1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 855 * @dev: the PCI device to operate on 856 * @pos: config space offset of status word 857 * @mask: mask of bit(s) to care about in status word 858 * 859 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 860 */ 861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 862 { 863 int i; 864 865 /* Wait for Transaction Pending bit clean */ 866 for (i = 0; i < 4; i++) { 867 u16 status; 868 if (i) 869 msleep((1 << (i - 1)) * 100); 870 871 pci_read_config_word(dev, pos, &status); 872 if (!(status & mask)) 873 return 1; 874 } 875 876 return 0; 877 } 878 879 static int pci_acs_enable; 880 881 /** 882 * pci_request_acs - ask for ACS to be enabled if supported 883 */ 884 void pci_request_acs(void) 885 { 886 pci_acs_enable = 1; 887 } 888 889 static const char *disable_acs_redir_param; 890 891 /** 892 * pci_disable_acs_redir - disable ACS redirect capabilities 893 * @dev: the PCI device 894 * 895 * For only devices specified in the disable_acs_redir parameter. 896 */ 897 static void pci_disable_acs_redir(struct pci_dev *dev) 898 { 899 int ret = 0; 900 const char *p; 901 int pos; 902 u16 ctrl; 903 904 if (!disable_acs_redir_param) 905 return; 906 907 p = disable_acs_redir_param; 908 while (*p) { 909 ret = pci_dev_str_match(dev, p, &p); 910 if (ret < 0) { 911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 912 disable_acs_redir_param); 913 914 break; 915 } else if (ret == 1) { 916 /* Found a match */ 917 break; 918 } 919 920 if (*p != ';' && *p != ',') { 921 /* End of param or invalid format */ 922 break; 923 } 924 p++; 925 } 926 927 if (ret != 1) 928 return; 929 930 if (!pci_dev_specific_disable_acs_redir(dev)) 931 return; 932 933 pos = dev->acs_cap; 934 if (!pos) { 935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 936 return; 937 } 938 939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 940 941 /* P2P Request & Completion Redirect */ 942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 943 944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 945 946 pci_info(dev, "disabled ACS redirect\n"); 947 } 948 949 /** 950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 951 * @dev: the PCI device 952 */ 953 static void pci_std_enable_acs(struct pci_dev *dev) 954 { 955 int pos; 956 u16 cap; 957 u16 ctrl; 958 959 pos = dev->acs_cap; 960 if (!pos) 961 return; 962 963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 965 966 /* Source Validation */ 967 ctrl |= (cap & PCI_ACS_SV); 968 969 /* P2P Request Redirect */ 970 ctrl |= (cap & PCI_ACS_RR); 971 972 /* P2P Completion Redirect */ 973 ctrl |= (cap & PCI_ACS_CR); 974 975 /* Upstream Forwarding */ 976 ctrl |= (cap & PCI_ACS_UF); 977 978 /* Enable Translation Blocking for external devices and noats */ 979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 980 ctrl |= (cap & PCI_ACS_TB); 981 982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 983 } 984 985 /** 986 * pci_enable_acs - enable ACS if hardware support it 987 * @dev: the PCI device 988 */ 989 static void pci_enable_acs(struct pci_dev *dev) 990 { 991 if (!pci_acs_enable) 992 goto disable_acs_redir; 993 994 if (!pci_dev_specific_enable_acs(dev)) 995 goto disable_acs_redir; 996 997 pci_std_enable_acs(dev); 998 999 disable_acs_redir: 1000 /* 1001 * Note: pci_disable_acs_redir() must be called even if ACS was not 1002 * enabled by the kernel because it may have been enabled by 1003 * platform firmware. So if we are told to disable it, we should 1004 * always disable it after setting the kernel's default 1005 * preferences. 1006 */ 1007 pci_disable_acs_redir(dev); 1008 } 1009 1010 /** 1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1012 * @dev: PCI device to have its BARs restored 1013 * 1014 * Restore the BAR values for a given device, so as to make it 1015 * accessible by its driver. 1016 */ 1017 static void pci_restore_bars(struct pci_dev *dev) 1018 { 1019 int i; 1020 1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1022 pci_update_resource(dev, i); 1023 } 1024 1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1026 { 1027 if (pci_use_mid_pm()) 1028 return true; 1029 1030 return acpi_pci_power_manageable(dev); 1031 } 1032 1033 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1034 pci_power_t t) 1035 { 1036 if (pci_use_mid_pm()) 1037 return mid_pci_set_power_state(dev, t); 1038 1039 return acpi_pci_set_power_state(dev, t); 1040 } 1041 1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1043 { 1044 if (pci_use_mid_pm()) 1045 return mid_pci_get_power_state(dev); 1046 1047 return acpi_pci_get_power_state(dev); 1048 } 1049 1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1051 { 1052 if (!pci_use_mid_pm()) 1053 acpi_pci_refresh_power_state(dev); 1054 } 1055 1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1057 { 1058 if (pci_use_mid_pm()) 1059 return PCI_POWER_ERROR; 1060 1061 return acpi_pci_choose_state(dev); 1062 } 1063 1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1065 { 1066 if (pci_use_mid_pm()) 1067 return PCI_POWER_ERROR; 1068 1069 return acpi_pci_wakeup(dev, enable); 1070 } 1071 1072 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1073 { 1074 if (pci_use_mid_pm()) 1075 return false; 1076 1077 return acpi_pci_need_resume(dev); 1078 } 1079 1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1081 { 1082 if (pci_use_mid_pm()) 1083 return false; 1084 1085 return acpi_pci_bridge_d3(dev); 1086 } 1087 1088 /** 1089 * pci_update_current_state - Read power state of given device and cache it 1090 * @dev: PCI device to handle. 1091 * @state: State to cache in case the device doesn't have the PM capability 1092 * 1093 * The power state is read from the PMCSR register, which however is 1094 * inaccessible in D3cold. The platform firmware is therefore queried first 1095 * to detect accessibility of the register. In case the platform firmware 1096 * reports an incorrect state or the device isn't power manageable by the 1097 * platform at all, we try to detect D3cold by testing accessibility of the 1098 * vendor ID in config space. 1099 */ 1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1101 { 1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1103 dev->current_state = PCI_D3cold; 1104 } else if (dev->pm_cap) { 1105 u16 pmcsr; 1106 1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1108 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1109 dev->current_state = PCI_D3cold; 1110 return; 1111 } 1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1113 } else { 1114 dev->current_state = state; 1115 } 1116 } 1117 1118 /** 1119 * pci_refresh_power_state - Refresh the given device's power state data 1120 * @dev: Target PCI device. 1121 * 1122 * Ask the platform to refresh the devices power state information and invoke 1123 * pci_update_current_state() to update its current PCI power state. 1124 */ 1125 void pci_refresh_power_state(struct pci_dev *dev) 1126 { 1127 platform_pci_refresh_power_state(dev); 1128 pci_update_current_state(dev, dev->current_state); 1129 } 1130 1131 /** 1132 * pci_platform_power_transition - Use platform to change device power state 1133 * @dev: PCI device to handle. 1134 * @state: State to put the device into. 1135 */ 1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1137 { 1138 int error; 1139 1140 error = platform_pci_set_power_state(dev, state); 1141 if (!error) 1142 pci_update_current_state(dev, state); 1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1144 dev->current_state = PCI_D0; 1145 1146 return error; 1147 } 1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1149 1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1151 { 1152 pm_request_resume(&pci_dev->dev); 1153 return 0; 1154 } 1155 1156 /** 1157 * pci_resume_bus - Walk given bus and runtime resume devices on it 1158 * @bus: Top bus of the subtree to walk. 1159 */ 1160 void pci_resume_bus(struct pci_bus *bus) 1161 { 1162 if (bus) 1163 pci_walk_bus(bus, pci_resume_one, NULL); 1164 } 1165 1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1167 { 1168 int delay = 1; 1169 bool retrain = false; 1170 struct pci_dev *bridge; 1171 1172 if (pci_is_pcie(dev)) { 1173 bridge = pci_upstream_bridge(dev); 1174 if (bridge) 1175 retrain = true; 1176 } 1177 1178 /* 1179 * After reset, the device should not silently discard config 1180 * requests, but it may still indicate that it needs more time by 1181 * responding to them with CRS completions. The Root Port will 1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1183 * the read (except when CRS SV is enabled and the read was for the 1184 * Vendor ID; in that case it synthesizes 0x0001 data). 1185 * 1186 * Wait for the device to return a non-CRS completion. Read the 1187 * Command register instead of Vendor ID so we don't have to 1188 * contend with the CRS SV value. 1189 */ 1190 for (;;) { 1191 u32 id; 1192 1193 pci_read_config_dword(dev, PCI_COMMAND, &id); 1194 if (!PCI_POSSIBLE_ERROR(id)) 1195 break; 1196 1197 if (delay > timeout) { 1198 pci_warn(dev, "not ready %dms after %s; giving up\n", 1199 delay - 1, reset_type); 1200 return -ENOTTY; 1201 } 1202 1203 if (delay > PCI_RESET_WAIT) { 1204 if (retrain) { 1205 retrain = false; 1206 if (pcie_failed_link_retrain(bridge)) { 1207 delay = 1; 1208 continue; 1209 } 1210 } 1211 pci_info(dev, "not ready %dms after %s; waiting\n", 1212 delay - 1, reset_type); 1213 } 1214 1215 msleep(delay); 1216 delay *= 2; 1217 } 1218 1219 if (delay > PCI_RESET_WAIT) 1220 pci_info(dev, "ready %dms after %s\n", delay - 1, 1221 reset_type); 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * pci_power_up - Put the given device into D0 1228 * @dev: PCI device to power up 1229 * 1230 * On success, return 0 or 1, depending on whether or not it is necessary to 1231 * restore the device's BARs subsequently (1 is returned in that case). 1232 * 1233 * On failure, return a negative error code. Always return failure if @dev 1234 * lacks a Power Management Capability, even if the platform was able to 1235 * put the device in D0 via non-PCI means. 1236 */ 1237 int pci_power_up(struct pci_dev *dev) 1238 { 1239 bool need_restore; 1240 pci_power_t state; 1241 u16 pmcsr; 1242 1243 platform_pci_set_power_state(dev, PCI_D0); 1244 1245 if (!dev->pm_cap) { 1246 state = platform_pci_get_power_state(dev); 1247 if (state == PCI_UNKNOWN) 1248 dev->current_state = PCI_D0; 1249 else 1250 dev->current_state = state; 1251 1252 return -EIO; 1253 } 1254 1255 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1256 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1257 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1258 pci_power_name(dev->current_state)); 1259 dev->current_state = PCI_D3cold; 1260 return -EIO; 1261 } 1262 1263 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1264 1265 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1266 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1267 1268 if (state == PCI_D0) 1269 goto end; 1270 1271 /* 1272 * Force the entire word to 0. This doesn't affect PME_Status, disables 1273 * PME_En, and sets PowerState to 0. 1274 */ 1275 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1276 1277 /* Mandatory transition delays; see PCI PM 1.2. */ 1278 if (state == PCI_D3hot) 1279 pci_dev_d3_sleep(dev); 1280 else if (state == PCI_D2) 1281 udelay(PCI_PM_D2_DELAY); 1282 1283 end: 1284 dev->current_state = PCI_D0; 1285 if (need_restore) 1286 return 1; 1287 1288 return 0; 1289 } 1290 1291 /** 1292 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1293 * @dev: PCI device to power up 1294 * @locked: whether pci_bus_sem is held 1295 * 1296 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1297 * to confirm the state change, restore its BARs if they might be lost and 1298 * reconfigure ASPM in accordance with the new power state. 1299 * 1300 * If pci_restore_state() is going to be called right after a power state change 1301 * to D0, it is more efficient to use pci_power_up() directly instead of this 1302 * function. 1303 */ 1304 static int pci_set_full_power_state(struct pci_dev *dev, bool locked) 1305 { 1306 u16 pmcsr; 1307 int ret; 1308 1309 ret = pci_power_up(dev); 1310 if (ret < 0) { 1311 if (dev->current_state == PCI_D0) 1312 return 0; 1313 1314 return ret; 1315 } 1316 1317 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1318 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1319 if (dev->current_state != PCI_D0) { 1320 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1321 pci_power_name(dev->current_state)); 1322 } else if (ret > 0) { 1323 /* 1324 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1325 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1326 * from D3hot to D0 _may_ perform an internal reset, thereby 1327 * going to "D0 Uninitialized" rather than "D0 Initialized". 1328 * For example, at least some versions of the 3c905B and the 1329 * 3c556B exhibit this behaviour. 1330 * 1331 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1332 * devices in a D3hot state at boot. Consequently, we need to 1333 * restore at least the BARs so that the device will be 1334 * accessible to its driver. 1335 */ 1336 pci_restore_bars(dev); 1337 } 1338 1339 if (dev->bus->self) 1340 pcie_aspm_pm_state_change(dev->bus->self, locked); 1341 1342 return 0; 1343 } 1344 1345 /** 1346 * __pci_dev_set_current_state - Set current state of a PCI device 1347 * @dev: Device to handle 1348 * @data: pointer to state to be set 1349 */ 1350 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1351 { 1352 pci_power_t state = *(pci_power_t *)data; 1353 1354 dev->current_state = state; 1355 return 0; 1356 } 1357 1358 /** 1359 * pci_bus_set_current_state - Walk given bus and set current state of devices 1360 * @bus: Top bus of the subtree to walk. 1361 * @state: state to be set 1362 */ 1363 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1364 { 1365 if (bus) 1366 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1367 } 1368 1369 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked) 1370 { 1371 if (!bus) 1372 return; 1373 1374 if (locked) 1375 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state); 1376 else 1377 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1378 } 1379 1380 /** 1381 * pci_set_low_power_state - Put a PCI device into a low-power state. 1382 * @dev: PCI device to handle. 1383 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1384 * @locked: whether pci_bus_sem is held 1385 * 1386 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1387 * 1388 * RETURN VALUE: 1389 * -EINVAL if the requested state is invalid. 1390 * -EIO if device does not support PCI PM or its PM capabilities register has a 1391 * wrong version, or device doesn't support the requested state. 1392 * 0 if device already is in the requested state. 1393 * 0 if device's power state has been successfully changed. 1394 */ 1395 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1396 { 1397 u16 pmcsr; 1398 1399 if (!dev->pm_cap) 1400 return -EIO; 1401 1402 /* 1403 * Validate transition: We can enter D0 from any state, but if 1404 * we're already in a low-power state, we can only go deeper. E.g., 1405 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1406 * we'd have to go from D3 to D0, then to D1. 1407 */ 1408 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1409 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1410 pci_power_name(dev->current_state), 1411 pci_power_name(state)); 1412 return -EINVAL; 1413 } 1414 1415 /* Check if this device supports the desired state */ 1416 if ((state == PCI_D1 && !dev->d1_support) 1417 || (state == PCI_D2 && !dev->d2_support)) 1418 return -EIO; 1419 1420 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1421 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1422 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1423 pci_power_name(dev->current_state), 1424 pci_power_name(state)); 1425 dev->current_state = PCI_D3cold; 1426 return -EIO; 1427 } 1428 1429 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1430 pmcsr |= state; 1431 1432 /* Enter specified state */ 1433 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1434 1435 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1436 if (state == PCI_D3hot) 1437 pci_dev_d3_sleep(dev); 1438 else if (state == PCI_D2) 1439 udelay(PCI_PM_D2_DELAY); 1440 1441 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1442 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1443 if (dev->current_state != state) 1444 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1445 pci_power_name(dev->current_state), 1446 pci_power_name(state)); 1447 1448 if (dev->bus->self) 1449 pcie_aspm_pm_state_change(dev->bus->self, locked); 1450 1451 return 0; 1452 } 1453 1454 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked) 1455 { 1456 int error; 1457 1458 /* Bound the state we're entering */ 1459 if (state > PCI_D3cold) 1460 state = PCI_D3cold; 1461 else if (state < PCI_D0) 1462 state = PCI_D0; 1463 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1464 1465 /* 1466 * If the device or the parent bridge do not support PCI 1467 * PM, ignore the request if we're doing anything other 1468 * than putting it into D0 (which would only happen on 1469 * boot). 1470 */ 1471 return 0; 1472 1473 /* Check if we're already there */ 1474 if (dev->current_state == state) 1475 return 0; 1476 1477 if (state == PCI_D0) 1478 return pci_set_full_power_state(dev, locked); 1479 1480 /* 1481 * This device is quirked not to be put into D3, so don't put it in 1482 * D3 1483 */ 1484 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1485 return 0; 1486 1487 if (state == PCI_D3cold) { 1488 /* 1489 * To put the device in D3cold, put it into D3hot in the native 1490 * way, then put it into D3cold using platform ops. 1491 */ 1492 error = pci_set_low_power_state(dev, PCI_D3hot, locked); 1493 1494 if (pci_platform_power_transition(dev, PCI_D3cold)) 1495 return error; 1496 1497 /* Powering off a bridge may power off the whole hierarchy */ 1498 if (dev->current_state == PCI_D3cold) 1499 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked); 1500 } else { 1501 error = pci_set_low_power_state(dev, state, locked); 1502 1503 if (pci_platform_power_transition(dev, state)) 1504 return error; 1505 } 1506 1507 return 0; 1508 } 1509 1510 /** 1511 * pci_set_power_state - Set the power state of a PCI device 1512 * @dev: PCI device to handle. 1513 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1514 * 1515 * Transition a device to a new power state, using the platform firmware and/or 1516 * the device's PCI PM registers. 1517 * 1518 * RETURN VALUE: 1519 * -EINVAL if the requested state is invalid. 1520 * -EIO if device does not support PCI PM or its PM capabilities register has a 1521 * wrong version, or device doesn't support the requested state. 1522 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1523 * 0 if device already is in the requested state. 1524 * 0 if the transition is to D3 but D3 is not supported. 1525 * 0 if device's power state has been successfully changed. 1526 */ 1527 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1528 { 1529 return __pci_set_power_state(dev, state, false); 1530 } 1531 EXPORT_SYMBOL(pci_set_power_state); 1532 1533 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state) 1534 { 1535 lockdep_assert_held(&pci_bus_sem); 1536 1537 return __pci_set_power_state(dev, state, true); 1538 } 1539 EXPORT_SYMBOL(pci_set_power_state_locked); 1540 1541 #define PCI_EXP_SAVE_REGS 7 1542 1543 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1544 u16 cap, bool extended) 1545 { 1546 struct pci_cap_saved_state *tmp; 1547 1548 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1549 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1550 return tmp; 1551 } 1552 return NULL; 1553 } 1554 1555 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1556 { 1557 return _pci_find_saved_cap(dev, cap, false); 1558 } 1559 1560 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1561 { 1562 return _pci_find_saved_cap(dev, cap, true); 1563 } 1564 1565 static int pci_save_pcie_state(struct pci_dev *dev) 1566 { 1567 int i = 0; 1568 struct pci_cap_saved_state *save_state; 1569 u16 *cap; 1570 1571 if (!pci_is_pcie(dev)) 1572 return 0; 1573 1574 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1575 if (!save_state) { 1576 pci_err(dev, "buffer not found in %s\n", __func__); 1577 return -ENOMEM; 1578 } 1579 1580 cap = (u16 *)&save_state->cap.data[0]; 1581 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1582 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1583 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1584 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1585 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1586 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1587 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1588 1589 return 0; 1590 } 1591 1592 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1593 { 1594 #ifdef CONFIG_PCIEASPM 1595 struct pci_dev *bridge; 1596 u32 ctl; 1597 1598 bridge = pci_upstream_bridge(dev); 1599 if (bridge && bridge->ltr_path) { 1600 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1601 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1602 pci_dbg(bridge, "re-enabling LTR\n"); 1603 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1604 PCI_EXP_DEVCTL2_LTR_EN); 1605 } 1606 } 1607 #endif 1608 } 1609 1610 static void pci_restore_pcie_state(struct pci_dev *dev) 1611 { 1612 int i = 0; 1613 struct pci_cap_saved_state *save_state; 1614 u16 *cap; 1615 1616 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1617 if (!save_state) 1618 return; 1619 1620 /* 1621 * Downstream ports reset the LTR enable bit when link goes down. 1622 * Check and re-configure the bit here before restoring device. 1623 * PCIe r5.0, sec 7.5.3.16. 