xref: /openbmc/linux/drivers/pci/pci.c (revision d78c317f)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
27 
28 const char *pci_power_names[] = {
29 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 };
31 EXPORT_SYMBOL_GPL(pci_power_names);
32 
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35 
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
38 
39 unsigned int pci_pm_d3_delay;
40 
41 static void pci_pme_list_scan(struct work_struct *work);
42 
43 static LIST_HEAD(pci_pme_list);
44 static DEFINE_MUTEX(pci_pme_list_mutex);
45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46 
47 struct pci_pme_device {
48 	struct list_head list;
49 	struct pci_dev *dev;
50 };
51 
52 #define PME_TIMEOUT 1000 /* How long between PME checks */
53 
54 static void pci_dev_d3_sleep(struct pci_dev *dev)
55 {
56 	unsigned int delay = dev->d3_delay;
57 
58 	if (delay < pci_pm_d3_delay)
59 		delay = pci_pm_d3_delay;
60 
61 	msleep(delay);
62 }
63 
64 #ifdef CONFIG_PCI_DOMAINS
65 int pci_domains_supported = 1;
66 #endif
67 
68 #define DEFAULT_CARDBUS_IO_SIZE		(256)
69 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73 
74 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
75 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
77 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79 
80 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
81 
82 /*
83  * The default CLS is used if arch didn't set CLS explicitly and not
84  * all pci devices agree on the same value.  Arch can override either
85  * the dfl or actual value as it sees fit.  Don't forget this is
86  * measured in 32-bit words, not bytes.
87  */
88 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
89 u8 pci_cache_line_size;
90 
91 /*
92  * If we set up a device for bus mastering, we need to check the latency
93  * timer as certain BIOSes forget to set it properly.
94  */
95 unsigned int pcibios_max_latency = 255;
96 
97 /**
98  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
99  * @bus: pointer to PCI bus structure to search
100  *
101  * Given a PCI bus, returns the highest PCI bus number present in the set
102  * including the given PCI bus and its list of child PCI buses.
103  */
104 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
105 {
106 	struct list_head *tmp;
107 	unsigned char max, n;
108 
109 	max = bus->subordinate;
110 	list_for_each(tmp, &bus->children) {
111 		n = pci_bus_max_busnr(pci_bus_b(tmp));
112 		if(n > max)
113 			max = n;
114 	}
115 	return max;
116 }
117 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
118 
119 #ifdef CONFIG_HAS_IOMEM
120 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
121 {
122 	/*
123 	 * Make sure the BAR is actually a memory resource, not an IO resource
124 	 */
125 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
126 		WARN_ON(1);
127 		return NULL;
128 	}
129 	return ioremap_nocache(pci_resource_start(pdev, bar),
130 				     pci_resource_len(pdev, bar));
131 }
132 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
133 #endif
134 
135 #if 0
136 /**
137  * pci_max_busnr - returns maximum PCI bus number
138  *
139  * Returns the highest PCI bus number present in the system global list of
140  * PCI buses.
141  */
142 unsigned char __devinit
143 pci_max_busnr(void)
144 {
145 	struct pci_bus *bus = NULL;
146 	unsigned char max, n;
147 
148 	max = 0;
149 	while ((bus = pci_find_next_bus(bus)) != NULL) {
150 		n = pci_bus_max_busnr(bus);
151 		if(n > max)
152 			max = n;
153 	}
154 	return max;
155 }
156 
157 #endif  /*  0  */
158 
159 #define PCI_FIND_CAP_TTL	48
160 
161 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
162 				   u8 pos, int cap, int *ttl)
163 {
164 	u8 id;
165 
166 	while ((*ttl)--) {
167 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
168 		if (pos < 0x40)
169 			break;
170 		pos &= ~3;
171 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
172 					 &id);
173 		if (id == 0xff)
174 			break;
175 		if (id == cap)
176 			return pos;
177 		pos += PCI_CAP_LIST_NEXT;
178 	}
179 	return 0;
180 }
181 
182 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
183 			       u8 pos, int cap)
184 {
185 	int ttl = PCI_FIND_CAP_TTL;
186 
187 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
188 }
189 
190 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
191 {
192 	return __pci_find_next_cap(dev->bus, dev->devfn,
193 				   pos + PCI_CAP_LIST_NEXT, cap);
194 }
195 EXPORT_SYMBOL_GPL(pci_find_next_capability);
196 
197 static int __pci_bus_find_cap_start(struct pci_bus *bus,
198 				    unsigned int devfn, u8 hdr_type)
199 {
200 	u16 status;
201 
202 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
203 	if (!(status & PCI_STATUS_CAP_LIST))
204 		return 0;
205 
206 	switch (hdr_type) {
207 	case PCI_HEADER_TYPE_NORMAL:
208 	case PCI_HEADER_TYPE_BRIDGE:
209 		return PCI_CAPABILITY_LIST;
210 	case PCI_HEADER_TYPE_CARDBUS:
211 		return PCI_CB_CAPABILITY_LIST;
212 	default:
213 		return 0;
214 	}
215 
216 	return 0;
217 }
218 
219 /**
220  * pci_find_capability - query for devices' capabilities
221  * @dev: PCI device to query
222  * @cap: capability code
223  *
224  * Tell if a device supports a given PCI capability.
225  * Returns the address of the requested capability structure within the
226  * device's PCI configuration space or 0 in case the device does not
227  * support it.  Possible values for @cap:
228  *
229  *  %PCI_CAP_ID_PM           Power Management
230  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
231  *  %PCI_CAP_ID_VPD          Vital Product Data
232  *  %PCI_CAP_ID_SLOTID       Slot Identification
233  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
234  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
235  *  %PCI_CAP_ID_PCIX         PCI-X
236  *  %PCI_CAP_ID_EXP          PCI Express
237  */
238 int pci_find_capability(struct pci_dev *dev, int cap)
239 {
240 	int pos;
241 
242 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
243 	if (pos)
244 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
245 
246 	return pos;
247 }
248 
249 /**
250  * pci_bus_find_capability - query for devices' capabilities
251  * @bus:   the PCI bus to query
252  * @devfn: PCI device to query
253  * @cap:   capability code
254  *
255  * Like pci_find_capability() but works for pci devices that do not have a
256  * pci_dev structure set up yet.
257  *
258  * Returns the address of the requested capability structure within the
259  * device's PCI configuration space or 0 in case the device does not
260  * support it.
261  */
262 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
263 {
264 	int pos;
265 	u8 hdr_type;
266 
267 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
268 
269 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
270 	if (pos)
271 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
272 
273 	return pos;
274 }
275 
276 /**
277  * pci_find_ext_capability - Find an extended capability
278  * @dev: PCI device to query
279  * @cap: capability code
280  *
281  * Returns the address of the requested extended capability structure
282  * within the device's PCI configuration space or 0 if the device does
283  * not support it.  Possible values for @cap:
284  *
285  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
286  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
287  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
288  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
289  */
290 int pci_find_ext_capability(struct pci_dev *dev, int cap)
291 {
292 	u32 header;
293 	int ttl;
294 	int pos = PCI_CFG_SPACE_SIZE;
295 
296 	/* minimum 8 bytes per capability */
297 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
298 
299 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
300 		return 0;
301 
302 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
303 		return 0;
304 
305 	/*
306 	 * If we have no capabilities, this is indicated by cap ID,
307 	 * cap version and next pointer all being 0.
308 	 */
309 	if (header == 0)
310 		return 0;
311 
312 	while (ttl-- > 0) {
313 		if (PCI_EXT_CAP_ID(header) == cap)
314 			return pos;
315 
316 		pos = PCI_EXT_CAP_NEXT(header);
317 		if (pos < PCI_CFG_SPACE_SIZE)
318 			break;
319 
320 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
321 			break;
322 	}
323 
324 	return 0;
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327 
328 /**
329  * pci_bus_find_ext_capability - find an extended capability
330  * @bus:   the PCI bus to query
331  * @devfn: PCI device to query
332  * @cap:   capability code
333  *
334  * Like pci_find_ext_capability() but works for pci devices that do not have a
335  * pci_dev structure set up yet.
336  *
337  * Returns the address of the requested capability structure within the
338  * device's PCI configuration space or 0 in case the device does not
339  * support it.
340  */
341 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
342 				int cap)
343 {
344 	u32 header;
345 	int ttl;
346 	int pos = PCI_CFG_SPACE_SIZE;
347 
348 	/* minimum 8 bytes per capability */
349 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
350 
351 	if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
352 		return 0;
353 	if (header == 0xffffffff || header == 0)
354 		return 0;
355 
356 	while (ttl-- > 0) {
357 		if (PCI_EXT_CAP_ID(header) == cap)
358 			return pos;
359 
360 		pos = PCI_EXT_CAP_NEXT(header);
361 		if (pos < PCI_CFG_SPACE_SIZE)
362 			break;
363 
364 		if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
365 			break;
366 	}
367 
368 	return 0;
369 }
370 
371 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
372 {
373 	int rc, ttl = PCI_FIND_CAP_TTL;
374 	u8 cap, mask;
375 
376 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
377 		mask = HT_3BIT_CAP_MASK;
378 	else
379 		mask = HT_5BIT_CAP_MASK;
380 
381 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
382 				      PCI_CAP_ID_HT, &ttl);
383 	while (pos) {
384 		rc = pci_read_config_byte(dev, pos + 3, &cap);
385 		if (rc != PCIBIOS_SUCCESSFUL)
386 			return 0;
387 
388 		if ((cap & mask) == ht_cap)
389 			return pos;
390 
391 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
392 					      pos + PCI_CAP_LIST_NEXT,
393 					      PCI_CAP_ID_HT, &ttl);
394 	}
395 
396 	return 0;
397 }
398 /**
399  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
400  * @dev: PCI device to query
401  * @pos: Position from which to continue searching
402  * @ht_cap: Hypertransport capability code
403  *
404  * To be used in conjunction with pci_find_ht_capability() to search for
405  * all capabilities matching @ht_cap. @pos should always be a value returned
406  * from pci_find_ht_capability().
407  *
408  * NB. To be 100% safe against broken PCI devices, the caller should take
409  * steps to avoid an infinite loop.
410  */
411 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
412 {
413 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
414 }
415 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
416 
417 /**
418  * pci_find_ht_capability - query a device's Hypertransport capabilities
419  * @dev: PCI device to query
420  * @ht_cap: Hypertransport capability code
421  *
422  * Tell if a device supports a given Hypertransport capability.
423  * Returns an address within the device's PCI configuration space
424  * or 0 in case the device does not support the request capability.
425  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
426  * which has a Hypertransport capability matching @ht_cap.
427  */
428 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
429 {
430 	int pos;
431 
432 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
433 	if (pos)
434 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
435 
436 	return pos;
437 }
438 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
439 
440 /**
441  * pci_find_parent_resource - return resource region of parent bus of given region
442  * @dev: PCI device structure contains resources to be searched
443  * @res: child resource record for which parent is sought
444  *
445  *  For given resource region of given device, return the resource
446  *  region of parent bus the given region is contained in or where
447  *  it should be allocated from.
448  */
449 struct resource *
450 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
451 {
452 	const struct pci_bus *bus = dev->bus;
453 	int i;
454 	struct resource *best = NULL, *r;
455 
456 	pci_bus_for_each_resource(bus, r, i) {
457 		if (!r)
458 			continue;
459 		if (res->start && !(res->start >= r->start && res->end <= r->end))
460 			continue;	/* Not contained */
461 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
462 			continue;	/* Wrong type */
463 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
464 			return r;	/* Exact match */
465 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
466 		if (r->flags & IORESOURCE_PREFETCH)
467 			continue;
468 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
469 		if (!best)
470 			best = r;
471 	}
472 	return best;
473 }
474 
475 /**
476  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
477  * @dev: PCI device to have its BARs restored
478  *
479  * Restore the BAR values for a given device, so as to make it
480  * accessible by its driver.
481  */
482 static void
483 pci_restore_bars(struct pci_dev *dev)
484 {
485 	int i;
486 
487 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
488 		pci_update_resource(dev, i);
489 }
490 
491 static struct pci_platform_pm_ops *pci_platform_pm;
492 
493 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
494 {
495 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
496 	    || !ops->sleep_wake || !ops->can_wakeup)
497 		return -EINVAL;
498 	pci_platform_pm = ops;
499 	return 0;
500 }
501 
502 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
503 {
504 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
505 }
506 
507 static inline int platform_pci_set_power_state(struct pci_dev *dev,
508                                                 pci_power_t t)
509 {
510 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
511 }
512 
513 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
514 {
515 	return pci_platform_pm ?
516 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
517 }
518 
519 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
520 {
521 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
522 }
523 
524 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
525 {
526 	return pci_platform_pm ?
527 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
528 }
529 
530 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
531 {
532 	return pci_platform_pm ?
533 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
534 }
535 
536 /**
537  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
538  *                           given PCI device
539  * @dev: PCI device to handle.
540  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
541  *
542  * RETURN VALUE:
543  * -EINVAL if the requested state is invalid.
544  * -EIO if device does not support PCI PM or its PM capabilities register has a
545  * wrong version, or device doesn't support the requested state.
546  * 0 if device already is in the requested state.
547  * 0 if device's power state has been successfully changed.
