *
195  * Returns error bits set in PCI_STATUS and clears them.
196  */
197 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
198 {
199 	u16 status;
200 	int ret;
201 
202 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
203 	if (ret != PCIBIOS_SUCCESSFUL)
204 		return -EIO;
205 
206 	status &= PCI_STATUS_ERROR_BITS;
207 	if (status)
208 		pci_write_config_word(pdev, PCI_STATUS, status);
209 
210 	return status;
211 }
212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
213 
214 #ifdef CONFIG_HAS_IOMEM
215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
216 					    bool write_combine)
217 {
218 	struct resource *res = &pdev->resource[bar];
219 	resource_size_t start = res->start;
220 	resource_size_t size = resource_size(res);
221 
222 	/*
223 	 * Make sure the BAR is actually a memory resource, not an IO resource
224 	 */
225 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
226 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
227 		return NULL;
228 	}
229 
230 	if (write_combine)
231 		return ioremap_wc(start, size);
232 
233 	return ioremap(start, size);
234 }
235 
236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
237 {
238 	return __pci_ioremap_resource(pdev, bar, false);
239 }
240 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
241 
242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
243 {
244 	return __pci_ioremap_resource(pdev, bar, true);
245 }
246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
247 #endif
248 
249 /**
250  * pci_dev_str_match_path - test if a path string matches a device
251  * @dev: the PCI device to test
252  * @path: string to match the device against
253  * @endptr: pointer to the string after the match
254  *
255  * Test if a string (typically from a kernel parameter) formatted as a
256  * path of device/function addresses matches a PCI device. The string must
257  * be of the form:
258  *
259  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
260  *
261  * A path for a device can be obtained using 'lspci -t'.  Using a path
262  * is more robust against bus renumbering than using only a single bus,
263  * device and function address.
264  *
265  * Returns 1 if the string matches the device, 0 if it does not and
266  * a negative error code if it fails to parse the string.
267  */
268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
269 				  const char **endptr)
270 {
271 	int ret;
272 	unsigned int seg, bus, slot, func;
273 	char *wpath, *p;
274 	char end;
275 
276 	*endptr = strchrnul(path, ';');
277 
278 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
279 	if (!wpath)
280 		return -ENOMEM;
281 
282 	while (1) {
283 		p = strrchr(wpath, '/');
284 		if (!p)
285 			break;
286 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
287 		if (ret != 2) {
288 			ret = -EINVAL;
289 			goto free_and_exit;
290 		}
291 
292 		if (dev->devfn != PCI_DEVFN(slot, func)) {
293 			ret = 0;
294 			goto free_and_exit;
295 		}
296 
297 		/*
298 		 * Note: we don't need to get a reference to the upstream
299 		 * bridge because we hold a reference to the top level
300 		 * device which should hold a reference to the bridge,
301 		 * and so on.
302 		 */
303 		dev = pci_upstream_bridge(dev);
304 		if (!dev) {
305 			ret = 0;
306 			goto free_and_exit;
307 		}
308 
309 		*p = 0;
310 	}
311 
312 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
313 		     &func, &end);
314 	if (ret != 4) {
315 		seg = 0;
316 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
317 		if (ret != 3) {
318 			ret = -EINVAL;
319 			goto free_and_exit;
320 		}
321 	}
322 
323 	ret = (seg == pci_domain_nr(dev->bus) &&
324 	       bus == dev->bus->number &&
325 	       dev->devfn == PCI_DEVFN(slot, func));
326 
327 free_and_exit:
328 	kfree(wpath);
329 	return ret;
330 }
331 
332 /**
333  * pci_dev_str_match - test if a string matches a device
334  * @dev: the PCI device to test
335  * @p: string to match the device against
336  * @endptr: pointer to the string after the match
337  *
338  * Test if a string (typically from a kernel parameter) matches a specified
339  * PCI device. The string may be of one of the following formats:
340  *
341  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
342  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
343  *
344  * The first format specifies a PCI bus/device/function address which
345  * may change if new hardware is inserted, if motherboard firmware changes,
346  * or due to changes caused in kernel parameters. If the domain is
347  * left unspecified, it is taken to be 0.  In order to be robust against
348  * bus renumbering issues, a path of PCI device/function numbers may be used
349  * to address the specific device.  The path for a device can be determined
350  * through the use of 'lspci -t'.
351  *
352  * The second format matches devices using IDs in the configuration
353  * space which may match multiple devices in the system. A value of 0
354  * for any field will match all devices. (Note: this differs from
355  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
356  * legacy reasons and convenience so users don't have to specify
357  * FFFFFFFFs on the command line.)
358  *
359  * Returns 1 if the string matches the device, 0 if it does not and
360  * a negative error code if the string cannot be parsed.
361  */
362 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
363 			     const char **endptr)
364 {
365 	int ret;
366 	int count;
367 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
368 
369 	if (strncmp(p, "pci:", 4) == 0) {
370 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
371 		p += 4;
372 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
373 			     &subsystem_vendor, &subsystem_device, &count);
374 		if (ret != 4) {
375 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
376 			if (ret != 2)
377 				return -EINVAL;
378 
379 			subsystem_vendor = 0;
380 			subsystem_device = 0;
381 		}
382 
383 		p += count;
384 
385 		if ((!vendor || vendor == dev->vendor) &&
386 		    (!device || device == dev->device) &&
387 		    (!subsystem_vendor ||
388 			    subsystem_vendor == dev->subsystem_vendor) &&
389 		    (!subsystem_device ||
390 			    subsystem_device == dev->subsystem_device))
391 			goto found;
392 	} else {
393 		/*
394 		 * PCI Bus, Device, Function IDs are specified
395 		 * (optionally, may include a path of devfns following it)
396 		 */
397 		ret = pci_dev_str_match_path(dev, p, &p);
398 		if (ret < 0)
399 			return ret;
400 		else if (ret)
401 			goto found;
402 	}
403 
404 	*endptr = p;
405 	return 0;
406 
407 found:
408 	*endptr = p;
409 	return 1;
410 }
411 
412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
413 				  u8 pos, int cap, int *ttl)
414 {
415 	u8 id;
416 	u16 ent;
417 
418 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
419 
420 	while ((*ttl)--) {
421 		if (pos < 0x40)
422 			break;
423 		pos &= ~3;
424 		pci_bus_read_config_word(bus, devfn, pos, &ent);
425 
426 		id = ent & 0xff;
427 		if (id == 0xff)
428 			break;
429 		if (id == cap)
430 			return pos;
431 		pos = (ent >> 8);
432 	}
433 	return 0;
434 }
435 
436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
437 			      u8 pos, int cap)
438 {
439 	int ttl = PCI_FIND_CAP_TTL;
440 
441 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
442 }
443 
444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
445 {
446 	return __pci_find_next_cap(dev->bus, dev->devfn,
447 				   pos + PCI_CAP_LIST_NEXT, cap);
448 }
449 EXPORT_SYMBOL_GPL(pci_find_next_capability);
450 
451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
452 				    unsigned int devfn, u8 hdr_type)
453 {
454 	u16 status;
455 
456 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
457 	if (!(status & PCI_STATUS_CAP_LIST))
458 		return 0;
459 
460 	switch (hdr_type) {
461 	case PCI_HEADER_TYPE_NORMAL:
462 	case PCI_HEADER_TYPE_BRIDGE:
463 		return PCI_CAPABILITY_LIST;
464 	case PCI_HEADER_TYPE_CARDBUS:
465 		return PCI_CB_CAPABILITY_LIST;
466 	}
467 
468 	return 0;
469 }
470 
471 /**
472  * pci_find_capability - query for devices' capabilities
473  * @dev: PCI device to query
474  * @cap: capability code
475  *
476  * Tell if a device supports a given PCI capability.
477  * Returns the address of the requested capability structure within the
478  * device's PCI configuration space or 0 in case the device does not
479  * support it.  Possible values for @cap include:
480  *
481  *  %PCI_CAP_ID_PM           Power Management
482  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
483  *  %PCI_CAP_ID_VPD          Vital Product Data
484  *  %PCI_CAP_ID_SLOTID       Slot Identification
485  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
486  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
487  *  %PCI_CAP_ID_PCIX         PCI-X
488  *  %PCI_CAP_ID_EXP          PCI Express
489  */
490 u8 pci_find_capability(struct pci_dev *dev, int cap)
491 {
492 	u8 pos;
493 
494 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
495 	if (pos)
496 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
497 
498 	return pos;
499 }
500 EXPORT_SYMBOL(pci_find_capability);
501 
502 /**
503  * pci_bus_find_capability - query for devices' capabilities
504  * @bus: the PCI bus to query
505  * @devfn: PCI device to query
506  * @cap: capability code
507  *
508  * Like pci_find_capability() but works for PCI devices that do not have a
509  * pci_dev structure set up yet.
510  *
511  * Returns the address of the requested capability structure within the
512  * device's PCI configuration space or 0 in case the device does not
513  * support it.
514  */
515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
516 {
517 	u8 hdr_type, pos;
518 
519 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
520 
521 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
522 	if (pos)
523 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
524 
525 	return pos;
526 }
527 EXPORT_SYMBOL(pci_bus_find_capability);
528 
529 /**
530  * pci_find_next_ext_capability - Find an extended capability
531  * @dev: PCI device to query
532  * @start: address at which to start looking (0 to start at beginning of list)
533  * @cap: capability code
534  *
535  * Returns the address of the next matching extended capability structure
536  * within the device's PCI configuration space or 0 if the device does
537  * not support it.  Some capabilities can occur several times, e.g., the
538  * vendor-specific capability, and this provides a way to find them all.
539  */
540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
541 {
542 	u32 header;
543 	int ttl;
544 	u16 pos = PCI_CFG_SPACE_SIZE;
545 
546 	/* minimum 8 bytes per capability */
547 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
548 
549 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
550 		return 0;
551 
552 	if (start)
553 		pos = start;
554 
555 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 		return 0;
557 
558 	/*
559 	 * If we have no capabilities, this is indicated by cap ID,
560 	 * cap version and next pointer all being 0.
561 	 */
562 	if (header == 0)
563 		return 0;
564 
565 	while (ttl-- > 0) {
566 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
567 			return pos;
568 
569 		pos = PCI_EXT_CAP_NEXT(header);
570 		if (pos < PCI_CFG_SPACE_SIZE)
571 			break;
572 
573 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
574 			break;
575 	}
576 
577 	return 0;
578 }
579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
580 
581 /**
582  * pci_find_ext_capability - Find an extended capability
583  * @dev: PCI device to query
584  * @cap: capability code
585  *
586  * Returns the address of the requested extended capability structure
587  * within the device's PCI configuration space or 0 if the device does
588  * not support it.  Possible values for @cap include:
589  *
590  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
591  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
592  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
593  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
594  */
595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
596 {
597 	return pci_find_next_ext_capability(dev, 0, cap);
598 }
599 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
600 
601 /**
602  * pci_get_dsn - Read and return the 8-byte Device Serial Number
603  * @dev: PCI device to query
604  *
605  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
606  * Number.
607  *
608  * Returns the DSN, or zero if the capability does not exist.
609  */
610 u64 pci_get_dsn(struct pci_dev *dev)
611 {
612 	u32 dword;
613 	u64 dsn;
614 	int pos;
615 
616 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
617 	if (!pos)
618 		return 0;
619 
620 	/*
621 	 * The Device Serial Number is two dwords offset 4 bytes from the
622 	 * capability position. The specification says that the first dword is
623 	 * the lower half, and the second dword is the upper half.
624 	 */
625 	pos += 4;
626 	pci_read_config_dword(dev, pos, &dword);
627 	dsn = (u64)dword;
628 	pci_read_config_dword(dev, pos + 4, &dword);
629 	dsn |= ((u64)dword) << 32;
630 
631 	return dsn;
632 }
633 EXPORT_SYMBOL_GPL(pci_get_dsn);
634 
635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
636 {
637 	int rc, ttl = PCI_FIND_CAP_TTL;
638 	u8 cap, mask;
639 
640 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
641 		mask = HT_3BIT_CAP_MASK;
642 	else
643 		mask = HT_5BIT_CAP_MASK;
644 
645 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
646 				      PCI_CAP_ID_HT, &ttl);
647 	while (pos) {
648 		rc = pci_read_config_byte(dev, pos + 3, &cap);
649 		if (rc != PCIBIOS_SUCCESSFUL)
650 			return 0;
651 
652 		if ((cap & mask) == ht_cap)
653 			return pos;
654 
655 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
656 					      pos + PCI_CAP_LIST_NEXT,
657 					      PCI_CAP_ID_HT, &ttl);
658 	}
659 
660 	return 0;
661 }
662 
663 /**
664  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
665  * @dev: PCI device to query
666  * @pos: Position from which to continue searching
667  * @ht_cap: HyperTransport capability code
668  *
669  * To be used in conjunction with pci_find_ht_capability() to search for
670  * all capabilities matching @ht_cap. @pos should always be a value returned
671  * from pci_find_ht_capability().
672  *
673  * NB. To be 100% safe against broken PCI devices, the caller should take
674  * steps to avoid an infinite loop.
675  */
676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
677 {
678 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
679 }
680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
681 
682 /**
683  * pci_find_ht_capability - query a device's HyperTransport capabilities
684  * @dev: PCI device to query
685  * @ht_cap: HyperTransport capability code
686  *
687  * Tell if a device supports a given HyperTransport capability.
688  * Returns an address within the device's PCI configuration space
689  * or 0 in case the device does not support the request capability.
690  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
691  * which has a HyperTransport capability matching @ht_cap.
692  */
693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
694 {
695 	u8 pos;
696 
697 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
698 	if (pos)
699 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
700 
701 	return pos;
702 }
703 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
704 
705 /**
706  * pci_find_vsec_capability - Find a vendor-specific extended capability
707  * @dev: PCI device to query
708  * @vendor: Vendor ID for which capability is defined
709  * @cap: Vendor-specific capability ID
710  *
711  * If @dev has Vendor ID @vendor, search for a VSEC capability with
712  * VSEC ID @cap. If found, return the capability offset in
713  * config space; otherwise return 0.
714  */
715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
716 {
717 	u16 vsec = 0;
718 	u32 header;
719 
720 	if (vendor != dev->vendor)
721 		return 0;
722 
723 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
724 						     PCI_EXT_CAP_ID_VNDR))) {
725 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
726 					  &header) == PCIBIOS_SUCCESSFUL &&
727 		    PCI_VNDR_HEADER_ID(header) == cap)
728 			return vsec;
729 	}
730 
731 	return 0;
732 }
733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
734 
735 /**
736  * pci_find_dvsec_capability - Find DVSEC for vendor
737  * @dev: PCI device to query
738  * @vendor: Vendor ID to match for the DVSEC
739  * @dvsec: Designated Vendor-specific capability ID
740  *
741  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
742  * offset in config space; otherwise return 0.
743  */
744 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
745 {
746 	int pos;
747 
748 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
749 	if (!pos)
750 		return 0;
751 
752 	while (pos) {
753 		u16 v, id;
754 
755 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
756 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
757 		if (vendor == v && dvsec == id)
758 			return pos;
759 
760 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
761 	}
762 
763 	return 0;
764 }
765 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
766 
767 /**
768  * pci_find_parent_resource - return resource region of parent bus of given
769  *			      region
770  * @dev: PCI device structure contains resources to be searched
771  * @res: child resource record for which parent is sought
772  *
773  * For given resource region of given device, return the resource region of
774  * parent bus the given region is contained in.
775  */
776 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
777 					  struct resource *res)
778 {
779 	const struct pci_bus *bus = dev->bus;
780 	struct resource *r;
781 	int i;
782 
783 	pci_bus_for_each_resource(bus, r, i) {
784 		if (!r)
785 			continue;
786 		if (resource_contains(r, res)) {
787 
788 			/*
789 			 * If the window is prefetchable but the BAR is
790 			 * not, the allocator made a mistake.
791 			 */
792 			if (r->flags & IORESOURCE_PREFETCH &&
793 			    !(res->flags & IORESOURCE_PREFETCH))
794 				return NULL;
795 
796 			/*
797 			 * If we're below a transparent bridge, there may
798 			 * be both a positively-decoded aperture and a
799 			 * subtractively-decoded region that contain the BAR.
800 			 * We want the positively-decoded one, so this depends
801 			 * on pci_bus_for_each_resource() giving us those
802 			 * first.
803 			 */
804 			return r;
805 		}
806 	}
807 	return NULL;
808 }
809 EXPORT_SYMBOL(pci_find_parent_resource);
810 
811 /**
812  * pci_find_resource - Return matching PCI device resource
813  * @dev: PCI device to query
814  * @res: Resource to look for
815  *
816  * Goes over standard PCI resources (BARs) and checks if the given resource
817  * is partially or fully contained in any of them. In that case the
818  * matching resource is returned, %NULL otherwise.
819  */
820 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
821 {
822 	int i;
823 
824 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
825 		struct resource *r = &dev->resource[i];
826 
827 		if (r->start && resource_contains(r, res))
828 			return r;
829 	}
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(pci_find_resource);
834 
835 /**
836  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
837  * @dev: the PCI device to operate on
838  * @pos: config space offset of status word
839  * @mask: mask of bit(s) to care about in status word
840  *
841  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
842  */
843 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
844 {
845 	int i;
846 
847 	/* Wait for Transaction Pending bit clean */
848 	for (i = 0; i < 4; i++) {
849 		u16 status;
850 		if (i)
851 			msleep((1 << (i - 1)) * 100);
852 
853 		pci_read_config_word(dev, pos, &status);
854 		if (!(status & mask))
855 			return 1;
856 	}
857 
858 	return 0;
859 }
860 
861 static int pci_acs_enable;
862 
863 /**
864  * pci_request_acs - ask for ACS to be enabled if supported
865  */
866 void pci_request_acs(void)
867 {
868 	pci_acs_enable = 1;
869 }
870 
871 static const char *disable_acs_redir_param;
872 
873 /**
874  * pci_disable_acs_redir - disable ACS redirect capabilities
875  * @dev: the PCI device
876  *
877  * For only devices specified in the disable_acs_redir parameter.
878  */
879 static void pci_disable_acs_redir(struct pci_dev *dev)
880 {
881 	int ret = 0;
882 	const char *p;
883 	int pos;
884 	u16 ctrl;
885 
886 	if (!disable_acs_redir_param)
887 		return;
888 
889 	p = disable_acs_redir_param;
890 	while (*p) {
891 		ret = pci_dev_str_match(dev, p, &p);
892 		if (ret < 0) {
893 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
894 				     disable_acs_redir_param);
895 
896 			break;
897 		} else if (ret == 1) {
898 			/* Found a match */
899 			break;
900 		}
901 
902 		if (*p != ';' && *p != ',') {
903 			/* End of param or invalid format */
904 			break;
905 		}
906 		p++;
907 	}
908 
909 	if (ret != 1)
910 		return;
911 
912 	if (!pci_dev_specific_disable_acs_redir(dev))
913 		return;
914 
915 	pos = dev->acs_cap;
916 	if (!pos) {
917 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
918 		return;
919 	}
920 
921 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
922 
923 	/* P2P Request & Completion Redirect */
924 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
925 
926 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
927 
928 	pci_info(dev, "disabled ACS redirect\n");
929 }
930 
931 /**
932  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
933  * @dev: the PCI device
934  */
935 static void pci_std_enable_acs(struct pci_dev *dev)
936 {
937 	int pos;
938 	u16 cap;
939 	u16 ctrl;
940 
941 	pos = dev->acs_cap;
942 	if (!pos)
943 		return;
944 
945 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
946 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
947 
948 	/* Source Validation */
949 	ctrl |= (cap & PCI_ACS_SV);
950 
951 	/* P2P Request Redirect */
952 	ctrl |= (cap & PCI_ACS_RR);
953 
954 	/* P2P Completion Redirect */
955 	ctrl |= (cap & PCI_ACS_CR);
956 
957 	/* Upstream Forwarding */
958 	ctrl |= (cap & PCI_ACS_UF);
959 
960 	/* Enable Translation Blocking for external devices and noats */
961 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
962 		ctrl |= (cap & PCI_ACS_TB);
963 
964 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
965 }
966 
967 /**
968  * pci_enable_acs - enable ACS if hardware support it
969  * @dev: the PCI device
970  */
971 static void pci_enable_acs(struct pci_dev *dev)
972 {
973 	if (!pci_acs_enable)
974 		goto disable_acs_redir;
975 
976 	if (!pci_dev_specific_enable_acs(dev))
977 		goto disable_acs_redir;
978 
979 	pci_std_enable_acs(dev);
980 
981 disable_acs_redir:
982 	/*
983 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
984 	 * enabled by the kernel because it may have been enabled by
985 	 * platform firmware.  So if we are told to disable it, we should
986 	 * always disable it after setting the kernel's default
987 	 * preferences.
988 	 */
989 	pci_disable_acs_redir(dev);
990 }
991 
992 /**
993  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
994  * @dev: PCI device to have its BARs restored
995  *
996  * Restore the BAR values for a given device, so as to make it
997  * accessible by its driver.
998  */
999 static void pci_restore_bars(struct pci_dev *dev)
1000 {
1001 	int i;
1002 
1003 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1004 		pci_update_resource(dev, i);
1005 }
1006 
1007 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1008 {
1009 	if (pci_use_mid_pm())
1010 		return true;
1011 
1012 	return acpi_pci_power_manageable(dev);
1013 }
1014 
1015 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1016 					       pci_power_t t)
1017 {
1018 	if (pci_use_mid_pm())
1019 		return mid_pci_set_power_state(dev, t);
1020 
1021 	return acpi_pci_set_power_state(dev, t);
1022 }
1023 
1024 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1025 {
1026 	if (pci_use_mid_pm())
1027 		return mid_pci_get_power_state(dev);
1028 
1029 	return acpi_pci_get_power_state(dev);
1030 }
1031 
1032 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1033 {
1034 	if (!pci_use_mid_pm())
1035 		acpi_pci_refresh_power_state(dev);
1036 }
1037 
1038 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1039 {
1040 	if (pci_use_mid_pm())
1041 		return PCI_POWER_ERROR;
1042 
1043 	return acpi_pci_choose_state(dev);
1044 }
1045 
1046 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1047 {
1048 	if (pci_use_mid_pm())
1049 		return PCI_POWER_ERROR;
1050 
1051 	return acpi_pci_wakeup(dev, enable);
1052 }
1053 
1054 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1055 {
1056 	if (pci_use_mid_pm())
1057 		return false;
1058 
1059 	return acpi_pci_need_resume(dev);
1060 }
1061 
1062 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1063 {
1064 	if (pci_use_mid_pm())
1065 		return false;
1066 
1067 	return acpi_pci_bridge_d3(dev);
1068 }
1069 
1070 /**
1071  * pci_update_current_state - Read power state of given device and cache it
1072  * @dev: PCI device to handle.
1073  * @state: State to cache in case the device doesn't have the PM capability
1074  *
1075  * The power state is read from the PMCSR register, which however is
1076  * inaccessible in D3cold.  The platform firmware is therefore queried first
1077  * to detect accessibility of the register.  In case the platform firmware
1078  * reports an incorrect state or the device isn't power manageable by the
1079  * platform at all, we try to detect D3cold by testing accessibility of the
1080  * vendor ID in config space.
1081  */
1082 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1083 {
1084 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1085 		dev->current_state = PCI_D3cold;
1086 	} else if (dev->pm_cap) {
1087 		u16 pmcsr;
1088 
1089 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1090 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1091 			dev->current_state = PCI_D3cold;
1092 			return;
1093 		}
1094 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1095 	} else {
1096 		dev->current_state = state;
1097 	}
1098 }
1099 
1100 /**
1101  * pci_refresh_power_state - Refresh the given device's power state data
1102  * @dev: Target PCI device.
1103  *
1104  * Ask the platform to refresh the devices power state information and invoke
1105  * pci_update_current_state() to update its current PCI power state.
1106  */
1107 void pci_refresh_power_state(struct pci_dev *dev)
1108 {
1109 	platform_pci_refresh_power_state(dev);
1110 	pci_update_current_state(dev, dev->current_state);
1111 }
1112 
1113 /**
1114  * pci_platform_power_transition - Use platform to change device power state
1115  * @dev: PCI device to handle.
