1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3hot_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 static void pci_dev_d3_sleep(struct pci_dev *dev) 66 { 67 unsigned int delay = dev->d3hot_delay; 68 69 if (delay < pci_pm_d3hot_delay) 70 delay = pci_pm_d3hot_delay; 71 72 if (delay) 73 msleep(delay); 74 } 75 76 bool pci_reset_supported(struct pci_dev *dev) 77 { 78 return dev->reset_methods[0] != 0; 79 } 80 81 #ifdef CONFIG_PCI_DOMAINS 82 int pci_domains_supported = 1; 83 #endif 84 85 #define DEFAULT_CARDBUS_IO_SIZE (256) 86 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 90 91 #define DEFAULT_HOTPLUG_IO_SIZE (256) 92 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 94 /* hpiosize=nn can override this */ 95 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 96 /* 97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 99 * pci=hpmemsize=nnM overrides both 100 */ 101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 103 104 #define DEFAULT_HOTPLUG_BUS_SIZE 1 105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 106 107 108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 111 #elif defined CONFIG_PCIE_BUS_SAFE 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 115 #elif defined CONFIG_PCIE_BUS_PEER2PEER 116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 117 #else 118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 119 #endif 120 121 /* 122 * The default CLS is used if arch didn't set CLS explicitly and not 123 * all pci devices agree on the same value. Arch can override either 124 * the dfl or actual value as it sees fit. Don't forget this is 125 * measured in 32-bit words, not bytes. 126 */ 127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 128 u8 pci_cache_line_size; 129 130 /* 131 * If we set up a device for bus mastering, we need to check the latency 132 * timer as certain BIOSes forget to set it properly. 133 */ 134 unsigned int pcibios_max_latency = 255; 135 136 /* If set, the PCIe ARI capability will not be used. */ 137 static bool pcie_ari_disabled; 138 139 /* If set, the PCIe ATS capability will not be used. */ 140 static bool pcie_ats_disabled; 141 142 /* If set, the PCI config space of each device is printed during boot. */ 143 bool pci_early_dump; 144 145 bool pci_ats_disabled(void) 146 { 147 return pcie_ats_disabled; 148 } 149 EXPORT_SYMBOL_GPL(pci_ats_disabled); 150 151 /* Disable bridge_d3 for all PCIe ports */ 152 static bool pci_bridge_d3_disable; 153 /* Force bridge_d3 for all PCIe ports */ 154 static bool pci_bridge_d3_force; 155 156 static int __init pcie_port_pm_setup(char *str) 157 { 158 if (!strcmp(str, "off")) 159 pci_bridge_d3_disable = true; 160 else if (!strcmp(str, "force")) 161 pci_bridge_d3_force = true; 162 return 1; 163 } 164 __setup("pcie_port_pm=", pcie_port_pm_setup); 165 166 /* Time to wait after a reset for device to become responsive */ 167 #define PCIE_RESET_READY_POLL_MS 60000 168 169 /** 170 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 171 * @bus: pointer to PCI bus structure to search 172 * 173 * Given a PCI bus, returns the highest PCI bus number present in the set 174 * including the given PCI bus and its list of child PCI buses. 175 */ 176 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 177 { 178 struct pci_bus *tmp; 179 unsigned char max, n; 180 181 max = bus->busn_res.end; 182 list_for_each_entry(tmp, &bus->children, node) { 183 n = pci_bus_max_busnr(tmp); 184 if (n > max) 185 max = n; 186 } 187 return max; 188 } 189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 190 191 /** 192 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 193 * @pdev: the PCI device 194 * 195 * Returns error bits set in PCI_STATUS and clears them. 196 */ 197 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 198 { 199 u16 status; 200 int ret; 201 202 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 203 if (ret != PCIBIOS_SUCCESSFUL) 204 return -EIO; 205 206 status &= PCI_STATUS_ERROR_BITS; 207 if (status) 208 pci_write_config_word(pdev, PCI_STATUS, status); 209 210 return status; 211 } 212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 213 214 #ifdef CONFIG_HAS_IOMEM 215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 216 bool write_combine) 217 { 218 struct resource *res = &pdev->resource[bar]; 219 resource_size_t start = res->start; 220 resource_size_t size = resource_size(res); 221 222 /* 223 * Make sure the BAR is actually a memory resource, not an IO resource 224 */ 225 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 226 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 227 return NULL; 228 } 229 230 if (write_combine) 231 return ioremap_wc(start, size); 232 233 return ioremap(start, size); 234 } 235 236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 237 { 238 return __pci_ioremap_resource(pdev, bar, false); 239 } 240 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 241 242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 243 { 244 return __pci_ioremap_resource(pdev, bar, true); 245 } 246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 247 #endif 248 249 /** 250 * pci_dev_str_match_path - test if a path string matches a device 251 * @dev: the PCI device to test 252 * @path: string to match the device against 253 * @endptr: pointer to the string after the match 254 * 255 * Test if a string (typically from a kernel parameter) formatted as a 256 * path of device/function addresses matches a PCI device. The string must 257 * be of the form: 258 * 259 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 260 * 261 * A path for a device can be obtained using 'lspci -t'. Using a path 262 * is more robust against bus renumbering than using only a single bus, 263 * device and function address. 264 * 265 * Returns 1 if the string matches the device, 0 if it does not and 266 * a negative error code if it fails to parse the string. 267 */ 268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 269 const char **endptr) 270 { 271 int ret; 272 unsigned int seg, bus, slot, func; 273 char *wpath, *p; 274 char end; 275 276 *endptr = strchrnul(path, ';'); 277 278 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 279 if (!wpath) 280 return -ENOMEM; 281 282 while (1) { 283 p = strrchr(wpath, '/'); 284 if (!p) 285 break; 286 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 287 if (ret != 2) { 288 ret = -EINVAL; 289 goto free_and_exit; 290 } 291 292 if (dev->devfn != PCI_DEVFN(slot, func)) { 293 ret = 0; 294 goto free_and_exit; 295 } 296 297 /* 298 * Note: we don't need to get a reference to the upstream 299 * bridge because we hold a reference to the top level 300 * device which should hold a reference to the bridge, 301 * and so on. 302 */ 303 dev = pci_upstream_bridge(dev); 304 if (!dev) { 305 ret = 0; 306 goto free_and_exit; 307 } 308 309 *p = 0; 310 } 311 312 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 313 &func, &end); 314 if (ret != 4) { 315 seg = 0; 316 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 317 if (ret != 3) { 318 ret = -EINVAL; 319 goto free_and_exit; 320 } 321 } 322 323 ret = (seg == pci_domain_nr(dev->bus) && 324 bus == dev->bus->number && 325 dev->devfn == PCI_DEVFN(slot, func)); 326 327 free_and_exit: 328 kfree(wpath); 329 return ret; 330 } 331 332 /** 333 * pci_dev_str_match - test if a string matches a device 334 * @dev: the PCI device to test 335 * @p: string to match the device against 336 * @endptr: pointer to the string after the match 337 * 338 * Test if a string (typically from a kernel parameter) matches a specified 339 * PCI device. The string may be of one of the following formats: 340 * 341 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 342 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 343 * 344 * The first format specifies a PCI bus/device/function address which 345 * may change if new hardware is inserted, if motherboard firmware changes, 346 * or due to changes caused in kernel parameters. If the domain is 347 * left unspecified, it is taken to be 0. In order to be robust against 348 * bus renumbering issues, a path of PCI device/function numbers may be used 349 * to address the specific device. The path for a device can be determined 350 * through the use of 'lspci -t'. 351 * 352 * The second format matches devices using IDs in the configuration 353 * space which may match multiple devices in the system. A value of 0 354 * for any field will match all devices. (Note: this differs from 355 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 356 * legacy reasons and convenience so users don't have to specify 357 * FFFFFFFFs on the command line.) 358 * 359 * Returns 1 if the string matches the device, 0 if it does not and 360 * a negative error code if the string cannot be parsed. 361 */ 362 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 363 const char **endptr) 364 { 365 int ret; 366 int count; 367 unsigned short vendor, device, subsystem_vendor, subsystem_device; 368 369 if (strncmp(p, "pci:", 4) == 0) { 370 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 371 p += 4; 372 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 373 &subsystem_vendor, &subsystem_device, &count); 374 if (ret != 4) { 375 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 376 if (ret != 2) 377 return -EINVAL; 378 379 subsystem_vendor = 0; 380 subsystem_device = 0; 381 } 382 383 p += count; 384 385 if ((!vendor || vendor == dev->vendor) && 386 (!device || device == dev->device) && 387 (!subsystem_vendor || 388 subsystem_vendor == dev->subsystem_vendor) && 389 (!subsystem_device || 390 subsystem_device == dev->subsystem_device)) 391 goto found; 392 } else { 393 /* 394 * PCI Bus, Device, Function IDs are specified 395 * (optionally, may include a path of devfns following it) 396 */ 397 ret = pci_dev_str_match_path(dev, p, &p); 398 if (ret < 0) 399 return ret; 400 else if (ret) 401 goto found; 402 } 403 404 *endptr = p; 405 return 0; 406 407 found: 408 *endptr = p; 409 return 1; 410 } 411 412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 413 u8 pos, int cap, int *ttl) 414 { 415 u8 id; 416 u16 ent; 417 418 pci_bus_read_config_byte(bus, devfn, pos, &pos); 419 420 while ((*ttl)--) { 421 if (pos < 0x40) 422 break; 423 pos &= ~3; 424 pci_bus_read_config_word(bus, devfn, pos, &ent); 425 426 id = ent & 0xff; 427 if (id == 0xff) 428 break; 429 if (id == cap) 430 return pos; 431 pos = (ent >> 8); 432 } 433 return 0; 434 } 435 436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 437 u8 pos, int cap) 438 { 439 int ttl = PCI_FIND_CAP_TTL; 440 441 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 442 } 443 444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 445 { 446 return __pci_find_next_cap(dev->bus, dev->devfn, 447 pos + PCI_CAP_LIST_NEXT, cap); 448 } 449 EXPORT_SYMBOL_GPL(pci_find_next_capability); 450 451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 452 unsigned int devfn, u8 hdr_type) 453 { 454 u16 status; 455 456 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 457 if (!(status & PCI_STATUS_CAP_LIST)) 458 return 0; 459 460 switch (hdr_type) { 461 case PCI_HEADER_TYPE_NORMAL: 462 case PCI_HEADER_TYPE_BRIDGE: 463 return PCI_CAPABILITY_LIST; 464 case PCI_HEADER_TYPE_CARDBUS: 465 return PCI_CB_CAPABILITY_LIST; 466 } 467 468 return 0; 469 } 470 471 /** 472 * pci_find_capability - query for devices' capabilities 473 * @dev: PCI device to query 474 * @cap: capability code 475 * 476 * Tell if a device supports a given PCI capability. 477 * Returns the address of the requested capability structure within the 478 * device's PCI configuration space or 0 in case the device does not 479 * support it. Possible values for @cap include: 480 * 481 * %PCI_CAP_ID_PM Power Management 482 * %PCI_CAP_ID_AGP Accelerated Graphics Port 483 * %PCI_CAP_ID_VPD Vital Product Data 484 * %PCI_CAP_ID_SLOTID Slot Identification 485 * %PCI_CAP_ID_MSI Message Signalled Interrupts 486 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 487 * %PCI_CAP_ID_PCIX PCI-X 488 * %PCI_CAP_ID_EXP PCI Express 489 */ 490 u8 pci_find_capability(struct pci_dev *dev, int cap) 491 { 492 u8 pos; 493 494 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 495 if (pos) 496 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 497 498 return pos; 499 } 500 EXPORT_SYMBOL(pci_find_capability); 501 502 /** 503 * pci_bus_find_capability - query for devices' capabilities 504 * @bus: the PCI bus to query 505 * @devfn: PCI device to query 506 * @cap: capability code 507 * 508 * Like pci_find_capability() but works for PCI devices that do not have a 509 * pci_dev structure set up yet. 510 * 511 * Returns the address of the requested capability structure within the 512 * device's PCI configuration space or 0 in case the device does not 513 * support it. 514 */ 515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 516 { 517 u8 hdr_type, pos; 518 519 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 520 521 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 522 if (pos) 523 pos = __pci_find_next_cap(bus, devfn, pos, cap); 524 525 return pos; 526 } 527 EXPORT_SYMBOL(pci_bus_find_capability); 528 529 /** 530 * pci_find_next_ext_capability - Find an extended capability 531 * @dev: PCI device to query 532 * @start: address at which to start looking (0 to start at beginning of list) 533 * @cap: capability code 534 * 535 * Returns the address of the next matching extended capability structure 536 * within the device's PCI configuration space or 0 if the device does 537 * not support it. Some capabilities can occur several times, e.g., the 538 * vendor-specific capability, and this provides a way to find them all. 539 */ 540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 541 { 542 u32 header; 543 int ttl; 544 u16 pos = PCI_CFG_SPACE_SIZE; 545 546 /* minimum 8 bytes per capability */ 547 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 548 549 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 550 return 0; 551 552 if (start) 553 pos = start; 554 555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 556 return 0; 557 558 /* 559 * If we have no capabilities, this is indicated by cap ID, 560 * cap version and next pointer all being 0. 561 */ 562 if (header == 0) 563 return 0; 564 565 while (ttl-- > 0) { 566 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 567 return pos; 568 569 pos = PCI_EXT_CAP_NEXT(header); 570 if (pos < PCI_CFG_SPACE_SIZE) 571 break; 572 573 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 574 break; 575 } 576 577 return 0; 578 } 579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 580 581 /** 582 * pci_find_ext_capability - Find an extended capability 583 * @dev: PCI device to query 584 * @cap: capability code 585 * 586 * Returns the address of the requested extended capability structure 587 * within the device's PCI configuration space or 0 if the device does 588 * not support it. Possible values for @cap include: 589 * 590 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 591 * %PCI_EXT_CAP_ID_VC Virtual Channel 592 * %PCI_EXT_CAP_ID_DSN Device Serial Number 593 * %PCI_EXT_CAP_ID_PWR Power Budgeting 594 */ 595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 596 { 597 return pci_find_next_ext_capability(dev, 0, cap); 598 } 599 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 600 601 /** 602 * pci_get_dsn - Read and return the 8-byte Device Serial Number 603 * @dev: PCI device to query 604 * 605 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 606 * Number. 607 * 608 * Returns the DSN, or zero if the capability does not exist. 609 */ 610 u64 pci_get_dsn(struct pci_dev *dev) 611 { 612 u32 dword; 613 u64 dsn; 614 int pos; 615 616 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 617 if (!pos) 618 return 0; 619 620 /* 621 * The Device Serial Number is two dwords offset 4 bytes from the 622 * capability position. The specification says that the first dword is 623 * the lower half, and the second dword is the upper half. 624 */ 625 pos += 4; 626 pci_read_config_dword(dev, pos, &dword); 627 dsn = (u64)dword; 628 pci_read_config_dword(dev, pos + 4, &dword); 629 dsn |= ((u64)dword) << 32; 630 631 return dsn; 632 } 633 EXPORT_SYMBOL_GPL(pci_get_dsn); 634 635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 636 { 637 int rc, ttl = PCI_FIND_CAP_TTL; 638 u8 cap, mask; 639 640 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 641 mask = HT_3BIT_CAP_MASK; 642 else 643 mask = HT_5BIT_CAP_MASK; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 646 PCI_CAP_ID_HT, &ttl); 647 while (pos) { 648 rc = pci_read_config_byte(dev, pos + 3, &cap); 649 if (rc != PCIBIOS_SUCCESSFUL) 650 return 0; 651 652 if ((cap & mask) == ht_cap) 653 return pos; 654 655 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 656 pos + PCI_CAP_LIST_NEXT, 657 PCI_CAP_ID_HT, &ttl); 658 } 659 660 return 0; 661 } 662 663 /** 664 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 665 * @dev: PCI device to query 666 * @pos: Position from which to continue searching 667 * @ht_cap: HyperTransport capability code 668 * 669 * To be used in conjunction with pci_find_ht_capability() to search for 670 * all capabilities matching @ht_cap. @pos should always be a value returned 671 * from pci_find_ht_capability(). 672 * 673 * NB. To be 100% safe against broken PCI devices, the caller should take 674 * steps to avoid an infinite loop. 675 */ 676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 677 { 678 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 679 } 680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 681 682 /** 683 * pci_find_ht_capability - query a device's HyperTransport capabilities 684 * @dev: PCI device to query 685 * @ht_cap: HyperTransport capability code 686 * 687 * Tell if a device supports a given HyperTransport capability. 688 * Returns an address within the device's PCI configuration space 689 * or 0 in case the device does not support the request capability. 690 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 691 * which has a HyperTransport capability matching @ht_cap. 692 */ 693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 694 { 695 u8 pos; 696 697 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 698 if (pos) 699 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 700 701 return pos; 702 } 703 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 704 705 /** 706 * pci_find_vsec_capability - Find a vendor-specific extended capability 707 * @dev: PCI device to query 708 * @vendor: Vendor ID for which capability is defined 709 * @cap: Vendor-specific capability ID 710 * 711 * If @dev has Vendor ID @vendor, search for a VSEC capability with 712 * VSEC ID @cap. If found, return the capability offset in 713 * config space; otherwise return 0. 714 */ 715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 716 { 717 u16 vsec = 0; 718 u32 header; 719 720 if (vendor != dev->vendor) 721 return 0; 722 723 while ((vsec = pci_find_next_ext_capability(dev, vsec, 724 PCI_EXT_CAP_ID_VNDR))) { 725 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 726 &header) == PCIBIOS_SUCCESSFUL && 727 PCI_VNDR_HEADER_ID(header) == cap) 728 return vsec; 729 } 730 731 return 0; 732 } 733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 734 735 /** 736 * pci_find_dvsec_capability - Find DVSEC for vendor 737 * @dev: PCI device to query 738 * @vendor: Vendor ID to match for the DVSEC 739 * @dvsec: Designated Vendor-specific capability ID 740 * 741 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 742 * offset in config space; otherwise return 0. 743 */ 744 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 745 { 746 int pos; 747 748 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 749 if (!pos) 750 return 0; 751 752 while (pos) { 753 u16 v, id; 754 755 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 756 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 757 if (vendor == v && dvsec == id) 758 return pos; 759 760 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 761 } 762 763 return 0; 764 } 765 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 766 767 /** 768 * pci_find_parent_resource - return resource region of parent bus of given 769 * region 770 * @dev: PCI device structure contains resources to be searched 771 * @res: child resource record for which parent is sought 772 * 773 * For given resource region of given device, return the resource region of 774 * parent bus the given region is contained in. 775 */ 776 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 777 struct resource *res) 778 { 779 const struct pci_bus *bus = dev->bus; 780 struct resource *r; 781 int i; 782 783 pci_bus_for_each_resource(bus, r, i) { 784 if (!r) 785 continue; 786 if (resource_contains(r, res)) { 787 788 /* 789 * If the window is prefetchable but the BAR is 790 * not, the allocator made a mistake. 791 */ 792 if (r->flags & IORESOURCE_PREFETCH && 793 !(res->flags & IORESOURCE_PREFETCH)) 794 return NULL; 795 796 /* 797 * If we're below a transparent bridge, there may 798 * be both a positively-decoded aperture and a 799 * subtractively-decoded region that contain the BAR. 800 * We want the positively-decoded one, so this depends 801 * on pci_bus_for_each_resource() giving us those 802 * first. 803 */ 804 return r; 805 } 806 } 807 return NULL; 808 } 809 EXPORT_SYMBOL(pci_find_parent_resource); 810 811 /** 812 * pci_find_resource - Return matching PCI device resource 813 * @dev: PCI device to query 814 * @res: Resource to look for 815 * 816 * Goes over standard PCI resources (BARs) and checks if the given resource 817 * is partially or fully contained in any of them. In that case the 818 * matching resource is returned, %NULL otherwise. 819 */ 820 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 821 { 822 int i; 823 824 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 825 struct resource *r = &dev->resource[i]; 826 827 if (r->start && resource_contains(r, res)) 828 return r; 829 } 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(pci_find_resource); 834 835 /** 836 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 837 * @dev: the PCI device to operate on 838 * @pos: config space offset of status word 839 * @mask: mask of bit(s) to care about in status word 840 * 841 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 842 */ 843 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 844 { 845 int i; 846 847 /* Wait for Transaction Pending bit clean */ 848 for (i = 0; i < 4; i++) { 849 u16 status; 850 if (i) 851 msleep((1 << (i - 1)) * 100); 852 853 pci_read_config_word(dev, pos, &status); 854 if (!(status & mask)) 855 return 1; 856 } 857 858 return 0; 859 } 860 861 static int pci_acs_enable; 862 863 /** 864 * pci_request_acs - ask for ACS to be enabled if supported 865 */ 866 void pci_request_acs(void) 867 { 868 pci_acs_enable = 1; 869 } 870 871 static const char *disable_acs_redir_param; 872 873 /** 874 * pci_disable_acs_redir - disable ACS redirect capabilities 875 * @dev: the PCI device 876 * 877 * For only devices specified in the disable_acs_redir parameter. 878 */ 879 static void pci_disable_acs_redir(struct pci_dev *dev) 880 { 881 int ret = 0; 882 const char *p; 883 int pos; 884 u16 ctrl; 885 886 if (!disable_acs_redir_param) 887 return; 888 889 p = disable_acs_redir_param; 890 while (*p) { 891 ret = pci_dev_str_match(dev, p, &p); 892 if (ret < 0) { 893 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 894 disable_acs_redir_param); 895 896 break; 897 } else if (ret == 1) { 898 /* Found a match */ 899 break; 900 } 901 902 if (*p != ';' && *p != ',') { 903 /* End of param or invalid format */ 904 break; 905 } 906 p++; 907 } 908 909 if (ret != 1) 910 return; 911 912 if (!pci_dev_specific_disable_acs_redir(dev)) 913 return; 914 915 pos = dev->acs_cap; 916 if (!pos) { 917 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 918 return; 919 } 920 921 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 922 923 /* P2P Request & Completion Redirect */ 924 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 925 926 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 927 928 pci_info(dev, "disabled ACS redirect\n"); 929 } 930 931 /** 932 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 933 * @dev: the PCI device 934 */ 935 static void pci_std_enable_acs(struct pci_dev *dev) 936 { 937 int pos; 938 u16 cap; 939 u16 ctrl; 940 941 pos = dev->acs_cap; 942 if (!pos) 943 return; 944 945 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 946 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 947 948 /* Source Validation */ 949 ctrl |= (cap & PCI_ACS_SV); 950 951 /* P2P Request Redirect */ 952 ctrl |= (cap & PCI_ACS_RR); 953 954 /* P2P Completion Redirect */ 955 ctrl |= (cap & PCI_ACS_CR); 956 957 /* Upstream Forwarding */ 958 ctrl |= (cap & PCI_ACS_UF); 959 960 /* Enable Translation Blocking for external devices and noats */ 961 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 962 ctrl |= (cap & PCI_ACS_TB); 963 964 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 965 } 966 967 /** 968 * pci_enable_acs - enable ACS if hardware support it 969 * @dev: the PCI device 970 */ 971 static void pci_enable_acs(struct pci_dev *dev) 972 { 973 if (!pci_acs_enable) 974 goto disable_acs_redir; 975 976 if (!pci_dev_specific_enable_acs(dev)) 977 goto disable_acs_redir; 978 979 pci_std_enable_acs(dev); 980 981 disable_acs_redir: 982 /* 983 * Note: pci_disable_acs_redir() must be called even if ACS was not 984 * enabled by the kernel because it may have been enabled by 985 * platform firmware. So if we are told to disable it, we should 986 * always disable it after setting the kernel's default 987 * preferences. 