548  */
549 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
550 {
551 	u16 pmcsr;
552 	bool need_restore = false;
553 
554 	/* Check if we're already there */
555 	if (dev->current_state == state)
556 		return 0;
557 
558 	if (!dev->pm_cap)
559 		return -EIO;
560 
561 	if (state < PCI_D0 || state > PCI_D3hot)
562 		return -EINVAL;
563 
564 	/* Validate current state:
565 	 * Can enter D0 from any state, but if we can only go deeper
566 	 * to sleep if we're already in a low power state
567 	 */
568 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
569 	    && dev->current_state > state) {
570 		dev_err(&dev->dev, "invalid power transition "
571 			"(from state %d to %d)\n", dev->current_state, state);
572 		return -EINVAL;
573 	}
574 
575 	/* check if this device supports the desired state */
576 	if ((state == PCI_D1 && !dev->d1_support)
577 	   || (state == PCI_D2 && !dev->d2_support))
578 		return -EIO;
579 
580 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
581 
582 	/* If we're (effectively) in D3, force entire word to 0.
583 	 * This doesn't affect PME_Status, disables PME_En, and
584 	 * sets PowerState to 0.
585 	 */
586 	switch (dev->current_state) {
587 	case PCI_D0:
588 	case PCI_D1:
589 	case PCI_D2:
590 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
591 		pmcsr |= state;
592 		break;
593 	case PCI_D3hot:
594 	case PCI_D3cold:
595 	case PCI_UNKNOWN: /* Boot-up */
596 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
597 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
598 			need_restore = true;
599 		/* Fall-through: force to D0 */
600 	default:
601 		pmcsr = 0;
602 		break;
603 	}
604 
605 	/* enter specified state */
606 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
607 
608 	/* Mandatory power management transition delays */
609 	/* see PCI PM 1.1 5.6.1 table 18 */
610 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
611 		pci_dev_d3_sleep(dev);
612 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
613 		udelay(PCI_PM_D2_DELAY);
614 
615 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
616 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
617 	if (dev->current_state != state && printk_ratelimit())
618 		dev_info(&dev->dev, "Refused to change power state, "
619 			"currently in D%d\n", dev->current_state);
620 
621 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
622 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
623 	 * from D3hot to D0 _may_ perform an internal reset, thereby
624 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
625 	 * For example, at least some versions of the 3c905B and the
626 	 * 3c556B exhibit this behaviour.
627 	 *
628 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
629 	 * devices in a D3hot state at boot.  Consequently, we need to
630 	 * restore at least the BARs so that the device will be
631 	 * accessible to its driver.
632 	 */
633 	if (need_restore)
634 		pci_restore_bars(dev);
635 
636 	if (dev->bus->self)
637 		pcie_aspm_pm_state_change(dev->bus->self);
638 
639 	return 0;
640 }
641 
642 /**
643  * pci_update_current_state - Read PCI power state of given device from its
644  *                            PCI PM registers and cache it
645  * @dev: PCI device to handle.
646  * @state: State to cache in case the device doesn't have the PM capability
647  */
648 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
649 {
650 	if (dev->pm_cap) {
651 		u16 pmcsr;
652 
653 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
654 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
655 	} else {
656 		dev->current_state = state;
657 	}
658 }
659 
660 /**
661  * pci_platform_power_transition - Use platform to change device power state
662  * @dev: PCI device to handle.
663  * @state: State to put the device into.
664  */
665 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
666 {
667 	int error;
668 
669 	if (platform_pci_power_manageable(dev)) {
670 		error = platform_pci_set_power_state(dev, state);
671 		if (!error)
672 			pci_update_current_state(dev, state);
673 		/* Fall back to PCI_D0 if native PM is not supported */
674 		if (!dev->pm_cap)
675 			dev->current_state = PCI_D0;
676 	} else {
677 		error = -ENODEV;
678 		/* Fall back to PCI_D0 if native PM is not supported */
679 		if (!dev->pm_cap)
680 			dev->current_state = PCI_D0;
681 	}
682 
683 	return error;
684 }
685 
686 /**
687  * __pci_start_power_transition - Start power transition of a PCI device
688  * @dev: PCI device to handle.
689  * @state: State to put the device into.
690  */
691 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
692 {
693 	if (state == PCI_D0)
694 		pci_platform_power_transition(dev, PCI_D0);
695 }
696 
697 /**
698  * __pci_complete_power_transition - Complete power transition of a PCI device
699  * @dev: PCI device to handle.
700  * @state: State to put the device into.
701  *
702  * This function should not be called directly by device drivers.
703  */
704 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
705 {
706 	return state >= PCI_D0 ?
707 			pci_platform_power_transition(dev, state) : -EINVAL;
708 }
709 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
710 
711 /**
712  * pci_set_power_state - Set the power state of a PCI device
713  * @dev: PCI device to handle.
714  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
715  *
716  * Transition a device to a new power state, using the platform firmware and/or
717  * the device's PCI PM registers.
718  *
719  * RETURN VALUE:
720  * -EINVAL if the requested state is invalid.
721  * -EIO if device does not support PCI PM or its PM capabilities register has a
722  * wrong version, or device doesn't support the requested state.
723  * 0 if device already is in the requested state.
724  * 0 if device's power state has been successfully changed.
725  */
726 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
727 {
728 	int error;
729 
730 	/* bound the state we're entering */
731 	if (state > PCI_D3hot)
732 		state = PCI_D3hot;
733 	else if (state < PCI_D0)
734 		state = PCI_D0;
735 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
736 		/*
737 		 * If the device or the parent bridge do not support PCI PM,
738 		 * ignore the request if we're doing anything other than putting
739 		 * it into D0 (which would only happen on boot).
740 		 */
741 		return 0;
742 
743 	__pci_start_power_transition(dev, state);
744 
745 	/* This device is quirked not to be put into D3, so
746 	   don't put it in D3 */
747 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
748 		return 0;
749 
750 	error = pci_raw_set_power_state(dev, state);
751 
752 	if (!__pci_complete_power_transition(dev, state))
753 		error = 0;
754 	/*
755 	 * When aspm_policy is "powersave" this call ensures
756 	 * that ASPM is configured.
757 	 */
758 	if (!error && dev->bus->self)
759 		pcie_aspm_powersave_config_link(dev->bus->self);
760 
761 	return error;
762 }
763 
764 /**
765  * pci_choose_state - Choose the power state of a PCI device
766  * @dev: PCI device to be suspended
767  * @state: target sleep state for the whole system. This is the value
768  *	that is passed to suspend() function.
769  *
770  * Returns PCI power state suitable for given device and given system
771  * message.
772  */
773 
774 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
775 {
776 	pci_power_t ret;
777 
778 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
779 		return PCI_D0;
780 
781 	ret = platform_pci_choose_state(dev);
782 	if (ret != PCI_POWER_ERROR)
783 		return ret;
784 
785 	switch (state.event) {
786 	case PM_EVENT_ON:
787 		return PCI_D0;
788 	case PM_EVENT_FREEZE:
789 	case PM_EVENT_PRETHAW:
790 		/* REVISIT both freeze and pre-thaw "should" use D0 */
791 	case PM_EVENT_SUSPEND:
792 	case PM_EVENT_HIBERNATE:
793 		return PCI_D3hot;
794 	default:
795 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
796 			 state.event);
797 		BUG();
798 	}
799 	return PCI_D0;
800 }
801 
802 EXPORT_SYMBOL(pci_choose_state);
803 
804 #define PCI_EXP_SAVE_REGS	7
805 
806 #define pcie_cap_has_devctl(type, flags)	1
807 #define pcie_cap_has_lnkctl(type, flags)		\
808 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
809 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
810 		  type == PCI_EXP_TYPE_ENDPOINT ||	\
811 		  type == PCI_EXP_TYPE_LEG_END))
812 #define pcie_cap_has_sltctl(type, flags)		\
813 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
814 		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
815 		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
816 		   (flags & PCI_EXP_FLAGS_SLOT))))
817 #define pcie_cap_has_rtctl(type, flags)			\
818 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
819 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
820 		  type == PCI_EXP_TYPE_RC_EC))
821 #define pcie_cap_has_devctl2(type, flags)		\
822 		((flags & PCI_EXP_FLAGS_VERS) > 1)
823 #define pcie_cap_has_lnkctl2(type, flags)		\
824 		((flags & PCI_EXP_FLAGS_VERS) > 1)
825 #define pcie_cap_has_sltctl2(type, flags)		\
826 		((flags & PCI_EXP_FLAGS_VERS) > 1)
827 
828 static int pci_save_pcie_state(struct pci_dev *dev)
829 {
830 	int pos, i = 0;
831 	struct pci_cap_saved_state *save_state;
832 	u16 *cap;
833 	u16 flags;
834 
835 	pos = pci_pcie_cap(dev);
836 	if (!pos)
837 		return 0;
838 
839 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
840 	if (!save_state) {
841 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
842 		return -ENOMEM;
843 	}
844 	cap = (u16 *)&save_state->cap.data[0];
845 
846 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
847 
848 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
849 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
850 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
851 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
852 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
853 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
854 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
855 		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
856 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
857 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
858 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
859 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
860 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
861 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
862 
863 	return 0;
864 }
865 
866 static void pci_restore_pcie_state(struct pci_dev *dev)
867 {
868 	int i = 0, pos;
869 	struct pci_cap_saved_state *save_state;
870 	u16 *cap;
871 	u16 flags;
872 
873 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
874 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
875 	if (!save_state || pos <= 0)
876 		return;
877 	cap = (u16 *)&save_state->cap.data[0];
878 
879 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
880 
881 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
882 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
883 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
884 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
885 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
886 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
887 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
888 		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
889 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
890 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
891 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
892 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
893 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
894 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
895 }
896 
897 
898 static int pci_save_pcix_state(struct pci_dev *dev)
899 {
900 	int pos;
901 	struct pci_cap_saved_state *save_state;
902 
903 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
904 	if (pos <= 0)
905 		return 0;
906 
907 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
908 	if (!save_state) {
909 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
910 		return -ENOMEM;
911 	}
912 
913 	pci_read_config_word(dev, pos + PCI_X_CMD,
914 			     (u16 *)save_state->cap.data);
915 
916 	return 0;
917 }
918 
919 static void pci_restore_pcix_state(struct pci_dev *dev)
920 {
921 	int i = 0, pos;
922 	struct pci_cap_saved_state *save_state;
923 	u16 *cap;
924 
925 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
926 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
927 	if (!save_state || pos <= 0)
928 		return;
929 	cap = (u16 *)&save_state->cap.data[0];
930 
931 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
932 }
933 
934 
935 /**
936  * pci_save_state - save the PCI configuration space of a device before suspending
937  * @dev: - PCI device that we're dealing with
938  */
939 int
940 pci_save_state(struct pci_dev *dev)
941 {
942 	int i;
943 	/* XXX: 100% dword access ok here? */
944 	for (i = 0; i < 16; i++)
945 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
946 	dev->state_saved = true;
947 	if ((i = pci_save_pcie_state(dev)) != 0)
948 		return i;
949 	if ((i = pci_save_pcix_state(dev)) != 0)
950 		return i;
951 	return 0;
952 }
953 
954 /**
955  * pci_restore_state - Restore the saved state of a PCI device
956  * @dev: - PCI device that we're dealing with
957  */
958 void pci_restore_state(struct pci_dev *dev)
959 {
960 	int i;
961 	u32 val;
962 
963 	if (!dev->state_saved)
964 		return;
965 
966 	/* PCI Express register must be restored first */
967 	pci_restore_pcie_state(dev);
968 	pci_restore_ats_state(dev);
969 
970 	/*
971 	 * The Base Address register should be programmed before the command
972 	 * register(s)
973 	 */
974 	for (i = 15; i >= 0; i--) {
975 		pci_read_config_dword(dev, i * 4, &val);
976 		if (val != dev->saved_config_space[i]) {
977 			dev_dbg(&dev->dev, "restoring config "
978 				"space at offset %#x (was %#x, writing %#x)\n",
979 				i, val, (int)dev->saved_config_space[i]);
980 			pci_write_config_dword(dev,i * 4,
981 				dev->saved_config_space[i]);
982 		}
983 	}
984 	pci_restore_pcix_state(dev);
985 	pci_restore_msi_state(dev);
986 	pci_restore_iov_state(dev);
987 
988 	dev->state_saved = false;
989 }
990 
991 struct pci_saved_state {
992 	u32 config_space[16];
993 	struct pci_cap_saved_data cap[0];
994 };
995 
996 /**
997  * pci_store_saved_state - Allocate and return an opaque struct containing
998  *			   the device saved state.
999  * @dev: PCI device that we're dealing with
1000  *
1001  * Rerturn NULL if no state or error.
1002  */
1003 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1004 {
1005 	struct pci_saved_state *state;
1006 	struct pci_cap_saved_state *tmp;
1007 	struct pci_cap_saved_data *cap;
1008 	struct hlist_node *pos;
1009 	size_t size;
1010 
1011 	if (!dev->state_saved)
1012 		return NULL;
1013 
1014 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1015 
1016 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1017 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1018 
1019 	state = kzalloc(size, GFP_KERNEL);
1020 	if (!state)
1021 		return NULL;
1022 
1023 	memcpy(state->config_space, dev->saved_config_space,
1024 	       sizeof(state->config_space));
1025 
1026 	cap = state->cap;
1027 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1028 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1029 		memcpy(cap, &tmp->cap, len);
1030 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1031 	}
1032 	/* Empty cap_save terminates list */
1033 
1034 	return state;
1035 }
1036 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1037 
1038 /**
1039  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1040  * @dev: PCI device that we're dealing with
1041  * @state: Saved state returned from pci_store_saved_state()
1042  */
1043 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1044 {
1045 	struct pci_cap_saved_data *cap;
1046 
1047 	dev->state_saved = false;
1048 
1049 	if (!state)
1050 		return 0;
1051 
1052 	memcpy(dev->saved_config_space, state->config_space,
1053 	       sizeof(state->config_space));
1054 
1055 	cap = state->cap;
1056 	while (cap->size) {
1057 		struct pci_cap_saved_state *tmp;
1058 
1059 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1060 		if (!tmp || tmp->cap.size != cap->size)
1061 			return -EINVAL;
1062 
1063 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1064 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1065 		       sizeof(struct pci_cap_saved_data) + cap->size);
1066 	}
1067 
1068 	dev->state_saved = true;
1069 	return 0;
1070 }
1071 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1072 
1073 /**
1074  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1075  *				   and free the memory allocated for it.