1116  * @state: State to put the device into.
1117  */
1118 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1119 {
1120 	int error;
1121 
1122 	error = platform_pci_set_power_state(dev, state);
1123 	if (!error)
1124 		pci_update_current_state(dev, state);
1125 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1126 		dev->current_state = PCI_D0;
1127 
1128 	return error;
1129 }
1130 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1131 
1132 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1133 {
1134 	pm_request_resume(&pci_dev->dev);
1135 	return 0;
1136 }
1137 
1138 /**
1139  * pci_resume_bus - Walk given bus and runtime resume devices on it
1140  * @bus: Top bus of the subtree to walk.
1141  */
1142 void pci_resume_bus(struct pci_bus *bus)
1143 {
1144 	if (bus)
1145 		pci_walk_bus(bus, pci_resume_one, NULL);
1146 }
1147 
1148 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1149 {
1150 	int delay = 1;
1151 	u32 id;
1152 
1153 	/*
1154 	 * After reset, the device should not silently discard config
1155 	 * requests, but it may still indicate that it needs more time by
1156 	 * responding to them with CRS completions.  The Root Port will
1157 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1158 	 * the read (except when CRS SV is enabled and the read was for the
1159 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1160 	 *
1161 	 * Wait for the device to return a non-CRS completion.  Read the
1162 	 * Command register instead of Vendor ID so we don't have to
1163 	 * contend with the CRS SV value.
1164 	 */
1165 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1166 	while (PCI_POSSIBLE_ERROR(id)) {
1167 		if (delay > timeout) {
1168 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1169 				 delay - 1, reset_type);
1170 			return -ENOTTY;
1171 		}
1172 
1173 		if (delay > 1000)
1174 			pci_info(dev, "not ready %dms after %s; waiting\n",
1175 				 delay - 1, reset_type);
1176 
1177 		msleep(delay);
1178 		delay *= 2;
1179 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1180 	}
1181 
1182 	if (delay > 1000)
1183 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1184 			 reset_type);
1185 
1186 	return 0;
1187 }
1188 
1189 /**
1190  * pci_power_up - Put the given device into D0
1191  * @dev: PCI device to power up
1192  *
1193  * On success, return 0 or 1, depending on whether or not it is necessary to
1194  * restore the device's BARs subsequently (1 is returned in that case).
1195  */
1196 int pci_power_up(struct pci_dev *dev)
1197 {
1198 	bool need_restore;
1199 	pci_power_t state;
1200 	u16 pmcsr;
1201 
1202 	platform_pci_set_power_state(dev, PCI_D0);
1203 
1204 	if (!dev->pm_cap) {
1205 		state = platform_pci_get_power_state(dev);
1206 		if (state == PCI_UNKNOWN)
1207 			dev->current_state = PCI_D0;
1208 		else
1209 			dev->current_state = state;
1210 
1211 		if (state == PCI_D0)
1212 			return 0;
1213 
1214 		return -EIO;
1215 	}
1216 
1217 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1218 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1219 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1220 			pci_power_name(dev->current_state));
1221 		dev->current_state = PCI_D3cold;
1222 		return -EIO;
1223 	}
1224 
1225 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1226 
1227 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1228 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1229 
1230 	if (state == PCI_D0)
1231 		goto end;
1232 
1233 	/*
1234 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1235 	 * PME_En, and sets PowerState to 0.
1236 	 */
1237 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1238 
1239 	/* Mandatory transition delays; see PCI PM 1.2. */
1240 	if (state == PCI_D3hot)
1241 		pci_dev_d3_sleep(dev);
1242 	else if (state == PCI_D2)
1243 		udelay(PCI_PM_D2_DELAY);
1244 
1245 end:
1246 	dev->current_state = PCI_D0;
1247 	if (need_restore)
1248 		return 1;
1249 
1250 	return 0;
1251 }
1252 
1253 /**
1254  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1255  * @dev: PCI device to power up
1256  *
1257  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1258  * to confirm the state change, restore its BARs if they might be lost and
1259  * reconfigure ASPM in acordance with the new power state.
1260  *
1261  * If pci_restore_state() is going to be called right after a power state change
1262  * to D0, it is more efficient to use pci_power_up() directly instead of this
1263  * function.
1264  */
1265 static int pci_set_full_power_state(struct pci_dev *dev)
1266 {
1267 	u16 pmcsr;
1268 	int ret;
1269 
1270 	ret = pci_power_up(dev);
1271 	if (ret < 0)
1272 		return ret;
1273 
1274 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1275 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1276 	if (dev->current_state != PCI_D0) {
1277 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1278 				     pci_power_name(dev->current_state));
1279 	} else if (ret > 0) {
1280 		/*
1281 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1282 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1283 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1284 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1285 		 * For example, at least some versions of the 3c905B and the
1286 		 * 3c556B exhibit this behaviour.
1287 		 *
1288 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1289 		 * devices in a D3hot state at boot.  Consequently, we need to
1290 		 * restore at least the BARs so that the device will be
1291 		 * accessible to its driver.
1292 		 */
1293 		pci_restore_bars(dev);
1294 	}
1295 
1296 	if (dev->bus->self)
1297 		pcie_aspm_pm_state_change(dev->bus->self);
1298 
1299 	return 0;
1300 }
1301 
1302 /**
1303  * __pci_dev_set_current_state - Set current state of a PCI device
1304  * @dev: Device to handle
1305  * @data: pointer to state to be set
1306  */
1307 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1308 {
1309 	pci_power_t state = *(pci_power_t *)data;
1310 
1311 	dev->current_state = state;
1312 	return 0;
1313 }
1314 
1315 /**
1316  * pci_bus_set_current_state - Walk given bus and set current state of devices
1317  * @bus: Top bus of the subtree to walk.
1318  * @state: state to be set
1319  */
1320 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1321 {
1322 	if (bus)
1323 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1324 }
1325 
1326 /**
1327  * pci_set_low_power_state - Put a PCI device into a low-power state.
1328  * @dev: PCI device to handle.
1329  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1330  *
1331  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1332  *
1333  * RETURN VALUE:
1334  * -EINVAL if the requested state is invalid.
1335  * -EIO if device does not support PCI PM or its PM capabilities register has a
1336  * wrong version, or device doesn't support the requested state.
1337  * 0 if device already is in the requested state.
1338  * 0 if device's power state has been successfully changed.
1339  */
1340 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1341 {
1342 	u16 pmcsr;
1343 
1344 	if (!dev->pm_cap)
1345 		return -EIO;
1346 
1347 	/*
1348 	 * Validate transition: We can enter D0 from any state, but if
1349 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1350 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1351 	 * we'd have to go from D3 to D0, then to D1.
1352 	 */
1353 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1354 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1355 			pci_power_name(dev->current_state),
1356 			pci_power_name(state));
1357 		return -EINVAL;
1358 	}
1359 
1360 	/* Check if this device supports the desired state */
1361 	if ((state == PCI_D1 && !dev->d1_support)
1362 	   || (state == PCI_D2 && !dev->d2_support))
1363 		return -EIO;
1364 
1365 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1366 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1367 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1368 			pci_power_name(dev->current_state),
1369 			pci_power_name(state));
1370 		dev->current_state = PCI_D3cold;
1371 		return -EIO;
1372 	}
1373 
1374 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1375 	pmcsr |= state;
1376 
1377 	/* Enter specified state */
1378 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1379 
1380 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1381 	if (state == PCI_D3hot)
1382 		pci_dev_d3_sleep(dev);
1383 	else if (state == PCI_D2)
1384 		udelay(PCI_PM_D2_DELAY);
1385 
1386 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1387 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1388 	if (dev->current_state != state)
1389 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1390 				     pci_power_name(dev->current_state),
1391 				     pci_power_name(state));
1392 
1393 	if (dev->bus->self)
1394 		pcie_aspm_pm_state_change(dev->bus->self);
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  * pci_set_power_state - Set the power state of a PCI device
1401  * @dev: PCI device to handle.
1402  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1403  *
1404  * Transition a device to a new power state, using the platform firmware and/or
1405  * the device's PCI PM registers.
1406  *
1407  * RETURN VALUE:
1408  * -EINVAL if the requested state is invalid.
1409  * -EIO if device does not support PCI PM or its PM capabilities register has a
1410  * wrong version, or device doesn't support the requested state.
1411  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1412  * 0 if device already is in the requested state.
1413  * 0 if the transition is to D3 but D3 is not supported.
1414  * 0 if device's power state has been successfully changed.
1415  */
1416 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1417 {
1418 	int error;
1419 
1420 	/* Bound the state we're entering */
1421 	if (state > PCI_D3cold)
1422 		state = PCI_D3cold;
1423 	else if (state < PCI_D0)
1424 		state = PCI_D0;
1425 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1426 
1427 		/*
1428 		 * If the device or the parent bridge do not support PCI
1429 		 * PM, ignore the request if we're doing anything other
1430 		 * than putting it into D0 (which would only happen on
1431 		 * boot).
1432 		 */
1433 		return 0;
1434 
1435 	/* Check if we're already there */
1436 	if (dev->current_state == state)
1437 		return 0;
1438 
1439 	if (state == PCI_D0)
1440 		return pci_set_full_power_state(dev);
1441 
1442 	/*
1443 	 * This device is quirked not to be put into D3, so don't put it in
1444 	 * D3
1445 	 */
1446 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1447 		return 0;
1448 
1449 	if (state == PCI_D3cold) {
1450 		/*
1451 		 * To put the device in D3cold, put it into D3hot in the native
1452 		 * way, then put it into D3cold using platform ops.
1453 		 */
1454 		error = pci_set_low_power_state(dev, PCI_D3hot);
1455 
1456 		if (pci_platform_power_transition(dev, PCI_D3cold))
1457 			return error;
1458 
1459 		/* Powering off a bridge may power off the whole hierarchy */
1460 		if (dev->current_state == PCI_D3cold)
1461 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1462 	} else {
1463 		error = pci_set_low_power_state(dev, state);
1464 
1465 		if (pci_platform_power_transition(dev, state))
1466 			return error;
1467 	}
1468 
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(pci_set_power_state);
1472 
1473 #define PCI_EXP_SAVE_REGS	7
1474 
1475 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1476 						       u16 cap, bool extended)
1477 {
1478 	struct pci_cap_saved_state *tmp;
1479 
1480 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1481 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1482 			return tmp;
1483 	}
1484 	return NULL;
1485 }
1486 
1487 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1488 {
1489 	return _pci_find_saved_cap(dev, cap, false);
1490 }
1491 
1492 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1493 {
1494 	return _pci_find_saved_cap(dev, cap, true);
1495 }
1496 
1497 static int pci_save_pcie_state(struct pci_dev *dev)
1498 {
1499 	int i = 0;
1500 	struct pci_cap_saved_state *save_state;
1501 	u16 *cap;
1502 
1503 	if (!pci_is_pcie(dev))
1504 		return 0;
1505 
1506 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1507 	if (!save_state) {
1508 		pci_err(dev, "buffer not found in %s\n", __func__);
1509 		return -ENOMEM;
1510 	}
1511 
1512 	cap = (u16 *)&save_state->cap.data[0];
1513 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1514 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1515 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1516 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1517 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1518 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1519 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1520 
1521 	return 0;
1522 }
1523 
1524 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1525 {
1526 #ifdef CONFIG_PCIEASPM
1527 	struct pci_dev *bridge;
1528 	u32 ctl;
1529 
1530 	bridge = pci_upstream_bridge(dev);
1531 	if (bridge && bridge->ltr_path) {
1532 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1533 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1534 			pci_dbg(bridge, "re-enabling LTR\n");
1535 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1536 						 PCI_EXP_DEVCTL2_LTR_EN);
1537 		}
1538 	}
1539 #endif
1540 }
1541 
1542 static void pci_restore_pcie_state(struct pci_dev *dev)
1543 {
1544 	int i = 0;
1545 	struct pci_cap_saved_state *save_state;
1546 	u16 *cap;
1547 
1548 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1549 	if (!save_state)
1550 		return;
1551 
1552 	/*
1553 	 * Downstream ports reset the LTR enable bit when link goes down.
1554 	 * Check and re-configure the bit here before restoring device.
1555 	 * PCIe r5.0, sec 7.5.3.16.
1556 	 */
1557 	pci_bridge_reconfigure_ltr(dev);
1558 
1559 	cap = (u16 *)&save_state->cap.data[0];
1560 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1561 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1562 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1563 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1564 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1565 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1566 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1567 }
1568 
1569 static int pci_save_pcix_state(struct pci_dev *dev)
1570 {
1571 	int pos;
1572 	struct pci_cap_saved_state *save_state;
1573 
1574 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1575 	if (!pos)
1576 		return 0;
1577 
1578 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1579 	if (!save_state) {
1580 		pci_err(dev, "buffer not found in %s\n", __func__);
1581 		return -ENOMEM;
1582 	}
1583 
1584 	pci_read_config_word(dev, pos + PCI_X_CMD,
1585 			     (u16 *)save_state->cap.data);
1586 
1587 	return 0;
1588 }
1589 
1590 static void pci_restore_pcix_state(struct pci_dev *dev)
1591 {
1592 	int i = 0, pos;
1593 	struct pci_cap_saved_state *save_state;
1594 	u16 *cap;
1595 
1596 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1597 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1598 	if (!save_state || !pos)
1599 		return;
1600 	cap = (u16 *)&save_state->cap.data[0];
1601 
1602 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1603 }
1604 
1605 static void pci_save_ltr_state(struct pci_dev *dev)
1606 {
1607 	int ltr;
1608 	struct pci_cap_saved_state *save_state;
1609 	u32 *cap;
1610 
1611 	if (!pci_is_pcie(dev))
1612 		return;
1613 
1614 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1615 	if (!ltr)
1616 		return;
1617 
1618 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1619 	if (!save_state) {
1620 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1621 		return;
1622 	}
1623 
1624 	/* Some broken devices only support dword access to LTR */
1625 	cap = &save_state->cap.data[0];
1626 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1627 }
1628 
1629 static void pci_restore_ltr_state(struct pci_dev *dev)
1630 {
1631 	struct pci_cap_saved_state *save_state;
1632 	int ltr;
1633 	u32 *cap;
1634 
1635 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1636 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1637 	if (!save_state || !ltr)
1638 		return;
1639 
1640 	/* Some broken devices only support dword access to LTR */
1641 	cap = &save_state->cap.data[0];
1642 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1643 }
1644 
1645 /**
1646  * pci_save_state - save the PCI configuration space of a device before
1647  *		    suspending
1648  * @dev: PCI device that we're dealing with
1649  */
1650 int pci_save_state(struct pci_dev *dev)
1651 {
1652 	int i;
1653 	/* XXX: 100% dword access ok here? */
1654 	for (i = 0; i < 16; i++) {
1655 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1656 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1657 			i * 4, dev->saved_config_space[i]);
1658 	}
1659 	dev->state_saved = true;
1660 
1661 	i = pci_save_pcie_state(dev);
1662 	if (i != 0)
1663 		return i;
1664 
1665 	i = pci_save_pcix_state(dev);
1666 	if (i != 0)
1667 		return i;
1668 
1669 	pci_save_ltr_state(dev);
1670 	pci_save_dpc_state(dev);
1671 	pci_save_aer_state(dev);
1672 	pci_save_ptm_state(dev);
1673 	return pci_save_vc_state(dev);
1674 }
1675 EXPORT_SYMBOL(pci_save_state);
1676 
1677 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1678 				     u32 saved_val, int retry, bool force)
1679 {
1680 	u32 val;
1681 
1682 	pci_read_config_dword(pdev, offset, &val);
1683 	if (!force && val == saved_val)
1684 		return;
1685 
1686 	for (;;) {
1687 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1688 			offset, val, saved_val);
1689 		pci_write_config_dword(pdev, offset, saved_val);
1690 		if (retry-- <= 0)
1691 			return;
1692 
1693 		pci_read_config_dword(pdev, offset, &val);
1694 		if (val == saved_val)
1695 			return;
1696 
1697 		mdelay(1);
1698 	}
1699 }
1700 
1701 static void pci_restore_config_space_range(struct pci_dev *pdev,
1702 					   int start, int end, int retry,
1703 					   bool force)
1704 {
1705 	int index;
1706 
1707 	for (index = end; index >= start; index--)
1708 		pci_restore_config_dword(pdev, 4 * index,
1709 					 pdev->saved_config_space[index],
1710 					 retry, force);
1711 }
1712 
1713 static void pci_restore_config_space(struct pci_dev *pdev)
1714 {
1715 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1716 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1717 		/* Restore BARs before the command register. */
1718 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1719 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1720 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1721 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1722 
1723 		/*
1724 		 * Force rewriting of prefetch registers to avoid S3 resume
1725 		 * issues on Intel PCI bridges that occur when these
1726 		 * registers are not explicitly written.
1727 		 */
1728 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1729 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1730 	} else {
1731 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1732 	}
1733 }
1734 
1735 static void pci_restore_rebar_state(struct pci_dev *pdev)
1736 {
1737 	unsigned int pos, nbars, i;
1738 	u32 ctrl;
1739 
1740 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1741 	if (!pos)
1742 		return;
1743 
1744 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1745 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1746 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1747 
1748 	for (i = 0; i < nbars; i++, pos += 8) {
1749 		struct resource *res;
1750 		int bar_idx, size;
1751 
1752 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1753 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1754 		res = pdev->resource + bar_idx;
1755 		size = pci_rebar_bytes_to_size(resource_size(res));
1756 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1757 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1758 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1759 	}
1760 }
1761 
1762 /**
1763  * pci_restore_state - Restore the saved state of a PCI device
1764  * @dev: PCI device that we're dealing with
1765  */
1766 void pci_restore_state(struct pci_dev *dev)
1767 {
1768 	if (!dev->state_saved)
1769 		return;
1770 
1771 	/*
1772 	 * Restore max latencies (in the LTR capability) before enabling
1773 	 * LTR itself (in the PCIe capability).
1774 	 */
1775 	pci_restore_ltr_state(dev);
1776 
1777 	pci_restore_pcie_state(dev);
1778 	pci_restore_pasid_state(dev);
1779 	pci_restore_pri_state(dev);
1780 	pci_restore_ats_state(dev);
1781 	pci_restore_vc_state(dev);
1782 	pci_restore_rebar_state(dev);
1783 	pci_restore_dpc_state(dev);
1784 	pci_restore_ptm_state(dev);
1785 
1786 	pci_aer_clear_status(dev);
1787 	pci_restore_aer_state(dev);
1788 
1789 	pci_restore_config_space(dev);
1790 
1791 	pci_restore_pcix_state(dev);
1792 	pci_restore_msi_state(dev);
1793 
1794 	/* Restore ACS and IOV configuration state */
1795 	pci_enable_acs(dev);
1796 	pci_restore_iov_state(dev);
1797 
1798 	dev->state_saved = false;
1799 }
1800 EXPORT_SYMBOL(pci_restore_state);
1801 
1802 struct pci_saved_state {
1803 	u32 config_space[16];
1804 	struct pci_cap_saved_data cap[];
1805 };
1806 
1807 /**
1808  * pci_store_saved_state - Allocate and return an opaque struct containing
1809  *			   the device saved state.
1810  * @dev: PCI device that we're dealing with
1811  *
1812  * Return NULL if no state or error.
1813  */
1814 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1815 {
1816 	struct pci_saved_state *state;
1817 	struct pci_cap_saved_state *tmp;
1818 	struct pci_cap_saved_data *cap;
1819 	size_t size;
1820 
1821 	if (!dev->state_saved)
1822 		return NULL;
1823 
1824 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1825 
1826 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1827 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1828 
1829 	state = kzalloc(size, GFP_KERNEL);
1830 	if (!state)
1831 		return NULL;
1832 
1833 	memcpy(state->config_space, dev->saved_config_space,
1834 	       sizeof(state->config_space));
1835 
1836 	cap = state->cap;
1837 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1838 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1839 		memcpy(cap, &tmp->cap, len);
1840 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1841 	}
1842 	/* Empty cap_save terminates list */
1843 
1844 	return state;
1845 }
1846 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1847 
1848 /**
1849  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1850  * @dev: PCI device that we're dealing with
1851  * @state: Saved state returned from pci_store_saved_state()
1852  */
1853 int pci_load_saved_state(struct pci_dev *dev,
1854 			 struct pci_saved_state *state)
1855 {
1856 	struct pci_cap_saved_data *cap;
1857 
1858 	dev->state_saved = false;
1859 
1860 	if (!state)
1861 		return 0;
1862 
1863 	memcpy(dev->saved_config_space, state->config_space,
1864 	       sizeof(state->config_space));
1865 
1866 	cap = state->cap;
1867 	while (cap->size) {
1868 		struct pci_cap_saved_state *tmp;
1869 
1870 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1871 		if (!tmp || tmp->cap.size != cap->size)
1872 			return -EINVAL;
1873 
1874 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1875 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1876 		       sizeof(struct pci_cap_saved_data) + cap->size);
1877 	}
1878 
1879 	dev->state_saved = true;
1880 	return 0;
1881 }
1882 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1883 
1884 /**
1885  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1886  *				   and free the memory allocated for it.
1887  * @dev: PCI device that we're dealing with
1888  * @state: Pointer to saved state returned from pci_store_saved_state()
1889  */
1890 int pci_load_and_free_saved_state(struct pci_dev *dev,
1891 				  struct pci_saved_state **state)
1892 {
1893 	int ret = pci_load_saved_state(dev, *state);
1894 	kfree(*state);
1895 	*state = NULL;
1896 	return ret;
1897 }
1898 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1899 
1900 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1901 {
1902 	return pci_enable_resources(dev, bars);
1903 }
1904 
1905 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1906 {
1907 	int err;
1908 	struct pci_dev *bridge;
1909 	u16 cmd;
1910 	u8 pin;
1911 
1912 	err = pci_set_power_state(dev, PCI_D0);
1913 	if (err < 0 && err != -EIO)
1914 		return err;
1915 
1916 	bridge = pci_upstream_bridge(dev);
1917 	if (bridge)
1918 		pcie_aspm_powersave_config_link(bridge);
1919 
1920 	err = pcibios_enable_device(dev, bars);
1921 	if (err < 0)
1922 		return err;
1923 	pci_fixup_device(pci_fixup_enable, dev);
1924 
1925 	if (dev->msi_enabled || dev->msix_enabled)
1926 		return 0;
1927 
1928 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1929 	if (pin) {
1930 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1931 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1932 			pci_write_config_word(dev, PCI_COMMAND,
1933 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 /**
1940  * pci_reenable_device - Resume abandoned device
1941  * @dev: PCI device to be resumed
1942  *
1943  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1944  * to be called by normal code, write proper resume handler and use it instead.
1945  */
1946 int pci_reenable_device(struct pci_dev *dev)
1947 {
1948 	if (pci_is_enabled(dev))
1949 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL(pci_reenable_device);
1953 
1954 static void pci_enable_bridge(struct pci_dev *dev)
1955 {
1956 	struct pci_dev *bridge;
1957 	int retval;
1958 
1959 	bridge = pci_upstream_bridge(dev);
1960 	if (bridge)
1961 		pci_enable_bridge(bridge);
1962 
1963 	if (pci_is_enabled(dev)) {
1964 		if (!dev->is_busmaster)
1965 			pci_set_master(dev);
1966 		return;
1967 	}
1968 
1969 	retval = pci_enable_device(dev);
1970 	if (retval)
1971 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1972 			retval);
1973 	pci_set_master(dev);
1974 }
1975 
1976 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1977 {
1978 	struct pci_dev *bridge;
1979 	int err;
1980 	int i, bars = 0;
1981 
1982 	/*
1983 	 * Power state could be unknown at this point, either due to a fresh
1984 	 * boot or a device removal call.  So get the current power state
1985 	 * so that things like MSI message writing will behave as expected
1986 	 * (e.g. if the device really is in D0 at enable time).