1624 */ 1625 pci_bridge_reconfigure_ltr(dev); 1626 1627 cap = (u16 *)&save_state->cap.data[0]; 1628 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1629 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1630 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1631 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1632 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1633 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1634 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1635 } 1636 1637 static int pci_save_pcix_state(struct pci_dev *dev) 1638 { 1639 int pos; 1640 struct pci_cap_saved_state *save_state; 1641 1642 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1643 if (!pos) 1644 return 0; 1645 1646 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1647 if (!save_state) { 1648 pci_err(dev, "buffer not found in %s\n", __func__); 1649 return -ENOMEM; 1650 } 1651 1652 pci_read_config_word(dev, pos + PCI_X_CMD, 1653 (u16 *)save_state->cap.data); 1654 1655 return 0; 1656 } 1657 1658 static void pci_restore_pcix_state(struct pci_dev *dev) 1659 { 1660 int i = 0, pos; 1661 struct pci_cap_saved_state *save_state; 1662 u16 *cap; 1663 1664 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1665 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1666 if (!save_state || !pos) 1667 return; 1668 cap = (u16 *)&save_state->cap.data[0]; 1669 1670 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1671 } 1672 1673 static void pci_save_ltr_state(struct pci_dev *dev) 1674 { 1675 int ltr; 1676 struct pci_cap_saved_state *save_state; 1677 u32 *cap; 1678 1679 if (!pci_is_pcie(dev)) 1680 return; 1681 1682 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1683 if (!ltr) 1684 return; 1685 1686 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1687 if (!save_state) { 1688 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1689 return; 1690 } 1691 1692 /* Some broken devices only support dword access to LTR */ 1693 cap = &save_state->cap.data[0]; 1694 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1695 } 1696 1697 static void pci_restore_ltr_state(struct pci_dev *dev) 1698 { 1699 struct pci_cap_saved_state *save_state; 1700 int ltr; 1701 u32 *cap; 1702 1703 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1704 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1705 if (!save_state || !ltr) 1706 return; 1707 1708 /* Some broken devices only support dword access to LTR */ 1709 cap = &save_state->cap.data[0]; 1710 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1711 } 1712 1713 /** 1714 * pci_save_state - save the PCI configuration space of a device before 1715 * suspending 1716 * @dev: PCI device that we're dealing with 1717 */ 1718 int pci_save_state(struct pci_dev *dev) 1719 { 1720 int i; 1721 /* XXX: 100% dword access ok here? */ 1722 for (i = 0; i < 16; i++) { 1723 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1724 pci_dbg(dev, "save config %#04x: %#010x\n", 1725 i * 4, dev->saved_config_space[i]); 1726 } 1727 dev->state_saved = true; 1728 1729 i = pci_save_pcie_state(dev); 1730 if (i != 0) 1731 return i; 1732 1733 i = pci_save_pcix_state(dev); 1734 if (i != 0) 1735 return i; 1736 1737 pci_save_ltr_state(dev); 1738 pci_save_dpc_state(dev); 1739 pci_save_aer_state(dev); 1740 pci_save_ptm_state(dev); 1741 return pci_save_vc_state(dev); 1742 } 1743 EXPORT_SYMBOL(pci_save_state); 1744 1745 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1746 u32 saved_val, int retry, bool force) 1747 { 1748 u32 val; 1749 1750 pci_read_config_dword(pdev, offset, &val); 1751 if (!force && val == saved_val) 1752 return; 1753 1754 for (;;) { 1755 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1756 offset, val, saved_val); 1757 pci_write_config_dword(pdev, offset, saved_val); 1758 if (retry-- <= 0) 1759 return; 1760 1761 pci_read_config_dword(pdev, offset, &val); 1762 if (val == saved_val) 1763 return; 1764 1765 mdelay(1); 1766 } 1767 } 1768 1769 static void pci_restore_config_space_range(struct pci_dev *pdev, 1770 int start, int end, int retry, 1771 bool force) 1772 { 1773 int index; 1774 1775 for (index = end; index >= start; index--) 1776 pci_restore_config_dword(pdev, 4 * index, 1777 pdev->saved_config_space[index], 1778 retry, force); 1779 } 1780 1781 static void pci_restore_config_space(struct pci_dev *pdev) 1782 { 1783 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1784 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1785 /* Restore BARs before the command register. */ 1786 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1787 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1788 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1789 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1790 1791 /* 1792 * Force rewriting of prefetch registers to avoid S3 resume 1793 * issues on Intel PCI bridges that occur when these 1794 * registers are not explicitly written. 1795 */ 1796 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1797 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1798 } else { 1799 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1800 } 1801 } 1802 1803 static void pci_restore_rebar_state(struct pci_dev *pdev) 1804 { 1805 unsigned int pos, nbars, i; 1806 u32 ctrl; 1807 1808 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1809 if (!pos) 1810 return; 1811 1812 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1813 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1814 PCI_REBAR_CTRL_NBAR_SHIFT; 1815 1816 for (i = 0; i < nbars; i++, pos += 8) { 1817 struct resource *res; 1818 int bar_idx, size; 1819 1820 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1821 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1822 res = pdev->resource + bar_idx; 1823 size = pci_rebar_bytes_to_size(resource_size(res)); 1824 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1825 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1826 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1827 } 1828 } 1829 1830 /** 1831 * pci_restore_state - Restore the saved state of a PCI device 1832 * @dev: PCI device that we're dealing with 1833 */ 1834 void pci_restore_state(struct pci_dev *dev) 1835 { 1836 if (!dev->state_saved) 1837 return; 1838 1839 /* 1840 * Restore max latencies (in the LTR capability) before enabling 1841 * LTR itself (in the PCIe capability). 1842 */ 1843 pci_restore_ltr_state(dev); 1844 1845 pci_restore_pcie_state(dev); 1846 pci_restore_pasid_state(dev); 1847 pci_restore_pri_state(dev); 1848 pci_restore_ats_state(dev); 1849 pci_restore_vc_state(dev); 1850 pci_restore_rebar_state(dev); 1851 pci_restore_dpc_state(dev); 1852 pci_restore_ptm_state(dev); 1853 1854 pci_aer_clear_status(dev); 1855 pci_restore_aer_state(dev); 1856 1857 pci_restore_config_space(dev); 1858 1859 pci_restore_pcix_state(dev); 1860 pci_restore_msi_state(dev); 1861 1862 /* Restore ACS and IOV configuration state */ 1863 pci_enable_acs(dev); 1864 pci_restore_iov_state(dev); 1865 1866 dev->state_saved = false; 1867 } 1868 EXPORT_SYMBOL(pci_restore_state); 1869 1870 struct pci_saved_state { 1871 u32 config_space[16]; 1872 struct pci_cap_saved_data cap[]; 1873 }; 1874 1875 /** 1876 * pci_store_saved_state - Allocate and return an opaque struct containing 1877 * the device saved state. 1878 * @dev: PCI device that we're dealing with 1879 * 1880 * Return NULL if no state or error. 1881 */ 1882 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1883 { 1884 struct pci_saved_state *state; 1885 struct pci_cap_saved_state *tmp; 1886 struct pci_cap_saved_data *cap; 1887 size_t size; 1888 1889 if (!dev->state_saved) 1890 return NULL; 1891 1892 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1893 1894 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1895 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1896 1897 state = kzalloc(size, GFP_KERNEL); 1898 if (!state) 1899 return NULL; 1900 1901 memcpy(state->config_space, dev->saved_config_space, 1902 sizeof(state->config_space)); 1903 1904 cap = state->cap; 1905 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1906 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1907 memcpy(cap, &tmp->cap, len); 1908 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1909 } 1910 /* Empty cap_save terminates list */ 1911 1912 return state; 1913 } 1914 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1915 1916 /** 1917 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1918 * @dev: PCI device that we're dealing with 1919 * @state: Saved state returned from pci_store_saved_state() 1920 */ 1921 int pci_load_saved_state(struct pci_dev *dev, 1922 struct pci_saved_state *state) 1923 { 1924 struct pci_cap_saved_data *cap; 1925 1926 dev->state_saved = false; 1927 1928 if (!state) 1929 return 0; 1930 1931 memcpy(dev->saved_config_space, state->config_space, 1932 sizeof(state->config_space)); 1933 1934 cap = state->cap; 1935 while (cap->size) { 1936 struct pci_cap_saved_state *tmp; 1937 1938 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1939 if (!tmp || tmp->cap.size != cap->size) 1940 return -EINVAL; 1941 1942 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1943 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1944 sizeof(struct pci_cap_saved_data) + cap->size); 1945 } 1946 1947 dev->state_saved = true; 1948 return 0; 1949 } 1950 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1951 1952 /** 1953 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1954 * and free the memory allocated for it. 1955 * @dev: PCI device that we're dealing with 1956 * @state: Pointer to saved state returned from pci_store_saved_state() 1957 */ 1958 int pci_load_and_free_saved_state(struct pci_dev *dev, 1959 struct pci_saved_state **state) 1960 { 1961 int ret = pci_load_saved_state(dev, *state); 1962 kfree(*state); 1963 *state = NULL; 1964 return ret; 1965 } 1966 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1967 1968 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1969 { 1970 return pci_enable_resources(dev, bars); 1971 } 1972 1973 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1974 { 1975 int err; 1976 struct pci_dev *bridge; 1977 u16 cmd; 1978 u8 pin; 1979 1980 err = pci_set_power_state(dev, PCI_D0); 1981 if (err < 0 && err != -EIO) 1982 return err; 1983 1984 bridge = pci_upstream_bridge(dev); 1985 if (bridge) 1986 pcie_aspm_powersave_config_link(bridge); 1987 1988 err = pcibios_enable_device(dev, bars); 1989 if (err < 0) 1990 return err; 1991 pci_fixup_device(pci_fixup_enable, dev); 1992 1993 if (dev->msi_enabled || dev->msix_enabled) 1994 return 0; 1995 1996 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1997 if (pin) { 1998 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1999 if (cmd & PCI_COMMAND_INTX_DISABLE) 2000 pci_write_config_word(dev, PCI_COMMAND, 2001 cmd & ~PCI_COMMAND_INTX_DISABLE); 2002 } 2003 2004 return 0; 2005 } 2006 2007 /** 2008 * pci_reenable_device - Resume abandoned device 2009 * @dev: PCI device to be resumed 2010 * 2011 * NOTE: This function is a backend of pci_default_resume() and is not supposed 2012 * to be called by normal code, write proper resume handler and use it instead. 2013 */ 2014 int pci_reenable_device(struct pci_dev *dev) 2015 { 2016 if (pci_is_enabled(dev)) 2017 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 2018 return 0; 2019 } 2020 EXPORT_SYMBOL(pci_reenable_device); 2021 2022 static void pci_enable_bridge(struct pci_dev *dev) 2023 { 2024 struct pci_dev *bridge; 2025 int retval; 2026 2027 bridge = pci_upstream_bridge(dev); 2028 if (bridge) 2029 pci_enable_bridge(bridge); 2030 2031 if (pci_is_enabled(dev)) { 2032 if (!dev->is_busmaster) 2033 pci_set_master(dev); 2034 return; 2035 } 2036 2037 retval = pci_enable_device(dev); 2038 if (retval) 2039 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2040 retval); 2041 pci_set_master(dev); 2042 } 2043 2044 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2045 { 2046 struct pci_dev *bridge; 2047 int err; 2048 int i, bars = 0; 2049 2050 /* 2051 * Power state could be unknown at this point, either due to a fresh 2052 * boot or a device removal call. So get the current power state 2053 * so that things like MSI message writing will behave as expected 2054 * (e.g. if the device really is in D0 at enable time). 2055 */ 2056 pci_update_current_state(dev, dev->current_state); 2057 2058 if (atomic_inc_return(&dev->enable_cnt) > 1) 2059 return 0; /* already enabled */ 2060 2061 bridge = pci_upstream_bridge(dev); 2062 if (bridge) 2063 pci_enable_bridge(bridge); 2064 2065 /* only skip sriov related */ 2066 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2067 if (dev->resource[i].flags & flags) 2068 bars |= (1 << i); 2069 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2070 if (dev->resource[i].flags & flags) 2071 bars |= (1 << i); 2072 2073 err = do_pci_enable_device(dev, bars); 2074 if (err < 0) 2075 atomic_dec(&dev->enable_cnt); 2076 return err; 2077 } 2078 2079 /** 2080 * pci_enable_device_io - Initialize a device for use with IO space 2081 * @dev: PCI device to be initialized 2082 * 2083 * Initialize device before it's used by a driver. Ask low-level code 2084 * to enable I/O resources. Wake up the device if it was suspended. 2085 * Beware, this function can fail. 2086 */ 2087 int pci_enable_device_io(struct pci_dev *dev) 2088 { 2089 return pci_enable_device_flags(dev, IORESOURCE_IO); 2090 } 2091 EXPORT_SYMBOL(pci_enable_device_io); 2092 2093 /** 2094 * pci_enable_device_mem - Initialize a device for use with Memory space 2095 * @dev: PCI device to be initialized 2096 * 2097 * Initialize device before it's used by a driver. Ask low-level code 2098 * to enable Memory resources. Wake up the device if it was suspended. 2099 * Beware, this function can fail. 2100 */ 2101 int pci_enable_device_mem(struct pci_dev *dev) 2102 { 2103 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2104 } 2105 EXPORT_SYMBOL(pci_enable_device_mem); 2106 2107 /** 2108 * pci_enable_device - Initialize device before it's used by a driver. 2109 * @dev: PCI device to be initialized 2110 * 2111 * Initialize device before it's used by a driver. Ask low-level code 2112 * to enable I/O and memory. Wake up the device if it was suspended. 2113 * Beware, this function can fail. 2114 * 2115 * Note we don't actually enable the device many times if we call 2116 * this function repeatedly (we just increment the count). 2117 */ 2118 int pci_enable_device(struct pci_dev *dev) 2119 { 2120 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2121 } 2122 EXPORT_SYMBOL(pci_enable_device); 2123 2124 /* 2125 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2126 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2127 * there's no need to track it separately. pci_devres is initialized 2128 * when a device is enabled using managed PCI device enable interface. 2129 */ 2130 struct pci_devres { 2131 unsigned int enabled:1; 2132 unsigned int pinned:1; 2133 unsigned int orig_intx:1; 2134 unsigned int restore_intx:1; 2135 unsigned int mwi:1; 2136 u32 region_mask; 2137 }; 2138 2139 static void pcim_release(struct device *gendev, void *res) 2140 { 2141 struct pci_dev *dev = to_pci_dev(gendev); 2142 struct pci_devres *this = res; 2143 int i; 2144 2145 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2146 if (this->region_mask & (1 << i)) 2147 pci_release_region(dev, i); 2148 2149 if (this->mwi) 2150 pci_clear_mwi(dev); 2151 2152 if (this->restore_intx) 2153 pci_intx(dev, this->orig_intx); 2154 2155 if (this->enabled && !this->pinned) 2156 pci_disable_device(dev); 2157 } 2158 2159 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2160 { 2161 struct pci_devres *dr, *new_dr; 2162 2163 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2164 if (dr) 2165 return dr; 2166 2167 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2168 if (!new_dr) 2169 return NULL; 2170 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2171 } 2172 2173 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2174 { 2175 if (pci_is_managed(pdev)) 2176 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2177 return NULL; 2178 } 2179 2180 /** 2181 * pcim_enable_device - Managed pci_enable_device() 2182 * @pdev: PCI device to be initialized 2183 * 2184 * Managed pci_enable_device(). 2185 */ 2186 int pcim_enable_device(struct pci_dev *pdev) 2187 { 2188 struct pci_devres *dr; 2189 int rc; 2190 2191 dr = get_pci_dr(pdev); 2192 if (unlikely(!dr)) 2193 return -ENOMEM; 2194 if (dr->enabled) 2195 return 0; 2196 2197 rc = pci_enable_device(pdev); 2198 if (!rc) { 2199 pdev->is_managed = 1; 2200 dr->enabled = 1; 2201 } 2202 return rc; 2203 } 2204 EXPORT_SYMBOL(pcim_enable_device); 2205 2206 /** 2207 * pcim_pin_device - Pin managed PCI device 2208 * @pdev: PCI device to pin 2209 * 2210 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2211 * driver detach. @pdev must have been enabled with 2212 * pcim_enable_device(). 2213 */ 2214 void pcim_pin_device(struct pci_dev *pdev) 2215 { 2216 struct pci_devres *dr; 2217 2218 dr = find_pci_dr(pdev); 2219 WARN_ON(!dr || !dr->enabled); 2220 if (dr) 2221 dr->pinned = 1; 2222 } 2223 EXPORT_SYMBOL(pcim_pin_device); 2224 2225 /* 2226 * pcibios_device_add - provide arch specific hooks when adding device dev 2227 * @dev: the PCI device being added 2228 * 2229 * Permits the platform to provide architecture specific functionality when 2230 * devices are added. This is the default implementation. Architecture 2231 * implementations can override this. 2232 */ 2233 int __weak pcibios_device_add(struct pci_dev *dev) 2234 { 2235 return 0; 2236 } 2237 2238 /** 2239 * pcibios_release_device - provide arch specific hooks when releasing 2240 * device dev 2241 * @dev: the PCI device being released 2242 * 2243 * Permits the platform to provide architecture specific functionality when 2244 * devices are released. This is the default implementation. Architecture 2245 * implementations can override this. 2246 */ 2247 void __weak pcibios_release_device(struct pci_dev *dev) {} 2248 2249 /** 2250 * pcibios_disable_device - disable arch specific PCI resources for device dev 2251 * @dev: the PCI device to disable 2252 * 2253 * Disables architecture specific PCI resources for the device. This 2254 * is the default implementation. Architecture implementations can 2255 * override this. 2256 */ 2257 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2258 2259 /** 2260 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2261 * @irq: ISA IRQ to penalize 2262 * @active: IRQ active or not 2263 * 2264 * Permits the platform to provide architecture-specific functionality when 2265 * penalizing ISA IRQs. This is the default implementation. Architecture 2266 * implementations can override this. 2267 */ 2268 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2269 2270 static void do_pci_disable_device(struct pci_dev *dev) 2271 { 2272 u16 pci_command; 2273 2274 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2275 if (pci_command & PCI_COMMAND_MASTER) { 2276 pci_command &= ~PCI_COMMAND_MASTER; 2277 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2278 } 2279 2280 pcibios_disable_device(dev); 2281 } 2282 2283 /** 2284 * pci_disable_enabled_device - Disable device without updating enable_cnt 2285 * @dev: PCI device to disable 2286 * 2287 * NOTE: This function is a backend of PCI power management routines and is 2288 * not supposed to be called drivers. 2289 */ 2290 void pci_disable_enabled_device(struct pci_dev *dev) 2291 { 2292 if (pci_is_enabled(dev)) 2293 do_pci_disable_device(dev); 2294 } 2295 2296 /** 2297 * pci_disable_device - Disable PCI device after use 2298 * @dev: PCI device to be disabled 2299 * 2300 * Signal to the system that the PCI device is not in use by the system 2301 * anymore. This only involves disabling PCI bus-mastering, if active. 2302 * 2303 * Note we don't actually disable the device until all callers of 2304 * pci_enable_device() have called pci_disable_device(). 2305 */ 2306 void pci_disable_device(struct pci_dev *dev) 2307 { 2308 struct pci_devres *dr; 2309 2310 dr = find_pci_dr(dev); 2311 if (dr) 2312 dr->enabled = 0; 2313 2314 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2315 "disabling already-disabled device"); 2316 2317 if (atomic_dec_return(&dev->enable_cnt) != 0) 2318 return; 2319 2320 do_pci_disable_device(dev); 2321 2322 dev->is_busmaster = 0; 2323 } 2324 EXPORT_SYMBOL(pci_disable_device); 2325 2326 /** 2327 * pcibios_set_pcie_reset_state - set reset state for device dev 2328 * @dev: the PCIe device reset 2329 * @state: Reset state to enter into 2330 * 2331 * Set the PCIe reset state for the device. This is the default 2332 * implementation. Architecture implementations can override this. 2333 */ 2334 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2335 enum pcie_reset_state state) 2336 { 2337 return -EINVAL; 2338 } 2339 2340 /** 2341 * pci_set_pcie_reset_state - set reset state for device dev 2342 * @dev: the PCIe device reset 2343 * @state: Reset state to enter into 2344 * 2345 * Sets the PCI reset state for the device. 2346 */ 2347 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2348 { 2349 return pcibios_set_pcie_reset_state(dev, state); 2350 } 2351 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2352 2353 #ifdef CONFIG_PCIEAER 2354 void pcie_clear_device_status(struct pci_dev *dev) 2355 { 2356 u16 sta; 2357 2358 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2359 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2360 } 2361 #endif 2362 2363 /** 2364 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2365 * @dev: PCIe root port or event collector. 2366 */ 2367 void pcie_clear_root_pme_status(struct pci_dev *dev) 2368 { 2369 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2370 } 2371 2372 /** 2373 * pci_check_pme_status - Check if given device has generated PME. 2374 * @dev: Device to check. 2375 * 2376 * Check the PME status of the device and if set, clear it and clear PME enable 2377 * (if set). Return 'true' if PME status and PME enable were both set or 2378 * 'false' otherwise. 2379 */ 2380 bool pci_check_pme_status(struct pci_dev *dev) 2381 { 2382 int pmcsr_pos; 2383 u16 pmcsr; 2384 bool ret = false; 2385 2386 if (!dev->pm_cap) 2387 return false; 2388 2389 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2390 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2391 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2392 return false; 2393 2394 /* Clear PME status. */ 2395 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2396 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2397 /* Disable PME to avoid interrupt flood. */ 2398 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2399 ret = true; 2400 } 2401 2402 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2403 2404 return ret; 2405 } 2406 2407 /** 2408 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2409 * @dev: Device to handle. 2410 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2411 * 2412 * Check if @dev has generated PME and queue a resume request for it in that 2413 * case. 2414 */ 2415 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2416 { 2417 if (pme_poll_reset && dev->pme_poll) 2418 dev->pme_poll = false; 2419 2420 if (pci_check_pme_status(dev)) { 2421 pci_wakeup_event(dev); 2422 pm_request_resume(&dev->dev); 2423 } 2424 return 0; 2425 } 2426 2427 /** 2428 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2429 * @bus: Top bus of the subtree to walk. 2430 */ 2431 void pci_pme_wakeup_bus(struct pci_bus *bus) 2432 { 2433 if (bus) 2434 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2435 } 2436 2437 2438 /** 2439 * pci_pme_capable - check the capability of PCI device to generate PME# 2440 * @dev: PCI device to handle. 2441 * @state: PCI state from which device will issue PME#. 2442 */ 2443 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2444 { 2445 if (!dev->pm_cap) 2446 return false; 2447 2448 return !!