1076  * @dev: PCI device that we're dealing with
1077  * @state: Pointer to saved state returned from pci_store_saved_state()
1078  */
1079 int pci_load_and_free_saved_state(struct pci_dev *dev,
1080 				  struct pci_saved_state **state)
1081 {
1082 	int ret = pci_load_saved_state(dev, *state);
1083 	kfree(*state);
1084 	*state = NULL;
1085 	return ret;
1086 }
1087 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1088 
1089 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1090 {
1091 	int err;
1092 
1093 	err = pci_set_power_state(dev, PCI_D0);
1094 	if (err < 0 && err != -EIO)
1095 		return err;
1096 	err = pcibios_enable_device(dev, bars);
1097 	if (err < 0)
1098 		return err;
1099 	pci_fixup_device(pci_fixup_enable, dev);
1100 
1101 	return 0;
1102 }
1103 
1104 /**
1105  * pci_reenable_device - Resume abandoned device
1106  * @dev: PCI device to be resumed
1107  *
1108  *  Note this function is a backend of pci_default_resume and is not supposed
1109  *  to be called by normal code, write proper resume handler and use it instead.
1110  */
1111 int pci_reenable_device(struct pci_dev *dev)
1112 {
1113 	if (pci_is_enabled(dev))
1114 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1115 	return 0;
1116 }
1117 
1118 static int __pci_enable_device_flags(struct pci_dev *dev,
1119 				     resource_size_t flags)
1120 {
1121 	int err;
1122 	int i, bars = 0;
1123 
1124 	/*
1125 	 * Power state could be unknown at this point, either due to a fresh
1126 	 * boot or a device removal call.  So get the current power state
1127 	 * so that things like MSI message writing will behave as expected
1128 	 * (e.g. if the device really is in D0 at enable time).
1129 	 */
1130 	if (dev->pm_cap) {
1131 		u16 pmcsr;
1132 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134 	}
1135 
1136 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
1137 		return 0;		/* already enabled */
1138 
1139 	/* only skip sriov related */
1140 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1141 		if (dev->resource[i].flags & flags)
1142 			bars |= (1 << i);
1143 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1144 		if (dev->resource[i].flags & flags)
1145 			bars |= (1 << i);
1146 
1147 	err = do_pci_enable_device(dev, bars);
1148 	if (err < 0)
1149 		atomic_dec(&dev->enable_cnt);
1150 	return err;
1151 }
1152 
1153 /**
1154  * pci_enable_device_io - Initialize a device for use with IO space
1155  * @dev: PCI device to be initialized
1156  *
1157  *  Initialize device before it's used by a driver. Ask low-level code
1158  *  to enable I/O resources. Wake up the device if it was suspended.
1159  *  Beware, this function can fail.
1160  */
1161 int pci_enable_device_io(struct pci_dev *dev)
1162 {
1163 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
1164 }
1165 
1166 /**
1167  * pci_enable_device_mem - Initialize a device for use with Memory space
1168  * @dev: PCI device to be initialized
1169  *
1170  *  Initialize device before it's used by a driver. Ask low-level code
1171  *  to enable Memory resources. Wake up the device if it was suspended.
1172  *  Beware, this function can fail.
1173  */
1174 int pci_enable_device_mem(struct pci_dev *dev)
1175 {
1176 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1177 }
1178 
1179 /**
1180  * pci_enable_device - Initialize device before it's used by a driver.
1181  * @dev: PCI device to be initialized
1182  *
1183  *  Initialize device before it's used by a driver. Ask low-level code
1184  *  to enable I/O and memory. Wake up the device if it was suspended.
1185  *  Beware, this function can fail.
1186  *
1187  *  Note we don't actually enable the device many times if we call
1188  *  this function repeatedly (we just increment the count).
1189  */
1190 int pci_enable_device(struct pci_dev *dev)
1191 {
1192 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1193 }
1194 
1195 /*
1196  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1197  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1198  * there's no need to track it separately.  pci_devres is initialized
1199  * when a device is enabled using managed PCI device enable interface.
1200  */
1201 struct pci_devres {
1202 	unsigned int enabled:1;
1203 	unsigned int pinned:1;
1204 	unsigned int orig_intx:1;
1205 	unsigned int restore_intx:1;
1206 	u32 region_mask;
1207 };
1208 
1209 static void pcim_release(struct device *gendev, void *res)
1210 {
1211 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1212 	struct pci_devres *this = res;
1213 	int i;
1214 
1215 	if (dev->msi_enabled)
1216 		pci_disable_msi(dev);
1217 	if (dev->msix_enabled)
1218 		pci_disable_msix(dev);
1219 
1220 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1221 		if (this->region_mask & (1 << i))
1222 			pci_release_region(dev, i);
1223 
1224 	if (this->restore_intx)
1225 		pci_intx(dev, this->orig_intx);
1226 
1227 	if (this->enabled && !this->pinned)
1228 		pci_disable_device(dev);
1229 }
1230 
1231 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1232 {
1233 	struct pci_devres *dr, *new_dr;
1234 
1235 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1236 	if (dr)
1237 		return dr;
1238 
1239 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1240 	if (!new_dr)
1241 		return NULL;
1242 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1243 }
1244 
1245 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1246 {
1247 	if (pci_is_managed(pdev))
1248 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1249 	return NULL;
1250 }
1251 
1252 /**
1253  * pcim_enable_device - Managed pci_enable_device()
1254  * @pdev: PCI device to be initialized
1255  *
1256  * Managed pci_enable_device().
1257  */
1258 int pcim_enable_device(struct pci_dev *pdev)
1259 {
1260 	struct pci_devres *dr;
1261 	int rc;
1262 
1263 	dr = get_pci_dr(pdev);
1264 	if (unlikely(!dr))
1265 		return -ENOMEM;
1266 	if (dr->enabled)
1267 		return 0;
1268 
1269 	rc = pci_enable_device(pdev);
1270 	if (!rc) {
1271 		pdev->is_managed = 1;
1272 		dr->enabled = 1;
1273 	}
1274 	return rc;
1275 }
1276 
1277 /**
1278  * pcim_pin_device - Pin managed PCI device
1279  * @pdev: PCI device to pin
1280  *
1281  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1282  * driver detach.  @pdev must have been enabled with
1283  * pcim_enable_device().
1284  */
1285 void pcim_pin_device(struct pci_dev *pdev)
1286 {
1287 	struct pci_devres *dr;
1288 
1289 	dr = find_pci_dr(pdev);
1290 	WARN_ON(!dr || !dr->enabled);
1291 	if (dr)
1292 		dr->pinned = 1;
1293 }
1294 
1295 /**
1296  * pcibios_disable_device - disable arch specific PCI resources for device dev
1297  * @dev: the PCI device to disable
1298  *
1299  * Disables architecture specific PCI resources for the device. This
1300  * is the default implementation. Architecture implementations can
1301  * override this.
1302  */
1303 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1304 
1305 static void do_pci_disable_device(struct pci_dev *dev)
1306 {
1307 	u16 pci_command;
1308 
1309 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1310 	if (pci_command & PCI_COMMAND_MASTER) {
1311 		pci_command &= ~PCI_COMMAND_MASTER;
1312 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1313 	}
1314 
1315 	pcibios_disable_device(dev);
1316 }
1317 
1318 /**
1319  * pci_disable_enabled_device - Disable device without updating enable_cnt
1320  * @dev: PCI device to disable
1321  *
1322  * NOTE: This function is a backend of PCI power management routines and is
1323  * not supposed to be called drivers.
1324  */
1325 void pci_disable_enabled_device(struct pci_dev *dev)
1326 {
1327 	if (pci_is_enabled(dev))
1328 		do_pci_disable_device(dev);
1329 }
1330 
1331 /**
1332  * pci_disable_device - Disable PCI device after use
1333  * @dev: PCI device to be disabled
1334  *
1335  * Signal to the system that the PCI device is not in use by the system
1336  * anymore.  This only involves disabling PCI bus-mastering, if active.
1337  *
1338  * Note we don't actually disable the device until all callers of
1339  * pci_enable_device() have called pci_disable_device().
1340  */
1341 void
1342 pci_disable_device(struct pci_dev *dev)
1343 {
1344 	struct pci_devres *dr;
1345 
1346 	dr = find_pci_dr(dev);
1347 	if (dr)
1348 		dr->enabled = 0;
1349 
1350 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1351 		return;
1352 
1353 	do_pci_disable_device(dev);
1354 
1355 	dev->is_busmaster = 0;
1356 }
1357 
1358 /**
1359  * pcibios_set_pcie_reset_state - set reset state for device dev
1360  * @dev: the PCIe device reset
1361  * @state: Reset state to enter into
1362  *
1363  *
1364  * Sets the PCIe reset state for the device. This is the default
1365  * implementation. Architecture implementations can override this.
1366  */
1367 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1368 							enum pcie_reset_state state)
1369 {
1370 	return -EINVAL;
1371 }
1372 
1373 /**
1374  * pci_set_pcie_reset_state - set reset state for device dev
1375  * @dev: the PCIe device reset
1376  * @state: Reset state to enter into
1377  *
1378  *
1379  * Sets the PCI reset state for the device.
1380  */
1381 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1382 {
1383 	return pcibios_set_pcie_reset_state(dev, state);
1384 }
1385 
1386 /**
1387  * pci_check_pme_status - Check if given device has generated PME.
1388  * @dev: Device to check.
1389  *
1390  * Check the PME status of the device and if set, clear it and clear PME enable
1391  * (if set).  Return 'true' if PME status and PME enable were both set or
1392  * 'false' otherwise.
1393  */
1394 bool pci_check_pme_status(struct pci_dev *dev)
1395 {
1396 	int pmcsr_pos;
1397 	u16 pmcsr;
1398 	bool ret = false;
1399 
1400 	if (!dev->pm_cap)
1401 		return false;
1402 
1403 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1404 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1405 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1406 		return false;
1407 
1408 	/* Clear PME status. */
1409 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1410 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1411 		/* Disable PME to avoid interrupt flood. */
1412 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1413 		ret = true;
1414 	}
1415 
1416 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1423  * @dev: Device to handle.
1424  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1425  *
1426  * Check if @dev has generated PME and queue a resume request for it in that
1427  * case.
1428  */
1429 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1430 {
1431 	if (pme_poll_reset && dev->pme_poll)
1432 		dev->pme_poll = false;
1433 
1434 	if (pci_check_pme_status(dev)) {
1435 		pci_wakeup_event(dev);
1436 		pm_request_resume(&dev->dev);
1437 	}
1438 	return 0;
1439 }
1440 
1441 /**
1442  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1443  * @bus: Top bus of the subtree to walk.
1444  */
1445 void pci_pme_wakeup_bus(struct pci_bus *bus)
1446 {
1447 	if (bus)
1448 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1449 }
1450 
1451 /**
1452  * pci_pme_capable - check the capability of PCI device to generate PME#
1453  * @dev: PCI device to handle.
1454  * @state: PCI state from which device will issue PME#.
1455  */
1456 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1457 {
1458 	if (!dev->pm_cap)
1459 		return false;
1460 
1461 	return !!(dev->pme_support & (1 << state));
1462 }
1463 
1464 static void pci_pme_list_scan(struct work_struct *work)
1465 {
1466 	struct pci_pme_device *pme_dev, *n;
1467 
1468 	mutex_lock(&pci_pme_list_mutex);
1469 	if (!list_empty(&pci_pme_list)) {
1470 		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1471 			if (pme_dev->dev->pme_poll) {
1472 				pci_pme_wakeup(pme_dev->dev, NULL);
1473 			} else {
1474 				list_del(&pme_dev->list);
1475 				kfree(pme_dev);
1476 			}
1477 		}
1478 		if (!list_empty(&pci_pme_list))
1479 			schedule_delayed_work(&pci_pme_work,
1480 					      msecs_to_jiffies(PME_TIMEOUT));
1481 	}
1482 	mutex_unlock(&pci_pme_list_mutex);
1483 }
1484 
1485 /**
1486  * pci_pme_active - enable or disable PCI device's PME# function
1487  * @dev: PCI device to handle.
1488  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1489  *
1490  * The caller must verify that the device is capable of generating PME# before
1491  * calling this function with @enable equal to 'true'.