1987 	 */
1988 	pci_update_current_state(dev, dev->current_state);
1989 
1990 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1991 		return 0;		/* already enabled */
1992 
1993 	bridge = pci_upstream_bridge(dev);
1994 	if (bridge)
1995 		pci_enable_bridge(bridge);
1996 
1997 	/* only skip sriov related */
1998 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1999 		if (dev->resource[i].flags & flags)
2000 			bars |= (1 << i);
2001 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2002 		if (dev->resource[i].flags & flags)
2003 			bars |= (1 << i);
2004 
2005 	err = do_pci_enable_device(dev, bars);
2006 	if (err < 0)
2007 		atomic_dec(&dev->enable_cnt);
2008 	return err;
2009 }
2010 
2011 /**
2012  * pci_enable_device_io - Initialize a device for use with IO space
2013  * @dev: PCI device to be initialized
2014  *
2015  * Initialize device before it's used by a driver. Ask low-level code
2016  * to enable I/O resources. Wake up the device if it was suspended.
2017  * Beware, this function can fail.
2018  */
2019 int pci_enable_device_io(struct pci_dev *dev)
2020 {
2021 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2022 }
2023 EXPORT_SYMBOL(pci_enable_device_io);
2024 
2025 /**
2026  * pci_enable_device_mem - Initialize a device for use with Memory space
2027  * @dev: PCI device to be initialized
2028  *
2029  * Initialize device before it's used by a driver. Ask low-level code
2030  * to enable Memory resources. Wake up the device if it was suspended.
2031  * Beware, this function can fail.
2032  */
2033 int pci_enable_device_mem(struct pci_dev *dev)
2034 {
2035 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2036 }
2037 EXPORT_SYMBOL(pci_enable_device_mem);
2038 
2039 /**
2040  * pci_enable_device - Initialize device before it's used by a driver.
2041  * @dev: PCI device to be initialized
2042  *
2043  * Initialize device before it's used by a driver. Ask low-level code
2044  * to enable I/O and memory. Wake up the device if it was suspended.
2045  * Beware, this function can fail.
2046  *
2047  * Note we don't actually enable the device many times if we call
2048  * this function repeatedly (we just increment the count).
2049  */
2050 int pci_enable_device(struct pci_dev *dev)
2051 {
2052 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2053 }
2054 EXPORT_SYMBOL(pci_enable_device);
2055 
2056 /*
2057  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2058  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2059  * there's no need to track it separately.  pci_devres is initialized
2060  * when a device is enabled using managed PCI device enable interface.
2061  */
2062 struct pci_devres {
2063 	unsigned int enabled:1;
2064 	unsigned int pinned:1;
2065 	unsigned int orig_intx:1;
2066 	unsigned int restore_intx:1;
2067 	unsigned int mwi:1;
2068 	u32 region_mask;
2069 };
2070 
2071 static void pcim_release(struct device *gendev, void *res)
2072 {
2073 	struct pci_dev *dev = to_pci_dev(gendev);
2074 	struct pci_devres *this = res;
2075 	int i;
2076 
2077 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2078 		if (this->region_mask & (1 << i))
2079 			pci_release_region(dev, i);
2080 
2081 	if (this->mwi)
2082 		pci_clear_mwi(dev);
2083 
2084 	if (this->restore_intx)
2085 		pci_intx(dev, this->orig_intx);
2086 
2087 	if (this->enabled && !this->pinned)
2088 		pci_disable_device(dev);
2089 }
2090 
2091 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2092 {
2093 	struct pci_devres *dr, *new_dr;
2094 
2095 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2096 	if (dr)
2097 		return dr;
2098 
2099 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2100 	if (!new_dr)
2101 		return NULL;
2102 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2103 }
2104 
2105 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2106 {
2107 	if (pci_is_managed(pdev))
2108 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2109 	return NULL;
2110 }
2111 
2112 /**
2113  * pcim_enable_device - Managed pci_enable_device()
2114  * @pdev: PCI device to be initialized
2115  *
2116  * Managed pci_enable_device().
2117  */
2118 int pcim_enable_device(struct pci_dev *pdev)
2119 {
2120 	struct pci_devres *dr;
2121 	int rc;
2122 
2123 	dr = get_pci_dr(pdev);
2124 	if (unlikely(!dr))
2125 		return -ENOMEM;
2126 	if (dr->enabled)
2127 		return 0;
2128 
2129 	rc = pci_enable_device(pdev);
2130 	if (!rc) {
2131 		pdev->is_managed = 1;
2132 		dr->enabled = 1;
2133 	}
2134 	return rc;
2135 }
2136 EXPORT_SYMBOL(pcim_enable_device);
2137 
2138 /**
2139  * pcim_pin_device - Pin managed PCI device
2140  * @pdev: PCI device to pin
2141  *
2142  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2143  * driver detach.  @pdev must have been enabled with
2144  * pcim_enable_device().
2145  */
2146 void pcim_pin_device(struct pci_dev *pdev)
2147 {
2148 	struct pci_devres *dr;
2149 
2150 	dr = find_pci_dr(pdev);
2151 	WARN_ON(!dr || !dr->enabled);
2152 	if (dr)
2153 		dr->pinned = 1;
2154 }
2155 EXPORT_SYMBOL(pcim_pin_device);
2156 
2157 /*
2158  * pcibios_device_add - provide arch specific hooks when adding device dev
2159  * @dev: the PCI device being added
2160  *
2161  * Permits the platform to provide architecture specific functionality when
2162  * devices are added. This is the default implementation. Architecture
2163  * implementations can override this.
2164  */
2165 int __weak pcibios_device_add(struct pci_dev *dev)
2166 {
2167 	return 0;
2168 }
2169 
2170 /**
2171  * pcibios_release_device - provide arch specific hooks when releasing
2172  *			    device dev
2173  * @dev: the PCI device being released
2174  *
2175  * Permits the platform to provide architecture specific functionality when
2176  * devices are released. This is the default implementation. Architecture
2177  * implementations can override this.
2178  */
2179 void __weak pcibios_release_device(struct pci_dev *dev) {}
2180 
2181 /**
2182  * pcibios_disable_device - disable arch specific PCI resources for device dev
2183  * @dev: the PCI device to disable
2184  *
2185  * Disables architecture specific PCI resources for the device. This
2186  * is the default implementation. Architecture implementations can
2187  * override this.
2188  */
2189 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2190 
2191 /**
2192  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2193  * @irq: ISA IRQ to penalize
2194  * @active: IRQ active or not
2195  *
2196  * Permits the platform to provide architecture-specific functionality when
2197  * penalizing ISA IRQs. This is the default implementation. Architecture
2198  * implementations can override this.
2199  */
2200 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2201 
2202 static void do_pci_disable_device(struct pci_dev *dev)
2203 {
2204 	u16 pci_command;
2205 
2206 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2207 	if (pci_command & PCI_COMMAND_MASTER) {
2208 		pci_command &= ~PCI_COMMAND_MASTER;
2209 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2210 	}
2211 
2212 	pcibios_disable_device(dev);
2213 }
2214 
2215 /**
2216  * pci_disable_enabled_device - Disable device without updating enable_cnt
2217  * @dev: PCI device to disable
2218  *
2219  * NOTE: This function is a backend of PCI power management routines and is
2220  * not supposed to be called drivers.
2221  */
2222 void pci_disable_enabled_device(struct pci_dev *dev)
2223 {
2224 	if (pci_is_enabled(dev))
2225 		do_pci_disable_device(dev);
2226 }
2227 
2228 /**
2229  * pci_disable_device - Disable PCI device after use
2230  * @dev: PCI device to be disabled
2231  *
2232  * Signal to the system that the PCI device is not in use by the system
2233  * anymore.  This only involves disabling PCI bus-mastering, if active.
2234  *
2235  * Note we don't actually disable the device until all callers of
2236  * pci_enable_device() have called pci_disable_device().
2237  */
2238 void pci_disable_device(struct pci_dev *dev)
2239 {
2240 	struct pci_devres *dr;
2241 
2242 	dr = find_pci_dr(dev);
2243 	if (dr)
2244 		dr->enabled = 0;
2245 
2246 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2247 		      "disabling already-disabled device");
2248 
2249 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2250 		return;
2251 
2252 	do_pci_disable_device(dev);
2253 
2254 	dev->is_busmaster = 0;
2255 }
2256 EXPORT_SYMBOL(pci_disable_device);
2257 
2258 /**
2259  * pcibios_set_pcie_reset_state - set reset state for device dev
2260  * @dev: the PCIe device reset
2261  * @state: Reset state to enter into
2262  *
2263  * Set the PCIe reset state for the device. This is the default
2264  * implementation. Architecture implementations can override this.
2265  */
2266 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2267 					enum pcie_reset_state state)
2268 {
2269 	return -EINVAL;
2270 }
2271 
2272 /**
2273  * pci_set_pcie_reset_state - set reset state for device dev
2274  * @dev: the PCIe device reset
2275  * @state: Reset state to enter into
2276  *
2277  * Sets the PCI reset state for the device.
2278  */
2279 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2280 {
2281 	return pcibios_set_pcie_reset_state(dev, state);
2282 }
2283 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2284 
2285 #ifdef CONFIG_PCIEAER
2286 void pcie_clear_device_status(struct pci_dev *dev)
2287 {
2288 	u16 sta;
2289 
2290 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2291 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2292 }
2293 #endif
2294 
2295 /**
2296  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2297  * @dev: PCIe root port or event collector.
2298  */
2299 void pcie_clear_root_pme_status(struct pci_dev *dev)
2300 {
2301 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2302 }
2303 
2304 /**
2305  * pci_check_pme_status - Check if given device has generated PME.
2306  * @dev: Device to check.
2307  *
2308  * Check the PME status of the device and if set, clear it and clear PME enable
2309  * (if set).  Return 'true' if PME status and PME enable were both set or
2310  * 'false' otherwise.
2311  */
2312 bool pci_check_pme_status(struct pci_dev *dev)
2313 {
2314 	int pmcsr_pos;
2315 	u16 pmcsr;
2316 	bool ret = false;
2317 
2318 	if (!dev->pm_cap)
2319 		return false;
2320 
2321 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2322 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2323 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2324 		return false;
2325 
2326 	/* Clear PME status. */
2327 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2328 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2329 		/* Disable PME to avoid interrupt flood. */
2330 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2331 		ret = true;
2332 	}
2333 
2334 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2335 
2336 	return ret;
2337 }
2338 
2339 /**
2340  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2341  * @dev: Device to handle.
2342  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2343  *
2344  * Check if @dev has generated PME and queue a resume request for it in that
2345  * case.
2346  */
2347 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2348 {
2349 	if (pme_poll_reset && dev->pme_poll)
2350 		dev->pme_poll = false;
2351 
2352 	if (pci_check_pme_status(dev)) {
2353 		pci_wakeup_event(dev);
2354 		pm_request_resume(&dev->dev);
2355 	}
2356 	return 0;
2357 }
2358 
2359 /**
2360  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2361  * @bus: Top bus of the subtree to walk.
2362  */
2363 void pci_pme_wakeup_bus(struct pci_bus *bus)
2364 {
2365 	if (bus)
2366 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2367 }
2368 
2369 
2370 /**
2371  * pci_pme_capable - check the capability of PCI device to generate PME#
2372  * @dev: PCI device to handle.
2373  * @state: PCI state from which device will issue PME#.
2374  */
2375 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2376 {
2377 	if (!dev->pm_cap)
2378 		return false;
2379 
2380 	return !!(dev->pme_support & (1 << state));
2381 }
2382 EXPORT_SYMBOL(pci_pme_capable);
2383 
2384 static void pci_pme_list_scan(struct work_struct *work)
2385 {
2386 	struct pci_pme_device *pme_dev, *n;
2387 
2388 	mutex_lock(&pci_pme_list_mutex);
2389 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2390 		if (pme_dev->dev->pme_poll) {
2391 			struct pci_dev *bridge;
2392 
2393 			bridge = pme_dev->dev->bus->self;
2394 			/*
2395 			 * If bridge is in low power state, the
2396 			 * configuration space of subordinate devices
2397 			 * may be not accessible
2398 			 */
2399 			if (bridge && bridge->current_state != PCI_D0)
2400 				continue;
2401 			/*
2402 			 * If the device is in D3cold it should not be
2403 			 * polled either.
2404 			 */
2405 			if (pme_dev->dev->current_state == PCI_D3cold)
2406 				continue;
2407 
2408 			pci_pme_wakeup(pme_dev->dev, NULL);
2409 		} else {
2410 			list_del(&pme_dev->list);
2411 			kfree(pme_dev);
2412 		}
2413 	}
2414 	if (!list_empty(&pci_pme_list))
2415 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2416 				   msecs_to_jiffies(PME_TIMEOUT));
2417 	mutex_unlock(&pci_pme_list_mutex);
2418 }
2419 
2420 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2421 {
2422 	u16 pmcsr;
2423 
2424 	if (!dev->pme_support)
2425 		return;
2426 
2427 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2428 	/* Clear PME_Status by writing 1 to it and enable PME# */
2429 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2430 	if (!enable)
2431 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2432 
2433 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2434 }
2435 
2436 /**
2437  * pci_pme_restore - Restore PME configuration after config space restore.
2438  * @dev: PCI device to update.
2439  */
2440 void pci_pme_restore(struct pci_dev *dev)
2441 {
2442 	u16 pmcsr;
2443 
2444 	if (!dev->pme_support)
2445 		return;
2446 
2447 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2448 	if (dev->wakeup_prepared) {
2449 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2450 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2451 	} else {
2452 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2453 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2454 	}
2455 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2456 }
2457 
2458 /**
2459  * pci_pme_active - enable or disable PCI device's PME# function
2460  * @dev: PCI device to handle.
2461  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2462  *
2463  * The caller must verify that the device is capable of generating PME# before
2464  * calling this function with @enable equal to 'true'.
2465  */
2466 void pci_pme_active(struct pci_dev *dev, bool enable)
2467 {
2468 	__pci_pme_active(dev, enable);
2469 
2470 	/*
2471 	 * PCI (as opposed to PCIe) PME requires that the device have
2472 	 * its PME# line hooked up correctly. Not all hardware vendors
2473 	 * do this, so the PME never gets delivered and the device
2474 	 * remains asleep. The easiest way around this is to
2475 	 * periodically walk the list of suspended devices and check
2476 	 * whether any have their PME flag set. The assumption is that
2477 	 * we'll wake up often enough anyway that this won't be a huge
2478 	 * hit, and the power savings from the devices will still be a
2479 	 * win.
2480 	 *
2481 	 * Although PCIe uses in-band PME message instead of PME# line
2482 	 * to report PME, PME does not work for some PCIe devices in
2483 	 * reality.  For example, there are devices that set their PME
2484 	 * status bits, but don't really bother to send a PME message;
2485 	 * there are PCI Express Root Ports that don't bother to
2486 	 * trigger interrupts when they receive PME messages from the
2487 	 * devices below.  So PME poll is used for PCIe devices too.
2488 	 */
2489 
2490 	if (dev->pme_poll) {
2491 		struct pci_pme_device *pme_dev;
2492 		if (enable) {
2493 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2494 					  GFP_KERNEL);
2495 			if (!pme_dev) {
2496 				pci_warn(dev, "can't enable PME#\n");
2497 				return;
2498 			}
2499 			pme_dev->dev = dev;
2500 			mutex_lock(&pci_pme_list_mutex);
2501 			list_add(&pme_dev->list, &pci_pme_list);
2502 			if (list_is_singular(&pci_pme_list))
2503 				queue_delayed_work(system_freezable_wq,
2504 						   &pci_pme_work,
2505 						   msecs_to_jiffies(PME_TIMEOUT));
2506 			mutex_unlock(&pci_pme_list_mutex);
2507 		} else {
2508 			mutex_lock(&pci_pme_list_mutex);
2509 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2510 				if (pme_dev->dev == dev) {
2511 					list_del(&pme_dev->list);
2512 					kfree(pme_dev);
2513 					break;
2514 				}
2515 			}
2516 			mutex_unlock(&pci_pme_list_mutex);
2517 		}
2518 	}
2519 
2520 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2521 }
2522 EXPORT_SYMBOL(pci_pme_active);
2523 
2524 /**
2525  * __pci_enable_wake - enable PCI device as wakeup event source
2526  * @dev: PCI device affected
2527  * @state: PCI state from which device will issue wakeup events
2528  * @enable: True to enable event generation; false to disable
2529  *
2530  * This enables the device as a wakeup event source, or disables it.
2531  * When such events involves platform-specific hooks, those hooks are
2532  * called automatically by this routine.
2533  *
2534  * Devices with legacy power management (no standard PCI PM capabilities)
2535  * always require such platform hooks.
2536  *
2537  * RETURN VALUE:
2538  * 0 is returned on success
2539  * -EINVAL is returned if device is not supposed to wake up the system
2540  * Error code depending on the platform is returned if both the platform and
2541  * the native mechanism fail to enable the generation of wake-up events
2542  */
2543 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2544 {
2545 	int ret = 0;
2546 
2547 	/*
2548 	 * Bridges that are not power-manageable directly only signal
2549 	 * wakeup on behalf of subordinate devices which is set up
2550 	 * elsewhere, so skip them. However, bridges that are
2551 	 * power-manageable may signal wakeup for themselves (for example,
2552 	 * on a hotplug event) and they need to be covered here.
2553 	 */
2554 	if (!pci_power_manageable(dev))
2555 		return 0;
2556 
2557 	/* Don't do the same thing twice in a row for one device. */
2558 	if (!!enable == !!dev->wakeup_prepared)
2559 		return 0;
2560 
2561 	/*
2562 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2563 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2564 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2565 	 */
2566 
2567 	if (enable) {
2568 		int error;
2569 
2570 		/*
2571 		 * Enable PME signaling if the device can signal PME from
2572 		 * D3cold regardless of whether or not it can signal PME from
2573 		 * the current target state, because that will allow it to
2574 		 * signal PME when the hierarchy above it goes into D3cold and
2575 		 * the device itself ends up in D3cold as a result of that.
2576 		 */
2577 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2578 			pci_pme_active(dev, true);
2579 		else
2580 			ret = 1;
2581 		error = platform_pci_set_wakeup(dev, true);
2582 		if (ret)
2583 			ret = error;
2584 		if (!ret)
2585 			dev->wakeup_prepared = true;
2586 	} else {
2587 		platform_pci_set_wakeup(dev, false);
2588 		pci_pme_active(dev, false);
2589 		dev->wakeup_prepared = false;
2590 	}
2591 
2592 	return ret;
2593 }
2594 
2595 /**
2596  * pci_enable_wake - change wakeup settings for a PCI device
2597  * @pci_dev: Target device
2598  * @state: PCI state from which device will issue wakeup events
2599  * @enable: Whether or not to enable event generation
2600  *
2601  * If @enable is set, check device_may_wakeup() for the device before calling
2602  * __pci_enable_wake() for it.
2603  */
2604 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2605 {
2606 	if (enable && !device_may_wakeup(&pci_dev->dev))
2607 		return -EINVAL;
2608 
2609 	return __pci_enable_wake(pci_dev, state, enable);
2610 }
2611 EXPORT_SYMBOL(pci_enable_wake);
2612 
2613 /**
2614  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2615  * @dev: PCI device to prepare
2616  * @enable: True to enable wake-up event generation; false to disable
2617  *
2618  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2619  * and this function allows them to set that up cleanly - pci_enable_wake()
2620  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2621  * ordering constraints.
2622  *
2623  * This function only returns error code if the device is not allowed to wake
2624  * up the system from sleep or it is not capable of generating PME# from both
2625  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2626  */
2627 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2628 {
2629 	return pci_pme_capable(dev, PCI_D3cold) ?
2630 			pci_enable_wake(dev, PCI_D3cold, enable) :
2631 			pci_enable_wake(dev, PCI_D3hot, enable);
2632 }
2633 EXPORT_SYMBOL(pci_wake_from_d3);
2634 
2635 /**
2636  * pci_target_state - find an appropriate low power state for a given PCI dev
2637  * @dev: PCI device
2638  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2639  *
2640  * Use underlying platform code to find a supported low power state for @dev.
2641  * If the platform can't manage @dev, return the deepest state from which it
2642  * can generate wake events, based on any available PME info.
2643  */
2644 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2645 {
2646 	if (platform_pci_power_manageable(dev)) {
2647 		/*
2648 		 * Call the platform to find the target state for the device.
2649 		 */
2650 		pci_power_t state = platform_pci_choose_state(dev);
2651 
2652 		switch (state) {
2653 		case PCI_POWER_ERROR:
2654 		case PCI_UNKNOWN:
2655 			return PCI_D3hot;
2656 
2657 		case PCI_D1:
2658 		case PCI_D2:
2659 			if (pci_no_d1d2(dev))
2660 				return PCI_D3hot;
2661 		}
2662 
2663 		return state;
2664 	}
2665 
2666 	/*
2667 	 * If the device is in D3cold even though it's not power-manageable by
2668 	 * the platform, it may have been powered down by non-standard means.
2669 	 * Best to let it slumber.
2670 	 */
2671 	if (dev->current_state == PCI_D3cold)
2672 		return PCI_D3cold;
2673 	else if (!dev->pm_cap)
2674 		return PCI_D0;
2675 
2676 	if (wakeup && dev->pme_support) {
2677 		pci_power_t state = PCI_D3hot;
2678 
2679 		/*
2680 		 * Find the deepest state from which the device can generate
2681 		 * PME#.
2682 		 */
2683 		while (state && !(dev->pme_support & (1 << state)))
2684 			state--;
2685 
2686 		if (state)
2687 			return state;
2688 		else if (dev->pme_support & 1)
2689 			return PCI_D0;
2690 	}
2691 
2692 	return PCI_D3hot;
2693 }
2694 
2695 /**
2696  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2697  *			  into a sleep state
2698  * @dev: Device to handle.
2699  *
2700  * Choose the power state appropriate for the device depending on whether
2701  * it can wake up the system and/or is power manageable by the platform
2702  * (PCI_D3hot is the default) and put the device into that state.
2703  */
2704 int pci_prepare_to_sleep(struct pci_dev *dev)
2705 {
2706 	bool wakeup = device_may_wakeup(&dev->dev);
2707 	pci_power_t target_state = pci_target_state(dev, wakeup);
2708 	int error;
2709 
2710 	if (target_state == PCI_POWER_ERROR)
2711 		return -EIO;
2712 
2713 	/*
2714 	 * There are systems (for example, Intel mobile chips since Coffee
2715 	 * Lake) where the power drawn while suspended can be significantly
2716 	 * reduced by disabling PTM on PCIe root ports as this allows the
2717 	 * port to enter a lower-power PM state and the SoC to reach a
2718 	 * lower-power idle state as a whole.
2719 	 */
2720 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2721 		pci_disable_ptm(dev);
2722 
2723 	pci_enable_wake(dev, target_state, wakeup);
2724 
2725 	error = pci_set_power_state(dev, target_state);
2726 
2727 	if (error) {
2728 		pci_enable_wake(dev, target_state, false);
2729 		pci_restore_ptm_state(dev);
2730 	}
2731 
2732 	return error;
2733 }
2734 EXPORT_SYMBOL(pci_prepare_to_sleep);
2735 
2736 /**
2737  * pci_back_from_sleep - turn PCI device on during system-wide transition
2738  *			 into working state
2739  * @dev: Device to handle.
2740  *
2741  * Disable device's system wake-up capability and put it into D0.
2742  */
2743 int pci_back_from_sleep(struct pci_dev *dev)
2744 {
2745 	int ret = pci_set_power_state(dev, PCI_D0);
2746 
2747 	if (ret)
2748 		return ret;
2749 
2750 	pci_enable_wake(dev, PCI_D0, false);
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL(pci_back_from_sleep);
2754 
2755 /**
2756  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2757  * @dev: PCI device being suspended.
2758  *
2759  * Prepare @dev to generate wake-up events at run time and put it into a low
2760  * power state.
2761  */
2762 int pci_finish_runtime_suspend(struct pci_dev *dev)
2763 {
2764 	pci_power_t target_state;
2765 	int error;
2766 
2767 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2768 	if (target_state == PCI_POWER_ERROR)
2769 		return -EIO;
2770 
2771 	/*
2772 	 * There are systems (for example, Intel mobile chips since Coffee
2773 	 * Lake) where the power drawn while suspended can be significantly
2774 	 * reduced by disabling PTM on PCIe root ports as this allows the
2775 	 * port to enter a lower-power PM state and the SoC to reach a
2776 	 * lower-power idle state as a whole.