988 */ 989 pci_disable_acs_redir(dev); 990 } 991 992 /** 993 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 994 * @dev: PCI device to have its BARs restored 995 * 996 * Restore the BAR values for a given device, so as to make it 997 * accessible by its driver. 998 */ 999 static void pci_restore_bars(struct pci_dev *dev) 1000 { 1001 int i; 1002 1003 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1004 pci_update_resource(dev, i); 1005 } 1006 1007 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1008 { 1009 if (pci_use_mid_pm()) 1010 return true; 1011 1012 return acpi_pci_power_manageable(dev); 1013 } 1014 1015 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1016 pci_power_t t) 1017 { 1018 if (pci_use_mid_pm()) 1019 return mid_pci_set_power_state(dev, t); 1020 1021 return acpi_pci_set_power_state(dev, t); 1022 } 1023 1024 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1025 { 1026 if (pci_use_mid_pm()) 1027 return mid_pci_get_power_state(dev); 1028 1029 return acpi_pci_get_power_state(dev); 1030 } 1031 1032 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1033 { 1034 if (!pci_use_mid_pm()) 1035 acpi_pci_refresh_power_state(dev); 1036 } 1037 1038 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1039 { 1040 if (pci_use_mid_pm()) 1041 return PCI_POWER_ERROR; 1042 1043 return acpi_pci_choose_state(dev); 1044 } 1045 1046 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1047 { 1048 if (pci_use_mid_pm()) 1049 return PCI_POWER_ERROR; 1050 1051 return acpi_pci_wakeup(dev, enable); 1052 } 1053 1054 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1055 { 1056 if (pci_use_mid_pm()) 1057 return false; 1058 1059 return acpi_pci_need_resume(dev); 1060 } 1061 1062 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1063 { 1064 if (pci_use_mid_pm()) 1065 return false; 1066 1067 return acpi_pci_bridge_d3(dev); 1068 } 1069 1070 /** 1071 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 1072 * given PCI device 1073 * @dev: PCI device to handle. 1074 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1075 * 1076 * RETURN VALUE: 1077 * -EINVAL if the requested state is invalid. 1078 * -EIO if device does not support PCI PM or its PM capabilities register has a 1079 * wrong version, or device doesn't support the requested state. 1080 * 0 if device already is in the requested state. 1081 * 0 if device's power state has been successfully changed. 1082 */ 1083 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1084 { 1085 u16 pmcsr; 1086 bool need_restore = false; 1087 1088 /* Check if we're already there */ 1089 if (dev->current_state == state) 1090 return 0; 1091 1092 if (!dev->pm_cap) 1093 return -EIO; 1094 1095 if (state < PCI_D0 || state > PCI_D3hot) 1096 return -EINVAL; 1097 1098 /* 1099 * Validate transition: We can enter D0 from any state, but if 1100 * we're already in a low-power state, we can only go deeper. E.g., 1101 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1102 * we'd have to go from D3 to D0, then to D1. 1103 */ 1104 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1105 && dev->current_state > state) { 1106 pci_err(dev, "invalid power transition (from %s to %s)\n", 1107 pci_power_name(dev->current_state), 1108 pci_power_name(state)); 1109 return -EINVAL; 1110 } 1111 1112 /* Check if this device supports the desired state */ 1113 if ((state == PCI_D1 && !dev->d1_support) 1114 || (state == PCI_D2 && !dev->d2_support)) 1115 return -EIO; 1116 1117 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1118 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1119 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1120 pci_power_name(dev->current_state), 1121 pci_power_name(state)); 1122 return -EIO; 1123 } 1124 1125 /* 1126 * If we're (effectively) in D3, force entire word to 0. 1127 * This doesn't affect PME_Status, disables PME_En, and 1128 * sets PowerState to 0. 1129 */ 1130 switch (dev->current_state) { 1131 case PCI_D0: 1132 case PCI_D1: 1133 case PCI_D2: 1134 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1135 pmcsr |= state; 1136 break; 1137 case PCI_D3hot: 1138 case PCI_D3cold: 1139 case PCI_UNKNOWN: /* Boot-up */ 1140 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1141 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1142 need_restore = true; 1143 fallthrough; /* force to D0 */ 1144 default: 1145 pmcsr = 0; 1146 break; 1147 } 1148 1149 /* Enter specified state */ 1150 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1151 1152 /* 1153 * Mandatory power management transition delays; see PCI PM 1.1 1154 * 5.6.1 table 18 1155 */ 1156 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1157 pci_dev_d3_sleep(dev); 1158 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1159 udelay(PCI_PM_D2_DELAY); 1160 1161 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1162 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1163 if (dev->current_state != state) 1164 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1165 pci_power_name(dev->current_state), 1166 pci_power_name(state)); 1167 1168 /* 1169 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1170 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1171 * from D3hot to D0 _may_ perform an internal reset, thereby 1172 * going to "D0 Uninitialized" rather than "D0 Initialized". 1173 * For example, at least some versions of the 3c905B and the 1174 * 3c556B exhibit this behaviour. 1175 * 1176 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1177 * devices in a D3hot state at boot. Consequently, we need to 1178 * restore at least the BARs so that the device will be 1179 * accessible to its driver. 1180 */ 1181 if (need_restore) 1182 pci_restore_bars(dev); 1183 1184 if (dev->bus->self) 1185 pcie_aspm_pm_state_change(dev->bus->self); 1186 1187 return 0; 1188 } 1189 1190 /** 1191 * pci_update_current_state - Read power state of given device and cache it 1192 * @dev: PCI device to handle. 1193 * @state: State to cache in case the device doesn't have the PM capability 1194 * 1195 * The power state is read from the PMCSR register, which however is 1196 * inaccessible in D3cold. The platform firmware is therefore queried first 1197 * to detect accessibility of the register. In case the platform firmware 1198 * reports an incorrect state or the device isn't power manageable by the 1199 * platform at all, we try to detect D3cold by testing accessibility of the 1200 * vendor ID in config space. 1201 */ 1202 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1203 { 1204 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1205 !pci_device_is_present(dev)) { 1206 dev->current_state = PCI_D3cold; 1207 } else if (dev->pm_cap) { 1208 u16 pmcsr; 1209 1210 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1211 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1212 } else { 1213 dev->current_state = state; 1214 } 1215 } 1216 1217 /** 1218 * pci_refresh_power_state - Refresh the given device's power state data 1219 * @dev: Target PCI device. 1220 * 1221 * Ask the platform to refresh the devices power state information and invoke 1222 * pci_update_current_state() to update its current PCI power state. 1223 */ 1224 void pci_refresh_power_state(struct pci_dev *dev) 1225 { 1226 platform_pci_refresh_power_state(dev); 1227 pci_update_current_state(dev, dev->current_state); 1228 } 1229 1230 /** 1231 * pci_platform_power_transition - Use platform to change device power state 1232 * @dev: PCI device to handle. 1233 * @state: State to put the device into. 1234 */ 1235 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1236 { 1237 int error; 1238 1239 error = platform_pci_set_power_state(dev, state); 1240 if (!error) 1241 pci_update_current_state(dev, state); 1242 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1243 dev->current_state = PCI_D0; 1244 1245 return error; 1246 } 1247 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1248 1249 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1250 { 1251 pm_request_resume(&pci_dev->dev); 1252 return 0; 1253 } 1254 1255 /** 1256 * pci_resume_bus - Walk given bus and runtime resume devices on it 1257 * @bus: Top bus of the subtree to walk. 1258 */ 1259 void pci_resume_bus(struct pci_bus *bus) 1260 { 1261 if (bus) 1262 pci_walk_bus(bus, pci_resume_one, NULL); 1263 } 1264 1265 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1266 { 1267 int delay = 1; 1268 u32 id; 1269 1270 /* 1271 * After reset, the device should not silently discard config 1272 * requests, but it may still indicate that it needs more time by 1273 * responding to them with CRS completions. The Root Port will 1274 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1275 * the read (except when CRS SV is enabled and the read was for the 1276 * Vendor ID; in that case it synthesizes 0x0001 data). 1277 * 1278 * Wait for the device to return a non-CRS completion. Read the 1279 * Command register instead of Vendor ID so we don't have to 1280 * contend with the CRS SV value. 1281 */ 1282 pci_read_config_dword(dev, PCI_COMMAND, &id); 1283 while (PCI_POSSIBLE_ERROR(id)) { 1284 if (delay > timeout) { 1285 pci_warn(dev, "not ready %dms after %s; giving up\n", 1286 delay - 1, reset_type); 1287 return -ENOTTY; 1288 } 1289 1290 if (delay > 1000) 1291 pci_info(dev, "not ready %dms after %s; waiting\n", 1292 delay - 1, reset_type); 1293 1294 msleep(delay); 1295 delay *= 2; 1296 pci_read_config_dword(dev, PCI_COMMAND, &id); 1297 } 1298 1299 if (delay > 1000) 1300 pci_info(dev, "ready %dms after %s\n", delay - 1, 1301 reset_type); 1302 1303 return 0; 1304 } 1305 1306 /** 1307 * pci_power_up - Put the given device into D0 1308 * @dev: PCI device to power up 1309 */ 1310 int pci_power_up(struct pci_dev *dev) 1311 { 1312 pci_platform_power_transition(dev, PCI_D0); 1313 1314 /* 1315 * Mandatory power management transition delays are handled in 1316 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1317 * corresponding bridge. 1318 */ 1319 if (dev->runtime_d3cold) { 1320 /* 1321 * When powering on a bridge from D3cold, the whole hierarchy 1322 * may be powered on into D0uninitialized state, resume them to 1323 * give them a chance to suspend again 1324 */ 1325 pci_resume_bus(dev->subordinate); 1326 } 1327 1328 return pci_raw_set_power_state(dev, PCI_D0); 1329 } 1330 1331 /** 1332 * __pci_dev_set_current_state - Set current state of a PCI device 1333 * @dev: Device to handle 1334 * @data: pointer to state to be set 1335 */ 1336 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1337 { 1338 pci_power_t state = *(pci_power_t *)data; 1339 1340 dev->current_state = state; 1341 return 0; 1342 } 1343 1344 /** 1345 * pci_bus_set_current_state - Walk given bus and set current state of devices 1346 * @bus: Top bus of the subtree to walk. 1347 * @state: state to be set 1348 */ 1349 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1350 { 1351 if (bus) 1352 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1353 } 1354 1355 /** 1356 * pci_set_power_state - Set the power state of a PCI device 1357 * @dev: PCI device to handle. 1358 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1359 * 1360 * Transition a device to a new power state, using the platform firmware and/or 1361 * the device's PCI PM registers. 1362 * 1363 * RETURN VALUE: 1364 * -EINVAL if the requested state is invalid. 1365 * -EIO if device does not support PCI PM or its PM capabilities register has a 1366 * wrong version, or device doesn't support the requested state. 1367 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1368 * 0 if device already is in the requested state. 1369 * 0 if the transition is to D3 but D3 is not supported. 1370 * 0 if device's power state has been successfully changed. 1371 */ 1372 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1373 { 1374 int error; 1375 1376 /* Bound the state we're entering */ 1377 if (state > PCI_D3cold) 1378 state = PCI_D3cold; 1379 else if (state < PCI_D0) 1380 state = PCI_D0; 1381 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1382 1383 /* 1384 * If the device or the parent bridge do not support PCI 1385 * PM, ignore the request if we're doing anything other 1386 * than putting it into D0 (which would only happen on 1387 * boot). 1388 */ 1389 return 0; 1390 1391 /* Check if we're already there */ 1392 if (dev->current_state == state) 1393 return 0; 1394 1395 if (state == PCI_D0) 1396 return pci_power_up(dev); 1397 1398 /* 1399 * This device is quirked not to be put into D3, so don't put it in 1400 * D3 1401 */ 1402 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1403 return 0; 1404 1405 /* 1406 * To put device in D3cold, we put device into D3hot in native 1407 * way, then put device into D3cold with platform ops 1408 */ 1409 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1410 PCI_D3hot : state); 1411 1412 if (pci_platform_power_transition(dev, state)) 1413 return error; 1414 1415 /* Powering off a bridge may power off the whole hierarchy */ 1416 if (state == PCI_D3cold) 1417 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1418 1419 return 0; 1420 } 1421 EXPORT_SYMBOL(pci_set_power_state); 1422 1423 #define PCI_EXP_SAVE_REGS 7 1424 1425 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1426 u16 cap, bool extended) 1427 { 1428 struct pci_cap_saved_state *tmp; 1429 1430 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1431 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1432 return tmp; 1433 } 1434 return NULL; 1435 } 1436 1437 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1438 { 1439 return _pci_find_saved_cap(dev, cap, false); 1440 } 1441 1442 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1443 { 1444 return _pci_find_saved_cap(dev, cap, true); 1445 } 1446 1447 static int pci_save_pcie_state(struct pci_dev *dev) 1448 { 1449 int i = 0; 1450 struct pci_cap_saved_state *save_state; 1451 u16 *cap; 1452 1453 if (!pci_is_pcie(dev)) 1454 return 0; 1455 1456 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1457 if (!save_state) { 1458 pci_err(dev, "buffer not found in %s\n", __func__); 1459 return -ENOMEM; 1460 } 1461 1462 cap = (u16 *)&save_state->cap.data[0]; 1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1466 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1467 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1468 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1469 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1470 1471 return 0; 1472 } 1473 1474 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1475 { 1476 #ifdef CONFIG_PCIEASPM 1477 struct pci_dev *bridge; 1478 u32 ctl; 1479 1480 bridge = pci_upstream_bridge(dev); 1481 if (bridge && bridge->ltr_path) { 1482 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1483 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1484 pci_dbg(bridge, "re-enabling LTR\n"); 1485 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1486 PCI_EXP_DEVCTL2_LTR_EN); 1487 } 1488 } 1489 #endif 1490 } 1491 1492 static void pci_restore_pcie_state(struct pci_dev *dev) 1493 { 1494 int i = 0; 1495 struct pci_cap_saved_state *save_state; 1496 u16 *cap; 1497 1498 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1499 if (!save_state) 1500 return; 1501 1502 /* 1503 * Downstream ports reset the LTR enable bit when link goes down. 1504 * Check and re-configure the bit here before restoring device. 1505 * PCIe r5.0, sec 7.5.3.16. 1506 */ 1507 pci_bridge_reconfigure_ltr(dev); 1508 1509 cap = (u16 *)&save_state->cap.data[0]; 1510 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1511 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1512 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1513 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1514 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1515 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1516 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1517 } 1518 1519 static int pci_save_pcix_state(struct pci_dev *dev) 1520 { 1521 int pos; 1522 struct pci_cap_saved_state *save_state; 1523 1524 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1525 if (!pos) 1526 return 0; 1527 1528 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1529 if (!save_state) { 1530 pci_err(dev, "buffer not found in %s\n", __func__); 1531 return -ENOMEM; 1532 } 1533 1534 pci_read_config_word(dev, pos + PCI_X_CMD, 1535 (u16 *)save_state->cap.data); 1536 1537 return 0; 1538 } 1539 1540 static void pci_restore_pcix_state(struct pci_dev *dev) 1541 { 1542 int i = 0, pos; 1543 struct pci_cap_saved_state *save_state; 1544 u16 *cap; 1545 1546 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1547 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1548 if (!save_state || !pos) 1549 return; 1550 cap = (u16 *)&save_state->cap.data[0]; 1551 1552 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1553 } 1554 1555 static void pci_save_ltr_state(struct pci_dev *dev) 1556 { 1557 int ltr; 1558 struct pci_cap_saved_state *save_state; 1559 u32 *cap; 1560 1561 if (!pci_is_pcie(dev)) 1562 return; 1563 1564 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1565 if (!ltr) 1566 return; 1567 1568 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1569 if (!save_state) { 1570 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1571 return; 1572 } 1573 1574 /* Some broken devices only support dword access to LTR */ 1575 cap = &save_state->cap.data[0]; 1576 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1577 } 1578 1579 static void pci_restore_ltr_state(struct pci_dev *dev) 1580 { 1581 struct pci_cap_saved_state *save_state; 1582 int ltr; 1583 u32 *cap; 1584 1585 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1586 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1587 if (!save_state || !ltr) 1588 return; 1589 1590 /* Some broken devices only support dword access to LTR */ 1591 cap = &save_state->cap.data[0]; 1592 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1593 } 1594 1595 /** 1596 * pci_save_state - save the PCI configuration space of a device before 1597 * suspending 1598 * @dev: PCI device that we're dealing with 1599 */ 1600 int pci_save_state(struct pci_dev *dev) 1601 { 1602 int i; 1603 /* XXX: 100% dword access ok here? */ 1604 for (i = 0; i < 16; i++) { 1605 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1606 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1607 i * 4, dev->saved_config_space[i]); 1608 } 1609 dev->state_saved = true; 1610 1611 i = pci_save_pcie_state(dev); 1612 if (i != 0) 1613 return i; 1614 1615 i = pci_save_pcix_state(dev); 1616 if (i != 0) 1617 return i; 1618 1619 pci_save_ltr_state(dev); 1620 pci_save_dpc_state(dev); 1621 pci_save_aer_state(dev); 1622 pci_save_ptm_state(dev); 1623 return pci_save_vc_state(dev); 1624 } 1625 EXPORT_SYMBOL(pci_save_state); 1626 1627 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1628 u32 saved_val, int retry, bool force) 1629 { 1630 u32 val; 1631 1632 pci_read_config_dword(pdev, offset, &val); 1633 if (!force && val == saved_val) 1634 return; 1635 1636 for (;;) { 1637 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1638 offset, val, saved_val); 1639 pci_write_config_dword(pdev, offset, saved_val); 1640 if (retry-- <= 0) 1641 return; 1642 1643 pci_read_config_dword(pdev, offset, &val); 1644 if (val == saved_val) 1645 return; 1646 1647 mdelay(1); 1648 } 1649 } 1650 1651 static void pci_restore_config_space_range(struct pci_dev *pdev, 1652 int start, int end, int retry, 1653 bool force) 1654 { 1655 int index; 1656 1657 for (index = end; index >= start; index--) 1658 pci_restore_config_dword(pdev, 4 * index, 1659 pdev->saved_config_space[index], 1660 retry, force); 1661 } 1662 1663 static void pci_restore_config_space(struct pci_dev *pdev) 1664 { 1665 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1666 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1667 /* Restore BARs before the command register. */ 1668 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1669 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1670 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1671 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1672 1673 /* 1674 * Force rewriting of prefetch registers to avoid S3 resume 1675 * issues on Intel PCI bridges that occur when these 1676 * registers are not explicitly written. 1677 */ 1678 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1679 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1680 } else { 1681 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1682 } 1683 } 1684 1685 static void pci_restore_rebar_state(struct pci_dev *pdev) 1686 { 1687 unsigned int pos, nbars, i; 1688 u32 ctrl; 1689 1690 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1691 if (!pos) 1692 return; 1693 1694 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1695 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1696 PCI_REBAR_CTRL_NBAR_SHIFT; 1697 1698 for (i = 0; i < nbars; i++, pos += 8) { 1699 struct resource *res; 1700 int bar_idx, size; 1701 1702 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1703 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1704 res = pdev->resource + bar_idx; 1705 size = pci_rebar_bytes_to_size(resource_size(res)); 1706 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1707 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1708 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1709 } 1710 } 1711 1712 /** 1713 * pci_restore_state - Restore the saved state of a PCI device 1714 * @dev: PCI device that we're dealing with 1715 */ 1716 void pci_restore_state(struct pci_dev *dev) 1717 { 1718 if (!dev->state_saved) 1719 return; 1720 1721 /* 1722 * Restore max latencies (in the LTR capability) before enabling 1723 * LTR itself (in the PCIe capability). 1724 */ 1725 pci_restore_ltr_state(dev); 1726 1727 pci_restore_pcie_state(dev); 1728 pci_restore_pasid_state(dev); 1729 pci_restore_pri_state(dev); 1730 pci_restore_ats_state(dev); 1731 pci_restore_vc_state(dev); 1732 pci_restore_rebar_state(dev); 1733 pci_restore_dpc_state(dev); 1734 pci_restore_ptm_state(dev); 1735 1736 pci_aer_clear_status(dev); 1737 pci_restore_aer_state(dev); 1738 1739 pci_restore_config_space(dev); 1740 1741 pci_restore_pcix_state(dev); 1742 pci_restore_msi_state(dev); 1743 1744 /* Restore ACS and IOV configuration state */ 1745 pci_enable_acs(dev); 1746 pci_restore_iov_state(dev); 1747 1748 dev->state_saved = false; 1749 } 1750 EXPORT_SYMBOL(pci_restore_state); 1751 1752 struct pci_saved_state { 1753 u32 config_space[16]; 1754 struct pci_cap_saved_data cap[]; 1755 }; 1756 1757 /** 1758 * pci_store_saved_state - Allocate and return an opaque struct containing 1759 * the device saved state. 1760 * @dev: PCI device that we're dealing with 1761 * 1762 * Return NULL if no state or error. 1763 */ 1764 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1765 { 1766 struct pci_saved_state *state; 1767 struct pci_cap_saved_state *tmp; 1768 struct pci_cap_saved_data *cap; 1769 size_t size; 1770 1771 if (!dev->state_saved) 1772 return NULL; 1773 1774 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1775 1776 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1777 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1778 1779 state = kzalloc(size, GFP_KERNEL); 1780 if (!state) 1781 return NULL; 1782 1783 memcpy(state->config_space, dev->saved_config_space, 1784 sizeof(state->config_space)); 1785 1786 cap = state->cap; 1787 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1788 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1789 memcpy(cap, &tmp->cap, len); 1790 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1791 } 1792 /* Empty cap_save terminates list */ 1793 1794 return state; 1795 } 1796 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1797 1798 /** 1799 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1800 * @dev: PCI device that we're dealing with 1801 * @state: Saved state returned from pci_store_saved_state() 1802 */ 1803 int pci_load_saved_state(struct pci_dev *dev, 1804 struct pci_saved_state *state) 1805 { 1806 struct pci_cap_saved_data *cap; 1807 1808 dev->state_saved = false; 1809 1810 if (!state) 1811 return 0; 1812 1813 memcpy(dev->saved_config_space, state->config_space, 1814 sizeof(state->config_space)); 1815 1816 cap = state->cap; 1817 while (cap->size) { 1818 struct pci_cap_saved_state *tmp; 1819 1820 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1821 if (!tmp || tmp->cap.size != cap->size) 1822 return -EINVAL; 1823 1824 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1825 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1826 sizeof(struct pci_cap_saved_data) + cap->size); 1827 } 1828 1829 dev->state_saved = true; 1830 return 0; 1831 } 1832 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1833 1834 /** 1835 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1836 * and free the memory allocated for it. 1837 * @dev: PCI device that we're dealing with 1838 * @state: Pointer to saved state returned from pci_store_saved_state() 1839 */ 1840 int pci_load_and_free_saved_state(struct pci_dev *dev, 1841 struct pci_saved_state **state) 1842 { 1843 int ret = pci_load_saved_state(dev, *state); 1844 kfree(*state); 1845 *state = NULL; 1846 return ret; 1847 } 1848 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1849 1850 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1851 { 1852 return pci_enable_resources(dev, bars); 1853 } 1854 1855 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1856 { 1857 int err; 1858 struct pci_dev *bridge; 1859 u16 cmd; 1860 u8 pin; 1861 1862 err = pci_set_power_state(dev, PCI_D0); 1863 if (err < 0 && err != -EIO) 1864 return err; 1865 1866 bridge = pci_upstream_bridge(dev); 1867 if (bridge) 1868 pcie_aspm_powersave_config_link(bridge); 1869 1870 err = pcibios_enable_device(dev, bars); 1871 if (err < 0) 1872 return err; 1873 pci_fixup_device(pci_fixup_enable, dev); 1874 1875 if (dev->msi_enabled || dev->msix_enabled) 1876 return 0; 1877 1878 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1879 if (pin) { 1880 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1881 if (cmd & PCI_COMMAND_INTX_DISABLE) 1882 pci_write_config_word(dev, PCI_COMMAND, 1883 cmd & ~PCI_COMMAND_INTX_DISABLE); 1884 } 1885 1886 return 0; 1887 } 1888 1889 /** 1890 * pci_reenable_device - Resume abandoned device 1891 * @dev: PCI device to be resumed 1892 * 1893 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1894 * to be called by normal code, write proper resume handler and use it instead. 