1492  */
1493 void pci_pme_active(struct pci_dev *dev, bool enable)
1494 {
1495 	u16 pmcsr;
1496 
1497 	if (!dev->pm_cap)
1498 		return;
1499 
1500 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1501 	/* Clear PME_Status by writing 1 to it and enable PME# */
1502 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1503 	if (!enable)
1504 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1505 
1506 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1507 
1508 	/* PCI (as opposed to PCIe) PME requires that the device have
1509 	   its PME# line hooked up correctly. Not all hardware vendors
1510 	   do this, so the PME never gets delivered and the device
1511 	   remains asleep. The easiest way around this is to
1512 	   periodically walk the list of suspended devices and check
1513 	   whether any have their PME flag set. The assumption is that
1514 	   we'll wake up often enough anyway that this won't be a huge
1515 	   hit, and the power savings from the devices will still be a
1516 	   win. */
1517 
1518 	if (dev->pme_poll) {
1519 		struct pci_pme_device *pme_dev;
1520 		if (enable) {
1521 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1522 					  GFP_KERNEL);
1523 			if (!pme_dev)
1524 				goto out;
1525 			pme_dev->dev = dev;
1526 			mutex_lock(&pci_pme_list_mutex);
1527 			list_add(&pme_dev->list, &pci_pme_list);
1528 			if (list_is_singular(&pci_pme_list))
1529 				schedule_delayed_work(&pci_pme_work,
1530 						      msecs_to_jiffies(PME_TIMEOUT));
1531 			mutex_unlock(&pci_pme_list_mutex);
1532 		} else {
1533 			mutex_lock(&pci_pme_list_mutex);
1534 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1535 				if (pme_dev->dev == dev) {
1536 					list_del(&pme_dev->list);
1537 					kfree(pme_dev);
1538 					break;
1539 				}
1540 			}
1541 			mutex_unlock(&pci_pme_list_mutex);
1542 		}
1543 	}
1544 
1545 out:
1546 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1547 }
1548 
1549 /**
1550  * __pci_enable_wake - enable PCI device as wakeup event source
1551  * @dev: PCI device affected
1552  * @state: PCI state from which device will issue wakeup events
1553  * @runtime: True if the events are to be generated at run time
1554  * @enable: True to enable event generation; false to disable
1555  *
1556  * This enables the device as a wakeup event source, or disables it.
1557  * When such events involves platform-specific hooks, those hooks are
1558  * called automatically by this routine.
1559  *
1560  * Devices with legacy power management (no standard PCI PM capabilities)
1561  * always require such platform hooks.
1562  *
1563  * RETURN VALUE:
1564  * 0 is returned on success
1565  * -EINVAL is returned if device is not supposed to wake up the system
1566  * Error code depending on the platform is returned if both the platform and
1567  * the native mechanism fail to enable the generation of wake-up events
1568  */
1569 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1570 		      bool runtime, bool enable)
1571 {
1572 	int ret = 0;
1573 
1574 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1575 		return -EINVAL;
1576 
1577 	/* Don't do the same thing twice in a row for one device. */
1578 	if (!!enable == !!dev->wakeup_prepared)
1579 		return 0;
1580 
1581 	/*
1582 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1583 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1584 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1585 	 */
1586 
1587 	if (enable) {
1588 		int error;
1589 
1590 		if (pci_pme_capable(dev, state))
1591 			pci_pme_active(dev, true);
1592 		else
1593 			ret = 1;
1594 		error = runtime ? platform_pci_run_wake(dev, true) :
1595 					platform_pci_sleep_wake(dev, true);
1596 		if (ret)
1597 			ret = error;
1598 		if (!ret)
1599 			dev->wakeup_prepared = true;
1600 	} else {
1601 		if (runtime)
1602 			platform_pci_run_wake(dev, false);
1603 		else
1604 			platform_pci_sleep_wake(dev, false);
1605 		pci_pme_active(dev, false);
1606 		dev->wakeup_prepared = false;
1607 	}
1608 
1609 	return ret;
1610 }
1611 EXPORT_SYMBOL(__pci_enable_wake);
1612 
1613 /**
1614  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1615  * @dev: PCI device to prepare
1616  * @enable: True to enable wake-up event generation; false to disable
1617  *
1618  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1619  * and this function allows them to set that up cleanly - pci_enable_wake()
1620  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1621  * ordering constraints.
1622  *
1623  * This function only returns error code if the device is not capable of
1624  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1625  * enable wake-up power for it.
1626  */
1627 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1628 {
1629 	return pci_pme_capable(dev, PCI_D3cold) ?
1630 			pci_enable_wake(dev, PCI_D3cold, enable) :
1631 			pci_enable_wake(dev, PCI_D3hot, enable);
1632 }
1633 
1634 /**
1635  * pci_target_state - find an appropriate low power state for a given PCI dev
1636  * @dev: PCI device
1637  *
1638  * Use underlying platform code to find a supported low power state for @dev.
1639  * If the platform can't manage @dev, return the deepest state from which it
1640  * can generate wake events, based on any available PME info.
1641  */
1642 pci_power_t pci_target_state(struct pci_dev *dev)
1643 {
1644 	pci_power_t target_state = PCI_D3hot;
1645 
1646 	if (platform_pci_power_manageable(dev)) {
1647 		/*
1648 		 * Call the platform to choose the target state of the device
1649 		 * and enable wake-up from this state if supported.
1650 		 */
1651 		pci_power_t state = platform_pci_choose_state(dev);
1652 
1653 		switch (state) {
1654 		case PCI_POWER_ERROR:
1655 		case PCI_UNKNOWN:
1656 			break;
1657 		case PCI_D1:
1658 		case PCI_D2:
1659 			if (pci_no_d1d2(dev))
1660 				break;
1661 		default:
1662 			target_state = state;
1663 		}
1664 	} else if (!dev->pm_cap) {
1665 		target_state = PCI_D0;
1666 	} else if (device_may_wakeup(&dev->dev)) {
1667 		/*
1668 		 * Find the deepest state from which the device can generate
1669 		 * wake-up events, make it the target state and enable device
1670 		 * to generate PME#.
1671 		 */
1672 		if (dev->pme_support) {
1673 			while (target_state
1674 			      && !(dev->pme_support & (1 << target_state)))
1675 				target_state--;
1676 		}
1677 	}
1678 
1679 	return target_state;
1680 }
1681 
1682 /**
1683  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1684  * @dev: Device to handle.
1685  *
1686  * Choose the power state appropriate for the device depending on whether
1687  * it can wake up the system and/or is power manageable by the platform
1688  * (PCI_D3hot is the default) and put the device into that state.
1689  */
1690 int pci_prepare_to_sleep(struct pci_dev *dev)
1691 {
1692 	pci_power_t target_state = pci_target_state(dev);
1693 	int error;
1694 
1695 	if (target_state == PCI_POWER_ERROR)
1696 		return -EIO;
1697 
1698 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1699 
1700 	error = pci_set_power_state(dev, target_state);
1701 
1702 	if (error)
1703 		pci_enable_wake(dev, target_state, false);
1704 
1705 	return error;
1706 }
1707 
1708 /**
1709  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1710  * @dev: Device to handle.
1711  *
1712  * Disable device's system wake-up capability and put it into D0.
1713  */
1714 int pci_back_from_sleep(struct pci_dev *dev)
1715 {
1716 	pci_enable_wake(dev, PCI_D0, false);
1717 	return pci_set_power_state(dev, PCI_D0);
1718 }
1719 
1720 /**
1721  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1722  * @dev: PCI device being suspended.
1723  *
1724  * Prepare @dev to generate wake-up events at run time and put it into a low
1725  * power state.
1726  */
1727 int pci_finish_runtime_suspend(struct pci_dev *dev)
1728 {
1729 	pci_power_t target_state = pci_target_state(dev);
1730 	int error;
1731 
1732 	if (target_state == PCI_POWER_ERROR)
1733 		return -EIO;
1734 
1735 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1736 
1737 	error = pci_set_power_state(dev, target_state);
1738 
1739 	if (error)
1740 		__pci_enable_wake(dev, target_state, true, false);
1741 
1742 	return error;
1743 }
1744 
1745 /**
1746  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1747  * @dev: Device to check.
1748  *
1749  * Return true if the device itself is cabable of generating wake-up events
1750  * (through the platform or using the native PCIe PME) or if the device supports
1751  * PME and one of its upstream bridges can generate wake-up events.
1752  */
1753 bool pci_dev_run_wake(struct pci_dev *dev)
1754 {
1755 	struct pci_bus *bus = dev->bus;
1756 
1757 	if (device_run_wake(&dev->dev))
1758 		return true;
1759 
1760 	if (!dev->pme_support)
1761 		return false;
1762 
1763 	while (bus->parent) {
1764 		struct pci_dev *bridge = bus->self;
1765 
1766 		if (device_run_wake(&bridge->dev))
1767 			return true;
1768 
1769 		bus = bus->parent;
1770 	}
1771 
1772 	/* We have reached the root bus. */
1773 	if (bus->bridge)
1774 		return device_run_wake(bus->bridge);
1775 
1776 	return false;
1777 }
1778 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1779 
1780 /**
1781  * pci_pm_init - Initialize PM functions of given PCI device
1782  * @dev: PCI device to handle.
1783  */
1784 void pci_pm_init(struct pci_dev *dev)
1785 {
1786 	int pm;
1787 	u16 pmc;
1788 
1789 	pm_runtime_forbid(&dev->dev);
1790 	device_enable_async_suspend(&dev->dev);
1791 	dev->wakeup_prepared = false;
1792 
1793 	dev->pm_cap = 0;
1794 
1795 	/* find PCI PM capability in list */
1796 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1797 	if (!pm)
1798 		return;
1799 	/* Check device's ability to generate PME# */
1800 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1801 
1802 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1803 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1804 			pmc & PCI_PM_CAP_VER_MASK);
1805 		return;
1806 	}
1807 
1808 	dev->pm_cap = pm;
1809 	dev->d3_delay = PCI_PM_D3_WAIT;
1810 
1811 	dev->d1_support = false;
1812 	dev->d2_support = false;
1813 	if (!pci_no_d1d2(dev)) {
1814 		if (pmc & PCI_PM_CAP_D1)
1815 			dev->d1_support = true;
1816 		if (pmc & PCI_PM_CAP_D2)
1817 			dev->d2_support = true;
1818 
1819 		if (dev->d1_support || dev->d2_support)
1820 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1821 				   dev->d1_support ? " D1" : "",
1822 				   dev->d2_support ? " D2" : "");
1823 	}
1824 
1825 	pmc &= PCI_PM_CAP_PME_MASK;
1826 	if (pmc) {
1827 		dev_printk(KERN_DEBUG, &dev->dev,
1828 			 "PME# supported from%s%s%s%s%s\n",
1829 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1830 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1831 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1832 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1833 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1834 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1835 		dev->pme_poll = true;
1836 		/*
1837 		 * Make device's PM flags reflect the wake-up capability, but
1838 		 * let the user space enable it to wake up the system as needed.
1839 		 */
1840 		device_set_wakeup_capable(&dev->dev, true);
1841 		/* Disable the PME# generation functionality */
1842 		pci_pme_active(dev, false);
1843 	} else {
1844 		dev->pme_support = 0;
1845 	}
1846 }
1847 
1848 /**
1849  * platform_pci_wakeup_init - init platform wakeup if present
1850  * @dev: PCI device
1851  *
1852  * Some devices don't have PCI PM caps but can still generate wakeup
1853  * events through platform methods (like ACPI events).  If @dev supports
1854  * platform wakeup events, set the device flag to indicate as much.  This
1855  * may be redundant if the device also supports PCI PM caps, but double
1856  * initialization should be safe in that case.
1857  */
1858 void platform_pci_wakeup_init(struct pci_dev *dev)
1859 {
1860 	if (!platform_pci_can_wakeup(dev))
1861 		return;
1862 
1863 	device_set_wakeup_capable(&dev->dev, true);
1864 	platform_pci_sleep_wake(dev, false);
1865 }
1866 
1867 /**
1868  * pci_add_save_buffer - allocate buffer for saving given capability registers
1869  * @dev: the PCI device
1870  * @cap: the capability to allocate the buffer for
1871  * @size: requested size of the buffer
1872  */
1873 static int pci_add_cap_save_buffer(
1874 	struct pci_dev *dev, char cap, unsigned int size)
1875 {
1876 	int pos;
1877 	struct pci_cap_saved_state *save_state;
1878 
1879 	pos = pci_find_capability(dev, cap);
1880 	if (pos <= 0)
1881 		return 0;
1882 
1883 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1884 	if (!save_state)
1885 		return -ENOMEM;
1886 
1887 	save_state->cap.cap_nr = cap;
1888 	save_state->cap.size = size;
1889 	pci_add_saved_cap(dev, save_state);
1890 
1891 	return 0;
1892 }
1893 
1894 /**
1895  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1896  * @dev: the PCI device
1897  */
1898 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1899 {
1900 	int error;
1901 
1902 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1903 					PCI_EXP_SAVE_REGS * sizeof(u16));
1904 	if (error)
1905 		dev_err(&dev->dev,
1906 			"unable to preallocate PCI Express save buffer\n");
1907 
1908 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1909 	if (error)
1910 		dev_err(&dev->dev,
1911 			"unable to preallocate PCI-X save buffer\n");
1912 }
1913 
1914 /**
1915  * pci_enable_ari - enable ARI forwarding if hardware support it
1916  * @dev: the PCI device
1917  */
1918 void pci_enable_ari(struct pci_dev *dev)
1919 {
1920 	int pos;
1921 	u32 cap;
1922 	u16 flags, ctrl;
1923 	struct pci_dev *bridge;
1924 
1925 	if (!pci_is_pcie(dev) || dev->devfn)
1926 		return;
1927 
1928 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1929 	if (!pos)
1930 		return;
1931 
1932 	bridge = dev->bus->self;
1933 	if (!bridge || !pci_is_pcie(bridge))
1934 		return;
1935 
1936 	pos = pci_pcie_cap(bridge);
1937 	if (!pos)
1938 		return;
1939 
1940 	/* ARI is a PCIe v2 feature */
1941 	pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
1942 	if ((flags & PCI_EXP_FLAGS_VERS) < 2)
1943 		return;
1944 
1945 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1946 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1947 		return;
1948 
1949 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1950 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1951 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1952 
1953 	bridge->ari_enabled = 1;
1954 }
1955 
1956 /**
1957  * pci_enable_ido - enable ID-based ordering on a device
1958  * @dev: the PCI device
1959  * @type: which types of IDO to enable
1960  *
1961  * Enable ID-based ordering on @dev.  @type can contain the bits
1962  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
1963  * which types of transactions are allowed to be re-ordered.