(dev->pme_support & (1 << state)); 2449 } 2450 EXPORT_SYMBOL(pci_pme_capable); 2451 2452 static void pci_pme_list_scan(struct work_struct *work) 2453 { 2454 struct pci_pme_device *pme_dev, *n; 2455 2456 mutex_lock(&pci_pme_list_mutex); 2457 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2458 struct pci_dev *pdev = pme_dev->dev; 2459 2460 if (pdev->pme_poll) { 2461 struct pci_dev *bridge = pdev->bus->self; 2462 struct device *dev = &pdev->dev; 2463 struct device *bdev = bridge ? &bridge->dev : NULL; 2464 int bref = 0; 2465 2466 /* 2467 * If we have a bridge, it should be in an active/D0 2468 * state or the configuration space of subordinate 2469 * devices may not be accessible or stable over the 2470 * course of the call. 2471 */ 2472 if (bdev) { 2473 bref = pm_runtime_get_if_active(bdev, true); 2474 if (!bref) 2475 continue; 2476 2477 if (bridge->current_state != PCI_D0) 2478 goto put_bridge; 2479 } 2480 2481 /* 2482 * The device itself should be suspended but config 2483 * space must be accessible, therefore it cannot be in 2484 * D3cold. 2485 */ 2486 if (pm_runtime_suspended(dev) && 2487 pdev->current_state != PCI_D3cold) 2488 pci_pme_wakeup(pdev, NULL); 2489 2490 put_bridge: 2491 if (bref > 0) 2492 pm_runtime_put(bdev); 2493 } else { 2494 list_del(&pme_dev->list); 2495 kfree(pme_dev); 2496 } 2497 } 2498 if (!list_empty(&pci_pme_list)) 2499 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2500 msecs_to_jiffies(PME_TIMEOUT)); 2501 mutex_unlock(&pci_pme_list_mutex); 2502 } 2503 2504 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2505 { 2506 u16 pmcsr; 2507 2508 if (!dev->pme_support) 2509 return; 2510 2511 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2512 /* Clear PME_Status by writing 1 to it and enable PME# */ 2513 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2514 if (!enable) 2515 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2516 2517 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2518 } 2519 2520 /** 2521 * pci_pme_restore - Restore PME configuration after config space restore. 2522 * @dev: PCI device to update. 2523 */ 2524 void pci_pme_restore(struct pci_dev *dev) 2525 { 2526 u16 pmcsr; 2527 2528 if (!dev->pme_support) 2529 return; 2530 2531 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2532 if (dev->wakeup_prepared) { 2533 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2534 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2535 } else { 2536 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2537 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2538 } 2539 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2540 } 2541 2542 /** 2543 * pci_pme_active - enable or disable PCI device's PME# function 2544 * @dev: PCI device to handle. 2545 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2546 * 2547 * The caller must verify that the device is capable of generating PME# before 2548 * calling this function with @enable equal to 'true'. 2549 */ 2550 void pci_pme_active(struct pci_dev *dev, bool enable) 2551 { 2552 __pci_pme_active(dev, enable); 2553 2554 /* 2555 * PCI (as opposed to PCIe) PME requires that the device have 2556 * its PME# line hooked up correctly. Not all hardware vendors 2557 * do this, so the PME never gets delivered and the device 2558 * remains asleep. The easiest way around this is to 2559 * periodically walk the list of suspended devices and check 2560 * whether any have their PME flag set. The assumption is that 2561 * we'll wake up often enough anyway that this won't be a huge 2562 * hit, and the power savings from the devices will still be a 2563 * win. 2564 * 2565 * Although PCIe uses in-band PME message instead of PME# line 2566 * to report PME, PME does not work for some PCIe devices in 2567 * reality. For example, there are devices that set their PME 2568 * status bits, but don't really bother to send a PME message; 2569 * there are PCI Express Root Ports that don't bother to 2570 * trigger interrupts when they receive PME messages from the 2571 * devices below. So PME poll is used for PCIe devices too. 2572 */ 2573 2574 if (dev->pme_poll) { 2575 struct pci_pme_device *pme_dev; 2576 if (enable) { 2577 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2578 GFP_KERNEL); 2579 if (!pme_dev) { 2580 pci_warn(dev, "can't enable PME#\n"); 2581 return; 2582 } 2583 pme_dev->dev = dev; 2584 mutex_lock(&pci_pme_list_mutex); 2585 list_add(&pme_dev->list, &pci_pme_list); 2586 if (list_is_singular(&pci_pme_list)) 2587 queue_delayed_work(system_freezable_wq, 2588 &pci_pme_work, 2589 msecs_to_jiffies(PME_TIMEOUT)); 2590 mutex_unlock(&pci_pme_list_mutex); 2591 } else { 2592 mutex_lock(&pci_pme_list_mutex); 2593 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2594 if (pme_dev->dev == dev) { 2595 list_del(&pme_dev->list); 2596 kfree(pme_dev); 2597 break; 2598 } 2599 } 2600 mutex_unlock(&pci_pme_list_mutex); 2601 } 2602 } 2603 2604 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2605 } 2606 EXPORT_SYMBOL(pci_pme_active); 2607 2608 /** 2609 * __pci_enable_wake - enable PCI device as wakeup event source 2610 * @dev: PCI device affected 2611 * @state: PCI state from which device will issue wakeup events 2612 * @enable: True to enable event generation; false to disable 2613 * 2614 * This enables the device as a wakeup event source, or disables it. 2615 * When such events involves platform-specific hooks, those hooks are 2616 * called automatically by this routine. 2617 * 2618 * Devices with legacy power management (no standard PCI PM capabilities) 2619 * always require such platform hooks. 2620 * 2621 * RETURN VALUE: 2622 * 0 is returned on success 2623 * -EINVAL is returned if device is not supposed to wake up the system 2624 * Error code depending on the platform is returned if both the platform and 2625 * the native mechanism fail to enable the generation of wake-up events 2626 */ 2627 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2628 { 2629 int ret = 0; 2630 2631 /* 2632 * Bridges that are not power-manageable directly only signal 2633 * wakeup on behalf of subordinate devices which is set up 2634 * elsewhere, so skip them. However, bridges that are 2635 * power-manageable may signal wakeup for themselves (for example, 2636 * on a hotplug event) and they need to be covered here. 2637 */ 2638 if (!pci_power_manageable(dev)) 2639 return 0; 2640 2641 /* Don't do the same thing twice in a row for one device. */ 2642 if (!!enable == !!dev->wakeup_prepared) 2643 return 0; 2644 2645 /* 2646 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2647 * Anderson we should be doing PME# wake enable followed by ACPI wake 2648 * enable. To disable wake-up we call the platform first, for symmetry. 2649 */ 2650 2651 if (enable) { 2652 int error; 2653 2654 /* 2655 * Enable PME signaling if the device can signal PME from 2656 * D3cold regardless of whether or not it can signal PME from 2657 * the current target state, because that will allow it to 2658 * signal PME when the hierarchy above it goes into D3cold and 2659 * the device itself ends up in D3cold as a result of that. 2660 */ 2661 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2662 pci_pme_active(dev, true); 2663 else 2664 ret = 1; 2665 error = platform_pci_set_wakeup(dev, true); 2666 if (ret) 2667 ret = error; 2668 if (!ret) 2669 dev->wakeup_prepared = true; 2670 } else { 2671 platform_pci_set_wakeup(dev, false); 2672 pci_pme_active(dev, false); 2673 dev->wakeup_prepared = false; 2674 } 2675 2676 return ret; 2677 } 2678 2679 /** 2680 * pci_enable_wake - change wakeup settings for a PCI device 2681 * @pci_dev: Target device 2682 * @state: PCI state from which device will issue wakeup events 2683 * @enable: Whether or not to enable event generation 2684 * 2685 * If @enable is set, check device_may_wakeup() for the device before calling 2686 * __pci_enable_wake() for it. 2687 */ 2688 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2689 { 2690 if (enable && !device_may_wakeup(&pci_dev->dev)) 2691 return -EINVAL; 2692 2693 return __pci_enable_wake(pci_dev, state, enable); 2694 } 2695 EXPORT_SYMBOL(pci_enable_wake); 2696 2697 /** 2698 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2699 * @dev: PCI device to prepare 2700 * @enable: True to enable wake-up event generation; false to disable 2701 * 2702 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2703 * and this function allows them to set that up cleanly - pci_enable_wake() 2704 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2705 * ordering constraints. 2706 * 2707 * This function only returns error code if the device is not allowed to wake 2708 * up the system from sleep or it is not capable of generating PME# from both 2709 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2710 */ 2711 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2712 { 2713 return pci_pme_capable(dev, PCI_D3cold) ? 2714 pci_enable_wake(dev, PCI_D3cold, enable) : 2715 pci_enable_wake(dev, PCI_D3hot, enable); 2716 } 2717 EXPORT_SYMBOL(pci_wake_from_d3); 2718 2719 /** 2720 * pci_target_state - find an appropriate low power state for a given PCI dev 2721 * @dev: PCI device 2722 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2723 * 2724 * Use underlying platform code to find a supported low power state for @dev. 2725 * If the platform can't manage @dev, return the deepest state from which it 2726 * can generate wake events, based on any available PME info. 2727 */ 2728 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2729 { 2730 if (platform_pci_power_manageable(dev)) { 2731 /* 2732 * Call the platform to find the target state for the device. 2733 */ 2734 pci_power_t state = platform_pci_choose_state(dev); 2735 2736 switch (state) { 2737 case PCI_POWER_ERROR: 2738 case PCI_UNKNOWN: 2739 return PCI_D3hot; 2740 2741 case PCI_D1: 2742 case PCI_D2: 2743 if (pci_no_d1d2(dev)) 2744 return PCI_D3hot; 2745 } 2746 2747 return state; 2748 } 2749 2750 /* 2751 * If the device is in D3cold even though it's not power-manageable by 2752 * the platform, it may have been powered down by non-standard means. 2753 * Best to let it slumber. 2754 */ 2755 if (dev->current_state == PCI_D3cold) 2756 return PCI_D3cold; 2757 else if (!dev->pm_cap) 2758 return PCI_D0; 2759 2760 if (wakeup && dev->pme_support) { 2761 pci_power_t state = PCI_D3hot; 2762 2763 /* 2764 * Find the deepest state from which the device can generate 2765 * PME#. 2766 */ 2767 while (state && !(dev->pme_support & (1 << state))) 2768 state--; 2769 2770 if (state) 2771 return state; 2772 else if (dev->pme_support & 1) 2773 return PCI_D0; 2774 } 2775 2776 return PCI_D3hot; 2777 } 2778 2779 /** 2780 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2781 * into a sleep state 2782 * @dev: Device to handle. 2783 * 2784 * Choose the power state appropriate for the device depending on whether 2785 * it can wake up the system and/or is power manageable by the platform 2786 * (PCI_D3hot is the default) and put the device into that state. 2787 */ 2788 int pci_prepare_to_sleep(struct pci_dev *dev) 2789 { 2790 bool wakeup = device_may_wakeup(&dev->dev); 2791 pci_power_t target_state = pci_target_state(dev, wakeup); 2792 int error; 2793 2794 if (target_state == PCI_POWER_ERROR) 2795 return -EIO; 2796 2797 pci_enable_wake(dev, target_state, wakeup); 2798 2799 error = pci_set_power_state(dev, target_state); 2800 2801 if (error) 2802 pci_enable_wake(dev, target_state, false); 2803 2804 return error; 2805 } 2806 EXPORT_SYMBOL(pci_prepare_to_sleep); 2807 2808 /** 2809 * pci_back_from_sleep - turn PCI device on during system-wide transition 2810 * into working state 2811 * @dev: Device to handle. 2812 * 2813 * Disable device's system wake-up capability and put it into D0. 2814 */ 2815 int pci_back_from_sleep(struct pci_dev *dev) 2816 { 2817 int ret = pci_set_power_state(dev, PCI_D0); 2818 2819 if (ret) 2820 return ret; 2821 2822 pci_enable_wake(dev, PCI_D0, false); 2823 return 0; 2824 } 2825 EXPORT_SYMBOL(pci_back_from_sleep); 2826 2827 /** 2828 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2829 * @dev: PCI device being suspended. 2830 * 2831 * Prepare @dev to generate wake-up events at run time and put it into a low 2832 * power state. 2833 */ 2834 int pci_finish_runtime_suspend(struct pci_dev *dev) 2835 { 2836 pci_power_t target_state; 2837 int error; 2838 2839 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2840 if (target_state == PCI_POWER_ERROR) 2841 return -EIO; 2842 2843 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2844 2845 error = pci_set_power_state(dev, target_state); 2846 2847 if (error) 2848 pci_enable_wake(dev, target_state, false); 2849 2850 return error; 2851 } 2852 2853 /** 2854 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2855 * @dev: Device to check. 2856 * 2857 * Return true if the device itself is capable of generating wake-up events 2858 * (through the platform or using the native PCIe PME) or if the device supports 2859 * PME and one of its upstream bridges can generate wake-up events. 2860 */ 2861 bool pci_dev_run_wake(struct pci_dev *dev) 2862 { 2863 struct pci_bus *bus = dev->bus; 2864 2865 if (!dev->pme_support) 2866 return false; 2867 2868 /* PME-capable in principle, but not from the target power state */ 2869 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2870 return false; 2871 2872 if (device_can_wakeup(&dev->dev)) 2873 return true; 2874 2875 while (bus->parent) { 2876 struct pci_dev *bridge = bus->self; 2877 2878 if (device_can_wakeup(&bridge->dev)) 2879 return true; 2880 2881 bus = bus->parent; 2882 } 2883 2884 /* We have reached the root bus. */ 2885 if (bus->bridge) 2886 return device_can_wakeup(bus->bridge); 2887 2888 return false; 2889 } 2890 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2891 2892 /** 2893 * pci_dev_need_resume - Check if it is necessary to resume the device. 2894 * @pci_dev: Device to check. 2895 * 2896 * Return 'true' if the device is not runtime-suspended or it has to be 2897 * reconfigured due to wakeup settings difference between system and runtime 2898 * suspend, or the current power state of it is not suitable for the upcoming 2899 * (system-wide) transition. 2900 */ 2901 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2902 { 2903 struct device *dev = &pci_dev->dev; 2904 pci_power_t target_state; 2905 2906 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2907 return true; 2908 2909 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2910 2911 /* 2912 * If the earlier platform check has not triggered, D3cold is just power 2913 * removal on top of D3hot, so no need to resume the device in that 2914 * case. 2915 */ 2916 return target_state != pci_dev->current_state && 2917 target_state != PCI_D3cold && 2918 pci_dev->current_state != PCI_D3hot; 2919 } 2920 2921 /** 2922 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2923 * @pci_dev: Device to check. 2924 * 2925 * If the device is suspended and it is not configured for system wakeup, 2926 * disable PME for it to prevent it from waking up the system unnecessarily. 2927 * 2928 * Note that if the device's power state is D3cold and the platform check in 2929 * pci_dev_need_resume() has not triggered, the device's configuration need not 2930 * be changed. 2931 */ 2932 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2933 { 2934 struct device *dev = &pci_dev->dev; 2935 2936 spin_lock_irq(&dev->power.lock); 2937 2938 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2939 pci_dev->current_state < PCI_D3cold) 2940 __pci_pme_active(pci_dev, false); 2941 2942 spin_unlock_irq(&dev->power.lock); 2943 } 2944 2945 /** 2946 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2947 * @pci_dev: Device to handle. 2948 * 2949 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2950 * it might have been disabled during the prepare phase of system suspend if 2951 * the device was not configured for system wakeup. 2952 */ 2953 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2954 { 2955 struct device *dev = &pci_dev->dev; 2956 2957 if (!pci_dev_run_wake(pci_dev)) 2958 return; 2959 2960 spin_lock_irq(&dev->power.lock); 2961 2962 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2963 __pci_pme_active(pci_dev, true); 2964 2965 spin_unlock_irq(&dev->power.lock); 2966 } 2967 2968 /** 2969 * pci_choose_state - Choose the power state of a PCI device. 2970 * @dev: Target PCI device. 2971 * @state: Target state for the whole system. 2972 * 2973 * Returns PCI power state suitable for @dev and @state. 2974 */ 2975 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2976 { 2977 if (state.event == PM_EVENT_ON) 2978 return PCI_D0; 2979 2980 return pci_target_state(dev, false); 2981 } 2982 EXPORT_SYMBOL(pci_choose_state); 2983 2984 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2985 { 2986 struct device *dev = &pdev->dev; 2987 struct device *parent = dev->parent; 2988 2989 if (parent) 2990 pm_runtime_get_sync(parent); 2991 pm_runtime_get_noresume(dev); 2992 /* 2993 * pdev->current_state is set to PCI_D3cold during suspending, 2994 * so wait until suspending completes 2995 */ 2996 pm_runtime_barrier(dev); 2997 /* 2998 * Only need to resume devices in D3cold, because config 2999 * registers are still accessible for devices suspended but 3000 * not in D3cold. 3001 */ 3002 if (pdev->current_state == PCI_D3cold) 3003 pm_runtime_resume(dev); 3004 } 3005 3006 void pci_config_pm_runtime_put(struct pci_dev *pdev) 3007 { 3008 struct device *dev = &pdev->dev; 3009 struct device *parent = dev->parent; 3010 3011 pm_runtime_put(dev); 3012 if (parent) 3013 pm_runtime_put_sync(parent); 3014 } 3015 3016 static const struct dmi_system_id bridge_d3_blacklist[] = { 3017 #ifdef CONFIG_X86 3018 { 3019 /* 3020 * Gigabyte X299 root port is not marked as hotplug capable 3021 * which allows Linux to power manage it. However, this 3022 * confuses the BIOS SMI handler so don't power manage root 3023 * ports on that system. 3024 */ 3025 .ident = "X299 DESIGNARE EX-CF", 3026 .matches = { 3027 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 3028 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 3029 }, 3030 }, 3031 { 3032 /* 3033 * Downstream device is not accessible after putting a root port 3034 * into D3cold and back into D0 on Elo Continental Z2 board 3035 */ 3036 .ident = "Elo Continental Z2", 3037 .matches = { 3038 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3039 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3040 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3041 }, 3042 }, 3043 #endif 3044 { } 3045 }; 3046 3047 /** 3048 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3049 * @bridge: Bridge to check 3050 * 3051 * This function checks if it is possible to move the bridge to D3. 3052 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3053 */ 3054 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3055 { 3056 if (!pci_is_pcie(bridge)) 3057 return false; 3058 3059 switch (pci_pcie_type(bridge)) { 3060 case PCI_EXP_TYPE_ROOT_PORT: 3061 case PCI_EXP_TYPE_UPSTREAM: 3062 case PCI_EXP_TYPE_DOWNSTREAM: 3063 if (pci_bridge_d3_disable) 3064 return false; 3065 3066 /* 3067 * Hotplug ports handled by firmware in System Management Mode 3068 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3069 */ 3070 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3071 return false; 3072 3073 if (pci_bridge_d3_force) 3074 return true; 3075 3076 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3077 if (bridge->is_thunderbolt) 3078 return true; 3079 3080 /* Platform might know better if the bridge supports D3 */ 3081 if (platform_pci_bridge_d3(bridge)) 3082 return true; 3083 3084 /* 3085 * Hotplug ports handled natively by the OS were not validated 3086 * by vendors for runtime D3 at least until 2018 because there 3087 * was no OS support. 3088 */ 3089 if (bridge->is_hotplug_bridge) 3090 return false; 3091 3092 if (dmi_check_system(bridge_d3_blacklist)) 3093 return false; 3094 3095 /* 3096 * It should be safe to put PCIe ports from 2015 or newer 3097 * to D3. 3098 */ 3099 if (dmi_get_bios_year() >= 2015) 3100 return true; 3101 break; 3102 } 3103 3104 return false; 3105 } 3106 3107 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3108 { 3109 bool *d3cold_ok = data; 3110 3111 if (/* The device needs to be allowed to go D3cold ... */ 3112 dev->no_d3cold || !dev->d3cold_allowed || 3113 3114 /* ... and if it is wakeup capable to do so from D3cold. */ 3115 (device_may_wakeup(&dev->dev) && 3116 !pci_pme_capable(dev, PCI_D3cold)) || 3117 3118 /* If it is a bridge it must be allowed to go to D3. */ 3119 !pci_power_manageable(dev)) 3120 3121 *d3cold_ok = false; 3122 3123 return !*d3cold_ok; 3124 } 3125 3126 /* 3127 * pci_bridge_d3_update - Update bridge D3 capabilities 3128 * @dev: PCI device which is changed 3129 * 3130 * Update upstream bridge PM capabilities accordingly depending on if the 3131 * device PM configuration was changed or the device is being removed. The 3132 * change is also propagated upstream. 3133 */ 3134 void pci_bridge_d3_update(struct pci_dev *dev) 3135 { 3136 bool remove = !device_is_registered(&dev->dev); 3137 struct pci_dev *bridge; 3138 bool d3cold_ok = true; 3139 3140 bridge = pci_upstream_bridge(dev); 3141 if (!bridge || !pci_bridge_d3_possible(bridge)) 3142 return; 3143 3144 /* 3145 * If D3 is currently allowed for the bridge, removing one of its 3146 * children won't change that. 3147 */ 3148 if (remove && bridge->bridge_d3) 3149 return; 3150 3151 /* 3152 * If D3 is currently allowed for the bridge and a child is added or 3153 * changed, disallowance of D3 can only be caused by that child, so 3154 * we only need to check that single device, not any of its siblings. 3155 * 3156 * If D3 is currently not allowed for the bridge, checking the device 3157 * first may allow us to skip checking its siblings. 3158 */ 3159 if (!remove) 3160 pci_dev_check_d3cold(dev, &d3cold_ok); 3161 3162 /* 3163 * If D3 is currently not allowed for the bridge, this may be caused 3164 * either by the device being changed/removed or any of its siblings, 3165 * so we need to go through all children to find out if one of them 3166 * continues to block D3. 3167 */ 3168 if (d3cold_ok && !bridge->bridge_d3) 3169 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3170 &d3cold_ok); 3171 3172 if (bridge->bridge_d3 != d3cold_ok) { 3173 bridge->bridge_d3 = d3cold_ok; 3174 /* Propagate change to upstream bridges */ 3175 pci_bridge_d3_update(bridge); 3176 } 3177 } 3178 3179 /** 3180 * pci_d3cold_enable - Enable D3cold for device 3181 * @dev: PCI device to handle 3182 * 3183 * This function can be used in drivers to enable D3cold from the device 3184 * they handle. It also updates upstream PCI bridge PM capabilities 3185 * accordingly. 3186 */ 3187 void pci_d3cold_enable(struct pci_dev *dev) 3188 { 3189 if (dev->no_d3cold) { 3190 dev->no_d3cold = false; 3191 pci_bridge_d3_update(dev); 3192 } 3193 } 3194 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3195 3196 /** 3197 * pci_d3cold_disable - Disable D3cold for device 3198 * @dev: PCI device to handle 3199 * 3200 * This function can be used in drivers to disable D3cold from the device 3201 * they handle. It also updates upstream PCI bridge PM capabilities 3202 * accordingly. 3203 */ 3204 void pci_d3cold_disable(struct pci_dev *dev) 3205 { 3206 if (!dev->no_d3cold) { 3207 dev->no_d3cold = true; 3208 pci_bridge_d3_update(dev); 3209 } 3210 } 3211 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3212 3213 /** 3214 * pci_pm_init - Initialize PM functions of given PCI device 3215 * @dev: PCI device to handle. 