2777 	 */
2778 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2779 		pci_disable_ptm(dev);
2780 
2781 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2782 
2783 	error = pci_set_power_state(dev, target_state);
2784 
2785 	if (error) {
2786 		pci_enable_wake(dev, target_state, false);
2787 		pci_restore_ptm_state(dev);
2788 	}
2789 
2790 	return error;
2791 }
2792 
2793 /**
2794  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2795  * @dev: Device to check.
2796  *
2797  * Return true if the device itself is capable of generating wake-up events
2798  * (through the platform or using the native PCIe PME) or if the device supports
2799  * PME and one of its upstream bridges can generate wake-up events.
2800  */
2801 bool pci_dev_run_wake(struct pci_dev *dev)
2802 {
2803 	struct pci_bus *bus = dev->bus;
2804 
2805 	if (!dev->pme_support)
2806 		return false;
2807 
2808 	/* PME-capable in principle, but not from the target power state */
2809 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2810 		return false;
2811 
2812 	if (device_can_wakeup(&dev->dev))
2813 		return true;
2814 
2815 	while (bus->parent) {
2816 		struct pci_dev *bridge = bus->self;
2817 
2818 		if (device_can_wakeup(&bridge->dev))
2819 			return true;
2820 
2821 		bus = bus->parent;
2822 	}
2823 
2824 	/* We have reached the root bus. */
2825 	if (bus->bridge)
2826 		return device_can_wakeup(bus->bridge);
2827 
2828 	return false;
2829 }
2830 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2831 
2832 /**
2833  * pci_dev_need_resume - Check if it is necessary to resume the device.
2834  * @pci_dev: Device to check.
2835  *
2836  * Return 'true' if the device is not runtime-suspended or it has to be
2837  * reconfigured due to wakeup settings difference between system and runtime
2838  * suspend, or the current power state of it is not suitable for the upcoming
2839  * (system-wide) transition.
2840  */
2841 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2842 {
2843 	struct device *dev = &pci_dev->dev;
2844 	pci_power_t target_state;
2845 
2846 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2847 		return true;
2848 
2849 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2850 
2851 	/*
2852 	 * If the earlier platform check has not triggered, D3cold is just power
2853 	 * removal on top of D3hot, so no need to resume the device in that
2854 	 * case.
2855 	 */
2856 	return target_state != pci_dev->current_state &&
2857 		target_state != PCI_D3cold &&
2858 		pci_dev->current_state != PCI_D3hot;
2859 }
2860 
2861 /**
2862  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2863  * @pci_dev: Device to check.
2864  *
2865  * If the device is suspended and it is not configured for system wakeup,
2866  * disable PME for it to prevent it from waking up the system unnecessarily.
2867  *
2868  * Note that if the device's power state is D3cold and the platform check in
2869  * pci_dev_need_resume() has not triggered, the device's configuration need not
2870  * be changed.
2871  */
2872 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2873 {
2874 	struct device *dev = &pci_dev->dev;
2875 
2876 	spin_lock_irq(&dev->power.lock);
2877 
2878 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2879 	    pci_dev->current_state < PCI_D3cold)
2880 		__pci_pme_active(pci_dev, false);
2881 
2882 	spin_unlock_irq(&dev->power.lock);
2883 }
2884 
2885 /**
2886  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2887  * @pci_dev: Device to handle.
2888  *
2889  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2890  * it might have been disabled during the prepare phase of system suspend if
2891  * the device was not configured for system wakeup.
2892  */
2893 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2894 {
2895 	struct device *dev = &pci_dev->dev;
2896 
2897 	if (!pci_dev_run_wake(pci_dev))
2898 		return;
2899 
2900 	spin_lock_irq(&dev->power.lock);
2901 
2902 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2903 		__pci_pme_active(pci_dev, true);
2904 
2905 	spin_unlock_irq(&dev->power.lock);
2906 }
2907 
2908 /**
2909  * pci_choose_state - Choose the power state of a PCI device.
2910  * @dev: Target PCI device.
2911  * @state: Target state for the whole system.
2912  *
2913  * Returns PCI power state suitable for @dev and @state.
2914  */
2915 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2916 {
2917 	if (state.event == PM_EVENT_ON)
2918 		return PCI_D0;
2919 
2920 	return pci_target_state(dev, false);
2921 }
2922 EXPORT_SYMBOL(pci_choose_state);
2923 
2924 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2925 {
2926 	struct device *dev = &pdev->dev;
2927 	struct device *parent = dev->parent;
2928 
2929 	if (parent)
2930 		pm_runtime_get_sync(parent);
2931 	pm_runtime_get_noresume(dev);
2932 	/*
2933 	 * pdev->current_state is set to PCI_D3cold during suspending,
2934 	 * so wait until suspending completes
2935 	 */
2936 	pm_runtime_barrier(dev);
2937 	/*
2938 	 * Only need to resume devices in D3cold, because config
2939 	 * registers are still accessible for devices suspended but
2940 	 * not in D3cold.
2941 	 */
2942 	if (pdev->current_state == PCI_D3cold)
2943 		pm_runtime_resume(dev);
2944 }
2945 
2946 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2947 {
2948 	struct device *dev = &pdev->dev;
2949 	struct device *parent = dev->parent;
2950 
2951 	pm_runtime_put(dev);
2952 	if (parent)
2953 		pm_runtime_put_sync(parent);
2954 }
2955 
2956 static const struct dmi_system_id bridge_d3_blacklist[] = {
2957 #ifdef CONFIG_X86
2958 	{
2959 		/*
2960 		 * Gigabyte X299 root port is not marked as hotplug capable
2961 		 * which allows Linux to power manage it.  However, this
2962 		 * confuses the BIOS SMI handler so don't power manage root
2963 		 * ports on that system.
2964 		 */
2965 		.ident = "X299 DESIGNARE EX-CF",
2966 		.matches = {
2967 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2968 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2969 		},
2970 	},
2971 	{
2972 		/*
2973 		 * Downstream device is not accessible after putting a root port
2974 		 * into D3cold and back into D0 on Elo i2.
2975 		 */
2976 		.ident = "Elo i2",
2977 		.matches = {
2978 			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2979 			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2980 			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2981 		},
2982 	},
2983 #endif
2984 	{ }
2985 };
2986 
2987 /**
2988  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2989  * @bridge: Bridge to check
2990  *
2991  * This function checks if it is possible to move the bridge to D3.
2992  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2993  */
2994 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2995 {
2996 	if (!pci_is_pcie(bridge))
2997 		return false;
2998 
2999 	switch (pci_pcie_type(bridge)) {
3000 	case PCI_EXP_TYPE_ROOT_PORT:
3001 	case PCI_EXP_TYPE_UPSTREAM:
3002 	case PCI_EXP_TYPE_DOWNSTREAM:
3003 		if (pci_bridge_d3_disable)
3004 			return false;
3005 
3006 		/*
3007 		 * Hotplug ports handled by firmware in System Management Mode
3008 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3009 		 */
3010 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3011 			return false;
3012 
3013 		if (pci_bridge_d3_force)
3014 			return true;
3015 
3016 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3017 		if (bridge->is_thunderbolt)
3018 			return true;
3019 
3020 		/* Platform might know better if the bridge supports D3 */
3021 		if (platform_pci_bridge_d3(bridge))
3022 			return true;
3023 
3024 		/*
3025 		 * Hotplug ports handled natively by the OS were not validated
3026 		 * by vendors for runtime D3 at least until 2018 because there
3027 		 * was no OS support.
3028 		 */
3029 		if (bridge->is_hotplug_bridge)
3030 			return false;
3031 
3032 		if (dmi_check_system(bridge_d3_blacklist))
3033 			return false;
3034 
3035 		/*
3036 		 * It should be safe to put PCIe ports from 2015 or newer
3037 		 * to D3.
3038 		 */
3039 		if (dmi_get_bios_year() >= 2015)
3040 			return true;
3041 		break;
3042 	}
3043 
3044 	return false;
3045 }
3046 
3047 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3048 {
3049 	bool *d3cold_ok = data;
3050 
3051 	if (/* The device needs to be allowed to go D3cold ... */
3052 	    dev->no_d3cold || !dev->d3cold_allowed ||
3053 
3054 	    /* ... and if it is wakeup capable to do so from D3cold. */
3055 	    (device_may_wakeup(&dev->dev) &&
3056 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3057 
3058 	    /* If it is a bridge it must be allowed to go to D3. */
3059 	    !pci_power_manageable(dev))
3060 
3061 		*d3cold_ok = false;
3062 
3063 	return !*d3cold_ok;
3064 }
3065 
3066 /*
3067  * pci_bridge_d3_update - Update bridge D3 capabilities
3068  * @dev: PCI device which is changed
3069  *
3070  * Update upstream bridge PM capabilities accordingly depending on if the
3071  * device PM configuration was changed or the device is being removed.  The
3072  * change is also propagated upstream.
3073  */
3074 void pci_bridge_d3_update(struct pci_dev *dev)
3075 {
3076 	bool remove = !device_is_registered(&dev->dev);
3077 	struct pci_dev *bridge;
3078 	bool d3cold_ok = true;
3079 
3080 	bridge = pci_upstream_bridge(dev);
3081 	if (!bridge || !pci_bridge_d3_possible(bridge))
3082 		return;
3083 
3084 	/*
3085 	 * If D3 is currently allowed for the bridge, removing one of its
3086 	 * children won't change that.
3087 	 */
3088 	if (remove && bridge->bridge_d3)
3089 		return;
3090 
3091 	/*
3092 	 * If D3 is currently allowed for the bridge and a child is added or
3093 	 * changed, disallowance of D3 can only be caused by that child, so
3094 	 * we only need to check that single device, not any of its siblings.
3095 	 *
3096 	 * If D3 is currently not allowed for the bridge, checking the device
3097 	 * first may allow us to skip checking its siblings.
3098 	 */
3099 	if (!remove)
3100 		pci_dev_check_d3cold(dev, &d3cold_ok);
3101 
3102 	/*
3103 	 * If D3 is currently not allowed for the bridge, this may be caused
3104 	 * either by the device being changed/removed or any of its siblings,
3105 	 * so we need to go through all children to find out if one of them
3106 	 * continues to block D3.
3107 	 */
3108 	if (d3cold_ok && !bridge->bridge_d3)
3109 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3110 			     &d3cold_ok);
3111 
3112 	if (bridge->bridge_d3 != d3cold_ok) {
3113 		bridge->bridge_d3 = d3cold_ok;
3114 		/* Propagate change to upstream bridges */
3115 		pci_bridge_d3_update(bridge);
3116 	}
3117 }
3118 
3119 /**
3120  * pci_d3cold_enable - Enable D3cold for device
3121  * @dev: PCI device to handle
3122  *
3123  * This function can be used in drivers to enable D3cold from the device
3124  * they handle.  It also updates upstream PCI bridge PM capabilities
3125  * accordingly.
3126  */
3127 void pci_d3cold_enable(struct pci_dev *dev)
3128 {
3129 	if (dev->no_d3cold) {
3130 		dev->no_d3cold = false;
3131 		pci_bridge_d3_update(dev);
3132 	}
3133 }
3134 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3135 
3136 /**
3137  * pci_d3cold_disable - Disable D3cold for device
3138  * @dev: PCI device to handle
3139  *
3140  * This function can be used in drivers to disable D3cold from the device
3141  * they handle.  It also updates upstream PCI bridge PM capabilities
3142  * accordingly.
3143  */
3144 void pci_d3cold_disable(struct pci_dev *dev)
3145 {
3146 	if (!dev->no_d3cold) {
3147 		dev->no_d3cold = true;
3148 		pci_bridge_d3_update(dev);
3149 	}
3150 }
3151 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3152 
3153 /**
3154  * pci_pm_init - Initialize PM functions of given PCI device
3155  * @dev: PCI device to handle.
3156  */
3157 void pci_pm_init(struct pci_dev *dev)
3158 {
3159 	int pm;
3160 	u16 status;
3161 	u16 pmc;
3162 
3163 	pm_runtime_forbid(&dev->dev);
3164 	pm_runtime_set_active(&dev->dev);
3165 	pm_runtime_enable(&dev->dev);
3166 	device_enable_async_suspend(&dev->dev);
3167 	dev->wakeup_prepared = false;
3168 
3169 	dev->pm_cap = 0;
3170 	dev->pme_support = 0;
3171 
3172 	/* find PCI PM capability in list */
3173 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3174 	if (!pm)
3175 		return;
3176 	/* Check device's ability to generate PME# */
3177 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3178 
3179 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3180 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3181 			pmc & PCI_PM_CAP_VER_MASK);
3182 		return;
3183 	}
3184 
3185 	dev->pm_cap = pm;
3186 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3187 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3188 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3189 	dev->d3cold_allowed = true;
3190 
3191 	dev->d1_support = false;
3192 	dev->d2_support = false;
3193 	if (!pci_no_d1d2(dev)) {
3194 		if (pmc & PCI_PM_CAP_D1)
3195 			dev->d1_support = true;
3196 		if (pmc & PCI_PM_CAP_D2)
3197 			dev->d2_support = true;
3198 
3199 		if (dev->d1_support || dev->d2_support)
3200 			pci_info(dev, "supports%s%s\n",
3201 				   dev->d1_support ? " D1" : "",
3202 				   dev->d2_support ? " D2" : "");
3203 	}
3204 
3205 	pmc &= PCI_PM_CAP_PME_MASK;
3206 	if (pmc) {
3207 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3208 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3209 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3210 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3211 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3212 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3213 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3214 		dev->pme_poll = true;
3215 		/*
3216 		 * Make device's PM flags reflect the wake-up capability, but
3217 		 * let the user space enable it to wake up the system as needed.
3218 		 */
3219 		device_set_wakeup_capable(&dev->dev, true);
3220 		/* Disable the PME# generation functionality */
3221 		pci_pme_active(dev, false);
3222 	}
3223 
3224 	pci_read_config_word(dev, PCI_STATUS, &status);
3225 	if (status & PCI_STATUS_IMM_READY)
3226 		dev->imm_ready = 1;
3227 }
3228 
3229 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3230 {
3231 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3232 
3233 	switch (prop) {
3234 	case PCI_EA_P_MEM:
3235 	case PCI_EA_P_VF_MEM:
3236 		flags |= IORESOURCE_MEM;
3237 		break;
3238 	case PCI_EA_P_MEM_PREFETCH:
3239 	case PCI_EA_P_VF_MEM_PREFETCH:
3240 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3241 		break;
3242 	case PCI_EA_P_IO:
3243 		flags |= IORESOURCE_IO;
3244 		break;
3245 	default:
3246 		return 0;
3247 	}
3248 
3249 	return flags;
3250 }
3251 
3252 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3253 					    u8 prop)
3254 {
3255 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3256 		return &dev->resource[bei];
3257 #ifdef CONFIG_PCI_IOV
3258 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3259 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3260 		return &dev->resource[PCI_IOV_RESOURCES +
3261 				      bei - PCI_EA_BEI_VF_BAR0];
3262 #endif
3263 	else if (bei == PCI_EA_BEI_ROM)
3264 		return &dev->resource[PCI_ROM_RESOURCE];
3265 	else
3266 		return NULL;
3267 }
3268 
3269 /* Read an Enhanced Allocation (EA) entry */
3270 static int pci_ea_read(struct pci_dev *dev, int offset)
3271 {
3272 	struct resource *res;
3273 	int ent_size, ent_offset = offset;
3274 	resource_size_t start, end;
3275 	unsigned long flags;
3276 	u32 dw0, bei, base, max_offset;
3277 	u8 prop;
3278 	bool support_64 = (sizeof(resource_size_t) >= 8);
3279 
3280 	pci_read_config_dword(dev, ent_offset, &dw0);
3281 	ent_offset += 4;
3282 
3283 	/* Entry size field indicates DWORDs after 1st */
3284 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3285 
3286 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3287 		goto out;
3288 
3289 	bei = (dw0 & PCI_EA_BEI) >> 4;
3290 	prop = (dw0 & PCI_EA_PP) >> 8;
3291 
3292 	/*
3293 	 * If the Property is in the reserved range, try the Secondary
3294 	 * Property instead.
3295 	 */
3296 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3297 		prop = (dw0 & PCI_EA_SP) >> 16;
3298 	if (prop > PCI_EA_P_BRIDGE_IO)
3299 		goto out;
3300 
3301 	res = pci_ea_get_resource(dev, bei, prop);
3302 	if (!res) {
3303 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3304 		goto out;
3305 	}
3306 
3307 	flags = pci_ea_flags(dev, prop);
3308 	if (!flags) {
3309 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3310 		goto out;
3311 	}
3312 
3313 	/* Read Base */
3314 	pci_read_config_dword(dev, ent_offset, &base);
3315 	start = (base & PCI_EA_FIELD_MASK);
3316 	ent_offset += 4;
3317 
3318 	/* Read MaxOffset */
3319 	pci_read_config_dword(dev, ent_offset, &max_offset);
3320 	ent_offset += 4;
3321 
3322 	/* Read Base MSBs (if 64-bit entry) */
3323 	if (base & PCI_EA_IS_64) {
3324 		u32 base_upper;
3325 
3326 		pci_read_config_dword(dev, ent_offset, &base_upper);
3327 		ent_offset += 4;
3328 
3329 		flags |= IORESOURCE_MEM_64;
3330 
3331 		/* entry starts above 32-bit boundary, can't use */
3332 		if (!support_64 && base_upper)
3333 			goto out;
3334 
3335 		if (support_64)
3336 			start |= ((u64)base_upper << 32);
3337 	}
3338 
3339 	end = start + (max_offset | 0x03);
3340 
3341 	/* Read MaxOffset MSBs (if 64-bit entry) */
3342 	if (max_offset & PCI_EA_IS_64) {
3343 		u32 max_offset_upper;
3344 
3345 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3346 		ent_offset += 4;
3347 
3348 		flags |= IORESOURCE_MEM_64;
3349 
3350 		/* entry too big, can't use */
3351 		if (!support_64 && max_offset_upper)
3352 			goto out;
3353 
3354 		if (support_64)
3355 			end += ((u64)max_offset_upper << 32);
3356 	}
3357 
3358 	if (end < start) {
3359 		pci_err(dev, "EA Entry crosses address boundary\n");
3360 		goto out;
3361 	}
3362 
3363 	if (ent_size != ent_offset - offset) {
3364 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3365 			ent_size, ent_offset - offset);
3366 		goto out;
3367 	}
3368 
3369 	res->name = pci_name(dev);
3370 	res->start = start;
3371 	res->end = end;
3372 	res->flags = flags;
3373 
3374 	if (bei <= PCI_EA_BEI_BAR5)
3375 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3376 			   bei, res, prop);
3377 	else if (bei == PCI_EA_BEI_ROM)
3378 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3379 			   res, prop);
3380 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3381 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3382 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3383 	else
3384 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3385 			   bei, res, prop);
3386 
3387 out:
3388 	return offset + ent_size;
3389 }
3390 
3391 /* Enhanced Allocation Initialization */
3392 void pci_ea_init(struct pci_dev *dev)
3393 {
3394 	int ea;
3395 	u8 num_ent;
3396 	int offset;
3397 	int i;
3398 
3399 	/* find PCI EA capability in list */
3400 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3401 	if (!ea)
3402 		return;
3403 
3404 	/* determine the number of entries */
3405 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3406 					&num_ent);
3407 	num_ent &= PCI_EA_NUM_ENT_MASK;
3408 
3409 	offset = ea + PCI_EA_FIRST_ENT;
3410 
3411 	/* Skip DWORD 2 for type 1 functions */
3412 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3413 		offset += 4;
3414 
3415 	/* parse each EA entry */
3416 	for (i = 0; i < num_ent; ++i)
3417 		offset = pci_ea_read(dev, offset);
3418 }
3419 
3420 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3421 	struct pci_cap_saved_state *new_cap)
3422 {
3423 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3424 }
3425 
3426 /**
3427  * _pci_add_cap_save_buffer - allocate buffer for saving given
3428  *			      capability registers
3429  * @dev: the PCI device
3430  * @cap: the capability to allocate the buffer for
3431  * @extended: Standard or Extended capability ID
3432  * @size: requested size of the buffer
3433  */
3434 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3435 				    bool extended, unsigned int size)
3436 {
3437 	int pos;
3438 	struct pci_cap_saved_state *save_state;
3439 
3440 	if (extended)
3441 		pos = pci_find_ext_capability(dev, cap);
3442 	else
3443 		pos = pci_find_capability(dev, cap);
3444 
3445 	if (!pos)
3446 		return 0;
3447 
3448 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3449 	if (!save_state)
3450 		return -ENOMEM;
3451 
3452 	save_state->cap.cap_nr = cap;
3453 	save_state->cap.cap_extended = extended;
3454 	save_state->cap.size = size;
3455 	pci_add_saved_cap(dev, save_state);
3456 
3457 	return 0;
3458 }
3459 
3460 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3461 {
3462 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3463 }
3464 
3465 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3466 {
3467 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3468 }
3469 
3470 /**
3471  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3472  * @dev: the PCI device
3473  */
3474 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3475 {
3476 	int error;
3477 
3478 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3479 					PCI_EXP_SAVE_REGS * sizeof(u16));
3480 	if (error)
3481 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3482 
3483 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3484 	if (error)
3485 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3486 
3487 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3488 					    2 * sizeof(u16));
3489 	if (error)
3490 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3491 
3492 	pci_allocate_vc_save_buffers(dev);
3493 }
3494 
3495 void pci_free_cap_save_buffers(struct pci_dev *dev)
3496 {
3497 	struct pci_cap_saved_state *tmp;
3498 	struct hlist_node *n;
3499 
3500 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3501 		kfree(tmp);
3502 }
3503 
3504 /**
3505  * pci_configure_ari - enable or disable ARI forwarding
3506  * @dev: the PCI device
3507  *
3508  * If @dev and its upstream bridge both support ARI, enable ARI in the
3509  * bridge.  Otherwise, disable ARI in the bridge.
3510  */
3511 void pci_configure_ari(struct pci_dev *dev)
3512 {
3513 	u32 cap;
3514 	struct pci_dev *bridge;
3515 
3516 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3517 		return;
3518 
3519 	bridge = dev->bus->self;
3520 	if (!bridge)
3521 		return;
3522 
3523 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3524 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3525 		return;
3526 
3527 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3528 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3529 					 PCI_EXP_DEVCTL2_ARI);
3530 		bridge->ari_enabled = 1;
3531 	} else {
3532 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3533 					   PCI_EXP_DEVCTL2_ARI);
3534 		bridge->ari_enabled = 0;
3535 	}
3536 }
3537 
3538 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3539 {
3540 	int pos;
3541 	u16 cap, ctrl;
3542 
3543 	pos = pdev->acs_cap;
3544 	if (!pos)
3545 		return false;
3546 
3547 	/*
3548 	 * Except for egress control, capabilities are either required
3549 	 * or only required if controllable.  Features missing from the
3550 	 * capability field can therefore be assumed as hard-wired enabled.
3551 	 */
3552 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3553 	acs_flags &= (cap | PCI_ACS_EC);
3554 
3555 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3556 	return (ctrl & acs_flags) == acs_flags;
3557 }
3558 
3559 /**
3560  * pci_acs_enabled - test ACS against required flags for a given device
3561  * @pdev: device to test
3562  * @acs_flags: required PCI ACS flags
3563  *
3564  * Return true if the device supports the provided flags.  Automatically
3565  * filters out flags that are not implemented on multifunction devices.
3566  *
3567  * Note that this interface checks the effective ACS capabilities of the
3568  * device rather than the actual capabilities.  For instance, most single
3569  * function endpoints are not required to support ACS because they have no
3570  * opportunity for peer-to-peer access.  We therefore return 'true'
3571  * regardless of whether the device exposes an ACS capability.  This makes
3572  * it much easier for callers of this function to ignore the actual type
3573  * or topology of the device when testing ACS support.
3574  */
3575 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3576 {
3577 	int ret;
3578 
3579 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3580 	if (ret >= 0)
3581 		return ret > 0;
3582 
3583 	/*
3584 	 * Conventional PCI and PCI-X devices never support ACS, either
3585 	 * effectively or actually.  The shared bus topology implies that
3586 	 * any device on the bus can receive or snoop DMA.