1895 */ 1896 int pci_reenable_device(struct pci_dev *dev) 1897 { 1898 if (pci_is_enabled(dev)) 1899 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1900 return 0; 1901 } 1902 EXPORT_SYMBOL(pci_reenable_device); 1903 1904 static void pci_enable_bridge(struct pci_dev *dev) 1905 { 1906 struct pci_dev *bridge; 1907 int retval; 1908 1909 bridge = pci_upstream_bridge(dev); 1910 if (bridge) 1911 pci_enable_bridge(bridge); 1912 1913 if (pci_is_enabled(dev)) { 1914 if (!dev->is_busmaster) 1915 pci_set_master(dev); 1916 return; 1917 } 1918 1919 retval = pci_enable_device(dev); 1920 if (retval) 1921 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1922 retval); 1923 pci_set_master(dev); 1924 } 1925 1926 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1927 { 1928 struct pci_dev *bridge; 1929 int err; 1930 int i, bars = 0; 1931 1932 /* 1933 * Power state could be unknown at this point, either due to a fresh 1934 * boot or a device removal call. So get the current power state 1935 * so that things like MSI message writing will behave as expected 1936 * (e.g. if the device really is in D0 at enable time). 1937 */ 1938 pci_update_current_state(dev, dev->current_state); 1939 1940 if (atomic_inc_return(&dev->enable_cnt) > 1) 1941 return 0; /* already enabled */ 1942 1943 bridge = pci_upstream_bridge(dev); 1944 if (bridge) 1945 pci_enable_bridge(bridge); 1946 1947 /* only skip sriov related */ 1948 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1949 if (dev->resource[i].flags & flags) 1950 bars |= (1 << i); 1951 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1952 if (dev->resource[i].flags & flags) 1953 bars |= (1 << i); 1954 1955 err = do_pci_enable_device(dev, bars); 1956 if (err < 0) 1957 atomic_dec(&dev->enable_cnt); 1958 return err; 1959 } 1960 1961 /** 1962 * pci_enable_device_io - Initialize a device for use with IO space 1963 * @dev: PCI device to be initialized 1964 * 1965 * Initialize device before it's used by a driver. Ask low-level code 1966 * to enable I/O resources. Wake up the device if it was suspended. 1967 * Beware, this function can fail. 1968 */ 1969 int pci_enable_device_io(struct pci_dev *dev) 1970 { 1971 return pci_enable_device_flags(dev, IORESOURCE_IO); 1972 } 1973 EXPORT_SYMBOL(pci_enable_device_io); 1974 1975 /** 1976 * pci_enable_device_mem - Initialize a device for use with Memory space 1977 * @dev: PCI device to be initialized 1978 * 1979 * Initialize device before it's used by a driver. Ask low-level code 1980 * to enable Memory resources. Wake up the device if it was suspended. 1981 * Beware, this function can fail. 1982 */ 1983 int pci_enable_device_mem(struct pci_dev *dev) 1984 { 1985 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1986 } 1987 EXPORT_SYMBOL(pci_enable_device_mem); 1988 1989 /** 1990 * pci_enable_device - Initialize device before it's used by a driver. 1991 * @dev: PCI device to be initialized 1992 * 1993 * Initialize device before it's used by a driver. Ask low-level code 1994 * to enable I/O and memory. Wake up the device if it was suspended. 1995 * Beware, this function can fail. 1996 * 1997 * Note we don't actually enable the device many times if we call 1998 * this function repeatedly (we just increment the count). 1999 */ 2000 int pci_enable_device(struct pci_dev *dev) 2001 { 2002 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2003 } 2004 EXPORT_SYMBOL(pci_enable_device); 2005 2006 /* 2007 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2008 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2009 * there's no need to track it separately. pci_devres is initialized 2010 * when a device is enabled using managed PCI device enable interface. 2011 */ 2012 struct pci_devres { 2013 unsigned int enabled:1; 2014 unsigned int pinned:1; 2015 unsigned int orig_intx:1; 2016 unsigned int restore_intx:1; 2017 unsigned int mwi:1; 2018 u32 region_mask; 2019 }; 2020 2021 static void pcim_release(struct device *gendev, void *res) 2022 { 2023 struct pci_dev *dev = to_pci_dev(gendev); 2024 struct pci_devres *this = res; 2025 int i; 2026 2027 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2028 if (this->region_mask & (1 << i)) 2029 pci_release_region(dev, i); 2030 2031 if (this->mwi) 2032 pci_clear_mwi(dev); 2033 2034 if (this->restore_intx) 2035 pci_intx(dev, this->orig_intx); 2036 2037 if (this->enabled && !this->pinned) 2038 pci_disable_device(dev); 2039 } 2040 2041 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2042 { 2043 struct pci_devres *dr, *new_dr; 2044 2045 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2046 if (dr) 2047 return dr; 2048 2049 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2050 if (!new_dr) 2051 return NULL; 2052 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2053 } 2054 2055 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2056 { 2057 if (pci_is_managed(pdev)) 2058 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2059 return NULL; 2060 } 2061 2062 /** 2063 * pcim_enable_device - Managed pci_enable_device() 2064 * @pdev: PCI device to be initialized 2065 * 2066 * Managed pci_enable_device(). 2067 */ 2068 int pcim_enable_device(struct pci_dev *pdev) 2069 { 2070 struct pci_devres *dr; 2071 int rc; 2072 2073 dr = get_pci_dr(pdev); 2074 if (unlikely(!dr)) 2075 return -ENOMEM; 2076 if (dr->enabled) 2077 return 0; 2078 2079 rc = pci_enable_device(pdev); 2080 if (!rc) { 2081 pdev->is_managed = 1; 2082 dr->enabled = 1; 2083 } 2084 return rc; 2085 } 2086 EXPORT_SYMBOL(pcim_enable_device); 2087 2088 /** 2089 * pcim_pin_device - Pin managed PCI device 2090 * @pdev: PCI device to pin 2091 * 2092 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2093 * driver detach. @pdev must have been enabled with 2094 * pcim_enable_device(). 2095 */ 2096 void pcim_pin_device(struct pci_dev *pdev) 2097 { 2098 struct pci_devres *dr; 2099 2100 dr = find_pci_dr(pdev); 2101 WARN_ON(!dr || !dr->enabled); 2102 if (dr) 2103 dr->pinned = 1; 2104 } 2105 EXPORT_SYMBOL(pcim_pin_device); 2106 2107 /* 2108 * pcibios_device_add - provide arch specific hooks when adding device dev 2109 * @dev: the PCI device being added 2110 * 2111 * Permits the platform to provide architecture specific functionality when 2112 * devices are added. This is the default implementation. Architecture 2113 * implementations can override this. 2114 */ 2115 int __weak pcibios_device_add(struct pci_dev *dev) 2116 { 2117 return 0; 2118 } 2119 2120 /** 2121 * pcibios_release_device - provide arch specific hooks when releasing 2122 * device dev 2123 * @dev: the PCI device being released 2124 * 2125 * Permits the platform to provide architecture specific functionality when 2126 * devices are released. This is the default implementation. Architecture 2127 * implementations can override this. 2128 */ 2129 void __weak pcibios_release_device(struct pci_dev *dev) {} 2130 2131 /** 2132 * pcibios_disable_device - disable arch specific PCI resources for device dev 2133 * @dev: the PCI device to disable 2134 * 2135 * Disables architecture specific PCI resources for the device. This 2136 * is the default implementation. Architecture implementations can 2137 * override this. 2138 */ 2139 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2140 2141 /** 2142 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2143 * @irq: ISA IRQ to penalize 2144 * @active: IRQ active or not 2145 * 2146 * Permits the platform to provide architecture-specific functionality when 2147 * penalizing ISA IRQs. This is the default implementation. Architecture 2148 * implementations can override this. 2149 */ 2150 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2151 2152 static void do_pci_disable_device(struct pci_dev *dev) 2153 { 2154 u16 pci_command; 2155 2156 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2157 if (pci_command & PCI_COMMAND_MASTER) { 2158 pci_command &= ~PCI_COMMAND_MASTER; 2159 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2160 } 2161 2162 pcibios_disable_device(dev); 2163 } 2164 2165 /** 2166 * pci_disable_enabled_device - Disable device without updating enable_cnt 2167 * @dev: PCI device to disable 2168 * 2169 * NOTE: This function is a backend of PCI power management routines and is 2170 * not supposed to be called drivers. 2171 */ 2172 void pci_disable_enabled_device(struct pci_dev *dev) 2173 { 2174 if (pci_is_enabled(dev)) 2175 do_pci_disable_device(dev); 2176 } 2177 2178 /** 2179 * pci_disable_device - Disable PCI device after use 2180 * @dev: PCI device to be disabled 2181 * 2182 * Signal to the system that the PCI device is not in use by the system 2183 * anymore. This only involves disabling PCI bus-mastering, if active. 2184 * 2185 * Note we don't actually disable the device until all callers of 2186 * pci_enable_device() have called pci_disable_device(). 2187 */ 2188 void pci_disable_device(struct pci_dev *dev) 2189 { 2190 struct pci_devres *dr; 2191 2192 dr = find_pci_dr(dev); 2193 if (dr) 2194 dr->enabled = 0; 2195 2196 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2197 "disabling already-disabled device"); 2198 2199 if (atomic_dec_return(&dev->enable_cnt) != 0) 2200 return; 2201 2202 do_pci_disable_device(dev); 2203 2204 dev->is_busmaster = 0; 2205 } 2206 EXPORT_SYMBOL(pci_disable_device); 2207 2208 /** 2209 * pcibios_set_pcie_reset_state - set reset state for device dev 2210 * @dev: the PCIe device reset 2211 * @state: Reset state to enter into 2212 * 2213 * Set the PCIe reset state for the device. This is the default 2214 * implementation. Architecture implementations can override this. 2215 */ 2216 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2217 enum pcie_reset_state state) 2218 { 2219 return -EINVAL; 2220 } 2221 2222 /** 2223 * pci_set_pcie_reset_state - set reset state for device dev 2224 * @dev: the PCIe device reset 2225 * @state: Reset state to enter into 2226 * 2227 * Sets the PCI reset state for the device. 2228 */ 2229 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2230 { 2231 return pcibios_set_pcie_reset_state(dev, state); 2232 } 2233 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2234 2235 #ifdef CONFIG_PCIEAER 2236 void pcie_clear_device_status(struct pci_dev *dev) 2237 { 2238 u16 sta; 2239 2240 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2241 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2242 } 2243 #endif 2244 2245 /** 2246 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2247 * @dev: PCIe root port or event collector. 2248 */ 2249 void pcie_clear_root_pme_status(struct pci_dev *dev) 2250 { 2251 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2252 } 2253 2254 /** 2255 * pci_check_pme_status - Check if given device has generated PME. 2256 * @dev: Device to check. 2257 * 2258 * Check the PME status of the device and if set, clear it and clear PME enable 2259 * (if set). Return 'true' if PME status and PME enable were both set or 2260 * 'false' otherwise. 2261 */ 2262 bool pci_check_pme_status(struct pci_dev *dev) 2263 { 2264 int pmcsr_pos; 2265 u16 pmcsr; 2266 bool ret = false; 2267 2268 if (!dev->pm_cap) 2269 return false; 2270 2271 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2272 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2273 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2274 return false; 2275 2276 /* Clear PME status. */ 2277 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2278 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2279 /* Disable PME to avoid interrupt flood. */ 2280 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2281 ret = true; 2282 } 2283 2284 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2285 2286 return ret; 2287 } 2288 2289 /** 2290 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2291 * @dev: Device to handle. 2292 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2293 * 2294 * Check if @dev has generated PME and queue a resume request for it in that 2295 * case. 2296 */ 2297 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2298 { 2299 if (pme_poll_reset && dev->pme_poll) 2300 dev->pme_poll = false; 2301 2302 if (pci_check_pme_status(dev)) { 2303 pci_wakeup_event(dev); 2304 pm_request_resume(&dev->dev); 2305 } 2306 return 0; 2307 } 2308 2309 /** 2310 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2311 * @bus: Top bus of the subtree to walk. 2312 */ 2313 void pci_pme_wakeup_bus(struct pci_bus *bus) 2314 { 2315 if (bus) 2316 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2317 } 2318 2319 2320 /** 2321 * pci_pme_capable - check the capability of PCI device to generate PME# 2322 * @dev: PCI device to handle. 2323 * @state: PCI state from which device will issue PME#. 2324 */ 2325 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2326 { 2327 if (!dev->pm_cap) 2328 return false; 2329 2330 return !!(dev->pme_support & (1 << state)); 2331 } 2332 EXPORT_SYMBOL(pci_pme_capable); 2333 2334 static void pci_pme_list_scan(struct work_struct *work) 2335 { 2336 struct pci_pme_device *pme_dev, *n; 2337 2338 mutex_lock(&pci_pme_list_mutex); 2339 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2340 if (pme_dev->dev->pme_poll) { 2341 struct pci_dev *bridge; 2342 2343 bridge = pme_dev->dev->bus->self; 2344 /* 2345 * If bridge is in low power state, the 2346 * configuration space of subordinate devices 2347 * may be not accessible 2348 */ 2349 if (bridge && bridge->current_state != PCI_D0) 2350 continue; 2351 /* 2352 * If the device is in D3cold it should not be 2353 * polled either. 2354 */ 2355 if (pme_dev->dev->current_state == PCI_D3cold) 2356 continue; 2357 2358 pci_pme_wakeup(pme_dev->dev, NULL); 2359 } else { 2360 list_del(&pme_dev->list); 2361 kfree(pme_dev); 2362 } 2363 } 2364 if (!list_empty(&pci_pme_list)) 2365 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2366 msecs_to_jiffies(PME_TIMEOUT)); 2367 mutex_unlock(&pci_pme_list_mutex); 2368 } 2369 2370 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2371 { 2372 u16 pmcsr; 2373 2374 if (!dev->pme_support) 2375 return; 2376 2377 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2378 /* Clear PME_Status by writing 1 to it and enable PME# */ 2379 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2380 if (!enable) 2381 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2382 2383 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2384 } 2385 2386 /** 2387 * pci_pme_restore - Restore PME configuration after config space restore. 2388 * @dev: PCI device to update. 2389 */ 2390 void pci_pme_restore(struct pci_dev *dev) 2391 { 2392 u16 pmcsr; 2393 2394 if (!dev->pme_support) 2395 return; 2396 2397 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2398 if (dev->wakeup_prepared) { 2399 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2400 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2401 } else { 2402 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2403 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2404 } 2405 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2406 } 2407 2408 /** 2409 * pci_pme_active - enable or disable PCI device's PME# function 2410 * @dev: PCI device to handle. 2411 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2412 * 2413 * The caller must verify that the device is capable of generating PME# before 2414 * calling this function with @enable equal to 'true'. 2415 */ 2416 void pci_pme_active(struct pci_dev *dev, bool enable) 2417 { 2418 __pci_pme_active(dev, enable); 2419 2420 /* 2421 * PCI (as opposed to PCIe) PME requires that the device have 2422 * its PME# line hooked up correctly. Not all hardware vendors 2423 * do this, so the PME never gets delivered and the device 2424 * remains asleep. The easiest way around this is to 2425 * periodically walk the list of suspended devices and check 2426 * whether any have their PME flag set. The assumption is that 2427 * we'll wake up often enough anyway that this won't be a huge 2428 * hit, and the power savings from the devices will still be a 2429 * win. 2430 * 2431 * Although PCIe uses in-band PME message instead of PME# line 2432 * to report PME, PME does not work for some PCIe devices in 2433 * reality. For example, there are devices that set their PME 2434 * status bits, but don't really bother to send a PME message; 2435 * there are PCI Express Root Ports that don't bother to 2436 * trigger interrupts when they receive PME messages from the 2437 * devices below. So PME poll is used for PCIe devices too. 2438 */ 2439 2440 if (dev->pme_poll) { 2441 struct pci_pme_device *pme_dev; 2442 if (enable) { 2443 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2444 GFP_KERNEL); 2445 if (!pme_dev) { 2446 pci_warn(dev, "can't enable PME#\n"); 2447 return; 2448 } 2449 pme_dev->dev = dev; 2450 mutex_lock(&pci_pme_list_mutex); 2451 list_add(&pme_dev->list, &pci_pme_list); 2452 if (list_is_singular(&pci_pme_list)) 2453 queue_delayed_work(system_freezable_wq, 2454 &pci_pme_work, 2455 msecs_to_jiffies(PME_TIMEOUT)); 2456 mutex_unlock(&pci_pme_list_mutex); 2457 } else { 2458 mutex_lock(&pci_pme_list_mutex); 2459 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2460 if (pme_dev->dev == dev) { 2461 list_del(&pme_dev->list); 2462 kfree(pme_dev); 2463 break; 2464 } 2465 } 2466 mutex_unlock(&pci_pme_list_mutex); 2467 } 2468 } 2469 2470 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2471 } 2472 EXPORT_SYMBOL(pci_pme_active); 2473 2474 /** 2475 * __pci_enable_wake - enable PCI device as wakeup event source 2476 * @dev: PCI device affected 2477 * @state: PCI state from which device will issue wakeup events 2478 * @enable: True to enable event generation; false to disable 2479 * 2480 * This enables the device as a wakeup event source, or disables it. 2481 * When such events involves platform-specific hooks, those hooks are 2482 * called automatically by this routine. 2483 * 2484 * Devices with legacy power management (no standard PCI PM capabilities) 2485 * always require such platform hooks. 2486 * 2487 * RETURN VALUE: 2488 * 0 is returned on success 2489 * -EINVAL is returned if device is not supposed to wake up the system 2490 * Error code depending on the platform is returned if both the platform and 2491 * the native mechanism fail to enable the generation of wake-up events 2492 */ 2493 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2494 { 2495 int ret = 0; 2496 2497 /* 2498 * Bridges that are not power-manageable directly only signal 2499 * wakeup on behalf of subordinate devices which is set up 2500 * elsewhere, so skip them. However, bridges that are 2501 * power-manageable may signal wakeup for themselves (for example, 2502 * on a hotplug event) and they need to be covered here. 2503 */ 2504 if (!pci_power_manageable(dev)) 2505 return 0; 2506 2507 /* Don't do the same thing twice in a row for one device. */ 2508 if (!!enable == !!dev->wakeup_prepared) 2509 return 0; 2510 2511 /* 2512 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2513 * Anderson we should be doing PME# wake enable followed by ACPI wake 2514 * enable. To disable wake-up we call the platform first, for symmetry. 2515 */ 2516 2517 if (enable) { 2518 int error; 2519 2520 /* 2521 * Enable PME signaling if the device can signal PME from 2522 * D3cold regardless of whether or not it can signal PME from 2523 * the current target state, because that will allow it to 2524 * signal PME when the hierarchy above it goes into D3cold and 2525 * the device itself ends up in D3cold as a result of that. 2526 */ 2527 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2528 pci_pme_active(dev, true); 2529 else 2530 ret = 1; 2531 error = platform_pci_set_wakeup(dev, true); 2532 if (ret) 2533 ret = error; 2534 if (!ret) 2535 dev->wakeup_prepared = true; 2536 } else { 2537 platform_pci_set_wakeup(dev, false); 2538 pci_pme_active(dev, false); 2539 dev->wakeup_prepared = false; 2540 } 2541 2542 return ret; 2543 } 2544 2545 /** 2546 * pci_enable_wake - change wakeup settings for a PCI device 2547 * @pci_dev: Target device 2548 * @state: PCI state from which device will issue wakeup events 2549 * @enable: Whether or not to enable event generation 2550 * 2551 * If @enable is set, check device_may_wakeup() for the device before calling 2552 * __pci_enable_wake() for it. 2553 */ 2554 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2555 { 2556 if (enable && !device_may_wakeup(&pci_dev->dev)) 2557 return -EINVAL; 2558 2559 return __pci_enable_wake(pci_dev, state, enable); 2560 } 2561 EXPORT_SYMBOL(pci_enable_wake); 2562 2563 /** 2564 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2565 * @dev: PCI device to prepare 2566 * @enable: True to enable wake-up event generation; false to disable 2567 * 2568 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2569 * and this function allows them to set that up cleanly - pci_enable_wake() 2570 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2571 * ordering constraints. 2572 * 2573 * This function only returns error code if the device is not allowed to wake 2574 * up the system from sleep or it is not capable of generating PME# from both 2575 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2576 */ 2577 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2578 { 2579 return pci_pme_capable(dev, PCI_D3cold) ? 2580 pci_enable_wake(dev, PCI_D3cold, enable) : 2581 pci_enable_wake(dev, PCI_D3hot, enable); 2582 } 2583 EXPORT_SYMBOL(pci_wake_from_d3); 2584 2585 /** 2586 * pci_target_state - find an appropriate low power state for a given PCI dev 2587 * @dev: PCI device 2588 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2589 * 2590 * Use underlying platform code to find a supported low power state for @dev. 2591 * If the platform can't manage @dev, return the deepest state from which it 2592 * can generate wake events, based on any available PME info. 2593 */ 2594 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2595 { 2596 if (platform_pci_power_manageable(dev)) { 2597 /* 2598 * Call the platform to find the target state for the device. 2599 */ 2600 pci_power_t state = platform_pci_choose_state(dev); 2601 2602 switch (state) { 2603 case PCI_POWER_ERROR: 2604 case PCI_UNKNOWN: 2605 return PCI_D3hot; 2606 2607 case PCI_D1: 2608 case PCI_D2: 2609 if (pci_no_d1d2(dev)) 2610 return PCI_D3hot; 2611 } 2612 2613 return state; 2614 } 2615 2616 /* 2617 * If the device is in D3cold even though it's not power-manageable by 2618 * the platform, it may have been powered down by non-standard means. 2619 * Best to let it slumber. 2620 */ 2621 if (dev->current_state == PCI_D3cold) 2622 return PCI_D3cold; 2623 else if (!dev->pm_cap) 2624 return PCI_D0; 2625 2626 if (wakeup && dev->pme_support) { 2627 pci_power_t state = PCI_D3hot; 2628 2629 /* 2630 * Find the deepest state from which the device can generate 2631 * PME#. 2632 */ 2633 while (state && !(dev->pme_support & (1 << state))) 2634 state--; 2635 2636 if (state) 2637 return state; 2638 else if (dev->pme_support & 1) 2639 return PCI_D0; 2640 } 2641 2642 return PCI_D3hot; 2643 } 2644 2645 /** 2646 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2647 * into a sleep state 2648 * @dev: Device to handle. 2649 * 2650 * Choose the power state appropriate for the device depending on whether 2651 * it can wake up the system and/or is power manageable by the platform 2652 * (PCI_D3hot is the default) and put the device into that state. 