xref: /openbmc/linux/drivers/pci/pci.c (revision d6fc9fcb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 DEFINE_MUTEX(pci_slot_mutex);
39 
40 const char *pci_power_names[] = {
41 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 };
43 EXPORT_SYMBOL_GPL(pci_power_names);
44 
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 {
68 	unsigned int delay = dev->d3_delay;
69 
70 	if (delay < pci_pm_d3_delay)
71 		delay = pci_pm_d3_delay;
72 
73 	if (delay)
74 		msleep(delay);
75 }
76 
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
80 
81 #define DEFAULT_CARDBUS_IO_SIZE		(256)
82 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 
87 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 
93 #define DEFAULT_HOTPLUG_BUS_SIZE	1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 
98 /*
99  * The default CLS is used if arch didn't set CLS explicitly and not
100  * all pci devices agree on the same value.  Arch can override either
101  * the dfl or actual value as it sees fit.  Don't forget this is
102  * measured in 32-bit words, not bytes.
103  */
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
106 
107 /*
108  * If we set up a device for bus mastering, we need to check the latency
109  * timer as certain BIOSes forget to set it properly.
110  */
111 unsigned int pcibios_max_latency = 255;
112 
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
115 
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
118 
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
121 
122 bool pci_ats_disabled(void)
123 {
124 	return pcie_ats_disabled;
125 }
126 
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force;
131 
132 static int __init pcie_port_pm_setup(char *str)
133 {
134 	if (!strcmp(str, "off"))
135 		pci_bridge_d3_disable = true;
136 	else if (!strcmp(str, "force"))
137 		pci_bridge_d3_force = true;
138 	return 1;
139 }
140 __setup("pcie_port_pm=", pcie_port_pm_setup);
141 
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
144 
145 /**
146  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147  * @bus: pointer to PCI bus structure to search
148  *
149  * Given a PCI bus, returns the highest PCI bus number present in the set
150  * including the given PCI bus and its list of child PCI buses.
151  */
152 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153 {
154 	struct pci_bus *tmp;
155 	unsigned char max, n;
156 
157 	max = bus->busn_res.end;
158 	list_for_each_entry(tmp, &bus->children, node) {
159 		n = pci_bus_max_busnr(tmp);
160 		if (n > max)
161 			max = n;
162 	}
163 	return max;
164 }
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166 
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169 {
170 	struct resource *res = &pdev->resource[bar];
171 
172 	/*
173 	 * Make sure the BAR is actually a memory resource, not an IO resource
174 	 */
175 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 		return NULL;
178 	}
179 	return ioremap_nocache(res->start, resource_size(res));
180 }
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182 
183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184 {
185 	/*
186 	 * Make sure the BAR is actually a memory resource, not an IO resource
187 	 */
188 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 		WARN_ON(1);
190 		return NULL;
191 	}
192 	return ioremap_wc(pci_resource_start(pdev, bar),
193 			  pci_resource_len(pdev, bar));
194 }
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196 #endif
197 
198 /**
199  * pci_dev_str_match_path - test if a path string matches a device
200  * @dev: the PCI device to test
201  * @path: string to match the device against
202  * @endptr: pointer to the string after the match
203  *
204  * Test if a string (typically from a kernel parameter) formatted as a
205  * path of device/function addresses matches a PCI device. The string must
206  * be of the form:
207  *
208  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209  *
210  * A path for a device can be obtained using 'lspci -t'.  Using a path
211  * is more robust against bus renumbering than using only a single bus,
212  * device and function address.
213  *
214  * Returns 1 if the string matches the device, 0 if it does not and
215  * a negative error code if it fails to parse the string.
216  */
217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 				  const char **endptr)
219 {
220 	int ret;
221 	int seg, bus, slot, func;
222 	char *wpath, *p;
223 	char end;
224 
225 	*endptr = strchrnul(path, ';');
226 
227 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 	if (!wpath)
229 		return -ENOMEM;
230 
231 	while (1) {
232 		p = strrchr(wpath, '/');
233 		if (!p)
234 			break;
235 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 		if (ret != 2) {
237 			ret = -EINVAL;
238 			goto free_and_exit;
239 		}
240 
241 		if (dev->devfn != PCI_DEVFN(slot, func)) {
242 			ret = 0;
243 			goto free_and_exit;
244 		}
245 
246 		/*
247 		 * Note: we don't need to get a reference to the upstream
248 		 * bridge because we hold a reference to the top level
249 		 * device which should hold a reference to the bridge,
250 		 * and so on.
251 		 */
252 		dev = pci_upstream_bridge(dev);
253 		if (!dev) {
254 			ret = 0;
255 			goto free_and_exit;
256 		}
257 
258 		*p = 0;
259 	}
260 
261 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 		     &func, &end);
263 	if (ret != 4) {
264 		seg = 0;
265 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 		if (ret != 3) {
267 			ret = -EINVAL;
268 			goto free_and_exit;
269 		}
270 	}
271 
272 	ret = (seg == pci_domain_nr(dev->bus) &&
273 	       bus == dev->bus->number &&
274 	       dev->devfn == PCI_DEVFN(slot, func));
275 
276 free_and_exit:
277 	kfree(wpath);
278 	return ret;
279 }
280 
281 /**
282  * pci_dev_str_match - test if a string matches a device
283  * @dev: the PCI device to test
284  * @p: string to match the device against
285  * @endptr: pointer to the string after the match
286  *
287  * Test if a string (typically from a kernel parameter) matches a specified
288  * PCI device. The string may be of one of the following formats:
289  *
290  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292  *
293  * The first format specifies a PCI bus/device/function address which
294  * may change if new hardware is inserted, if motherboard firmware changes,
295  * or due to changes caused in kernel parameters. If the domain is
296  * left unspecified, it is taken to be 0.  In order to be robust against
297  * bus renumbering issues, a path of PCI device/function numbers may be used
298  * to address the specific device.  The path for a device can be determined
299  * through the use of 'lspci -t'.
300  *
301  * The second format matches devices using IDs in the configuration
302  * space which may match multiple devices in the system. A value of 0
303  * for any field will match all devices. (Note: this differs from
304  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305  * legacy reasons and convenience so users don't have to specify
306  * FFFFFFFFs on the command line.)
307  *
308  * Returns 1 if the string matches the device, 0 if it does not and
309  * a negative error code if the string cannot be parsed.
310  */
311 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 			     const char **endptr)
313 {
314 	int ret;
315 	int count;
316 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
317 
318 	if (strncmp(p, "pci:", 4) == 0) {
319 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 		p += 4;
321 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 			     &subsystem_vendor, &subsystem_device, &count);
323 		if (ret != 4) {
324 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 			if (ret != 2)
326 				return -EINVAL;
327 
328 			subsystem_vendor = 0;
329 			subsystem_device = 0;
330 		}
331 
332 		p += count;
333 
334 		if ((!vendor || vendor == dev->vendor) &&
335 		    (!device || device == dev->device) &&
336 		    (!subsystem_vendor ||
337 			    subsystem_vendor == dev->subsystem_vendor) &&
338 		    (!subsystem_device ||
339 			    subsystem_device == dev->subsystem_device))
340 			goto found;
341 	} else {
342 		/*
343 		 * PCI Bus, Device, Function IDs are specified
344 		 * (optionally, may include a path of devfns following it)
345 		 */
346 		ret = pci_dev_str_match_path(dev, p, &p);
347 		if (ret < 0)
348 			return ret;
349 		else if (ret)
350 			goto found;
351 	}
352 
353 	*endptr = p;
354 	return 0;
355 
356 found:
357 	*endptr = p;
358 	return 1;
359 }
360 
361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 				   u8 pos, int cap, int *ttl)
363 {
364 	u8 id;
365 	u16 ent;
366 
367 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
368 
369 	while ((*ttl)--) {
370 		if (pos < 0x40)
371 			break;
372 		pos &= ~3;
373 		pci_bus_read_config_word(bus, devfn, pos, &ent);
374 
375 		id = ent & 0xff;
376 		if (id == 0xff)
377 			break;
378 		if (id == cap)
379 			return pos;
380 		pos = (ent >> 8);
381 	}
382 	return 0;
383 }
384 
385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 			       u8 pos, int cap)
387 {
388 	int ttl = PCI_FIND_CAP_TTL;
389 
390 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391 }
392 
393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394 {
395 	return __pci_find_next_cap(dev->bus, dev->devfn,
396 				   pos + PCI_CAP_LIST_NEXT, cap);
397 }
398 EXPORT_SYMBOL_GPL(pci_find_next_capability);
399 
400 static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 				    unsigned int devfn, u8 hdr_type)
402 {
403 	u16 status;
404 
405 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 	if (!(status & PCI_STATUS_CAP_LIST))
407 		return 0;
408 
409 	switch (hdr_type) {
410 	case PCI_HEADER_TYPE_NORMAL:
411 	case PCI_HEADER_TYPE_BRIDGE:
412 		return PCI_CAPABILITY_LIST;
413 	case PCI_HEADER_TYPE_CARDBUS:
414 		return PCI_CB_CAPABILITY_LIST;
415 	}
416 
417 	return 0;
418 }
419 
420 /**
421  * pci_find_capability - query for devices' capabilities
422  * @dev: PCI device to query
423  * @cap: capability code
424  *
425  * Tell if a device supports a given PCI capability.
426  * Returns the address of the requested capability structure within the
427  * device's PCI configuration space or 0 in case the device does not
428  * support it.  Possible values for @cap include:
429  *
430  *  %PCI_CAP_ID_PM           Power Management
431  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
432  *  %PCI_CAP_ID_VPD          Vital Product Data
433  *  %PCI_CAP_ID_SLOTID       Slot Identification
434  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
435  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
436  *  %PCI_CAP_ID_PCIX         PCI-X
437  *  %PCI_CAP_ID_EXP          PCI Express
438  */
439 int pci_find_capability(struct pci_dev *dev, int cap)
440 {
441 	int pos;
442 
443 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 	if (pos)
445 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446 
447 	return pos;
448 }
449 EXPORT_SYMBOL(pci_find_capability);
450 
451 /**
452  * pci_bus_find_capability - query for devices' capabilities
453  * @bus: the PCI bus to query
454  * @devfn: PCI device to query
455  * @cap: capability code
456  *
457  * Like pci_find_capability() but works for PCI devices that do not have a
458  * pci_dev structure set up yet.
459  *
460  * Returns the address of the requested capability structure within the
461  * device's PCI configuration space or 0 in case the device does not
462  * support it.
463  */
464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465 {
466 	int pos;
467 	u8 hdr_type;
468 
469 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470 
471 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 	if (pos)
473 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
474 
475 	return pos;
476 }
477 EXPORT_SYMBOL(pci_bus_find_capability);
478 
479 /**
480  * pci_find_next_ext_capability - Find an extended capability
481  * @dev: PCI device to query
482  * @start: address at which to start looking (0 to start at beginning of list)
483  * @cap: capability code
484  *
485  * Returns the address of the next matching extended capability structure
486  * within the device's PCI configuration space or 0 if the device does
487  * not support it.  Some capabilities can occur several times, e.g., the
488  * vendor-specific capability, and this provides a way to find them all.
489  */
490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491 {
492 	u32 header;
493 	int ttl;
494 	int pos = PCI_CFG_SPACE_SIZE;
495 
496 	/* minimum 8 bytes per capability */
497 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498 
499 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 		return 0;
501 
502 	if (start)
503 		pos = start;
504 
505 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 		return 0;
507 
508 	/*
509 	 * If we have no capabilities, this is indicated by cap ID,
510 	 * cap version and next pointer all being 0.
511 	 */
512 	if (header == 0)
513 		return 0;
514 
515 	while (ttl-- > 0) {
516 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 			return pos;
518 
519 		pos = PCI_EXT_CAP_NEXT(header);
520 		if (pos < PCI_CFG_SPACE_SIZE)
521 			break;
522 
523 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 			break;
525 	}
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530 
531 /**
532  * pci_find_ext_capability - Find an extended capability
533  * @dev: PCI device to query
534  * @cap: capability code
535  *
536  * Returns the address of the requested extended capability structure
537  * within the device's PCI configuration space or 0 if the device does
538  * not support it.  Possible values for @cap include:
539  *
540  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
541  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
542  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
543  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
544  */
545 int pci_find_ext_capability(struct pci_dev *dev, int cap)
546 {
547 	return pci_find_next_ext_capability(dev, 0, cap);
548 }
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550 
551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552 {
553 	int rc, ttl = PCI_FIND_CAP_TTL;
554 	u8 cap, mask;
555 
556 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 		mask = HT_3BIT_CAP_MASK;
558 	else
559 		mask = HT_5BIT_CAP_MASK;
560 
561 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 				      PCI_CAP_ID_HT, &ttl);
563 	while (pos) {
564 		rc = pci_read_config_byte(dev, pos + 3, &cap);
565 		if (rc != PCIBIOS_SUCCESSFUL)
566 			return 0;
567 
568 		if ((cap & mask) == ht_cap)
569 			return pos;
570 
571 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 					      pos + PCI_CAP_LIST_NEXT,
573 					      PCI_CAP_ID_HT, &ttl);
574 	}
575 
576 	return 0;
577 }
578 /**
579  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580  * @dev: PCI device to query
581  * @pos: Position from which to continue searching
582  * @ht_cap: Hypertransport capability code
583  *
584  * To be used in conjunction with pci_find_ht_capability() to search for
585  * all capabilities matching @ht_cap. @pos should always be a value returned
586  * from pci_find_ht_capability().
587  *
588  * NB. To be 100% safe against broken PCI devices, the caller should take
589  * steps to avoid an infinite loop.
590  */
591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592 {
593 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596 
597 /**
598  * pci_find_ht_capability - query a device's Hypertransport capabilities
599  * @dev: PCI device to query
600  * @ht_cap: Hypertransport capability code
601  *
602  * Tell if a device supports a given Hypertransport capability.
603  * Returns an address within the device's PCI configuration space
604  * or 0 in case the device does not support the request capability.
605  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606  * which has a Hypertransport capability matching @ht_cap.
607  */
608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609 {
610 	int pos;
611 
612 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 	if (pos)
614 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615 
616 	return pos;
617 }
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619 
620 /**
621  * pci_find_parent_resource - return resource region of parent bus of given
622  *			      region
623  * @dev: PCI device structure contains resources to be searched
624  * @res: child resource record for which parent is sought
625  *
626  * For given resource region of given device, return the resource region of
627  * parent bus the given region is contained in.
628  */
629 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
630 					  struct resource *res)
631 {
632 	const struct pci_bus *bus = dev->bus;
633 	struct resource *r;
634 	int i;
635 
636 	pci_bus_for_each_resource(bus, r, i) {
637 		if (!r)
638 			continue;
639 		if (resource_contains(r, res)) {
640 
641 			/*
642 			 * If the window is prefetchable but the BAR is
643 			 * not, the allocator made a mistake.