1964  */
1965 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
1966 {
1967 	int pos;
1968 	u16 ctrl;
1969 
1970 	pos = pci_pcie_cap(dev);
1971 	if (!pos)
1972 		return;
1973 
1974 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1975 	if (type & PCI_EXP_IDO_REQUEST)
1976 		ctrl |= PCI_EXP_IDO_REQ_EN;
1977 	if (type & PCI_EXP_IDO_COMPLETION)
1978 		ctrl |= PCI_EXP_IDO_CMP_EN;
1979 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1980 }
1981 EXPORT_SYMBOL(pci_enable_ido);
1982 
1983 /**
1984  * pci_disable_ido - disable ID-based ordering on a device
1985  * @dev: the PCI device
1986  * @type: which types of IDO to disable
1987  */
1988 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
1989 {
1990 	int pos;
1991 	u16 ctrl;
1992 
1993 	if (!pci_is_pcie(dev))
1994 		return;
1995 
1996 	pos = pci_pcie_cap(dev);
1997 	if (!pos)
1998 		return;
1999 
2000 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2001 	if (type & PCI_EXP_IDO_REQUEST)
2002 		ctrl &= ~PCI_EXP_IDO_REQ_EN;
2003 	if (type & PCI_EXP_IDO_COMPLETION)
2004 		ctrl &= ~PCI_EXP_IDO_CMP_EN;
2005 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2006 }
2007 EXPORT_SYMBOL(pci_disable_ido);
2008 
2009 /**
2010  * pci_enable_obff - enable optimized buffer flush/fill
2011  * @dev: PCI device
2012  * @type: type of signaling to use
2013  *
2014  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2015  * signaling if possible, falling back to message signaling only if
2016  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2017  * be brought out of L0s or L1 to send the message.  It should be either
2018  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2019  *
2020  * If your device can benefit from receiving all messages, even at the
2021  * power cost of bringing the link back up from a low power state, use
2022  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2023  * preferred type).
2024  *
2025  * RETURNS:
2026  * Zero on success, appropriate error number on failure.
2027  */
2028 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2029 {
2030 	int pos;
2031 	u32 cap;
2032 	u16 ctrl;
2033 	int ret;
2034 
2035 	if (!pci_is_pcie(dev))
2036 		return -ENOTSUPP;
2037 
2038 	pos = pci_pcie_cap(dev);
2039 	if (!pos)
2040 		return -ENOTSUPP;
2041 
2042 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2043 	if (!(cap & PCI_EXP_OBFF_MASK))
2044 		return -ENOTSUPP; /* no OBFF support at all */
2045 
2046 	/* Make sure the topology supports OBFF as well */
2047 	if (dev->bus) {
2048 		ret = pci_enable_obff(dev->bus->self, type);
2049 		if (ret)
2050 			return ret;
2051 	}
2052 
2053 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2054 	if (cap & PCI_EXP_OBFF_WAKE)
2055 		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2056 	else {
2057 		switch (type) {
2058 		case PCI_EXP_OBFF_SIGNAL_L0:
2059 			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2060 				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2061 			break;
2062 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2063 			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2064 			ctrl |= PCI_EXP_OBFF_MSGB_EN;
2065 			break;
2066 		default:
2067 			WARN(1, "bad OBFF signal type\n");
2068 			return -ENOTSUPP;
2069 		}
2070 	}
2071 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2072 
2073 	return 0;
2074 }
2075 EXPORT_SYMBOL(pci_enable_obff);
2076 
2077 /**
2078  * pci_disable_obff - disable optimized buffer flush/fill
2079  * @dev: PCI device
2080  *
2081  * Disable OBFF on @dev.
2082  */
2083 void pci_disable_obff(struct pci_dev *dev)
2084 {
2085 	int pos;
2086 	u16 ctrl;
2087 
2088 	if (!pci_is_pcie(dev))
2089 		return;
2090 
2091 	pos = pci_pcie_cap(dev);
2092 	if (!pos)
2093 		return;
2094 
2095 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2096 	ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2097 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2098 }
2099 EXPORT_SYMBOL(pci_disable_obff);
2100 
2101 /**
2102  * pci_ltr_supported - check whether a device supports LTR
2103  * @dev: PCI device
2104  *
2105  * RETURNS:
2106  * True if @dev supports latency tolerance reporting, false otherwise.
2107  */
2108 bool pci_ltr_supported(struct pci_dev *dev)
2109 {
2110 	int pos;
2111 	u32 cap;
2112 
2113 	if (!pci_is_pcie(dev))
2114 		return false;
2115 
2116 	pos = pci_pcie_cap(dev);
2117 	if (!pos)
2118 		return false;
2119 
2120 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2121 
2122 	return cap & PCI_EXP_DEVCAP2_LTR;
2123 }
2124 EXPORT_SYMBOL(pci_ltr_supported);
2125 
2126 /**
2127  * pci_enable_ltr - enable latency tolerance reporting
2128  * @dev: PCI device
2129  *
2130  * Enable LTR on @dev if possible, which means enabling it first on
2131  * upstream ports.
2132  *
2133  * RETURNS:
2134  * Zero on success, errno on failure.
2135  */
2136 int pci_enable_ltr(struct pci_dev *dev)
2137 {
2138 	int pos;
2139 	u16 ctrl;
2140 	int ret;
2141 
2142 	if (!pci_ltr_supported(dev))
2143 		return -ENOTSUPP;
2144 
2145 	pos = pci_pcie_cap(dev);
2146 	if (!pos)
2147 		return -ENOTSUPP;
2148 
2149 	/* Only primary function can enable/disable LTR */
2150 	if (PCI_FUNC(dev->devfn) != 0)
2151 		return -EINVAL;
2152 
2153 	/* Enable upstream ports first */
2154 	if (dev->bus) {
2155 		ret = pci_enable_ltr(dev->bus->self);
2156 		if (ret)
2157 			return ret;
2158 	}
2159 
2160 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2161 	ctrl |= PCI_EXP_LTR_EN;
2162 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2163 
2164 	return 0;
2165 }
2166 EXPORT_SYMBOL(pci_enable_ltr);
2167 
2168 /**
2169  * pci_disable_ltr - disable latency tolerance reporting
2170  * @dev: PCI device
2171  */
2172 void pci_disable_ltr(struct pci_dev *dev)
2173 {
2174 	int pos;
2175 	u16 ctrl;
2176 
2177 	if (!pci_ltr_supported(dev))
2178 		return;
2179 
2180 	pos = pci_pcie_cap(dev);
2181 	if (!pos)
2182 		return;
2183 
2184 	/* Only primary function can enable/disable LTR */
2185 	if (PCI_FUNC(dev->devfn) != 0)
2186 		return;
2187 
2188 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2189 	ctrl &= ~PCI_EXP_LTR_EN;
2190 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2191 }
2192 EXPORT_SYMBOL(pci_disable_ltr);
2193 
2194 static int __pci_ltr_scale(int *val)
2195 {
2196 	int scale = 0;
2197 
2198 	while (*val > 1023) {
2199 		*val = (*val + 31) / 32;
2200 		scale++;
2201 	}
2202 	return scale;
2203 }
2204 
2205 /**
2206  * pci_set_ltr - set LTR latency values
2207  * @dev: PCI device
2208  * @snoop_lat_ns: snoop latency in nanoseconds
2209  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2210  *
2211  * Figure out the scale and set the LTR values accordingly.
2212  */
2213 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2214 {
2215 	int pos, ret, snoop_scale, nosnoop_scale;
2216 	u16 val;
2217 
2218 	if (!pci_ltr_supported(dev))
2219 		return -ENOTSUPP;
2220 
2221 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2222 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2223 
2224 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2225 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2226 		return -EINVAL;
2227 
2228 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2229 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2230 		return -EINVAL;
2231 
2232 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2233 	if (!pos)
2234 		return -ENOTSUPP;
2235 
2236 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2237 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2238 	if (ret != 4)
2239 		return -EIO;
2240 
2241 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2242 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2243 	if (ret != 4)
2244 		return -EIO;
2245 
2246 	return 0;
2247 }
2248 EXPORT_SYMBOL(pci_set_ltr);
2249 
2250 static int pci_acs_enable;
2251 
2252 /**
2253  * pci_request_acs - ask for ACS to be enabled if supported
2254  */
2255 void pci_request_acs(void)
2256 {
2257 	pci_acs_enable = 1;
2258 }
2259 
2260 /**
2261  * pci_enable_acs - enable ACS if hardware support it
2262  * @dev: the PCI device
2263  */
2264 void pci_enable_acs(struct pci_dev *dev)
2265 {
2266 	int pos;
2267 	u16 cap;
2268 	u16 ctrl;
2269 
2270 	if (!pci_acs_enable)
2271 		return;
2272 
2273 	if (!pci_is_pcie(dev))
2274 		return;
2275 
2276 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2277 	if (!pos)
2278 		return;
2279 
2280 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2281 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2282 
2283 	/* Source Validation */
2284 	ctrl |= (cap & PCI_ACS_SV);
2285 
2286 	/* P2P Request Redirect */
2287 	ctrl |= (cap & PCI_ACS_RR);
2288 
2289 	/* P2P Completion Redirect */
2290 	ctrl |= (cap & PCI_ACS_CR);
2291 
2292 	/* Upstream Forwarding */
2293 	ctrl |= (cap & PCI_ACS_UF);
2294 
2295 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2296 }
2297 
2298 /**
2299  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2300  * @dev: the PCI device
2301  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2302  *
2303  * Perform INTx swizzling for a device behind one level of bridge.  This is
2304  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2305  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2306  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2307  * the PCI Express Base Specification, Revision 2.1)
2308  */
2309 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
2310 {
2311 	int slot;
2312 
2313 	if (pci_ari_enabled(dev->bus))
2314 		slot = 0;
2315 	else
2316 		slot = PCI_SLOT(dev->devfn);
2317 
2318 	return (((pin - 1) + slot) % 4) + 1;
2319 }
2320 
2321 int
2322 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2323 {
2324 	u8 pin;
2325 
2326 	pin = dev->pin;
2327 	if (!pin)
2328 		return -1;
2329 
2330 	while (!pci_is_root_bus(dev->bus)) {
2331 		pin = pci_swizzle_interrupt_pin(dev, pin);
2332 		dev = dev->bus->self;
2333 	}
2334 	*bridge = dev;
2335 	return pin;
2336 }
2337 
2338 /**
2339  * pci_common_swizzle - swizzle INTx all the way to root bridge
2340  * @dev: the PCI device
2341  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2342  *
2343  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2344  * bridges all the way up to a PCI root bus.
2345  */
2346 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2347 {
2348 	u8 pin = *pinp;
2349 
2350 	while (!pci_is_root_bus(dev->bus)) {
2351 		pin = pci_swizzle_interrupt_pin(dev, pin);
2352 		dev = dev->bus->self;
2353 	}
2354 	*pinp = pin;
2355 	return PCI_SLOT(dev->devfn);
2356 }
2357 
2358 /**
2359  *	pci_release_region - Release a PCI bar
2360  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2361  *	@bar: BAR to release
2362  *
2363  *	Releases the PCI I/O and memory resources previously reserved by a
2364  *	successful call to pci_request_region.  Call this function only
2365  *	after all use of the PCI regions has ceased.
2366  */
2367 void pci_release_region(struct pci_dev *pdev, int bar)
2368 {
2369 	struct pci_devres *dr;
2370 
2371 	if (pci_resource_len(pdev, bar) == 0)
2372 		return;
2373 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2374 		release_region(pci_resource_start(pdev, bar),
2375 				pci_resource_len(pdev, bar));
2376 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2377 		release_mem_region(pci_resource_start(pdev, bar),
2378 				pci_resource_len(pdev, bar));
2379 
2380 	dr = find_pci_dr(pdev);
2381 	if (dr)
2382 		dr->region_mask &= ~(1 << bar);
2383 }
2384 
2385 /**
2386  *	__pci_request_region - Reserved PCI I/O and memory resource
2387  *	@pdev: PCI device whose resources are to be reserved
2388  *	@bar: BAR to be reserved
2389  *	@res_name: Name to be associated with resource.
2390  *	@exclusive: whether the region access is exclusive or not
2391  *
2392  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2393  *	being reserved by owner @res_name.  Do not access any
2394  *	address inside the PCI regions unless this call returns
2395  *	successfully.
2396  *
2397  *	If @exclusive is set, then the region is marked so that userspace
2398  *	is explicitly not allowed to map the resource via /dev/mem or
2399  * 	sysfs MMIO access.
2400  *
2401  *	Returns 0 on success, or %EBUSY on error.  A warning
2402  *	message is also printed on failure.