2653 */ 2654 int pci_prepare_to_sleep(struct pci_dev *dev) 2655 { 2656 bool wakeup = device_may_wakeup(&dev->dev); 2657 pci_power_t target_state = pci_target_state(dev, wakeup); 2658 int error; 2659 2660 if (target_state == PCI_POWER_ERROR) 2661 return -EIO; 2662 2663 /* 2664 * There are systems (for example, Intel mobile chips since Coffee 2665 * Lake) where the power drawn while suspended can be significantly 2666 * reduced by disabling PTM on PCIe root ports as this allows the 2667 * port to enter a lower-power PM state and the SoC to reach a 2668 * lower-power idle state as a whole. 2669 */ 2670 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2671 pci_disable_ptm(dev); 2672 2673 pci_enable_wake(dev, target_state, wakeup); 2674 2675 error = pci_set_power_state(dev, target_state); 2676 2677 if (error) { 2678 pci_enable_wake(dev, target_state, false); 2679 pci_restore_ptm_state(dev); 2680 } 2681 2682 return error; 2683 } 2684 EXPORT_SYMBOL(pci_prepare_to_sleep); 2685 2686 /** 2687 * pci_back_from_sleep - turn PCI device on during system-wide transition 2688 * into working state 2689 * @dev: Device to handle. 2690 * 2691 * Disable device's system wake-up capability and put it into D0. 2692 */ 2693 int pci_back_from_sleep(struct pci_dev *dev) 2694 { 2695 int ret = pci_set_power_state(dev, PCI_D0); 2696 2697 if (ret) 2698 return ret; 2699 2700 pci_enable_wake(dev, PCI_D0, false); 2701 return 0; 2702 } 2703 EXPORT_SYMBOL(pci_back_from_sleep); 2704 2705 /** 2706 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2707 * @dev: PCI device being suspended. 2708 * 2709 * Prepare @dev to generate wake-up events at run time and put it into a low 2710 * power state. 2711 */ 2712 int pci_finish_runtime_suspend(struct pci_dev *dev) 2713 { 2714 pci_power_t target_state; 2715 int error; 2716 2717 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2718 if (target_state == PCI_POWER_ERROR) 2719 return -EIO; 2720 2721 dev->runtime_d3cold = target_state == PCI_D3cold; 2722 2723 /* 2724 * There are systems (for example, Intel mobile chips since Coffee 2725 * Lake) where the power drawn while suspended can be significantly 2726 * reduced by disabling PTM on PCIe root ports as this allows the 2727 * port to enter a lower-power PM state and the SoC to reach a 2728 * lower-power idle state as a whole. 2729 */ 2730 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2731 pci_disable_ptm(dev); 2732 2733 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2734 2735 error = pci_set_power_state(dev, target_state); 2736 2737 if (error) { 2738 pci_enable_wake(dev, target_state, false); 2739 pci_restore_ptm_state(dev); 2740 dev->runtime_d3cold = false; 2741 } 2742 2743 return error; 2744 } 2745 2746 /** 2747 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2748 * @dev: Device to check. 2749 * 2750 * Return true if the device itself is capable of generating wake-up events 2751 * (through the platform or using the native PCIe PME) or if the device supports 2752 * PME and one of its upstream bridges can generate wake-up events. 2753 */ 2754 bool pci_dev_run_wake(struct pci_dev *dev) 2755 { 2756 struct pci_bus *bus = dev->bus; 2757 2758 if (!dev->pme_support) 2759 return false; 2760 2761 /* PME-capable in principle, but not from the target power state */ 2762 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2763 return false; 2764 2765 if (device_can_wakeup(&dev->dev)) 2766 return true; 2767 2768 while (bus->parent) { 2769 struct pci_dev *bridge = bus->self; 2770 2771 if (device_can_wakeup(&bridge->dev)) 2772 return true; 2773 2774 bus = bus->parent; 2775 } 2776 2777 /* We have reached the root bus. */ 2778 if (bus->bridge) 2779 return device_can_wakeup(bus->bridge); 2780 2781 return false; 2782 } 2783 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2784 2785 /** 2786 * pci_dev_need_resume - Check if it is necessary to resume the device. 2787 * @pci_dev: Device to check. 2788 * 2789 * Return 'true' if the device is not runtime-suspended or it has to be 2790 * reconfigured due to wakeup settings difference between system and runtime 2791 * suspend, or the current power state of it is not suitable for the upcoming 2792 * (system-wide) transition. 2793 */ 2794 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2795 { 2796 struct device *dev = &pci_dev->dev; 2797 pci_power_t target_state; 2798 2799 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2800 return true; 2801 2802 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2803 2804 /* 2805 * If the earlier platform check has not triggered, D3cold is just power 2806 * removal on top of D3hot, so no need to resume the device in that 2807 * case. 2808 */ 2809 return target_state != pci_dev->current_state && 2810 target_state != PCI_D3cold && 2811 pci_dev->current_state != PCI_D3hot; 2812 } 2813 2814 /** 2815 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2816 * @pci_dev: Device to check. 2817 * 2818 * If the device is suspended and it is not configured for system wakeup, 2819 * disable PME for it to prevent it from waking up the system unnecessarily. 2820 * 2821 * Note that if the device's power state is D3cold and the platform check in 2822 * pci_dev_need_resume() has not triggered, the device's configuration need not 2823 * be changed. 2824 */ 2825 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2826 { 2827 struct device *dev = &pci_dev->dev; 2828 2829 spin_lock_irq(&dev->power.lock); 2830 2831 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2832 pci_dev->current_state < PCI_D3cold) 2833 __pci_pme_active(pci_dev, false); 2834 2835 spin_unlock_irq(&dev->power.lock); 2836 } 2837 2838 /** 2839 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2840 * @pci_dev: Device to handle. 2841 * 2842 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2843 * it might have been disabled during the prepare phase of system suspend if 2844 * the device was not configured for system wakeup. 2845 */ 2846 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2847 { 2848 struct device *dev = &pci_dev->dev; 2849 2850 if (!pci_dev_run_wake(pci_dev)) 2851 return; 2852 2853 spin_lock_irq(&dev->power.lock); 2854 2855 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2856 __pci_pme_active(pci_dev, true); 2857 2858 spin_unlock_irq(&dev->power.lock); 2859 } 2860 2861 /** 2862 * pci_choose_state - Choose the power state of a PCI device. 2863 * @dev: Target PCI device. 2864 * @state: Target state for the whole system. 2865 * 2866 * Returns PCI power state suitable for @dev and @state. 2867 */ 2868 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2869 { 2870 if (state.event == PM_EVENT_ON) 2871 return PCI_D0; 2872 2873 return pci_target_state(dev, false); 2874 } 2875 EXPORT_SYMBOL(pci_choose_state); 2876 2877 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2878 { 2879 struct device *dev = &pdev->dev; 2880 struct device *parent = dev->parent; 2881 2882 if (parent) 2883 pm_runtime_get_sync(parent); 2884 pm_runtime_get_noresume(dev); 2885 /* 2886 * pdev->current_state is set to PCI_D3cold during suspending, 2887 * so wait until suspending completes 2888 */ 2889 pm_runtime_barrier(dev); 2890 /* 2891 * Only need to resume devices in D3cold, because config 2892 * registers are still accessible for devices suspended but 2893 * not in D3cold. 2894 */ 2895 if (pdev->current_state == PCI_D3cold) 2896 pm_runtime_resume(dev); 2897 } 2898 2899 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2900 { 2901 struct device *dev = &pdev->dev; 2902 struct device *parent = dev->parent; 2903 2904 pm_runtime_put(dev); 2905 if (parent) 2906 pm_runtime_put_sync(parent); 2907 } 2908 2909 static const struct dmi_system_id bridge_d3_blacklist[] = { 2910 #ifdef CONFIG_X86 2911 { 2912 /* 2913 * Gigabyte X299 root port is not marked as hotplug capable 2914 * which allows Linux to power manage it. However, this 2915 * confuses the BIOS SMI handler so don't power manage root 2916 * ports on that system. 2917 */ 2918 .ident = "X299 DESIGNARE EX-CF", 2919 .matches = { 2920 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2921 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2922 }, 2923 }, 2924 #endif 2925 { } 2926 }; 2927 2928 /** 2929 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2930 * @bridge: Bridge to check 2931 * 2932 * This function checks if it is possible to move the bridge to D3. 2933 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2934 */ 2935 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2936 { 2937 if (!pci_is_pcie(bridge)) 2938 return false; 2939 2940 switch (pci_pcie_type(bridge)) { 2941 case PCI_EXP_TYPE_ROOT_PORT: 2942 case PCI_EXP_TYPE_UPSTREAM: 2943 case PCI_EXP_TYPE_DOWNSTREAM: 2944 if (pci_bridge_d3_disable) 2945 return false; 2946 2947 /* 2948 * Hotplug ports handled by firmware in System Management Mode 2949 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2950 */ 2951 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2952 return false; 2953 2954 if (pci_bridge_d3_force) 2955 return true; 2956 2957 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2958 if (bridge->is_thunderbolt) 2959 return true; 2960 2961 /* Platform might know better if the bridge supports D3 */ 2962 if (platform_pci_bridge_d3(bridge)) 2963 return true; 2964 2965 /* 2966 * Hotplug ports handled natively by the OS were not validated 2967 * by vendors for runtime D3 at least until 2018 because there 2968 * was no OS support. 2969 */ 2970 if (bridge->is_hotplug_bridge) 2971 return false; 2972 2973 if (dmi_check_system(bridge_d3_blacklist)) 2974 return false; 2975 2976 /* 2977 * It should be safe to put PCIe ports from 2015 or newer 2978 * to D3. 2979 */ 2980 if (dmi_get_bios_year() >= 2015) 2981 return true; 2982 break; 2983 } 2984 2985 return false; 2986 } 2987 2988 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2989 { 2990 bool *d3cold_ok = data; 2991 2992 if (/* The device needs to be allowed to go D3cold ... */ 2993 dev->no_d3cold || !dev->d3cold_allowed || 2994 2995 /* ... and if it is wakeup capable to do so from D3cold. */ 2996 (device_may_wakeup(&dev->dev) && 2997 !pci_pme_capable(dev, PCI_D3cold)) || 2998 2999 /* If it is a bridge it must be allowed to go to D3. */ 3000 !pci_power_manageable(dev)) 3001 3002 *d3cold_ok = false; 3003 3004 return !*d3cold_ok; 3005 } 3006 3007 /* 3008 * pci_bridge_d3_update - Update bridge D3 capabilities 3009 * @dev: PCI device which is changed 3010 * 3011 * Update upstream bridge PM capabilities accordingly depending on if the 3012 * device PM configuration was changed or the device is being removed. The 3013 * change is also propagated upstream. 3014 */ 3015 void pci_bridge_d3_update(struct pci_dev *dev) 3016 { 3017 bool remove = !device_is_registered(&dev->dev); 3018 struct pci_dev *bridge; 3019 bool d3cold_ok = true; 3020 3021 bridge = pci_upstream_bridge(dev); 3022 if (!bridge || !pci_bridge_d3_possible(bridge)) 3023 return; 3024 3025 /* 3026 * If D3 is currently allowed for the bridge, removing one of its 3027 * children won't change that. 3028 */ 3029 if (remove && bridge->bridge_d3) 3030 return; 3031 3032 /* 3033 * If D3 is currently allowed for the bridge and a child is added or 3034 * changed, disallowance of D3 can only be caused by that child, so 3035 * we only need to check that single device, not any of its siblings. 3036 * 3037 * If D3 is currently not allowed for the bridge, checking the device 3038 * first may allow us to skip checking its siblings. 3039 */ 3040 if (!remove) 3041 pci_dev_check_d3cold(dev, &d3cold_ok); 3042 3043 /* 3044 * If D3 is currently not allowed for the bridge, this may be caused 3045 * either by the device being changed/removed or any of its siblings, 3046 * so we need to go through all children to find out if one of them 3047 * continues to block D3. 3048 */ 3049 if (d3cold_ok && !bridge->bridge_d3) 3050 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3051 &d3cold_ok); 3052 3053 if (bridge->bridge_d3 != d3cold_ok) { 3054 bridge->bridge_d3 = d3cold_ok; 3055 /* Propagate change to upstream bridges */ 3056 pci_bridge_d3_update(bridge); 3057 } 3058 } 3059 3060 /** 3061 * pci_d3cold_enable - Enable D3cold for device 3062 * @dev: PCI device to handle 3063 * 3064 * This function can be used in drivers to enable D3cold from the device 3065 * they handle. It also updates upstream PCI bridge PM capabilities 3066 * accordingly. 3067 */ 3068 void pci_d3cold_enable(struct pci_dev *dev) 3069 { 3070 if (dev->no_d3cold) { 3071 dev->no_d3cold = false; 3072 pci_bridge_d3_update(dev); 3073 } 3074 } 3075 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3076 3077 /** 3078 * pci_d3cold_disable - Disable D3cold for device 3079 * @dev: PCI device to handle 3080 * 3081 * This function can be used in drivers to disable D3cold from the device 3082 * they handle. It also updates upstream PCI bridge PM capabilities 3083 * accordingly. 3084 */ 3085 void pci_d3cold_disable(struct pci_dev *dev) 3086 { 3087 if (!dev->no_d3cold) { 3088 dev->no_d3cold = true; 3089 pci_bridge_d3_update(dev); 3090 } 3091 } 3092 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3093 3094 /** 3095 * pci_pm_init - Initialize PM functions of given PCI device 3096 * @dev: PCI device to handle. 3097 */ 3098 void pci_pm_init(struct pci_dev *dev) 3099 { 3100 int pm; 3101 u16 status; 3102 u16 pmc; 3103 3104 pm_runtime_forbid(&dev->dev); 3105 pm_runtime_set_active(&dev->dev); 3106 pm_runtime_enable(&dev->dev); 3107 device_enable_async_suspend(&dev->dev); 3108 dev->wakeup_prepared = false; 3109 3110 dev->pm_cap = 0; 3111 dev->pme_support = 0; 3112 3113 /* find PCI PM capability in list */ 3114 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3115 if (!pm) 3116 return; 3117 /* Check device's ability to generate PME# */ 3118 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3119 3120 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3121 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3122 pmc & PCI_PM_CAP_VER_MASK); 3123 return; 3124 } 3125 3126 dev->pm_cap = pm; 3127 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3128 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3129 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3130 dev->d3cold_allowed = true; 3131 3132 dev->d1_support = false; 3133 dev->d2_support = false; 3134 if (!pci_no_d1d2(dev)) { 3135 if (pmc & PCI_PM_CAP_D1) 3136 dev->d1_support = true; 3137 if (pmc & PCI_PM_CAP_D2) 3138 dev->d2_support = true; 3139 3140 if (dev->d1_support || dev->d2_support) 3141 pci_info(dev, "supports%s%s\n", 3142 dev->d1_support ? " D1" : "", 3143 dev->d2_support ? " D2" : ""); 3144 } 3145 3146 pmc &= PCI_PM_CAP_PME_MASK; 3147 if (pmc) { 3148 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3149 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3150 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3151 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3152 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3153 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3154 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3155 dev->pme_poll = true; 3156 /* 3157 * Make device's PM flags reflect the wake-up capability, but 3158 * let the user space enable it to wake up the system as needed. 3159 */ 3160 device_set_wakeup_capable(&dev->dev, true); 3161 /* Disable the PME# generation functionality */ 3162 pci_pme_active(dev, false); 3163 } 3164 3165 pci_read_config_word(dev, PCI_STATUS, &status); 3166 if (status & PCI_STATUS_IMM_READY) 3167 dev->imm_ready = 1; 3168 } 3169 3170 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3171 { 3172 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3173 3174 switch (prop) { 3175 case PCI_EA_P_MEM: 3176 case PCI_EA_P_VF_MEM: 3177 flags |= IORESOURCE_MEM; 3178 break; 3179 case PCI_EA_P_MEM_PREFETCH: 3180 case PCI_EA_P_VF_MEM_PREFETCH: 3181 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3182 break; 3183 case PCI_EA_P_IO: 3184 flags |= IORESOURCE_IO; 3185 break; 3186 default: 3187 return 0; 3188 } 3189 3190 return flags; 3191 } 3192 3193 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3194 u8 prop) 3195 { 3196 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3197 return &dev->resource[bei]; 3198 #ifdef CONFIG_PCI_IOV 3199 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3200 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3201 return &dev->resource[PCI_IOV_RESOURCES + 3202 bei - PCI_EA_BEI_VF_BAR0]; 3203 #endif 3204 else if (bei == PCI_EA_BEI_ROM) 3205 return &dev->resource[PCI_ROM_RESOURCE]; 3206 else 3207 return NULL; 3208 } 3209 3210 /* Read an Enhanced Allocation (EA) entry */ 3211 static int pci_ea_read(struct pci_dev *dev, int offset) 3212 { 3213 struct resource *res; 3214 int ent_size, ent_offset = offset; 3215 resource_size_t start, end; 3216 unsigned long flags; 3217 u32 dw0, bei, base, max_offset; 3218 u8 prop; 3219 bool support_64 = (sizeof(resource_size_t) >= 8); 3220 3221 pci_read_config_dword(dev, ent_offset, &dw0); 3222 ent_offset += 4; 3223 3224 /* Entry size field indicates DWORDs after 1st */ 3225 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3226 3227 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3228 goto out; 3229 3230 bei = (dw0 & PCI_EA_BEI) >> 4; 3231 prop = (dw0 & PCI_EA_PP) >> 8; 3232 3233 /* 3234 * If the Property is in the reserved range, try the Secondary 3235 * Property instead. 3236 */ 3237 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3238 prop = (dw0 & PCI_EA_SP) >> 16; 3239 if (prop > PCI_EA_P_BRIDGE_IO) 3240 goto out; 3241 3242 res = pci_ea_get_resource(dev, bei, prop); 3243 if (!res) { 3244 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3245 goto out; 3246 } 3247 3248 flags = pci_ea_flags(dev, prop); 3249 if (!flags) { 3250 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3251 goto out; 3252 } 3253 3254 /* Read Base */ 3255 pci_read_config_dword(dev, ent_offset, &base); 3256 start = (base & PCI_EA_FIELD_MASK); 3257 ent_offset += 4; 3258 3259 /* Read MaxOffset */ 3260 pci_read_config_dword(dev, ent_offset, &max_offset); 3261 ent_offset += 4; 3262 3263 /* Read Base MSBs (if 64-bit entry) */ 3264 if (base & PCI_EA_IS_64) { 3265 u32 base_upper; 3266 3267 pci_read_config_dword(dev, ent_offset, &base_upper); 3268 ent_offset += 4; 3269 3270 flags |= IORESOURCE_MEM_64; 3271 3272 /* entry starts above 32-bit boundary, can't use */ 3273 if (!support_64 && base_upper) 3274 goto out; 3275 3276 if (support_64) 3277 start |= ((u64)base_upper << 32); 3278 } 3279 3280 end = start + (max_offset | 0x03); 3281 3282 /* Read MaxOffset MSBs (if 64-bit entry) */ 3283 if (max_offset & PCI_EA_IS_64) { 3284 u32 max_offset_upper; 3285 3286 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3287 ent_offset += 4; 3288 3289 flags |= IORESOURCE_MEM_64; 3290 3291 /* entry too big, can't use */ 3292 if (!support_64 && max_offset_upper) 3293 goto out; 3294 3295 if (support_64) 3296 end += ((u64)max_offset_upper << 32); 3297 } 3298 3299 if (end < start) { 3300 pci_err(dev, "EA Entry crosses address boundary\n"); 3301 goto out; 3302 } 3303 3304 if (ent_size != ent_offset - offset) { 3305 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3306 ent_size, ent_offset - offset); 3307 goto out; 3308 } 3309 3310 res->name = pci_name(dev); 3311 res->start = start; 3312 res->end = end; 3313 res->flags = flags; 3314 3315 if (bei <= PCI_EA_BEI_BAR5) 3316 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3317 bei, res, prop); 3318 else if (bei == PCI_EA_BEI_ROM) 3319 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3320 res, prop); 3321 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3322 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3323 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3324 else 3325 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3326 bei, res, prop); 3327 3328 out: 3329 return offset + ent_size; 3330 } 3331 3332 /* Enhanced Allocation Initialization */ 3333 void pci_ea_init(struct pci_dev *dev) 3334 { 3335 int ea; 3336 u8 num_ent; 3337 int offset; 3338 int i; 3339 3340 /* find PCI EA capability in list */ 3341 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3342 if (!ea) 3343 return; 3344 3345 /* determine the number of entries */ 3346 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3347 &num_ent); 3348 num_ent &= PCI_EA_NUM_ENT_MASK; 3349 3350 offset = ea + PCI_EA_FIRST_ENT; 3351 3352 /* Skip DWORD 2 for type 1 functions */ 3353 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3354 offset += 4; 3355 3356 /* parse each EA entry */ 3357 for (i = 0; i < num_ent; ++i) 3358 offset = pci_ea_read(dev, offset); 3359 } 3360 3361 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3362 struct pci_cap_saved_state *new_cap) 3363 { 3364 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3365 } 3366 3367 /** 3368 * _pci_add_cap_save_buffer - allocate buffer for saving given 3369 * capability registers 3370 * @dev: the PCI device 3371 * @cap: the capability to allocate the buffer for 3372 * @extended: Standard or Extended capability ID 3373 * @size: requested size of the buffer 3374 */ 3375 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3376 bool extended, unsigned int size) 3377 { 3378 int pos; 3379 struct pci_cap_saved_state *save_state; 3380 3381 if (extended) 3382 pos = pci_find_ext_capability(dev, cap); 3383 else 3384 pos = pci_find_capability(dev, cap); 3385 3386 if (!pos) 3387 return 0; 3388 3389 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3390 if (!save_state) 3391 return -ENOMEM; 3392 3393 save_state->cap.cap_nr = cap; 3394 save_state->cap.cap_extended = extended; 3395 save_state->cap.size = size; 3396 pci_add_saved_cap(dev, save_state); 3397 3398 return 0; 3399 } 3400 3401 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3402 { 3403 return _pci_add_cap_save_buffer(dev, cap, false, size); 3404 } 3405 3406 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3407 { 3408 return _pci_add_cap_save_buffer(dev, cap, true, size); 3409 } 3410 3411 /** 3412 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3413 * @dev: the PCI device 3414 */ 3415 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3416 { 3417 int error; 3418 3419 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3420 PCI_EXP_SAVE_REGS * sizeof(u16)); 3421 if (error) 3422 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3423 3424 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3425 if (error) 3426 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3427 3428 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3429 2 * sizeof(u16)); 3430 if (error) 3431 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3432 3433 pci_allocate_vc_save_buffers(dev); 3434 } 3435 3436 void pci_free_cap_save_buffers(struct pci_dev *dev) 3437 { 3438 struct pci_cap_saved_state *tmp; 3439 struct hlist_node *n; 3440 3441 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3442 kfree(tmp); 3443 } 3444 3445 /** 3446 * pci_configure_ari - enable or disable ARI forwarding 3447 * @dev: the PCI device 3448 * 3449 * If @dev and its upstream bridge both support ARI, enable ARI in the 3450 * bridge. Otherwise, disable ARI in the bridge. 3451 */ 3452 void pci_configure_ari(struct pci_dev *dev) 3453 { 3454 u32 cap; 3455 struct pci_dev *bridge; 3456 3457 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3458 return; 3459 3460 bridge = dev->bus->self; 3461 if (!bridge) 3462 return; 3463 3464 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3465 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3466 return; 3467 3468 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3469 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3470 PCI_EXP_DEVCTL2_ARI); 3471 bridge->ari_enabled = 1; 3472 } else { 3473 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3474 PCI_EXP_DEVCTL2_ARI); 3475 bridge->ari_enabled = 0; 3476 } 3477 } 3478 3479 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3480 { 3481 int pos; 3482 u16 cap, ctrl; 3483 3484 pos = pdev->acs_cap; 3485 if (!pos) 3486 return false; 3487 3488 /* 3489 * Except for egress control, capabilities are either required 3490 * or only required if controllable. Features missing from the 3491 * capability field can therefore be assumed as hard-wired enabled. 3492 */ 3493 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3494 acs_flags &= (cap | PCI_ACS_EC); 3495 3496 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3497 return (ctrl & acs_flags) == acs_flags; 3498 } 3499 3500 /** 3501 * pci_acs_enabled - test ACS against required flags for a given device 3502 * @pdev: device to test 3503 * @acs_flags: required PCI ACS flags 3504 * 3505 * Return true if the device supports the provided flags. Automatically 3506 * filters out flags that are not implemented on multifunction devices. 3507 * 3508 * Note that this interface checks the effective ACS capabilities of the 3509 * device rather than the actual capabilities. For instance, most single 3510 * function endpoints are not required to support ACS because they have no 3511 * opportunity for peer-to-peer access. We therefore return 'true' 3512 * regardless of whether the device exposes an ACS capability. This makes 3513 * it much easier for callers of this function to ignore the actual type 3514 * or topology of the device when testing ACS support. 