3216 */ 3217 void pci_pm_init(struct pci_dev *dev) 3218 { 3219 int pm; 3220 u16 status; 3221 u16 pmc; 3222 3223 pm_runtime_forbid(&dev->dev); 3224 pm_runtime_set_active(&dev->dev); 3225 pm_runtime_enable(&dev->dev); 3226 device_enable_async_suspend(&dev->dev); 3227 dev->wakeup_prepared = false; 3228 3229 dev->pm_cap = 0; 3230 dev->pme_support = 0; 3231 3232 /* find PCI PM capability in list */ 3233 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3234 if (!pm) 3235 return; 3236 /* Check device's ability to generate PME# */ 3237 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3238 3239 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3240 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3241 pmc & PCI_PM_CAP_VER_MASK); 3242 return; 3243 } 3244 3245 dev->pm_cap = pm; 3246 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3247 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3248 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3249 dev->d3cold_allowed = true; 3250 3251 dev->d1_support = false; 3252 dev->d2_support = false; 3253 if (!pci_no_d1d2(dev)) { 3254 if (pmc & PCI_PM_CAP_D1) 3255 dev->d1_support = true; 3256 if (pmc & PCI_PM_CAP_D2) 3257 dev->d2_support = true; 3258 3259 if (dev->d1_support || dev->d2_support) 3260 pci_info(dev, "supports%s%s\n", 3261 dev->d1_support ? " D1" : "", 3262 dev->d2_support ? " D2" : ""); 3263 } 3264 3265 pmc &= PCI_PM_CAP_PME_MASK; 3266 if (pmc) { 3267 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3268 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3269 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3270 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3271 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3272 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3273 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3274 dev->pme_poll = true; 3275 /* 3276 * Make device's PM flags reflect the wake-up capability, but 3277 * let the user space enable it to wake up the system as needed. 3278 */ 3279 device_set_wakeup_capable(&dev->dev, true); 3280 /* Disable the PME# generation functionality */ 3281 pci_pme_active(dev, false); 3282 } 3283 3284 pci_read_config_word(dev, PCI_STATUS, &status); 3285 if (status & PCI_STATUS_IMM_READY) 3286 dev->imm_ready = 1; 3287 } 3288 3289 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3290 { 3291 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3292 3293 switch (prop) { 3294 case PCI_EA_P_MEM: 3295 case PCI_EA_P_VF_MEM: 3296 flags |= IORESOURCE_MEM; 3297 break; 3298 case PCI_EA_P_MEM_PREFETCH: 3299 case PCI_EA_P_VF_MEM_PREFETCH: 3300 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3301 break; 3302 case PCI_EA_P_IO: 3303 flags |= IORESOURCE_IO; 3304 break; 3305 default: 3306 return 0; 3307 } 3308 3309 return flags; 3310 } 3311 3312 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3313 u8 prop) 3314 { 3315 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3316 return &dev->resource[bei]; 3317 #ifdef CONFIG_PCI_IOV 3318 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3319 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3320 return &dev->resource[PCI_IOV_RESOURCES + 3321 bei - PCI_EA_BEI_VF_BAR0]; 3322 #endif 3323 else if (bei == PCI_EA_BEI_ROM) 3324 return &dev->resource[PCI_ROM_RESOURCE]; 3325 else 3326 return NULL; 3327 } 3328 3329 /* Read an Enhanced Allocation (EA) entry */ 3330 static int pci_ea_read(struct pci_dev *dev, int offset) 3331 { 3332 struct resource *res; 3333 int ent_size, ent_offset = offset; 3334 resource_size_t start, end; 3335 unsigned long flags; 3336 u32 dw0, bei, base, max_offset; 3337 u8 prop; 3338 bool support_64 = (sizeof(resource_size_t) >= 8); 3339 3340 pci_read_config_dword(dev, ent_offset, &dw0); 3341 ent_offset += 4; 3342 3343 /* Entry size field indicates DWORDs after 1st */ 3344 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3345 3346 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3347 goto out; 3348 3349 bei = (dw0 & PCI_EA_BEI) >> 4; 3350 prop = (dw0 & PCI_EA_PP) >> 8; 3351 3352 /* 3353 * If the Property is in the reserved range, try the Secondary 3354 * Property instead. 3355 */ 3356 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3357 prop = (dw0 & PCI_EA_SP) >> 16; 3358 if (prop > PCI_EA_P_BRIDGE_IO) 3359 goto out; 3360 3361 res = pci_ea_get_resource(dev, bei, prop); 3362 if (!res) { 3363 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3364 goto out; 3365 } 3366 3367 flags = pci_ea_flags(dev, prop); 3368 if (!flags) { 3369 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3370 goto out; 3371 } 3372 3373 /* Read Base */ 3374 pci_read_config_dword(dev, ent_offset, &base); 3375 start = (base & PCI_EA_FIELD_MASK); 3376 ent_offset += 4; 3377 3378 /* Read MaxOffset */ 3379 pci_read_config_dword(dev, ent_offset, &max_offset); 3380 ent_offset += 4; 3381 3382 /* Read Base MSBs (if 64-bit entry) */ 3383 if (base & PCI_EA_IS_64) { 3384 u32 base_upper; 3385 3386 pci_read_config_dword(dev, ent_offset, &base_upper); 3387 ent_offset += 4; 3388 3389 flags |= IORESOURCE_MEM_64; 3390 3391 /* entry starts above 32-bit boundary, can't use */ 3392 if (!support_64 && base_upper) 3393 goto out; 3394 3395 if (support_64) 3396 start |= ((u64)base_upper << 32); 3397 } 3398 3399 end = start + (max_offset | 0x03); 3400 3401 /* Read MaxOffset MSBs (if 64-bit entry) */ 3402 if (max_offset & PCI_EA_IS_64) { 3403 u32 max_offset_upper; 3404 3405 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3406 ent_offset += 4; 3407 3408 flags |= IORESOURCE_MEM_64; 3409 3410 /* entry too big, can't use */ 3411 if (!support_64 && max_offset_upper) 3412 goto out; 3413 3414 if (support_64) 3415 end += ((u64)max_offset_upper << 32); 3416 } 3417 3418 if (end < start) { 3419 pci_err(dev, "EA Entry crosses address boundary\n"); 3420 goto out; 3421 } 3422 3423 if (ent_size != ent_offset - offset) { 3424 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3425 ent_size, ent_offset - offset); 3426 goto out; 3427 } 3428 3429 res->name = pci_name(dev); 3430 res->start = start; 3431 res->end = end; 3432 res->flags = flags; 3433 3434 if (bei <= PCI_EA_BEI_BAR5) 3435 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3436 bei, res, prop); 3437 else if (bei == PCI_EA_BEI_ROM) 3438 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3439 res, prop); 3440 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3441 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3442 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3443 else 3444 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3445 bei, res, prop); 3446 3447 out: 3448 return offset + ent_size; 3449 } 3450 3451 /* Enhanced Allocation Initialization */ 3452 void pci_ea_init(struct pci_dev *dev) 3453 { 3454 int ea; 3455 u8 num_ent; 3456 int offset; 3457 int i; 3458 3459 /* find PCI EA capability in list */ 3460 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3461 if (!ea) 3462 return; 3463 3464 /* determine the number of entries */ 3465 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3466 &num_ent); 3467 num_ent &= PCI_EA_NUM_ENT_MASK; 3468 3469 offset = ea + PCI_EA_FIRST_ENT; 3470 3471 /* Skip DWORD 2 for type 1 functions */ 3472 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3473 offset += 4; 3474 3475 /* parse each EA entry */ 3476 for (i = 0; i < num_ent; ++i) 3477 offset = pci_ea_read(dev, offset); 3478 } 3479 3480 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3481 struct pci_cap_saved_state *new_cap) 3482 { 3483 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3484 } 3485 3486 /** 3487 * _pci_add_cap_save_buffer - allocate buffer for saving given 3488 * capability registers 3489 * @dev: the PCI device 3490 * @cap: the capability to allocate the buffer for 3491 * @extended: Standard or Extended capability ID 3492 * @size: requested size of the buffer 3493 */ 3494 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3495 bool extended, unsigned int size) 3496 { 3497 int pos; 3498 struct pci_cap_saved_state *save_state; 3499 3500 if (extended) 3501 pos = pci_find_ext_capability(dev, cap); 3502 else 3503 pos = pci_find_capability(dev, cap); 3504 3505 if (!pos) 3506 return 0; 3507 3508 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3509 if (!save_state) 3510 return -ENOMEM; 3511 3512 save_state->cap.cap_nr = cap; 3513 save_state->cap.cap_extended = extended; 3514 save_state->cap.size = size; 3515 pci_add_saved_cap(dev, save_state); 3516 3517 return 0; 3518 } 3519 3520 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3521 { 3522 return _pci_add_cap_save_buffer(dev, cap, false, size); 3523 } 3524 3525 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3526 { 3527 return _pci_add_cap_save_buffer(dev, cap, true, size); 3528 } 3529 3530 /** 3531 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3532 * @dev: the PCI device 3533 */ 3534 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3535 { 3536 int error; 3537 3538 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3539 PCI_EXP_SAVE_REGS * sizeof(u16)); 3540 if (error) 3541 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3542 3543 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3544 if (error) 3545 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3546 3547 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3548 2 * sizeof(u16)); 3549 if (error) 3550 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3551 3552 pci_allocate_vc_save_buffers(dev); 3553 } 3554 3555 void pci_free_cap_save_buffers(struct pci_dev *dev) 3556 { 3557 struct pci_cap_saved_state *tmp; 3558 struct hlist_node *n; 3559 3560 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3561 kfree(tmp); 3562 } 3563 3564 /** 3565 * pci_configure_ari - enable or disable ARI forwarding 3566 * @dev: the PCI device 3567 * 3568 * If @dev and its upstream bridge both support ARI, enable ARI in the 3569 * bridge. Otherwise, disable ARI in the bridge. 3570 */ 3571 void pci_configure_ari(struct pci_dev *dev) 3572 { 3573 u32 cap; 3574 struct pci_dev *bridge; 3575 3576 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3577 return; 3578 3579 bridge = dev->bus->self; 3580 if (!bridge) 3581 return; 3582 3583 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3584 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3585 return; 3586 3587 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3588 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3589 PCI_EXP_DEVCTL2_ARI); 3590 bridge->ari_enabled = 1; 3591 } else { 3592 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3593 PCI_EXP_DEVCTL2_ARI); 3594 bridge->ari_enabled = 0; 3595 } 3596 } 3597 3598 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3599 { 3600 int pos; 3601 u16 cap, ctrl; 3602 3603 pos = pdev->acs_cap; 3604 if (!pos) 3605 return false; 3606 3607 /* 3608 * Except for egress control, capabilities are either required 3609 * or only required if controllable. Features missing from the 3610 * capability field can therefore be assumed as hard-wired enabled. 3611 */ 3612 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3613 acs_flags &= (cap | PCI_ACS_EC); 3614 3615 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3616 return (ctrl & acs_flags) == acs_flags; 3617 } 3618 3619 /** 3620 * pci_acs_enabled - test ACS against required flags for a given device 3621 * @pdev: device to test 3622 * @acs_flags: required PCI ACS flags 3623 * 3624 * Return true if the device supports the provided flags. Automatically 3625 * filters out flags that are not implemented on multifunction devices. 3626 * 3627 * Note that this interface checks the effective ACS capabilities of the 3628 * device rather than the actual capabilities. For instance, most single 3629 * function endpoints are not required to support ACS because they have no 3630 * opportunity for peer-to-peer access. We therefore return 'true' 3631 * regardless of whether the device exposes an ACS capability. This makes 3632 * it much easier for callers of this function to ignore the actual type 3633 * or topology of the device when testing ACS support. 3634 */ 3635 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3636 { 3637 int ret; 3638 3639 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3640 if (ret >= 0) 3641 return ret > 0; 3642 3643 /* 3644 * Conventional PCI and PCI-X devices never support ACS, either 3645 * effectively or actually. The shared bus topology implies that 3646 * any device on the bus can receive or snoop DMA. 3647 */ 3648 if (!pci_is_pcie(pdev)) 3649 return false; 3650 3651 switch (pci_pcie_type(pdev)) { 3652 /* 3653 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3654 * but since their primary interface is PCI/X, we conservatively 3655 * handle them as we would a non-PCIe device. 3656 */ 3657 case PCI_EXP_TYPE_PCIE_BRIDGE: 3658 /* 3659 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3660 * applicable... must never implement an ACS Extended Capability...". 3661 * This seems arbitrary, but we take a conservative interpretation 3662 * of this statement. 3663 */ 3664 case PCI_EXP_TYPE_PCI_BRIDGE: 3665 case PCI_EXP_TYPE_RC_EC: 3666 return false; 3667 /* 3668 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3669 * implement ACS in order to indicate their peer-to-peer capabilities, 3670 * regardless of whether they are single- or multi-function devices. 3671 */ 3672 case PCI_EXP_TYPE_DOWNSTREAM: 3673 case PCI_EXP_TYPE_ROOT_PORT: 3674 return pci_acs_flags_enabled(pdev, acs_flags); 3675 /* 3676 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3677 * implemented by the remaining PCIe types to indicate peer-to-peer 3678 * capabilities, but only when they are part of a multifunction 3679 * device. The footnote for section 6.12 indicates the specific 3680 * PCIe types included here. 3681 */ 3682 case PCI_EXP_TYPE_ENDPOINT: 3683 case PCI_EXP_TYPE_UPSTREAM: 3684 case PCI_EXP_TYPE_LEG_END: 3685 case PCI_EXP_TYPE_RC_END: 3686 if (!pdev->multifunction) 3687 break; 3688 3689 return pci_acs_flags_enabled(pdev, acs_flags); 3690 } 3691 3692 /* 3693 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3694 * to single function devices with the exception of downstream ports. 3695 */ 3696 return true; 3697 } 3698 3699 /** 3700 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3701 * @start: starting downstream device 3702 * @end: ending upstream device or NULL to search to the root bus 3703 * @acs_flags: required flags 3704 * 3705 * Walk up a device tree from start to end testing PCI ACS support. If 3706 * any step along the way does not support the required flags, return false. 3707 */ 3708 bool pci_acs_path_enabled(struct pci_dev *start, 3709 struct pci_dev *end, u16 acs_flags) 3710 { 3711 struct pci_dev *pdev, *parent = start; 3712 3713 do { 3714 pdev = parent; 3715 3716 if (!pci_acs_enabled(pdev, acs_flags)) 3717 return false; 3718 3719 if (pci_is_root_bus(pdev->bus)) 3720 return (end == NULL); 3721 3722 parent = pdev->bus->self; 3723 } while (pdev != end); 3724 3725 return true; 3726 } 3727 3728 /** 3729 * pci_acs_init - Initialize ACS if hardware supports it 3730 * @dev: the PCI device 3731 */ 3732 void pci_acs_init(struct pci_dev *dev) 3733 { 3734 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3735 3736 /* 3737 * Attempt to enable ACS regardless of capability because some Root 3738 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3739 * the standard ACS capability but still support ACS via those 3740 * quirks. 3741 */ 3742 pci_enable_acs(dev); 3743 } 3744 3745 /** 3746 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3747 * @pdev: PCI device 3748 * @bar: BAR to find 3749 * 3750 * Helper to find the position of the ctrl register for a BAR. 3751 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3752 * Returns -ENOENT if no ctrl register for the BAR could be found. 3753 */ 3754 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3755 { 3756 unsigned int pos, nbars, i; 3757 u32 ctrl; 3758 3759 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3760 if (!pos) 3761 return -ENOTSUPP; 3762 3763 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3764 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3765 PCI_REBAR_CTRL_NBAR_SHIFT; 3766 3767 for (i = 0; i < nbars; i++, pos += 8) { 3768 int bar_idx; 3769 3770 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3771 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3772 if (bar_idx == bar) 3773 return pos; 3774 } 3775 3776 return -ENOENT; 3777 } 3778 3779 /** 3780 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3781 * @pdev: PCI device 3782 * @bar: BAR to query 3783 * 3784 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3785 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3786 */ 3787 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3788 { 3789 int pos; 3790 u32 cap; 3791 3792 pos = pci_rebar_find_pos(pdev, bar); 3793 if (pos < 0) 3794 return 0; 3795 3796 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3797 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3798 3799 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3800 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3801 bar == 0 && cap == 0x700) 3802 return 0x3f00; 3803 3804 return cap; 3805 } 3806 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3807 3808 /** 3809 * pci_rebar_get_current_size - get the current size of a BAR 3810 * @pdev: PCI device 3811 * @bar: BAR to set size to 3812 * 3813 * Read the size of a BAR from the resizable BAR config. 3814 * Returns size if found or negative error code. 3815 */ 3816 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3817 { 3818 int pos; 3819 u32 ctrl; 3820 3821 pos = pci_rebar_find_pos(pdev, bar); 3822 if (pos < 0) 3823 return pos; 3824 3825 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3826 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3827 } 3828 3829 /** 3830 * pci_rebar_set_size - set a new size for a BAR 3831 * @pdev: PCI device 3832 * @bar: BAR to set size to 3833 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3834 * 3835 * Set the new size of a BAR as defined in the spec. 3836 * Returns zero if resizing was successful, error code otherwise. 3837 */ 3838 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3839 { 3840 int pos; 3841 u32 ctrl; 3842 3843 pos = pci_rebar_find_pos(pdev, bar); 3844 if (pos < 0) 3845 return pos; 3846 3847 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3848 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3849 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3850 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3851 return 0; 3852 } 3853 3854 /** 3855 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3856 * @dev: the PCI device 3857 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3858 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3859 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3860 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3861 * 3862 * Return 0 if all upstream bridges support AtomicOp routing, egress 3863 * blocking is disabled on all upstream ports, and the root port supports 3864 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3865 * AtomicOp completion), or negative otherwise. 3866 */ 3867 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3868 { 3869 struct pci_bus *bus = dev->bus; 3870 struct pci_dev *bridge; 3871 u32 cap, ctl2; 3872 3873 /* 3874 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3875 * in Device Control 2 is reserved in VFs and the PF value applies 3876 * to all associated VFs. 3877 */ 3878 if (dev->is_virtfn) 3879 return -EINVAL; 3880 3881 if (!pci_is_pcie(dev)) 3882 return -EINVAL; 3883 3884 /* 3885 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3886 * AtomicOp requesters. For now, we only support endpoints as 3887 * requesters and root ports as completers. No endpoints as 3888 * completers, and no peer-to-peer. 3889 */ 3890 3891 switch (pci_pcie_type(dev)) { 3892 case PCI_EXP_TYPE_ENDPOINT: 3893 case PCI_EXP_TYPE_LEG_END: 3894 case PCI_EXP_TYPE_RC_END: 3895 break; 3896 default: 3897 return -EINVAL; 3898 } 3899 3900 while (bus->parent) { 3901 bridge = bus->self; 3902 3903 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3904 3905 switch (pci_pcie_type(bridge)) { 3906 /* Ensure switch ports support AtomicOp routing */ 3907 case PCI_EXP_TYPE_UPSTREAM: 3908 case PCI_EXP_TYPE_DOWNSTREAM: 3909 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3910 return -EINVAL; 3911 break; 3912 3913 /* Ensure root port supports all the sizes we care about */ 3914 case PCI_EXP_TYPE_ROOT_PORT: 3915 if ((cap & cap_mask) != cap_mask) 3916 return -EINVAL; 3917 break; 3918 } 3919 3920 /* Ensure upstream ports don't block AtomicOps on egress */ 3921 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3922 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3923 &ctl2); 3924 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3925 return -EINVAL; 3926 } 3927 3928 bus = bus->parent; 3929 } 3930 3931 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3932 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3933 return 0; 3934 } 3935 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3936 3937 /** 3938 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3939 * @dev: the PCI device 3940 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3941 * 3942 * Perform INTx swizzling for a device behind one level of bridge. This is 3943 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3944 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3945 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3946 * the PCI Express Base Specification, Revision 2.1) 3947 */ 3948 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3949 { 3950 int slot; 3951 3952 if (pci_ari_enabled(dev->bus)) 3953 slot = 0; 3954 else 3955 slot = PCI_SLOT(dev->devfn); 3956 3957 return (((pin - 1) + slot) % 4) + 1; 3958 } 3959 3960 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3961 { 3962 u8 pin; 3963 3964 pin = dev->pin; 3965 if (!pin) 3966 return -1; 3967 3968 while (!pci_is_root_bus(dev->bus)) { 3969 pin = pci_swizzle_interrupt_pin(dev, pin); 3970 dev = dev->bus->self; 3971 } 3972 *bridge = dev; 3973 return pin; 3974 } 3975 3976 /** 3977 * pci_common_swizzle - swizzle INTx all the way to root bridge 3978 * @dev: the PCI device 3979 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3980 * 3981 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3982 * bridges all the way up to a PCI root bus. 3983 */ 3984 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3985 { 3986 u8 pin = *pinp; 3987 3988 while (!pci_is_root_bus(dev->bus)) { 3989 pin = pci_swizzle_interrupt_pin(dev, pin); 3990 dev = dev->bus->self; 3991 } 3992 *pinp = pin; 3993 return PCI_SLOT(dev->devfn); 3994 } 3995 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3996 3997 /** 3998 * pci_release_region - Release a PCI bar 3999 * @pdev: PCI device whose resources were previously reserved by 4000 * pci_request_region() 4001 * @bar: BAR to release 4002 * 4003 * Releases the PCI I/O and memory resources previously reserved by a 4004 * successful call to pci_request_region(). Call this function only 4005 * after all use of the PCI regions has ceased. 