644 			 */
645 			if (r->flags & IORESOURCE_PREFETCH &&
646 			    !(res->flags & IORESOURCE_PREFETCH))
647 				return NULL;
648 
649 			/*
650 			 * If we're below a transparent bridge, there may
651 			 * be both a positively-decoded aperture and a
652 			 * subtractively-decoded region that contain the BAR.
653 			 * We want the positively-decoded one, so this depends
654 			 * on pci_bus_for_each_resource() giving us those
655 			 * first.
656 			 */
657 			return r;
658 		}
659 	}
660 	return NULL;
661 }
662 EXPORT_SYMBOL(pci_find_parent_resource);
663 
664 /**
665  * pci_find_resource - Return matching PCI device resource
666  * @dev: PCI device to query
667  * @res: Resource to look for
668  *
669  * Goes over standard PCI resources (BARs) and checks if the given resource
670  * is partially or fully contained in any of them. In that case the
671  * matching resource is returned, %NULL otherwise.
672  */
673 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
674 {
675 	int i;
676 
677 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
678 		struct resource *r = &dev->resource[i];
679 
680 		if (r->start && resource_contains(r, res))
681 			return r;
682 	}
683 
684 	return NULL;
685 }
686 EXPORT_SYMBOL(pci_find_resource);
687 
688 /**
689  * pci_find_pcie_root_port - return PCIe Root Port
690  * @dev: PCI device to query
691  *
692  * Traverse up the parent chain and return the PCIe Root Port PCI Device
693  * for a given PCI Device.
694  */
695 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
696 {
697 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
698 
699 	bridge = pci_upstream_bridge(dev);
700 	while (bridge && pci_is_pcie(bridge)) {
701 		highest_pcie_bridge = bridge;
702 		bridge = pci_upstream_bridge(bridge);
703 	}
704 
705 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
706 		return NULL;
707 
708 	return highest_pcie_bridge;
709 }
710 EXPORT_SYMBOL(pci_find_pcie_root_port);
711 
712 /**
713  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
714  * @dev: the PCI device to operate on
715  * @pos: config space offset of status word
716  * @mask: mask of bit(s) to care about in status word
717  *
718  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719  */
720 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
721 {
722 	int i;
723 
724 	/* Wait for Transaction Pending bit clean */
725 	for (i = 0; i < 4; i++) {
726 		u16 status;
727 		if (i)
728 			msleep((1 << (i - 1)) * 100);
729 
730 		pci_read_config_word(dev, pos, &status);
731 		if (!(status & mask))
732 			return 1;
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
740  * @dev: PCI device to have its BARs restored
741  *
742  * Restore the BAR values for a given device, so as to make it
743  * accessible by its driver.
744  */
745 static void pci_restore_bars(struct pci_dev *dev)
746 {
747 	int i;
748 
749 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
750 		pci_update_resource(dev, i);
751 }
752 
753 static const struct pci_platform_pm_ops *pci_platform_pm;
754 
755 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
756 {
757 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
758 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
759 		return -EINVAL;
760 	pci_platform_pm = ops;
761 	return 0;
762 }
763 
764 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
765 {
766 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
767 }
768 
769 static inline int platform_pci_set_power_state(struct pci_dev *dev,
770 					       pci_power_t t)
771 {
772 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
773 }
774 
775 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
776 {
777 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
778 }
779 
780 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
781 {
782 	return pci_platform_pm ?
783 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
784 }
785 
786 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
787 {
788 	return pci_platform_pm ?
789 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
790 }
791 
792 static inline bool platform_pci_need_resume(struct pci_dev *dev)
793 {
794 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
795 }
796 
797 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
798 {
799 	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
800 }
801 
802 /**
803  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
804  *			     given PCI device
805  * @dev: PCI device to handle.
806  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
807  *
808  * RETURN VALUE:
809  * -EINVAL if the requested state is invalid.
810  * -EIO if device does not support PCI PM or its PM capabilities register has a
811  * wrong version, or device doesn't support the requested state.
812  * 0 if device already is in the requested state.
813  * 0 if device's power state has been successfully changed.
814  */
815 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
816 {
817 	u16 pmcsr;
818 	bool need_restore = false;
819 
820 	/* Check if we're already there */
821 	if (dev->current_state == state)
822 		return 0;
823 
824 	if (!dev->pm_cap)
825 		return -EIO;
826 
827 	if (state < PCI_D0 || state > PCI_D3hot)
828 		return -EINVAL;
829 
830 	/*
831 	 * Validate current state:
832 	 * Can enter D0 from any state, but if we can only go deeper
833 	 * to sleep if we're already in a low power state
834 	 */
835 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
836 	    && dev->current_state > state) {
837 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
838 			dev->current_state, state);
839 		return -EINVAL;
840 	}
841 
842 	/* Check if this device supports the desired state */
843 	if ((state == PCI_D1 && !dev->d1_support)
844 	   || (state == PCI_D2 && !dev->d2_support))
845 		return -EIO;
846 
847 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
848 
849 	/*
850 	 * If we're (effectively) in D3, force entire word to 0.
851 	 * This doesn't affect PME_Status, disables PME_En, and
852 	 * sets PowerState to 0.
853 	 */
854 	switch (dev->current_state) {
855 	case PCI_D0:
856 	case PCI_D1:
857 	case PCI_D2:
858 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
859 		pmcsr |= state;
860 		break;
861 	case PCI_D3hot:
862 	case PCI_D3cold:
863 	case PCI_UNKNOWN: /* Boot-up */
864 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
865 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
866 			need_restore = true;
867 		/* Fall-through - force to D0 */
868 	default:
869 		pmcsr = 0;
870 		break;
871 	}
872 
873 	/* Enter specified state */
874 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
875 
876 	/*
877 	 * Mandatory power management transition delays; see PCI PM 1.1
878 	 * 5.6.1 table 18
879 	 */
880 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
881 		pci_dev_d3_sleep(dev);
882 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
883 		udelay(PCI_PM_D2_DELAY);
884 
885 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
886 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
887 	if (dev->current_state != state && printk_ratelimit())
888 		pci_info(dev, "Refused to change power state, currently in D%d\n",
889 			 dev->current_state);
890 
891 	/*
892 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
893 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
894 	 * from D3hot to D0 _may_ perform an internal reset, thereby
895 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
896 	 * For example, at least some versions of the 3c905B and the
897 	 * 3c556B exhibit this behaviour.
898 	 *
899 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
900 	 * devices in a D3hot state at boot.  Consequently, we need to
901 	 * restore at least the BARs so that the device will be
902 	 * accessible to its driver.
903 	 */
904 	if (need_restore)
905 		pci_restore_bars(dev);
906 
907 	if (dev->bus->self)
908 		pcie_aspm_pm_state_change(dev->bus->self);
909 
910 	return 0;
911 }
912 
913 /**
914  * pci_update_current_state - Read power state of given device and cache it
915  * @dev: PCI device to handle.
916  * @state: State to cache in case the device doesn't have the PM capability
917  *
918  * The power state is read from the PMCSR register, which however is
919  * inaccessible in D3cold.  The platform firmware is therefore queried first
920  * to detect accessibility of the register.  In case the platform firmware
921  * reports an incorrect state or the device isn't power manageable by the
922  * platform at all, we try to detect D3cold by testing accessibility of the
923  * vendor ID in config space.
924  */
925 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
926 {
927 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
928 	    !pci_device_is_present(dev)) {
929 		dev->current_state = PCI_D3cold;
930 	} else if (dev->pm_cap) {
931 		u16 pmcsr;
932 
933 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
934 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
935 	} else {
936 		dev->current_state = state;
937 	}
938 }
939 
940 /**
941  * pci_power_up - Put the given device into D0 forcibly
942  * @dev: PCI device to power up
943  */
944 void pci_power_up(struct pci_dev *dev)
945 {
946 	if (platform_pci_power_manageable(dev))
947 		platform_pci_set_power_state(dev, PCI_D0);
948 
949 	pci_raw_set_power_state(dev, PCI_D0);
950 	pci_update_current_state(dev, PCI_D0);
951 }
952 
953 /**
954  * pci_platform_power_transition - Use platform to change device power state
955  * @dev: PCI device to handle.
956  * @state: State to put the device into.
957  */
958 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
959 {
960 	int error;
961 
962 	if (platform_pci_power_manageable(dev)) {
963 		error = platform_pci_set_power_state(dev, state);
964 		if (!error)
965 			pci_update_current_state(dev, state);
966 	} else
967 		error = -ENODEV;
968 
969 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
970 		dev->current_state = PCI_D0;
971 
972 	return error;
973 }
974 
975 /**
976  * pci_wakeup - Wake up a PCI device
977  * @pci_dev: Device to handle.
978  * @ign: ignored parameter
979  */
980 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
981 {
982 	pci_wakeup_event(pci_dev);
983 	pm_request_resume(&pci_dev->dev);
984 	return 0;
985 }
986 
987 /**
988  * pci_wakeup_bus - Walk given bus and wake up devices on it
989  * @bus: Top bus of the subtree to walk.
990  */
991 void pci_wakeup_bus(struct pci_bus *bus)
992 {
993 	if (bus)
994 		pci_walk_bus(bus, pci_wakeup, NULL);
995 }
996 
997 /**
998  * __pci_start_power_transition - Start power transition of a PCI device
999  * @dev: PCI device to handle.
1000  * @state: State to put the device into.
1001  */
1002 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1003 {
1004 	if (state == PCI_D0) {
1005 		pci_platform_power_transition(dev, PCI_D0);
1006 		/*
1007 		 * Mandatory power management transition delays, see
1008 		 * PCI Express Base Specification Revision 2.0 Section
1009 		 * 6.6.1: Conventional Reset.  Do not delay for
1010 		 * devices powered on/off by corresponding bridge,
1011 		 * because have already delayed for the bridge.
1012 		 */
1013 		if (dev->runtime_d3cold) {
1014 			if (dev->d3cold_delay && !dev->imm_ready)
1015 				msleep(dev->d3cold_delay);
1016 			/*
1017 			 * When powering on a bridge from D3cold, the
1018 			 * whole hierarchy may be powered on into
1019 			 * D0uninitialized state, resume them to give
1020 			 * them a chance to suspend again
1021 			 */
1022 			pci_wakeup_bus(dev->subordinate);
1023 		}
1024 	}
1025 }
1026 
1027 /**
1028  * __pci_dev_set_current_state - Set current state of a PCI device
1029  * @dev: Device to handle
1030  * @data: pointer to state to be set
1031  */
1032 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1033 {
1034 	pci_power_t state = *(pci_power_t *)data;
1035 
1036 	dev->current_state = state;
1037 	return 0;
1038 }
1039 
1040 /**
1041  * pci_bus_set_current_state - Walk given bus and set current state of devices
1042  * @bus: Top bus of the subtree to walk.
1043  * @state: state to be set
1044  */
1045 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1046 {
1047 	if (bus)
1048 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1049 }
1050 
1051 /**
1052  * __pci_complete_power_transition - Complete power transition of a PCI device
1053  * @dev: PCI device to handle.
1054  * @state: State to put the device into.
1055  *
1056  * This function should not be called directly by device drivers.
1057  */
1058 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1059 {
1060 	int ret;
1061 
1062 	if (state <= PCI_D0)
1063 		return -EINVAL;
1064 	ret = pci_platform_power_transition(dev, state);
1065 	/* Power off the bridge may power off the whole hierarchy */
1066 	if (!ret && state == PCI_D3cold)
1067 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1068 	return ret;
1069 }
1070 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1071 
1072 /**
1073  * pci_set_power_state - Set the power state of a PCI device
1074  * @dev: PCI device to handle.
1075  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1076  *
1077  * Transition a device to a new power state, using the platform firmware and/or
1078  * the device's PCI PM registers.
1079  *
1080  * RETURN VALUE:
1081  * -EINVAL if the requested state is invalid.
1082  * -EIO if device does not support PCI PM or its PM capabilities register has a
1083  * wrong version, or device doesn't support the requested state.
1084  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1085  * 0 if device already is in the requested state.
1086  * 0 if the transition is to D3 but D3 is not supported.
1087  * 0 if device's power state has been successfully changed.
1088  */
1089 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1090 {
1091 	int error;
1092 
1093 	/* Bound the state we're entering */
1094 	if (state > PCI_D3cold)
1095 		state = PCI_D3cold;
1096 	else if (state < PCI_D0)
1097 		state = PCI_D0;
1098 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1099 
1100 		/*
1101 		 * If the device or the parent bridge do not support PCI
1102 		 * PM, ignore the request if we're doing anything other
1103 		 * than putting it into D0 (which would only happen on
1104 		 * boot).
1105 		 */
1106 		return 0;
1107 
1108 	/* Check if we're already there */
1109 	if (dev->current_state == state)
1110 		return 0;
1111 
1112 	__pci_start_power_transition(dev, state);
1113 
1114 	/*
1115 	 * This device is quirked not to be put into D3, so don't put it in
1116 	 * D3
1117 	 */
1118 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1119 		return 0;
1120 
1121 	/*
1122 	 * To put device in D3cold, we put device into D3hot in native
1123 	 * way, then put device into D3cold with platform ops
1124 	 */
1125 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1126 					PCI_D3hot : state);
1127 
1128 	if (!__pci_complete_power_transition(dev, state))
1129 		error = 0;
1130 
1131 	return error;
1132 }
1133 EXPORT_SYMBOL(pci_set_power_state);
1134 
1135 /**
1136  * pci_choose_state - Choose the power state of a PCI device
1137  * @dev: PCI device to be suspended
1138  * @state: target sleep state for the whole system. This is the value
1139  *	   that is passed to suspend() function.
1140  *
1141  * Returns PCI power state suitable for given device and given system
1142  * message.