3587 	 */
3588 	if (!pci_is_pcie(pdev))
3589 		return false;
3590 
3591 	switch (pci_pcie_type(pdev)) {
3592 	/*
3593 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3594 	 * but since their primary interface is PCI/X, we conservatively
3595 	 * handle them as we would a non-PCIe device.
3596 	 */
3597 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3598 	/*
3599 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3600 	 * applicable... must never implement an ACS Extended Capability...".
3601 	 * This seems arbitrary, but we take a conservative interpretation
3602 	 * of this statement.
3603 	 */
3604 	case PCI_EXP_TYPE_PCI_BRIDGE:
3605 	case PCI_EXP_TYPE_RC_EC:
3606 		return false;
3607 	/*
3608 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3609 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3610 	 * regardless of whether they are single- or multi-function devices.
3611 	 */
3612 	case PCI_EXP_TYPE_DOWNSTREAM:
3613 	case PCI_EXP_TYPE_ROOT_PORT:
3614 		return pci_acs_flags_enabled(pdev, acs_flags);
3615 	/*
3616 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3617 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3618 	 * capabilities, but only when they are part of a multifunction
3619 	 * device.  The footnote for section 6.12 indicates the specific
3620 	 * PCIe types included here.
3621 	 */
3622 	case PCI_EXP_TYPE_ENDPOINT:
3623 	case PCI_EXP_TYPE_UPSTREAM:
3624 	case PCI_EXP_TYPE_LEG_END:
3625 	case PCI_EXP_TYPE_RC_END:
3626 		if (!pdev->multifunction)
3627 			break;
3628 
3629 		return pci_acs_flags_enabled(pdev, acs_flags);
3630 	}
3631 
3632 	/*
3633 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3634 	 * to single function devices with the exception of downstream ports.
3635 	 */
3636 	return true;
3637 }
3638 
3639 /**
3640  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3641  * @start: starting downstream device
3642  * @end: ending upstream device or NULL to search to the root bus
3643  * @acs_flags: required flags
3644  *
3645  * Walk up a device tree from start to end testing PCI ACS support.  If
3646  * any step along the way does not support the required flags, return false.
3647  */
3648 bool pci_acs_path_enabled(struct pci_dev *start,
3649 			  struct pci_dev *end, u16 acs_flags)
3650 {
3651 	struct pci_dev *pdev, *parent = start;
3652 
3653 	do {
3654 		pdev = parent;
3655 
3656 		if (!pci_acs_enabled(pdev, acs_flags))
3657 			return false;
3658 
3659 		if (pci_is_root_bus(pdev->bus))
3660 			return (end == NULL);
3661 
3662 		parent = pdev->bus->self;
3663 	} while (pdev != end);
3664 
3665 	return true;
3666 }
3667 
3668 /**
3669  * pci_acs_init - Initialize ACS if hardware supports it
3670  * @dev: the PCI device
3671  */
3672 void pci_acs_init(struct pci_dev *dev)
3673 {
3674 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3675 
3676 	/*
3677 	 * Attempt to enable ACS regardless of capability because some Root
3678 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3679 	 * the standard ACS capability but still support ACS via those
3680 	 * quirks.
3681 	 */
3682 	pci_enable_acs(dev);
3683 }
3684 
3685 /**
3686  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3687  * @pdev: PCI device
3688  * @bar: BAR to find
3689  *
3690  * Helper to find the position of the ctrl register for a BAR.
3691  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3692  * Returns -ENOENT if no ctrl register for the BAR could be found.
3693  */
3694 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3695 {
3696 	unsigned int pos, nbars, i;
3697 	u32 ctrl;
3698 
3699 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3700 	if (!pos)
3701 		return -ENOTSUPP;
3702 
3703 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3704 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3705 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3706 
3707 	for (i = 0; i < nbars; i++, pos += 8) {
3708 		int bar_idx;
3709 
3710 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3711 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3712 		if (bar_idx == bar)
3713 			return pos;
3714 	}
3715 
3716 	return -ENOENT;
3717 }
3718 
3719 /**
3720  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3721  * @pdev: PCI device
3722  * @bar: BAR to query
3723  *
3724  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3725  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3726  */
3727 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3728 {
3729 	int pos;
3730 	u32 cap;
3731 
3732 	pos = pci_rebar_find_pos(pdev, bar);
3733 	if (pos < 0)
3734 		return 0;
3735 
3736 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3737 	cap &= PCI_REBAR_CAP_SIZES;
3738 
3739 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3740 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3741 	    bar == 0 && cap == 0x7000)
3742 		cap = 0x3f000;
3743 
3744 	return cap >> 4;
3745 }
3746 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3747 
3748 /**
3749  * pci_rebar_get_current_size - get the current size of a BAR
3750  * @pdev: PCI device
3751  * @bar: BAR to set size to
3752  *
3753  * Read the size of a BAR from the resizable BAR config.
3754  * Returns size if found or negative error code.
3755  */
3756 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3757 {
3758 	int pos;
3759 	u32 ctrl;
3760 
3761 	pos = pci_rebar_find_pos(pdev, bar);
3762 	if (pos < 0)
3763 		return pos;
3764 
3765 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3766 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3767 }
3768 
3769 /**
3770  * pci_rebar_set_size - set a new size for a BAR
3771  * @pdev: PCI device
3772  * @bar: BAR to set size to
3773  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3774  *
3775  * Set the new size of a BAR as defined in the spec.
3776  * Returns zero if resizing was successful, error code otherwise.
3777  */
3778 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3779 {
3780 	int pos;
3781 	u32 ctrl;
3782 
3783 	pos = pci_rebar_find_pos(pdev, bar);
3784 	if (pos < 0)
3785 		return pos;
3786 
3787 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3788 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3789 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3790 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3791 	return 0;
3792 }
3793 
3794 /**
3795  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3796  * @dev: the PCI device
3797  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3798  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3799  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3800  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3801  *
3802  * Return 0 if all upstream bridges support AtomicOp routing, egress
3803  * blocking is disabled on all upstream ports, and the root port supports
3804  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3805  * AtomicOp completion), or negative otherwise.
3806  */
3807 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3808 {
3809 	struct pci_bus *bus = dev->bus;
3810 	struct pci_dev *bridge;
3811 	u32 cap, ctl2;
3812 
3813 	/*
3814 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3815 	 * in Device Control 2 is reserved in VFs and the PF value applies
3816 	 * to all associated VFs.
3817 	 */
3818 	if (dev->is_virtfn)
3819 		return -EINVAL;
3820 
3821 	if (!pci_is_pcie(dev))
3822 		return -EINVAL;
3823 
3824 	/*
3825 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3826 	 * AtomicOp requesters.  For now, we only support endpoints as
3827 	 * requesters and root ports as completers.  No endpoints as
3828 	 * completers, and no peer-to-peer.
3829 	 */
3830 
3831 	switch (pci_pcie_type(dev)) {
3832 	case PCI_EXP_TYPE_ENDPOINT:
3833 	case PCI_EXP_TYPE_LEG_END:
3834 	case PCI_EXP_TYPE_RC_END:
3835 		break;
3836 	default:
3837 		return -EINVAL;
3838 	}
3839 
3840 	while (bus->parent) {
3841 		bridge = bus->self;
3842 
3843 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3844 
3845 		switch (pci_pcie_type(bridge)) {
3846 		/* Ensure switch ports support AtomicOp routing */
3847 		case PCI_EXP_TYPE_UPSTREAM:
3848 		case PCI_EXP_TYPE_DOWNSTREAM:
3849 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3850 				return -EINVAL;
3851 			break;
3852 
3853 		/* Ensure root port supports all the sizes we care about */
3854 		case PCI_EXP_TYPE_ROOT_PORT:
3855 			if ((cap & cap_mask) != cap_mask)
3856 				return -EINVAL;
3857 			break;
3858 		}
3859 
3860 		/* Ensure upstream ports don't block AtomicOps on egress */
3861 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3862 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3863 						   &ctl2);
3864 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3865 				return -EINVAL;
3866 		}
3867 
3868 		bus = bus->parent;
3869 	}
3870 
3871 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3872 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3873 	return 0;
3874 }
3875 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3876 
3877 /**
3878  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3879  * @dev: the PCI device
3880  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3881  *
3882  * Perform INTx swizzling for a device behind one level of bridge.  This is
3883  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3884  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3885  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3886  * the PCI Express Base Specification, Revision 2.1)
3887  */
3888 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3889 {
3890 	int slot;
3891 
3892 	if (pci_ari_enabled(dev->bus))
3893 		slot = 0;
3894 	else
3895 		slot = PCI_SLOT(dev->devfn);
3896 
3897 	return (((pin - 1) + slot) % 4) + 1;
3898 }
3899 
3900 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3901 {
3902 	u8 pin;
3903 
3904 	pin = dev->pin;
3905 	if (!pin)
3906 		return -1;
3907 
3908 	while (!pci_is_root_bus(dev->bus)) {
3909 		pin = pci_swizzle_interrupt_pin(dev, pin);
3910 		dev = dev->bus->self;
3911 	}
3912 	*bridge = dev;
3913 	return pin;
3914 }
3915 
3916 /**
3917  * pci_common_swizzle - swizzle INTx all the way to root bridge
3918  * @dev: the PCI device
3919  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3920  *
3921  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3922  * bridges all the way up to a PCI root bus.
3923  */
3924 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3925 {
3926 	u8 pin = *pinp;
3927 
3928 	while (!pci_is_root_bus(dev->bus)) {
3929 		pin = pci_swizzle_interrupt_pin(dev, pin);
3930 		dev = dev->bus->self;
3931 	}
3932 	*pinp = pin;
3933 	return PCI_SLOT(dev->devfn);
3934 }
3935 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3936 
3937 /**
3938  * pci_release_region - Release a PCI bar
3939  * @pdev: PCI device whose resources were previously reserved by
3940  *	  pci_request_region()
3941  * @bar: BAR to release
3942  *
3943  * Releases the PCI I/O and memory resources previously reserved by a
3944  * successful call to pci_request_region().  Call this function only
3945  * after all use of the PCI regions has ceased.
3946  */
3947 void pci_release_region(struct pci_dev *pdev, int bar)
3948 {
3949 	struct pci_devres *dr;
3950 
3951 	if (pci_resource_len(pdev, bar) == 0)
3952 		return;
3953 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3954 		release_region(pci_resource_start(pdev, bar),
3955 				pci_resource_len(pdev, bar));
3956 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3957 		release_mem_region(pci_resource_start(pdev, bar),
3958 				pci_resource_len(pdev, bar));
3959 
3960 	dr = find_pci_dr(pdev);
3961 	if (dr)
3962 		dr->region_mask &= ~(1 << bar);
3963 }
3964 EXPORT_SYMBOL(pci_release_region);
3965 
3966 /**
3967  * __pci_request_region - Reserved PCI I/O and memory resource
3968  * @pdev: PCI device whose resources are to be reserved
3969  * @bar: BAR to be reserved
3970  * @res_name: Name to be associated with resource.
3971  * @exclusive: whether the region access is exclusive or not
3972  *
3973  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3974  * being reserved by owner @res_name.  Do not access any
3975  * address inside the PCI regions unless this call returns
3976  * successfully.
3977  *
3978  * If @exclusive is set, then the region is marked so that userspace
3979  * is explicitly not allowed to map the resource via /dev/mem or
3980  * sysfs MMIO access.
3981  *
3982  * Returns 0 on success, or %EBUSY on error.  A warning
3983  * message is also printed on failure.
3984  */
3985 static int __pci_request_region(struct pci_dev *pdev, int bar,
3986 				const char *res_name, int exclusive)
3987 {
3988 	struct pci_devres *dr;
3989 
3990 	if (pci_resource_len(pdev, bar) == 0)
3991 		return 0;
3992 
3993 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3994 		if (!request_region(pci_resource_start(pdev, bar),
3995 			    pci_resource_len(pdev, bar), res_name))
3996 			goto err_out;
3997 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3998 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3999 					pci_resource_len(pdev, bar), res_name,
4000 					exclusive))
4001 			goto err_out;
4002 	}
4003 
4004 	dr = find_pci_dr(pdev);
4005 	if (dr)
4006 		dr->region_mask |= 1 << bar;
4007 
4008 	return 0;
4009 
4010 err_out:
4011 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4012 		 &pdev->resource[bar]);
4013 	return -EBUSY;
4014 }
4015 
4016 /**
4017  * pci_request_region - Reserve PCI I/O and memory resource
4018  * @pdev: PCI device whose resources are to be reserved
4019  * @bar: BAR to be reserved
4020  * @res_name: Name to be associated with resource
4021  *
4022  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4023  * being reserved by owner @res_name.  Do not access any
4024  * address inside the PCI regions unless this call returns
4025  * successfully.
4026  *
4027  * Returns 0 on success, or %EBUSY on error.  A warning
4028  * message is also printed on failure.
4029  */
4030 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4031 {
4032 	return __pci_request_region(pdev, bar, res_name, 0);
4033 }
4034 EXPORT_SYMBOL(pci_request_region);
4035 
4036 /**
4037  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4038  * @pdev: PCI device whose resources were previously reserved
4039  * @bars: Bitmask of BARs to be released
4040  *
4041  * Release selected PCI I/O and memory resources previously reserved.
4042  * Call this function only after all use of the PCI regions has ceased.
4043  */
4044 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4045 {
4046 	int i;
4047 
4048 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4049 		if (bars & (1 << i))
4050 			pci_release_region(pdev, i);
4051 }
4052 EXPORT_SYMBOL(pci_release_selected_regions);
4053 
4054 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055 					  const char *res_name, int excl)
4056 {
4057 	int i;
4058 
4059 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4060 		if (bars & (1 << i))
4061 			if (__pci_request_region(pdev, i, res_name, excl))
4062 				goto err_out;
4063 	return 0;
4064 
4065 err_out:
4066 	while (--i >= 0)
4067 		if (bars & (1 << i))
4068 			pci_release_region(pdev, i);
4069 
4070 	return -EBUSY;
4071 }
4072 
4073 
4074 /**
4075  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4076  * @pdev: PCI device whose resources are to be reserved
4077  * @bars: Bitmask of BARs to be requested
4078  * @res_name: Name to be associated with resource
4079  */
4080 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4081 				 const char *res_name)
4082 {
4083 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4084 }
4085 EXPORT_SYMBOL(pci_request_selected_regions);
4086 
4087 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4088 					   const char *res_name)
4089 {
4090 	return __pci_request_selected_regions(pdev, bars, res_name,
4091 			IORESOURCE_EXCLUSIVE);
4092 }
4093 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4094 
4095 /**
4096  * pci_release_regions - Release reserved PCI I/O and memory resources
4097  * @pdev: PCI device whose resources were previously reserved by
4098  *	  pci_request_regions()
4099  *
4100  * Releases all PCI I/O and memory resources previously reserved by a
4101  * successful call to pci_request_regions().  Call this function only
4102  * after all use of the PCI regions has ceased.
4103  */
4104 
4105 void pci_release_regions(struct pci_dev *pdev)
4106 {
4107 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4108 }
4109 EXPORT_SYMBOL(pci_release_regions);
4110 
4111 /**
4112  * pci_request_regions - Reserve PCI I/O and memory resources
4113  * @pdev: PCI device whose resources are to be reserved
4114  * @res_name: Name to be associated with resource.
4115  *
4116  * Mark all PCI regions associated with PCI device @pdev as
4117  * being reserved by owner @res_name.  Do not access any
4118  * address inside the PCI regions unless this call returns
4119  * successfully.
4120  *
4121  * Returns 0 on success, or %EBUSY on error.  A warning
4122  * message is also printed on failure.
4123  */
4124 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4125 {
4126 	return pci_request_selected_regions(pdev,
4127 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4128 }
4129 EXPORT_SYMBOL(pci_request_regions);
4130 
4131 /**
4132  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4133  * @pdev: PCI device whose resources are to be reserved
4134  * @res_name: Name to be associated with resource.
4135  *
4136  * Mark all PCI regions associated with PCI device @pdev as being reserved
4137  * by owner @res_name.  Do not access any address inside the PCI regions
4138  * unless this call returns successfully.
4139  *
4140  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4141  * and the sysfs MMIO access will not be allowed.
4142  *
4143  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4144  * printed on failure.
4145  */
4146 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4147 {
4148 	return pci_request_selected_regions_exclusive(pdev,
4149 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4150 }
4151 EXPORT_SYMBOL(pci_request_regions_exclusive);
4152 
4153 /*
4154  * Record the PCI IO range (expressed as CPU physical address + size).
4155  * Return a negative value if an error has occurred, zero otherwise
4156  */
4157 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4158 			resource_size_t	size)
4159 {
4160 	int ret = 0;
4161 #ifdef PCI_IOBASE
4162 	struct logic_pio_hwaddr *range;
4163 
4164 	if (!size || addr + size < addr)
4165 		return -EINVAL;
4166 
4167 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4168 	if (!range)
4169 		return -ENOMEM;
4170 
4171 	range->fwnode = fwnode;
4172 	range->size = size;
4173 	range->hw_start = addr;
4174 	range->flags = LOGIC_PIO_CPU_MMIO;
4175 
4176 	ret = logic_pio_register_range(range);
4177 	if (ret)
4178 		kfree(range);
4179 
4180 	/* Ignore duplicates due to deferred probing */
4181 	if (ret == -EEXIST)
4182 		ret = 0;
4183 #endif
4184 
4185 	return ret;
4186 }
4187 
4188 phys_addr_t pci_pio_to_address(unsigned long pio)
4189 {
4190 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4191 
4192 #ifdef PCI_IOBASE
4193 	if (pio >= MMIO_UPPER_LIMIT)
4194 		return address;
4195 
4196 	address = logic_pio_to_hwaddr(pio);
4197 #endif
4198 
4199 	return address;
4200 }
4201 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4202 
4203 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4204 {
4205 #ifdef PCI_IOBASE
4206 	return logic_pio_trans_cpuaddr(address);
4207 #else
4208 	if (address > IO_SPACE_LIMIT)
4209 		return (unsigned long)-1;
4210 
4211 	return (unsigned long) address;
4212 #endif
4213 }
4214 
4215 /**
4216  * pci_remap_iospace - Remap the memory mapped I/O space
4217  * @res: Resource describing the I/O space
4218  * @phys_addr: physical address of range to be mapped
4219  *
4220  * Remap the memory mapped I/O space described by the @res and the CPU
4221  * physical address @phys_addr into virtual address space.  Only
4222  * architectures that have memory mapped IO functions defined (and the
4223  * PCI_IOBASE value defined) should call this function.
4224  */
4225 #ifndef pci_remap_iospace
4226 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4227 {
4228 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4229 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4230 
4231 	if (!(res->flags & IORESOURCE_IO))
4232 		return -EINVAL;
4233 
4234 	if (res->end > IO_SPACE_LIMIT)
4235 		return -EINVAL;
4236 
4237 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4238 				  pgprot_device(PAGE_KERNEL));
4239 #else
4240 	/*
4241 	 * This architecture does not have memory mapped I/O space,
4242 	 * so this function should never be called
4243 	 */
4244 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4245 	return -ENODEV;
4246 #endif
4247 }
4248 EXPORT_SYMBOL(pci_remap_iospace);
4249 #endif
4250 
4251 /**
4252  * pci_unmap_iospace - Unmap the memory mapped I/O space
4253  * @res: resource to be unmapped
4254  *
4255  * Unmap the CPU virtual address @res from virtual address space.  Only
4256  * architectures that have memory mapped IO functions defined (and the
4257  * PCI_IOBASE value defined) should call this function.
4258  */
4259 void pci_unmap_iospace(struct resource *res)
4260 {
4261 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4262 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4263 
4264 	vunmap_range(vaddr, vaddr + resource_size(res));
4265 #endif
4266 }
4267 EXPORT_SYMBOL(pci_unmap_iospace);
4268 
4269 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4270 {
4271 	struct resource **res = ptr;
4272 
4273 	pci_unmap_iospace(*res);
4274 }
4275 
4276 /**
4277  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4278  * @dev: Generic device to remap IO address for
4279  * @res: Resource describing the I/O space
4280  * @phys_addr: physical address of range to be mapped
4281  *
4282  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4283  * detach.
4284  */
4285 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4286 			   phys_addr_t phys_addr)
4287 {
4288 	const struct resource **ptr;
4289 	int error;
4290 
4291 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4292 	if (!ptr)
4293 		return -ENOMEM;
4294 
4295 	error = pci_remap_iospace(res, phys_addr);
4296 	if (error) {
4297 		devres_free(ptr);
4298 	} else	{
4299 		*ptr = res;
4300 		devres_add(dev, ptr);
4301 	}
4302 
4303 	return error;
4304 }
4305 EXPORT_SYMBOL(devm_pci_remap_iospace);
4306 
4307 /**
4308  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4309  * @dev: Generic device to remap IO address for
4310  * @offset: Resource address to map
4311  * @size: Size of map
4312  *
4313  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4314  * detach.
4315  */
4316 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4317 				      resource_size_t offset,
4318 				      resource_size_t size)
4319 {
4320 	void __iomem **ptr, *addr;
4321 
4322 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4323 	if (!ptr)
4324 		return NULL;
4325 
4326 	addr = pci_remap_cfgspace(offset, size);
4327 	if (addr) {
4328 		*ptr = addr;
4329 		devres_add(dev, ptr);
4330 	} else
4331 		devres_free(ptr);
4332 
4333 	return addr;
4334 }
4335 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4336 
4337 /**
4338  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4339  * @dev: generic device to handle the resource for
4340  * @res: configuration space resource to be handled
4341  *
4342  * Checks that a resource is a valid memory region, requests the memory
4343  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4344  * proper PCI configuration space memory attributes are guaranteed.
4345  *
4346  * All operations are managed and will be undone on driver detach.
4347  *
4348  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4349  * on failure. Usage example::
4350  *
4351  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4352  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4353  *	if (IS_ERR(base))
4354  *		return PTR_ERR(base);
4355  */
4356 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4357 					  struct resource *res)
4358 {
4359 	resource_size_t size;
4360 	const char *name;
4361 	void __iomem *dest_ptr;
4362 
4363 	BUG_ON(!dev);
4364 
4365 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4366 		dev_err(dev, "invalid resource\n");
4367 		return IOMEM_ERR_PTR(-EINVAL);
4368 	}
4369 
4370 	size = resource_size(res);
4371 
4372 	if (res->name)
4373 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4374 				      res->name);
4375 	else
4376 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4377 	if (!name)
4378 		return IOMEM_ERR_PTR(-ENOMEM);
4379 
4380 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4381 		dev_err(dev, "can't request region for resource %pR\n", res);
4382 		return IOMEM_ERR_PTR(-EBUSY);
4383 	}
4384 
4385 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4386 	if (!dest_ptr) {
4387 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4388 		devm_release_mem_region(dev, res->start, size);
4389 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4390 	}
4391 
4392 	return dest_ptr;
4393 }
4394 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4395 
4396 static void __pci_set_master(struct pci_dev *dev, bool enable)
4397 {
4398 	u16 old_cmd, cmd;
4399 
4400 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4401 	if (enable)
4402 		cmd = old_cmd | PCI_COMMAND_MASTER;
4403 	else
4404 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4405 	if (cmd != old_cmd) {
4406 		pci_dbg(dev, "%s bus mastering\n",
4407 			enable ? "enabling" : "disabling");
4408 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4409 	}
4410 	dev->is_busmaster = enable;
4411 }
4412 
4413 /**
4414  * pcibios_setup - process "pci=" kernel boot arguments
4415  * @str: string used to pass in "pci=" kernel boot arguments
4416  *
4417  * Process kernel boot arguments.  This is the default implementation.
4418  * Architecture specific implementations can override this as necessary.
4419  */
4420 char * __weak __init pcibios_setup(char *str)
4421 {
4422 	return str;
4423 }
4424 
4425 /**
4426  * pcibios_set_master - enable PCI bus-mastering for device dev
4427  * @dev: the PCI device to enable
4428  *
4429  * Enables PCI bus-mastering for the device.  This is the default
4430  * implementation.  Architecture specific implementations can override
4431  * this if necessary.