4006 */ 4007 void pci_release_region(struct pci_dev *pdev, int bar) 4008 { 4009 struct pci_devres *dr; 4010 4011 if (pci_resource_len(pdev, bar) == 0) 4012 return; 4013 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 4014 release_region(pci_resource_start(pdev, bar), 4015 pci_resource_len(pdev, bar)); 4016 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 4017 release_mem_region(pci_resource_start(pdev, bar), 4018 pci_resource_len(pdev, bar)); 4019 4020 dr = find_pci_dr(pdev); 4021 if (dr) 4022 dr->region_mask &= ~(1 << bar); 4023 } 4024 EXPORT_SYMBOL(pci_release_region); 4025 4026 /** 4027 * __pci_request_region - Reserved PCI I/O and memory resource 4028 * @pdev: PCI device whose resources are to be reserved 4029 * @bar: BAR to be reserved 4030 * @res_name: Name to be associated with resource. 4031 * @exclusive: whether the region access is exclusive or not 4032 * 4033 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4034 * being reserved by owner @res_name. Do not access any 4035 * address inside the PCI regions unless this call returns 4036 * successfully. 4037 * 4038 * If @exclusive is set, then the region is marked so that userspace 4039 * is explicitly not allowed to map the resource via /dev/mem or 4040 * sysfs MMIO access. 4041 * 4042 * Returns 0 on success, or %EBUSY on error. A warning 4043 * message is also printed on failure. 4044 */ 4045 static int __pci_request_region(struct pci_dev *pdev, int bar, 4046 const char *res_name, int exclusive) 4047 { 4048 struct pci_devres *dr; 4049 4050 if (pci_resource_len(pdev, bar) == 0) 4051 return 0; 4052 4053 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4054 if (!request_region(pci_resource_start(pdev, bar), 4055 pci_resource_len(pdev, bar), res_name)) 4056 goto err_out; 4057 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4058 if (!__request_mem_region(pci_resource_start(pdev, bar), 4059 pci_resource_len(pdev, bar), res_name, 4060 exclusive)) 4061 goto err_out; 4062 } 4063 4064 dr = find_pci_dr(pdev); 4065 if (dr) 4066 dr->region_mask |= 1 << bar; 4067 4068 return 0; 4069 4070 err_out: 4071 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4072 &pdev->resource[bar]); 4073 return -EBUSY; 4074 } 4075 4076 /** 4077 * pci_request_region - Reserve PCI I/O and memory resource 4078 * @pdev: PCI device whose resources are to be reserved 4079 * @bar: BAR to be reserved 4080 * @res_name: Name to be associated with resource 4081 * 4082 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4083 * being reserved by owner @res_name. Do not access any 4084 * address inside the PCI regions unless this call returns 4085 * successfully. 4086 * 4087 * Returns 0 on success, or %EBUSY on error. A warning 4088 * message is also printed on failure. 4089 */ 4090 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4091 { 4092 return __pci_request_region(pdev, bar, res_name, 0); 4093 } 4094 EXPORT_SYMBOL(pci_request_region); 4095 4096 /** 4097 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4098 * @pdev: PCI device whose resources were previously reserved 4099 * @bars: Bitmask of BARs to be released 4100 * 4101 * Release selected PCI I/O and memory resources previously reserved. 4102 * Call this function only after all use of the PCI regions has ceased. 4103 */ 4104 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4105 { 4106 int i; 4107 4108 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4109 if (bars & (1 << i)) 4110 pci_release_region(pdev, i); 4111 } 4112 EXPORT_SYMBOL(pci_release_selected_regions); 4113 4114 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4115 const char *res_name, int excl) 4116 { 4117 int i; 4118 4119 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4120 if (bars & (1 << i)) 4121 if (__pci_request_region(pdev, i, res_name, excl)) 4122 goto err_out; 4123 return 0; 4124 4125 err_out: 4126 while (--i >= 0) 4127 if (bars & (1 << i)) 4128 pci_release_region(pdev, i); 4129 4130 return -EBUSY; 4131 } 4132 4133 4134 /** 4135 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4136 * @pdev: PCI device whose resources are to be reserved 4137 * @bars: Bitmask of BARs to be requested 4138 * @res_name: Name to be associated with resource 4139 */ 4140 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4141 const char *res_name) 4142 { 4143 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4144 } 4145 EXPORT_SYMBOL(pci_request_selected_regions); 4146 4147 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4148 const char *res_name) 4149 { 4150 return __pci_request_selected_regions(pdev, bars, res_name, 4151 IORESOURCE_EXCLUSIVE); 4152 } 4153 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4154 4155 /** 4156 * pci_release_regions - Release reserved PCI I/O and memory resources 4157 * @pdev: PCI device whose resources were previously reserved by 4158 * pci_request_regions() 4159 * 4160 * Releases all PCI I/O and memory resources previously reserved by a 4161 * successful call to pci_request_regions(). Call this function only 4162 * after all use of the PCI regions has ceased. 4163 */ 4164 4165 void pci_release_regions(struct pci_dev *pdev) 4166 { 4167 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4168 } 4169 EXPORT_SYMBOL(pci_release_regions); 4170 4171 /** 4172 * pci_request_regions - Reserve PCI I/O and memory resources 4173 * @pdev: PCI device whose resources are to be reserved 4174 * @res_name: Name to be associated with resource. 4175 * 4176 * Mark all PCI regions associated with PCI device @pdev as 4177 * being reserved by owner @res_name. Do not access any 4178 * address inside the PCI regions unless this call returns 4179 * successfully. 4180 * 4181 * Returns 0 on success, or %EBUSY on error. A warning 4182 * message is also printed on failure. 4183 */ 4184 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4185 { 4186 return pci_request_selected_regions(pdev, 4187 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4188 } 4189 EXPORT_SYMBOL(pci_request_regions); 4190 4191 /** 4192 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4193 * @pdev: PCI device whose resources are to be reserved 4194 * @res_name: Name to be associated with resource. 4195 * 4196 * Mark all PCI regions associated with PCI device @pdev as being reserved 4197 * by owner @res_name. Do not access any address inside the PCI regions 4198 * unless this call returns successfully. 4199 * 4200 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4201 * and the sysfs MMIO access will not be allowed. 4202 * 4203 * Returns 0 on success, or %EBUSY on error. A warning message is also 4204 * printed on failure. 4205 */ 4206 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4207 { 4208 return pci_request_selected_regions_exclusive(pdev, 4209 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4210 } 4211 EXPORT_SYMBOL(pci_request_regions_exclusive); 4212 4213 /* 4214 * Record the PCI IO range (expressed as CPU physical address + size). 4215 * Return a negative value if an error has occurred, zero otherwise 4216 */ 4217 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4218 resource_size_t size) 4219 { 4220 int ret = 0; 4221 #ifdef PCI_IOBASE 4222 struct logic_pio_hwaddr *range; 4223 4224 if (!size || addr + size < addr) 4225 return -EINVAL; 4226 4227 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4228 if (!range) 4229 return -ENOMEM; 4230 4231 range->fwnode = fwnode; 4232 range->size = size; 4233 range->hw_start = addr; 4234 range->flags = LOGIC_PIO_CPU_MMIO; 4235 4236 ret = logic_pio_register_range(range); 4237 if (ret) 4238 kfree(range); 4239 4240 /* Ignore duplicates due to deferred probing */ 4241 if (ret == -EEXIST) 4242 ret = 0; 4243 #endif 4244 4245 return ret; 4246 } 4247 4248 phys_addr_t pci_pio_to_address(unsigned long pio) 4249 { 4250 #ifdef PCI_IOBASE 4251 if (pio < MMIO_UPPER_LIMIT) 4252 return logic_pio_to_hwaddr(pio); 4253 #endif 4254 4255 return (phys_addr_t) OF_BAD_ADDR; 4256 } 4257 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4258 4259 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4260 { 4261 #ifdef PCI_IOBASE 4262 return logic_pio_trans_cpuaddr(address); 4263 #else 4264 if (address > IO_SPACE_LIMIT) 4265 return (unsigned long)-1; 4266 4267 return (unsigned long) address; 4268 #endif 4269 } 4270 4271 /** 4272 * pci_remap_iospace - Remap the memory mapped I/O space 4273 * @res: Resource describing the I/O space 4274 * @phys_addr: physical address of range to be mapped 4275 * 4276 * Remap the memory mapped I/O space described by the @res and the CPU 4277 * physical address @phys_addr into virtual address space. Only 4278 * architectures that have memory mapped IO functions defined (and the 4279 * PCI_IOBASE value defined) should call this function. 4280 */ 4281 #ifndef pci_remap_iospace 4282 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4283 { 4284 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4285 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4286 4287 if (!(res->flags & IORESOURCE_IO)) 4288 return -EINVAL; 4289 4290 if (res->end > IO_SPACE_LIMIT) 4291 return -EINVAL; 4292 4293 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4294 pgprot_device(PAGE_KERNEL)); 4295 #else 4296 /* 4297 * This architecture does not have memory mapped I/O space, 4298 * so this function should never be called 4299 */ 4300 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4301 return -ENODEV; 4302 #endif 4303 } 4304 EXPORT_SYMBOL(pci_remap_iospace); 4305 #endif 4306 4307 /** 4308 * pci_unmap_iospace - Unmap the memory mapped I/O space 4309 * @res: resource to be unmapped 4310 * 4311 * Unmap the CPU virtual address @res from virtual address space. Only 4312 * architectures that have memory mapped IO functions defined (and the 4313 * PCI_IOBASE value defined) should call this function. 4314 */ 4315 void pci_unmap_iospace(struct resource *res) 4316 { 4317 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4318 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4319 4320 vunmap_range(vaddr, vaddr + resource_size(res)); 4321 #endif 4322 } 4323 EXPORT_SYMBOL(pci_unmap_iospace); 4324 4325 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4326 { 4327 struct resource **res = ptr; 4328 4329 pci_unmap_iospace(*res); 4330 } 4331 4332 /** 4333 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4334 * @dev: Generic device to remap IO address for 4335 * @res: Resource describing the I/O space 4336 * @phys_addr: physical address of range to be mapped 4337 * 4338 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4339 * detach. 4340 */ 4341 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4342 phys_addr_t phys_addr) 4343 { 4344 const struct resource **ptr; 4345 int error; 4346 4347 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4348 if (!ptr) 4349 return -ENOMEM; 4350 4351 error = pci_remap_iospace(res, phys_addr); 4352 if (error) { 4353 devres_free(ptr); 4354 } else { 4355 *ptr = res; 4356 devres_add(dev, ptr); 4357 } 4358 4359 return error; 4360 } 4361 EXPORT_SYMBOL(devm_pci_remap_iospace); 4362 4363 /** 4364 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4365 * @dev: Generic device to remap IO address for 4366 * @offset: Resource address to map 4367 * @size: Size of map 4368 * 4369 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4370 * detach. 4371 */ 4372 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4373 resource_size_t offset, 4374 resource_size_t size) 4375 { 4376 void __iomem **ptr, *addr; 4377 4378 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4379 if (!ptr) 4380 return NULL; 4381 4382 addr = pci_remap_cfgspace(offset, size); 4383 if (addr) { 4384 *ptr = addr; 4385 devres_add(dev, ptr); 4386 } else 4387 devres_free(ptr); 4388 4389 return addr; 4390 } 4391 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4392 4393 /** 4394 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4395 * @dev: generic device to handle the resource for 4396 * @res: configuration space resource to be handled 4397 * 4398 * Checks that a resource is a valid memory region, requests the memory 4399 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4400 * proper PCI configuration space memory attributes are guaranteed. 4401 * 4402 * All operations are managed and will be undone on driver detach. 4403 * 4404 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4405 * on failure. Usage example:: 4406 * 4407 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4408 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4409 * if (IS_ERR(base)) 4410 * return PTR_ERR(base); 4411 */ 4412 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4413 struct resource *res) 4414 { 4415 resource_size_t size; 4416 const char *name; 4417 void __iomem *dest_ptr; 4418 4419 BUG_ON(!dev); 4420 4421 if (!res || resource_type(res) != IORESOURCE_MEM) { 4422 dev_err(dev, "invalid resource\n"); 4423 return IOMEM_ERR_PTR(-EINVAL); 4424 } 4425 4426 size = resource_size(res); 4427 4428 if (res->name) 4429 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4430 res->name); 4431 else 4432 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4433 if (!name) 4434 return IOMEM_ERR_PTR(-ENOMEM); 4435 4436 if (!devm_request_mem_region(dev, res->start, size, name)) { 4437 dev_err(dev, "can't request region for resource %pR\n", res); 4438 return IOMEM_ERR_PTR(-EBUSY); 4439 } 4440 4441 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4442 if (!dest_ptr) { 4443 dev_err(dev, "ioremap failed for resource %pR\n", res); 4444 devm_release_mem_region(dev, res->start, size); 4445 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4446 } 4447 4448 return dest_ptr; 4449 } 4450 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4451 4452 static void __pci_set_master(struct pci_dev *dev, bool enable) 4453 { 4454 u16 old_cmd, cmd; 4455 4456 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4457 if (enable) 4458 cmd = old_cmd | PCI_COMMAND_MASTER; 4459 else 4460 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4461 if (cmd != old_cmd) { 4462 pci_dbg(dev, "%s bus mastering\n", 4463 enable ? "enabling" : "disabling"); 4464 pci_write_config_word(dev, PCI_COMMAND, cmd); 4465 } 4466 dev->is_busmaster = enable; 4467 } 4468 4469 /** 4470 * pcibios_setup - process "pci=" kernel boot arguments 4471 * @str: string used to pass in "pci=" kernel boot arguments 4472 * 4473 * Process kernel boot arguments. This is the default implementation. 4474 * Architecture specific implementations can override this as necessary. 4475 */ 4476 char * __weak __init pcibios_setup(char *str) 4477 { 4478 return str; 4479 } 4480 4481 /** 4482 * pcibios_set_master - enable PCI bus-mastering for device dev 4483 * @dev: the PCI device to enable 4484 * 4485 * Enables PCI bus-mastering for the device. This is the default 4486 * implementation. Architecture specific implementations can override 4487 * this if necessary. 4488 */ 4489 void __weak pcibios_set_master(struct pci_dev *dev) 4490 { 4491 u8 lat; 4492 4493 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4494 if (pci_is_pcie(dev)) 4495 return; 4496 4497 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4498 if (lat < 16) 4499 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4500 else if (lat > pcibios_max_latency) 4501 lat = pcibios_max_latency; 4502 else 4503 return; 4504 4505 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4506 } 4507 4508 /** 4509 * pci_set_master - enables bus-mastering for device dev 4510 * @dev: the PCI device to enable 4511 * 4512 * Enables bus-mastering on the device and calls pcibios_set_master() 4513 * to do the needed arch specific settings. 4514 */ 4515 void pci_set_master(struct pci_dev *dev) 4516 { 4517 __pci_set_master(dev, true); 4518 pcibios_set_master(dev); 4519 } 4520 EXPORT_SYMBOL(pci_set_master); 4521 4522 /** 4523 * pci_clear_master - disables bus-mastering for device dev 4524 * @dev: the PCI device to disable 4525 */ 4526 void pci_clear_master(struct pci_dev *dev) 4527 { 4528 __pci_set_master(dev, false); 4529 } 4530 EXPORT_SYMBOL(pci_clear_master); 4531 4532 /** 4533 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4534 * @dev: the PCI device for which MWI is to be enabled 4535 * 4536 * Helper function for pci_set_mwi. 4537 * Originally copied from drivers/net/acenic.c. 4538 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4539 * 4540 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4541 */ 4542 int pci_set_cacheline_size(struct pci_dev *dev) 4543 { 4544 u8 cacheline_size; 4545 4546 if (!pci_cache_line_size) 4547 return -EINVAL; 4548 4549 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4550 equal to or multiple of the right value. */ 4551 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4552 if (cacheline_size >= pci_cache_line_size && 4553 (cacheline_size % pci_cache_line_size) == 0) 4554 return 0; 4555 4556 /* Write the correct value. */ 4557 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4558 /* Read it back. */ 4559 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4560 if (cacheline_size == pci_cache_line_size) 4561 return 0; 4562 4563 pci_dbg(dev, "cache line size of %d is not supported\n", 4564 pci_cache_line_size << 2); 4565 4566 return -EINVAL; 4567 } 4568 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4569 4570 /** 4571 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4572 * @dev: the PCI device for which MWI is enabled 4573 * 4574 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4575 * 4576 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4577 */ 4578 int pci_set_mwi(struct pci_dev *dev) 4579 { 4580 #ifdef PCI_DISABLE_MWI 4581 return 0; 4582 #else 4583 int rc; 4584 u16 cmd; 4585 4586 rc = pci_set_cacheline_size(dev); 4587 if (rc) 4588 return rc; 4589 4590 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4591 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4592 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4593 cmd |= PCI_COMMAND_INVALIDATE; 4594 pci_write_config_word(dev, PCI_COMMAND, cmd); 4595 } 4596 return 0; 4597 #endif 4598 } 4599 EXPORT_SYMBOL(pci_set_mwi); 4600 4601 /** 4602 * pcim_set_mwi - a device-managed pci_set_mwi() 4603 * @dev: the PCI device for which MWI is enabled 4604 * 4605 * Managed pci_set_mwi(). 4606 * 4607 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4608 */ 4609 int pcim_set_mwi(struct pci_dev *dev) 4610 { 4611 struct pci_devres *dr; 4612 4613 dr = find_pci_dr(dev); 4614 if (!dr) 4615 return -ENOMEM; 4616 4617 dr->mwi = 1; 4618 return pci_set_mwi(dev); 4619 } 4620 EXPORT_SYMBOL(pcim_set_mwi); 4621 4622 /** 4623 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4624 * @dev: the PCI device for which MWI is enabled 4625 * 4626 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4627 * Callers are not required to check the return value. 4628 * 4629 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4630 */ 4631 int pci_try_set_mwi(struct pci_dev *dev) 4632 { 4633 #ifdef PCI_DISABLE_MWI 4634 return 0; 4635 #else 4636 return pci_set_mwi(dev); 4637 #endif 4638 } 4639 EXPORT_SYMBOL(pci_try_set_mwi); 4640 4641 /** 4642 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4643 * @dev: the PCI device to disable 4644 * 4645 * Disables PCI Memory-Write-Invalidate transaction on the device 4646 */ 4647 void pci_clear_mwi(struct pci_dev *dev) 4648 { 4649 #ifndef PCI_DISABLE_MWI 4650 u16 cmd; 4651 4652 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4653 if (cmd & PCI_COMMAND_INVALIDATE) { 4654 cmd &= ~PCI_COMMAND_INVALIDATE; 4655 pci_write_config_word(dev, PCI_COMMAND, cmd); 4656 } 4657 #endif 4658 } 4659 EXPORT_SYMBOL(pci_clear_mwi); 4660 4661 /** 4662 * pci_disable_parity - disable parity checking for device 4663 * @dev: the PCI device to operate on 4664 * 4665 * Disable parity checking for device @dev 4666 */ 4667 void pci_disable_parity(struct pci_dev *dev) 4668 { 4669 u16 cmd; 4670 4671 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4672 if (cmd & PCI_COMMAND_PARITY) { 4673 cmd &= ~PCI_COMMAND_PARITY; 4674 pci_write_config_word(dev, PCI_COMMAND, cmd); 4675 } 4676 } 4677 4678 /** 4679 * pci_intx - enables/disables PCI INTx for device dev 4680 * @pdev: the PCI device to operate on 4681 * @enable: boolean: whether to enable or disable PCI INTx 4682 * 4683 * Enables/disables PCI INTx for device @pdev 4684 */ 4685 void pci_intx(struct pci_dev *pdev, int enable) 4686 { 4687 u16 pci_command, new; 4688 4689 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4690 4691 if (enable) 4692 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4693 else 4694 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4695 4696 if (new != pci_command) { 4697 struct pci_devres *dr; 4698 4699 pci_write_config_word(pdev, PCI_COMMAND, new); 4700 4701 dr = find_pci_dr(pdev); 4702 if (dr && !dr->restore_intx) { 4703 dr->restore_intx = 1; 4704 dr->orig_intx = !enable; 4705 } 4706 } 4707 } 4708 EXPORT_SYMBOL_GPL(pci_intx); 4709 4710 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4711 { 4712 struct pci_bus *bus = dev->bus; 4713 bool mask_updated = true; 4714 u32 cmd_status_dword; 4715 u16 origcmd, newcmd; 4716 unsigned long flags; 4717 bool irq_pending; 4718 4719 /* 4720 * We do a single dword read to retrieve both command and status. 4721 * Document assumptions that make this possible. 4722 */ 4723 BUILD_BUG_ON(PCI_COMMAND % 4); 4724 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4725 4726 raw_spin_lock_irqsave(&pci_lock, flags); 4727 4728 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4729 4730 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4731 4732 /* 4733 * Check interrupt status register to see whether our device 4734 * triggered the interrupt (when masking) or the next IRQ is 4735 * already pending (when unmasking). 4736 */ 4737 if (mask != irq_pending) { 4738 mask_updated = false; 4739 goto done; 4740 } 4741 4742 origcmd = cmd_status_dword; 4743 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4744 if (mask) 4745 newcmd |= PCI_COMMAND_INTX_DISABLE; 4746 if (newcmd != origcmd) 4747 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4748 4749 done: 4750 raw_spin_unlock_irqrestore(&pci_lock, flags); 4751 4752 return mask_updated; 4753 } 4754 4755 /** 4756 * pci_check_and_mask_intx - mask INTx on pending interrupt 4757 * @dev: the PCI device to operate on 4758 * 4759 * Check if the device dev has its INTx line asserted, mask it and return 4760 * true in that case. False is returned if no interrupt was pending. 4761 */ 4762 bool pci_check_and_mask_intx(struct pci_dev *dev) 4763 { 4764 return pci_check_and_set_intx_mask(dev, true); 4765 } 4766 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4767 4768 /** 4769 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4770 * @dev: the PCI device to operate on 4771 * 4772 * Check if the device dev has its INTx line asserted, unmask it if not and 4773 * return true. False is returned and the mask remains active if there was 4774 * still an interrupt pending. 