1143  */
1144 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1145 {
1146 	pci_power_t ret;
1147 
1148 	if (!dev->pm_cap)
1149 		return PCI_D0;
1150 
1151 	ret = platform_pci_choose_state(dev);
1152 	if (ret != PCI_POWER_ERROR)
1153 		return ret;
1154 
1155 	switch (state.event) {
1156 	case PM_EVENT_ON:
1157 		return PCI_D0;
1158 	case PM_EVENT_FREEZE:
1159 	case PM_EVENT_PRETHAW:
1160 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1161 	case PM_EVENT_SUSPEND:
1162 	case PM_EVENT_HIBERNATE:
1163 		return PCI_D3hot;
1164 	default:
1165 		pci_info(dev, "unrecognized suspend event %d\n",
1166 			 state.event);
1167 		BUG();
1168 	}
1169 	return PCI_D0;
1170 }
1171 EXPORT_SYMBOL(pci_choose_state);
1172 
1173 #define PCI_EXP_SAVE_REGS	7
1174 
1175 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1176 						       u16 cap, bool extended)
1177 {
1178 	struct pci_cap_saved_state *tmp;
1179 
1180 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1181 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1182 			return tmp;
1183 	}
1184 	return NULL;
1185 }
1186 
1187 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1188 {
1189 	return _pci_find_saved_cap(dev, cap, false);
1190 }
1191 
1192 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1193 {
1194 	return _pci_find_saved_cap(dev, cap, true);
1195 }
1196 
1197 static int pci_save_pcie_state(struct pci_dev *dev)
1198 {
1199 	int i = 0;
1200 	struct pci_cap_saved_state *save_state;
1201 	u16 *cap;
1202 
1203 	if (!pci_is_pcie(dev))
1204 		return 0;
1205 
1206 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1207 	if (!save_state) {
1208 		pci_err(dev, "buffer not found in %s\n", __func__);
1209 		return -ENOMEM;
1210 	}
1211 
1212 	cap = (u16 *)&save_state->cap.data[0];
1213 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1214 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1215 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1216 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1217 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1218 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1219 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1220 
1221 	return 0;
1222 }
1223 
1224 static void pci_restore_pcie_state(struct pci_dev *dev)
1225 {
1226 	int i = 0;
1227 	struct pci_cap_saved_state *save_state;
1228 	u16 *cap;
1229 
1230 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1231 	if (!save_state)
1232 		return;
1233 
1234 	cap = (u16 *)&save_state->cap.data[0];
1235 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1236 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1237 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1238 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1239 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1240 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1241 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1242 }
1243 
1244 static int pci_save_pcix_state(struct pci_dev *dev)
1245 {
1246 	int pos;
1247 	struct pci_cap_saved_state *save_state;
1248 
1249 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1250 	if (!pos)
1251 		return 0;
1252 
1253 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1254 	if (!save_state) {
1255 		pci_err(dev, "buffer not found in %s\n", __func__);
1256 		return -ENOMEM;
1257 	}
1258 
1259 	pci_read_config_word(dev, pos + PCI_X_CMD,
1260 			     (u16 *)save_state->cap.data);
1261 
1262 	return 0;
1263 }
1264 
1265 static void pci_restore_pcix_state(struct pci_dev *dev)
1266 {
1267 	int i = 0, pos;
1268 	struct pci_cap_saved_state *save_state;
1269 	u16 *cap;
1270 
1271 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1272 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1273 	if (!save_state || !pos)
1274 		return;
1275 	cap = (u16 *)&save_state->cap.data[0];
1276 
1277 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1278 }
1279 
1280 static void pci_save_ltr_state(struct pci_dev *dev)
1281 {
1282 	int ltr;
1283 	struct pci_cap_saved_state *save_state;
1284 	u16 *cap;
1285 
1286 	if (!pci_is_pcie(dev))
1287 		return;
1288 
1289 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1290 	if (!ltr)
1291 		return;
1292 
1293 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1294 	if (!save_state) {
1295 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1296 		return;
1297 	}
1298 
1299 	cap = (u16 *)&save_state->cap.data[0];
1300 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1301 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1302 }
1303 
1304 static void pci_restore_ltr_state(struct pci_dev *dev)
1305 {
1306 	struct pci_cap_saved_state *save_state;
1307 	int ltr;
1308 	u16 *cap;
1309 
1310 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1311 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1312 	if (!save_state || !ltr)
1313 		return;
1314 
1315 	cap = (u16 *)&save_state->cap.data[0];
1316 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1317 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1318 }
1319 
1320 /**
1321  * pci_save_state - save the PCI configuration space of a device before
1322  *		    suspending
1323  * @dev: PCI device that we're dealing with
1324  */
1325 int pci_save_state(struct pci_dev *dev)
1326 {
1327 	int i;
1328 	/* XXX: 100% dword access ok here? */
1329 	for (i = 0; i < 16; i++)
1330 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1331 	dev->state_saved = true;
1332 
1333 	i = pci_save_pcie_state(dev);
1334 	if (i != 0)
1335 		return i;
1336 
1337 	i = pci_save_pcix_state(dev);
1338 	if (i != 0)
1339 		return i;
1340 
1341 	pci_save_ltr_state(dev);
1342 	pci_save_dpc_state(dev);
1343 	return pci_save_vc_state(dev);
1344 }
1345 EXPORT_SYMBOL(pci_save_state);
1346 
1347 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1348 				     u32 saved_val, int retry, bool force)
1349 {
1350 	u32 val;
1351 
1352 	pci_read_config_dword(pdev, offset, &val);
1353 	if (!force && val == saved_val)
1354 		return;
1355 
1356 	for (;;) {
1357 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1358 			offset, val, saved_val);
1359 		pci_write_config_dword(pdev, offset, saved_val);
1360 		if (retry-- <= 0)
1361 			return;
1362 
1363 		pci_read_config_dword(pdev, offset, &val);
1364 		if (val == saved_val)
1365 			return;
1366 
1367 		mdelay(1);
1368 	}
1369 }
1370 
1371 static void pci_restore_config_space_range(struct pci_dev *pdev,
1372 					   int start, int end, int retry,
1373 					   bool force)
1374 {
1375 	int index;
1376 
1377 	for (index = end; index >= start; index--)
1378 		pci_restore_config_dword(pdev, 4 * index,
1379 					 pdev->saved_config_space[index],
1380 					 retry, force);
1381 }
1382 
1383 static void pci_restore_config_space(struct pci_dev *pdev)
1384 {
1385 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1386 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1387 		/* Restore BARs before the command register. */
1388 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1389 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1390 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1391 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1392 
1393 		/*
1394 		 * Force rewriting of prefetch registers to avoid S3 resume
1395 		 * issues on Intel PCI bridges that occur when these
1396 		 * registers are not explicitly written.
1397 		 */
1398 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1399 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1400 	} else {
1401 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1402 	}
1403 }
1404 
1405 static void pci_restore_rebar_state(struct pci_dev *pdev)
1406 {
1407 	unsigned int pos, nbars, i;
1408 	u32 ctrl;
1409 
1410 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1411 	if (!pos)
1412 		return;
1413 
1414 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1415 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1416 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1417 
1418 	for (i = 0; i < nbars; i++, pos += 8) {
1419 		struct resource *res;
1420 		int bar_idx, size;
1421 
1422 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1423 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1424 		res = pdev->resource + bar_idx;
1425 		size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1426 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1427 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1428 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1429 	}
1430 }
1431 
1432 /**
1433  * pci_restore_state - Restore the saved state of a PCI device
1434  * @dev: PCI device that we're dealing with
1435  */
1436 void pci_restore_state(struct pci_dev *dev)
1437 {
1438 	if (!dev->state_saved)
1439 		return;
1440 
1441 	/*
1442 	 * Restore max latencies (in the LTR capability) before enabling
1443 	 * LTR itself (in the PCIe capability).
1444 	 */
1445 	pci_restore_ltr_state(dev);
1446 
1447 	pci_restore_pcie_state(dev);
1448 	pci_restore_pasid_state(dev);
1449 	pci_restore_pri_state(dev);
1450 	pci_restore_ats_state(dev);
1451 	pci_restore_vc_state(dev);
1452 	pci_restore_rebar_state(dev);
1453 	pci_restore_dpc_state(dev);
1454 
1455 	pci_cleanup_aer_error_status_regs(dev);
1456 
1457 	pci_restore_config_space(dev);
1458 
1459 	pci_restore_pcix_state(dev);
1460 	pci_restore_msi_state(dev);
1461 
1462 	/* Restore ACS and IOV configuration state */
1463 	pci_enable_acs(dev);
1464 	pci_restore_iov_state(dev);
1465 
1466 	dev->state_saved = false;
1467 }
1468 EXPORT_SYMBOL(pci_restore_state);
1469 
1470 struct pci_saved_state {
1471 	u32 config_space[16];
1472 	struct pci_cap_saved_data cap[0];
1473 };
1474 
1475 /**
1476  * pci_store_saved_state - Allocate and return an opaque struct containing
1477  *			   the device saved state.
1478  * @dev: PCI device that we're dealing with
1479  *
1480  * Return NULL if no state or error.
1481  */
1482 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1483 {
1484 	struct pci_saved_state *state;
1485 	struct pci_cap_saved_state *tmp;
1486 	struct pci_cap_saved_data *cap;
1487 	size_t size;
1488 
1489 	if (!dev->state_saved)
1490 		return NULL;
1491 
1492 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1493 
1494 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1495 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1496 
1497 	state = kzalloc(size, GFP_KERNEL);
1498 	if (!state)
1499 		return NULL;
1500 
1501 	memcpy(state->config_space, dev->saved_config_space,
1502 	       sizeof(state->config_space));
1503 
1504 	cap = state->cap;
1505 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1506 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1507 		memcpy(cap, &tmp->cap, len);
1508 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1509 	}
1510 	/* Empty cap_save terminates list */
1511 
1512 	return state;
1513 }
1514 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1515 
1516 /**
1517  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1518  * @dev: PCI device that we're dealing with
1519  * @state: Saved state returned from pci_store_saved_state()
1520  */
1521 int pci_load_saved_state(struct pci_dev *dev,
1522 			 struct pci_saved_state *state)
1523 {
1524 	struct pci_cap_saved_data *cap;
1525 
1526 	dev->state_saved = false;
1527 
1528 	if (!state)
1529 		return 0;
1530 
1531 	memcpy(dev->saved_config_space, state->config_space,
1532 	       sizeof(state->config_space));
1533 
1534 	cap = state->cap;
1535 	while (cap->size) {
1536 		struct pci_cap_saved_state *tmp;
1537 
1538 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1539 		if (!tmp || tmp->cap.size != cap->size)
1540 			return -EINVAL;
1541 
1542 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1543 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1544 		       sizeof(struct pci_cap_saved_data) + cap->size);
1545 	}
1546 
1547 	dev->state_saved = true;
1548 	return 0;
1549 }
1550 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1551 
1552 /**
1553  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1554  *				   and free the memory allocated for it.
1555  * @dev: PCI device that we're dealing with
1556  * @state: Pointer to saved state returned from pci_store_saved_state()
1557  */
1558 int pci_load_and_free_saved_state(struct pci_dev *dev,
1559 				  struct pci_saved_state **state)
1560 {
1561 	int ret = pci_load_saved_state(dev, *state);
1562 	kfree(*state);
1563 	*state = NULL;
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1567 
1568 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1569 {
1570 	return pci_enable_resources(dev, bars);
1571 }
1572 
1573 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1574 {
1575 	int err;
1576 	struct pci_dev *bridge;
1577 	u16 cmd;
1578 	u8 pin;
1579 
1580 	err = pci_set_power_state(dev, PCI_D0);
1581 	if (err < 0 && err != -EIO)
1582 		return err;
1583 
1584 	bridge = pci_upstream_bridge(dev);
1585 	if (bridge)
1586 		pcie_aspm_powersave_config_link(bridge);
1587 
1588 	err = pcibios_enable_device(dev, bars);
1589 	if (err < 0)
1590 		return err;
1591 	pci_fixup_device(pci_fixup_enable, dev);
1592 
1593 	if (dev->msi_enabled || dev->msix_enabled)
1594 		return 0;
1595 
1596 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1597 	if (pin) {
1598 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1599 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1600 			pci_write_config_word(dev, PCI_COMMAND,
1601 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 /**
1608  * pci_reenable_device - Resume abandoned device
1609  * @dev: PCI device to be resumed
1610  *
1611  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1612  * to be called by normal code, write proper resume handler and use it instead.
1613  */
1614 int pci_reenable_device(struct pci_dev *dev)
1615 {
1616 	if (pci_is_enabled(dev))
1617 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1618 	return 0;
1619 }
1620 EXPORT_SYMBOL(pci_reenable_device);
1621 
1622 static void pci_enable_bridge(struct pci_dev *dev)
1623 {
1624 	struct pci_dev *bridge;
1625 	int retval;
1626 
1627 	bridge = pci_upstream_bridge(dev);
1628 	if (bridge)
1629 		pci_enable_bridge(bridge);
1630 
1631 	if (pci_is_enabled(dev)) {
1632 		if (!dev->is_busmaster)
1633 			pci_set_master(dev);
1634 		return;
1635 	}
1636 
1637 	retval = pci_enable_device(dev);
1638 	if (retval)
1639 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1640 			retval);
1641 	pci_set_master(dev);
1642 }
1643 
1644 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1645 {
1646 	struct pci_dev *bridge;
1647 	int err;
1648 	int i, bars = 0;
1649 
1650 	/*
1651 	 * Power state could be unknown at this point, either due to a fresh
1652 	 * boot or a device removal call.  So get the current power state
1653 	 * so that things like MSI message writing will behave as expected
1654 	 * (e.g. if the device really is in D0 at enable time).
1655 	 */
1656 	if (dev->pm_cap) {
1657 		u16 pmcsr;
1658 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1659 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1660 	}
1661 
1662 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1663 		return 0;		/* already enabled */
1664 
1665 	bridge = pci_upstream_bridge(dev);
1666 	if (bridge)
1667 		pci_enable_bridge(bridge);
1668 
1669 	/* only skip sriov related */
1670 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1671 		if (dev->resource[i].flags & flags)
1672 			bars |= (1 << i);
1673 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1674 		if (dev->resource[i].flags & flags)
1675 			bars |= (1 << i);
1676 
1677 	err = do_pci_enable_device(dev, bars);
1678 	if (err < 0)
1679 		atomic_dec(&dev->enable_cnt);
1680 	return err;
1681 }
1682 
1683 /**
1684  * pci_enable_device_io - Initialize a device for use with IO space
1685  * @dev: PCI device to be initialized
1686  *
1687  * Initialize device before it's used by a driver. Ask low-level code
1688  * to enable I/O resources. Wake up the device if it was suspended.
1689  * Beware, this function can fail.
1690  */
1691 int pci_enable_device_io(struct pci_dev *dev)
1692 {
1693 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1694 }
1695 EXPORT_SYMBOL(pci_enable_device_io);
1696 
1697 /**
1698  * pci_enable_device_mem - Initialize a device for use with Memory space
1699  * @dev: PCI device to be initialized
1700  *
1701  * Initialize device before it's used by a driver. Ask low-level code
1702  * to enable Memory resources. Wake up the device if it was suspended.
1703  * Beware, this function can fail.
1704  */
1705 int pci_enable_device_mem(struct pci_dev *dev)
1706 {
1707 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1708 }
1709 EXPORT_SYMBOL(pci_enable_device_mem);
1710 
1711 /**
1712  * pci_enable_device - Initialize device before it's used by a driver.
1713  * @dev: PCI device to be initialized
1714  *
1715  * Initialize device before it's used by a driver. Ask low-level code
1716  * to enable I/O and memory. Wake up the device if it was suspended.
1717  * Beware, this function can fail.
1718  *
1719  * Note we don't actually enable the device many times if we call
1720  * this function repeatedly (we just increment the count).