3515 */ 3516 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3517 { 3518 int ret; 3519 3520 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3521 if (ret >= 0) 3522 return ret > 0; 3523 3524 /* 3525 * Conventional PCI and PCI-X devices never support ACS, either 3526 * effectively or actually. The shared bus topology implies that 3527 * any device on the bus can receive or snoop DMA. 3528 */ 3529 if (!pci_is_pcie(pdev)) 3530 return false; 3531 3532 switch (pci_pcie_type(pdev)) { 3533 /* 3534 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3535 * but since their primary interface is PCI/X, we conservatively 3536 * handle them as we would a non-PCIe device. 3537 */ 3538 case PCI_EXP_TYPE_PCIE_BRIDGE: 3539 /* 3540 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3541 * applicable... must never implement an ACS Extended Capability...". 3542 * This seems arbitrary, but we take a conservative interpretation 3543 * of this statement. 3544 */ 3545 case PCI_EXP_TYPE_PCI_BRIDGE: 3546 case PCI_EXP_TYPE_RC_EC: 3547 return false; 3548 /* 3549 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3550 * implement ACS in order to indicate their peer-to-peer capabilities, 3551 * regardless of whether they are single- or multi-function devices. 3552 */ 3553 case PCI_EXP_TYPE_DOWNSTREAM: 3554 case PCI_EXP_TYPE_ROOT_PORT: 3555 return pci_acs_flags_enabled(pdev, acs_flags); 3556 /* 3557 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3558 * implemented by the remaining PCIe types to indicate peer-to-peer 3559 * capabilities, but only when they are part of a multifunction 3560 * device. The footnote for section 6.12 indicates the specific 3561 * PCIe types included here. 3562 */ 3563 case PCI_EXP_TYPE_ENDPOINT: 3564 case PCI_EXP_TYPE_UPSTREAM: 3565 case PCI_EXP_TYPE_LEG_END: 3566 case PCI_EXP_TYPE_RC_END: 3567 if (!pdev->multifunction) 3568 break; 3569 3570 return pci_acs_flags_enabled(pdev, acs_flags); 3571 } 3572 3573 /* 3574 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3575 * to single function devices with the exception of downstream ports. 3576 */ 3577 return true; 3578 } 3579 3580 /** 3581 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3582 * @start: starting downstream device 3583 * @end: ending upstream device or NULL to search to the root bus 3584 * @acs_flags: required flags 3585 * 3586 * Walk up a device tree from start to end testing PCI ACS support. If 3587 * any step along the way does not support the required flags, return false. 3588 */ 3589 bool pci_acs_path_enabled(struct pci_dev *start, 3590 struct pci_dev *end, u16 acs_flags) 3591 { 3592 struct pci_dev *pdev, *parent = start; 3593 3594 do { 3595 pdev = parent; 3596 3597 if (!pci_acs_enabled(pdev, acs_flags)) 3598 return false; 3599 3600 if (pci_is_root_bus(pdev->bus)) 3601 return (end == NULL); 3602 3603 parent = pdev->bus->self; 3604 } while (pdev != end); 3605 3606 return true; 3607 } 3608 3609 /** 3610 * pci_acs_init - Initialize ACS if hardware supports it 3611 * @dev: the PCI device 3612 */ 3613 void pci_acs_init(struct pci_dev *dev) 3614 { 3615 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3616 3617 /* 3618 * Attempt to enable ACS regardless of capability because some Root 3619 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3620 * the standard ACS capability but still support ACS via those 3621 * quirks. 3622 */ 3623 pci_enable_acs(dev); 3624 } 3625 3626 /** 3627 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3628 * @pdev: PCI device 3629 * @bar: BAR to find 3630 * 3631 * Helper to find the position of the ctrl register for a BAR. 3632 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3633 * Returns -ENOENT if no ctrl register for the BAR could be found. 3634 */ 3635 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3636 { 3637 unsigned int pos, nbars, i; 3638 u32 ctrl; 3639 3640 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3641 if (!pos) 3642 return -ENOTSUPP; 3643 3644 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3645 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3646 PCI_REBAR_CTRL_NBAR_SHIFT; 3647 3648 for (i = 0; i < nbars; i++, pos += 8) { 3649 int bar_idx; 3650 3651 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3652 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3653 if (bar_idx == bar) 3654 return pos; 3655 } 3656 3657 return -ENOENT; 3658 } 3659 3660 /** 3661 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3662 * @pdev: PCI device 3663 * @bar: BAR to query 3664 * 3665 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3666 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3667 */ 3668 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3669 { 3670 int pos; 3671 u32 cap; 3672 3673 pos = pci_rebar_find_pos(pdev, bar); 3674 if (pos < 0) 3675 return 0; 3676 3677 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3678 cap &= PCI_REBAR_CAP_SIZES; 3679 3680 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3681 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3682 bar == 0 && cap == 0x7000) 3683 cap = 0x3f000; 3684 3685 return cap >> 4; 3686 } 3687 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3688 3689 /** 3690 * pci_rebar_get_current_size - get the current size of a BAR 3691 * @pdev: PCI device 3692 * @bar: BAR to set size to 3693 * 3694 * Read the size of a BAR from the resizable BAR config. 3695 * Returns size if found or negative error code. 3696 */ 3697 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3698 { 3699 int pos; 3700 u32 ctrl; 3701 3702 pos = pci_rebar_find_pos(pdev, bar); 3703 if (pos < 0) 3704 return pos; 3705 3706 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3707 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3708 } 3709 3710 /** 3711 * pci_rebar_set_size - set a new size for a BAR 3712 * @pdev: PCI device 3713 * @bar: BAR to set size to 3714 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3715 * 3716 * Set the new size of a BAR as defined in the spec. 3717 * Returns zero if resizing was successful, error code otherwise. 3718 */ 3719 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3720 { 3721 int pos; 3722 u32 ctrl; 3723 3724 pos = pci_rebar_find_pos(pdev, bar); 3725 if (pos < 0) 3726 return pos; 3727 3728 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3729 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3730 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3731 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3732 return 0; 3733 } 3734 3735 /** 3736 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3737 * @dev: the PCI device 3738 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3739 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3740 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3741 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3742 * 3743 * Return 0 if all upstream bridges support AtomicOp routing, egress 3744 * blocking is disabled on all upstream ports, and the root port supports 3745 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3746 * AtomicOp completion), or negative otherwise. 3747 */ 3748 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3749 { 3750 struct pci_bus *bus = dev->bus; 3751 struct pci_dev *bridge; 3752 u32 cap, ctl2; 3753 3754 /* 3755 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3756 * in Device Control 2 is reserved in VFs and the PF value applies 3757 * to all associated VFs. 3758 */ 3759 if (dev->is_virtfn) 3760 return -EINVAL; 3761 3762 if (!pci_is_pcie(dev)) 3763 return -EINVAL; 3764 3765 /* 3766 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3767 * AtomicOp requesters. For now, we only support endpoints as 3768 * requesters and root ports as completers. No endpoints as 3769 * completers, and no peer-to-peer. 3770 */ 3771 3772 switch (pci_pcie_type(dev)) { 3773 case PCI_EXP_TYPE_ENDPOINT: 3774 case PCI_EXP_TYPE_LEG_END: 3775 case PCI_EXP_TYPE_RC_END: 3776 break; 3777 default: 3778 return -EINVAL; 3779 } 3780 3781 while (bus->parent) { 3782 bridge = bus->self; 3783 3784 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3785 3786 switch (pci_pcie_type(bridge)) { 3787 /* Ensure switch ports support AtomicOp routing */ 3788 case PCI_EXP_TYPE_UPSTREAM: 3789 case PCI_EXP_TYPE_DOWNSTREAM: 3790 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3791 return -EINVAL; 3792 break; 3793 3794 /* Ensure root port supports all the sizes we care about */ 3795 case PCI_EXP_TYPE_ROOT_PORT: 3796 if ((cap & cap_mask) != cap_mask) 3797 return -EINVAL; 3798 break; 3799 } 3800 3801 /* Ensure upstream ports don't block AtomicOps on egress */ 3802 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3803 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3804 &ctl2); 3805 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3806 return -EINVAL; 3807 } 3808 3809 bus = bus->parent; 3810 } 3811 3812 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3813 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3814 return 0; 3815 } 3816 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3817 3818 /** 3819 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3820 * @dev: the PCI device 3821 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3822 * 3823 * Perform INTx swizzling for a device behind one level of bridge. This is 3824 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3825 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3826 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3827 * the PCI Express Base Specification, Revision 2.1) 3828 */ 3829 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3830 { 3831 int slot; 3832 3833 if (pci_ari_enabled(dev->bus)) 3834 slot = 0; 3835 else 3836 slot = PCI_SLOT(dev->devfn); 3837 3838 return (((pin - 1) + slot) % 4) + 1; 3839 } 3840 3841 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3842 { 3843 u8 pin; 3844 3845 pin = dev->pin; 3846 if (!pin) 3847 return -1; 3848 3849 while (!pci_is_root_bus(dev->bus)) { 3850 pin = pci_swizzle_interrupt_pin(dev, pin); 3851 dev = dev->bus->self; 3852 } 3853 *bridge = dev; 3854 return pin; 3855 } 3856 3857 /** 3858 * pci_common_swizzle - swizzle INTx all the way to root bridge 3859 * @dev: the PCI device 3860 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3861 * 3862 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3863 * bridges all the way up to a PCI root bus. 3864 */ 3865 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3866 { 3867 u8 pin = *pinp; 3868 3869 while (!pci_is_root_bus(dev->bus)) { 3870 pin = pci_swizzle_interrupt_pin(dev, pin); 3871 dev = dev->bus->self; 3872 } 3873 *pinp = pin; 3874 return PCI_SLOT(dev->devfn); 3875 } 3876 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3877 3878 /** 3879 * pci_release_region - Release a PCI bar 3880 * @pdev: PCI device whose resources were previously reserved by 3881 * pci_request_region() 3882 * @bar: BAR to release 3883 * 3884 * Releases the PCI I/O and memory resources previously reserved by a 3885 * successful call to pci_request_region(). Call this function only 3886 * after all use of the PCI regions has ceased. 3887 */ 3888 void pci_release_region(struct pci_dev *pdev, int bar) 3889 { 3890 struct pci_devres *dr; 3891 3892 if (pci_resource_len(pdev, bar) == 0) 3893 return; 3894 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3895 release_region(pci_resource_start(pdev, bar), 3896 pci_resource_len(pdev, bar)); 3897 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3898 release_mem_region(pci_resource_start(pdev, bar), 3899 pci_resource_len(pdev, bar)); 3900 3901 dr = find_pci_dr(pdev); 3902 if (dr) 3903 dr->region_mask &= ~(1 << bar); 3904 } 3905 EXPORT_SYMBOL(pci_release_region); 3906 3907 /** 3908 * __pci_request_region - Reserved PCI I/O and memory resource 3909 * @pdev: PCI device whose resources are to be reserved 3910 * @bar: BAR to be reserved 3911 * @res_name: Name to be associated with resource. 3912 * @exclusive: whether the region access is exclusive or not 3913 * 3914 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3915 * being reserved by owner @res_name. Do not access any 3916 * address inside the PCI regions unless this call returns 3917 * successfully. 3918 * 3919 * If @exclusive is set, then the region is marked so that userspace 3920 * is explicitly not allowed to map the resource via /dev/mem or 3921 * sysfs MMIO access. 3922 * 3923 * Returns 0 on success, or %EBUSY on error. A warning 3924 * message is also printed on failure. 3925 */ 3926 static int __pci_request_region(struct pci_dev *pdev, int bar, 3927 const char *res_name, int exclusive) 3928 { 3929 struct pci_devres *dr; 3930 3931 if (pci_resource_len(pdev, bar) == 0) 3932 return 0; 3933 3934 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3935 if (!request_region(pci_resource_start(pdev, bar), 3936 pci_resource_len(pdev, bar), res_name)) 3937 goto err_out; 3938 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3939 if (!__request_mem_region(pci_resource_start(pdev, bar), 3940 pci_resource_len(pdev, bar), res_name, 3941 exclusive)) 3942 goto err_out; 3943 } 3944 3945 dr = find_pci_dr(pdev); 3946 if (dr) 3947 dr->region_mask |= 1 << bar; 3948 3949 return 0; 3950 3951 err_out: 3952 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3953 &pdev->resource[bar]); 3954 return -EBUSY; 3955 } 3956 3957 /** 3958 * pci_request_region - Reserve PCI I/O and memory resource 3959 * @pdev: PCI device whose resources are to be reserved 3960 * @bar: BAR to be reserved 3961 * @res_name: Name to be associated with resource 3962 * 3963 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3964 * being reserved by owner @res_name. Do not access any 3965 * address inside the PCI regions unless this call returns 3966 * successfully. 3967 * 3968 * Returns 0 on success, or %EBUSY on error. A warning 3969 * message is also printed on failure. 3970 */ 3971 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3972 { 3973 return __pci_request_region(pdev, bar, res_name, 0); 3974 } 3975 EXPORT_SYMBOL(pci_request_region); 3976 3977 /** 3978 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3979 * @pdev: PCI device whose resources were previously reserved 3980 * @bars: Bitmask of BARs to be released 3981 * 3982 * Release selected PCI I/O and memory resources previously reserved. 3983 * Call this function only after all use of the PCI regions has ceased. 3984 */ 3985 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3986 { 3987 int i; 3988 3989 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3990 if (bars & (1 << i)) 3991 pci_release_region(pdev, i); 3992 } 3993 EXPORT_SYMBOL(pci_release_selected_regions); 3994 3995 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3996 const char *res_name, int excl) 3997 { 3998 int i; 3999 4000 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4001 if (bars & (1 << i)) 4002 if (__pci_request_region(pdev, i, res_name, excl)) 4003 goto err_out; 4004 return 0; 4005 4006 err_out: 4007 while (--i >= 0) 4008 if (bars & (1 << i)) 4009 pci_release_region(pdev, i); 4010 4011 return -EBUSY; 4012 } 4013 4014 4015 /** 4016 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4017 * @pdev: PCI device whose resources are to be reserved 4018 * @bars: Bitmask of BARs to be requested 4019 * @res_name: Name to be associated with resource 4020 */ 4021 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4022 const char *res_name) 4023 { 4024 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4025 } 4026 EXPORT_SYMBOL(pci_request_selected_regions); 4027 4028 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4029 const char *res_name) 4030 { 4031 return __pci_request_selected_regions(pdev, bars, res_name, 4032 IORESOURCE_EXCLUSIVE); 4033 } 4034 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4035 4036 /** 4037 * pci_release_regions - Release reserved PCI I/O and memory resources 4038 * @pdev: PCI device whose resources were previously reserved by 4039 * pci_request_regions() 4040 * 4041 * Releases all PCI I/O and memory resources previously reserved by a 4042 * successful call to pci_request_regions(). Call this function only 4043 * after all use of the PCI regions has ceased. 4044 */ 4045 4046 void pci_release_regions(struct pci_dev *pdev) 4047 { 4048 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4049 } 4050 EXPORT_SYMBOL(pci_release_regions); 4051 4052 /** 4053 * pci_request_regions - Reserve PCI I/O and memory resources 4054 * @pdev: PCI device whose resources are to be reserved 4055 * @res_name: Name to be associated with resource. 4056 * 4057 * Mark all PCI regions associated with PCI device @pdev as 4058 * being reserved by owner @res_name. Do not access any 4059 * address inside the PCI regions unless this call returns 4060 * successfully. 4061 * 4062 * Returns 0 on success, or %EBUSY on error. A warning 4063 * message is also printed on failure. 4064 */ 4065 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4066 { 4067 return pci_request_selected_regions(pdev, 4068 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4069 } 4070 EXPORT_SYMBOL(pci_request_regions); 4071 4072 /** 4073 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4074 * @pdev: PCI device whose resources are to be reserved 4075 * @res_name: Name to be associated with resource. 4076 * 4077 * Mark all PCI regions associated with PCI device @pdev as being reserved 4078 * by owner @res_name. Do not access any address inside the PCI regions 4079 * unless this call returns successfully. 4080 * 4081 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4082 * and the sysfs MMIO access will not be allowed. 4083 * 4084 * Returns 0 on success, or %EBUSY on error. A warning message is also 4085 * printed on failure. 4086 */ 4087 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4088 { 4089 return pci_request_selected_regions_exclusive(pdev, 4090 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4091 } 4092 EXPORT_SYMBOL(pci_request_regions_exclusive); 4093 4094 /* 4095 * Record the PCI IO range (expressed as CPU physical address + size). 4096 * Return a negative value if an error has occurred, zero otherwise 4097 */ 4098 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4099 resource_size_t size) 4100 { 4101 int ret = 0; 4102 #ifdef PCI_IOBASE 4103 struct logic_pio_hwaddr *range; 4104 4105 if (!size || addr + size < addr) 4106 return -EINVAL; 4107 4108 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4109 if (!range) 4110 return -ENOMEM; 4111 4112 range->fwnode = fwnode; 4113 range->size = size; 4114 range->hw_start = addr; 4115 range->flags = LOGIC_PIO_CPU_MMIO; 4116 4117 ret = logic_pio_register_range(range); 4118 if (ret) 4119 kfree(range); 4120 4121 /* Ignore duplicates due to deferred probing */ 4122 if (ret == -EEXIST) 4123 ret = 0; 4124 #endif 4125 4126 return ret; 4127 } 4128 4129 phys_addr_t pci_pio_to_address(unsigned long pio) 4130 { 4131 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4132 4133 #ifdef PCI_IOBASE 4134 if (pio >= MMIO_UPPER_LIMIT) 4135 return address; 4136 4137 address = logic_pio_to_hwaddr(pio); 4138 #endif 4139 4140 return address; 4141 } 4142 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4143 4144 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4145 { 4146 #ifdef PCI_IOBASE 4147 return logic_pio_trans_cpuaddr(address); 4148 #else 4149 if (address > IO_SPACE_LIMIT) 4150 return (unsigned long)-1; 4151 4152 return (unsigned long) address; 4153 #endif 4154 } 4155 4156 /** 4157 * pci_remap_iospace - Remap the memory mapped I/O space 4158 * @res: Resource describing the I/O space 4159 * @phys_addr: physical address of range to be mapped 4160 * 4161 * Remap the memory mapped I/O space described by the @res and the CPU 4162 * physical address @phys_addr into virtual address space. Only 4163 * architectures that have memory mapped IO functions defined (and the 4164 * PCI_IOBASE value defined) should call this function. 4165 */ 4166 #ifndef pci_remap_iospace 4167 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4168 { 4169 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4170 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4171 4172 if (!(res->flags & IORESOURCE_IO)) 4173 return -EINVAL; 4174 4175 if (res->end > IO_SPACE_LIMIT) 4176 return -EINVAL; 4177 4178 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4179 pgprot_device(PAGE_KERNEL)); 4180 #else 4181 /* 4182 * This architecture does not have memory mapped I/O space, 4183 * so this function should never be called 4184 */ 4185 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4186 return -ENODEV; 4187 #endif 4188 } 4189 EXPORT_SYMBOL(pci_remap_iospace); 4190 #endif 4191 4192 /** 4193 * pci_unmap_iospace - Unmap the memory mapped I/O space 4194 * @res: resource to be unmapped 4195 * 4196 * Unmap the CPU virtual address @res from virtual address space. Only 4197 * architectures that have memory mapped IO functions defined (and the 4198 * PCI_IOBASE value defined) should call this function. 4199 */ 4200 void pci_unmap_iospace(struct resource *res) 4201 { 4202 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4203 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4204 4205 vunmap_range(vaddr, vaddr + resource_size(res)); 4206 #endif 4207 } 4208 EXPORT_SYMBOL(pci_unmap_iospace); 4209 4210 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4211 { 4212 struct resource **res = ptr; 4213 4214 pci_unmap_iospace(*res); 4215 } 4216 4217 /** 4218 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4219 * @dev: Generic device to remap IO address for 4220 * @res: Resource describing the I/O space 4221 * @phys_addr: physical address of range to be mapped 4222 * 4223 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4224 * detach. 4225 */ 4226 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4227 phys_addr_t phys_addr) 4228 { 4229 const struct resource **ptr; 4230 int error; 4231 4232 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4233 if (!ptr) 4234 return -ENOMEM; 4235 4236 error = pci_remap_iospace(res, phys_addr); 4237 if (error) { 4238 devres_free(ptr); 4239 } else { 4240 *ptr = res; 4241 devres_add(dev, ptr); 4242 } 4243 4244 return error; 4245 } 4246 EXPORT_SYMBOL(devm_pci_remap_iospace); 4247 4248 /** 4249 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4250 * @dev: Generic device to remap IO address for 4251 * @offset: Resource address to map 4252 * @size: Size of map 4253 * 4254 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4255 * detach. 4256 */ 4257 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4258 resource_size_t offset, 4259 resource_size_t size) 4260 { 4261 void __iomem **ptr, *addr; 4262 4263 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4264 if (!ptr) 4265 return NULL; 4266 4267 addr = pci_remap_cfgspace(offset, size); 4268 if (addr) { 4269 *ptr = addr; 4270 devres_add(dev, ptr); 4271 } else 4272 devres_free(ptr); 4273 4274 return addr; 4275 } 4276 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4277 4278 /** 4279 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4280 * @dev: generic device to handle the resource for 4281 * @res: configuration space resource to be handled 4282 * 4283 * Checks that a resource is a valid memory region, requests the memory 4284 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4285 * proper PCI configuration space memory attributes are guaranteed. 4286 * 4287 * All operations are managed and will be undone on driver detach. 4288 * 4289 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4290 * on failure. Usage example:: 4291 * 4292 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4293 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4294 * if (IS_ERR(base)) 4295 * return PTR_ERR(base); 4296 */ 4297 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4298 struct resource *res) 4299 { 4300 resource_size_t size; 4301 const char *name; 4302 void __iomem *dest_ptr; 4303 4304 BUG_ON(!dev); 4305 4306 if (!res || resource_type(res) != IORESOURCE_MEM) { 4307 dev_err(dev, "invalid resource\n"); 4308 return IOMEM_ERR_PTR(-EINVAL); 4309 } 4310 4311 size = resource_size(res); 4312 4313 if (res->name) 4314 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4315 res->name); 4316 else 4317 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4318 if (!name) 4319 return IOMEM_ERR_PTR(-ENOMEM); 4320 4321 if (!devm_request_mem_region(dev, res->start, size, name)) { 4322 dev_err(dev, "can't request region for resource %pR\n", res); 4323 return IOMEM_ERR_PTR(-EBUSY); 4324 } 4325 4326 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4327 if (!dest_ptr) { 4328 dev_err(dev, "ioremap failed for resource %pR\n", res); 4329 devm_release_mem_region(dev, res->start, size); 4330 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4331 } 4332 4333 return dest_ptr; 4334 } 4335 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4336 4337 static void __pci_set_master(struct pci_dev *dev, bool enable) 4338 { 4339 u16 old_cmd, cmd; 4340 4341 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4342 if (enable) 4343 cmd = old_cmd | PCI_COMMAND_MASTER; 4344 else 4345 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4346 if (cmd != old_cmd) { 4347 pci_dbg(dev, "%s bus mastering\n", 4348 enable ? "enabling" : "disabling"); 4349 pci_write_config_word(dev, PCI_COMMAND, cmd); 4350 } 4351 dev->is_busmaster = enable; 4352 } 4353 4354 /** 4355 * pcibios_setup - process "pci=" kernel boot arguments 4356 * @str: string used to pass in "pci=" kernel boot arguments 4357 * 4358 * Process kernel boot arguments. This is the default implementation. 