4775 */ 4776 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4777 { 4778 return pci_check_and_set_intx_mask(dev, false); 4779 } 4780 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4781 4782 /** 4783 * pci_wait_for_pending_transaction - wait for pending transaction 4784 * @dev: the PCI device to operate on 4785 * 4786 * Return 0 if transaction is pending 1 otherwise. 4787 */ 4788 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4789 { 4790 if (!pci_is_pcie(dev)) 4791 return 1; 4792 4793 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4794 PCI_EXP_DEVSTA_TRPND); 4795 } 4796 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4797 4798 /** 4799 * pcie_flr - initiate a PCIe function level reset 4800 * @dev: device to reset 4801 * 4802 * Initiate a function level reset unconditionally on @dev without 4803 * checking any flags and DEVCAP 4804 */ 4805 int pcie_flr(struct pci_dev *dev) 4806 { 4807 if (!pci_wait_for_pending_transaction(dev)) 4808 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4809 4810 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4811 4812 if (dev->imm_ready) 4813 return 0; 4814 4815 /* 4816 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4817 * 100ms, but may silently discard requests while the FLR is in 4818 * progress. Wait 100ms before trying to access the device. 4819 */ 4820 msleep(100); 4821 4822 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4823 } 4824 EXPORT_SYMBOL_GPL(pcie_flr); 4825 4826 /** 4827 * pcie_reset_flr - initiate a PCIe function level reset 4828 * @dev: device to reset 4829 * @probe: if true, return 0 if device can be reset this way 4830 * 4831 * Initiate a function level reset on @dev. 4832 */ 4833 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4834 { 4835 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4836 return -ENOTTY; 4837 4838 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4839 return -ENOTTY; 4840 4841 if (probe) 4842 return 0; 4843 4844 return pcie_flr(dev); 4845 } 4846 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4847 4848 static int pci_af_flr(struct pci_dev *dev, bool probe) 4849 { 4850 int pos; 4851 u8 cap; 4852 4853 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4854 if (!pos) 4855 return -ENOTTY; 4856 4857 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4858 return -ENOTTY; 4859 4860 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4861 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4862 return -ENOTTY; 4863 4864 if (probe) 4865 return 0; 4866 4867 /* 4868 * Wait for Transaction Pending bit to clear. A word-aligned test 4869 * is used, so we use the control offset rather than status and shift 4870 * the test bit to match. 4871 */ 4872 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4873 PCI_AF_STATUS_TP << 8)) 4874 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4875 4876 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4877 4878 if (dev->imm_ready) 4879 return 0; 4880 4881 /* 4882 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4883 * updated 27 July 2006; a device must complete an FLR within 4884 * 100ms, but may silently discard requests while the FLR is in 4885 * progress. Wait 100ms before trying to access the device. 4886 */ 4887 msleep(100); 4888 4889 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4890 } 4891 4892 /** 4893 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4894 * @dev: Device to reset. 4895 * @probe: if true, return 0 if the device can be reset this way. 4896 * 4897 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4898 * unset, it will be reinitialized internally when going from PCI_D3hot to 4899 * PCI_D0. If that's the case and the device is not in a low-power state 4900 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4901 * 4902 * NOTE: This causes the caller to sleep for twice the device power transition 4903 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4904 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4905 * Moreover, only devices in D0 can be reset by this function. 4906 */ 4907 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4908 { 4909 u16 csr; 4910 4911 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4912 return -ENOTTY; 4913 4914 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4915 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4916 return -ENOTTY; 4917 4918 if (probe) 4919 return 0; 4920 4921 if (dev->current_state != PCI_D0) 4922 return -EINVAL; 4923 4924 csr &= ~PCI_PM_CTRL_STATE_MASK; 4925 csr |= PCI_D3hot; 4926 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4927 pci_dev_d3_sleep(dev); 4928 4929 csr &= ~PCI_PM_CTRL_STATE_MASK; 4930 csr |= PCI_D0; 4931 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4932 pci_dev_d3_sleep(dev); 4933 4934 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4935 } 4936 4937 /** 4938 * pcie_wait_for_link_status - Wait for link status change 4939 * @pdev: Device whose link to wait for. 4940 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4941 * @active: Waiting for active or inactive? 4942 * 4943 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4944 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4945 */ 4946 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4947 bool use_lt, bool active) 4948 { 4949 u16 lnksta_mask, lnksta_match; 4950 unsigned long end_jiffies; 4951 u16 lnksta; 4952 4953 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4954 lnksta_match = active ? lnksta_mask : 0; 4955 4956 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4957 do { 4958 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4959 if ((lnksta & lnksta_mask) == lnksta_match) 4960 return 0; 4961 msleep(1); 4962 } while (time_before(jiffies, end_jiffies)); 4963 4964 return -ETIMEDOUT; 4965 } 4966 4967 /** 4968 * pcie_retrain_link - Request a link retrain and wait for it to complete 4969 * @pdev: Device whose link to retrain. 4970 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4971 * 4972 * Retrain completion status is retrieved from the Link Status Register 4973 * according to @use_lt. It is not verified whether the use of the DLLLA 4974 * bit is valid. 4975 * 4976 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4977 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4978 */ 4979 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4980 { 4981 int rc; 4982 4983 /* 4984 * Ensure the updated LNKCTL parameters are used during link 4985 * training by checking that there is no ongoing link training to 4986 * avoid LTSSM race as recommended in Implementation Note at the 4987 * end of PCIe r6.0.1 sec 7.5.3.7. 4988 */ 4989 rc = pcie_wait_for_link_status(pdev, true, false); 4990 if (rc) 4991 return rc; 4992 4993 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4994 if (pdev->clear_retrain_link) { 4995 /* 4996 * Due to an erratum in some devices the Retrain Link bit 4997 * needs to be cleared again manually to allow the link 4998 * training to succeed. 4999 */ 5000 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 5001 } 5002 5003 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 5004 } 5005 5006 /** 5007 * pcie_wait_for_link_delay - Wait until link is active or inactive 5008 * @pdev: Bridge device 5009 * @active: waiting for active or inactive? 5010 * @delay: Delay to wait after link has become active (in ms) 5011 * 5012 * Use this to wait till link becomes active or inactive. 5013 */ 5014 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 5015 int delay) 5016 { 5017 int rc; 5018 5019 /* 5020 * Some controllers might not implement link active reporting. In this 5021 * case, we wait for 1000 ms + any delay requested by the caller. 5022 */ 5023 if (!pdev->link_active_reporting) { 5024 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 5025 return true; 5026 } 5027 5028 /* 5029 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 5030 * after which we should expect an link active if the reset was 5031 * successful. If so, software must wait a minimum 100ms before sending 5032 * configuration requests to devices downstream this port. 5033 * 5034 * If the link fails to activate, either the device was physically 5035 * removed or the link is permanently failed. 5036 */ 5037 if (active) 5038 msleep(20); 5039 rc = pcie_wait_for_link_status(pdev, false, active); 5040 if (active) { 5041 if (rc) 5042 rc = pcie_failed_link_retrain(pdev); 5043 if (rc) 5044 return false; 5045 5046 msleep(delay); 5047 return true; 5048 } 5049 5050 if (rc) 5051 return false; 5052 5053 return true; 5054 } 5055 5056 /** 5057 * pcie_wait_for_link - Wait until link is active or inactive 5058 * @pdev: Bridge device 5059 * @active: waiting for active or inactive? 5060 * 5061 * Use this to wait till link becomes active or inactive. 5062 */ 5063 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5064 { 5065 return pcie_wait_for_link_delay(pdev, active, 100); 5066 } 5067 5068 /* 5069 * Find maximum D3cold delay required by all the devices on the bus. The 5070 * spec says 100 ms, but firmware can lower it and we allow drivers to 5071 * increase it as well. 5072 * 5073 * Called with @pci_bus_sem locked for reading. 5074 */ 5075 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5076 { 5077 const struct pci_dev *pdev; 5078 int min_delay = 100; 5079 int max_delay = 0; 5080 5081 list_for_each_entry(pdev, &bus->devices, bus_list) { 5082 if (pdev->d3cold_delay < min_delay) 5083 min_delay = pdev->d3cold_delay; 5084 if (pdev->d3cold_delay > max_delay) 5085 max_delay = pdev->d3cold_delay; 5086 } 5087 5088 return max(min_delay, max_delay); 5089 } 5090 5091 /** 5092 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5093 * @dev: PCI bridge 5094 * @reset_type: reset type in human-readable form 5095 * 5096 * Handle necessary delays before access to the devices on the secondary 5097 * side of the bridge are permitted after D3cold to D0 transition 5098 * or Conventional Reset. 5099 * 5100 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5101 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5102 * 4.3.2. 5103 * 5104 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5105 * failed to become accessible. 5106 */ 5107 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5108 { 5109 struct pci_dev *child; 5110 int delay; 5111 5112 if (pci_dev_is_disconnected(dev)) 5113 return 0; 5114 5115 if (!pci_is_bridge(dev)) 5116 return 0; 5117 5118 down_read(&pci_bus_sem); 5119 5120 /* 5121 * We only deal with devices that are present currently on the bus. 5122 * For any hot-added devices the access delay is handled in pciehp 5123 * board_added(). In case of ACPI hotplug the firmware is expected 5124 * to configure the devices before OS is notified. 5125 */ 5126 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5127 up_read(&pci_bus_sem); 5128 return 0; 5129 } 5130 5131 /* Take d3cold_delay requirements into account */ 5132 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5133 if (!delay) { 5134 up_read(&pci_bus_sem); 5135 return 0; 5136 } 5137 5138 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5139 bus_list); 5140 up_read(&pci_bus_sem); 5141 5142 /* 5143 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5144 * accessing the device after reset (that is 1000 ms + 100 ms). 5145 */ 5146 if (!pci_is_pcie(dev)) { 5147 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5148 msleep(1000 + delay); 5149 return 0; 5150 } 5151 5152 /* 5153 * For PCIe downstream and root ports that do not support speeds 5154 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5155 * speeds (gen3) we need to wait first for the data link layer to 5156 * become active. 5157 * 5158 * However, 100 ms is the minimum and the PCIe spec says the 5159 * software must allow at least 1s before it can determine that the 5160 * device that did not respond is a broken device. Also device can 5161 * take longer than that to respond if it indicates so through Request 5162 * Retry Status completions. 5163 * 5164 * Therefore we wait for 100 ms and check for the device presence 5165 * until the timeout expires. 5166 */ 5167 if (!pcie_downstream_port(dev)) 5168 return 0; 5169 5170 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5171 u16 status; 5172 5173 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5174 msleep(delay); 5175 5176 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5177 return 0; 5178 5179 /* 5180 * If the port supports active link reporting we now check 5181 * whether the link is active and if not bail out early with 5182 * the assumption that the device is not present anymore. 5183 */ 5184 if (!dev->link_active_reporting) 5185 return -ENOTTY; 5186 5187 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5188 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5189 return -ENOTTY; 5190 5191 return pci_dev_wait(child, reset_type, 5192 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5193 } 5194 5195 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5196 delay); 5197 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5198 /* Did not train, no need to wait any further */ 5199 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5200 return -ENOTTY; 5201 } 5202 5203 return pci_dev_wait(child, reset_type, 5204 PCIE_RESET_READY_POLL_MS - delay); 5205 } 5206 5207 void pci_reset_secondary_bus(struct pci_dev *dev) 5208 { 5209 u16 ctrl; 5210 5211 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5212 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5213 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5214 5215 /* 5216 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5217 * this to 2ms to ensure that we meet the minimum requirement. 5218 */ 5219 msleep(2); 5220 5221 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5222 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5223 } 5224 5225 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5226 { 5227 pci_reset_secondary_bus(dev); 5228 } 5229 5230 /** 5231 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5232 * @dev: Bridge device 5233 * 5234 * Use the bridge control register to assert reset on the secondary bus. 5235 * Devices on the secondary bus are left in power-on state. 5236 */ 5237 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5238 { 5239 pcibios_reset_secondary_bus(dev); 5240 5241 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5242 } 5243 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5244 5245 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5246 { 5247 struct pci_dev *pdev; 5248 5249 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5250 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5251 return -ENOTTY; 5252 5253 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5254 if (pdev != dev) 5255 return -ENOTTY; 5256 5257 if (probe) 5258 return 0; 5259 5260 return pci_bridge_secondary_bus_reset(dev->bus->self); 5261 } 5262 5263 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5264 { 5265 int rc = -ENOTTY; 5266 5267 if (!hotplug || !try_module_get(hotplug->owner)) 5268 return rc; 5269 5270 if (hotplug->ops->reset_slot) 5271 rc = hotplug->ops->reset_slot(hotplug, probe); 5272 5273 module_put(hotplug->owner); 5274 5275 return rc; 5276 } 5277 5278 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5279 { 5280 if (dev->multifunction || dev->subordinate || !dev->slot || 5281 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5282 return -ENOTTY; 5283 5284 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5285 } 5286 5287 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5288 { 5289 int rc; 5290 5291 rc = pci_dev_reset_slot_function(dev, probe); 5292 if (rc != -ENOTTY) 5293 return rc; 5294 return pci_parent_bus_reset(dev, probe); 5295 } 5296 5297 void pci_dev_lock(struct pci_dev *dev) 5298 { 5299 /* block PM suspend, driver probe, etc. */ 5300 device_lock(&dev->dev); 5301 pci_cfg_access_lock(dev); 5302 } 5303 EXPORT_SYMBOL_GPL(pci_dev_lock); 5304 5305 /* Return 1 on successful lock, 0 on contention */ 5306 int pci_dev_trylock(struct pci_dev *dev) 5307 { 5308 if (device_trylock(&dev->dev)) { 5309 if (pci_cfg_access_trylock(dev)) 5310 return 1; 5311 device_unlock(&dev->dev); 5312 } 5313 5314 return 0; 5315 } 5316 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5317 5318 void pci_dev_unlock(struct pci_dev *dev) 5319 { 5320 pci_cfg_access_unlock(dev); 5321 device_unlock(&dev->dev); 5322 } 5323 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5324 5325 static void pci_dev_save_and_disable(struct pci_dev *dev) 5326 { 5327 const struct pci_error_handlers *err_handler = 5328 dev->driver ? dev->driver->err_handler : NULL; 5329 5330 /* 5331 * dev->driver->err_handler->reset_prepare() is protected against 5332 * races with ->remove() by the device lock, which must be held by 5333 * the caller. 5334 */ 5335 if (err_handler && err_handler->reset_prepare) 5336 err_handler->reset_prepare(dev); 5337 5338 /* 5339 * Wake-up device prior to save. PM registers default to D0 after 5340 * reset and a simple register restore doesn't reliably return 5341 * to a non-D0 state anyway. 5342 */ 5343 pci_set_power_state(dev, PCI_D0); 5344 5345 pci_save_state(dev); 5346 /* 5347 * Disable the device by clearing the Command register, except for 5348 * INTx-disable which is set. This not only disables MMIO and I/O port 5349 * BARs, but also prevents the device from being Bus Master, preventing 5350 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5351 * compliant devices, INTx-disable prevents legacy interrupts. 5352 */ 5353 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5354 } 5355 5356 static void pci_dev_restore(struct pci_dev *dev) 5357 { 5358 const struct pci_error_handlers *err_handler = 5359 dev->driver ? dev->driver->err_handler : NULL; 5360 5361 pci_restore_state(dev); 5362 5363 /* 5364 * dev->driver->err_handler->reset_done() is protected against 5365 * races with ->remove() by the device lock, which must be held by 5366 * the caller. 5367 */ 5368 if (err_handler && err_handler->reset_done) 5369 err_handler->reset_done(dev); 5370 } 5371 5372 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5373 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5374 { }, 5375 { pci_dev_specific_reset, .name = "device_specific" }, 5376 { pci_dev_acpi_reset, .name = "acpi" }, 5377 { pcie_reset_flr, .name = "flr" }, 5378 { pci_af_flr, .name = "af_flr" }, 5379 { pci_pm_reset, .name = "pm" }, 5380 { pci_reset_bus_function, .name = "bus" }, 5381 }; 5382 5383 static ssize_t reset_method_show(struct device *dev, 5384 struct device_attribute *attr, char *buf) 5385 { 5386 struct pci_dev *pdev = to_pci_dev(dev); 5387 ssize_t len = 0; 5388 int i, m; 5389 5390 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5391 m = pdev->reset_methods[i]; 5392 if (!m) 5393 break; 5394 5395 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5396 pci_reset_fn_methods[m].name); 5397 } 5398 5399 if (len) 5400 len += sysfs_emit_at(buf, len, "\n"); 5401 5402 return len; 5403 } 5404 5405 static int reset_method_lookup(const char *name) 5406 { 5407 int m; 5408 5409 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5410 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5411 return m; 5412 } 5413 5414 return 0; /* not found */ 5415 } 5416 5417 static ssize_t reset_method_store(struct device *dev, 5418 struct device_attribute *attr, 5419 const char *buf, size_t count) 5420 { 5421 struct pci_dev *pdev = to_pci_dev(dev); 5422 char *options, *name; 5423 int m, n; 5424 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5425 5426 if (sysfs_streq(buf, "")) { 5427 pdev->reset_methods[0] = 0; 5428 pci_warn(pdev, "All device reset methods disabled by user"); 5429 return count; 5430 } 5431 5432 if (sysfs_streq(buf, "default")) { 5433 pci_init_reset_methods(pdev); 5434 return count; 5435 } 5436 5437 options = kstrndup(buf, count, GFP_KERNEL); 5438 if (!options) 5439 return -ENOMEM; 5440 5441 n = 0; 5442 while ((name = strsep(&options, " ")) != NULL) { 5443 if (sysfs_streq(name, "")) 5444 continue; 5445 5446 name = strim(name); 5447 5448 m = reset_method_lookup(name); 5449 if (!m) { 5450 pci_err(pdev, "Invalid reset method '%s'", name); 5451 goto error; 5452 } 5453 5454 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5455 pci_err(pdev, "Unsupported reset method '%s'", name); 5456 goto error; 5457 } 5458 5459 if (n == PCI_NUM_RESET_METHODS - 1) { 5460 pci_err(pdev, "Too many reset methods\n"); 5461 goto error; 5462 } 5463 5464 reset_methods[n++] = m; 5465 } 5466 5467 reset_methods[n] = 0; 5468 5469 /* Warn if dev-specific supported but not highest priority */ 5470 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5471 reset_methods[0] != 1) 5472 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5473 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5474 kfree(options); 5475 return count; 5476 5477 error: 5478 /* Leave previous methods unchanged */ 5479 kfree(options); 5480 return -EINVAL; 5481 } 5482 static DEVICE_ATTR_RW(reset_method); 5483 5484 static struct attribute *pci_dev_reset_method_attrs[] = { 5485 &dev_attr_reset_method.attr, 5486 NULL, 5487 }; 5488 5489 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5490 struct attribute *a, int n) 5491 { 5492 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5493 5494 if (!pci_reset_supported(pdev)) 5495 return 0; 5496 5497 return a->mode; 5498 } 5499 5500 const struct attribute_group pci_dev_reset_method_attr_group = { 5501 .attrs = pci_dev_reset_method_attrs, 5502 .is_visible = pci_dev_reset_method_attr_is_visible, 5503 }; 5504 5505 /** 5506 * __pci_reset_function_locked - reset a PCI device function while holding 5507 * the @dev mutex lock. 5508 * @dev: PCI device to reset 5509 * 5510 * Some devices allow an individual function to be reset without affecting 5511 * other functions in the same device. The PCI device must be responsive 5512 * to PCI config space in order to use this function. 5513 * 5514 * The device function is presumed to be unused and the caller is holding 5515 * the device mutex lock when this function is called. 5516 * 5517 * Resetting the device will make the contents of PCI configuration space 5518 * random, so any caller of this must be prepared to reinitialise the 5519 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5520 * etc. 5521 * 5522 * Returns 0 if the device function was successfully reset or negative if the 5523 * device doesn't support resetting a single function. 5524 */ 5525 int __pci_reset_function_locked(struct pci_dev *dev) 5526 { 5527 int i, m, rc; 5528 5529 might_sleep(); 5530 5531 /* 5532 * A reset method returns -ENOTTY if it doesn't support this device and 5533 * we should try the next method. 5534 * 5535 * If it returns 0 (success), we're finished. If it returns any other 5536 * error, we're also finished: this indicates that further reset 5537 * mechanisms might be broken on the device. 