1721  */
1722 int pci_enable_device(struct pci_dev *dev)
1723 {
1724 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1725 }
1726 EXPORT_SYMBOL(pci_enable_device);
1727 
1728 /*
1729  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1730  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1731  * there's no need to track it separately.  pci_devres is initialized
1732  * when a device is enabled using managed PCI device enable interface.
1733  */
1734 struct pci_devres {
1735 	unsigned int enabled:1;
1736 	unsigned int pinned:1;
1737 	unsigned int orig_intx:1;
1738 	unsigned int restore_intx:1;
1739 	unsigned int mwi:1;
1740 	u32 region_mask;
1741 };
1742 
1743 static void pcim_release(struct device *gendev, void *res)
1744 {
1745 	struct pci_dev *dev = to_pci_dev(gendev);
1746 	struct pci_devres *this = res;
1747 	int i;
1748 
1749 	if (dev->msi_enabled)
1750 		pci_disable_msi(dev);
1751 	if (dev->msix_enabled)
1752 		pci_disable_msix(dev);
1753 
1754 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1755 		if (this->region_mask & (1 << i))
1756 			pci_release_region(dev, i);
1757 
1758 	if (this->mwi)
1759 		pci_clear_mwi(dev);
1760 
1761 	if (this->restore_intx)
1762 		pci_intx(dev, this->orig_intx);
1763 
1764 	if (this->enabled && !this->pinned)
1765 		pci_disable_device(dev);
1766 }
1767 
1768 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1769 {
1770 	struct pci_devres *dr, *new_dr;
1771 
1772 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1773 	if (dr)
1774 		return dr;
1775 
1776 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1777 	if (!new_dr)
1778 		return NULL;
1779 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1780 }
1781 
1782 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1783 {
1784 	if (pci_is_managed(pdev))
1785 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1786 	return NULL;
1787 }
1788 
1789 /**
1790  * pcim_enable_device - Managed pci_enable_device()
1791  * @pdev: PCI device to be initialized
1792  *
1793  * Managed pci_enable_device().
1794  */
1795 int pcim_enable_device(struct pci_dev *pdev)
1796 {
1797 	struct pci_devres *dr;
1798 	int rc;
1799 
1800 	dr = get_pci_dr(pdev);
1801 	if (unlikely(!dr))
1802 		return -ENOMEM;
1803 	if (dr->enabled)
1804 		return 0;
1805 
1806 	rc = pci_enable_device(pdev);
1807 	if (!rc) {
1808 		pdev->is_managed = 1;
1809 		dr->enabled = 1;
1810 	}
1811 	return rc;
1812 }
1813 EXPORT_SYMBOL(pcim_enable_device);
1814 
1815 /**
1816  * pcim_pin_device - Pin managed PCI device
1817  * @pdev: PCI device to pin
1818  *
1819  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1820  * driver detach.  @pdev must have been enabled with
1821  * pcim_enable_device().
1822  */
1823 void pcim_pin_device(struct pci_dev *pdev)
1824 {
1825 	struct pci_devres *dr;
1826 
1827 	dr = find_pci_dr(pdev);
1828 	WARN_ON(!dr || !dr->enabled);
1829 	if (dr)
1830 		dr->pinned = 1;
1831 }
1832 EXPORT_SYMBOL(pcim_pin_device);
1833 
1834 /*
1835  * pcibios_add_device - provide arch specific hooks when adding device dev
1836  * @dev: the PCI device being added
1837  *
1838  * Permits the platform to provide architecture specific functionality when
1839  * devices are added. This is the default implementation. Architecture
1840  * implementations can override this.
1841  */
1842 int __weak pcibios_add_device(struct pci_dev *dev)
1843 {
1844 	return 0;
1845 }
1846 
1847 /**
1848  * pcibios_release_device - provide arch specific hooks when releasing
1849  *			    device dev
1850  * @dev: the PCI device being released
1851  *
1852  * Permits the platform to provide architecture specific functionality when
1853  * devices are released. This is the default implementation. Architecture
1854  * implementations can override this.
1855  */
1856 void __weak pcibios_release_device(struct pci_dev *dev) {}
1857 
1858 /**
1859  * pcibios_disable_device - disable arch specific PCI resources for device dev
1860  * @dev: the PCI device to disable
1861  *
1862  * Disables architecture specific PCI resources for the device. This
1863  * is the default implementation. Architecture implementations can
1864  * override this.
1865  */
1866 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1867 
1868 /**
1869  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1870  * @irq: ISA IRQ to penalize
1871  * @active: IRQ active or not
1872  *
1873  * Permits the platform to provide architecture-specific functionality when
1874  * penalizing ISA IRQs. This is the default implementation. Architecture
1875  * implementations can override this.
1876  */
1877 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1878 
1879 static void do_pci_disable_device(struct pci_dev *dev)
1880 {
1881 	u16 pci_command;
1882 
1883 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1884 	if (pci_command & PCI_COMMAND_MASTER) {
1885 		pci_command &= ~PCI_COMMAND_MASTER;
1886 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1887 	}
1888 
1889 	pcibios_disable_device(dev);
1890 }
1891 
1892 /**
1893  * pci_disable_enabled_device - Disable device without updating enable_cnt
1894  * @dev: PCI device to disable
1895  *
1896  * NOTE: This function is a backend of PCI power management routines and is
1897  * not supposed to be called drivers.
1898  */
1899 void pci_disable_enabled_device(struct pci_dev *dev)
1900 {
1901 	if (pci_is_enabled(dev))
1902 		do_pci_disable_device(dev);
1903 }
1904 
1905 /**
1906  * pci_disable_device - Disable PCI device after use
1907  * @dev: PCI device to be disabled
1908  *
1909  * Signal to the system that the PCI device is not in use by the system
1910  * anymore.  This only involves disabling PCI bus-mastering, if active.
1911  *
1912  * Note we don't actually disable the device until all callers of
1913  * pci_enable_device() have called pci_disable_device().
1914  */
1915 void pci_disable_device(struct pci_dev *dev)
1916 {
1917 	struct pci_devres *dr;
1918 
1919 	dr = find_pci_dr(dev);
1920 	if (dr)
1921 		dr->enabled = 0;
1922 
1923 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1924 		      "disabling already-disabled device");
1925 
1926 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1927 		return;
1928 
1929 	do_pci_disable_device(dev);
1930 
1931 	dev->is_busmaster = 0;
1932 }
1933 EXPORT_SYMBOL(pci_disable_device);
1934 
1935 /**
1936  * pcibios_set_pcie_reset_state - set reset state for device dev
1937  * @dev: the PCIe device reset
1938  * @state: Reset state to enter into
1939  *
1940  * Set the PCIe reset state for the device. This is the default
1941  * implementation. Architecture implementations can override this.
1942  */
1943 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1944 					enum pcie_reset_state state)
1945 {
1946 	return -EINVAL;
1947 }
1948 
1949 /**
1950  * pci_set_pcie_reset_state - set reset state for device dev
1951  * @dev: the PCIe device reset
1952  * @state: Reset state to enter into
1953  *
1954  * Sets the PCI reset state for the device.
1955  */
1956 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1957 {
1958 	return pcibios_set_pcie_reset_state(dev, state);
1959 }
1960 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1961 
1962 /**
1963  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1964  * @dev: PCIe root port or event collector.
1965  */
1966 void pcie_clear_root_pme_status(struct pci_dev *dev)
1967 {
1968 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1969 }
1970 
1971 /**
1972  * pci_check_pme_status - Check if given device has generated PME.
1973  * @dev: Device to check.
1974  *
1975  * Check the PME status of the device and if set, clear it and clear PME enable
1976  * (if set).  Return 'true' if PME status and PME enable were both set or
1977  * 'false' otherwise.
1978  */
1979 bool pci_check_pme_status(struct pci_dev *dev)
1980 {
1981 	int pmcsr_pos;
1982 	u16 pmcsr;
1983 	bool ret = false;
1984 
1985 	if (!dev->pm_cap)
1986 		return false;
1987 
1988 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1989 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1990 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1991 		return false;
1992 
1993 	/* Clear PME status. */
1994 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1995 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1996 		/* Disable PME to avoid interrupt flood. */
1997 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1998 		ret = true;
1999 	}
2000 
2001 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2002 
2003 	return ret;
2004 }
2005 
2006 /**
2007  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2008  * @dev: Device to handle.
2009  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2010  *
2011  * Check if @dev has generated PME and queue a resume request for it in that
2012  * case.
2013  */
2014 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2015 {
2016 	if (pme_poll_reset && dev->pme_poll)
2017 		dev->pme_poll = false;
2018 
2019 	if (pci_check_pme_status(dev)) {
2020 		pci_wakeup_event(dev);
2021 		pm_request_resume(&dev->dev);
2022 	}
2023 	return 0;
2024 }
2025 
2026 /**
2027  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2028  * @bus: Top bus of the subtree to walk.
2029  */
2030 void pci_pme_wakeup_bus(struct pci_bus *bus)
2031 {
2032 	if (bus)
2033 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2034 }
2035 
2036 
2037 /**
2038  * pci_pme_capable - check the capability of PCI device to generate PME#
2039  * @dev: PCI device to handle.
2040  * @state: PCI state from which device will issue PME#.
2041  */
2042 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2043 {
2044 	if (!dev->pm_cap)
2045 		return false;
2046 
2047 	return !!(dev->pme_support & (1 << state));
2048 }
2049 EXPORT_SYMBOL(pci_pme_capable);
2050 
2051 static void pci_pme_list_scan(struct work_struct *work)
2052 {
2053 	struct pci_pme_device *pme_dev, *n;
2054 
2055 	mutex_lock(&pci_pme_list_mutex);
2056 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2057 		if (pme_dev->dev->pme_poll) {
2058 			struct pci_dev *bridge;
2059 
2060 			bridge = pme_dev->dev->bus->self;
2061 			/*
2062 			 * If bridge is in low power state, the
2063 			 * configuration space of subordinate devices
2064 			 * may be not accessible
2065 			 */
2066 			if (bridge && bridge->current_state != PCI_D0)
2067 				continue;
2068 			pci_pme_wakeup(pme_dev->dev, NULL);
2069 		} else {
2070 			list_del(&pme_dev->list);
2071 			kfree(pme_dev);
2072 		}
2073 	}
2074 	if (!list_empty(&pci_pme_list))
2075 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2076 				   msecs_to_jiffies(PME_TIMEOUT));
2077 	mutex_unlock(&pci_pme_list_mutex);
2078 }
2079 
2080 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2081 {
2082 	u16 pmcsr;
2083 
2084 	if (!dev->pme_support)
2085 		return;
2086 
2087 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2088 	/* Clear PME_Status by writing 1 to it and enable PME# */
2089 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2090 	if (!enable)
2091 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2092 
2093 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2094 }
2095 
2096 /**
2097  * pci_pme_restore - Restore PME configuration after config space restore.
2098  * @dev: PCI device to update.
2099  */
2100 void pci_pme_restore(struct pci_dev *dev)
2101 {
2102 	u16 pmcsr;
2103 
2104 	if (!dev->pme_support)
2105 		return;
2106 
2107 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2108 	if (dev->wakeup_prepared) {
2109 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2110 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2111 	} else {
2112 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2113 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2114 	}
2115 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2116 }
2117 
2118 /**
2119  * pci_pme_active - enable or disable PCI device's PME# function
2120  * @dev: PCI device to handle.
2121  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2122  *
2123  * The caller must verify that the device is capable of generating PME# before
2124  * calling this function with @enable equal to 'true'.
2125  */
2126 void pci_pme_active(struct pci_dev *dev, bool enable)
2127 {
2128 	__pci_pme_active(dev, enable);
2129 
2130 	/*
2131 	 * PCI (as opposed to PCIe) PME requires that the device have
2132 	 * its PME# line hooked up correctly. Not all hardware vendors
2133 	 * do this, so the PME never gets delivered and the device
2134 	 * remains asleep. The easiest way around this is to
2135 	 * periodically walk the list of suspended devices and check
2136 	 * whether any have their PME flag set. The assumption is that
2137 	 * we'll wake up often enough anyway that this won't be a huge
2138 	 * hit, and the power savings from the devices will still be a
2139 	 * win.
2140 	 *
2141 	 * Although PCIe uses in-band PME message instead of PME# line
2142 	 * to report PME, PME does not work for some PCIe devices in
2143 	 * reality.  For example, there are devices that set their PME
2144 	 * status bits, but don't really bother to send a PME message;
2145 	 * there are PCI Express Root Ports that don't bother to
2146 	 * trigger interrupts when they receive PME messages from the
2147 	 * devices below.  So PME poll is used for PCIe devices too.
2148 	 */
2149 
2150 	if (dev->pme_poll) {
2151 		struct pci_pme_device *pme_dev;
2152 		if (enable) {
2153 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2154 					  GFP_KERNEL);
2155 			if (!pme_dev) {
2156 				pci_warn(dev, "can't enable PME#\n");
2157 				return;
2158 			}
2159 			pme_dev->dev = dev;
2160 			mutex_lock(&pci_pme_list_mutex);
2161 			list_add(&pme_dev->list, &pci_pme_list);
2162 			if (list_is_singular(&pci_pme_list))
2163 				queue_delayed_work(system_freezable_wq,
2164 						   &pci_pme_work,
2165 						   msecs_to_jiffies(PME_TIMEOUT));
2166 			mutex_unlock(&pci_pme_list_mutex);
2167 		} else {
2168 			mutex_lock(&pci_pme_list_mutex);
2169 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2170 				if (pme_dev->dev == dev) {
2171 					list_del(&pme_dev->list);
2172 					kfree(pme_dev);
2173 					break;
2174 				}
2175 			}
2176 			mutex_unlock(&pci_pme_list_mutex);
2177 		}
2178 	}
2179 
2180 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2181 }
2182 EXPORT_SYMBOL(pci_pme_active);
2183 
2184 /**
2185  * __pci_enable_wake - enable PCI device as wakeup event source
2186  * @dev: PCI device affected
2187  * @state: PCI state from which device will issue wakeup events
2188  * @enable: True to enable event generation; false to disable
2189  *
2190  * This enables the device as a wakeup event source, or disables it.
2191  * When such events involves platform-specific hooks, those hooks are
2192  * called automatically by this routine.
2193  *
2194  * Devices with legacy power management (no standard PCI PM capabilities)
2195  * always require such platform hooks.
2196  *
2197  * RETURN VALUE:
2198  * 0 is returned on success
2199  * -EINVAL is returned if device is not supposed to wake up the system
2200  * Error code depending on the platform is returned if both the platform and
2201  * the native mechanism fail to enable the generation of wake-up events
2202  */
2203 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2204 {
2205 	int ret = 0;
2206 
2207 	/*
2208 	 * Bridges that are not power-manageable directly only signal
2209 	 * wakeup on behalf of subordinate devices which is set up
2210 	 * elsewhere, so skip them. However, bridges that are
2211 	 * power-manageable may signal wakeup for themselves (for example,
2212 	 * on a hotplug event) and they need to be covered here.