4359 * Architecture specific implementations can override this as necessary. 4360 */ 4361 char * __weak __init pcibios_setup(char *str) 4362 { 4363 return str; 4364 } 4365 4366 /** 4367 * pcibios_set_master - enable PCI bus-mastering for device dev 4368 * @dev: the PCI device to enable 4369 * 4370 * Enables PCI bus-mastering for the device. This is the default 4371 * implementation. Architecture specific implementations can override 4372 * this if necessary. 4373 */ 4374 void __weak pcibios_set_master(struct pci_dev *dev) 4375 { 4376 u8 lat; 4377 4378 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4379 if (pci_is_pcie(dev)) 4380 return; 4381 4382 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4383 if (lat < 16) 4384 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4385 else if (lat > pcibios_max_latency) 4386 lat = pcibios_max_latency; 4387 else 4388 return; 4389 4390 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4391 } 4392 4393 /** 4394 * pci_set_master - enables bus-mastering for device dev 4395 * @dev: the PCI device to enable 4396 * 4397 * Enables bus-mastering on the device and calls pcibios_set_master() 4398 * to do the needed arch specific settings. 4399 */ 4400 void pci_set_master(struct pci_dev *dev) 4401 { 4402 __pci_set_master(dev, true); 4403 pcibios_set_master(dev); 4404 } 4405 EXPORT_SYMBOL(pci_set_master); 4406 4407 /** 4408 * pci_clear_master - disables bus-mastering for device dev 4409 * @dev: the PCI device to disable 4410 */ 4411 void pci_clear_master(struct pci_dev *dev) 4412 { 4413 __pci_set_master(dev, false); 4414 } 4415 EXPORT_SYMBOL(pci_clear_master); 4416 4417 /** 4418 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4419 * @dev: the PCI device for which MWI is to be enabled 4420 * 4421 * Helper function for pci_set_mwi. 4422 * Originally copied from drivers/net/acenic.c. 4423 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4424 * 4425 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4426 */ 4427 int pci_set_cacheline_size(struct pci_dev *dev) 4428 { 4429 u8 cacheline_size; 4430 4431 if (!pci_cache_line_size) 4432 return -EINVAL; 4433 4434 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4435 equal to or multiple of the right value. */ 4436 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4437 if (cacheline_size >= pci_cache_line_size && 4438 (cacheline_size % pci_cache_line_size) == 0) 4439 return 0; 4440 4441 /* Write the correct value. */ 4442 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4443 /* Read it back. */ 4444 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4445 if (cacheline_size == pci_cache_line_size) 4446 return 0; 4447 4448 pci_dbg(dev, "cache line size of %d is not supported\n", 4449 pci_cache_line_size << 2); 4450 4451 return -EINVAL; 4452 } 4453 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4454 4455 /** 4456 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4457 * @dev: the PCI device for which MWI is enabled 4458 * 4459 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4460 * 4461 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4462 */ 4463 int pci_set_mwi(struct pci_dev *dev) 4464 { 4465 #ifdef PCI_DISABLE_MWI 4466 return 0; 4467 #else 4468 int rc; 4469 u16 cmd; 4470 4471 rc = pci_set_cacheline_size(dev); 4472 if (rc) 4473 return rc; 4474 4475 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4476 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4477 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4478 cmd |= PCI_COMMAND_INVALIDATE; 4479 pci_write_config_word(dev, PCI_COMMAND, cmd); 4480 } 4481 return 0; 4482 #endif 4483 } 4484 EXPORT_SYMBOL(pci_set_mwi); 4485 4486 /** 4487 * pcim_set_mwi - a device-managed pci_set_mwi() 4488 * @dev: the PCI device for which MWI is enabled 4489 * 4490 * Managed pci_set_mwi(). 4491 * 4492 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4493 */ 4494 int pcim_set_mwi(struct pci_dev *dev) 4495 { 4496 struct pci_devres *dr; 4497 4498 dr = find_pci_dr(dev); 4499 if (!dr) 4500 return -ENOMEM; 4501 4502 dr->mwi = 1; 4503 return pci_set_mwi(dev); 4504 } 4505 EXPORT_SYMBOL(pcim_set_mwi); 4506 4507 /** 4508 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4509 * @dev: the PCI device for which MWI is enabled 4510 * 4511 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4512 * Callers are not required to check the return value. 4513 * 4514 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4515 */ 4516 int pci_try_set_mwi(struct pci_dev *dev) 4517 { 4518 #ifdef PCI_DISABLE_MWI 4519 return 0; 4520 #else 4521 return pci_set_mwi(dev); 4522 #endif 4523 } 4524 EXPORT_SYMBOL(pci_try_set_mwi); 4525 4526 /** 4527 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4528 * @dev: the PCI device to disable 4529 * 4530 * Disables PCI Memory-Write-Invalidate transaction on the device 4531 */ 4532 void pci_clear_mwi(struct pci_dev *dev) 4533 { 4534 #ifndef PCI_DISABLE_MWI 4535 u16 cmd; 4536 4537 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4538 if (cmd & PCI_COMMAND_INVALIDATE) { 4539 cmd &= ~PCI_COMMAND_INVALIDATE; 4540 pci_write_config_word(dev, PCI_COMMAND, cmd); 4541 } 4542 #endif 4543 } 4544 EXPORT_SYMBOL(pci_clear_mwi); 4545 4546 /** 4547 * pci_disable_parity - disable parity checking for device 4548 * @dev: the PCI device to operate on 4549 * 4550 * Disable parity checking for device @dev 4551 */ 4552 void pci_disable_parity(struct pci_dev *dev) 4553 { 4554 u16 cmd; 4555 4556 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4557 if (cmd & PCI_COMMAND_PARITY) { 4558 cmd &= ~PCI_COMMAND_PARITY; 4559 pci_write_config_word(dev, PCI_COMMAND, cmd); 4560 } 4561 } 4562 4563 /** 4564 * pci_intx - enables/disables PCI INTx for device dev 4565 * @pdev: the PCI device to operate on 4566 * @enable: boolean: whether to enable or disable PCI INTx 4567 * 4568 * Enables/disables PCI INTx for device @pdev 4569 */ 4570 void pci_intx(struct pci_dev *pdev, int enable) 4571 { 4572 u16 pci_command, new; 4573 4574 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4575 4576 if (enable) 4577 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4578 else 4579 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4580 4581 if (new != pci_command) { 4582 struct pci_devres *dr; 4583 4584 pci_write_config_word(pdev, PCI_COMMAND, new); 4585 4586 dr = find_pci_dr(pdev); 4587 if (dr && !dr->restore_intx) { 4588 dr->restore_intx = 1; 4589 dr->orig_intx = !enable; 4590 } 4591 } 4592 } 4593 EXPORT_SYMBOL_GPL(pci_intx); 4594 4595 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4596 { 4597 struct pci_bus *bus = dev->bus; 4598 bool mask_updated = true; 4599 u32 cmd_status_dword; 4600 u16 origcmd, newcmd; 4601 unsigned long flags; 4602 bool irq_pending; 4603 4604 /* 4605 * We do a single dword read to retrieve both command and status. 4606 * Document assumptions that make this possible. 4607 */ 4608 BUILD_BUG_ON(PCI_COMMAND % 4); 4609 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4610 4611 raw_spin_lock_irqsave(&pci_lock, flags); 4612 4613 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4614 4615 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4616 4617 /* 4618 * Check interrupt status register to see whether our device 4619 * triggered the interrupt (when masking) or the next IRQ is 4620 * already pending (when unmasking). 4621 */ 4622 if (mask != irq_pending) { 4623 mask_updated = false; 4624 goto done; 4625 } 4626 4627 origcmd = cmd_status_dword; 4628 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4629 if (mask) 4630 newcmd |= PCI_COMMAND_INTX_DISABLE; 4631 if (newcmd != origcmd) 4632 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4633 4634 done: 4635 raw_spin_unlock_irqrestore(&pci_lock, flags); 4636 4637 return mask_updated; 4638 } 4639 4640 /** 4641 * pci_check_and_mask_intx - mask INTx on pending interrupt 4642 * @dev: the PCI device to operate on 4643 * 4644 * Check if the device dev has its INTx line asserted, mask it and return 4645 * true in that case. False is returned if no interrupt was pending. 4646 */ 4647 bool pci_check_and_mask_intx(struct pci_dev *dev) 4648 { 4649 return pci_check_and_set_intx_mask(dev, true); 4650 } 4651 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4652 4653 /** 4654 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4655 * @dev: the PCI device to operate on 4656 * 4657 * Check if the device dev has its INTx line asserted, unmask it if not and 4658 * return true. False is returned and the mask remains active if there was 4659 * still an interrupt pending. 4660 */ 4661 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4662 { 4663 return pci_check_and_set_intx_mask(dev, false); 4664 } 4665 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4666 4667 /** 4668 * pci_wait_for_pending_transaction - wait for pending transaction 4669 * @dev: the PCI device to operate on 4670 * 4671 * Return 0 if transaction is pending 1 otherwise. 4672 */ 4673 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4674 { 4675 if (!pci_is_pcie(dev)) 4676 return 1; 4677 4678 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4679 PCI_EXP_DEVSTA_TRPND); 4680 } 4681 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4682 4683 /** 4684 * pcie_flr - initiate a PCIe function level reset 4685 * @dev: device to reset 4686 * 4687 * Initiate a function level reset unconditionally on @dev without 4688 * checking any flags and DEVCAP 4689 */ 4690 int pcie_flr(struct pci_dev *dev) 4691 { 4692 if (!pci_wait_for_pending_transaction(dev)) 4693 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4694 4695 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4696 4697 if (dev->imm_ready) 4698 return 0; 4699 4700 /* 4701 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4702 * 100ms, but may silently discard requests while the FLR is in 4703 * progress. Wait 100ms before trying to access the device. 4704 */ 4705 msleep(100); 4706 4707 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4708 } 4709 EXPORT_SYMBOL_GPL(pcie_flr); 4710 4711 /** 4712 * pcie_reset_flr - initiate a PCIe function level reset 4713 * @dev: device to reset 4714 * @probe: if true, return 0 if device can be reset this way 4715 * 4716 * Initiate a function level reset on @dev. 4717 */ 4718 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4719 { 4720 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4721 return -ENOTTY; 4722 4723 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4724 return -ENOTTY; 4725 4726 if (probe) 4727 return 0; 4728 4729 return pcie_flr(dev); 4730 } 4731 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4732 4733 static int pci_af_flr(struct pci_dev *dev, bool probe) 4734 { 4735 int pos; 4736 u8 cap; 4737 4738 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4739 if (!pos) 4740 return -ENOTTY; 4741 4742 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4743 return -ENOTTY; 4744 4745 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4746 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4747 return -ENOTTY; 4748 4749 if (probe) 4750 return 0; 4751 4752 /* 4753 * Wait for Transaction Pending bit to clear. A word-aligned test 4754 * is used, so we use the control offset rather than status and shift 4755 * the test bit to match. 4756 */ 4757 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4758 PCI_AF_STATUS_TP << 8)) 4759 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4760 4761 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4762 4763 if (dev->imm_ready) 4764 return 0; 4765 4766 /* 4767 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4768 * updated 27 July 2006; a device must complete an FLR within 4769 * 100ms, but may silently discard requests while the FLR is in 4770 * progress. Wait 100ms before trying to access the device. 4771 */ 4772 msleep(100); 4773 4774 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4775 } 4776 4777 /** 4778 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4779 * @dev: Device to reset. 4780 * @probe: if true, return 0 if the device can be reset this way. 4781 * 4782 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4783 * unset, it will be reinitialized internally when going from PCI_D3hot to 4784 * PCI_D0. If that's the case and the device is not in a low-power state 4785 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4786 * 4787 * NOTE: This causes the caller to sleep for twice the device power transition 4788 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4789 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4790 * Moreover, only devices in D0 can be reset by this function. 4791 */ 4792 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4793 { 4794 u16 csr; 4795 4796 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4797 return -ENOTTY; 4798 4799 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4800 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4801 return -ENOTTY; 4802 4803 if (probe) 4804 return 0; 4805 4806 if (dev->current_state != PCI_D0) 4807 return -EINVAL; 4808 4809 csr &= ~PCI_PM_CTRL_STATE_MASK; 4810 csr |= PCI_D3hot; 4811 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4812 pci_dev_d3_sleep(dev); 4813 4814 csr &= ~PCI_PM_CTRL_STATE_MASK; 4815 csr |= PCI_D0; 4816 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4817 pci_dev_d3_sleep(dev); 4818 4819 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4820 } 4821 4822 /** 4823 * pcie_wait_for_link_delay - Wait until link is active or inactive 4824 * @pdev: Bridge device 4825 * @active: waiting for active or inactive? 4826 * @delay: Delay to wait after link has become active (in ms) 4827 * 4828 * Use this to wait till link becomes active or inactive. 4829 */ 4830 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4831 int delay) 4832 { 4833 int timeout = 1000; 4834 bool ret; 4835 u16 lnk_status; 4836 4837 /* 4838 * Some controllers might not implement link active reporting. In this 4839 * case, we wait for 1000 ms + any delay requested by the caller. 4840 */ 4841 if (!pdev->link_active_reporting) { 4842 msleep(timeout + delay); 4843 return true; 4844 } 4845 4846 /* 4847 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4848 * after which we should expect an link active if the reset was 4849 * successful. If so, software must wait a minimum 100ms before sending 4850 * configuration requests to devices downstream this port. 4851 * 4852 * If the link fails to activate, either the device was physically 4853 * removed or the link is permanently failed. 4854 */ 4855 if (active) 4856 msleep(20); 4857 for (;;) { 4858 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4859 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4860 if (ret == active) 4861 break; 4862 if (timeout <= 0) 4863 break; 4864 msleep(10); 4865 timeout -= 10; 4866 } 4867 if (active && ret) 4868 msleep(delay); 4869 4870 return ret == active; 4871 } 4872 4873 /** 4874 * pcie_wait_for_link - Wait until link is active or inactive 4875 * @pdev: Bridge device 4876 * @active: waiting for active or inactive? 4877 * 4878 * Use this to wait till link becomes active or inactive. 4879 */ 4880 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4881 { 4882 return pcie_wait_for_link_delay(pdev, active, 100); 4883 } 4884 4885 /* 4886 * Find maximum D3cold delay required by all the devices on the bus. The 4887 * spec says 100 ms, but firmware can lower it and we allow drivers to 4888 * increase it as well. 4889 * 4890 * Called with @pci_bus_sem locked for reading. 4891 */ 4892 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4893 { 4894 const struct pci_dev *pdev; 4895 int min_delay = 100; 4896 int max_delay = 0; 4897 4898 list_for_each_entry(pdev, &bus->devices, bus_list) { 4899 if (pdev->d3cold_delay < min_delay) 4900 min_delay = pdev->d3cold_delay; 4901 if (pdev->d3cold_delay > max_delay) 4902 max_delay = pdev->d3cold_delay; 4903 } 4904 4905 return max(min_delay, max_delay); 4906 } 4907 4908 /** 4909 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4910 * @dev: PCI bridge 4911 * 4912 * Handle necessary delays before access to the devices on the secondary 4913 * side of the bridge are permitted after D3cold to D0 transition. 4914 * 4915 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4916 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4917 * 4.3.2. 4918 */ 4919 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4920 { 4921 struct pci_dev *child; 4922 int delay; 4923 4924 if (pci_dev_is_disconnected(dev)) 4925 return; 4926 4927 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4928 return; 4929 4930 down_read(&pci_bus_sem); 4931 4932 /* 4933 * We only deal with devices that are present currently on the bus. 4934 * For any hot-added devices the access delay is handled in pciehp 4935 * board_added(). In case of ACPI hotplug the firmware is expected 4936 * to configure the devices before OS is notified. 4937 */ 4938 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4939 up_read(&pci_bus_sem); 4940 return; 4941 } 4942 4943 /* Take d3cold_delay requirements into account */ 4944 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4945 if (!delay) { 4946 up_read(&pci_bus_sem); 4947 return; 4948 } 4949 4950 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4951 bus_list); 4952 up_read(&pci_bus_sem); 4953 4954 /* 4955 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4956 * accessing the device after reset (that is 1000 ms + 100 ms). In 4957 * practice this should not be needed because we don't do power 4958 * management for them (see pci_bridge_d3_possible()). 4959 */ 4960 if (!pci_is_pcie(dev)) { 4961 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4962 msleep(1000 + delay); 4963 return; 4964 } 4965 4966 /* 4967 * For PCIe downstream and root ports that do not support speeds 4968 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4969 * speeds (gen3) we need to wait first for the data link layer to 4970 * become active. 4971 * 4972 * However, 100 ms is the minimum and the PCIe spec says the 4973 * software must allow at least 1s before it can determine that the 4974 * device that did not respond is a broken device. There is 4975 * evidence that 100 ms is not always enough, for example certain 4976 * Titan Ridge xHCI controller does not always respond to 4977 * configuration requests if we only wait for 100 ms (see 4978 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4979 * 4980 * Therefore we wait for 100 ms and check for the device presence. 4981 * If it is still not present give it an additional 100 ms. 4982 */ 4983 if (!pcie_downstream_port(dev)) 4984 return; 4985 4986 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4987 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4988 msleep(delay); 4989 } else { 4990 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4991 delay); 4992 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4993 /* Did not train, no need to wait any further */ 4994 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4995 return; 4996 } 4997 } 4998 4999 if (!pci_device_is_present(child)) { 5000 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 5001 msleep(delay); 5002 } 5003 } 5004 5005 void pci_reset_secondary_bus(struct pci_dev *dev) 5006 { 5007 u16 ctrl; 5008 5009 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5010 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5011 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5012 5013 /* 5014 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5015 * this to 2ms to ensure that we meet the minimum requirement. 5016 */ 5017 msleep(2); 5018 5019 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5020 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5021 5022 /* 5023 * Trhfa for conventional PCI is 2^25 clock cycles. 5024 * Assuming a minimum 33MHz clock this results in a 1s 5025 * delay before we can consider subordinate devices to 5026 * be re-initialized. PCIe has some ways to shorten this, 5027 * but we don't make use of them yet. 5028 */ 5029 ssleep(1); 5030 } 5031 5032 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5033 { 5034 pci_reset_secondary_bus(dev); 5035 } 5036 5037 /** 5038 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5039 * @dev: Bridge device 5040 * 5041 * Use the bridge control register to assert reset on the secondary bus. 5042 * Devices on the secondary bus are left in power-on state. 5043 */ 5044 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5045 { 5046 pcibios_reset_secondary_bus(dev); 5047 5048 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 5049 } 5050 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5051 5052 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5053 { 5054 struct pci_dev *pdev; 5055 5056 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5057 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5058 return -ENOTTY; 5059 5060 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5061 if (pdev != dev) 5062 return -ENOTTY; 5063 5064 if (probe) 5065 return 0; 5066 5067 return pci_bridge_secondary_bus_reset(dev->bus->self); 5068 } 5069 5070 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5071 { 5072 int rc = -ENOTTY; 5073 5074 if (!hotplug || !try_module_get(hotplug->owner)) 5075 return rc; 5076 5077 if (hotplug->ops->reset_slot) 5078 rc = hotplug->ops->reset_slot(hotplug, probe); 5079 5080 module_put(hotplug->owner); 5081 5082 return rc; 5083 } 5084 5085 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5086 { 5087 if (dev->multifunction || dev->subordinate || !dev->slot || 5088 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5089 return -ENOTTY; 5090 5091 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5092 } 5093 5094 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5095 { 5096 int rc; 5097 5098 rc = pci_dev_reset_slot_function(dev, probe); 5099 if (rc != -ENOTTY) 5100 return rc; 5101 return pci_parent_bus_reset(dev, probe); 5102 } 5103 5104 void pci_dev_lock(struct pci_dev *dev) 5105 { 5106 pci_cfg_access_lock(dev); 5107 /* block PM suspend, driver probe, etc. */ 5108 device_lock(&dev->dev); 5109 } 5110 EXPORT_SYMBOL_GPL(pci_dev_lock); 5111 5112 /* Return 1 on successful lock, 0 on contention */ 5113 int pci_dev_trylock(struct pci_dev *dev) 5114 { 5115 if (pci_cfg_access_trylock(dev)) { 5116 if (device_trylock(&dev->dev)) 5117 return 1; 5118 pci_cfg_access_unlock(dev); 5119 } 5120 5121 return 0; 5122 } 5123 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5124 5125 void pci_dev_unlock(struct pci_dev *dev) 5126 { 5127 device_unlock(&dev->dev); 5128 pci_cfg_access_unlock(dev); 5129 } 5130 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5131 5132 static void pci_dev_save_and_disable(struct pci_dev *dev) 5133 { 5134 const struct pci_error_handlers *err_handler = 5135 dev->driver ? dev->driver->err_handler : NULL; 5136 5137 /* 5138 * dev->driver->err_handler->reset_prepare() is protected against 5139 * races with ->remove() by the device lock, which must be held by 5140 * the caller. 5141 */ 5142 if (err_handler && err_handler->reset_prepare) 5143 err_handler->reset_prepare(dev); 5144 5145 /* 5146 * Wake-up device prior to save. PM registers default to D0 after 5147 * reset and a simple register restore doesn't reliably return 5148 * to a non-D0 state anyway. 5149 */ 5150 pci_set_power_state(dev, PCI_D0); 5151 5152 pci_save_state(dev); 5153 /* 5154 * Disable the device by clearing the Command register, except for 5155 * INTx-disable which is set. This not only disables MMIO and I/O port 5156 * BARs, but also prevents the device from being Bus Master, preventing 5157 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5158 * compliant devices, INTx-disable prevents legacy interrupts. 5159 */ 5160 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5161 } 5162 5163 static void pci_dev_restore(struct pci_dev *dev) 5164 { 5165 const struct pci_error_handlers *err_handler = 5166 dev->driver ? dev->driver->err_handler : NULL; 5167 5168 pci_restore_state(dev); 5169 5170 /* 5171 * dev->driver->err_handler->reset_done() is protected against 5172 * races with ->remove() by the device lock, which must be held by 5173 * the caller. 