4432  */
4433 void __weak pcibios_set_master(struct pci_dev *dev)
4434 {
4435 	u8 lat;
4436 
4437 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4438 	if (pci_is_pcie(dev))
4439 		return;
4440 
4441 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4442 	if (lat < 16)
4443 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4444 	else if (lat > pcibios_max_latency)
4445 		lat = pcibios_max_latency;
4446 	else
4447 		return;
4448 
4449 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4450 }
4451 
4452 /**
4453  * pci_set_master - enables bus-mastering for device dev
4454  * @dev: the PCI device to enable
4455  *
4456  * Enables bus-mastering on the device and calls pcibios_set_master()
4457  * to do the needed arch specific settings.
4458  */
4459 void pci_set_master(struct pci_dev *dev)
4460 {
4461 	__pci_set_master(dev, true);
4462 	pcibios_set_master(dev);
4463 }
4464 EXPORT_SYMBOL(pci_set_master);
4465 
4466 /**
4467  * pci_clear_master - disables bus-mastering for device dev
4468  * @dev: the PCI device to disable
4469  */
4470 void pci_clear_master(struct pci_dev *dev)
4471 {
4472 	__pci_set_master(dev, false);
4473 }
4474 EXPORT_SYMBOL(pci_clear_master);
4475 
4476 /**
4477  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4478  * @dev: the PCI device for which MWI is to be enabled
4479  *
4480  * Helper function for pci_set_mwi.
4481  * Originally copied from drivers/net/acenic.c.
4482  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4483  *
4484  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4485  */
4486 int pci_set_cacheline_size(struct pci_dev *dev)
4487 {
4488 	u8 cacheline_size;
4489 
4490 	if (!pci_cache_line_size)
4491 		return -EINVAL;
4492 
4493 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4494 	   equal to or multiple of the right value. */
4495 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4496 	if (cacheline_size >= pci_cache_line_size &&
4497 	    (cacheline_size % pci_cache_line_size) == 0)
4498 		return 0;
4499 
4500 	/* Write the correct value. */
4501 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4502 	/* Read it back. */
4503 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4504 	if (cacheline_size == pci_cache_line_size)
4505 		return 0;
4506 
4507 	pci_dbg(dev, "cache line size of %d is not supported\n",
4508 		   pci_cache_line_size << 2);
4509 
4510 	return -EINVAL;
4511 }
4512 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4513 
4514 /**
4515  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4516  * @dev: the PCI device for which MWI is enabled
4517  *
4518  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4519  *
4520  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4521  */
4522 int pci_set_mwi(struct pci_dev *dev)
4523 {
4524 #ifdef PCI_DISABLE_MWI
4525 	return 0;
4526 #else
4527 	int rc;
4528 	u16 cmd;
4529 
4530 	rc = pci_set_cacheline_size(dev);
4531 	if (rc)
4532 		return rc;
4533 
4534 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4535 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4536 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4537 		cmd |= PCI_COMMAND_INVALIDATE;
4538 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4539 	}
4540 	return 0;
4541 #endif
4542 }
4543 EXPORT_SYMBOL(pci_set_mwi);
4544 
4545 /**
4546  * pcim_set_mwi - a device-managed pci_set_mwi()
4547  * @dev: the PCI device for which MWI is enabled
4548  *
4549  * Managed pci_set_mwi().
4550  *
4551  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4552  */
4553 int pcim_set_mwi(struct pci_dev *dev)
4554 {
4555 	struct pci_devres *dr;
4556 
4557 	dr = find_pci_dr(dev);
4558 	if (!dr)
4559 		return -ENOMEM;
4560 
4561 	dr->mwi = 1;
4562 	return pci_set_mwi(dev);
4563 }
4564 EXPORT_SYMBOL(pcim_set_mwi);
4565 
4566 /**
4567  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4568  * @dev: the PCI device for which MWI is enabled
4569  *
4570  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4571  * Callers are not required to check the return value.
4572  *
4573  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4574  */
4575 int pci_try_set_mwi(struct pci_dev *dev)
4576 {
4577 #ifdef PCI_DISABLE_MWI
4578 	return 0;
4579 #else
4580 	return pci_set_mwi(dev);
4581 #endif
4582 }
4583 EXPORT_SYMBOL(pci_try_set_mwi);
4584 
4585 /**
4586  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4587  * @dev: the PCI device to disable
4588  *
4589  * Disables PCI Memory-Write-Invalidate transaction on the device
4590  */
4591 void pci_clear_mwi(struct pci_dev *dev)
4592 {
4593 #ifndef PCI_DISABLE_MWI
4594 	u16 cmd;
4595 
4596 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4597 	if (cmd & PCI_COMMAND_INVALIDATE) {
4598 		cmd &= ~PCI_COMMAND_INVALIDATE;
4599 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4600 	}
4601 #endif
4602 }
4603 EXPORT_SYMBOL(pci_clear_mwi);
4604 
4605 /**
4606  * pci_disable_parity - disable parity checking for device
4607  * @dev: the PCI device to operate on
4608  *
4609  * Disable parity checking for device @dev
4610  */
4611 void pci_disable_parity(struct pci_dev *dev)
4612 {
4613 	u16 cmd;
4614 
4615 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4616 	if (cmd & PCI_COMMAND_PARITY) {
4617 		cmd &= ~PCI_COMMAND_PARITY;
4618 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4619 	}
4620 }
4621 
4622 /**
4623  * pci_intx - enables/disables PCI INTx for device dev
4624  * @pdev: the PCI device to operate on
4625  * @enable: boolean: whether to enable or disable PCI INTx
4626  *
4627  * Enables/disables PCI INTx for device @pdev
4628  */
4629 void pci_intx(struct pci_dev *pdev, int enable)
4630 {
4631 	u16 pci_command, new;
4632 
4633 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4634 
4635 	if (enable)
4636 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4637 	else
4638 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4639 
4640 	if (new != pci_command) {
4641 		struct pci_devres *dr;
4642 
4643 		pci_write_config_word(pdev, PCI_COMMAND, new);
4644 
4645 		dr = find_pci_dr(pdev);
4646 		if (dr && !dr->restore_intx) {
4647 			dr->restore_intx = 1;
4648 			dr->orig_intx = !enable;
4649 		}
4650 	}
4651 }
4652 EXPORT_SYMBOL_GPL(pci_intx);
4653 
4654 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4655 {
4656 	struct pci_bus *bus = dev->bus;
4657 	bool mask_updated = true;
4658 	u32 cmd_status_dword;
4659 	u16 origcmd, newcmd;
4660 	unsigned long flags;
4661 	bool irq_pending;
4662 
4663 	/*
4664 	 * We do a single dword read to retrieve both command and status.
4665 	 * Document assumptions that make this possible.
4666 	 */
4667 	BUILD_BUG_ON(PCI_COMMAND % 4);
4668 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4669 
4670 	raw_spin_lock_irqsave(&pci_lock, flags);
4671 
4672 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4673 
4674 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4675 
4676 	/*
4677 	 * Check interrupt status register to see whether our device
4678 	 * triggered the interrupt (when masking) or the next IRQ is
4679 	 * already pending (when unmasking).
4680 	 */
4681 	if (mask != irq_pending) {
4682 		mask_updated = false;
4683 		goto done;
4684 	}
4685 
4686 	origcmd = cmd_status_dword;
4687 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4688 	if (mask)
4689 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4690 	if (newcmd != origcmd)
4691 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4692 
4693 done:
4694 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4695 
4696 	return mask_updated;
4697 }
4698 
4699 /**
4700  * pci_check_and_mask_intx - mask INTx on pending interrupt
4701  * @dev: the PCI device to operate on
4702  *
4703  * Check if the device dev has its INTx line asserted, mask it and return
4704  * true in that case. False is returned if no interrupt was pending.
4705  */
4706 bool pci_check_and_mask_intx(struct pci_dev *dev)
4707 {
4708 	return pci_check_and_set_intx_mask(dev, true);
4709 }
4710 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4711 
4712 /**
4713  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4714  * @dev: the PCI device to operate on
4715  *
4716  * Check if the device dev has its INTx line asserted, unmask it if not and
4717  * return true. False is returned and the mask remains active if there was
4718  * still an interrupt pending.
4719  */
4720 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4721 {
4722 	return pci_check_and_set_intx_mask(dev, false);
4723 }
4724 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4725 
4726 /**
4727  * pci_wait_for_pending_transaction - wait for pending transaction
4728  * @dev: the PCI device to operate on
4729  *
4730  * Return 0 if transaction is pending 1 otherwise.
4731  */
4732 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4733 {
4734 	if (!pci_is_pcie(dev))
4735 		return 1;
4736 
4737 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4738 				    PCI_EXP_DEVSTA_TRPND);
4739 }
4740 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4741 
4742 /**
4743  * pcie_flr - initiate a PCIe function level reset
4744  * @dev: device to reset
4745  *
4746  * Initiate a function level reset unconditionally on @dev without
4747  * checking any flags and DEVCAP
4748  */
4749 int pcie_flr(struct pci_dev *dev)
4750 {
4751 	if (!pci_wait_for_pending_transaction(dev))
4752 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4753 
4754 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4755 
4756 	if (dev->imm_ready)
4757 		return 0;
4758 
4759 	/*
4760 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4761 	 * 100ms, but may silently discard requests while the FLR is in
4762 	 * progress.  Wait 100ms before trying to access the device.
4763 	 */
4764 	msleep(100);
4765 
4766 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4767 }
4768 EXPORT_SYMBOL_GPL(pcie_flr);
4769 
4770 /**
4771  * pcie_reset_flr - initiate a PCIe function level reset
4772  * @dev: device to reset
4773  * @probe: if true, return 0 if device can be reset this way
4774  *
4775  * Initiate a function level reset on @dev.
4776  */
4777 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4778 {
4779 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4780 		return -ENOTTY;
4781 
4782 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4783 		return -ENOTTY;
4784 
4785 	if (probe)
4786 		return 0;
4787 
4788 	return pcie_flr(dev);
4789 }
4790 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4791 
4792 static int pci_af_flr(struct pci_dev *dev, bool probe)
4793 {
4794 	int pos;
4795 	u8 cap;
4796 
4797 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4798 	if (!pos)
4799 		return -ENOTTY;
4800 
4801 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4802 		return -ENOTTY;
4803 
4804 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4805 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4806 		return -ENOTTY;
4807 
4808 	if (probe)
4809 		return 0;
4810 
4811 	/*
4812 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4813 	 * is used, so we use the control offset rather than status and shift
4814 	 * the test bit to match.
4815 	 */
4816 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4817 				 PCI_AF_STATUS_TP << 8))
4818 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4819 
4820 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4821 
4822 	if (dev->imm_ready)
4823 		return 0;
4824 
4825 	/*
4826 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4827 	 * updated 27 July 2006; a device must complete an FLR within
4828 	 * 100ms, but may silently discard requests while the FLR is in
4829 	 * progress.  Wait 100ms before trying to access the device.
4830 	 */
4831 	msleep(100);
4832 
4833 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4834 }
4835 
4836 /**
4837  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4838  * @dev: Device to reset.
4839  * @probe: if true, return 0 if the device can be reset this way.
4840  *
4841  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4842  * unset, it will be reinitialized internally when going from PCI_D3hot to
4843  * PCI_D0.  If that's the case and the device is not in a low-power state
4844  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4845  *
4846  * NOTE: This causes the caller to sleep for twice the device power transition
4847  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4848  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4849  * Moreover, only devices in D0 can be reset by this function.
4850  */
4851 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4852 {
4853 	u16 csr;
4854 
4855 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4856 		return -ENOTTY;
4857 
4858 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4859 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4860 		return -ENOTTY;
4861 
4862 	if (probe)
4863 		return 0;
4864 
4865 	if (dev->current_state != PCI_D0)
4866 		return -EINVAL;
4867 
4868 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4869 	csr |= PCI_D3hot;
4870 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4871 	pci_dev_d3_sleep(dev);
4872 
4873 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4874 	csr |= PCI_D0;
4875 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4876 	pci_dev_d3_sleep(dev);
4877 
4878 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4879 }
4880 
4881 /**
4882  * pcie_wait_for_link_delay - Wait until link is active or inactive
4883  * @pdev: Bridge device
4884  * @active: waiting for active or inactive?
4885  * @delay: Delay to wait after link has become active (in ms)
4886  *
4887  * Use this to wait till link becomes active or inactive.
4888  */
4889 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4890 				     int delay)
4891 {
4892 	int timeout = 1000;
4893 	bool ret;
4894 	u16 lnk_status;
4895 
4896 	/*
4897 	 * Some controllers might not implement link active reporting. In this
4898 	 * case, we wait for 1000 ms + any delay requested by the caller.
4899 	 */
4900 	if (!pdev->link_active_reporting) {
4901 		msleep(timeout + delay);
4902 		return true;
4903 	}
4904 
4905 	/*
4906 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4907 	 * after which we should expect an link active if the reset was
4908 	 * successful. If so, software must wait a minimum 100ms before sending
4909 	 * configuration requests to devices downstream this port.
4910 	 *
4911 	 * If the link fails to activate, either the device was physically
4912 	 * removed or the link is permanently failed.
4913 	 */
4914 	if (active)
4915 		msleep(20);
4916 	for (;;) {
4917 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4918 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4919 		if (ret == active)
4920 			break;
4921 		if (timeout <= 0)
4922 			break;
4923 		msleep(10);
4924 		timeout -= 10;
4925 	}
4926 	if (active && ret)
4927 		msleep(delay);
4928 
4929 	return ret == active;
4930 }
4931 
4932 /**
4933  * pcie_wait_for_link - Wait until link is active or inactive
4934  * @pdev: Bridge device
4935  * @active: waiting for active or inactive?
4936  *
4937  * Use this to wait till link becomes active or inactive.
4938  */
4939 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4940 {
4941 	return pcie_wait_for_link_delay(pdev, active, 100);
4942 }
4943 
4944 /*
4945  * Find maximum D3cold delay required by all the devices on the bus.  The
4946  * spec says 100 ms, but firmware can lower it and we allow drivers to
4947  * increase it as well.
4948  *
4949  * Called with @pci_bus_sem locked for reading.
4950  */
4951 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4952 {
4953 	const struct pci_dev *pdev;
4954 	int min_delay = 100;
4955 	int max_delay = 0;
4956 
4957 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4958 		if (pdev->d3cold_delay < min_delay)
4959 			min_delay = pdev->d3cold_delay;
4960 		if (pdev->d3cold_delay > max_delay)
4961 			max_delay = pdev->d3cold_delay;
4962 	}
4963 
4964 	return max(min_delay, max_delay);
4965 }
4966 
4967 /**
4968  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4969  * @dev: PCI bridge
4970  *
4971  * Handle necessary delays before access to the devices on the secondary
4972  * side of the bridge are permitted after D3cold to D0 transition.
4973  *
4974  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4975  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4976  * 4.3.2.
4977  */
4978 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4979 {
4980 	struct pci_dev *child;
4981 	int delay;
4982 
4983 	if (pci_dev_is_disconnected(dev))
4984 		return;
4985 
4986 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4987 		return;
4988 
4989 	down_read(&pci_bus_sem);
4990 
4991 	/*
4992 	 * We only deal with devices that are present currently on the bus.
4993 	 * For any hot-added devices the access delay is handled in pciehp
4994 	 * board_added(). In case of ACPI hotplug the firmware is expected
4995 	 * to configure the devices before OS is notified.
4996 	 */
4997 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4998 		up_read(&pci_bus_sem);
4999 		return;
5000 	}
5001 
5002 	/* Take d3cold_delay requirements into account */
5003 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5004 	if (!delay) {
5005 		up_read(&pci_bus_sem);
5006 		return;
5007 	}
5008 
5009 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5010 				 bus_list);
5011 	up_read(&pci_bus_sem);
5012 
5013 	/*
5014 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5015 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
5016 	 * practice this should not be needed because we don't do power
5017 	 * management for them (see pci_bridge_d3_possible()).
5018 	 */
5019 	if (!pci_is_pcie(dev)) {
5020 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5021 		msleep(1000 + delay);
5022 		return;
5023 	}
5024 
5025 	/*
5026 	 * For PCIe downstream and root ports that do not support speeds
5027 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5028 	 * speeds (gen3) we need to wait first for the data link layer to
5029 	 * become active.
5030 	 *
5031 	 * However, 100 ms is the minimum and the PCIe spec says the
5032 	 * software must allow at least 1s before it can determine that the
5033 	 * device that did not respond is a broken device. There is
5034 	 * evidence that 100 ms is not always enough, for example certain
5035 	 * Titan Ridge xHCI controller does not always respond to
5036 	 * configuration requests if we only wait for 100 ms (see
5037 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5038 	 *
5039 	 * Therefore we wait for 100 ms and check for the device presence.
5040 	 * If it is still not present give it an additional 100 ms.
5041 	 */
5042 	if (!pcie_downstream_port(dev))
5043 		return;
5044 
5045 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5046 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5047 		msleep(delay);
5048 	} else {
5049 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5050 			delay);
5051 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5052 			/* Did not train, no need to wait any further */
5053 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5054 			return;
5055 		}
5056 	}
5057 
5058 	if (!pci_device_is_present(child)) {
5059 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5060 		msleep(delay);
5061 	}
5062 }
5063 
5064 void pci_reset_secondary_bus(struct pci_dev *dev)
5065 {
5066 	u16 ctrl;
5067 
5068 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5069 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5070 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5071 
5072 	/*
5073 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5074 	 * this to 2ms to ensure that we meet the minimum requirement.
5075 	 */
5076 	msleep(2);
5077 
5078 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5079 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5080 
5081 	/*
5082 	 * Trhfa for conventional PCI is 2^25 clock cycles.
5083 	 * Assuming a minimum 33MHz clock this results in a 1s
5084 	 * delay before we can consider subordinate devices to
5085 	 * be re-initialized.  PCIe has some ways to shorten this,
5086 	 * but we don't make use of them yet.
5087 	 */
5088 	ssleep(1);
5089 }
5090 
5091 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5092 {
5093 	pci_reset_secondary_bus(dev);
5094 }
5095 
5096 /**
5097  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5098  * @dev: Bridge device
5099  *
5100  * Use the bridge control register to assert reset on the secondary bus.
5101  * Devices on the secondary bus are left in power-on state.
5102  */
5103 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5104 {
5105 	pcibios_reset_secondary_bus(dev);
5106 
5107 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5108 }
5109 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5110 
5111 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5112 {
5113 	struct pci_dev *pdev;
5114 
5115 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5116 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5117 		return -ENOTTY;
5118 
5119 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5120 		if (pdev != dev)
5121 			return -ENOTTY;
5122 
5123 	if (probe)
5124 		return 0;
5125 
5126 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5127 }
5128 
5129 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5130 {
5131 	int rc = -ENOTTY;
5132 
5133 	if (!hotplug || !try_module_get(hotplug->owner))
5134 		return rc;
5135 
5136 	if (hotplug->ops->reset_slot)
5137 		rc = hotplug->ops->reset_slot(hotplug, probe);
5138 
5139 	module_put(hotplug->owner);
5140 
5141 	return rc;
5142 }
5143 
5144 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5145 {
5146 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5147 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5148 		return -ENOTTY;
5149 
5150 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5151 }
5152 
5153 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5154 {
5155 	int rc;
5156 
5157 	rc = pci_dev_reset_slot_function(dev, probe);
5158 	if (rc != -ENOTTY)
5159 		return rc;
5160 	return pci_parent_bus_reset(dev, probe);
5161 }
5162 
5163 void pci_dev_lock(struct pci_dev *dev)
5164 {
5165 	/* block PM suspend, driver probe, etc. */
5166 	device_lock(&dev->dev);
5167 	pci_cfg_access_lock(dev);
5168 }
5169 EXPORT_SYMBOL_GPL(pci_dev_lock);
5170 
5171 /* Return 1 on successful lock, 0 on contention */
5172 int pci_dev_trylock(struct pci_dev *dev)
5173 {
5174 	if (device_trylock(&dev->dev)) {
5175 		if (pci_cfg_access_trylock(dev))
5176 			return 1;
5177 		device_unlock(&dev->dev);
5178 	}
5179 
5180 	return 0;
5181 }
5182 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5183 
5184 void pci_dev_unlock(struct pci_dev *dev)
5185 {
5186 	pci_cfg_access_unlock(dev);
5187 	device_unlock(&dev->dev);
5188 }
5189 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5190 
5191 static void pci_dev_save_and_disable(struct pci_dev *dev)
5192 {
5193 	const struct pci_error_handlers *err_handler =
5194 			dev->driver ? dev->driver->err_handler : NULL;
5195 
5196 	/*
5197 	 * dev->driver->err_handler->reset_prepare() is protected against
5198 	 * races with ->remove() by the device lock, which must be held by
5199 	 * the caller.
5200 	 */
5201 	if (err_handler && err_handler->reset_prepare)
5202 		err_handler->reset_prepare(dev);
5203 
5204 	/*
5205 	 * Wake-up device prior to save.  PM registers default to D0 after
5206 	 * reset and a simple register restore doesn't reliably return
5207 	 * to a non-D0 state anyway.
5208 	 */
5209 	pci_set_power_state(dev, PCI_D0);
5210 
5211 	pci_save_state(dev);
5212 	/*
5213 	 * Disable the device by clearing the Command register, except for
5214 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5215 	 * BARs, but also prevents the device from being Bus Master, preventing
5216 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5217 	 * compliant devices, INTx-disable prevents legacy interrupts.
5218 	 */
5219 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5220 }
5221 
5222 static void pci_dev_restore(struct pci_dev *dev)
5223 {
5224 	const struct pci_error_handlers *err_handler =
5225 			dev->driver ? dev->driver->err_handler : NULL;
5226 
5227 	pci_restore_state(dev);
5228 
5229 	/*
5230 	 * dev->driver->err_handler->reset_done() is protected against
5231 	 * races with ->remove() by the device lock, which must be held by
5232 	 * the caller.
5233 	 */
5234 	if (err_handler && err_handler->reset_done)
5235 		err_handler->reset_done(dev);
5236 }
5237 
5238 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5239 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5240 	{ },
5241 	{ pci_dev_specific_reset, .name = "device_specific" },
5242 	{ pci_dev_acpi_reset, .name = "acpi" },
5243 	{ pcie_reset_flr, .name = "flr" },
5244 	{ pci_af_flr, .name = "af_flr" },
5245 	{ pci_pm_reset, .name = "pm" },
5246 	{ pci_reset_bus_function, .name = "bus" },
5247 };
5248 
5249 static ssize_t reset_method_show(struct device *dev,
5250 				 struct device_attribute *attr, char *buf)
5251 {
5252 	struct pci_dev *pdev = to_pci_dev(dev);
5253 	ssize_t len = 0;
5254 	int i, m;
5255 
5256 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5257 		m = pdev->reset_methods[i];
5258 		if (!m)
5259 			break;
5260 
5261 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5262 				     pci_reset_fn_methods[m].name);
5263 	}
5264 
5265 	if (len)
5266 		len += sysfs_emit_at(buf, len, "\n");
5267 
5268 	return len;
5269 }
5270 
5271 static int reset_method_lookup(const char *name)
5272 {
5273 	int m;
5274 
5275 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5276 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5277 			return m;
5278 	}
5279 
5280 	return 0;	/* not found */
5281 }
5282 
5283 static ssize_t reset_method_store(struct device *dev,
5284 				  struct device_attribute *attr,
5285 				  const char *buf, size_t count)
5286 {
5287 	struct pci_dev *pdev = to_pci_dev(dev);
5288 	char *options, *name;
5289 	int m, n;
5290 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5291 
5292 	if (sysfs_streq(buf, "")) {
5293 		pdev->reset_methods[0] = 0;
5294 		pci_warn(pdev, "All device reset methods disabled by user");
5295 		return count;
5296 	}
5297 
5298 	if (sysfs_streq(buf, "default")) {
5299 		pci_init_reset_methods(pdev);
5300 		return count;
5301 	}
5302 
5303 	options = kstrndup(buf, count, GFP_KERNEL);
5304 	if (!options)
5305 		return -ENOMEM;
5306 
5307 	n = 0;
5308 	while ((name = strsep(&options, " ")) != NULL) {
5309 		if (sysfs_streq(name, ""))
5310 			continue;
5311 
5312 		name = strim(name);
5313 
5314 		m = reset_method_lookup(name);
5315 		if (!m) {
5316 			pci_err(pdev, "Invalid reset method '%s'", name);
5317 			goto error;
5318 		}
5319 
5320 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5321 			pci_err(pdev, "Unsupported reset method '%s'", name);
5322 			goto error;
5323 		}
5324 
5325 		if (n == PCI_NUM_RESET_METHODS - 1) {
5326 			pci_err(pdev, "Too many reset methods\n");
5327 			goto error;
5328 		}
5329 
5330 		reset_methods[n++] = m;
5331 	}
5332 
5333 	reset_methods[n] = 0;
5334 
5335 	/* Warn if dev-specific supported but not highest priority */
5336 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5337 	    reset_methods[0] != 1)
5338 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5339 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5340 	kfree(options);
5341 	return count;
5342 
5343 error:
5344 	/* Leave previous methods unchanged */
5345 	kfree(options);
5346 	return -EINVAL;
5347 }
5348 static DEVICE_ATTR_RW(reset_method);
5349 
5350 static struct attribute *pci_dev_reset_method_attrs[] = {
5351 	&dev_attr_reset_method.attr,
5352 	NULL,
5353 };
5354 
5355 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5356 						    struct attribute *a, int n)
5357 {
5358 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5359 
5360 	if (!pci_reset_supported(pdev))
5361 		return 0;
5362 
5363 	return a->mode;
5364 }
5365 
5366 const struct attribute_group pci_dev_reset_method_attr_group = {
5367 	.attrs = pci_dev_reset_method_attrs,
5368 	.is_visible = pci_dev_reset_method_attr_is_visible,
5369 };
5370 
5371 /**
5372  * __pci_reset_function_locked - reset a PCI device function while holding
5373  * the @dev mutex lock.