5538 */ 5539 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5540 m = dev->reset_methods[i]; 5541 if (!m) 5542 return -ENOTTY; 5543 5544 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5545 if (!rc) 5546 return 0; 5547 if (rc != -ENOTTY) 5548 return rc; 5549 } 5550 5551 return -ENOTTY; 5552 } 5553 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5554 5555 /** 5556 * pci_init_reset_methods - check whether device can be safely reset 5557 * and store supported reset mechanisms. 5558 * @dev: PCI device to check for reset mechanisms 5559 * 5560 * Some devices allow an individual function to be reset without affecting 5561 * other functions in the same device. The PCI device must be in D0-D3hot 5562 * state. 5563 * 5564 * Stores reset mechanisms supported by device in reset_methods byte array 5565 * which is a member of struct pci_dev. 5566 */ 5567 void pci_init_reset_methods(struct pci_dev *dev) 5568 { 5569 int m, i, rc; 5570 5571 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5572 5573 might_sleep(); 5574 5575 i = 0; 5576 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5577 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5578 if (!rc) 5579 dev->reset_methods[i++] = m; 5580 else if (rc != -ENOTTY) 5581 break; 5582 } 5583 5584 dev->reset_methods[i] = 0; 5585 } 5586 5587 /** 5588 * pci_reset_function - quiesce and reset a PCI device function 5589 * @dev: PCI device to reset 5590 * 5591 * Some devices allow an individual function to be reset without affecting 5592 * other functions in the same device. The PCI device must be responsive 5593 * to PCI config space in order to use this function. 5594 * 5595 * This function does not just reset the PCI portion of a device, but 5596 * clears all the state associated with the device. This function differs 5597 * from __pci_reset_function_locked() in that it saves and restores device state 5598 * over the reset and takes the PCI device lock. 5599 * 5600 * Returns 0 if the device function was successfully reset or negative if the 5601 * device doesn't support resetting a single function. 5602 */ 5603 int pci_reset_function(struct pci_dev *dev) 5604 { 5605 int rc; 5606 5607 if (!pci_reset_supported(dev)) 5608 return -ENOTTY; 5609 5610 pci_dev_lock(dev); 5611 pci_dev_save_and_disable(dev); 5612 5613 rc = __pci_reset_function_locked(dev); 5614 5615 pci_dev_restore(dev); 5616 pci_dev_unlock(dev); 5617 5618 return rc; 5619 } 5620 EXPORT_SYMBOL_GPL(pci_reset_function); 5621 5622 /** 5623 * pci_reset_function_locked - quiesce and reset a PCI device function 5624 * @dev: PCI device to reset 5625 * 5626 * Some devices allow an individual function to be reset without affecting 5627 * other functions in the same device. The PCI device must be responsive 5628 * to PCI config space in order to use this function. 5629 * 5630 * This function does not just reset the PCI portion of a device, but 5631 * clears all the state associated with the device. This function differs 5632 * from __pci_reset_function_locked() in that it saves and restores device state 5633 * over the reset. It also differs from pci_reset_function() in that it 5634 * requires the PCI device lock to be held. 5635 * 5636 * Returns 0 if the device function was successfully reset or negative if the 5637 * device doesn't support resetting a single function. 5638 */ 5639 int pci_reset_function_locked(struct pci_dev *dev) 5640 { 5641 int rc; 5642 5643 if (!pci_reset_supported(dev)) 5644 return -ENOTTY; 5645 5646 pci_dev_save_and_disable(dev); 5647 5648 rc = __pci_reset_function_locked(dev); 5649 5650 pci_dev_restore(dev); 5651 5652 return rc; 5653 } 5654 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5655 5656 /** 5657 * pci_try_reset_function - quiesce and reset a PCI device function 5658 * @dev: PCI device to reset 5659 * 5660 * Same as above, except return -EAGAIN if unable to lock device. 5661 */ 5662 int pci_try_reset_function(struct pci_dev *dev) 5663 { 5664 int rc; 5665 5666 if (!pci_reset_supported(dev)) 5667 return -ENOTTY; 5668 5669 if (!pci_dev_trylock(dev)) 5670 return -EAGAIN; 5671 5672 pci_dev_save_and_disable(dev); 5673 rc = __pci_reset_function_locked(dev); 5674 pci_dev_restore(dev); 5675 pci_dev_unlock(dev); 5676 5677 return rc; 5678 } 5679 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5680 5681 /* Do any devices on or below this bus prevent a bus reset? */ 5682 static bool pci_bus_resettable(struct pci_bus *bus) 5683 { 5684 struct pci_dev *dev; 5685 5686 5687 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5688 return false; 5689 5690 list_for_each_entry(dev, &bus->devices, bus_list) { 5691 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5692 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5693 return false; 5694 } 5695 5696 return true; 5697 } 5698 5699 /* Lock devices from the top of the tree down */ 5700 static void pci_bus_lock(struct pci_bus *bus) 5701 { 5702 struct pci_dev *dev; 5703 5704 list_for_each_entry(dev, &bus->devices, bus_list) { 5705 pci_dev_lock(dev); 5706 if (dev->subordinate) 5707 pci_bus_lock(dev->subordinate); 5708 } 5709 } 5710 5711 /* Unlock devices from the bottom of the tree up */ 5712 static void pci_bus_unlock(struct pci_bus *bus) 5713 { 5714 struct pci_dev *dev; 5715 5716 list_for_each_entry(dev, &bus->devices, bus_list) { 5717 if (dev->subordinate) 5718 pci_bus_unlock(dev->subordinate); 5719 pci_dev_unlock(dev); 5720 } 5721 } 5722 5723 /* Return 1 on successful lock, 0 on contention */ 5724 static int pci_bus_trylock(struct pci_bus *bus) 5725 { 5726 struct pci_dev *dev; 5727 5728 list_for_each_entry(dev, &bus->devices, bus_list) { 5729 if (!pci_dev_trylock(dev)) 5730 goto unlock; 5731 if (dev->subordinate) { 5732 if (!pci_bus_trylock(dev->subordinate)) { 5733 pci_dev_unlock(dev); 5734 goto unlock; 5735 } 5736 } 5737 } 5738 return 1; 5739 5740 unlock: 5741 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5742 if (dev->subordinate) 5743 pci_bus_unlock(dev->subordinate); 5744 pci_dev_unlock(dev); 5745 } 5746 return 0; 5747 } 5748 5749 /* Do any devices on or below this slot prevent a bus reset? */ 5750 static bool pci_slot_resettable(struct pci_slot *slot) 5751 { 5752 struct pci_dev *dev; 5753 5754 if (slot->bus->self && 5755 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5756 return false; 5757 5758 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5759 if (!dev->slot || dev->slot != slot) 5760 continue; 5761 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5762 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5763 return false; 5764 } 5765 5766 return true; 5767 } 5768 5769 /* Lock devices from the top of the tree down */ 5770 static void pci_slot_lock(struct pci_slot *slot) 5771 { 5772 struct pci_dev *dev; 5773 5774 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5775 if (!dev->slot || dev->slot != slot) 5776 continue; 5777 pci_dev_lock(dev); 5778 if (dev->subordinate) 5779 pci_bus_lock(dev->subordinate); 5780 } 5781 } 5782 5783 /* Unlock devices from the bottom of the tree up */ 5784 static void pci_slot_unlock(struct pci_slot *slot) 5785 { 5786 struct pci_dev *dev; 5787 5788 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5789 if (!dev->slot || dev->slot != slot) 5790 continue; 5791 if (dev->subordinate) 5792 pci_bus_unlock(dev->subordinate); 5793 pci_dev_unlock(dev); 5794 } 5795 } 5796 5797 /* Return 1 on successful lock, 0 on contention */ 5798 static int pci_slot_trylock(struct pci_slot *slot) 5799 { 5800 struct pci_dev *dev; 5801 5802 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5803 if (!dev->slot || dev->slot != slot) 5804 continue; 5805 if (!pci_dev_trylock(dev)) 5806 goto unlock; 5807 if (dev->subordinate) { 5808 if (!pci_bus_trylock(dev->subordinate)) { 5809 pci_dev_unlock(dev); 5810 goto unlock; 5811 } 5812 } 5813 } 5814 return 1; 5815 5816 unlock: 5817 list_for_each_entry_continue_reverse(dev, 5818 &slot->bus->devices, bus_list) { 5819 if (!dev->slot || dev->slot != slot) 5820 continue; 5821 if (dev->subordinate) 5822 pci_bus_unlock(dev->subordinate); 5823 pci_dev_unlock(dev); 5824 } 5825 return 0; 5826 } 5827 5828 /* 5829 * Save and disable devices from the top of the tree down while holding 5830 * the @dev mutex lock for the entire tree. 5831 */ 5832 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5833 { 5834 struct pci_dev *dev; 5835 5836 list_for_each_entry(dev, &bus->devices, bus_list) { 5837 pci_dev_save_and_disable(dev); 5838 if (dev->subordinate) 5839 pci_bus_save_and_disable_locked(dev->subordinate); 5840 } 5841 } 5842 5843 /* 5844 * Restore devices from top of the tree down while holding @dev mutex lock 5845 * for the entire tree. Parent bridges need to be restored before we can 5846 * get to subordinate devices. 5847 */ 5848 static void pci_bus_restore_locked(struct pci_bus *bus) 5849 { 5850 struct pci_dev *dev; 5851 5852 list_for_each_entry(dev, &bus->devices, bus_list) { 5853 pci_dev_restore(dev); 5854 if (dev->subordinate) 5855 pci_bus_restore_locked(dev->subordinate); 5856 } 5857 } 5858 5859 /* 5860 * Save and disable devices from the top of the tree down while holding 5861 * the @dev mutex lock for the entire tree. 5862 */ 5863 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5864 { 5865 struct pci_dev *dev; 5866 5867 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5868 if (!dev->slot || dev->slot != slot) 5869 continue; 5870 pci_dev_save_and_disable(dev); 5871 if (dev->subordinate) 5872 pci_bus_save_and_disable_locked(dev->subordinate); 5873 } 5874 } 5875 5876 /* 5877 * Restore devices from top of the tree down while holding @dev mutex lock 5878 * for the entire tree. Parent bridges need to be restored before we can 5879 * get to subordinate devices. 5880 */ 5881 static void pci_slot_restore_locked(struct pci_slot *slot) 5882 { 5883 struct pci_dev *dev; 5884 5885 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5886 if (!dev->slot || dev->slot != slot) 5887 continue; 5888 pci_dev_restore(dev); 5889 if (dev->subordinate) 5890 pci_bus_restore_locked(dev->subordinate); 5891 } 5892 } 5893 5894 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5895 { 5896 int rc; 5897 5898 if (!slot || !pci_slot_resettable(slot)) 5899 return -ENOTTY; 5900 5901 if (!probe) 5902 pci_slot_lock(slot); 5903 5904 might_sleep(); 5905 5906 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5907 5908 if (!probe) 5909 pci_slot_unlock(slot); 5910 5911 return rc; 5912 } 5913 5914 /** 5915 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5916 * @slot: PCI slot to probe 5917 * 5918 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5919 */ 5920 int pci_probe_reset_slot(struct pci_slot *slot) 5921 { 5922 return pci_slot_reset(slot, PCI_RESET_PROBE); 5923 } 5924 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5925 5926 /** 5927 * __pci_reset_slot - Try to reset a PCI slot 5928 * @slot: PCI slot to reset 5929 * 5930 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5931 * independent of other slots. For instance, some slots may support slot power 5932 * control. In the case of a 1:1 bus to slot architecture, this function may 5933 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5934 * Generally a slot reset should be attempted before a bus reset. All of the 5935 * function of the slot and any subordinate buses behind the slot are reset 5936 * through this function. PCI config space of all devices in the slot and 5937 * behind the slot is saved before and restored after reset. 5938 * 5939 * Same as above except return -EAGAIN if the slot cannot be locked 5940 */ 5941 static int __pci_reset_slot(struct pci_slot *slot) 5942 { 5943 int rc; 5944 5945 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5946 if (rc) 5947 return rc; 5948 5949 if (pci_slot_trylock(slot)) { 5950 pci_slot_save_and_disable_locked(slot); 5951 might_sleep(); 5952 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5953 pci_slot_restore_locked(slot); 5954 pci_slot_unlock(slot); 5955 } else 5956 rc = -EAGAIN; 5957 5958 return rc; 5959 } 5960 5961 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5962 { 5963 int ret; 5964 5965 if (!bus->self || !pci_bus_resettable(bus)) 5966 return -ENOTTY; 5967 5968 if (probe) 5969 return 0; 5970 5971 pci_bus_lock(bus); 5972 5973 might_sleep(); 5974 5975 ret = pci_bridge_secondary_bus_reset(bus->self); 5976 5977 pci_bus_unlock(bus); 5978 5979 return ret; 5980 } 5981 5982 /** 5983 * pci_bus_error_reset - reset the bridge's subordinate bus 5984 * @bridge: The parent device that connects to the bus to reset 5985 * 5986 * This function will first try to reset the slots on this bus if the method is 5987 * available. If slot reset fails or is not available, this will fall back to a 5988 * secondary bus reset. 5989 */ 5990 int pci_bus_error_reset(struct pci_dev *bridge) 5991 { 5992 struct pci_bus *bus = bridge->subordinate; 5993 struct pci_slot *slot; 5994 5995 if (!bus) 5996 return -ENOTTY; 5997 5998 mutex_lock(&pci_slot_mutex); 5999 if (list_empty(&bus->slots)) 6000 goto bus_reset; 6001 6002 list_for_each_entry(slot, &bus->slots, list) 6003 if (pci_probe_reset_slot(slot)) 6004 goto bus_reset; 6005 6006 list_for_each_entry(slot, &bus->slots, list) 6007 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 6008 goto bus_reset; 6009 6010 mutex_unlock(&pci_slot_mutex); 6011 return 0; 6012 bus_reset: 6013 mutex_unlock(&pci_slot_mutex); 6014 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 6015 } 6016 6017 /** 6018 * pci_probe_reset_bus - probe whether a PCI bus can be reset 6019 * @bus: PCI bus to probe 6020 * 6021 * Return 0 if bus can be reset, negative if a bus reset is not supported. 6022 */ 6023 int pci_probe_reset_bus(struct pci_bus *bus) 6024 { 6025 return pci_bus_reset(bus, PCI_RESET_PROBE); 6026 } 6027 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 6028 6029 /** 6030 * __pci_reset_bus - Try to reset a PCI bus 6031 * @bus: top level PCI bus to reset 6032 * 6033 * Same as above except return -EAGAIN if the bus cannot be locked 6034 */ 6035 static int __pci_reset_bus(struct pci_bus *bus) 6036 { 6037 int rc; 6038 6039 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6040 if (rc) 6041 return rc; 6042 6043 if (pci_bus_trylock(bus)) { 6044 pci_bus_save_and_disable_locked(bus); 6045 might_sleep(); 6046 rc = pci_bridge_secondary_bus_reset(bus->self); 6047 pci_bus_restore_locked(bus); 6048 pci_bus_unlock(bus); 6049 } else 6050 rc = -EAGAIN; 6051 6052 return rc; 6053 } 6054 6055 /** 6056 * pci_reset_bus - Try to reset a PCI bus 6057 * @pdev: top level PCI device to reset via slot/bus 6058 * 6059 * Same as above except return -EAGAIN if the bus cannot be locked 6060 */ 6061 int pci_reset_bus(struct pci_dev *pdev) 6062 { 6063 return (!pci_probe_reset_slot(pdev->slot)) ? 6064 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6065 } 6066 EXPORT_SYMBOL_GPL(pci_reset_bus); 6067 6068 /** 6069 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6070 * @dev: PCI device to query 6071 * 6072 * Returns mmrbc: maximum designed memory read count in bytes or 6073 * appropriate error value. 6074 */ 6075 int pcix_get_max_mmrbc(struct pci_dev *dev) 6076 { 6077 int cap; 6078 u32 stat; 6079 6080 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6081 if (!cap) 6082 return -EINVAL; 6083 6084 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6085 return -EINVAL; 6086 6087 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 6088 } 6089 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6090 6091 /** 6092 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6093 * @dev: PCI device to query 6094 * 6095 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6096 * value. 6097 */ 6098 int pcix_get_mmrbc(struct pci_dev *dev) 6099 { 6100 int cap; 6101 u16 cmd; 6102 6103 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6104 if (!cap) 6105 return -EINVAL; 6106 6107 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6108 return -EINVAL; 6109 6110 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 6111 } 6112 EXPORT_SYMBOL(pcix_get_mmrbc); 6113 6114 /** 6115 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6116 * @dev: PCI device to query 6117 * @mmrbc: maximum memory read count in bytes 6118 * valid values are 512, 1024, 2048, 4096 6119 * 6120 * If possible sets maximum memory read byte count, some bridges have errata 6121 * that prevent this. 6122 */ 6123 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6124 { 6125 int cap; 6126 u32 stat, v, o; 6127 u16 cmd; 6128 6129 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6130 return -EINVAL; 6131 6132 v = ffs(mmrbc) - 10; 6133 6134 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6135 if (!cap) 6136 return -EINVAL; 6137 6138 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6139 return -EINVAL; 6140 6141 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 6142 return -E2BIG; 6143 6144 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6145 return -EINVAL; 6146 6147 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 6148 if (o != v) { 6149 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6150 return -EIO; 6151 6152 cmd &= ~PCI_X_CMD_MAX_READ; 6153 cmd |= v << 2; 6154 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6155 return -EIO; 6156 } 6157 return 0; 6158 } 6159 EXPORT_SYMBOL(pcix_set_mmrbc); 6160 6161 /** 6162 * pcie_get_readrq - get PCI Express read request size 6163 * @dev: PCI device to query 6164 * 6165 * Returns maximum memory read request in bytes or appropriate error value. 6166 */ 6167 int pcie_get_readrq(struct pci_dev *dev) 6168 { 6169 u16 ctl; 6170 6171 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6172 6173 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6174 } 6175 EXPORT_SYMBOL(pcie_get_readrq); 6176 6177 /** 6178 * pcie_set_readrq - set PCI Express maximum memory read request 6179 * @dev: PCI device to query 6180 * @rq: maximum memory read count in bytes 6181 * valid values are 128, 256, 512, 1024, 2048, 4096 6182 * 6183 * If possible sets maximum memory read request in bytes 6184 */ 6185 int pcie_set_readrq(struct pci_dev *dev, int rq) 6186 { 6187 u16 v; 6188 int ret; 6189 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6190 6191 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6192 return -EINVAL; 6193 6194 /* 6195 * If using the "performance" PCIe config, we clamp the read rq 6196 * size to the max packet size to keep the host bridge from 6197 * generating requests larger than we can cope with. 6198 */ 6199 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6200 int mps = pcie_get_mps(dev); 6201 6202 if (mps < rq) 6203 rq = mps; 6204 } 6205 6206 v = (ffs(rq) - 8) << 12; 6207 6208 if (bridge->no_inc_mrrs) { 6209 int max_mrrs = pcie_get_readrq(dev); 6210 6211 if (rq > max_mrrs) { 6212 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6213 return -EINVAL; 6214 } 6215 } 6216 6217 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6218 PCI_EXP_DEVCTL_READRQ, v); 6219 6220 return pcibios_err_to_errno(ret); 6221 } 6222 EXPORT_SYMBOL(pcie_set_readrq); 6223 6224 /** 6225 * pcie_get_mps - get PCI Express maximum payload size 6226 * @dev: PCI device to query 6227 * 6228 * Returns maximum payload size in bytes 6229 */ 6230 int pcie_get_mps(struct pci_dev *dev) 6231 { 6232 u16 ctl; 6233 6234 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6235 6236 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6237 } 6238 EXPORT_SYMBOL(pcie_get_mps); 6239 6240 /** 6241 * pcie_set_mps - set PCI Express maximum payload size 6242 * @dev: PCI device to query 6243 * @mps: maximum payload size in bytes 6244 * valid values are 128, 256, 512, 1024, 2048, 4096 6245 * 6246 * If possible sets maximum payload size 6247 */ 6248 int pcie_set_mps(struct pci_dev *dev, int mps) 6249 { 6250 u16 v; 6251 int ret; 6252 6253 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6254 return -EINVAL; 6255 6256 v = ffs(mps) - 8; 6257 if (v > dev->pcie_mpss) 6258 return -EINVAL; 6259 v <<= 5; 6260 6261 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6262 PCI_EXP_DEVCTL_PAYLOAD, v); 6263 6264 return pcibios_err_to_errno(ret); 6265 } 6266 EXPORT_SYMBOL(pcie_set_mps); 6267 6268 /** 6269 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6270 * device and its bandwidth limitation 6271 * @dev: PCI device to query 6272 * @limiting_dev: storage for device causing the bandwidth limitation 6273 * @speed: storage for speed of limiting device 6274 * @width: storage for width of limiting device 6275 * 6276 * Walk up the PCI device chain and find the point where the minimum 6277 * bandwidth is available. Return the bandwidth available there and (if 6278 * limiting_dev, speed, and width pointers are supplied) information about 6279 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6280 * raw bandwidth. 6281 */ 6282 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6283 enum pci_bus_speed *speed, 6284 enum pcie_link_width *width) 6285 { 6286 u16 lnksta; 6287 enum pci_bus_speed next_speed; 6288 enum pcie_link_width next_width; 6289 u32 bw, next_bw; 6290 6291 if (speed) 6292 *speed = PCI_SPEED_UNKNOWN; 6293 if (width) 6294 *width = PCIE_LNK_WIDTH_UNKNOWN; 6295 6296 bw = 0; 6297 6298 while (dev) { 6299 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6300 6301 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6302 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6303 6304 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6305 6306 /* Check if current device limits the total bandwidth */ 6307 if (!bw || next_bw <= bw) { 6308 bw = next_bw; 6309 6310 if (limiting_dev) 6311 *limiting_dev = dev; 6312 if (speed) 6313 *speed = next_speed; 6314 if (width) 6315 *width = next_width; 6316 } 6317 6318 dev = pci_upstream_bridge(dev); 6319 } 6320 6321 return bw; 6322 } 6323 EXPORT_SYMBOL(pcie_bandwidth_available); 6324 6325 /** 6326 * pcie_get_speed_cap - query for the PCI device's link speed capability 6327 * @dev: PCI device to query 6328 * 6329 * Query the PCI device speed capability. Return the maximum link speed 6330 * supported by the device. 6331 */ 6332 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6333 { 6334 u32 lnkcap2, lnkcap; 6335 6336 /* 6337 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6338 * implementation note there recommends using the Supported Link 6339 * Speeds Vector in Link Capabilities 2 when supported. 6340 * 6341 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6342 * should use the Supported Link Speeds field in Link Capabilities, 6343 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6344 */ 6345 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6346 6347 /* PCIe r3.0-compliant */ 6348 if (lnkcap2) 6349 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6350 6351 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6352 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6353 return PCIE_SPEED_5_0GT; 6354 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6355 return PCIE_SPEED_2_5GT; 6356 6357 return PCI_SPEED_UNKNOWN; 6358 } 6359 EXPORT_SYMBOL(pcie_get_speed_cap); 6360 6361 /** 6362 * pcie_get_width_cap - query for the PCI device's link width capability 6363 * @dev: PCI device to query 6364 * 6365 * Query the PCI device width capability. Return the maximum link width 6366 * supported by the device. 