2213 	 */
2214 	if (!pci_power_manageable(dev))
2215 		return 0;
2216 
2217 	/* Don't do the same thing twice in a row for one device. */
2218 	if (!!enable == !!dev->wakeup_prepared)
2219 		return 0;
2220 
2221 	/*
2222 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2223 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2224 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2225 	 */
2226 
2227 	if (enable) {
2228 		int error;
2229 
2230 		if (pci_pme_capable(dev, state))
2231 			pci_pme_active(dev, true);
2232 		else
2233 			ret = 1;
2234 		error = platform_pci_set_wakeup(dev, true);
2235 		if (ret)
2236 			ret = error;
2237 		if (!ret)
2238 			dev->wakeup_prepared = true;
2239 	} else {
2240 		platform_pci_set_wakeup(dev, false);
2241 		pci_pme_active(dev, false);
2242 		dev->wakeup_prepared = false;
2243 	}
2244 
2245 	return ret;
2246 }
2247 
2248 /**
2249  * pci_enable_wake - change wakeup settings for a PCI device
2250  * @pci_dev: Target device
2251  * @state: PCI state from which device will issue wakeup events
2252  * @enable: Whether or not to enable event generation
2253  *
2254  * If @enable is set, check device_may_wakeup() for the device before calling
2255  * __pci_enable_wake() for it.
2256  */
2257 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2258 {
2259 	if (enable && !device_may_wakeup(&pci_dev->dev))
2260 		return -EINVAL;
2261 
2262 	return __pci_enable_wake(pci_dev, state, enable);
2263 }
2264 EXPORT_SYMBOL(pci_enable_wake);
2265 
2266 /**
2267  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2268  * @dev: PCI device to prepare
2269  * @enable: True to enable wake-up event generation; false to disable
2270  *
2271  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2272  * and this function allows them to set that up cleanly - pci_enable_wake()
2273  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2274  * ordering constraints.
2275  *
2276  * This function only returns error code if the device is not allowed to wake
2277  * up the system from sleep or it is not capable of generating PME# from both
2278  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2279  */
2280 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2281 {
2282 	return pci_pme_capable(dev, PCI_D3cold) ?
2283 			pci_enable_wake(dev, PCI_D3cold, enable) :
2284 			pci_enable_wake(dev, PCI_D3hot, enable);
2285 }
2286 EXPORT_SYMBOL(pci_wake_from_d3);
2287 
2288 /**
2289  * pci_target_state - find an appropriate low power state for a given PCI dev
2290  * @dev: PCI device
2291  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2292  *
2293  * Use underlying platform code to find a supported low power state for @dev.
2294  * If the platform can't manage @dev, return the deepest state from which it
2295  * can generate wake events, based on any available PME info.
2296  */
2297 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2298 {
2299 	pci_power_t target_state = PCI_D3hot;
2300 
2301 	if (platform_pci_power_manageable(dev)) {
2302 		/*
2303 		 * Call the platform to find the target state for the device.
2304 		 */
2305 		pci_power_t state = platform_pci_choose_state(dev);
2306 
2307 		switch (state) {
2308 		case PCI_POWER_ERROR:
2309 		case PCI_UNKNOWN:
2310 			break;
2311 		case PCI_D1:
2312 		case PCI_D2:
2313 			if (pci_no_d1d2(dev))
2314 				break;
2315 			/* else, fall through */
2316 		default:
2317 			target_state = state;
2318 		}
2319 
2320 		return target_state;
2321 	}
2322 
2323 	if (!dev->pm_cap)
2324 		target_state = PCI_D0;
2325 
2326 	/*
2327 	 * If the device is in D3cold even though it's not power-manageable by
2328 	 * the platform, it may have been powered down by non-standard means.
2329 	 * Best to let it slumber.
2330 	 */
2331 	if (dev->current_state == PCI_D3cold)
2332 		target_state = PCI_D3cold;
2333 
2334 	if (wakeup) {
2335 		/*
2336 		 * Find the deepest state from which the device can generate
2337 		 * PME#.
2338 		 */
2339 		if (dev->pme_support) {
2340 			while (target_state
2341 			      && !(dev->pme_support & (1 << target_state)))
2342 				target_state--;
2343 		}
2344 	}
2345 
2346 	return target_state;
2347 }
2348 
2349 /**
2350  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2351  *			  into a sleep state
2352  * @dev: Device to handle.
2353  *
2354  * Choose the power state appropriate for the device depending on whether
2355  * it can wake up the system and/or is power manageable by the platform
2356  * (PCI_D3hot is the default) and put the device into that state.
2357  */
2358 int pci_prepare_to_sleep(struct pci_dev *dev)
2359 {
2360 	bool wakeup = device_may_wakeup(&dev->dev);
2361 	pci_power_t target_state = pci_target_state(dev, wakeup);
2362 	int error;
2363 
2364 	if (target_state == PCI_POWER_ERROR)
2365 		return -EIO;
2366 
2367 	pci_enable_wake(dev, target_state, wakeup);
2368 
2369 	error = pci_set_power_state(dev, target_state);
2370 
2371 	if (error)
2372 		pci_enable_wake(dev, target_state, false);
2373 
2374 	return error;
2375 }
2376 EXPORT_SYMBOL(pci_prepare_to_sleep);
2377 
2378 /**
2379  * pci_back_from_sleep - turn PCI device on during system-wide transition
2380  *			 into working state
2381  * @dev: Device to handle.
2382  *
2383  * Disable device's system wake-up capability and put it into D0.
2384  */
2385 int pci_back_from_sleep(struct pci_dev *dev)
2386 {
2387 	pci_enable_wake(dev, PCI_D0, false);
2388 	return pci_set_power_state(dev, PCI_D0);
2389 }
2390 EXPORT_SYMBOL(pci_back_from_sleep);
2391 
2392 /**
2393  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2394  * @dev: PCI device being suspended.
2395  *
2396  * Prepare @dev to generate wake-up events at run time and put it into a low
2397  * power state.
2398  */
2399 int pci_finish_runtime_suspend(struct pci_dev *dev)
2400 {
2401 	pci_power_t target_state;
2402 	int error;
2403 
2404 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2405 	if (target_state == PCI_POWER_ERROR)
2406 		return -EIO;
2407 
2408 	dev->runtime_d3cold = target_state == PCI_D3cold;
2409 
2410 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2411 
2412 	error = pci_set_power_state(dev, target_state);
2413 
2414 	if (error) {
2415 		pci_enable_wake(dev, target_state, false);
2416 		dev->runtime_d3cold = false;
2417 	}
2418 
2419 	return error;
2420 }
2421 
2422 /**
2423  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2424  * @dev: Device to check.
2425  *
2426  * Return true if the device itself is capable of generating wake-up events
2427  * (through the platform or using the native PCIe PME) or if the device supports
2428  * PME and one of its upstream bridges can generate wake-up events.
2429  */
2430 bool pci_dev_run_wake(struct pci_dev *dev)
2431 {
2432 	struct pci_bus *bus = dev->bus;
2433 
2434 	if (!dev->pme_support)
2435 		return false;
2436 
2437 	/* PME-capable in principle, but not from the target power state */
2438 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2439 		return false;
2440 
2441 	if (device_can_wakeup(&dev->dev))
2442 		return true;
2443 
2444 	while (bus->parent) {
2445 		struct pci_dev *bridge = bus->self;
2446 
2447 		if (device_can_wakeup(&bridge->dev))
2448 			return true;
2449 
2450 		bus = bus->parent;
2451 	}
2452 
2453 	/* We have reached the root bus. */
2454 	if (bus->bridge)
2455 		return device_can_wakeup(bus->bridge);
2456 
2457 	return false;
2458 }
2459 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2460 
2461 /**
2462  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2463  * @pci_dev: Device to check.
2464  *
2465  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2466  * reconfigured due to wakeup settings difference between system and runtime
2467  * suspend and the current power state of it is suitable for the upcoming
2468  * (system) transition.
2469  *
2470  * If the device is not configured for system wakeup, disable PME for it before
2471  * returning 'true' to prevent it from waking up the system unnecessarily.
2472  */
2473 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2474 {
2475 	struct device *dev = &pci_dev->dev;
2476 	bool wakeup = device_may_wakeup(dev);
2477 
2478 	if (!pm_runtime_suspended(dev)
2479 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2480 	    || platform_pci_need_resume(pci_dev))
2481 		return false;
2482 
2483 	/*
2484 	 * At this point the device is good to go unless it's been configured
2485 	 * to generate PME at the runtime suspend time, but it is not supposed
2486 	 * to wake up the system.  In that case, simply disable PME for it
2487 	 * (it will have to be re-enabled on exit from system resume).
2488 	 *
2489 	 * If the device's power state is D3cold and the platform check above
2490 	 * hasn't triggered, the device's configuration is suitable and we don't
2491 	 * need to manipulate it at all.
2492 	 */
2493 	spin_lock_irq(&dev->power.lock);
2494 
2495 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2496 	    !wakeup)
2497 		__pci_pme_active(pci_dev, false);
2498 
2499 	spin_unlock_irq(&dev->power.lock);
2500 	return true;
2501 }
2502 
2503 /**
2504  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2505  * @pci_dev: Device to handle.
2506  *
2507  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2508  * it might have been disabled during the prepare phase of system suspend if
2509  * the device was not configured for system wakeup.
2510  */
2511 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2512 {
2513 	struct device *dev = &pci_dev->dev;
2514 
2515 	if (!pci_dev_run_wake(pci_dev))
2516 		return;
2517 
2518 	spin_lock_irq(&dev->power.lock);
2519 
2520 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2521 		__pci_pme_active(pci_dev, true);
2522 
2523 	spin_unlock_irq(&dev->power.lock);
2524 }
2525 
2526 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2527 {
2528 	struct device *dev = &pdev->dev;
2529 	struct device *parent = dev->parent;
2530 
2531 	if (parent)
2532 		pm_runtime_get_sync(parent);
2533 	pm_runtime_get_noresume(dev);
2534 	/*
2535 	 * pdev->current_state is set to PCI_D3cold during suspending,
2536 	 * so wait until suspending completes
2537 	 */
2538 	pm_runtime_barrier(dev);
2539 	/*
2540 	 * Only need to resume devices in D3cold, because config
2541 	 * registers are still accessible for devices suspended but
2542 	 * not in D3cold.
2543 	 */
2544 	if (pdev->current_state == PCI_D3cold)
2545 		pm_runtime_resume(dev);
2546 }
2547 
2548 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2549 {
2550 	struct device *dev = &pdev->dev;
2551 	struct device *parent = dev->parent;
2552 
2553 	pm_runtime_put(dev);
2554 	if (parent)
2555 		pm_runtime_put_sync(parent);
2556 }
2557 
2558 static const struct dmi_system_id bridge_d3_blacklist[] = {
2559 #ifdef CONFIG_X86
2560 	{
2561 		/*
2562 		 * Gigabyte X299 root port is not marked as hotplug capable
2563 		 * which allows Linux to power manage it.  However, this
2564 		 * confuses the BIOS SMI handler so don't power manage root
2565 		 * ports on that system.
2566 		 */
2567 		.ident = "X299 DESIGNARE EX-CF",
2568 		.matches = {
2569 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2570 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2571 		},
2572 	},
2573 #endif
2574 	{ }
2575 };
2576 
2577 /**
2578  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2579  * @bridge: Bridge to check
2580  *
2581  * This function checks if it is possible to move the bridge to D3.
2582  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2583  */
2584 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2585 {
2586 	if (!pci_is_pcie(bridge))
2587 		return false;
2588 
2589 	switch (pci_pcie_type(bridge)) {
2590 	case PCI_EXP_TYPE_ROOT_PORT:
2591 	case PCI_EXP_TYPE_UPSTREAM:
2592 	case PCI_EXP_TYPE_DOWNSTREAM:
2593 		if (pci_bridge_d3_disable)
2594 			return false;
2595 
2596 		/*
2597 		 * Hotplug ports handled by firmware in System Management Mode
2598 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2599 		 */
2600 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2601 			return false;
2602 
2603 		if (pci_bridge_d3_force)
2604 			return true;
2605 
2606 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2607 		if (bridge->is_thunderbolt)
2608 			return true;
2609 
2610 		/* Platform might know better if the bridge supports D3 */
2611 		if (platform_pci_bridge_d3(bridge))
2612 			return true;
2613 
2614 		/*
2615 		 * Hotplug ports handled natively by the OS were not validated
2616 		 * by vendors for runtime D3 at least until 2018 because there
2617 		 * was no OS support.
2618 		 */
2619 		if (bridge->is_hotplug_bridge)
2620 			return false;
2621 
2622 		if (dmi_check_system(bridge_d3_blacklist))
2623 			return false;
2624 
2625 		/*
2626 		 * It should be safe to put PCIe ports from 2015 or newer
2627 		 * to D3.
2628 		 */
2629 		if (dmi_get_bios_year() >= 2015)
2630 			return true;
2631 		break;
2632 	}
2633 
2634 	return false;
2635 }
2636 
2637 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2638 {
2639 	bool *d3cold_ok = data;
2640 
2641 	if (/* The device needs to be allowed to go D3cold ... */
2642 	    dev->no_d3cold || !dev->d3cold_allowed ||
2643 
2644 	    /* ... and if it is wakeup capable to do so from D3cold. */
2645 	    (device_may_wakeup(&dev->dev) &&
2646 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2647 
2648 	    /* If it is a bridge it must be allowed to go to D3. */
2649 	    !pci_power_manageable(dev))
2650 
2651 		*d3cold_ok = false;
2652 
2653 	return !*d3cold_ok;
2654 }
2655 
2656 /*
2657  * pci_bridge_d3_update - Update bridge D3 capabilities
2658  * @dev: PCI device which is changed
2659  *
2660  * Update upstream bridge PM capabilities accordingly depending on if the
2661  * device PM configuration was changed or the device is being removed.  The
2662  * change is also propagated upstream.
2663  */
2664 void pci_bridge_d3_update(struct pci_dev *dev)
2665 {
2666 	bool remove = !device_is_registered(&dev->dev);
2667 	struct pci_dev *bridge;
2668 	bool d3cold_ok = true;
2669 
2670 	bridge = pci_upstream_bridge(dev);
2671 	if (!bridge || !pci_bridge_d3_possible(bridge))
2672 		return;
2673 
2674 	/*
2675 	 * If D3 is currently allowed for the bridge, removing one of its
2676 	 * children won't change that.
2677 	 */
2678 	if (remove && bridge->bridge_d3)
2679 		return;
2680 
2681 	/*
2682 	 * If D3 is currently allowed for the bridge and a child is added or
2683 	 * changed, disallowance of D3 can only be caused by that child, so
2684 	 * we only need to check that single device, not any of its siblings.
2685 	 *
2686 	 * If D3 is currently not allowed for the bridge, checking the device
2687 	 * first may allow us to skip checking its siblings.