2403  */
2404 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2405 									int exclusive)
2406 {
2407 	struct pci_devres *dr;
2408 
2409 	if (pci_resource_len(pdev, bar) == 0)
2410 		return 0;
2411 
2412 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2413 		if (!request_region(pci_resource_start(pdev, bar),
2414 			    pci_resource_len(pdev, bar), res_name))
2415 			goto err_out;
2416 	}
2417 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2418 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2419 					pci_resource_len(pdev, bar), res_name,
2420 					exclusive))
2421 			goto err_out;
2422 	}
2423 
2424 	dr = find_pci_dr(pdev);
2425 	if (dr)
2426 		dr->region_mask |= 1 << bar;
2427 
2428 	return 0;
2429 
2430 err_out:
2431 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2432 		 &pdev->resource[bar]);
2433 	return -EBUSY;
2434 }
2435 
2436 /**
2437  *	pci_request_region - Reserve PCI I/O and memory resource
2438  *	@pdev: PCI device whose resources are to be reserved
2439  *	@bar: BAR to be reserved
2440  *	@res_name: Name to be associated with resource
2441  *
2442  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2443  *	being reserved by owner @res_name.  Do not access any
2444  *	address inside the PCI regions unless this call returns
2445  *	successfully.
2446  *
2447  *	Returns 0 on success, or %EBUSY on error.  A warning
2448  *	message is also printed on failure.
2449  */
2450 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2451 {
2452 	return __pci_request_region(pdev, bar, res_name, 0);
2453 }
2454 
2455 /**
2456  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2457  *	@pdev: PCI device whose resources are to be reserved
2458  *	@bar: BAR to be reserved
2459  *	@res_name: Name to be associated with resource.
2460  *
2461  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2462  *	being reserved by owner @res_name.  Do not access any
2463  *	address inside the PCI regions unless this call returns
2464  *	successfully.
2465  *
2466  *	Returns 0 on success, or %EBUSY on error.  A warning
2467  *	message is also printed on failure.
2468  *
2469  *	The key difference that _exclusive makes it that userspace is
2470  *	explicitly not allowed to map the resource via /dev/mem or
2471  * 	sysfs.
2472  */
2473 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2474 {
2475 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2476 }
2477 /**
2478  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2479  * @pdev: PCI device whose resources were previously reserved
2480  * @bars: Bitmask of BARs to be released
2481  *
2482  * Release selected PCI I/O and memory resources previously reserved.
2483  * Call this function only after all use of the PCI regions has ceased.
2484  */
2485 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2486 {
2487 	int i;
2488 
2489 	for (i = 0; i < 6; i++)
2490 		if (bars & (1 << i))
2491 			pci_release_region(pdev, i);
2492 }
2493 
2494 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2495 				 const char *res_name, int excl)
2496 {
2497 	int i;
2498 
2499 	for (i = 0; i < 6; i++)
2500 		if (bars & (1 << i))
2501 			if (__pci_request_region(pdev, i, res_name, excl))
2502 				goto err_out;
2503 	return 0;
2504 
2505 err_out:
2506 	while(--i >= 0)
2507 		if (bars & (1 << i))
2508 			pci_release_region(pdev, i);
2509 
2510 	return -EBUSY;
2511 }
2512 
2513 
2514 /**
2515  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2516  * @pdev: PCI device whose resources are to be reserved
2517  * @bars: Bitmask of BARs to be requested
2518  * @res_name: Name to be associated with resource
2519  */
2520 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2521 				 const char *res_name)
2522 {
2523 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2524 }
2525 
2526 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2527 				 int bars, const char *res_name)
2528 {
2529 	return __pci_request_selected_regions(pdev, bars, res_name,
2530 			IORESOURCE_EXCLUSIVE);
2531 }
2532 
2533 /**
2534  *	pci_release_regions - Release reserved PCI I/O and memory resources
2535  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2536  *
2537  *	Releases all PCI I/O and memory resources previously reserved by a
2538  *	successful call to pci_request_regions.  Call this function only
2539  *	after all use of the PCI regions has ceased.
2540  */
2541 
2542 void pci_release_regions(struct pci_dev *pdev)
2543 {
2544 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2545 }
2546 
2547 /**
2548  *	pci_request_regions - Reserved PCI I/O and memory resources
2549  *	@pdev: PCI device whose resources are to be reserved
2550  *	@res_name: Name to be associated with resource.
2551  *
2552  *	Mark all PCI regions associated with PCI device @pdev as
2553  *	being reserved by owner @res_name.  Do not access any
2554  *	address inside the PCI regions unless this call returns
2555  *	successfully.
2556  *
2557  *	Returns 0 on success, or %EBUSY on error.  A warning
2558  *	message is also printed on failure.
2559  */
2560 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2561 {
2562 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2563 }
2564 
2565 /**
2566  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2567  *	@pdev: PCI device whose resources are to be reserved
2568  *	@res_name: Name to be associated with resource.
2569  *
2570  *	Mark all PCI regions associated with PCI device @pdev as
2571  *	being reserved by owner @res_name.  Do not access any
2572  *	address inside the PCI regions unless this call returns
2573  *	successfully.
2574  *
2575  *	pci_request_regions_exclusive() will mark the region so that
2576  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2577  *
2578  *	Returns 0 on success, or %EBUSY on error.  A warning
2579  *	message is also printed on failure.
2580  */
2581 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2582 {
2583 	return pci_request_selected_regions_exclusive(pdev,
2584 					((1 << 6) - 1), res_name);
2585 }
2586 
2587 static void __pci_set_master(struct pci_dev *dev, bool enable)
2588 {
2589 	u16 old_cmd, cmd;
2590 
2591 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2592 	if (enable)
2593 		cmd = old_cmd | PCI_COMMAND_MASTER;
2594 	else
2595 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2596 	if (cmd != old_cmd) {
2597 		dev_dbg(&dev->dev, "%s bus mastering\n",
2598 			enable ? "enabling" : "disabling");
2599 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2600 	}
2601 	dev->is_busmaster = enable;
2602 }
2603 
2604 /**
2605  * pcibios_set_master - enable PCI bus-mastering for device dev
2606  * @dev: the PCI device to enable
2607  *
2608  * Enables PCI bus-mastering for the device.  This is the default
2609  * implementation.  Architecture specific implementations can override
2610  * this if necessary.
2611  */
2612 void __weak pcibios_set_master(struct pci_dev *dev)
2613 {
2614 	u8 lat;
2615 
2616 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2617 	if (pci_is_pcie(dev))
2618 		return;
2619 
2620 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2621 	if (lat < 16)
2622 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2623 	else if (lat > pcibios_max_latency)
2624 		lat = pcibios_max_latency;
2625 	else
2626 		return;
2627 	dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2628 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2629 }
2630 
2631 /**
2632  * pci_set_master - enables bus-mastering for device dev
2633  * @dev: the PCI device to enable
2634  *
2635  * Enables bus-mastering on the device and calls pcibios_set_master()
2636  * to do the needed arch specific settings.
2637  */
2638 void pci_set_master(struct pci_dev *dev)
2639 {
2640 	__pci_set_master(dev, true);
2641 	pcibios_set_master(dev);
2642 }
2643 
2644 /**
2645  * pci_clear_master - disables bus-mastering for device dev
2646  * @dev: the PCI device to disable
2647  */
2648 void pci_clear_master(struct pci_dev *dev)
2649 {
2650 	__pci_set_master(dev, false);
2651 }
2652 
2653 /**
2654  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2655  * @dev: the PCI device for which MWI is to be enabled
2656  *
2657  * Helper function for pci_set_mwi.
2658  * Originally copied from drivers/net/acenic.c.
2659  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2660  *
2661  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2662  */
2663 int pci_set_cacheline_size(struct pci_dev *dev)
2664 {
2665 	u8 cacheline_size;
2666 
2667 	if (!pci_cache_line_size)
2668 		return -EINVAL;
2669 
2670 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2671 	   equal to or multiple of the right value. */
2672 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2673 	if (cacheline_size >= pci_cache_line_size &&
2674 	    (cacheline_size % pci_cache_line_size) == 0)
2675 		return 0;
2676 
2677 	/* Write the correct value. */
2678 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2679 	/* Read it back. */
2680 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2681 	if (cacheline_size == pci_cache_line_size)
2682 		return 0;
2683 
2684 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2685 		   "supported\n", pci_cache_line_size << 2);
2686 
2687 	return -EINVAL;
2688 }
2689 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2690 
2691 #ifdef PCI_DISABLE_MWI
2692 int pci_set_mwi(struct pci_dev *dev)
2693 {
2694 	return 0;
2695 }
2696 
2697 int pci_try_set_mwi(struct pci_dev *dev)
2698 {
2699 	return 0;
2700 }
2701 
2702 void pci_clear_mwi(struct pci_dev *dev)
2703 {
2704 }
2705 
2706 #else
2707 
2708 /**
2709  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2710  * @dev: the PCI device for which MWI is enabled
2711  *
2712  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2713  *
2714  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2715  */
2716 int
2717 pci_set_mwi(struct pci_dev *dev)
2718 {
2719 	int rc;
2720 	u16 cmd;
2721 
2722 	rc = pci_set_cacheline_size(dev);
2723 	if (rc)
2724 		return rc;
2725 
2726 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2727 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2728 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2729 		cmd |= PCI_COMMAND_INVALIDATE;
2730 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 /**
2737  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2738  * @dev: the PCI device for which MWI is enabled
2739  *
2740  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2741  * Callers are not required to check the return value.
2742  *
2743  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2744  */
2745 int pci_try_set_mwi(struct pci_dev *dev)
2746 {
2747 	int rc = pci_set_mwi(dev);
2748 	return rc;
2749 }
2750 
2751 /**
2752  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2753  * @dev: the PCI device to disable
2754  *
2755  * Disables PCI Memory-Write-Invalidate transaction on the device
2756  */
2757 void
2758 pci_clear_mwi(struct pci_dev *dev)
2759 {
2760 	u16 cmd;
2761 
2762 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2763 	if (cmd & PCI_COMMAND_INVALIDATE) {
2764 		cmd &= ~PCI_COMMAND_INVALIDATE;
2765 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2766 	}
2767 }
2768 #endif /* ! PCI_DISABLE_MWI */
2769 
2770 /**
2771  * pci_intx - enables/disables PCI INTx for device dev
2772  * @pdev: the PCI device to operate on
2773  * @enable: boolean: whether to enable or disable PCI INTx
2774  *
2775  * Enables/disables PCI INTx for device dev
2776  */
2777 void
2778 pci_intx(struct pci_dev *pdev, int enable)
2779 {
2780 	u16 pci_command, new;
2781 
2782 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2783 
2784 	if (enable) {
2785 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2786 	} else {
2787 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2788 	}
2789 
2790 	if (new != pci_command) {
2791 		struct pci_devres *dr;
2792 
2793 		pci_write_config_word(pdev, PCI_COMMAND, new);
2794 
2795 		dr = find_pci_dr(pdev);
2796 		if (dr && !dr->restore_intx) {
2797 			dr->restore_intx = 1;
2798 			dr->orig_intx = !enable;
2799 		}
2800 	}
2801 }
2802 
2803 /**
2804  * pci_intx_mask_supported - probe for INTx masking support
2805  * @dev: the PCI device to operate on
2806  *
2807  * Check if the device dev support INTx masking via the config space
2808  * command word.
2809  */
2810 bool pci_intx_mask_supported(struct pci_dev *dev)
2811 {
2812 	bool mask_supported = false;
2813 	u16 orig, new;
2814 
2815 	pci_cfg_access_lock(dev);
2816 
2817 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2818 	pci_write_config_word(dev, PCI_COMMAND,
2819 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2820 	pci_read_config_word(dev, PCI_COMMAND, &new);
2821 
2822 	/*
2823 	 * There's no way to protect against hardware bugs or detect them
2824 	 * reliably, but as long as we know what the value should be, let's
2825 	 * go ahead and check it.
2826 	 */
2827 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2828 		dev_err(&dev->dev, "Command register changed from "
2829 			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2830 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2831 		mask_supported = true;
2832 		pci_write_config_word(dev, PCI_COMMAND, orig);
2833 	}
2834 
2835 	pci_cfg_access_unlock(dev);
2836 	return mask_supported;
2837 }
2838 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2839 
2840 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2841 {
2842 	struct pci_bus *bus = dev->bus;
2843 	bool mask_updated = true;
2844 	u32 cmd_status_dword;
2845 	u16 origcmd, newcmd;
2846 	unsigned long flags;
2847 	bool irq_pending;
2848 
2849 	/*
2850 	 * We do a single dword read to retrieve both command and status.
2851 	 * Document assumptions that make this possible.
2852 	 */
2853 	BUILD_BUG_ON(PCI_COMMAND % 4);
2854 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2855 
2856 	raw_spin_lock_irqsave(&pci_lock, flags);
2857 
2858 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2859 
2860 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2861 
2862 	/*
2863 	 * Check interrupt status register to see whether our device
2864 	 * triggered the interrupt (when masking) or the next IRQ is
2865 	 * already pending (when unmasking).
2866 	 */
2867 	if (mask != irq_pending) {
2868 		mask_updated = false;
2869 		goto done;
2870 	}
2871 
2872 	origcmd = cmd_status_dword;
2873 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2874 	if (mask)
2875 		newcmd |= PCI_COMMAND_INTX_DISABLE;
2876 	if (newcmd != origcmd)
2877 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2878 
2879 done:
2880 	raw_spin_unlock_irqrestore(&pci_lock, flags);
2881 
2882 	return mask_updated;
2883 }
2884 
2885 /**
2886  * pci_check_and_mask_intx - mask INTx on pending interrupt
2887  * @dev: the PCI device to operate on
2888  *
2889  * Check if the device dev has its INTx line asserted, mask it and
2890  * return true in that case. False is returned if not interrupt was
2891  * pending.