5174 */ 5175 if (err_handler && err_handler->reset_done) 5176 err_handler->reset_done(dev); 5177 } 5178 5179 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5180 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5181 { }, 5182 { pci_dev_specific_reset, .name = "device_specific" }, 5183 { pci_dev_acpi_reset, .name = "acpi" }, 5184 { pcie_reset_flr, .name = "flr" }, 5185 { pci_af_flr, .name = "af_flr" }, 5186 { pci_pm_reset, .name = "pm" }, 5187 { pci_reset_bus_function, .name = "bus" }, 5188 }; 5189 5190 static ssize_t reset_method_show(struct device *dev, 5191 struct device_attribute *attr, char *buf) 5192 { 5193 struct pci_dev *pdev = to_pci_dev(dev); 5194 ssize_t len = 0; 5195 int i, m; 5196 5197 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5198 m = pdev->reset_methods[i]; 5199 if (!m) 5200 break; 5201 5202 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5203 pci_reset_fn_methods[m].name); 5204 } 5205 5206 if (len) 5207 len += sysfs_emit_at(buf, len, "\n"); 5208 5209 return len; 5210 } 5211 5212 static int reset_method_lookup(const char *name) 5213 { 5214 int m; 5215 5216 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5217 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5218 return m; 5219 } 5220 5221 return 0; /* not found */ 5222 } 5223 5224 static ssize_t reset_method_store(struct device *dev, 5225 struct device_attribute *attr, 5226 const char *buf, size_t count) 5227 { 5228 struct pci_dev *pdev = to_pci_dev(dev); 5229 char *options, *name; 5230 int m, n; 5231 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5232 5233 if (sysfs_streq(buf, "")) { 5234 pdev->reset_methods[0] = 0; 5235 pci_warn(pdev, "All device reset methods disabled by user"); 5236 return count; 5237 } 5238 5239 if (sysfs_streq(buf, "default")) { 5240 pci_init_reset_methods(pdev); 5241 return count; 5242 } 5243 5244 options = kstrndup(buf, count, GFP_KERNEL); 5245 if (!options) 5246 return -ENOMEM; 5247 5248 n = 0; 5249 while ((name = strsep(&options, " ")) != NULL) { 5250 if (sysfs_streq(name, "")) 5251 continue; 5252 5253 name = strim(name); 5254 5255 m = reset_method_lookup(name); 5256 if (!m) { 5257 pci_err(pdev, "Invalid reset method '%s'", name); 5258 goto error; 5259 } 5260 5261 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5262 pci_err(pdev, "Unsupported reset method '%s'", name); 5263 goto error; 5264 } 5265 5266 if (n == PCI_NUM_RESET_METHODS - 1) { 5267 pci_err(pdev, "Too many reset methods\n"); 5268 goto error; 5269 } 5270 5271 reset_methods[n++] = m; 5272 } 5273 5274 reset_methods[n] = 0; 5275 5276 /* Warn if dev-specific supported but not highest priority */ 5277 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5278 reset_methods[0] != 1) 5279 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5280 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5281 kfree(options); 5282 return count; 5283 5284 error: 5285 /* Leave previous methods unchanged */ 5286 kfree(options); 5287 return -EINVAL; 5288 } 5289 static DEVICE_ATTR_RW(reset_method); 5290 5291 static struct attribute *pci_dev_reset_method_attrs[] = { 5292 &dev_attr_reset_method.attr, 5293 NULL, 5294 }; 5295 5296 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5297 struct attribute *a, int n) 5298 { 5299 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5300 5301 if (!pci_reset_supported(pdev)) 5302 return 0; 5303 5304 return a->mode; 5305 } 5306 5307 const struct attribute_group pci_dev_reset_method_attr_group = { 5308 .attrs = pci_dev_reset_method_attrs, 5309 .is_visible = pci_dev_reset_method_attr_is_visible, 5310 }; 5311 5312 /** 5313 * __pci_reset_function_locked - reset a PCI device function while holding 5314 * the @dev mutex lock. 5315 * @dev: PCI device to reset 5316 * 5317 * Some devices allow an individual function to be reset without affecting 5318 * other functions in the same device. The PCI device must be responsive 5319 * to PCI config space in order to use this function. 5320 * 5321 * The device function is presumed to be unused and the caller is holding 5322 * the device mutex lock when this function is called. 5323 * 5324 * Resetting the device will make the contents of PCI configuration space 5325 * random, so any caller of this must be prepared to reinitialise the 5326 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5327 * etc. 5328 * 5329 * Returns 0 if the device function was successfully reset or negative if the 5330 * device doesn't support resetting a single function. 5331 */ 5332 int __pci_reset_function_locked(struct pci_dev *dev) 5333 { 5334 int i, m, rc; 5335 5336 might_sleep(); 5337 5338 /* 5339 * A reset method returns -ENOTTY if it doesn't support this device and 5340 * we should try the next method. 5341 * 5342 * If it returns 0 (success), we're finished. If it returns any other 5343 * error, we're also finished: this indicates that further reset 5344 * mechanisms might be broken on the device. 5345 */ 5346 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5347 m = dev->reset_methods[i]; 5348 if (!m) 5349 return -ENOTTY; 5350 5351 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5352 if (!rc) 5353 return 0; 5354 if (rc != -ENOTTY) 5355 return rc; 5356 } 5357 5358 return -ENOTTY; 5359 } 5360 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5361 5362 /** 5363 * pci_init_reset_methods - check whether device can be safely reset 5364 * and store supported reset mechanisms. 5365 * @dev: PCI device to check for reset mechanisms 5366 * 5367 * Some devices allow an individual function to be reset without affecting 5368 * other functions in the same device. The PCI device must be in D0-D3hot 5369 * state. 5370 * 5371 * Stores reset mechanisms supported by device in reset_methods byte array 5372 * which is a member of struct pci_dev. 5373 */ 5374 void pci_init_reset_methods(struct pci_dev *dev) 5375 { 5376 int m, i, rc; 5377 5378 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5379 5380 might_sleep(); 5381 5382 i = 0; 5383 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5384 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5385 if (!rc) 5386 dev->reset_methods[i++] = m; 5387 else if (rc != -ENOTTY) 5388 break; 5389 } 5390 5391 dev->reset_methods[i] = 0; 5392 } 5393 5394 /** 5395 * pci_reset_function - quiesce and reset a PCI device function 5396 * @dev: PCI device to reset 5397 * 5398 * Some devices allow an individual function to be reset without affecting 5399 * other functions in the same device. The PCI device must be responsive 5400 * to PCI config space in order to use this function. 5401 * 5402 * This function does not just reset the PCI portion of a device, but 5403 * clears all the state associated with the device. This function differs 5404 * from __pci_reset_function_locked() in that it saves and restores device state 5405 * over the reset and takes the PCI device lock. 5406 * 5407 * Returns 0 if the device function was successfully reset or negative if the 5408 * device doesn't support resetting a single function. 5409 */ 5410 int pci_reset_function(struct pci_dev *dev) 5411 { 5412 int rc; 5413 5414 if (!pci_reset_supported(dev)) 5415 return -ENOTTY; 5416 5417 pci_dev_lock(dev); 5418 pci_dev_save_and_disable(dev); 5419 5420 rc = __pci_reset_function_locked(dev); 5421 5422 pci_dev_restore(dev); 5423 pci_dev_unlock(dev); 5424 5425 return rc; 5426 } 5427 EXPORT_SYMBOL_GPL(pci_reset_function); 5428 5429 /** 5430 * pci_reset_function_locked - quiesce and reset a PCI device function 5431 * @dev: PCI device to reset 5432 * 5433 * Some devices allow an individual function to be reset without affecting 5434 * other functions in the same device. The PCI device must be responsive 5435 * to PCI config space in order to use this function. 5436 * 5437 * This function does not just reset the PCI portion of a device, but 5438 * clears all the state associated with the device. This function differs 5439 * from __pci_reset_function_locked() in that it saves and restores device state 5440 * over the reset. It also differs from pci_reset_function() in that it 5441 * requires the PCI device lock to be held. 5442 * 5443 * Returns 0 if the device function was successfully reset or negative if the 5444 * device doesn't support resetting a single function. 5445 */ 5446 int pci_reset_function_locked(struct pci_dev *dev) 5447 { 5448 int rc; 5449 5450 if (!pci_reset_supported(dev)) 5451 return -ENOTTY; 5452 5453 pci_dev_save_and_disable(dev); 5454 5455 rc = __pci_reset_function_locked(dev); 5456 5457 pci_dev_restore(dev); 5458 5459 return rc; 5460 } 5461 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5462 5463 /** 5464 * pci_try_reset_function - quiesce and reset a PCI device function 5465 * @dev: PCI device to reset 5466 * 5467 * Same as above, except return -EAGAIN if unable to lock device. 5468 */ 5469 int pci_try_reset_function(struct pci_dev *dev) 5470 { 5471 int rc; 5472 5473 if (!pci_reset_supported(dev)) 5474 return -ENOTTY; 5475 5476 if (!pci_dev_trylock(dev)) 5477 return -EAGAIN; 5478 5479 pci_dev_save_and_disable(dev); 5480 rc = __pci_reset_function_locked(dev); 5481 pci_dev_restore(dev); 5482 pci_dev_unlock(dev); 5483 5484 return rc; 5485 } 5486 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5487 5488 /* Do any devices on or below this bus prevent a bus reset? */ 5489 static bool pci_bus_resetable(struct pci_bus *bus) 5490 { 5491 struct pci_dev *dev; 5492 5493 5494 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5495 return false; 5496 5497 list_for_each_entry(dev, &bus->devices, bus_list) { 5498 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5499 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5500 return false; 5501 } 5502 5503 return true; 5504 } 5505 5506 /* Lock devices from the top of the tree down */ 5507 static void pci_bus_lock(struct pci_bus *bus) 5508 { 5509 struct pci_dev *dev; 5510 5511 list_for_each_entry(dev, &bus->devices, bus_list) { 5512 pci_dev_lock(dev); 5513 if (dev->subordinate) 5514 pci_bus_lock(dev->subordinate); 5515 } 5516 } 5517 5518 /* Unlock devices from the bottom of the tree up */ 5519 static void pci_bus_unlock(struct pci_bus *bus) 5520 { 5521 struct pci_dev *dev; 5522 5523 list_for_each_entry(dev, &bus->devices, bus_list) { 5524 if (dev->subordinate) 5525 pci_bus_unlock(dev->subordinate); 5526 pci_dev_unlock(dev); 5527 } 5528 } 5529 5530 /* Return 1 on successful lock, 0 on contention */ 5531 static int pci_bus_trylock(struct pci_bus *bus) 5532 { 5533 struct pci_dev *dev; 5534 5535 list_for_each_entry(dev, &bus->devices, bus_list) { 5536 if (!pci_dev_trylock(dev)) 5537 goto unlock; 5538 if (dev->subordinate) { 5539 if (!pci_bus_trylock(dev->subordinate)) { 5540 pci_dev_unlock(dev); 5541 goto unlock; 5542 } 5543 } 5544 } 5545 return 1; 5546 5547 unlock: 5548 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5549 if (dev->subordinate) 5550 pci_bus_unlock(dev->subordinate); 5551 pci_dev_unlock(dev); 5552 } 5553 return 0; 5554 } 5555 5556 /* Do any devices on or below this slot prevent a bus reset? */ 5557 static bool pci_slot_resetable(struct pci_slot *slot) 5558 { 5559 struct pci_dev *dev; 5560 5561 if (slot->bus->self && 5562 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5563 return false; 5564 5565 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5566 if (!dev->slot || dev->slot != slot) 5567 continue; 5568 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5569 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5570 return false; 5571 } 5572 5573 return true; 5574 } 5575 5576 /* Lock devices from the top of the tree down */ 5577 static void pci_slot_lock(struct pci_slot *slot) 5578 { 5579 struct pci_dev *dev; 5580 5581 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5582 if (!dev->slot || dev->slot != slot) 5583 continue; 5584 pci_dev_lock(dev); 5585 if (dev->subordinate) 5586 pci_bus_lock(dev->subordinate); 5587 } 5588 } 5589 5590 /* Unlock devices from the bottom of the tree up */ 5591 static void pci_slot_unlock(struct pci_slot *slot) 5592 { 5593 struct pci_dev *dev; 5594 5595 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5596 if (!dev->slot || dev->slot != slot) 5597 continue; 5598 if (dev->subordinate) 5599 pci_bus_unlock(dev->subordinate); 5600 pci_dev_unlock(dev); 5601 } 5602 } 5603 5604 /* Return 1 on successful lock, 0 on contention */ 5605 static int pci_slot_trylock(struct pci_slot *slot) 5606 { 5607 struct pci_dev *dev; 5608 5609 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5610 if (!dev->slot || dev->slot != slot) 5611 continue; 5612 if (!pci_dev_trylock(dev)) 5613 goto unlock; 5614 if (dev->subordinate) { 5615 if (!pci_bus_trylock(dev->subordinate)) { 5616 pci_dev_unlock(dev); 5617 goto unlock; 5618 } 5619 } 5620 } 5621 return 1; 5622 5623 unlock: 5624 list_for_each_entry_continue_reverse(dev, 5625 &slot->bus->devices, bus_list) { 5626 if (!dev->slot || dev->slot != slot) 5627 continue; 5628 if (dev->subordinate) 5629 pci_bus_unlock(dev->subordinate); 5630 pci_dev_unlock(dev); 5631 } 5632 return 0; 5633 } 5634 5635 /* 5636 * Save and disable devices from the top of the tree down while holding 5637 * the @dev mutex lock for the entire tree. 5638 */ 5639 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5640 { 5641 struct pci_dev *dev; 5642 5643 list_for_each_entry(dev, &bus->devices, bus_list) { 5644 pci_dev_save_and_disable(dev); 5645 if (dev->subordinate) 5646 pci_bus_save_and_disable_locked(dev->subordinate); 5647 } 5648 } 5649 5650 /* 5651 * Restore devices from top of the tree down while holding @dev mutex lock 5652 * for the entire tree. Parent bridges need to be restored before we can 5653 * get to subordinate devices. 5654 */ 5655 static void pci_bus_restore_locked(struct pci_bus *bus) 5656 { 5657 struct pci_dev *dev; 5658 5659 list_for_each_entry(dev, &bus->devices, bus_list) { 5660 pci_dev_restore(dev); 5661 if (dev->subordinate) 5662 pci_bus_restore_locked(dev->subordinate); 5663 } 5664 } 5665 5666 /* 5667 * Save and disable devices from the top of the tree down while holding 5668 * the @dev mutex lock for the entire tree. 5669 */ 5670 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5671 { 5672 struct pci_dev *dev; 5673 5674 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5675 if (!dev->slot || dev->slot != slot) 5676 continue; 5677 pci_dev_save_and_disable(dev); 5678 if (dev->subordinate) 5679 pci_bus_save_and_disable_locked(dev->subordinate); 5680 } 5681 } 5682 5683 /* 5684 * Restore devices from top of the tree down while holding @dev mutex lock 5685 * for the entire tree. Parent bridges need to be restored before we can 5686 * get to subordinate devices. 5687 */ 5688 static void pci_slot_restore_locked(struct pci_slot *slot) 5689 { 5690 struct pci_dev *dev; 5691 5692 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5693 if (!dev->slot || dev->slot != slot) 5694 continue; 5695 pci_dev_restore(dev); 5696 if (dev->subordinate) 5697 pci_bus_restore_locked(dev->subordinate); 5698 } 5699 } 5700 5701 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5702 { 5703 int rc; 5704 5705 if (!slot || !pci_slot_resetable(slot)) 5706 return -ENOTTY; 5707 5708 if (!probe) 5709 pci_slot_lock(slot); 5710 5711 might_sleep(); 5712 5713 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5714 5715 if (!probe) 5716 pci_slot_unlock(slot); 5717 5718 return rc; 5719 } 5720 5721 /** 5722 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5723 * @slot: PCI slot to probe 5724 * 5725 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5726 */ 5727 int pci_probe_reset_slot(struct pci_slot *slot) 5728 { 5729 return pci_slot_reset(slot, PCI_RESET_PROBE); 5730 } 5731 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5732 5733 /** 5734 * __pci_reset_slot - Try to reset a PCI slot 5735 * @slot: PCI slot to reset 5736 * 5737 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5738 * independent of other slots. For instance, some slots may support slot power 5739 * control. In the case of a 1:1 bus to slot architecture, this function may 5740 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5741 * Generally a slot reset should be attempted before a bus reset. All of the 5742 * function of the slot and any subordinate buses behind the slot are reset 5743 * through this function. PCI config space of all devices in the slot and 5744 * behind the slot is saved before and restored after reset. 5745 * 5746 * Same as above except return -EAGAIN if the slot cannot be locked 5747 */ 5748 static int __pci_reset_slot(struct pci_slot *slot) 5749 { 5750 int rc; 5751 5752 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5753 if (rc) 5754 return rc; 5755 5756 if (pci_slot_trylock(slot)) { 5757 pci_slot_save_and_disable_locked(slot); 5758 might_sleep(); 5759 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5760 pci_slot_restore_locked(slot); 5761 pci_slot_unlock(slot); 5762 } else 5763 rc = -EAGAIN; 5764 5765 return rc; 5766 } 5767 5768 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5769 { 5770 int ret; 5771 5772 if (!bus->self || !pci_bus_resetable(bus)) 5773 return -ENOTTY; 5774 5775 if (probe) 5776 return 0; 5777 5778 pci_bus_lock(bus); 5779 5780 might_sleep(); 5781 5782 ret = pci_bridge_secondary_bus_reset(bus->self); 5783 5784 pci_bus_unlock(bus); 5785 5786 return ret; 5787 } 5788 5789 /** 5790 * pci_bus_error_reset - reset the bridge's subordinate bus 5791 * @bridge: The parent device that connects to the bus to reset 5792 * 5793 * This function will first try to reset the slots on this bus if the method is 5794 * available. If slot reset fails or is not available, this will fall back to a 5795 * secondary bus reset. 5796 */ 5797 int pci_bus_error_reset(struct pci_dev *bridge) 5798 { 5799 struct pci_bus *bus = bridge->subordinate; 5800 struct pci_slot *slot; 5801 5802 if (!bus) 5803 return -ENOTTY; 5804 5805 mutex_lock(&pci_slot_mutex); 5806 if (list_empty(&bus->slots)) 5807 goto bus_reset; 5808 5809 list_for_each_entry(slot, &bus->slots, list) 5810 if (pci_probe_reset_slot(slot)) 5811 goto bus_reset; 5812 5813 list_for_each_entry(slot, &bus->slots, list) 5814 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5815 goto bus_reset; 5816 5817 mutex_unlock(&pci_slot_mutex); 5818 return 0; 5819 bus_reset: 5820 mutex_unlock(&pci_slot_mutex); 5821 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5822 } 5823 5824 /** 5825 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5826 * @bus: PCI bus to probe 5827 * 5828 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5829 */ 5830 int pci_probe_reset_bus(struct pci_bus *bus) 5831 { 5832 return pci_bus_reset(bus, PCI_RESET_PROBE); 5833 } 5834 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5835 5836 /** 5837 * __pci_reset_bus - Try to reset a PCI bus 5838 * @bus: top level PCI bus to reset 5839 * 5840 * Same as above except return -EAGAIN if the bus cannot be locked 5841 */ 5842 static int __pci_reset_bus(struct pci_bus *bus) 5843 { 5844 int rc; 5845 5846 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5847 if (rc) 5848 return rc; 5849 5850 if (pci_bus_trylock(bus)) { 5851 pci_bus_save_and_disable_locked(bus); 5852 might_sleep(); 5853 rc = pci_bridge_secondary_bus_reset(bus->self); 5854 pci_bus_restore_locked(bus); 5855 pci_bus_unlock(bus); 5856 } else 5857 rc = -EAGAIN; 5858 5859 return rc; 5860 } 5861 5862 /** 5863 * pci_reset_bus - Try to reset a PCI bus 5864 * @pdev: top level PCI device to reset via slot/bus 5865 * 5866 * Same as above except return -EAGAIN if the bus cannot be locked 5867 */ 5868 int pci_reset_bus(struct pci_dev *pdev) 5869 { 5870 return (!pci_probe_reset_slot(pdev->slot)) ? 5871 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5872 } 5873 EXPORT_SYMBOL_GPL(pci_reset_bus); 5874 5875 /** 5876 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5877 * @dev: PCI device to query 5878 * 5879 * Returns mmrbc: maximum designed memory read count in bytes or 5880 * appropriate error value. 5881 */ 5882 int pcix_get_max_mmrbc(struct pci_dev *dev) 5883 { 5884 int cap; 5885 u32 stat; 5886 5887 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5888 if (!cap) 5889 return -EINVAL; 5890 5891 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5892 return -EINVAL; 5893 5894 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5895 } 5896 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5897 5898 /** 5899 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5900 * @dev: PCI device to query 5901 * 5902 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5903 * value. 5904 */ 5905 int pcix_get_mmrbc(struct pci_dev *dev) 5906 { 5907 int cap; 5908 u16 cmd; 5909 5910 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5911 if (!cap) 5912 return -EINVAL; 5913 5914 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5915 return -EINVAL; 5916 5917 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5918 } 5919 EXPORT_SYMBOL(pcix_get_mmrbc); 5920 5921 /** 5922 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5923 * @dev: PCI device to query 5924 * @mmrbc: maximum memory read count in bytes 5925 * valid values are 512, 1024, 2048, 4096 5926 * 5927 * If possible sets maximum memory read byte count, some bridges have errata 5928 * that prevent this. 5929 */ 5930 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5931 { 5932 int cap; 5933 u32 stat, v, o; 5934 u16 cmd; 5935 5936 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5937 return -EINVAL; 5938 5939 v = ffs(mmrbc) - 10; 5940 5941 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5942 if (!cap) 5943 return -EINVAL; 5944 5945 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5946 return -EINVAL; 5947 5948 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5949 return -E2BIG; 5950 5951 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5952 return -EINVAL; 5953 5954 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5955 if (o != v) { 5956 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5957 return -EIO; 5958 5959 cmd &= ~PCI_X_CMD_MAX_READ; 5960 cmd |= v << 2; 5961 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5962 return -EIO; 5963 } 5964 return 0; 5965 } 5966 EXPORT_SYMBOL(pcix_set_mmrbc); 5967 5968 /** 5969 * pcie_get_readrq - get PCI Express read request size 5970 * @dev: PCI device to query 5971 * 5972 * Returns maximum memory read request in bytes or appropriate error value. 5973 */ 5974 int pcie_get_readrq(struct pci_dev *dev) 5975 { 5976 u16 ctl; 5977 5978 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5979 5980 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5981 } 5982 EXPORT_SYMBOL(pcie_get_readrq); 5983 5984 /** 5985 * pcie_set_readrq - set PCI Express maximum memory read request 5986 * @dev: PCI device to query 5987 * @rq: maximum memory read count in bytes 5988 * valid values are 128, 256, 512, 1024, 2048, 4096 5989 * 5990 * If possible sets maximum memory read request in bytes 5991 */ 5992 int pcie_set_readrq(struct pci_dev *dev, int rq) 5993 { 5994 u16 v; 5995 int ret; 5996 5997 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5998 return -EINVAL; 5999 6000 /* 6001 * If using the "performance" PCIe config, we clamp the read rq 6002 * size to the max packet size to keep the host bridge from 6003 * generating requests larger than we can cope with. 6004 */ 6005 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6006 int mps = pcie_get_mps(dev); 6007 6008 if (mps < rq) 6009 rq = mps; 6010 } 6011 6012 v = (ffs(rq) - 8) << 12; 6013 6014 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6015 PCI_EXP_DEVCTL_READRQ, v); 6016 6017 return pcibios_err_to_errno(ret); 6018 } 6019 EXPORT_SYMBOL(pcie_set_readrq); 6020 6021 /** 6022 * pcie_get_mps - get PCI Express maximum payload size 6023 * @dev: PCI device to query 6024 * 6025 * Returns maximum payload size in bytes 6026 */ 6027 int pcie_get_mps(struct pci_dev *dev) 6028 { 6029 u16 ctl; 6030 6031 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6032 6033 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6034 } 6035 EXPORT_SYMBOL(pcie_get_mps); 6036 6037 /** 6038 * pcie_set_mps - set PCI Express maximum payload size 6039 * @dev: PCI device to query 6040 * @mps: maximum payload size in bytes 6041 * valid values are 128, 256, 512, 1024, 2048, 4096 6042 * 6043 * If possible sets maximum payload size 6044 */ 6045 int pcie_set_mps(struct pci_dev *dev, int mps) 6046 { 6047 u16 v; 6048 int ret; 6049 6050 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6051 return -EINVAL; 6052 6053 v = ffs(mps) - 8; 6054 if (v > dev->pcie_mpss) 6055 return -EINVAL; 6056 v <<= 5; 6057 6058 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6059 PCI_EXP_DEVCTL_PAYLOAD, v); 6060 6061 return pcibios_err_to_errno(ret); 6062 } 6063 EXPORT_SYMBOL(pcie_set_mps); 6064 6065 /** 6066 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6067 * device and its bandwidth limitation 6068 * @dev: PCI device to query 6069 * @limiting_dev: storage for device causing the bandwidth limitation 6070 * @speed: storage for speed of limiting device 6071 * @width: storage for width of limiting device 6072 * 6073 * Walk up the PCI device chain and find the point where the minimum 6074 * bandwidth is available. Return the bandwidth available there and (if 6075 * limiting_dev, speed, and width pointers are supplied) information about 6076 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6077 * raw bandwidth. 