2688 	 */
2689 	if (!remove)
2690 		pci_dev_check_d3cold(dev, &d3cold_ok);
2691 
2692 	/*
2693 	 * If D3 is currently not allowed for the bridge, this may be caused
2694 	 * either by the device being changed/removed or any of its siblings,
2695 	 * so we need to go through all children to find out if one of them
2696 	 * continues to block D3.
2697 	 */
2698 	if (d3cold_ok && !bridge->bridge_d3)
2699 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2700 			     &d3cold_ok);
2701 
2702 	if (bridge->bridge_d3 != d3cold_ok) {
2703 		bridge->bridge_d3 = d3cold_ok;
2704 		/* Propagate change to upstream bridges */
2705 		pci_bridge_d3_update(bridge);
2706 	}
2707 }
2708 
2709 /**
2710  * pci_d3cold_enable - Enable D3cold for device
2711  * @dev: PCI device to handle
2712  *
2713  * This function can be used in drivers to enable D3cold from the device
2714  * they handle.  It also updates upstream PCI bridge PM capabilities
2715  * accordingly.
2716  */
2717 void pci_d3cold_enable(struct pci_dev *dev)
2718 {
2719 	if (dev->no_d3cold) {
2720 		dev->no_d3cold = false;
2721 		pci_bridge_d3_update(dev);
2722 	}
2723 }
2724 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2725 
2726 /**
2727  * pci_d3cold_disable - Disable D3cold for device
2728  * @dev: PCI device to handle
2729  *
2730  * This function can be used in drivers to disable D3cold from the device
2731  * they handle.  It also updates upstream PCI bridge PM capabilities
2732  * accordingly.
2733  */
2734 void pci_d3cold_disable(struct pci_dev *dev)
2735 {
2736 	if (!dev->no_d3cold) {
2737 		dev->no_d3cold = true;
2738 		pci_bridge_d3_update(dev);
2739 	}
2740 }
2741 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2742 
2743 /**
2744  * pci_pm_init - Initialize PM functions of given PCI device
2745  * @dev: PCI device to handle.
2746  */
2747 void pci_pm_init(struct pci_dev *dev)
2748 {
2749 	int pm;
2750 	u16 status;
2751 	u16 pmc;
2752 
2753 	pm_runtime_forbid(&dev->dev);
2754 	pm_runtime_set_active(&dev->dev);
2755 	pm_runtime_enable(&dev->dev);
2756 	device_enable_async_suspend(&dev->dev);
2757 	dev->wakeup_prepared = false;
2758 
2759 	dev->pm_cap = 0;
2760 	dev->pme_support = 0;
2761 
2762 	/* find PCI PM capability in list */
2763 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2764 	if (!pm)
2765 		return;
2766 	/* Check device's ability to generate PME# */
2767 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2768 
2769 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2770 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2771 			pmc & PCI_PM_CAP_VER_MASK);
2772 		return;
2773 	}
2774 
2775 	dev->pm_cap = pm;
2776 	dev->d3_delay = PCI_PM_D3_WAIT;
2777 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2778 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2779 	dev->d3cold_allowed = true;
2780 
2781 	dev->d1_support = false;
2782 	dev->d2_support = false;
2783 	if (!pci_no_d1d2(dev)) {
2784 		if (pmc & PCI_PM_CAP_D1)
2785 			dev->d1_support = true;
2786 		if (pmc & PCI_PM_CAP_D2)
2787 			dev->d2_support = true;
2788 
2789 		if (dev->d1_support || dev->d2_support)
2790 			pci_info(dev, "supports%s%s\n",
2791 				   dev->d1_support ? " D1" : "",
2792 				   dev->d2_support ? " D2" : "");
2793 	}
2794 
2795 	pmc &= PCI_PM_CAP_PME_MASK;
2796 	if (pmc) {
2797 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2798 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2799 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2800 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2801 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2802 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2803 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2804 		dev->pme_poll = true;
2805 		/*
2806 		 * Make device's PM flags reflect the wake-up capability, but
2807 		 * let the user space enable it to wake up the system as needed.
2808 		 */
2809 		device_set_wakeup_capable(&dev->dev, true);
2810 		/* Disable the PME# generation functionality */
2811 		pci_pme_active(dev, false);
2812 	}
2813 
2814 	pci_read_config_word(dev, PCI_STATUS, &status);
2815 	if (status & PCI_STATUS_IMM_READY)
2816 		dev->imm_ready = 1;
2817 }
2818 
2819 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2820 {
2821 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2822 
2823 	switch (prop) {
2824 	case PCI_EA_P_MEM:
2825 	case PCI_EA_P_VF_MEM:
2826 		flags |= IORESOURCE_MEM;
2827 		break;
2828 	case PCI_EA_P_MEM_PREFETCH:
2829 	case PCI_EA_P_VF_MEM_PREFETCH:
2830 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2831 		break;
2832 	case PCI_EA_P_IO:
2833 		flags |= IORESOURCE_IO;
2834 		break;
2835 	default:
2836 		return 0;
2837 	}
2838 
2839 	return flags;
2840 }
2841 
2842 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2843 					    u8 prop)
2844 {
2845 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2846 		return &dev->resource[bei];
2847 #ifdef CONFIG_PCI_IOV
2848 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2849 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2850 		return &dev->resource[PCI_IOV_RESOURCES +
2851 				      bei - PCI_EA_BEI_VF_BAR0];
2852 #endif
2853 	else if (bei == PCI_EA_BEI_ROM)
2854 		return &dev->resource[PCI_ROM_RESOURCE];
2855 	else
2856 		return NULL;
2857 }
2858 
2859 /* Read an Enhanced Allocation (EA) entry */
2860 static int pci_ea_read(struct pci_dev *dev, int offset)
2861 {
2862 	struct resource *res;
2863 	int ent_size, ent_offset = offset;
2864 	resource_size_t start, end;
2865 	unsigned long flags;
2866 	u32 dw0, bei, base, max_offset;
2867 	u8 prop;
2868 	bool support_64 = (sizeof(resource_size_t) >= 8);
2869 
2870 	pci_read_config_dword(dev, ent_offset, &dw0);
2871 	ent_offset += 4;
2872 
2873 	/* Entry size field indicates DWORDs after 1st */
2874 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2875 
2876 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2877 		goto out;
2878 
2879 	bei = (dw0 & PCI_EA_BEI) >> 4;
2880 	prop = (dw0 & PCI_EA_PP) >> 8;
2881 
2882 	/*
2883 	 * If the Property is in the reserved range, try the Secondary
2884 	 * Property instead.
2885 	 */
2886 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2887 		prop = (dw0 & PCI_EA_SP) >> 16;
2888 	if (prop > PCI_EA_P_BRIDGE_IO)
2889 		goto out;
2890 
2891 	res = pci_ea_get_resource(dev, bei, prop);
2892 	if (!res) {
2893 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2894 		goto out;
2895 	}
2896 
2897 	flags = pci_ea_flags(dev, prop);
2898 	if (!flags) {
2899 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2900 		goto out;
2901 	}
2902 
2903 	/* Read Base */
2904 	pci_read_config_dword(dev, ent_offset, &base);
2905 	start = (base & PCI_EA_FIELD_MASK);
2906 	ent_offset += 4;
2907 
2908 	/* Read MaxOffset */
2909 	pci_read_config_dword(dev, ent_offset, &max_offset);
2910 	ent_offset += 4;
2911 
2912 	/* Read Base MSBs (if 64-bit entry) */
2913 	if (base & PCI_EA_IS_64) {
2914 		u32 base_upper;
2915 
2916 		pci_read_config_dword(dev, ent_offset, &base_upper);
2917 		ent_offset += 4;
2918 
2919 		flags |= IORESOURCE_MEM_64;
2920 
2921 		/* entry starts above 32-bit boundary, can't use */
2922 		if (!support_64 && base_upper)
2923 			goto out;
2924 
2925 		if (support_64)
2926 			start |= ((u64)base_upper << 32);
2927 	}
2928 
2929 	end = start + (max_offset | 0x03);
2930 
2931 	/* Read MaxOffset MSBs (if 64-bit entry) */
2932 	if (max_offset & PCI_EA_IS_64) {
2933 		u32 max_offset_upper;
2934 
2935 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2936 		ent_offset += 4;
2937 
2938 		flags |= IORESOURCE_MEM_64;
2939 
2940 		/* entry too big, can't use */
2941 		if (!support_64 && max_offset_upper)
2942 			goto out;
2943 
2944 		if (support_64)
2945 			end += ((u64)max_offset_upper << 32);
2946 	}
2947 
2948 	if (end < start) {
2949 		pci_err(dev, "EA Entry crosses address boundary\n");
2950 		goto out;
2951 	}
2952 
2953 	if (ent_size != ent_offset - offset) {
2954 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2955 			ent_size, ent_offset - offset);
2956 		goto out;
2957 	}
2958 
2959 	res->name = pci_name(dev);
2960 	res->start = start;
2961 	res->end = end;
2962 	res->flags = flags;
2963 
2964 	if (bei <= PCI_EA_BEI_BAR5)
2965 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2966 			   bei, res, prop);
2967 	else if (bei == PCI_EA_BEI_ROM)
2968 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2969 			   res, prop);
2970 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2971 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2972 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2973 	else
2974 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2975 			   bei, res, prop);
2976 
2977 out:
2978 	return offset + ent_size;
2979 }
2980 
2981 /* Enhanced Allocation Initialization */
2982 void pci_ea_init(struct pci_dev *dev)
2983 {
2984 	int ea;
2985 	u8 num_ent;
2986 	int offset;
2987 	int i;
2988 
2989 	/* find PCI EA capability in list */
2990 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2991 	if (!ea)
2992 		return;
2993 
2994 	/* determine the number of entries */
2995 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2996 					&num_ent);
2997 	num_ent &= PCI_EA_NUM_ENT_MASK;
2998 
2999 	offset = ea + PCI_EA_FIRST_ENT;
3000 
3001 	/* Skip DWORD 2 for type 1 functions */
3002 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3003 		offset += 4;
3004 
3005 	/* parse each EA entry */
3006 	for (i = 0; i < num_ent; ++i)
3007 		offset = pci_ea_read(dev, offset);
3008 }
3009 
3010 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3011 	struct pci_cap_saved_state *new_cap)
3012 {
3013 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3014 }
3015 
3016 /**
3017  * _pci_add_cap_save_buffer - allocate buffer for saving given
3018  *			      capability registers
3019  * @dev: the PCI device
3020  * @cap: the capability to allocate the buffer for
3021  * @extended: Standard or Extended capability ID
3022  * @size: requested size of the buffer
3023  */
3024 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3025 				    bool extended, unsigned int size)
3026 {
3027 	int pos;
3028 	struct pci_cap_saved_state *save_state;
3029 
3030 	if (extended)
3031 		pos = pci_find_ext_capability(dev, cap);
3032 	else
3033 		pos = pci_find_capability(dev, cap);
3034 
3035 	if (!pos)
3036 		return 0;
3037 
3038 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3039 	if (!save_state)
3040 		return -ENOMEM;
3041 
3042 	save_state->cap.cap_nr = cap;
3043 	save_state->cap.cap_extended = extended;
3044 	save_state->cap.size = size;
3045 	pci_add_saved_cap(dev, save_state);
3046 
3047 	return 0;
3048 }
3049 
3050 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3051 {
3052 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3053 }
3054 
3055 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3056 {
3057 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3058 }
3059 
3060 /**
3061  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3062  * @dev: the PCI device
3063  */
3064 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3065 {
3066 	int error;
3067 
3068 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3069 					PCI_EXP_SAVE_REGS * sizeof(u16));
3070 	if (error)
3071 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3072 
3073 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3074 	if (error)
3075 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3076 
3077 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3078 					    2 * sizeof(u16));
3079 	if (error)
3080 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3081 
3082 	pci_allocate_vc_save_buffers(dev);
3083 }
3084 
3085 void pci_free_cap_save_buffers(struct pci_dev *dev)
3086 {
3087 	struct pci_cap_saved_state *tmp;
3088 	struct hlist_node *n;
3089 
3090 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3091 		kfree(tmp);
3092 }
3093 
3094 /**
3095  * pci_configure_ari - enable or disable ARI forwarding
3096  * @dev: the PCI device
3097  *
3098  * If @dev and its upstream bridge both support ARI, enable ARI in the
3099  * bridge.  Otherwise, disable ARI in the bridge.
3100  */
3101 void pci_configure_ari(struct pci_dev *dev)
3102 {
3103 	u32 cap;
3104 	struct pci_dev *bridge;
3105 
3106 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3107 		return;
3108 
3109 	bridge = dev->bus->self;
3110 	if (!bridge)
3111 		return;
3112 
3113 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3114 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3115 		return;
3116 
3117 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3118 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3119 					 PCI_EXP_DEVCTL2_ARI);
3120 		bridge->ari_enabled = 1;
3121 	} else {
3122 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3123 					   PCI_EXP_DEVCTL2_ARI);
3124 		bridge->ari_enabled = 0;
3125 	}
3126 }
3127 
3128 static int pci_acs_enable;
3129 
3130 /**
3131  * pci_request_acs - ask for ACS to be enabled if supported
3132  */
3133 void pci_request_acs(void)
3134 {
3135 	pci_acs_enable = 1;
3136 }
3137 
3138 static const char *disable_acs_redir_param;
3139 
3140 /**
3141  * pci_disable_acs_redir - disable ACS redirect capabilities
3142  * @dev: the PCI device
3143  *
3144  * For only devices specified in the disable_acs_redir parameter.