2892  */
2893 bool pci_check_and_mask_intx(struct pci_dev *dev)
2894 {
2895 	return pci_check_and_set_intx_mask(dev, true);
2896 }
2897 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2898 
2899 /**
2900  * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
2901  * @dev: the PCI device to operate on
2902  *
2903  * Check if the device dev has its INTx line asserted, unmask it if not
2904  * and return true. False is returned and the mask remains active if
2905  * there was still an interrupt pending.
2906  */
2907 bool pci_check_and_unmask_intx(struct pci_dev *dev)
2908 {
2909 	return pci_check_and_set_intx_mask(dev, false);
2910 }
2911 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2912 
2913 /**
2914  * pci_msi_off - disables any msi or msix capabilities
2915  * @dev: the PCI device to operate on
2916  *
2917  * If you want to use msi see pci_enable_msi and friends.
2918  * This is a lower level primitive that allows us to disable
2919  * msi operation at the device level.
2920  */
2921 void pci_msi_off(struct pci_dev *dev)
2922 {
2923 	int pos;
2924 	u16 control;
2925 
2926 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2927 	if (pos) {
2928 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2929 		control &= ~PCI_MSI_FLAGS_ENABLE;
2930 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2931 	}
2932 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2933 	if (pos) {
2934 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2935 		control &= ~PCI_MSIX_FLAGS_ENABLE;
2936 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2937 	}
2938 }
2939 EXPORT_SYMBOL_GPL(pci_msi_off);
2940 
2941 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2942 {
2943 	return dma_set_max_seg_size(&dev->dev, size);
2944 }
2945 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2946 
2947 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2948 {
2949 	return dma_set_seg_boundary(&dev->dev, mask);
2950 }
2951 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2952 
2953 static int pcie_flr(struct pci_dev *dev, int probe)
2954 {
2955 	int i;
2956 	int pos;
2957 	u32 cap;
2958 	u16 status, control;
2959 
2960 	pos = pci_pcie_cap(dev);
2961 	if (!pos)
2962 		return -ENOTTY;
2963 
2964 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2965 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2966 		return -ENOTTY;
2967 
2968 	if (probe)
2969 		return 0;
2970 
2971 	/* Wait for Transaction Pending bit clean */
2972 	for (i = 0; i < 4; i++) {
2973 		if (i)
2974 			msleep((1 << (i - 1)) * 100);
2975 
2976 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2977 		if (!(status & PCI_EXP_DEVSTA_TRPND))
2978 			goto clear;
2979 	}
2980 
2981 	dev_err(&dev->dev, "transaction is not cleared; "
2982 			"proceeding with reset anyway\n");
2983 
2984 clear:
2985 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2986 	control |= PCI_EXP_DEVCTL_BCR_FLR;
2987 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2988 
2989 	msleep(100);
2990 
2991 	return 0;
2992 }
2993 
2994 static int pci_af_flr(struct pci_dev *dev, int probe)
2995 {
2996 	int i;
2997 	int pos;
2998 	u8 cap;
2999 	u8 status;
3000 
3001 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3002 	if (!pos)
3003 		return -ENOTTY;
3004 
3005 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3006 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3007 		return -ENOTTY;
3008 
3009 	if (probe)
3010 		return 0;
3011 
3012 	/* Wait for Transaction Pending bit clean */
3013 	for (i = 0; i < 4; i++) {
3014 		if (i)
3015 			msleep((1 << (i - 1)) * 100);
3016 
3017 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3018 		if (!(status & PCI_AF_STATUS_TP))
3019 			goto clear;
3020 	}
3021 
3022 	dev_err(&dev->dev, "transaction is not cleared; "
3023 			"proceeding with reset anyway\n");
3024 
3025 clear:
3026 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3027 	msleep(100);
3028 
3029 	return 0;
3030 }
3031 
3032 /**
3033  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3034  * @dev: Device to reset.
3035  * @probe: If set, only check if the device can be reset this way.
3036  *
3037  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3038  * unset, it will be reinitialized internally when going from PCI_D3hot to
3039  * PCI_D0.  If that's the case and the device is not in a low-power state
3040  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3041  *
3042  * NOTE: This causes the caller to sleep for twice the device power transition
3043  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3044  * by devault (i.e. unless the @dev's d3_delay field has a different value).
3045  * Moreover, only devices in D0 can be reset by this function.
3046  */
3047 static int pci_pm_reset(struct pci_dev *dev, int probe)
3048 {
3049 	u16 csr;
3050 
3051 	if (!dev->pm_cap)
3052 		return -ENOTTY;
3053 
3054 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3055 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3056 		return -ENOTTY;
3057 
3058 	if (probe)
3059 		return 0;
3060 
3061 	if (dev->current_state != PCI_D0)
3062 		return -EINVAL;
3063 
3064 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3065 	csr |= PCI_D3hot;
3066 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3067 	pci_dev_d3_sleep(dev);
3068 
3069 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3070 	csr |= PCI_D0;
3071 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3072 	pci_dev_d3_sleep(dev);
3073 
3074 	return 0;
3075 }
3076 
3077 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3078 {
3079 	u16 ctrl;
3080 	struct pci_dev *pdev;
3081 
3082 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3083 		return -ENOTTY;
3084 
3085 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3086 		if (pdev != dev)
3087 			return -ENOTTY;
3088 
3089 	if (probe)
3090 		return 0;
3091 
3092 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3093 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3094 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3095 	msleep(100);
3096 
3097 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3098 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3099 	msleep(100);
3100 
3101 	return 0;
3102 }
3103 
3104 static int pci_dev_reset(struct pci_dev *dev, int probe)
3105 {
3106 	int rc;
3107 
3108 	might_sleep();
3109 
3110 	if (!probe) {
3111 		pci_cfg_access_lock(dev);
3112 		/* block PM suspend, driver probe, etc. */
3113 		device_lock(&dev->dev);
3114 	}
3115 
3116 	rc = pci_dev_specific_reset(dev, probe);
3117 	if (rc != -ENOTTY)
3118 		goto done;
3119 
3120 	rc = pcie_flr(dev, probe);
3121 	if (rc != -ENOTTY)
3122 		goto done;
3123 
3124 	rc = pci_af_flr(dev, probe);
3125 	if (rc != -ENOTTY)
3126 		goto done;
3127 
3128 	rc = pci_pm_reset(dev, probe);
3129 	if (rc != -ENOTTY)
3130 		goto done;
3131 
3132 	rc = pci_parent_bus_reset(dev, probe);
3133 done:
3134 	if (!probe) {
3135 		device_unlock(&dev->dev);
3136 		pci_cfg_access_unlock(dev);
3137 	}
3138 
3139 	return rc;
3140 }
3141 
3142 /**
3143  * __pci_reset_function - reset a PCI device function
3144  * @dev: PCI device to reset
3145  *
3146  * Some devices allow an individual function to be reset without affecting
3147  * other functions in the same device.  The PCI device must be responsive
3148  * to PCI config space in order to use this function.
3149  *
3150  * The device function is presumed to be unused when this function is called.
3151  * Resetting the device will make the contents of PCI configuration space
3152  * random, so any caller of this must be prepared to reinitialise the
3153  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3154  * etc.
3155  *
3156  * Returns 0 if the device function was successfully reset or negative if the
3157  * device doesn't support resetting a single function.
3158  */
3159 int __pci_reset_function(struct pci_dev *dev)
3160 {
3161 	return pci_dev_reset(dev, 0);
3162 }
3163 EXPORT_SYMBOL_GPL(__pci_reset_function);
3164 
3165 /**
3166  * pci_probe_reset_function - check whether the device can be safely reset
3167  * @dev: PCI device to reset
3168  *
3169  * Some devices allow an individual function to be reset without affecting
3170  * other functions in the same device.  The PCI device must be responsive
3171  * to PCI config space in order to use this function.
3172  *
3173  * Returns 0 if the device function can be reset or negative if the
3174  * device doesn't support resetting a single function.
3175  */
3176 int pci_probe_reset_function(struct pci_dev *dev)
3177 {
3178 	return pci_dev_reset(dev, 1);
3179 }
3180 
3181 /**
3182  * pci_reset_function - quiesce and reset a PCI device function
3183  * @dev: PCI device to reset
3184  *
3185  * Some devices allow an individual function to be reset without affecting
3186  * other functions in the same device.  The PCI device must be responsive
3187  * to PCI config space in order to use this function.
3188  *
3189  * This function does not just reset the PCI portion of a device, but
3190  * clears all the state associated with the device.  This function differs
3191  * from __pci_reset_function in that it saves and restores device state
3192  * over the reset.
3193  *
3194  * Returns 0 if the device function was successfully reset or negative if the
3195  * device doesn't support resetting a single function.
3196  */
3197 int pci_reset_function(struct pci_dev *dev)
3198 {
3199 	int rc;
3200 
3201 	rc = pci_dev_reset(dev, 1);
3202 	if (rc)
3203 		return rc;
3204 
3205 	pci_save_state(dev);
3206 
3207 	/*
3208 	 * both INTx and MSI are disabled after the Interrupt Disable bit
3209 	 * is set and the Bus Master bit is cleared.
3210 	 */
3211 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3212 
3213 	rc = pci_dev_reset(dev, 0);
3214 
3215 	pci_restore_state(dev);
3216 
3217 	return rc;
3218 }
3219 EXPORT_SYMBOL_GPL(pci_reset_function);
3220 
3221 /**
3222  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3223  * @dev: PCI device to query
3224  *
3225  * Returns mmrbc: maximum designed memory read count in bytes
3226  *    or appropriate error value.
3227  */
3228 int pcix_get_max_mmrbc(struct pci_dev *dev)
3229 {
3230 	int cap;
3231 	u32 stat;
3232 
3233 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3234 	if (!cap)
3235 		return -EINVAL;
3236 
3237 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3238 		return -EINVAL;
3239 
3240 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3241 }
3242 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3243 
3244 /**
3245  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3246  * @dev: PCI device to query
3247  *
3248  * Returns mmrbc: maximum memory read count in bytes
3249  *    or appropriate error value.
3250  */
3251 int pcix_get_mmrbc(struct pci_dev *dev)
3252 {
3253 	int cap;
3254 	u16 cmd;
3255 
3256 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3257 	if (!cap)
3258 		return -EINVAL;
3259 
3260 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3261 		return -EINVAL;
3262 
3263 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3264 }
3265 EXPORT_SYMBOL(pcix_get_mmrbc);
3266 
3267 /**
3268  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3269  * @dev: PCI device to query
3270  * @mmrbc: maximum memory read count in bytes
3271  *    valid values are 512, 1024, 2048, 4096
3272  *
3273  * If possible sets maximum memory read byte count, some bridges have erratas
3274  * that prevent this.
3275  */
3276 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3277 {
3278 	int cap;
3279 	u32 stat, v, o;
3280 	u16 cmd;
3281 
3282 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3283 		return -EINVAL;
3284 
3285 	v = ffs(mmrbc) - 10;
3286 
3287 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3288 	if (!cap)
3289 		return -EINVAL;
3290 
3291 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3292 		return -EINVAL;
3293 
3294 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3295 		return -E2BIG;
3296 
3297 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3298 		return -EINVAL;
3299 
3300 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3301 	if (o != v) {
3302 		if (v > o && dev->bus &&
3303 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3304 			return -EIO;
3305 
3306 		cmd &= ~PCI_X_CMD_MAX_READ;
3307 		cmd |= v << 2;
3308 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3309 			return -EIO;
3310 	}
3311 	return 0;
3312 }
3313 EXPORT_SYMBOL(pcix_set_mmrbc);
3314 
3315 /**
3316  * pcie_get_readrq - get PCI Express read request size
3317  * @dev: PCI device to query
3318  *
3319  * Returns maximum memory read request in bytes
3320  *    or appropriate error value.
3321  */
3322 int pcie_get_readrq(struct pci_dev *dev)
3323 {
3324 	int ret, cap;
3325 	u16 ctl;
3326 
3327 	cap = pci_pcie_cap(dev);
3328 	if (!cap)
3329 		return -EINVAL;
3330 
3331 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3332 	if (!ret)
3333 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3334 
3335 	return ret;
3336 }
3337 EXPORT_SYMBOL(pcie_get_readrq);
3338 
3339 /**
3340  * pcie_set_readrq - set PCI Express maximum memory read request
3341  * @dev: PCI device to query
3342  * @rq: maximum memory read count in bytes
3343  *    valid values are 128, 256, 512, 1024, 2048, 4096
3344  *
3345  * If possible sets maximum memory read request in bytes
3346  */
3347 int pcie_set_readrq(struct pci_dev *dev, int rq)
3348 {
3349 	int cap, err = -EINVAL;
3350 	u16 ctl, v;
3351 
3352 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3353 		goto out;
3354 
3355 	cap = pci_pcie_cap(dev);
3356 	if (!cap)
3357 		goto out;
3358 
3359 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3360 	if (err)
3361 		goto out;
3362 	/*
3363 	 * If using the "performance" PCIe config, we clamp the
3364 	 * read rq size to the max packet size to prevent the
3365 	 * host bridge generating requests larger than we can
3366 	 * cope with
3367 	 */
3368 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3369 		int mps = pcie_get_mps(dev);
3370 
3371 		if (mps < 0)
3372 			return mps;
3373 		if (mps < rq)
3374 			rq = mps;
3375 	}
3376 
3377 	v = (ffs(rq) - 8) << 12;
3378 
3379 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3380 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
3381 		ctl |= v;
3382 		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3383 	}
3384 
3385 out:
3386 	return err;
3387 }
3388 EXPORT_SYMBOL(pcie_set_readrq);
3389 
3390 /**
3391  * pcie_get_mps - get PCI Express maximum payload size
3392  * @dev: PCI device to query
3393  *
3394  * Returns maximum payload size in bytes
3395  *    or appropriate error value.