5374  * @dev: PCI device to reset
5375  *
5376  * Some devices allow an individual function to be reset without affecting
5377  * other functions in the same device.  The PCI device must be responsive
5378  * to PCI config space in order to use this function.
5379  *
5380  * The device function is presumed to be unused and the caller is holding
5381  * the device mutex lock when this function is called.
5382  *
5383  * Resetting the device will make the contents of PCI configuration space
5384  * random, so any caller of this must be prepared to reinitialise the
5385  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5386  * etc.
5387  *
5388  * Returns 0 if the device function was successfully reset or negative if the
5389  * device doesn't support resetting a single function.
5390  */
5391 int __pci_reset_function_locked(struct pci_dev *dev)
5392 {
5393 	int i, m, rc;
5394 
5395 	might_sleep();
5396 
5397 	/*
5398 	 * A reset method returns -ENOTTY if it doesn't support this device and
5399 	 * we should try the next method.
5400 	 *
5401 	 * If it returns 0 (success), we're finished.  If it returns any other
5402 	 * error, we're also finished: this indicates that further reset
5403 	 * mechanisms might be broken on the device.
5404 	 */
5405 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5406 		m = dev->reset_methods[i];
5407 		if (!m)
5408 			return -ENOTTY;
5409 
5410 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5411 		if (!rc)
5412 			return 0;
5413 		if (rc != -ENOTTY)
5414 			return rc;
5415 	}
5416 
5417 	return -ENOTTY;
5418 }
5419 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5420 
5421 /**
5422  * pci_init_reset_methods - check whether device can be safely reset
5423  * and store supported reset mechanisms.
5424  * @dev: PCI device to check for reset mechanisms
5425  *
5426  * Some devices allow an individual function to be reset without affecting
5427  * other functions in the same device.  The PCI device must be in D0-D3hot
5428  * state.
5429  *
5430  * Stores reset mechanisms supported by device in reset_methods byte array
5431  * which is a member of struct pci_dev.
5432  */
5433 void pci_init_reset_methods(struct pci_dev *dev)
5434 {
5435 	int m, i, rc;
5436 
5437 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5438 
5439 	might_sleep();
5440 
5441 	i = 0;
5442 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5443 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5444 		if (!rc)
5445 			dev->reset_methods[i++] = m;
5446 		else if (rc != -ENOTTY)
5447 			break;
5448 	}
5449 
5450 	dev->reset_methods[i] = 0;
5451 }
5452 
5453 /**
5454  * pci_reset_function - quiesce and reset a PCI device function
5455  * @dev: PCI device to reset
5456  *
5457  * Some devices allow an individual function to be reset without affecting
5458  * other functions in the same device.  The PCI device must be responsive
5459  * to PCI config space in order to use this function.
5460  *
5461  * This function does not just reset the PCI portion of a device, but
5462  * clears all the state associated with the device.  This function differs
5463  * from __pci_reset_function_locked() in that it saves and restores device state
5464  * over the reset and takes the PCI device lock.
5465  *
5466  * Returns 0 if the device function was successfully reset or negative if the
5467  * device doesn't support resetting a single function.
5468  */
5469 int pci_reset_function(struct pci_dev *dev)
5470 {
5471 	int rc;
5472 
5473 	if (!pci_reset_supported(dev))
5474 		return -ENOTTY;
5475 
5476 	pci_dev_lock(dev);
5477 	pci_dev_save_and_disable(dev);
5478 
5479 	rc = __pci_reset_function_locked(dev);
5480 
5481 	pci_dev_restore(dev);
5482 	pci_dev_unlock(dev);
5483 
5484 	return rc;
5485 }
5486 EXPORT_SYMBOL_GPL(pci_reset_function);
5487 
5488 /**
5489  * pci_reset_function_locked - quiesce and reset a PCI device function
5490  * @dev: PCI device to reset
5491  *
5492  * Some devices allow an individual function to be reset without affecting
5493  * other functions in the same device.  The PCI device must be responsive
5494  * to PCI config space in order to use this function.
5495  *
5496  * This function does not just reset the PCI portion of a device, but
5497  * clears all the state associated with the device.  This function differs
5498  * from __pci_reset_function_locked() in that it saves and restores device state
5499  * over the reset.  It also differs from pci_reset_function() in that it
5500  * requires the PCI device lock to be held.
5501  *
5502  * Returns 0 if the device function was successfully reset or negative if the
5503  * device doesn't support resetting a single function.
5504  */
5505 int pci_reset_function_locked(struct pci_dev *dev)
5506 {
5507 	int rc;
5508 
5509 	if (!pci_reset_supported(dev))
5510 		return -ENOTTY;
5511 
5512 	pci_dev_save_and_disable(dev);
5513 
5514 	rc = __pci_reset_function_locked(dev);
5515 
5516 	pci_dev_restore(dev);
5517 
5518 	return rc;
5519 }
5520 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5521 
5522 /**
5523  * pci_try_reset_function - quiesce and reset a PCI device function
5524  * @dev: PCI device to reset
5525  *
5526  * Same as above, except return -EAGAIN if unable to lock device.
5527  */
5528 int pci_try_reset_function(struct pci_dev *dev)
5529 {
5530 	int rc;
5531 
5532 	if (!pci_reset_supported(dev))
5533 		return -ENOTTY;
5534 
5535 	if (!pci_dev_trylock(dev))
5536 		return -EAGAIN;
5537 
5538 	pci_dev_save_and_disable(dev);
5539 	rc = __pci_reset_function_locked(dev);
5540 	pci_dev_restore(dev);
5541 	pci_dev_unlock(dev);
5542 
5543 	return rc;
5544 }
5545 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5546 
5547 /* Do any devices on or below this bus prevent a bus reset? */
5548 static bool pci_bus_resetable(struct pci_bus *bus)
5549 {
5550 	struct pci_dev *dev;
5551 
5552 
5553 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5554 		return false;
5555 
5556 	list_for_each_entry(dev, &bus->devices, bus_list) {
5557 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5558 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5559 			return false;
5560 	}
5561 
5562 	return true;
5563 }
5564 
5565 /* Lock devices from the top of the tree down */
5566 static void pci_bus_lock(struct pci_bus *bus)
5567 {
5568 	struct pci_dev *dev;
5569 
5570 	list_for_each_entry(dev, &bus->devices, bus_list) {
5571 		pci_dev_lock(dev);
5572 		if (dev->subordinate)
5573 			pci_bus_lock(dev->subordinate);
5574 	}
5575 }
5576 
5577 /* Unlock devices from the bottom of the tree up */
5578 static void pci_bus_unlock(struct pci_bus *bus)
5579 {
5580 	struct pci_dev *dev;
5581 
5582 	list_for_each_entry(dev, &bus->devices, bus_list) {
5583 		if (dev->subordinate)
5584 			pci_bus_unlock(dev->subordinate);
5585 		pci_dev_unlock(dev);
5586 	}
5587 }
5588 
5589 /* Return 1 on successful lock, 0 on contention */
5590 static int pci_bus_trylock(struct pci_bus *bus)
5591 {
5592 	struct pci_dev *dev;
5593 
5594 	list_for_each_entry(dev, &bus->devices, bus_list) {
5595 		if (!pci_dev_trylock(dev))
5596 			goto unlock;
5597 		if (dev->subordinate) {
5598 			if (!pci_bus_trylock(dev->subordinate)) {
5599 				pci_dev_unlock(dev);
5600 				goto unlock;
5601 			}
5602 		}
5603 	}
5604 	return 1;
5605 
5606 unlock:
5607 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5608 		if (dev->subordinate)
5609 			pci_bus_unlock(dev->subordinate);
5610 		pci_dev_unlock(dev);
5611 	}
5612 	return 0;
5613 }
5614 
5615 /* Do any devices on or below this slot prevent a bus reset? */
5616 static bool pci_slot_resetable(struct pci_slot *slot)
5617 {
5618 	struct pci_dev *dev;
5619 
5620 	if (slot->bus->self &&
5621 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5622 		return false;
5623 
5624 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5625 		if (!dev->slot || dev->slot != slot)
5626 			continue;
5627 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5628 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5629 			return false;
5630 	}
5631 
5632 	return true;
5633 }
5634 
5635 /* Lock devices from the top of the tree down */
5636 static void pci_slot_lock(struct pci_slot *slot)
5637 {
5638 	struct pci_dev *dev;
5639 
5640 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5641 		if (!dev->slot || dev->slot != slot)
5642 			continue;
5643 		pci_dev_lock(dev);
5644 		if (dev->subordinate)
5645 			pci_bus_lock(dev->subordinate);
5646 	}
5647 }
5648 
5649 /* Unlock devices from the bottom of the tree up */
5650 static void pci_slot_unlock(struct pci_slot *slot)
5651 {
5652 	struct pci_dev *dev;
5653 
5654 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5655 		if (!dev->slot || dev->slot != slot)
5656 			continue;
5657 		if (dev->subordinate)
5658 			pci_bus_unlock(dev->subordinate);
5659 		pci_dev_unlock(dev);
5660 	}
5661 }
5662 
5663 /* Return 1 on successful lock, 0 on contention */
5664 static int pci_slot_trylock(struct pci_slot *slot)
5665 {
5666 	struct pci_dev *dev;
5667 
5668 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5669 		if (!dev->slot || dev->slot != slot)
5670 			continue;
5671 		if (!pci_dev_trylock(dev))
5672 			goto unlock;
5673 		if (dev->subordinate) {
5674 			if (!pci_bus_trylock(dev->subordinate)) {
5675 				pci_dev_unlock(dev);
5676 				goto unlock;
5677 			}
5678 		}
5679 	}
5680 	return 1;
5681 
5682 unlock:
5683 	list_for_each_entry_continue_reverse(dev,
5684 					     &slot->bus->devices, bus_list) {
5685 		if (!dev->slot || dev->slot != slot)
5686 			continue;
5687 		if (dev->subordinate)
5688 			pci_bus_unlock(dev->subordinate);
5689 		pci_dev_unlock(dev);
5690 	}
5691 	return 0;
5692 }
5693 
5694 /*
5695  * Save and disable devices from the top of the tree down while holding
5696  * the @dev mutex lock for the entire tree.
5697  */
5698 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5699 {
5700 	struct pci_dev *dev;
5701 
5702 	list_for_each_entry(dev, &bus->devices, bus_list) {
5703 		pci_dev_save_and_disable(dev);
5704 		if (dev->subordinate)
5705 			pci_bus_save_and_disable_locked(dev->subordinate);
5706 	}
5707 }
5708 
5709 /*
5710  * Restore devices from top of the tree down while holding @dev mutex lock
5711  * for the entire tree.  Parent bridges need to be restored before we can
5712  * get to subordinate devices.
5713  */
5714 static void pci_bus_restore_locked(struct pci_bus *bus)
5715 {
5716 	struct pci_dev *dev;
5717 
5718 	list_for_each_entry(dev, &bus->devices, bus_list) {
5719 		pci_dev_restore(dev);
5720 		if (dev->subordinate)
5721 			pci_bus_restore_locked(dev->subordinate);
5722 	}
5723 }
5724 
5725 /*
5726  * Save and disable devices from the top of the tree down while holding
5727  * the @dev mutex lock for the entire tree.
5728  */
5729 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5730 {
5731 	struct pci_dev *dev;
5732 
5733 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5734 		if (!dev->slot || dev->slot != slot)
5735 			continue;
5736 		pci_dev_save_and_disable(dev);
5737 		if (dev->subordinate)
5738 			pci_bus_save_and_disable_locked(dev->subordinate);
5739 	}
5740 }
5741 
5742 /*
5743  * Restore devices from top of the tree down while holding @dev mutex lock
5744  * for the entire tree.  Parent bridges need to be restored before we can
5745  * get to subordinate devices.
5746  */
5747 static void pci_slot_restore_locked(struct pci_slot *slot)
5748 {
5749 	struct pci_dev *dev;
5750 
5751 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5752 		if (!dev->slot || dev->slot != slot)
5753 			continue;
5754 		pci_dev_restore(dev);
5755 		if (dev->subordinate)
5756 			pci_bus_restore_locked(dev->subordinate);
5757 	}
5758 }
5759 
5760 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5761 {
5762 	int rc;
5763 
5764 	if (!slot || !pci_slot_resetable(slot))
5765 		return -ENOTTY;
5766 
5767 	if (!probe)
5768 		pci_slot_lock(slot);
5769 
5770 	might_sleep();
5771 
5772 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5773 
5774 	if (!probe)
5775 		pci_slot_unlock(slot);
5776 
5777 	return rc;
5778 }
5779 
5780 /**
5781  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5782  * @slot: PCI slot to probe
5783  *
5784  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5785  */
5786 int pci_probe_reset_slot(struct pci_slot *slot)
5787 {
5788 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5789 }
5790 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5791 
5792 /**
5793  * __pci_reset_slot - Try to reset a PCI slot
5794  * @slot: PCI slot to reset
5795  *
5796  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5797  * independent of other slots.  For instance, some slots may support slot power
5798  * control.  In the case of a 1:1 bus to slot architecture, this function may
5799  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5800  * Generally a slot reset should be attempted before a bus reset.  All of the
5801  * function of the slot and any subordinate buses behind the slot are reset
5802  * through this function.  PCI config space of all devices in the slot and
5803  * behind the slot is saved before and restored after reset.
5804  *
5805  * Same as above except return -EAGAIN if the slot cannot be locked
5806  */
5807 static int __pci_reset_slot(struct pci_slot *slot)
5808 {
5809 	int rc;
5810 
5811 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5812 	if (rc)
5813 		return rc;
5814 
5815 	if (pci_slot_trylock(slot)) {
5816 		pci_slot_save_and_disable_locked(slot);
5817 		might_sleep();
5818 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5819 		pci_slot_restore_locked(slot);
5820 		pci_slot_unlock(slot);
5821 	} else
5822 		rc = -EAGAIN;
5823 
5824 	return rc;
5825 }
5826 
5827 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5828 {
5829 	int ret;
5830 
5831 	if (!bus->self || !pci_bus_resetable(bus))
5832 		return -ENOTTY;
5833 
5834 	if (probe)
5835 		return 0;
5836 
5837 	pci_bus_lock(bus);
5838 
5839 	might_sleep();
5840 
5841 	ret = pci_bridge_secondary_bus_reset(bus->self);
5842 
5843 	pci_bus_unlock(bus);
5844 
5845 	return ret;
5846 }
5847 
5848 /**
5849  * pci_bus_error_reset - reset the bridge's subordinate bus
5850  * @bridge: The parent device that connects to the bus to reset
5851  *
5852  * This function will first try to reset the slots on this bus if the method is
5853  * available. If slot reset fails or is not available, this will fall back to a
5854  * secondary bus reset.
5855  */
5856 int pci_bus_error_reset(struct pci_dev *bridge)
5857 {
5858 	struct pci_bus *bus = bridge->subordinate;
5859 	struct pci_slot *slot;
5860 
5861 	if (!bus)
5862 		return -ENOTTY;
5863 
5864 	mutex_lock(&pci_slot_mutex);
5865 	if (list_empty(&bus->slots))
5866 		goto bus_reset;
5867 
5868 	list_for_each_entry(slot, &bus->slots, list)
5869 		if (pci_probe_reset_slot(slot))
5870 			goto bus_reset;
5871 
5872 	list_for_each_entry(slot, &bus->slots, list)
5873 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5874 			goto bus_reset;
5875 
5876 	mutex_unlock(&pci_slot_mutex);
5877 	return 0;
5878 bus_reset:
5879 	mutex_unlock(&pci_slot_mutex);
5880 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5881 }
5882 
5883 /**
5884  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5885  * @bus: PCI bus to probe
5886  *
5887  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5888  */
5889 int pci_probe_reset_bus(struct pci_bus *bus)
5890 {
5891 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5892 }
5893 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5894 
5895 /**
5896  * __pci_reset_bus - Try to reset a PCI bus
5897  * @bus: top level PCI bus to reset
5898  *
5899  * Same as above except return -EAGAIN if the bus cannot be locked
5900  */
5901 static int __pci_reset_bus(struct pci_bus *bus)
5902 {
5903 	int rc;
5904 
5905 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5906 	if (rc)
5907 		return rc;
5908 
5909 	if (pci_bus_trylock(bus)) {
5910 		pci_bus_save_and_disable_locked(bus);
5911 		might_sleep();
5912 		rc = pci_bridge_secondary_bus_reset(bus->self);
5913 		pci_bus_restore_locked(bus);
5914 		pci_bus_unlock(bus);
5915 	} else
5916 		rc = -EAGAIN;
5917 
5918 	return rc;
5919 }
5920 
5921 /**
5922  * pci_reset_bus - Try to reset a PCI bus
5923  * @pdev: top level PCI device to reset via slot/bus
5924  *
5925  * Same as above except return -EAGAIN if the bus cannot be locked
5926  */
5927 int pci_reset_bus(struct pci_dev *pdev)
5928 {
5929 	return (!pci_probe_reset_slot(pdev->slot)) ?
5930 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5931 }
5932 EXPORT_SYMBOL_GPL(pci_reset_bus);
5933 
5934 /**
5935  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5936  * @dev: PCI device to query
5937  *
5938  * Returns mmrbc: maximum designed memory read count in bytes or
5939  * appropriate error value.
5940  */
5941 int pcix_get_max_mmrbc(struct pci_dev *dev)
5942 {
5943 	int cap;
5944 	u32 stat;
5945 
5946 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5947 	if (!cap)
5948 		return -EINVAL;
5949 
5950 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5951 		return -EINVAL;
5952 
5953 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5954 }
5955 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5956 
5957 /**
5958  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5959  * @dev: PCI device to query
5960  *
5961  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5962  * value.
5963  */
5964 int pcix_get_mmrbc(struct pci_dev *dev)
5965 {
5966 	int cap;
5967 	u16 cmd;
5968 
5969 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5970 	if (!cap)
5971 		return -EINVAL;
5972 
5973 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5974 		return -EINVAL;
5975 
5976 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5977 }
5978 EXPORT_SYMBOL(pcix_get_mmrbc);
5979 
5980 /**
5981  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5982  * @dev: PCI device to query
5983  * @mmrbc: maximum memory read count in bytes
5984  *    valid values are 512, 1024, 2048, 4096
5985  *
5986  * If possible sets maximum memory read byte count, some bridges have errata
5987  * that prevent this.
5988  */
5989 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5990 {
5991 	int cap;
5992 	u32 stat, v, o;
5993 	u16 cmd;
5994 
5995 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5996 		return -EINVAL;
5997 
5998 	v = ffs(mmrbc) - 10;
5999 
6000 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6001 	if (!cap)
6002 		return -EINVAL;
6003 
6004 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6005 		return -EINVAL;
6006 
6007 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6008 		return -E2BIG;
6009 
6010 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6011 		return -EINVAL;
6012 
6013 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6014 	if (o != v) {
6015 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6016 			return -EIO;
6017 
6018 		cmd &= ~PCI_X_CMD_MAX_READ;
6019 		cmd |= v << 2;
6020 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6021 			return -EIO;
6022 	}
6023 	return 0;
6024 }
6025 EXPORT_SYMBOL(pcix_set_mmrbc);
6026 
6027 /**
6028  * pcie_get_readrq - get PCI Express read request size
6029  * @dev: PCI device to query
6030  *
6031  * Returns maximum memory read request in bytes or appropriate error value.
6032  */
6033 int pcie_get_readrq(struct pci_dev *dev)
6034 {
6035 	u16 ctl;
6036 
6037 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6038 
6039 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6040 }
6041 EXPORT_SYMBOL(pcie_get_readrq);
6042 
6043 /**
6044  * pcie_set_readrq - set PCI Express maximum memory read request
6045  * @dev: PCI device to query
6046  * @rq: maximum memory read count in bytes
6047  *    valid values are 128, 256, 512, 1024, 2048, 4096
6048  *
6049  * If possible sets maximum memory read request in bytes
6050  */
6051 int pcie_set_readrq(struct pci_dev *dev, int rq)
6052 {
6053 	u16 v;
6054 	int ret;
6055 
6056 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6057 		return -EINVAL;
6058 
6059 	/*
6060 	 * If using the "performance" PCIe config, we clamp the read rq
6061 	 * size to the max packet size to keep the host bridge from
6062 	 * generating requests larger than we can cope with.
6063 	 */
6064 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6065 		int mps = pcie_get_mps(dev);
6066 
6067 		if (mps < rq)
6068 			rq = mps;
6069 	}
6070 
6071 	v = (ffs(rq) - 8) << 12;
6072 
6073 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6074 						  PCI_EXP_DEVCTL_READRQ, v);
6075 
6076 	return pcibios_err_to_errno(ret);
6077 }
6078 EXPORT_SYMBOL(pcie_set_readrq);
6079 
6080 /**
6081  * pcie_get_mps - get PCI Express maximum payload size
6082  * @dev: PCI device to query
6083  *
6084  * Returns maximum payload size in bytes
6085  */
6086 int pcie_get_mps(struct pci_dev *dev)
6087 {
6088 	u16 ctl;
6089 
6090 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6091 
6092 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6093 }
6094 EXPORT_SYMBOL(pcie_get_mps);
6095 
6096 /**
6097  * pcie_set_mps - set PCI Express maximum payload size
6098  * @dev: PCI device to query
6099  * @mps: maximum payload size in bytes
6100  *    valid values are 128, 256, 512, 1024, 2048, 4096
6101  *
6102  * If possible sets maximum payload size
6103  */
6104 int pcie_set_mps(struct pci_dev *dev, int mps)
6105 {
6106 	u16 v;
6107 	int ret;
6108 
6109 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6110 		return -EINVAL;
6111 
6112 	v = ffs(mps) - 8;
6113 	if (v > dev->pcie_mpss)
6114 		return -EINVAL;
6115 	v <<= 5;
6116 
6117 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6118 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6119 
6120 	return pcibios_err_to_errno(ret);
6121 }
6122 EXPORT_SYMBOL(pcie_set_mps);
6123 
6124 /**
6125  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6126  *			      device and its bandwidth limitation
6127  * @dev: PCI device to query
6128  * @limiting_dev: storage for device causing the bandwidth limitation
6129  * @speed: storage for speed of limiting device
6130  * @width: storage for width of limiting device
6131  *
6132  * Walk up the PCI device chain and find the point where the minimum
6133  * bandwidth is available.  Return the bandwidth available there and (if
6134  * limiting_dev, speed, and width pointers are supplied) information about
6135  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6136  * raw bandwidth.