3145  */
3146 static void pci_disable_acs_redir(struct pci_dev *dev)
3147 {
3148 	int ret = 0;
3149 	const char *p;
3150 	int pos;
3151 	u16 ctrl;
3152 
3153 	if (!disable_acs_redir_param)
3154 		return;
3155 
3156 	p = disable_acs_redir_param;
3157 	while (*p) {
3158 		ret = pci_dev_str_match(dev, p, &p);
3159 		if (ret < 0) {
3160 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3161 				     disable_acs_redir_param);
3162 
3163 			break;
3164 		} else if (ret == 1) {
3165 			/* Found a match */
3166 			break;
3167 		}
3168 
3169 		if (*p != ';' && *p != ',') {
3170 			/* End of param or invalid format */
3171 			break;
3172 		}
3173 		p++;
3174 	}
3175 
3176 	if (ret != 1)
3177 		return;
3178 
3179 	if (!pci_dev_specific_disable_acs_redir(dev))
3180 		return;
3181 
3182 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3183 	if (!pos) {
3184 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3185 		return;
3186 	}
3187 
3188 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3189 
3190 	/* P2P Request & Completion Redirect */
3191 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3192 
3193 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3194 
3195 	pci_info(dev, "disabled ACS redirect\n");
3196 }
3197 
3198 /**
3199  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3200  * @dev: the PCI device
3201  */
3202 static void pci_std_enable_acs(struct pci_dev *dev)
3203 {
3204 	int pos;
3205 	u16 cap;
3206 	u16 ctrl;
3207 
3208 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3209 	if (!pos)
3210 		return;
3211 
3212 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3213 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3214 
3215 	/* Source Validation */
3216 	ctrl |= (cap & PCI_ACS_SV);
3217 
3218 	/* P2P Request Redirect */
3219 	ctrl |= (cap & PCI_ACS_RR);
3220 
3221 	/* P2P Completion Redirect */
3222 	ctrl |= (cap & PCI_ACS_CR);
3223 
3224 	/* Upstream Forwarding */
3225 	ctrl |= (cap & PCI_ACS_UF);
3226 
3227 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3228 }
3229 
3230 /**
3231  * pci_enable_acs - enable ACS if hardware support it
3232  * @dev: the PCI device
3233  */
3234 void pci_enable_acs(struct pci_dev *dev)
3235 {
3236 	if (!pci_acs_enable)
3237 		goto disable_acs_redir;
3238 
3239 	if (!pci_dev_specific_enable_acs(dev))
3240 		goto disable_acs_redir;
3241 
3242 	pci_std_enable_acs(dev);
3243 
3244 disable_acs_redir:
3245 	/*
3246 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3247 	 * enabled by the kernel because it may have been enabled by
3248 	 * platform firmware.  So if we are told to disable it, we should
3249 	 * always disable it after setting the kernel's default
3250 	 * preferences.
3251 	 */
3252 	pci_disable_acs_redir(dev);
3253 }
3254 
3255 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3256 {
3257 	int pos;
3258 	u16 cap, ctrl;
3259 
3260 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3261 	if (!pos)
3262 		return false;
3263 
3264 	/*
3265 	 * Except for egress control, capabilities are either required
3266 	 * or only required if controllable.  Features missing from the
3267 	 * capability field can therefore be assumed as hard-wired enabled.
3268 	 */
3269 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3270 	acs_flags &= (cap | PCI_ACS_EC);
3271 
3272 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3273 	return (ctrl & acs_flags) == acs_flags;
3274 }
3275 
3276 /**
3277  * pci_acs_enabled - test ACS against required flags for a given device
3278  * @pdev: device to test
3279  * @acs_flags: required PCI ACS flags
3280  *
3281  * Return true if the device supports the provided flags.  Automatically
3282  * filters out flags that are not implemented on multifunction devices.
3283  *
3284  * Note that this interface checks the effective ACS capabilities of the
3285  * device rather than the actual capabilities.  For instance, most single
3286  * function endpoints are not required to support ACS because they have no
3287  * opportunity for peer-to-peer access.  We therefore return 'true'
3288  * regardless of whether the device exposes an ACS capability.  This makes
3289  * it much easier for callers of this function to ignore the actual type
3290  * or topology of the device when testing ACS support.
3291  */
3292 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3293 {
3294 	int ret;
3295 
3296 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3297 	if (ret >= 0)
3298 		return ret > 0;
3299 
3300 	/*
3301 	 * Conventional PCI and PCI-X devices never support ACS, either
3302 	 * effectively or actually.  The shared bus topology implies that
3303 	 * any device on the bus can receive or snoop DMA.
3304 	 */
3305 	if (!pci_is_pcie(pdev))
3306 		return false;
3307 
3308 	switch (pci_pcie_type(pdev)) {
3309 	/*
3310 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3311 	 * but since their primary interface is PCI/X, we conservatively
3312 	 * handle them as we would a non-PCIe device.
3313 	 */
3314 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3315 	/*
3316 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3317 	 * applicable... must never implement an ACS Extended Capability...".
3318 	 * This seems arbitrary, but we take a conservative interpretation
3319 	 * of this statement.
3320 	 */
3321 	case PCI_EXP_TYPE_PCI_BRIDGE:
3322 	case PCI_EXP_TYPE_RC_EC:
3323 		return false;
3324 	/*
3325 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3326 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3327 	 * regardless of whether they are single- or multi-function devices.
3328 	 */
3329 	case PCI_EXP_TYPE_DOWNSTREAM:
3330 	case PCI_EXP_TYPE_ROOT_PORT:
3331 		return pci_acs_flags_enabled(pdev, acs_flags);
3332 	/*
3333 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3334 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3335 	 * capabilities, but only when they are part of a multifunction
3336 	 * device.  The footnote for section 6.12 indicates the specific
3337 	 * PCIe types included here.
3338 	 */
3339 	case PCI_EXP_TYPE_ENDPOINT:
3340 	case PCI_EXP_TYPE_UPSTREAM:
3341 	case PCI_EXP_TYPE_LEG_END:
3342 	case PCI_EXP_TYPE_RC_END:
3343 		if (!pdev->multifunction)
3344 			break;
3345 
3346 		return pci_acs_flags_enabled(pdev, acs_flags);
3347 	}
3348 
3349 	/*
3350 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3351 	 * to single function devices with the exception of downstream ports.
3352 	 */
3353 	return true;
3354 }
3355 
3356 /**
3357  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3358  * @start: starting downstream device
3359  * @end: ending upstream device or NULL to search to the root bus
3360  * @acs_flags: required flags
3361  *
3362  * Walk up a device tree from start to end testing PCI ACS support.  If
3363  * any step along the way does not support the required flags, return false.
3364  */
3365 bool pci_acs_path_enabled(struct pci_dev *start,
3366 			  struct pci_dev *end, u16 acs_flags)
3367 {
3368 	struct pci_dev *pdev, *parent = start;
3369 
3370 	do {
3371 		pdev = parent;
3372 
3373 		if (!pci_acs_enabled(pdev, acs_flags))
3374 			return false;
3375 
3376 		if (pci_is_root_bus(pdev->bus))
3377 			return (end == NULL);
3378 
3379 		parent = pdev->bus->self;
3380 	} while (pdev != end);
3381 
3382 	return true;
3383 }
3384 
3385 /**
3386  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3387  * @pdev: PCI device
3388  * @bar: BAR to find
3389  *
3390  * Helper to find the position of the ctrl register for a BAR.
3391  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3392  * Returns -ENOENT if no ctrl register for the BAR could be found.
3393  */
3394 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3395 {
3396 	unsigned int pos, nbars, i;
3397 	u32 ctrl;
3398 
3399 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3400 	if (!pos)
3401 		return -ENOTSUPP;
3402 
3403 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3404 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3405 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3406 
3407 	for (i = 0; i < nbars; i++, pos += 8) {
3408 		int bar_idx;
3409 
3410 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3411 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3412 		if (bar_idx == bar)
3413 			return pos;
3414 	}
3415 
3416 	return -ENOENT;
3417 }
3418 
3419 /**
3420  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3421  * @pdev: PCI device
3422  * @bar: BAR to query
3423  *
3424  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3425  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3426  */
3427 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3428 {
3429 	int pos;
3430 	u32 cap;
3431 
3432 	pos = pci_rebar_find_pos(pdev, bar);
3433 	if (pos < 0)
3434 		return 0;
3435 
3436 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3437 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3438 }
3439 
3440 /**
3441  * pci_rebar_get_current_size - get the current size of a BAR
3442  * @pdev: PCI device
3443  * @bar: BAR to set size to
3444  *
3445  * Read the size of a BAR from the resizable BAR config.
3446  * Returns size if found or negative error code.
3447  */
3448 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3449 {
3450 	int pos;
3451 	u32 ctrl;
3452 
3453 	pos = pci_rebar_find_pos(pdev, bar);
3454 	if (pos < 0)
3455 		return pos;
3456 
3457 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3458 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3459 }
3460 
3461 /**
3462  * pci_rebar_set_size - set a new size for a BAR
3463  * @pdev: PCI device
3464  * @bar: BAR to set size to
3465  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3466  *
3467  * Set the new size of a BAR as defined in the spec.
3468  * Returns zero if resizing was successful, error code otherwise.
3469  */
3470 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3471 {
3472 	int pos;
3473 	u32 ctrl;
3474 
3475 	pos = pci_rebar_find_pos(pdev, bar);
3476 	if (pos < 0)
3477 		return pos;
3478 
3479 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3480 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3481 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3482 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3483 	return 0;
3484 }
3485 
3486 /**
3487  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3488  * @dev: the PCI device
3489  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3490  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3491  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3492  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3493  *
3494  * Return 0 if all upstream bridges support AtomicOp routing, egress
3495  * blocking is disabled on all upstream ports, and the root port supports
3496  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3497  * AtomicOp completion), or negative otherwise.
3498  */
3499 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3500 {
3501 	struct pci_bus *bus = dev->bus;
3502 	struct pci_dev *bridge;
3503 	u32 cap, ctl2;
3504 
3505 	if (!pci_is_pcie(dev))
3506 		return -EINVAL;
3507 
3508 	/*
3509 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3510 	 * AtomicOp requesters.  For now, we only support endpoints as
3511 	 * requesters and root ports as completers.  No endpoints as
3512 	 * completers, and no peer-to-peer.
3513 	 */
3514 
3515 	switch (pci_pcie_type(dev)) {
3516 	case PCI_EXP_TYPE_ENDPOINT:
3517 	case PCI_EXP_TYPE_LEG_END:
3518 	case PCI_EXP_TYPE_RC_END:
3519 		break;
3520 	default:
3521 		return -EINVAL;
3522 	}
3523 
3524 	while (bus->parent) {
3525 		bridge = bus->self;
3526 
3527 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3528 
3529 		switch (pci_pcie_type(bridge)) {
3530 		/* Ensure switch ports support AtomicOp routing */
3531 		case PCI_EXP_TYPE_UPSTREAM:
3532 		case PCI_EXP_TYPE_DOWNSTREAM:
3533 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3534 				return -EINVAL;
3535 			break;
3536 
3537 		/* Ensure root port supports all the sizes we care about */
3538 		case PCI_EXP_TYPE_ROOT_PORT:
3539 			if ((cap & cap_mask) != cap_mask)
3540 				return -EINVAL;
3541 			break;
3542 		}
3543 
3544 		/* Ensure upstream ports don't block AtomicOps on egress */
3545 		if (!bridge->has_secondary_link) {
3546 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3547 						   &ctl2);
3548 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3549 				return -EINVAL;
3550 		}
3551 
3552 		bus = bus->parent;
3553 	}
3554 
3555 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3556 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3557 	return 0;
3558 }
3559 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3560 
3561 /**
3562  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3563  * @dev: the PCI device
3564  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3565  *
3566  * Perform INTx swizzling for a device behind one level of bridge.  This is
3567  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3568  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3569  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3570  * the PCI Express Base Specification, Revision 2.1)
3571  */
3572 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3573 {
3574 	int slot;
3575 
3576 	if (pci_ari_enabled(dev->bus))
3577 		slot = 0;
3578 	else
3579 		slot = PCI_SLOT(dev->devfn);
3580 
3581 	return (((pin - 1) + slot) % 4) + 1;
3582 }
3583 
3584 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3585 {
3586 	u8 pin;
3587 
3588 	pin = dev->pin;
3589 	if (!pin)
3590 		return -1;
3591 
3592 	while (!pci_is_root_bus(dev->bus)) {
3593 		pin = pci_swizzle_interrupt_pin(dev, pin);
3594 		dev = dev->bus->self;
3595 	}
3596 	*bridge = dev;
3597 	return pin;
3598 }
3599 
3600 /**
3601  * pci_common_swizzle - swizzle INTx all the way to root bridge
3602  * @dev: the PCI device
3603  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3604  *
3605  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3606  * bridges all the way up to a PCI root bus.
3607  */
3608 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3609 {
3610 	u8 pin = *pinp;
3611 
3612 	while (!pci_is_root_bus(dev->bus)) {
3613 		pin = pci_swizzle_interrupt_pin(dev, pin);
3614 		dev = dev->bus->self;
3615 	}
3616 	*pinp = pin;
3617 	return PCI_SLOT(dev->devfn);
3618 }
3619 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3620 
3621 /**
3622  * pci_release_region - Release a PCI bar
3623  * @pdev: PCI device whose resources were previously reserved by
3624  *	  pci_request_region()
3625  * @bar: BAR to release
3626  *
3627  * Releases the PCI I/O and memory resources previously reserved by a
3628  * successful call to pci_request_region().  Call this function only
3629  * after all use of the PCI regions has ceased.
3630  */
3631 void pci_release_region(struct pci_dev *pdev, int bar)
3632 {
3633 	struct pci_devres *dr;
3634 
3635 	if (pci_resource_len(pdev, bar) == 0)
3636 		return;
3637 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3638 		release_region(pci_resource_start(pdev, bar),
3639 				pci_resource_len(pdev, bar));
3640 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3641 		release_mem_region(pci_resource_start(pdev, bar),
3642 				pci_resource_len(pdev, bar));
3643 
3644 	dr = find_pci_dr(pdev);
3645 	if (dr)
3646 		dr->region_mask &= ~(1 << bar);
3647 }
3648 EXPORT_SYMBOL(pci_release_region);
3649 
3650 /**
3651  * __pci_request_region - Reserved PCI I/O and memory resource
3652  * @pdev: PCI device whose resources are to be reserved
3653  * @bar: BAR to be reserved
3654  * @res_name: Name to be associated with resource.
3655  * @exclusive: whether the region access is exclusive or not
3656  *
3657  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3658  * being reserved by owner @res_name.  Do not access any
3659  * address inside the PCI regions unless this call returns
3660  * successfully.
3661  *
3662  * If @exclusive is set, then the region is marked so that userspace
3663  * is explicitly not allowed to map the resource via /dev/mem or
3664  * sysfs MMIO access.
3665  *
3666  * Returns 0 on success, or %EBUSY on error.  A warning
3667  * message is also printed on failure.
3668  */
3669 static int __pci_request_region(struct pci_dev *pdev, int bar,
3670 				const char *res_name, int exclusive)
3671 {
3672 	struct pci_devres *dr;
3673 
3674 	if (pci_resource_len(pdev, bar) == 0)
3675 		return 0;
3676 
3677 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3678 		if (!request_region(pci_resource_start(pdev, bar),
3679 			    pci_resource_len(pdev, bar), res_name))
3680 			goto err_out;
3681 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3682 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3683 					pci_resource_len(pdev, bar), res_name,
3684 					exclusive))
3685 			goto err_out;
3686 	}
3687 
3688 	dr = find_pci_dr(pdev);
3689 	if (dr)
3690 		dr->region_mask |= 1 << bar;
3691 
3692 	return 0;
3693 
3694 err_out:
3695 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3696 		 &pdev->resource[bar]);
3697 	return -EBUSY;
3698 }
3699 
3700 /**
3701  * pci_request_region - Reserve PCI I/O and memory resource
3702  * @pdev: PCI device whose resources are to be reserved
3703  * @bar: BAR to be reserved
3704  * @res_name: Name to be associated with resource
3705  *
3706  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3707  * being reserved by owner @res_name.  Do not access any
3708  * address inside the PCI regions unless this call returns
3709  * successfully.