3396  */
3397 int pcie_get_mps(struct pci_dev *dev)
3398 {
3399 	int ret, cap;
3400 	u16 ctl;
3401 
3402 	cap = pci_pcie_cap(dev);
3403 	if (!cap)
3404 		return -EINVAL;
3405 
3406 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3407 	if (!ret)
3408 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3409 
3410 	return ret;
3411 }
3412 
3413 /**
3414  * pcie_set_mps - set PCI Express maximum payload size
3415  * @dev: PCI device to query
3416  * @mps: maximum payload size in bytes
3417  *    valid values are 128, 256, 512, 1024, 2048, 4096
3418  *
3419  * If possible sets maximum payload size
3420  */
3421 int pcie_set_mps(struct pci_dev *dev, int mps)
3422 {
3423 	int cap, err = -EINVAL;
3424 	u16 ctl, v;
3425 
3426 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3427 		goto out;
3428 
3429 	v = ffs(mps) - 8;
3430 	if (v > dev->pcie_mpss)
3431 		goto out;
3432 	v <<= 5;
3433 
3434 	cap = pci_pcie_cap(dev);
3435 	if (!cap)
3436 		goto out;
3437 
3438 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3439 	if (err)
3440 		goto out;
3441 
3442 	if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3443 		ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3444 		ctl |= v;
3445 		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3446 	}
3447 out:
3448 	return err;
3449 }
3450 
3451 /**
3452  * pci_select_bars - Make BAR mask from the type of resource
3453  * @dev: the PCI device for which BAR mask is made
3454  * @flags: resource type mask to be selected
3455  *
3456  * This helper routine makes bar mask from the type of resource.
3457  */
3458 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3459 {
3460 	int i, bars = 0;
3461 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3462 		if (pci_resource_flags(dev, i) & flags)
3463 			bars |= (1 << i);
3464 	return bars;
3465 }
3466 
3467 /**
3468  * pci_resource_bar - get position of the BAR associated with a resource
3469  * @dev: the PCI device
3470  * @resno: the resource number
3471  * @type: the BAR type to be filled in
3472  *
3473  * Returns BAR position in config space, or 0 if the BAR is invalid.
3474  */
3475 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3476 {
3477 	int reg;
3478 
3479 	if (resno < PCI_ROM_RESOURCE) {
3480 		*type = pci_bar_unknown;
3481 		return PCI_BASE_ADDRESS_0 + 4 * resno;
3482 	} else if (resno == PCI_ROM_RESOURCE) {
3483 		*type = pci_bar_mem32;
3484 		return dev->rom_base_reg;
3485 	} else if (resno < PCI_BRIDGE_RESOURCES) {
3486 		/* device specific resource */
3487 		reg = pci_iov_resource_bar(dev, resno, type);
3488 		if (reg)
3489 			return reg;
3490 	}
3491 
3492 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3493 	return 0;
3494 }
3495 
3496 /* Some architectures require additional programming to enable VGA */
3497 static arch_set_vga_state_t arch_set_vga_state;
3498 
3499 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3500 {
3501 	arch_set_vga_state = func;	/* NULL disables */
3502 }
3503 
3504 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3505 		      unsigned int command_bits, u32 flags)
3506 {
3507 	if (arch_set_vga_state)
3508 		return arch_set_vga_state(dev, decode, command_bits,
3509 						flags);
3510 	return 0;
3511 }
3512 
3513 /**
3514  * pci_set_vga_state - set VGA decode state on device and parents if requested
3515  * @dev: the PCI device
3516  * @decode: true = enable decoding, false = disable decoding
3517  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3518  * @flags: traverse ancestors and change bridges
3519  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3520  */
3521 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3522 		      unsigned int command_bits, u32 flags)
3523 {
3524 	struct pci_bus *bus;
3525 	struct pci_dev *bridge;
3526 	u16 cmd;
3527 	int rc;
3528 
3529 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3530 
3531 	/* ARCH specific VGA enables */
3532 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3533 	if (rc)
3534 		return rc;
3535 
3536 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3537 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3538 		if (decode == true)
3539 			cmd |= command_bits;
3540 		else
3541 			cmd &= ~command_bits;
3542 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3543 	}
3544 
3545 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3546 		return 0;
3547 
3548 	bus = dev->bus;
3549 	while (bus) {
3550 		bridge = bus->self;
3551 		if (bridge) {
3552 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3553 					     &cmd);
3554 			if (decode == true)
3555 				cmd |= PCI_BRIDGE_CTL_VGA;
3556 			else
3557 				cmd &= ~PCI_BRIDGE_CTL_VGA;
3558 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3559 					      cmd);
3560 		}
3561 		bus = bus->parent;
3562 	}
3563 	return 0;
3564 }
3565 
3566 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3567 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3568 static DEFINE_SPINLOCK(resource_alignment_lock);
3569 
3570 /**
3571  * pci_specified_resource_alignment - get resource alignment specified by user.
3572  * @dev: the PCI device to get
3573  *
3574  * RETURNS: Resource alignment if it is specified.
3575  *          Zero if it is not specified.
3576  */
3577 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3578 {
3579 	int seg, bus, slot, func, align_order, count;
3580 	resource_size_t align = 0;
3581 	char *p;
3582 
3583 	spin_lock(&resource_alignment_lock);
3584 	p = resource_alignment_param;
3585 	while (*p) {
3586 		count = 0;
3587 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3588 							p[count] == '@') {
3589 			p += count + 1;
3590 		} else {
3591 			align_order = -1;
3592 		}
3593 		if (sscanf(p, "%x:%x:%x.%x%n",
3594 			&seg, &bus, &slot, &func, &count) != 4) {
3595 			seg = 0;
3596 			if (sscanf(p, "%x:%x.%x%n",
3597 					&bus, &slot, &func, &count) != 3) {
3598 				/* Invalid format */
3599 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3600 					p);
3601 				break;
3602 			}
3603 		}
3604 		p += count;
3605 		if (seg == pci_domain_nr(dev->bus) &&
3606 			bus == dev->bus->number &&
3607 			slot == PCI_SLOT(dev->devfn) &&
3608 			func == PCI_FUNC(dev->devfn)) {
3609 			if (align_order == -1) {
3610 				align = PAGE_SIZE;
3611 			} else {
3612 				align = 1 << align_order;
3613 			}
3614 			/* Found */
3615 			break;
3616 		}
3617 		if (*p != ';' && *p != ',') {
3618 			/* End of param or invalid format */
3619 			break;
3620 		}
3621 		p++;
3622 	}
3623 	spin_unlock(&resource_alignment_lock);
3624 	return align;
3625 }
3626 
3627 /**
3628  * pci_is_reassigndev - check if specified PCI is target device to reassign
3629  * @dev: the PCI device to check
3630  *
3631  * RETURNS: non-zero for PCI device is a target device to reassign,
3632  *          or zero is not.
3633  */
3634 int pci_is_reassigndev(struct pci_dev *dev)
3635 {
3636 	return (pci_specified_resource_alignment(dev) != 0);
3637 }
3638 
3639 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3640 {
3641 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3642 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3643 	spin_lock(&resource_alignment_lock);
3644 	strncpy(resource_alignment_param, buf, count);
3645 	resource_alignment_param[count] = '\0';
3646 	spin_unlock(&resource_alignment_lock);
3647 	return count;
3648 }
3649 
3650 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3651 {
3652 	size_t count;
3653 	spin_lock(&resource_alignment_lock);
3654 	count = snprintf(buf, size, "%s", resource_alignment_param);
3655 	spin_unlock(&resource_alignment_lock);
3656 	return count;
3657 }
3658 
3659 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3660 {
3661 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3662 }
3663 
3664 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3665 					const char *buf, size_t count)
3666 {
3667 	return pci_set_resource_alignment_param(buf, count);
3668 }
3669 
3670 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3671 					pci_resource_alignment_store);
3672 
3673 static int __init pci_resource_alignment_sysfs_init(void)
3674 {
3675 	return bus_create_file(&pci_bus_type,
3676 					&bus_attr_resource_alignment);
3677 }
3678 
3679 late_initcall(pci_resource_alignment_sysfs_init);
3680 
3681 static void __devinit pci_no_domains(void)
3682 {
3683 #ifdef CONFIG_PCI_DOMAINS
3684 	pci_domains_supported = 0;
3685 #endif
3686 }
3687 
3688 /**
3689  * pci_ext_cfg_enabled - can we access extended PCI config space?
3690  * @dev: The PCI device of the root bridge.
3691  *
3692  * Returns 1 if we can access PCI extended config space (offsets
3693  * greater than 0xff). This is the default implementation. Architecture
3694  * implementations can override this.
3695  */
3696 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3697 {
3698 	return 1;
3699 }
3700 
3701 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3702 {
3703 }
3704 EXPORT_SYMBOL(pci_fixup_cardbus);
3705 
3706 static int __init pci_setup(char *str)
3707 {
3708 	while (str) {
3709 		char *k = strchr(str, ',');
3710 		if (k)
3711 			*k++ = 0;
3712 		if (*str && (str = pcibios_setup(str)) && *str) {
3713 			if (!strcmp(str, "nomsi")) {
3714 				pci_no_msi();
3715 			} else if (!strcmp(str, "noaer")) {
3716 				pci_no_aer();
3717 			} else if (!strncmp(str, "realloc", 7)) {
3718 				pci_realloc();
3719 			} else if (!strcmp(str, "nodomains")) {
3720 				pci_no_domains();
3721 			} else if (!strncmp(str, "cbiosize=", 9)) {
3722 				pci_cardbus_io_size = memparse(str + 9, &str);
3723 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3724 				pci_cardbus_mem_size = memparse(str + 10, &str);
3725 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3726 				pci_set_resource_alignment_param(str + 19,
3727 							strlen(str + 19));
3728 			} else if (!strncmp(str, "ecrc=", 5)) {
3729 				pcie_ecrc_get_policy(str + 5);
3730 			} else if (!strncmp(str, "hpiosize=", 9)) {
3731 				pci_hotplug_io_size = memparse(str + 9, &str);
3732 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3733 				pci_hotplug_mem_size = memparse(str + 10, &str);
3734 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3735 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
3736 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3737 				pcie_bus_config = PCIE_BUS_SAFE;
3738 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3739 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3740 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3741 				pcie_bus_config = PCIE_BUS_PEER2PEER;
3742 			} else {
3743 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3744 						str);
3745 			}
3746 		}
3747 		str = k;
3748 	}
3749 	return 0;
3750 }
3751 early_param("pci", pci_setup);
3752 
3753 EXPORT_SYMBOL(pci_reenable_device);
3754 EXPORT_SYMBOL(pci_enable_device_io);
3755 EXPORT_SYMBOL(pci_enable_device_mem);
3756 EXPORT_SYMBOL(pci_enable_device);
3757 EXPORT_SYMBOL(pcim_enable_device);
3758 EXPORT_SYMBOL(pcim_pin_device);
3759 EXPORT_SYMBOL(pci_disable_device);
3760 EXPORT_SYMBOL(pci_find_capability);
3761 EXPORT_SYMBOL(pci_bus_find_capability);
3762 EXPORT_SYMBOL(pci_release_regions);
3763 EXPORT_SYMBOL(pci_request_regions);
3764 EXPORT_SYMBOL(pci_request_regions_exclusive);
3765 EXPORT_SYMBOL(pci_release_region);
3766 EXPORT_SYMBOL(pci_request_region);
3767 EXPORT_SYMBOL(pci_request_region_exclusive);
3768 EXPORT_SYMBOL(pci_release_selected_regions);
3769 EXPORT_SYMBOL(pci_request_selected_regions);
3770 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3771 EXPORT_SYMBOL(pci_set_master);
3772 EXPORT_SYMBOL(pci_clear_master);
3773 EXPORT_SYMBOL(pci_set_mwi);
3774 EXPORT_SYMBOL(pci_try_set_mwi);
3775 EXPORT_SYMBOL(pci_clear_mwi);
3776 EXPORT_SYMBOL_GPL(pci_intx);
3777 EXPORT_SYMBOL(pci_assign_resource);
3778 EXPORT_SYMBOL(pci_find_parent_resource);
3779 EXPORT_SYMBOL(pci_select_bars);
3780 
3781 EXPORT_SYMBOL(pci_set_power_state);
3782 EXPORT_SYMBOL(pci_save_state);
3783 EXPORT_SYMBOL(pci_restore_state);
3784 EXPORT_SYMBOL(pci_pme_capable);
3785 EXPORT_SYMBOL(pci_pme_active);
3786 EXPORT_SYMBOL(pci_wake_from_d3);
3787 EXPORT_SYMBOL(pci_target_state);
3788 EXPORT_SYMBOL(pci_prepare_to_sleep);
3789 EXPORT_SYMBOL(pci_back_from_sleep);
3790 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3791