6078 */ 6079 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6080 enum pci_bus_speed *speed, 6081 enum pcie_link_width *width) 6082 { 6083 u16 lnksta; 6084 enum pci_bus_speed next_speed; 6085 enum pcie_link_width next_width; 6086 u32 bw, next_bw; 6087 6088 if (speed) 6089 *speed = PCI_SPEED_UNKNOWN; 6090 if (width) 6091 *width = PCIE_LNK_WIDTH_UNKNOWN; 6092 6093 bw = 0; 6094 6095 while (dev) { 6096 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6097 6098 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6099 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 6100 PCI_EXP_LNKSTA_NLW_SHIFT; 6101 6102 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6103 6104 /* Check if current device limits the total bandwidth */ 6105 if (!bw || next_bw <= bw) { 6106 bw = next_bw; 6107 6108 if (limiting_dev) 6109 *limiting_dev = dev; 6110 if (speed) 6111 *speed = next_speed; 6112 if (width) 6113 *width = next_width; 6114 } 6115 6116 dev = pci_upstream_bridge(dev); 6117 } 6118 6119 return bw; 6120 } 6121 EXPORT_SYMBOL(pcie_bandwidth_available); 6122 6123 /** 6124 * pcie_get_speed_cap - query for the PCI device's link speed capability 6125 * @dev: PCI device to query 6126 * 6127 * Query the PCI device speed capability. Return the maximum link speed 6128 * supported by the device. 6129 */ 6130 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6131 { 6132 u32 lnkcap2, lnkcap; 6133 6134 /* 6135 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6136 * implementation note there recommends using the Supported Link 6137 * Speeds Vector in Link Capabilities 2 when supported. 6138 * 6139 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6140 * should use the Supported Link Speeds field in Link Capabilities, 6141 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6142 */ 6143 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6144 6145 /* PCIe r3.0-compliant */ 6146 if (lnkcap2) 6147 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6148 6149 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6150 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6151 return PCIE_SPEED_5_0GT; 6152 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6153 return PCIE_SPEED_2_5GT; 6154 6155 return PCI_SPEED_UNKNOWN; 6156 } 6157 EXPORT_SYMBOL(pcie_get_speed_cap); 6158 6159 /** 6160 * pcie_get_width_cap - query for the PCI device's link width capability 6161 * @dev: PCI device to query 6162 * 6163 * Query the PCI device width capability. Return the maximum link width 6164 * supported by the device. 6165 */ 6166 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6167 { 6168 u32 lnkcap; 6169 6170 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6171 if (lnkcap) 6172 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 6173 6174 return PCIE_LNK_WIDTH_UNKNOWN; 6175 } 6176 EXPORT_SYMBOL(pcie_get_width_cap); 6177 6178 /** 6179 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6180 * @dev: PCI device 6181 * @speed: storage for link speed 6182 * @width: storage for link width 6183 * 6184 * Calculate a PCI device's link bandwidth by querying for its link speed 6185 * and width, multiplying them, and applying encoding overhead. The result 6186 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6187 */ 6188 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6189 enum pcie_link_width *width) 6190 { 6191 *speed = pcie_get_speed_cap(dev); 6192 *width = pcie_get_width_cap(dev); 6193 6194 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6195 return 0; 6196 6197 return *width * PCIE_SPEED2MBS_ENC(*speed); 6198 } 6199 6200 /** 6201 * __pcie_print_link_status - Report the PCI device's link speed and width 6202 * @dev: PCI device to query 6203 * @verbose: Print info even when enough bandwidth is available 6204 * 6205 * If the available bandwidth at the device is less than the device is 6206 * capable of, report the device's maximum possible bandwidth and the 6207 * upstream link that limits its performance. If @verbose, always print 6208 * the available bandwidth, even if the device isn't constrained. 6209 */ 6210 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6211 { 6212 enum pcie_link_width width, width_cap; 6213 enum pci_bus_speed speed, speed_cap; 6214 struct pci_dev *limiting_dev = NULL; 6215 u32 bw_avail, bw_cap; 6216 6217 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6218 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6219 6220 if (bw_avail >= bw_cap && verbose) 6221 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6222 bw_cap / 1000, bw_cap % 1000, 6223 pci_speed_string(speed_cap), width_cap); 6224 else if (bw_avail < bw_cap) 6225 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6226 bw_avail / 1000, bw_avail % 1000, 6227 pci_speed_string(speed), width, 6228 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6229 bw_cap / 1000, bw_cap % 1000, 6230 pci_speed_string(speed_cap), width_cap); 6231 } 6232 6233 /** 6234 * pcie_print_link_status - Report the PCI device's link speed and width 6235 * @dev: PCI device to query 6236 * 6237 * Report the available bandwidth at the device. 6238 */ 6239 void pcie_print_link_status(struct pci_dev *dev) 6240 { 6241 __pcie_print_link_status(dev, true); 6242 } 6243 EXPORT_SYMBOL(pcie_print_link_status); 6244 6245 /** 6246 * pci_select_bars - Make BAR mask from the type of resource 6247 * @dev: the PCI device for which BAR mask is made 6248 * @flags: resource type mask to be selected 6249 * 6250 * This helper routine makes bar mask from the type of resource. 6251 */ 6252 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6253 { 6254 int i, bars = 0; 6255 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6256 if (pci_resource_flags(dev, i) & flags) 6257 bars |= (1 << i); 6258 return bars; 6259 } 6260 EXPORT_SYMBOL(pci_select_bars); 6261 6262 /* Some architectures require additional programming to enable VGA */ 6263 static arch_set_vga_state_t arch_set_vga_state; 6264 6265 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6266 { 6267 arch_set_vga_state = func; /* NULL disables */ 6268 } 6269 6270 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6271 unsigned int command_bits, u32 flags) 6272 { 6273 if (arch_set_vga_state) 6274 return arch_set_vga_state(dev, decode, command_bits, 6275 flags); 6276 return 0; 6277 } 6278 6279 /** 6280 * pci_set_vga_state - set VGA decode state on device and parents if requested 6281 * @dev: the PCI device 6282 * @decode: true = enable decoding, false = disable decoding 6283 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6284 * @flags: traverse ancestors and change bridges 6285 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6286 */ 6287 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6288 unsigned int command_bits, u32 flags) 6289 { 6290 struct pci_bus *bus; 6291 struct pci_dev *bridge; 6292 u16 cmd; 6293 int rc; 6294 6295 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6296 6297 /* ARCH specific VGA enables */ 6298 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6299 if (rc) 6300 return rc; 6301 6302 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6303 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6304 if (decode) 6305 cmd |= command_bits; 6306 else 6307 cmd &= ~command_bits; 6308 pci_write_config_word(dev, PCI_COMMAND, cmd); 6309 } 6310 6311 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6312 return 0; 6313 6314 bus = dev->bus; 6315 while (bus) { 6316 bridge = bus->self; 6317 if (bridge) { 6318 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6319 &cmd); 6320 if (decode) 6321 cmd |= PCI_BRIDGE_CTL_VGA; 6322 else 6323 cmd &= ~PCI_BRIDGE_CTL_VGA; 6324 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6325 cmd); 6326 } 6327 bus = bus->parent; 6328 } 6329 return 0; 6330 } 6331 6332 #ifdef CONFIG_ACPI 6333 bool pci_pr3_present(struct pci_dev *pdev) 6334 { 6335 struct acpi_device *adev; 6336 6337 if (acpi_disabled) 6338 return false; 6339 6340 adev = ACPI_COMPANION(&pdev->dev); 6341 if (!adev) 6342 return false; 6343 6344 return adev->power.flags.power_resources && 6345 acpi_has_method(adev->handle, "_PR3"); 6346 } 6347 EXPORT_SYMBOL_GPL(pci_pr3_present); 6348 #endif 6349 6350 /** 6351 * pci_add_dma_alias - Add a DMA devfn alias for a device 6352 * @dev: the PCI device for which alias is added 6353 * @devfn_from: alias slot and function 6354 * @nr_devfns: number of subsequent devfns to alias 6355 * 6356 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6357 * which is used to program permissible bus-devfn source addresses for DMA 6358 * requests in an IOMMU. These aliases factor into IOMMU group creation 6359 * and are useful for devices generating DMA requests beyond or different 6360 * from their logical bus-devfn. Examples include device quirks where the 6361 * device simply uses the wrong devfn, as well as non-transparent bridges 6362 * where the alias may be a proxy for devices in another domain. 6363 * 6364 * IOMMU group creation is performed during device discovery or addition, 6365 * prior to any potential DMA mapping and therefore prior to driver probing 6366 * (especially for userspace assigned devices where IOMMU group definition 6367 * cannot be left as a userspace activity). DMA aliases should therefore 6368 * be configured via quirks, such as the PCI fixup header quirk. 6369 */ 6370 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6371 unsigned int nr_devfns) 6372 { 6373 int devfn_to; 6374 6375 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6376 devfn_to = devfn_from + nr_devfns - 1; 6377 6378 if (!dev->dma_alias_mask) 6379 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6380 if (!dev->dma_alias_mask) { 6381 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6382 return; 6383 } 6384 6385 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6386 6387 if (nr_devfns == 1) 6388 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6389 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6390 else if (nr_devfns > 1) 6391 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6392 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6393 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6394 } 6395 6396 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6397 { 6398 return (dev1->dma_alias_mask && 6399 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6400 (dev2->dma_alias_mask && 6401 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6402 pci_real_dma_dev(dev1) == dev2 || 6403 pci_real_dma_dev(dev2) == dev1; 6404 } 6405 6406 bool pci_device_is_present(struct pci_dev *pdev) 6407 { 6408 u32 v; 6409 6410 if (pci_dev_is_disconnected(pdev)) 6411 return false; 6412 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6413 } 6414 EXPORT_SYMBOL_GPL(pci_device_is_present); 6415 6416 void pci_ignore_hotplug(struct pci_dev *dev) 6417 { 6418 struct pci_dev *bridge = dev->bus->self; 6419 6420 dev->ignore_hotplug = 1; 6421 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6422 if (bridge) 6423 bridge->ignore_hotplug = 1; 6424 } 6425 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6426 6427 /** 6428 * pci_real_dma_dev - Get PCI DMA device for PCI device 6429 * @dev: the PCI device that may have a PCI DMA alias 6430 * 6431 * Permits the platform to provide architecture-specific functionality to 6432 * devices needing to alias DMA to another PCI device on another PCI bus. If 6433 * the PCI device is on the same bus, it is recommended to use 6434 * pci_add_dma_alias(). This is the default implementation. Architecture 6435 * implementations can override this. 6436 */ 6437 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6438 { 6439 return dev; 6440 } 6441 6442 resource_size_t __weak pcibios_default_alignment(void) 6443 { 6444 return 0; 6445 } 6446 6447 /* 6448 * Arches that don't want to expose struct resource to userland as-is in 6449 * sysfs and /proc can implement their own pci_resource_to_user(). 6450 */ 6451 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6452 const struct resource *rsrc, 6453 resource_size_t *start, resource_size_t *end) 6454 { 6455 *start = rsrc->start; 6456 *end = rsrc->end; 6457 } 6458 6459 static char *resource_alignment_param; 6460 static DEFINE_SPINLOCK(resource_alignment_lock); 6461 6462 /** 6463 * pci_specified_resource_alignment - get resource alignment specified by user. 6464 * @dev: the PCI device to get 6465 * @resize: whether or not to change resources' size when reassigning alignment 6466 * 6467 * RETURNS: Resource alignment if it is specified. 6468 * Zero if it is not specified. 6469 */ 6470 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6471 bool *resize) 6472 { 6473 int align_order, count; 6474 resource_size_t align = pcibios_default_alignment(); 6475 const char *p; 6476 int ret; 6477 6478 spin_lock(&resource_alignment_lock); 6479 p = resource_alignment_param; 6480 if (!p || !*p) 6481 goto out; 6482 if (pci_has_flag(PCI_PROBE_ONLY)) { 6483 align = 0; 6484 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6485 goto out; 6486 } 6487 6488 while (*p) { 6489 count = 0; 6490 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6491 p[count] == '@') { 6492 p += count + 1; 6493 if (align_order > 63) { 6494 pr_err("PCI: Invalid requested alignment (order %d)\n", 6495 align_order); 6496 align_order = PAGE_SHIFT; 6497 } 6498 } else { 6499 align_order = PAGE_SHIFT; 6500 } 6501 6502 ret = pci_dev_str_match(dev, p, &p); 6503 if (ret == 1) { 6504 *resize = true; 6505 align = 1ULL << align_order; 6506 break; 6507 } else if (ret < 0) { 6508 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6509 p); 6510 break; 6511 } 6512 6513 if (*p != ';' && *p != ',') { 6514 /* End of param or invalid format */ 6515 break; 6516 } 6517 p++; 6518 } 6519 out: 6520 spin_unlock(&resource_alignment_lock); 6521 return align; 6522 } 6523 6524 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6525 resource_size_t align, bool resize) 6526 { 6527 struct resource *r = &dev->resource[bar]; 6528 resource_size_t size; 6529 6530 if (!(r->flags & IORESOURCE_MEM)) 6531 return; 6532 6533 if (r->flags & IORESOURCE_PCI_FIXED) { 6534 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6535 bar, r, (unsigned long long)align); 6536 return; 6537 } 6538 6539 size = resource_size(r); 6540 if (size >= align) 6541 return; 6542 6543 /* 6544 * Increase the alignment of the resource. There are two ways we 6545 * can do this: 6546 * 6547 * 1) Increase the size of the resource. BARs are aligned on their 6548 * size, so when we reallocate space for this resource, we'll 6549 * allocate it with the larger alignment. This also prevents 6550 * assignment of any other BARs inside the alignment region, so 6551 * if we're requesting page alignment, this means no other BARs 6552 * will share the page. 6553 * 6554 * The disadvantage is that this makes the resource larger than 6555 * the hardware BAR, which may break drivers that compute things 6556 * based on the resource size, e.g., to find registers at a 6557 * fixed offset before the end of the BAR. 6558 * 6559 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6560 * set r->start to the desired alignment. By itself this 6561 * doesn't prevent other BARs being put inside the alignment 6562 * region, but if we realign *every* resource of every device in 6563 * the system, none of them will share an alignment region. 6564 * 6565 * When the user has requested alignment for only some devices via 6566 * the "pci=resource_alignment" argument, "resize" is true and we 6567 * use the first method. Otherwise we assume we're aligning all 6568 * devices and we use the second. 6569 */ 6570 6571 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6572 bar, r, (unsigned long long)align); 6573 6574 if (resize) { 6575 r->start = 0; 6576 r->end = align - 1; 6577 } else { 6578 r->flags &= ~IORESOURCE_SIZEALIGN; 6579 r->flags |= IORESOURCE_STARTALIGN; 6580 r->start = align; 6581 r->end = r->start + size - 1; 6582 } 6583 r->flags |= IORESOURCE_UNSET; 6584 } 6585 6586 /* 6587 * This function disables memory decoding and releases memory resources 6588 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6589 * It also rounds up size to specified alignment. 6590 * Later on, the kernel will assign page-aligned memory resource back 6591 * to the device. 6592 */ 6593 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6594 { 6595 int i; 6596 struct resource *r; 6597 resource_size_t align; 6598 u16 command; 6599 bool resize = false; 6600 6601 /* 6602 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6603 * 3.4.1.11. Their resources are allocated from the space 6604 * described by the VF BARx register in the PF's SR-IOV capability. 6605 * We can't influence their alignment here. 6606 */ 6607 if (dev->is_virtfn) 6608 return; 6609 6610 /* check if specified PCI is target device to reassign */ 6611 align = pci_specified_resource_alignment(dev, &resize); 6612 if (!align) 6613 return; 6614 6615 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6616 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6617 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6618 return; 6619 } 6620 6621 pci_read_config_word(dev, PCI_COMMAND, &command); 6622 command &= ~PCI_COMMAND_MEMORY; 6623 pci_write_config_word(dev, PCI_COMMAND, command); 6624 6625 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6626 pci_request_resource_alignment(dev, i, align, resize); 6627 6628 /* 6629 * Need to disable bridge's resource window, 6630 * to enable the kernel to reassign new resource 6631 * window later on. 6632 */ 6633 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6634 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6635 r = &dev->resource[i]; 6636 if (!(r->flags & IORESOURCE_MEM)) 6637 continue; 6638 r->flags |= IORESOURCE_UNSET; 6639 r->end = resource_size(r) - 1; 6640 r->start = 0; 6641 } 6642 pci_disable_bridge_window(dev); 6643 } 6644 } 6645 6646 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6647 { 6648 size_t count = 0; 6649 6650 spin_lock(&resource_alignment_lock); 6651 if (resource_alignment_param) 6652 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6653 spin_unlock(&resource_alignment_lock); 6654 6655 return count; 6656 } 6657 6658 static ssize_t resource_alignment_store(struct bus_type *bus, 6659 const char *buf, size_t count) 6660 { 6661 char *param, *old, *end; 6662 6663 if (count >= (PAGE_SIZE - 1)) 6664 return -EINVAL; 6665 6666 param = kstrndup(buf, count, GFP_KERNEL); 6667 if (!param) 6668 return -ENOMEM; 6669 6670 end = strchr(param, '\n'); 6671 if (end) 6672 *end = '\0'; 6673 6674 spin_lock(&resource_alignment_lock); 6675 old = resource_alignment_param; 6676 if (strlen(param)) { 6677 resource_alignment_param = param; 6678 } else { 6679 kfree(param); 6680 resource_alignment_param = NULL; 6681 } 6682 spin_unlock(&resource_alignment_lock); 6683 6684 kfree(old); 6685 6686 return count; 6687 } 6688 6689 static BUS_ATTR_RW(resource_alignment); 6690 6691 static int __init pci_resource_alignment_sysfs_init(void) 6692 { 6693 return bus_create_file(&pci_bus_type, 6694 &bus_attr_resource_alignment); 6695 } 6696 late_initcall(pci_resource_alignment_sysfs_init); 6697 6698 static void pci_no_domains(void) 6699 { 6700 #ifdef CONFIG_PCI_DOMAINS 6701 pci_domains_supported = 0; 6702 #endif 6703 } 6704 6705 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6706 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6707 6708 static int pci_get_new_domain_nr(void) 6709 { 6710 return atomic_inc_return(&__domain_nr); 6711 } 6712 6713 static int of_pci_bus_find_domain_nr(struct device *parent) 6714 { 6715 static int use_dt_domains = -1; 6716 int domain = -1; 6717 6718 if (parent) 6719 domain = of_get_pci_domain_nr(parent->of_node); 6720 6721 /* 6722 * Check DT domain and use_dt_domains values. 6723 * 6724 * If DT domain property is valid (domain >= 0) and 6725 * use_dt_domains != 0, the DT assignment is valid since this means 6726 * we have not previously allocated a domain number by using 6727 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6728 * 1, to indicate that we have just assigned a domain number from 6729 * DT. 6730 * 6731 * If DT domain property value is not valid (ie domain < 0), and we 6732 * have not previously assigned a domain number from DT 6733 * (use_dt_domains != 1) we should assign a domain number by 6734 * using the: 6735 * 6736 * pci_get_new_domain_nr() 6737 * 6738 * API and update the use_dt_domains value to keep track of method we 6739 * are using to assign domain numbers (use_dt_domains = 0). 6740 * 6741 * All other combinations imply we have a platform that is trying 6742 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6743 * which is a recipe for domain mishandling and it is prevented by 6744 * invalidating the domain value (domain = -1) and printing a 6745 * corresponding error. 6746 */ 6747 if (domain >= 0 && use_dt_domains) { 6748 use_dt_domains = 1; 6749 } else if (domain < 0 && use_dt_domains != 1) { 6750 use_dt_domains = 0; 6751 domain = pci_get_new_domain_nr(); 6752 } else { 6753 if (parent) 6754 pr_err("Node %pOF has ", parent->of_node); 6755 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6756 domain = -1; 6757 } 6758 6759 return domain; 6760 } 6761 6762 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6763 { 6764 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6765 acpi_pci_bus_find_domain_nr(bus); 6766 } 6767 #endif 6768 6769 /** 6770 * pci_ext_cfg_avail - can we access extended PCI config space? 6771 * 6772 * Returns 1 if we can access PCI extended config space (offsets 6773 * greater than 0xff). This is the default implementation. Architecture 6774 * implementations can override this. 6775 */ 6776 int __weak pci_ext_cfg_avail(void) 6777 { 6778 return 1; 6779 } 6780 6781 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6782 { 6783 } 6784 EXPORT_SYMBOL(pci_fixup_cardbus); 6785 6786 static int __init pci_setup(char *str) 6787 { 6788 while (str) { 6789 char *k = strchr(str, ','); 6790 if (k) 6791 *k++ = 0; 6792 if (*str && (str = pcibios_setup(str)) && *str) { 6793 if (!strcmp(str, "nomsi")) { 6794 pci_no_msi(); 6795 } else if (!strncmp(str, "noats", 5)) { 6796 pr_info("PCIe: ATS is disabled\n"); 6797 pcie_ats_disabled = true; 6798 } else if (!strcmp(str, "noaer")) { 6799 pci_no_aer(); 6800 } else if (!strcmp(str, "earlydump")) { 6801 pci_early_dump = true; 6802 } else if (!strncmp(str, "realloc=", 8)) { 6803 pci_realloc_get_opt(str + 8); 6804 } else if (!strncmp(str, "realloc", 7)) { 6805 pci_realloc_get_opt("on"); 6806 } else if (!strcmp(str, "nodomains")) { 6807 pci_no_domains(); 6808 } else if (!strncmp(str, "noari", 5)) { 6809 pcie_ari_disabled = true; 6810 } else if (!strncmp(str, "cbiosize=", 9)) { 6811 pci_cardbus_io_size = memparse(str + 9, &str); 6812 } else if (!strncmp(str, "cbmemsize=", 10)) { 6813 pci_cardbus_mem_size = memparse(str + 10, &str); 6814 } else if (!strncmp(str, "resource_alignment=", 19)) { 6815 resource_alignment_param = str + 19; 6816 } else if (!strncmp(str, "ecrc=", 5)) { 6817 pcie_ecrc_get_policy(str + 5); 6818 } else if (!strncmp(str, "hpiosize=", 9)) { 6819 pci_hotplug_io_size = memparse(str + 9, &str); 6820 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6821 pci_hotplug_mmio_size = memparse(str + 11, &str); 6822 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6823 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6824 } else if (!strncmp(str, "hpmemsize=", 10)) { 6825 pci_hotplug_mmio_size = memparse(str + 10, &str); 6826 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6827 } else if (!strncmp(str, "hpbussize=", 10)) { 6828 pci_hotplug_bus_size = 6829 simple_strtoul(str + 10, &str, 0); 6830 if (pci_hotplug_bus_size > 0xff) 6831 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6832 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6833 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6834 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6835 pcie_bus_config = PCIE_BUS_SAFE; 6836 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6837 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6838 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6839 pcie_bus_config = PCIE_BUS_PEER2PEER; 6840 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6841 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6842 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6843 disable_acs_redir_param = str + 18; 6844 } else { 6845 pr_err("PCI: Unknown option `%s'\n", str); 6846 } 6847 } 6848 str = k; 6849 } 6850 return 0; 6851 } 6852 early_param("pci", pci_setup); 6853 6854 /* 6855 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6856 * in pci_setup(), above, to point to data in the __initdata section which 6857 * will be freed after the init sequence is complete. We can't allocate memory 6858 * in pci_setup() because some architectures do not have any memory allocation 6859 * service available during an early_param() call. So we allocate memory and 6860 * copy the variable here before the init section is freed. 6861 * 6862 */ 6863 static int __init pci_realloc_setup_params(void) 6864 { 6865 resource_alignment_param = kstrdup(resource_alignment_param, 6866 GFP_KERNEL); 6867 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6868 6869 return 0; 6870 } 6871 pure_initcall(pci_realloc_setup_params); 6872