6367 */ 6368 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6369 { 6370 u32 lnkcap; 6371 6372 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6373 if (lnkcap) 6374 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6375 6376 return PCIE_LNK_WIDTH_UNKNOWN; 6377 } 6378 EXPORT_SYMBOL(pcie_get_width_cap); 6379 6380 /** 6381 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6382 * @dev: PCI device 6383 * @speed: storage for link speed 6384 * @width: storage for link width 6385 * 6386 * Calculate a PCI device's link bandwidth by querying for its link speed 6387 * and width, multiplying them, and applying encoding overhead. The result 6388 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6389 */ 6390 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6391 enum pcie_link_width *width) 6392 { 6393 *speed = pcie_get_speed_cap(dev); 6394 *width = pcie_get_width_cap(dev); 6395 6396 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6397 return 0; 6398 6399 return *width * PCIE_SPEED2MBS_ENC(*speed); 6400 } 6401 6402 /** 6403 * __pcie_print_link_status - Report the PCI device's link speed and width 6404 * @dev: PCI device to query 6405 * @verbose: Print info even when enough bandwidth is available 6406 * 6407 * If the available bandwidth at the device is less than the device is 6408 * capable of, report the device's maximum possible bandwidth and the 6409 * upstream link that limits its performance. If @verbose, always print 6410 * the available bandwidth, even if the device isn't constrained. 6411 */ 6412 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6413 { 6414 enum pcie_link_width width, width_cap; 6415 enum pci_bus_speed speed, speed_cap; 6416 struct pci_dev *limiting_dev = NULL; 6417 u32 bw_avail, bw_cap; 6418 6419 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6420 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6421 6422 if (bw_avail >= bw_cap && verbose) 6423 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6424 bw_cap / 1000, bw_cap % 1000, 6425 pci_speed_string(speed_cap), width_cap); 6426 else if (bw_avail < bw_cap) 6427 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6428 bw_avail / 1000, bw_avail % 1000, 6429 pci_speed_string(speed), width, 6430 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6431 bw_cap / 1000, bw_cap % 1000, 6432 pci_speed_string(speed_cap), width_cap); 6433 } 6434 6435 /** 6436 * pcie_print_link_status - Report the PCI device's link speed and width 6437 * @dev: PCI device to query 6438 * 6439 * Report the available bandwidth at the device. 6440 */ 6441 void pcie_print_link_status(struct pci_dev *dev) 6442 { 6443 __pcie_print_link_status(dev, true); 6444 } 6445 EXPORT_SYMBOL(pcie_print_link_status); 6446 6447 /** 6448 * pci_select_bars - Make BAR mask from the type of resource 6449 * @dev: the PCI device for which BAR mask is made 6450 * @flags: resource type mask to be selected 6451 * 6452 * This helper routine makes bar mask from the type of resource. 6453 */ 6454 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6455 { 6456 int i, bars = 0; 6457 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6458 if (pci_resource_flags(dev, i) & flags) 6459 bars |= (1 << i); 6460 return bars; 6461 } 6462 EXPORT_SYMBOL(pci_select_bars); 6463 6464 /* Some architectures require additional programming to enable VGA */ 6465 static arch_set_vga_state_t arch_set_vga_state; 6466 6467 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6468 { 6469 arch_set_vga_state = func; /* NULL disables */ 6470 } 6471 6472 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6473 unsigned int command_bits, u32 flags) 6474 { 6475 if (arch_set_vga_state) 6476 return arch_set_vga_state(dev, decode, command_bits, 6477 flags); 6478 return 0; 6479 } 6480 6481 /** 6482 * pci_set_vga_state - set VGA decode state on device and parents if requested 6483 * @dev: the PCI device 6484 * @decode: true = enable decoding, false = disable decoding 6485 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6486 * @flags: traverse ancestors and change bridges 6487 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6488 */ 6489 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6490 unsigned int command_bits, u32 flags) 6491 { 6492 struct pci_bus *bus; 6493 struct pci_dev *bridge; 6494 u16 cmd; 6495 int rc; 6496 6497 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6498 6499 /* ARCH specific VGA enables */ 6500 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6501 if (rc) 6502 return rc; 6503 6504 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6505 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6506 if (decode) 6507 cmd |= command_bits; 6508 else 6509 cmd &= ~command_bits; 6510 pci_write_config_word(dev, PCI_COMMAND, cmd); 6511 } 6512 6513 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6514 return 0; 6515 6516 bus = dev->bus; 6517 while (bus) { 6518 bridge = bus->self; 6519 if (bridge) { 6520 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6521 &cmd); 6522 if (decode) 6523 cmd |= PCI_BRIDGE_CTL_VGA; 6524 else 6525 cmd &= ~PCI_BRIDGE_CTL_VGA; 6526 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6527 cmd); 6528 } 6529 bus = bus->parent; 6530 } 6531 return 0; 6532 } 6533 6534 #ifdef CONFIG_ACPI 6535 bool pci_pr3_present(struct pci_dev *pdev) 6536 { 6537 struct acpi_device *adev; 6538 6539 if (acpi_disabled) 6540 return false; 6541 6542 adev = ACPI_COMPANION(&pdev->dev); 6543 if (!adev) 6544 return false; 6545 6546 return adev->power.flags.power_resources && 6547 acpi_has_method(adev->handle, "_PR3"); 6548 } 6549 EXPORT_SYMBOL_GPL(pci_pr3_present); 6550 #endif 6551 6552 /** 6553 * pci_add_dma_alias - Add a DMA devfn alias for a device 6554 * @dev: the PCI device for which alias is added 6555 * @devfn_from: alias slot and function 6556 * @nr_devfns: number of subsequent devfns to alias 6557 * 6558 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6559 * which is used to program permissible bus-devfn source addresses for DMA 6560 * requests in an IOMMU. These aliases factor into IOMMU group creation 6561 * and are useful for devices generating DMA requests beyond or different 6562 * from their logical bus-devfn. Examples include device quirks where the 6563 * device simply uses the wrong devfn, as well as non-transparent bridges 6564 * where the alias may be a proxy for devices in another domain. 6565 * 6566 * IOMMU group creation is performed during device discovery or addition, 6567 * prior to any potential DMA mapping and therefore prior to driver probing 6568 * (especially for userspace assigned devices where IOMMU group definition 6569 * cannot be left as a userspace activity). DMA aliases should therefore 6570 * be configured via quirks, such as the PCI fixup header quirk. 6571 */ 6572 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6573 unsigned int nr_devfns) 6574 { 6575 int devfn_to; 6576 6577 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6578 devfn_to = devfn_from + nr_devfns - 1; 6579 6580 if (!dev->dma_alias_mask) 6581 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6582 if (!dev->dma_alias_mask) { 6583 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6584 return; 6585 } 6586 6587 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6588 6589 if (nr_devfns == 1) 6590 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6591 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6592 else if (nr_devfns > 1) 6593 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6594 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6595 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6596 } 6597 6598 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6599 { 6600 return (dev1->dma_alias_mask && 6601 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6602 (dev2->dma_alias_mask && 6603 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6604 pci_real_dma_dev(dev1) == dev2 || 6605 pci_real_dma_dev(dev2) == dev1; 6606 } 6607 6608 bool pci_device_is_present(struct pci_dev *pdev) 6609 { 6610 u32 v; 6611 6612 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6613 pdev = pci_physfn(pdev); 6614 if (pci_dev_is_disconnected(pdev)) 6615 return false; 6616 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6617 } 6618 EXPORT_SYMBOL_GPL(pci_device_is_present); 6619 6620 void pci_ignore_hotplug(struct pci_dev *dev) 6621 { 6622 struct pci_dev *bridge = dev->bus->self; 6623 6624 dev->ignore_hotplug = 1; 6625 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6626 if (bridge) 6627 bridge->ignore_hotplug = 1; 6628 } 6629 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6630 6631 /** 6632 * pci_real_dma_dev - Get PCI DMA device for PCI device 6633 * @dev: the PCI device that may have a PCI DMA alias 6634 * 6635 * Permits the platform to provide architecture-specific functionality to 6636 * devices needing to alias DMA to another PCI device on another PCI bus. If 6637 * the PCI device is on the same bus, it is recommended to use 6638 * pci_add_dma_alias(). This is the default implementation. Architecture 6639 * implementations can override this. 6640 */ 6641 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6642 { 6643 return dev; 6644 } 6645 6646 resource_size_t __weak pcibios_default_alignment(void) 6647 { 6648 return 0; 6649 } 6650 6651 /* 6652 * Arches that don't want to expose struct resource to userland as-is in 6653 * sysfs and /proc can implement their own pci_resource_to_user(). 6654 */ 6655 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6656 const struct resource *rsrc, 6657 resource_size_t *start, resource_size_t *end) 6658 { 6659 *start = rsrc->start; 6660 *end = rsrc->end; 6661 } 6662 6663 static char *resource_alignment_param; 6664 static DEFINE_SPINLOCK(resource_alignment_lock); 6665 6666 /** 6667 * pci_specified_resource_alignment - get resource alignment specified by user. 6668 * @dev: the PCI device to get 6669 * @resize: whether or not to change resources' size when reassigning alignment 6670 * 6671 * RETURNS: Resource alignment if it is specified. 6672 * Zero if it is not specified. 6673 */ 6674 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6675 bool *resize) 6676 { 6677 int align_order, count; 6678 resource_size_t align = pcibios_default_alignment(); 6679 const char *p; 6680 int ret; 6681 6682 spin_lock(&resource_alignment_lock); 6683 p = resource_alignment_param; 6684 if (!p || !*p) 6685 goto out; 6686 if (pci_has_flag(PCI_PROBE_ONLY)) { 6687 align = 0; 6688 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6689 goto out; 6690 } 6691 6692 while (*p) { 6693 count = 0; 6694 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6695 p[count] == '@') { 6696 p += count + 1; 6697 if (align_order > 63) { 6698 pr_err("PCI: Invalid requested alignment (order %d)\n", 6699 align_order); 6700 align_order = PAGE_SHIFT; 6701 } 6702 } else { 6703 align_order = PAGE_SHIFT; 6704 } 6705 6706 ret = pci_dev_str_match(dev, p, &p); 6707 if (ret == 1) { 6708 *resize = true; 6709 align = 1ULL << align_order; 6710 break; 6711 } else if (ret < 0) { 6712 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6713 p); 6714 break; 6715 } 6716 6717 if (*p != ';' && *p != ',') { 6718 /* End of param or invalid format */ 6719 break; 6720 } 6721 p++; 6722 } 6723 out: 6724 spin_unlock(&resource_alignment_lock); 6725 return align; 6726 } 6727 6728 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6729 resource_size_t align, bool resize) 6730 { 6731 struct resource *r = &dev->resource[bar]; 6732 resource_size_t size; 6733 6734 if (!(r->flags & IORESOURCE_MEM)) 6735 return; 6736 6737 if (r->flags & IORESOURCE_PCI_FIXED) { 6738 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6739 bar, r, (unsigned long long)align); 6740 return; 6741 } 6742 6743 size = resource_size(r); 6744 if (size >= align) 6745 return; 6746 6747 /* 6748 * Increase the alignment of the resource. There are two ways we 6749 * can do this: 6750 * 6751 * 1) Increase the size of the resource. BARs are aligned on their 6752 * size, so when we reallocate space for this resource, we'll 6753 * allocate it with the larger alignment. This also prevents 6754 * assignment of any other BARs inside the alignment region, so 6755 * if we're requesting page alignment, this means no other BARs 6756 * will share the page. 6757 * 6758 * The disadvantage is that this makes the resource larger than 6759 * the hardware BAR, which may break drivers that compute things 6760 * based on the resource size, e.g., to find registers at a 6761 * fixed offset before the end of the BAR. 6762 * 6763 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6764 * set r->start to the desired alignment. By itself this 6765 * doesn't prevent other BARs being put inside the alignment 6766 * region, but if we realign *every* resource of every device in 6767 * the system, none of them will share an alignment region. 6768 * 6769 * When the user has requested alignment for only some devices via 6770 * the "pci=resource_alignment" argument, "resize" is true and we 6771 * use the first method. Otherwise we assume we're aligning all 6772 * devices and we use the second. 6773 */ 6774 6775 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6776 bar, r, (unsigned long long)align); 6777 6778 if (resize) { 6779 r->start = 0; 6780 r->end = align - 1; 6781 } else { 6782 r->flags &= ~IORESOURCE_SIZEALIGN; 6783 r->flags |= IORESOURCE_STARTALIGN; 6784 r->start = align; 6785 r->end = r->start + size - 1; 6786 } 6787 r->flags |= IORESOURCE_UNSET; 6788 } 6789 6790 /* 6791 * This function disables memory decoding and releases memory resources 6792 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6793 * It also rounds up size to specified alignment. 6794 * Later on, the kernel will assign page-aligned memory resource back 6795 * to the device. 6796 */ 6797 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6798 { 6799 int i; 6800 struct resource *r; 6801 resource_size_t align; 6802 u16 command; 6803 bool resize = false; 6804 6805 /* 6806 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6807 * 3.4.1.11. Their resources are allocated from the space 6808 * described by the VF BARx register in the PF's SR-IOV capability. 6809 * We can't influence their alignment here. 6810 */ 6811 if (dev->is_virtfn) 6812 return; 6813 6814 /* check if specified PCI is target device to reassign */ 6815 align = pci_specified_resource_alignment(dev, &resize); 6816 if (!align) 6817 return; 6818 6819 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6820 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6821 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6822 return; 6823 } 6824 6825 pci_read_config_word(dev, PCI_COMMAND, &command); 6826 command &= ~PCI_COMMAND_MEMORY; 6827 pci_write_config_word(dev, PCI_COMMAND, command); 6828 6829 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6830 pci_request_resource_alignment(dev, i, align, resize); 6831 6832 /* 6833 * Need to disable bridge's resource window, 6834 * to enable the kernel to reassign new resource 6835 * window later on. 6836 */ 6837 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6838 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6839 r = &dev->resource[i]; 6840 if (!(r->flags & IORESOURCE_MEM)) 6841 continue; 6842 r->flags |= IORESOURCE_UNSET; 6843 r->end = resource_size(r) - 1; 6844 r->start = 0; 6845 } 6846 pci_disable_bridge_window(dev); 6847 } 6848 } 6849 6850 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6851 { 6852 size_t count = 0; 6853 6854 spin_lock(&resource_alignment_lock); 6855 if (resource_alignment_param) 6856 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6857 spin_unlock(&resource_alignment_lock); 6858 6859 return count; 6860 } 6861 6862 static ssize_t resource_alignment_store(const struct bus_type *bus, 6863 const char *buf, size_t count) 6864 { 6865 char *param, *old, *end; 6866 6867 if (count >= (PAGE_SIZE - 1)) 6868 return -EINVAL; 6869 6870 param = kstrndup(buf, count, GFP_KERNEL); 6871 if (!param) 6872 return -ENOMEM; 6873 6874 end = strchr(param, '\n'); 6875 if (end) 6876 *end = '\0'; 6877 6878 spin_lock(&resource_alignment_lock); 6879 old = resource_alignment_param; 6880 if (strlen(param)) { 6881 resource_alignment_param = param; 6882 } else { 6883 kfree(param); 6884 resource_alignment_param = NULL; 6885 } 6886 spin_unlock(&resource_alignment_lock); 6887 6888 kfree(old); 6889 6890 return count; 6891 } 6892 6893 static BUS_ATTR_RW(resource_alignment); 6894 6895 static int __init pci_resource_alignment_sysfs_init(void) 6896 { 6897 return bus_create_file(&pci_bus_type, 6898 &bus_attr_resource_alignment); 6899 } 6900 late_initcall(pci_resource_alignment_sysfs_init); 6901 6902 static void pci_no_domains(void) 6903 { 6904 #ifdef CONFIG_PCI_DOMAINS 6905 pci_domains_supported = 0; 6906 #endif 6907 } 6908 6909 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6910 static DEFINE_IDA(pci_domain_nr_static_ida); 6911 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6912 6913 static void of_pci_reserve_static_domain_nr(void) 6914 { 6915 struct device_node *np; 6916 int domain_nr; 6917 6918 for_each_node_by_type(np, "pci") { 6919 domain_nr = of_get_pci_domain_nr(np); 6920 if (domain_nr < 0) 6921 continue; 6922 /* 6923 * Permanently allocate domain_nr in dynamic_ida 6924 * to prevent it from dynamic allocation. 6925 */ 6926 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6927 domain_nr, domain_nr, GFP_KERNEL); 6928 } 6929 } 6930 6931 static int of_pci_bus_find_domain_nr(struct device *parent) 6932 { 6933 static bool static_domains_reserved = false; 6934 int domain_nr; 6935 6936 /* On the first call scan device tree for static allocations. */ 6937 if (!static_domains_reserved) { 6938 of_pci_reserve_static_domain_nr(); 6939 static_domains_reserved = true; 6940 } 6941 6942 if (parent) { 6943 /* 6944 * If domain is in DT, allocate it in static IDA. This 6945 * prevents duplicate static allocations in case of errors 6946 * in DT. 6947 */ 6948 domain_nr = of_get_pci_domain_nr(parent->of_node); 6949 if (domain_nr >= 0) 6950 return ida_alloc_range(&pci_domain_nr_static_ida, 6951 domain_nr, domain_nr, 6952 GFP_KERNEL); 6953 } 6954 6955 /* 6956 * If domain was not specified in DT, choose a free ID from dynamic 6957 * allocations. All domain numbers from DT are permanently in 6958 * dynamic allocations to prevent assigning them to other DT nodes 6959 * without static domain. 6960 */ 6961 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6962 } 6963 6964 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6965 { 6966 if (bus->domain_nr < 0) 6967 return; 6968 6969 /* Release domain from IDA where it was allocated. */ 6970 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6971 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6972 else 6973 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6974 } 6975 6976 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6977 { 6978 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6979 acpi_pci_bus_find_domain_nr(bus); 6980 } 6981 6982 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6983 { 6984 if (!acpi_disabled) 6985 return; 6986 of_pci_bus_release_domain_nr(bus, parent); 6987 } 6988 #endif 6989 6990 /** 6991 * pci_ext_cfg_avail - can we access extended PCI config space? 6992 * 6993 * Returns 1 if we can access PCI extended config space (offsets 6994 * greater than 0xff). This is the default implementation. Architecture 6995 * implementations can override this. 6996 */ 6997 int __weak pci_ext_cfg_avail(void) 6998 { 6999 return 1; 7000 } 7001 7002 void __weak pci_fixup_cardbus(struct pci_bus *bus) 7003 { 7004 } 7005 EXPORT_SYMBOL(pci_fixup_cardbus); 7006 7007 static int __init pci_setup(char *str) 7008 { 7009 while (str) { 7010 char *k = strchr(str, ','); 7011 if (k) 7012 *k++ = 0; 7013 if (*str && (str = pcibios_setup(str)) && *str) { 7014 if (!strcmp(str, "nomsi")) { 7015 pci_no_msi(); 7016 } else if (!strncmp(str, "noats", 5)) { 7017 pr_info("PCIe: ATS is disabled\n"); 7018 pcie_ats_disabled = true; 7019 } else if (!strcmp(str, "noaer")) { 7020 pci_no_aer(); 7021 } else if (!strcmp(str, "earlydump")) { 7022 pci_early_dump = true; 7023 } else if (!strncmp(str, "realloc=", 8)) { 7024 pci_realloc_get_opt(str + 8); 7025 } else if (!strncmp(str, "realloc", 7)) { 7026 pci_realloc_get_opt("on"); 7027 } else if (!strcmp(str, "nodomains")) { 7028 pci_no_domains(); 7029 } else if (!strncmp(str, "noari", 5)) { 7030 pcie_ari_disabled = true; 7031 } else if (!strncmp(str, "cbiosize=", 9)) { 7032 pci_cardbus_io_size = memparse(str + 9, &str); 7033 } else if (!strncmp(str, "cbmemsize=", 10)) { 7034 pci_cardbus_mem_size = memparse(str + 10, &str); 7035 } else if (!strncmp(str, "resource_alignment=", 19)) { 7036 resource_alignment_param = str + 19; 7037 } else if (!strncmp(str, "ecrc=", 5)) { 7038 pcie_ecrc_get_policy(str + 5); 7039 } else if (!strncmp(str, "hpiosize=", 9)) { 7040 pci_hotplug_io_size = memparse(str + 9, &str); 7041 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7042 pci_hotplug_mmio_size = memparse(str + 11, &str); 7043 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7044 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7045 } else if (!strncmp(str, "hpmemsize=", 10)) { 7046 pci_hotplug_mmio_size = memparse(str + 10, &str); 7047 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7048 } else if (!strncmp(str, "hpbussize=", 10)) { 7049 pci_hotplug_bus_size = 7050 simple_strtoul(str + 10, &str, 0); 7051 if (pci_hotplug_bus_size > 0xff) 7052 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7053 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7054 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7055 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7056 pcie_bus_config = PCIE_BUS_SAFE; 7057 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7058 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7059 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7060 pcie_bus_config = PCIE_BUS_PEER2PEER; 7061 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7062 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7063 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7064 disable_acs_redir_param = str + 18; 7065 } else { 7066 pr_err("PCI: Unknown option `%s'\n", str); 7067 } 7068 } 7069 str = k; 7070 } 7071 return 0; 7072 } 7073 early_param("pci", pci_setup); 7074 7075 /* 7076 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7077 * in pci_setup(), above, to point to data in the __initdata section which 7078 * will be freed after the init sequence is complete. We can't allocate memory 7079 * in pci_setup() because some architectures do not have any memory allocation 7080 * service available during an early_param() call. So we allocate memory and 7081 * copy the variable here before the init section is freed. 7082 * 7083 */ 7084 static int __init pci_realloc_setup_params(void) 7085 { 7086 resource_alignment_param = kstrdup(resource_alignment_param, 7087 GFP_KERNEL); 7088 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7089 7090 return 0; 7091 } 7092 pure_initcall(pci_realloc_setup_params); 7093