6137  */
6138 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6139 			     enum pci_bus_speed *speed,
6140 			     enum pcie_link_width *width)
6141 {
6142 	u16 lnksta;
6143 	enum pci_bus_speed next_speed;
6144 	enum pcie_link_width next_width;
6145 	u32 bw, next_bw;
6146 
6147 	if (speed)
6148 		*speed = PCI_SPEED_UNKNOWN;
6149 	if (width)
6150 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6151 
6152 	bw = 0;
6153 
6154 	while (dev) {
6155 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6156 
6157 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6158 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6159 			PCI_EXP_LNKSTA_NLW_SHIFT;
6160 
6161 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6162 
6163 		/* Check if current device limits the total bandwidth */
6164 		if (!bw || next_bw <= bw) {
6165 			bw = next_bw;
6166 
6167 			if (limiting_dev)
6168 				*limiting_dev = dev;
6169 			if (speed)
6170 				*speed = next_speed;
6171 			if (width)
6172 				*width = next_width;
6173 		}
6174 
6175 		dev = pci_upstream_bridge(dev);
6176 	}
6177 
6178 	return bw;
6179 }
6180 EXPORT_SYMBOL(pcie_bandwidth_available);
6181 
6182 /**
6183  * pcie_get_speed_cap - query for the PCI device's link speed capability
6184  * @dev: PCI device to query
6185  *
6186  * Query the PCI device speed capability.  Return the maximum link speed
6187  * supported by the device.
6188  */
6189 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6190 {
6191 	u32 lnkcap2, lnkcap;
6192 
6193 	/*
6194 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6195 	 * implementation note there recommends using the Supported Link
6196 	 * Speeds Vector in Link Capabilities 2 when supported.
6197 	 *
6198 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6199 	 * should use the Supported Link Speeds field in Link Capabilities,
6200 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6201 	 */
6202 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6203 
6204 	/* PCIe r3.0-compliant */
6205 	if (lnkcap2)
6206 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6207 
6208 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6209 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6210 		return PCIE_SPEED_5_0GT;
6211 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6212 		return PCIE_SPEED_2_5GT;
6213 
6214 	return PCI_SPEED_UNKNOWN;
6215 }
6216 EXPORT_SYMBOL(pcie_get_speed_cap);
6217 
6218 /**
6219  * pcie_get_width_cap - query for the PCI device's link width capability
6220  * @dev: PCI device to query
6221  *
6222  * Query the PCI device width capability.  Return the maximum link width
6223  * supported by the device.
6224  */
6225 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6226 {
6227 	u32 lnkcap;
6228 
6229 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6230 	if (lnkcap)
6231 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6232 
6233 	return PCIE_LNK_WIDTH_UNKNOWN;
6234 }
6235 EXPORT_SYMBOL(pcie_get_width_cap);
6236 
6237 /**
6238  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6239  * @dev: PCI device
6240  * @speed: storage for link speed
6241  * @width: storage for link width
6242  *
6243  * Calculate a PCI device's link bandwidth by querying for its link speed
6244  * and width, multiplying them, and applying encoding overhead.  The result
6245  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6246  */
6247 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6248 			   enum pcie_link_width *width)
6249 {
6250 	*speed = pcie_get_speed_cap(dev);
6251 	*width = pcie_get_width_cap(dev);
6252 
6253 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6254 		return 0;
6255 
6256 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6257 }
6258 
6259 /**
6260  * __pcie_print_link_status - Report the PCI device's link speed and width
6261  * @dev: PCI device to query
6262  * @verbose: Print info even when enough bandwidth is available
6263  *
6264  * If the available bandwidth at the device is less than the device is
6265  * capable of, report the device's maximum possible bandwidth and the
6266  * upstream link that limits its performance.  If @verbose, always print
6267  * the available bandwidth, even if the device isn't constrained.
6268  */
6269 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6270 {
6271 	enum pcie_link_width width, width_cap;
6272 	enum pci_bus_speed speed, speed_cap;
6273 	struct pci_dev *limiting_dev = NULL;
6274 	u32 bw_avail, bw_cap;
6275 
6276 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6277 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6278 
6279 	if (bw_avail >= bw_cap && verbose)
6280 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6281 			 bw_cap / 1000, bw_cap % 1000,
6282 			 pci_speed_string(speed_cap), width_cap);
6283 	else if (bw_avail < bw_cap)
6284 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6285 			 bw_avail / 1000, bw_avail % 1000,
6286 			 pci_speed_string(speed), width,
6287 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6288 			 bw_cap / 1000, bw_cap % 1000,
6289 			 pci_speed_string(speed_cap), width_cap);
6290 }
6291 
6292 /**
6293  * pcie_print_link_status - Report the PCI device's link speed and width
6294  * @dev: PCI device to query
6295  *
6296  * Report the available bandwidth at the device.
6297  */
6298 void pcie_print_link_status(struct pci_dev *dev)
6299 {
6300 	__pcie_print_link_status(dev, true);
6301 }
6302 EXPORT_SYMBOL(pcie_print_link_status);
6303 
6304 /**
6305  * pci_select_bars - Make BAR mask from the type of resource
6306  * @dev: the PCI device for which BAR mask is made
6307  * @flags: resource type mask to be selected
6308  *
6309  * This helper routine makes bar mask from the type of resource.
6310  */
6311 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6312 {
6313 	int i, bars = 0;
6314 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6315 		if (pci_resource_flags(dev, i) & flags)
6316 			bars |= (1 << i);
6317 	return bars;
6318 }
6319 EXPORT_SYMBOL(pci_select_bars);
6320 
6321 /* Some architectures require additional programming to enable VGA */
6322 static arch_set_vga_state_t arch_set_vga_state;
6323 
6324 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6325 {
6326 	arch_set_vga_state = func;	/* NULL disables */
6327 }
6328 
6329 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6330 				  unsigned int command_bits, u32 flags)
6331 {
6332 	if (arch_set_vga_state)
6333 		return arch_set_vga_state(dev, decode, command_bits,
6334 						flags);
6335 	return 0;
6336 }
6337 
6338 /**
6339  * pci_set_vga_state - set VGA decode state on device and parents if requested
6340  * @dev: the PCI device
6341  * @decode: true = enable decoding, false = disable decoding
6342  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6343  * @flags: traverse ancestors and change bridges
6344  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6345  */
6346 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6347 		      unsigned int command_bits, u32 flags)
6348 {
6349 	struct pci_bus *bus;
6350 	struct pci_dev *bridge;
6351 	u16 cmd;
6352 	int rc;
6353 
6354 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6355 
6356 	/* ARCH specific VGA enables */
6357 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6358 	if (rc)
6359 		return rc;
6360 
6361 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6362 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6363 		if (decode)
6364 			cmd |= command_bits;
6365 		else
6366 			cmd &= ~command_bits;
6367 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6368 	}
6369 
6370 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6371 		return 0;
6372 
6373 	bus = dev->bus;
6374 	while (bus) {
6375 		bridge = bus->self;
6376 		if (bridge) {
6377 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6378 					     &cmd);
6379 			if (decode)
6380 				cmd |= PCI_BRIDGE_CTL_VGA;
6381 			else
6382 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6383 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6384 					      cmd);
6385 		}
6386 		bus = bus->parent;
6387 	}
6388 	return 0;
6389 }
6390 
6391 #ifdef CONFIG_ACPI
6392 bool pci_pr3_present(struct pci_dev *pdev)
6393 {
6394 	struct acpi_device *adev;
6395 
6396 	if (acpi_disabled)
6397 		return false;
6398 
6399 	adev = ACPI_COMPANION(&pdev->dev);
6400 	if (!adev)
6401 		return false;
6402 
6403 	return adev->power.flags.power_resources &&
6404 		acpi_has_method(adev->handle, "_PR3");
6405 }
6406 EXPORT_SYMBOL_GPL(pci_pr3_present);
6407 #endif
6408 
6409 /**
6410  * pci_add_dma_alias - Add a DMA devfn alias for a device
6411  * @dev: the PCI device for which alias is added
6412  * @devfn_from: alias slot and function
6413  * @nr_devfns: number of subsequent devfns to alias
6414  *
6415  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6416  * which is used to program permissible bus-devfn source addresses for DMA
6417  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6418  * and are useful for devices generating DMA requests beyond or different
6419  * from their logical bus-devfn.  Examples include device quirks where the
6420  * device simply uses the wrong devfn, as well as non-transparent bridges
6421  * where the alias may be a proxy for devices in another domain.
6422  *
6423  * IOMMU group creation is performed during device discovery or addition,
6424  * prior to any potential DMA mapping and therefore prior to driver probing
6425  * (especially for userspace assigned devices where IOMMU group definition
6426  * cannot be left as a userspace activity).  DMA aliases should therefore
6427  * be configured via quirks, such as the PCI fixup header quirk.
6428  */
6429 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6430 		       unsigned int nr_devfns)
6431 {
6432 	int devfn_to;
6433 
6434 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6435 	devfn_to = devfn_from + nr_devfns - 1;
6436 
6437 	if (!dev->dma_alias_mask)
6438 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6439 	if (!dev->dma_alias_mask) {
6440 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6441 		return;
6442 	}
6443 
6444 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6445 
6446 	if (nr_devfns == 1)
6447 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6448 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6449 	else if (nr_devfns > 1)
6450 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6451 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6452 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6453 }
6454 
6455 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6456 {
6457 	return (dev1->dma_alias_mask &&
6458 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6459 	       (dev2->dma_alias_mask &&
6460 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6461 	       pci_real_dma_dev(dev1) == dev2 ||
6462 	       pci_real_dma_dev(dev2) == dev1;
6463 }
6464 
6465 bool pci_device_is_present(struct pci_dev *pdev)
6466 {
6467 	u32 v;
6468 
6469 	if (pci_dev_is_disconnected(pdev))
6470 		return false;
6471 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6472 }
6473 EXPORT_SYMBOL_GPL(pci_device_is_present);
6474 
6475 void pci_ignore_hotplug(struct pci_dev *dev)
6476 {
6477 	struct pci_dev *bridge = dev->bus->self;
6478 
6479 	dev->ignore_hotplug = 1;
6480 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6481 	if (bridge)
6482 		bridge->ignore_hotplug = 1;
6483 }
6484 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6485 
6486 /**
6487  * pci_real_dma_dev - Get PCI DMA device for PCI device
6488  * @dev: the PCI device that may have a PCI DMA alias
6489  *
6490  * Permits the platform to provide architecture-specific functionality to
6491  * devices needing to alias DMA to another PCI device on another PCI bus. If
6492  * the PCI device is on the same bus, it is recommended to use
6493  * pci_add_dma_alias(). This is the default implementation. Architecture
6494  * implementations can override this.
6495  */
6496 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6497 {
6498 	return dev;
6499 }
6500 
6501 resource_size_t __weak pcibios_default_alignment(void)
6502 {
6503 	return 0;
6504 }
6505 
6506 /*
6507  * Arches that don't want to expose struct resource to userland as-is in
6508  * sysfs and /proc can implement their own pci_resource_to_user().
6509  */
6510 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6511 				 const struct resource *rsrc,
6512 				 resource_size_t *start, resource_size_t *end)
6513 {
6514 	*start = rsrc->start;
6515 	*end = rsrc->end;
6516 }
6517 
6518 static char *resource_alignment_param;
6519 static DEFINE_SPINLOCK(resource_alignment_lock);
6520 
6521 /**
6522  * pci_specified_resource_alignment - get resource alignment specified by user.
6523  * @dev: the PCI device to get
6524  * @resize: whether or not to change resources' size when reassigning alignment
6525  *
6526  * RETURNS: Resource alignment if it is specified.
6527  *          Zero if it is not specified.
6528  */
6529 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6530 							bool *resize)
6531 {
6532 	int align_order, count;
6533 	resource_size_t align = pcibios_default_alignment();
6534 	const char *p;
6535 	int ret;
6536 
6537 	spin_lock(&resource_alignment_lock);
6538 	p = resource_alignment_param;
6539 	if (!p || !*p)
6540 		goto out;
6541 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6542 		align = 0;
6543 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6544 		goto out;
6545 	}
6546 
6547 	while (*p) {
6548 		count = 0;
6549 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6550 		    p[count] == '@') {
6551 			p += count + 1;
6552 			if (align_order > 63) {
6553 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6554 				       align_order);
6555 				align_order = PAGE_SHIFT;
6556 			}
6557 		} else {
6558 			align_order = PAGE_SHIFT;
6559 		}
6560 
6561 		ret = pci_dev_str_match(dev, p, &p);
6562 		if (ret == 1) {
6563 			*resize = true;
6564 			align = 1ULL << align_order;
6565 			break;
6566 		} else if (ret < 0) {
6567 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6568 			       p);
6569 			break;
6570 		}
6571 
6572 		if (*p != ';' && *p != ',') {
6573 			/* End of param or invalid format */
6574 			break;
6575 		}
6576 		p++;
6577 	}
6578 out:
6579 	spin_unlock(&resource_alignment_lock);
6580 	return align;
6581 }
6582 
6583 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6584 					   resource_size_t align, bool resize)
6585 {
6586 	struct resource *r = &dev->resource[bar];
6587 	resource_size_t size;
6588 
6589 	if (!(r->flags & IORESOURCE_MEM))
6590 		return;
6591 
6592 	if (r->flags & IORESOURCE_PCI_FIXED) {
6593 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6594 			 bar, r, (unsigned long long)align);
6595 		return;
6596 	}
6597 
6598 	size = resource_size(r);
6599 	if (size >= align)
6600 		return;
6601 
6602 	/*
6603 	 * Increase the alignment of the resource.  There are two ways we
6604 	 * can do this:
6605 	 *
6606 	 * 1) Increase the size of the resource.  BARs are aligned on their
6607 	 *    size, so when we reallocate space for this resource, we'll
6608 	 *    allocate it with the larger alignment.  This also prevents
6609 	 *    assignment of any other BARs inside the alignment region, so
6610 	 *    if we're requesting page alignment, this means no other BARs
6611 	 *    will share the page.
6612 	 *
6613 	 *    The disadvantage is that this makes the resource larger than
6614 	 *    the hardware BAR, which may break drivers that compute things
6615 	 *    based on the resource size, e.g., to find registers at a
6616 	 *    fixed offset before the end of the BAR.
6617 	 *
6618 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6619 	 *    set r->start to the desired alignment.  By itself this
6620 	 *    doesn't prevent other BARs being put inside the alignment
6621 	 *    region, but if we realign *every* resource of every device in
6622 	 *    the system, none of them will share an alignment region.
6623 	 *
6624 	 * When the user has requested alignment for only some devices via
6625 	 * the "pci=resource_alignment" argument, "resize" is true and we
6626 	 * use the first method.  Otherwise we assume we're aligning all
6627 	 * devices and we use the second.
6628 	 */
6629 
6630 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6631 		 bar, r, (unsigned long long)align);
6632 
6633 	if (resize) {
6634 		r->start = 0;
6635 		r->end = align - 1;
6636 	} else {
6637 		r->flags &= ~IORESOURCE_SIZEALIGN;
6638 		r->flags |= IORESOURCE_STARTALIGN;
6639 		r->start = align;
6640 		r->end = r->start + size - 1;
6641 	}
6642 	r->flags |= IORESOURCE_UNSET;
6643 }
6644 
6645 /*
6646  * This function disables memory decoding and releases memory resources
6647  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6648  * It also rounds up size to specified alignment.
6649  * Later on, the kernel will assign page-aligned memory resource back
6650  * to the device.
6651  */
6652 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6653 {
6654 	int i;
6655 	struct resource *r;
6656 	resource_size_t align;
6657 	u16 command;
6658 	bool resize = false;
6659 
6660 	/*
6661 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6662 	 * 3.4.1.11.  Their resources are allocated from the space
6663 	 * described by the VF BARx register in the PF's SR-IOV capability.
6664 	 * We can't influence their alignment here.
6665 	 */
6666 	if (dev->is_virtfn)
6667 		return;
6668 
6669 	/* check if specified PCI is target device to reassign */
6670 	align = pci_specified_resource_alignment(dev, &resize);
6671 	if (!align)
6672 		return;
6673 
6674 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6675 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6676 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6677 		return;
6678 	}
6679 
6680 	pci_read_config_word(dev, PCI_COMMAND, &command);
6681 	command &= ~PCI_COMMAND_MEMORY;
6682 	pci_write_config_word(dev, PCI_COMMAND, command);
6683 
6684 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6685 		pci_request_resource_alignment(dev, i, align, resize);
6686 
6687 	/*
6688 	 * Need to disable bridge's resource window,
6689 	 * to enable the kernel to reassign new resource
6690 	 * window later on.
6691 	 */
6692 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6693 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6694 			r = &dev->resource[i];
6695 			if (!(r->flags & IORESOURCE_MEM))
6696 				continue;
6697 			r->flags |= IORESOURCE_UNSET;
6698 			r->end = resource_size(r) - 1;
6699 			r->start = 0;
6700 		}
6701 		pci_disable_bridge_window(dev);
6702 	}
6703 }
6704 
6705 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6706 {
6707 	size_t count = 0;
6708 
6709 	spin_lock(&resource_alignment_lock);
6710 	if (resource_alignment_param)
6711 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6712 	spin_unlock(&resource_alignment_lock);
6713 
6714 	return count;
6715 }
6716 
6717 static ssize_t resource_alignment_store(struct bus_type *bus,
6718 					const char *buf, size_t count)
6719 {
6720 	char *param, *old, *end;
6721 
6722 	if (count >= (PAGE_SIZE - 1))
6723 		return -EINVAL;
6724 
6725 	param = kstrndup(buf, count, GFP_KERNEL);
6726 	if (!param)
6727 		return -ENOMEM;
6728 
6729 	end = strchr(param, '\n');
6730 	if (end)
6731 		*end = '\0';
6732 
6733 	spin_lock(&resource_alignment_lock);
6734 	old = resource_alignment_param;
6735 	if (strlen(param)) {
6736 		resource_alignment_param = param;
6737 	} else {
6738 		kfree(param);
6739 		resource_alignment_param = NULL;
6740 	}
6741 	spin_unlock(&resource_alignment_lock);
6742 
6743 	kfree(old);
6744 
6745 	return count;
6746 }
6747 
6748 static BUS_ATTR_RW(resource_alignment);
6749 
6750 static int __init pci_resource_alignment_sysfs_init(void)
6751 {
6752 	return bus_create_file(&pci_bus_type,
6753 					&bus_attr_resource_alignment);
6754 }
6755 late_initcall(pci_resource_alignment_sysfs_init);
6756 
6757 static void pci_no_domains(void)
6758 {
6759 #ifdef CONFIG_PCI_DOMAINS
6760 	pci_domains_supported = 0;
6761 #endif
6762 }
6763 
6764 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6765 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6766 
6767 static int pci_get_new_domain_nr(void)
6768 {
6769 	return atomic_inc_return(&__domain_nr);
6770 }
6771 
6772 static int of_pci_bus_find_domain_nr(struct device *parent)
6773 {
6774 	static int use_dt_domains = -1;
6775 	int domain = -1;
6776 
6777 	if (parent)
6778 		domain = of_get_pci_domain_nr(parent->of_node);
6779 
6780 	/*
6781 	 * Check DT domain and use_dt_domains values.
6782 	 *
6783 	 * If DT domain property is valid (domain >= 0) and
6784 	 * use_dt_domains != 0, the DT assignment is valid since this means
6785 	 * we have not previously allocated a domain number by using
6786 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6787 	 * 1, to indicate that we have just assigned a domain number from
6788 	 * DT.
6789 	 *
6790 	 * If DT domain property value is not valid (ie domain < 0), and we
6791 	 * have not previously assigned a domain number from DT
6792 	 * (use_dt_domains != 1) we should assign a domain number by
6793 	 * using the:
6794 	 *
6795 	 * pci_get_new_domain_nr()
6796 	 *
6797 	 * API and update the use_dt_domains value to keep track of method we
6798 	 * are using to assign domain numbers (use_dt_domains = 0).
6799 	 *
6800 	 * All other combinations imply we have a platform that is trying
6801 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6802 	 * which is a recipe for domain mishandling and it is prevented by
6803 	 * invalidating the domain value (domain = -1) and printing a
6804 	 * corresponding error.
6805 	 */
6806 	if (domain >= 0 && use_dt_domains) {
6807 		use_dt_domains = 1;
6808 	} else if (domain < 0 && use_dt_domains != 1) {
6809 		use_dt_domains = 0;
6810 		domain = pci_get_new_domain_nr();
6811 	} else {
6812 		if (parent)
6813 			pr_err("Node %pOF has ", parent->of_node);
6814 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6815 		domain = -1;
6816 	}
6817 
6818 	return domain;
6819 }
6820 
6821 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6822 {
6823 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6824 			       acpi_pci_bus_find_domain_nr(bus);
6825 }
6826 #endif
6827 
6828 /**
6829  * pci_ext_cfg_avail - can we access extended PCI config space?
6830  *
6831  * Returns 1 if we can access PCI extended config space (offsets
6832  * greater than 0xff). This is the default implementation. Architecture
6833  * implementations can override this.
6834  */
6835 int __weak pci_ext_cfg_avail(void)
6836 {
6837 	return 1;
6838 }
6839 
6840 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6841 {
6842 }
6843 EXPORT_SYMBOL(pci_fixup_cardbus);
6844 
6845 static int __init pci_setup(char *str)
6846 {
6847 	while (str) {
6848 		char *k = strchr(str, ',');
6849 		if (k)
6850 			*k++ = 0;
6851 		if (*str && (str = pcibios_setup(str)) && *str) {
6852 			if (!strcmp(str, "nomsi")) {
6853 				pci_no_msi();
6854 			} else if (!strncmp(str, "noats", 5)) {
6855 				pr_info("PCIe: ATS is disabled\n");
6856 				pcie_ats_disabled = true;
6857 			} else if (!strcmp(str, "noaer")) {
6858 				pci_no_aer();
6859 			} else if (!strcmp(str, "earlydump")) {
6860 				pci_early_dump = true;
6861 			} else if (!strncmp(str, "realloc=", 8)) {
6862 				pci_realloc_get_opt(str + 8);
6863 			} else if (!strncmp(str, "realloc", 7)) {
6864 				pci_realloc_get_opt("on");
6865 			} else if (!strcmp(str, "nodomains")) {
6866 				pci_no_domains();
6867 			} else if (!strncmp(str, "noari", 5)) {
6868 				pcie_ari_disabled = true;
6869 			} else if (!strncmp(str, "cbiosize=", 9)) {
6870 				pci_cardbus_io_size = memparse(str + 9, &str);
6871 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6872 				pci_cardbus_mem_size = memparse(str + 10, &str);
6873 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6874 				resource_alignment_param = str + 19;
6875 			} else if (!strncmp(str, "ecrc=", 5)) {
6876 				pcie_ecrc_get_policy(str + 5);
6877 			} else if (!strncmp(str, "hpiosize=", 9)) {
6878 				pci_hotplug_io_size = memparse(str + 9, &str);
6879 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6880 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6881 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6882 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6883 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6884 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6885 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6886 			} else if (!strncmp(str, "hpbussize=", 10)) {
6887 				pci_hotplug_bus_size =
6888 					simple_strtoul(str + 10, &str, 0);
6889 				if (pci_hotplug_bus_size > 0xff)
6890 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6891 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6892 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6893 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6894 				pcie_bus_config = PCIE_BUS_SAFE;
6895 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6896 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6897 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6898 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6899 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6900 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6901 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6902 				disable_acs_redir_param = str + 18;
6903 			} else {
6904 				pr_err("PCI: Unknown option `%s'\n", str);
6905 			}
6906 		}
6907 		str = k;
6908 	}
6909 	return 0;
6910 }
6911 early_param("pci", pci_setup);
6912 
6913 /*
6914  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6915  * in pci_setup(), above, to point to data in the __initdata section which
6916  * will be freed after the init sequence is complete. We can't allocate memory
6917  * in pci_setup() because some architectures do not have any memory allocation
6918  * service available during an early_param() call. So we allocate memory and
6919  * copy the variable here before the init section is freed.
6920  *
6921  */
6922 static int __init pci_realloc_setup_params(void)
6923 {
6924 	resource_alignment_param = kstrdup(resource_alignment_param,
6925 					   GFP_KERNEL);
6926 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6927 
6928 	return 0;
6929 }
6930 pure_initcall(pci_realloc_setup_params);
6931