3710  *
3711  * Returns 0 on success, or %EBUSY on error.  A warning
3712  * message is also printed on failure.
3713  */
3714 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3715 {
3716 	return __pci_request_region(pdev, bar, res_name, 0);
3717 }
3718 EXPORT_SYMBOL(pci_request_region);
3719 
3720 /**
3721  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3722  * @pdev: PCI device whose resources were previously reserved
3723  * @bars: Bitmask of BARs to be released
3724  *
3725  * Release selected PCI I/O and memory resources previously reserved.
3726  * Call this function only after all use of the PCI regions has ceased.
3727  */
3728 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3729 {
3730 	int i;
3731 
3732 	for (i = 0; i < 6; i++)
3733 		if (bars & (1 << i))
3734 			pci_release_region(pdev, i);
3735 }
3736 EXPORT_SYMBOL(pci_release_selected_regions);
3737 
3738 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3739 					  const char *res_name, int excl)
3740 {
3741 	int i;
3742 
3743 	for (i = 0; i < 6; i++)
3744 		if (bars & (1 << i))
3745 			if (__pci_request_region(pdev, i, res_name, excl))
3746 				goto err_out;
3747 	return 0;
3748 
3749 err_out:
3750 	while (--i >= 0)
3751 		if (bars & (1 << i))
3752 			pci_release_region(pdev, i);
3753 
3754 	return -EBUSY;
3755 }
3756 
3757 
3758 /**
3759  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3760  * @pdev: PCI device whose resources are to be reserved
3761  * @bars: Bitmask of BARs to be requested
3762  * @res_name: Name to be associated with resource
3763  */
3764 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3765 				 const char *res_name)
3766 {
3767 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3768 }
3769 EXPORT_SYMBOL(pci_request_selected_regions);
3770 
3771 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3772 					   const char *res_name)
3773 {
3774 	return __pci_request_selected_regions(pdev, bars, res_name,
3775 			IORESOURCE_EXCLUSIVE);
3776 }
3777 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3778 
3779 /**
3780  * pci_release_regions - Release reserved PCI I/O and memory resources
3781  * @pdev: PCI device whose resources were previously reserved by
3782  *	  pci_request_regions()
3783  *
3784  * Releases all PCI I/O and memory resources previously reserved by a
3785  * successful call to pci_request_regions().  Call this function only
3786  * after all use of the PCI regions has ceased.
3787  */
3788 
3789 void pci_release_regions(struct pci_dev *pdev)
3790 {
3791 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3792 }
3793 EXPORT_SYMBOL(pci_release_regions);
3794 
3795 /**
3796  * pci_request_regions - Reserve PCI I/O and memory resources
3797  * @pdev: PCI device whose resources are to be reserved
3798  * @res_name: Name to be associated with resource.
3799  *
3800  * Mark all PCI regions associated with PCI device @pdev as
3801  * being reserved by owner @res_name.  Do not access any
3802  * address inside the PCI regions unless this call returns
3803  * successfully.
3804  *
3805  * Returns 0 on success, or %EBUSY on error.  A warning
3806  * message is also printed on failure.
3807  */
3808 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3809 {
3810 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3811 }
3812 EXPORT_SYMBOL(pci_request_regions);
3813 
3814 /**
3815  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3816  * @pdev: PCI device whose resources are to be reserved
3817  * @res_name: Name to be associated with resource.
3818  *
3819  * Mark all PCI regions associated with PCI device @pdev as being reserved
3820  * by owner @res_name.  Do not access any address inside the PCI regions
3821  * unless this call returns successfully.
3822  *
3823  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3824  * and the sysfs MMIO access will not be allowed.
3825  *
3826  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3827  * printed on failure.
3828  */
3829 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3830 {
3831 	return pci_request_selected_regions_exclusive(pdev,
3832 					((1 << 6) - 1), res_name);
3833 }
3834 EXPORT_SYMBOL(pci_request_regions_exclusive);
3835 
3836 /*
3837  * Record the PCI IO range (expressed as CPU physical address + size).
3838  * Return a negative value if an error has occurred, zero otherwise
3839  */
3840 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3841 			resource_size_t	size)
3842 {
3843 	int ret = 0;
3844 #ifdef PCI_IOBASE
3845 	struct logic_pio_hwaddr *range;
3846 
3847 	if (!size || addr + size < addr)
3848 		return -EINVAL;
3849 
3850 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3851 	if (!range)
3852 		return -ENOMEM;
3853 
3854 	range->fwnode = fwnode;
3855 	range->size = size;
3856 	range->hw_start = addr;
3857 	range->flags = LOGIC_PIO_CPU_MMIO;
3858 
3859 	ret = logic_pio_register_range(range);
3860 	if (ret)
3861 		kfree(range);
3862 #endif
3863 
3864 	return ret;
3865 }
3866 
3867 phys_addr_t pci_pio_to_address(unsigned long pio)
3868 {
3869 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3870 
3871 #ifdef PCI_IOBASE
3872 	if (pio >= MMIO_UPPER_LIMIT)
3873 		return address;
3874 
3875 	address = logic_pio_to_hwaddr(pio);
3876 #endif
3877 
3878 	return address;
3879 }
3880 
3881 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3882 {
3883 #ifdef PCI_IOBASE
3884 	return logic_pio_trans_cpuaddr(address);
3885 #else
3886 	if (address > IO_SPACE_LIMIT)
3887 		return (unsigned long)-1;
3888 
3889 	return (unsigned long) address;
3890 #endif
3891 }
3892 
3893 /**
3894  * pci_remap_iospace - Remap the memory mapped I/O space
3895  * @res: Resource describing the I/O space
3896  * @phys_addr: physical address of range to be mapped
3897  *
3898  * Remap the memory mapped I/O space described by the @res and the CPU
3899  * physical address @phys_addr into virtual address space.  Only
3900  * architectures that have memory mapped IO functions defined (and the
3901  * PCI_IOBASE value defined) should call this function.
3902  */
3903 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3904 {
3905 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3906 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3907 
3908 	if (!(res->flags & IORESOURCE_IO))
3909 		return -EINVAL;
3910 
3911 	if (res->end > IO_SPACE_LIMIT)
3912 		return -EINVAL;
3913 
3914 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3915 				  pgprot_device(PAGE_KERNEL));
3916 #else
3917 	/*
3918 	 * This architecture does not have memory mapped I/O space,
3919 	 * so this function should never be called
3920 	 */
3921 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3922 	return -ENODEV;
3923 #endif
3924 }
3925 EXPORT_SYMBOL(pci_remap_iospace);
3926 
3927 /**
3928  * pci_unmap_iospace - Unmap the memory mapped I/O space
3929  * @res: resource to be unmapped
3930  *
3931  * Unmap the CPU virtual address @res from virtual address space.  Only
3932  * architectures that have memory mapped IO functions defined (and the
3933  * PCI_IOBASE value defined) should call this function.
3934  */
3935 void pci_unmap_iospace(struct resource *res)
3936 {
3937 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3938 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3939 
3940 	unmap_kernel_range(vaddr, resource_size(res));
3941 #endif
3942 }
3943 EXPORT_SYMBOL(pci_unmap_iospace);
3944 
3945 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3946 {
3947 	struct resource **res = ptr;
3948 
3949 	pci_unmap_iospace(*res);
3950 }
3951 
3952 /**
3953  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3954  * @dev: Generic device to remap IO address for
3955  * @res: Resource describing the I/O space
3956  * @phys_addr: physical address of range to be mapped
3957  *
3958  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3959  * detach.
3960  */
3961 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3962 			   phys_addr_t phys_addr)
3963 {
3964 	const struct resource **ptr;
3965 	int error;
3966 
3967 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3968 	if (!ptr)
3969 		return -ENOMEM;
3970 
3971 	error = pci_remap_iospace(res, phys_addr);
3972 	if (error) {
3973 		devres_free(ptr);
3974 	} else	{
3975 		*ptr = res;
3976 		devres_add(dev, ptr);
3977 	}
3978 
3979 	return error;
3980 }
3981 EXPORT_SYMBOL(devm_pci_remap_iospace);
3982 
3983 /**
3984  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3985  * @dev: Generic device to remap IO address for
3986  * @offset: Resource address to map
3987  * @size: Size of map
3988  *
3989  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3990  * detach.
3991  */
3992 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3993 				      resource_size_t offset,
3994 				      resource_size_t size)
3995 {
3996 	void __iomem **ptr, *addr;
3997 
3998 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3999 	if (!ptr)
4000 		return NULL;
4001 
4002 	addr = pci_remap_cfgspace(offset, size);
4003 	if (addr) {
4004 		*ptr = addr;
4005 		devres_add(dev, ptr);
4006 	} else
4007 		devres_free(ptr);
4008 
4009 	return addr;
4010 }
4011 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4012 
4013 /**
4014  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4015  * @dev: generic device to handle the resource for
4016  * @res: configuration space resource to be handled
4017  *
4018  * Checks that a resource is a valid memory region, requests the memory
4019  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4020  * proper PCI configuration space memory attributes are guaranteed.
4021  *
4022  * All operations are managed and will be undone on driver detach.
4023  *
4024  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4025  * on failure. Usage example::
4026  *
4027  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4028  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4029  *	if (IS_ERR(base))
4030  *		return PTR_ERR(base);
4031  */
4032 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4033 					  struct resource *res)
4034 {
4035 	resource_size_t size;
4036 	const char *name;
4037 	void __iomem *dest_ptr;
4038 
4039 	BUG_ON(!dev);
4040 
4041 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4042 		dev_err(dev, "invalid resource\n");
4043 		return IOMEM_ERR_PTR(-EINVAL);
4044 	}
4045 
4046 	size = resource_size(res);
4047 	name = res->name ?: dev_name(dev);
4048 
4049 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4050 		dev_err(dev, "can't request region for resource %pR\n", res);
4051 		return IOMEM_ERR_PTR(-EBUSY);
4052 	}
4053 
4054 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4055 	if (!dest_ptr) {
4056 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4057 		devm_release_mem_region(dev, res->start, size);
4058 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4059 	}
4060 
4061 	return dest_ptr;
4062 }
4063 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4064 
4065 static void __pci_set_master(struct pci_dev *dev, bool enable)
4066 {
4067 	u16 old_cmd, cmd;
4068 
4069 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4070 	if (enable)
4071 		cmd = old_cmd | PCI_COMMAND_MASTER;
4072 	else
4073 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4074 	if (cmd != old_cmd) {
4075 		pci_dbg(dev, "%s bus mastering\n",
4076 			enable ? "enabling" : "disabling");
4077 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4078 	}
4079 	dev->is_busmaster = enable;
4080 }
4081 
4082 /**
4083  * pcibios_setup - process "pci=" kernel boot arguments
4084  * @str: string used to pass in "pci=" kernel boot arguments
4085  *
4086  * Process kernel boot arguments.  This is the default implementation.
4087  * Architecture specific implementations can override this as necessary.
4088  */
4089 char * __weak __init pcibios_setup(char *str)
4090 {
4091 	return str;
4092 }
4093 
4094 /**
4095  * pcibios_set_master - enable PCI bus-mastering for device dev
4096  * @dev: the PCI device to enable
4097  *
4098  * Enables PCI bus-mastering for the device.  This is the default
4099  * implementation.  Architecture specific implementations can override
4100  * this if necessary.
4101  */
4102 void __weak pcibios_set_master(struct pci_dev *dev)
4103 {
4104 	u8 lat;
4105 
4106 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4107 	if (pci_is_pcie(dev))
4108 		return;
4109 
4110 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4111 	if (lat < 16)
4112 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4113 	else if (lat > pcibios_max_latency)
4114 		lat = pcibios_max_latency;
4115 	else
4116 		return;
4117 
4118 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4119 }
4120 
4121 /**
4122  * pci_set_master - enables bus-mastering for device dev
4123  * @dev: the PCI device to enable
4124  *
4125  * Enables bus-mastering on the device and calls pcibios_set_master()
4126  * to do the needed arch specific settings.
4127  */
4128 void pci_set_master(struct pci_dev *dev)
4129 {
4130 	__pci_set_master(dev, true);
4131 	pcibios_set_master(dev);
4132 }
4133 EXPORT_SYMBOL(pci_set_master);
4134 
4135 /**
4136  * pci_clear_master - disables bus-mastering for device dev
4137  * @dev: the PCI device to disable
4138  */
4139 void pci_clear_master(struct pci_dev *dev)
4140 {
4141 	__pci_set_master(dev, false);
4142 }
4143 EXPORT_SYMBOL(pci_clear_master);
4144 
4145 /**
4146  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4147  * @dev: the PCI device for which MWI is to be enabled
4148  *
4149  * Helper function for pci_set_mwi.
4150  * Originally copied from drivers/net/acenic.c.
4151  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4152  *
4153  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4154  */
4155 int pci_set_cacheline_size(struct pci_dev *dev)
4156 {
4157 	u8 cacheline_size;
4158 
4159 	if (!pci_cache_line_size)
4160 		return -EINVAL;
4161 
4162 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4163 	   equal to or multiple of the right value. */
4164 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4165 	if (cacheline_size >= pci_cache_line_size &&
4166 	    (cacheline_size % pci_cache_line_size) == 0)
4167 		return 0;
4168 
4169 	/* Write the correct value. */
4170 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4171 	/* Read it back. */
4172 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4173 	if (cacheline_size == pci_cache_line_size)
4174 		return 0;
4175 
4176 	pci_info(dev, "cache line size of %d is not supported\n",
4177 		   pci_cache_line_size << 2);
4178 
4179 	return -EINVAL;
4180 }
4181 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4182 
4183 /**
4184  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4185  * @dev: the PCI device for which MWI is enabled
4186  *
4187  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4188  *
4189  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4190  */
4191 int pci_set_mwi(struct pci_dev *dev)
4192 {
4193 #ifdef PCI_DISABLE_MWI
4194 	return 0;
4195 #else
4196 	int rc;
4197 	u16 cmd;
4198 
4199 	rc = pci_set_cacheline_size(dev);
4200 	if (rc)
4201 		return rc;
4202 
4203 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4204 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4205 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4206 		cmd |= PCI_COMMAND_INVALIDATE;
4207 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4208 	}
4209 	return 0;
4210 #endif
4211 }
4212 EXPORT_SYMBOL(pci_set_mwi);
4213 
4214 /**
4215  * pcim_set_mwi - a device-managed pci_set_mwi()
4216  * @dev: the PCI device for which MWI is enabled
4217  *
4218  * Managed pci_set_mwi().
4219  *
4220  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4221  */
4222 int pcim_set_mwi(struct pci_dev *dev)
4223 {
4224 	struct pci_devres *dr;
4225 
4226 	dr = find_pci_dr(dev);
4227 	if (!dr)
4228 		return -ENOMEM;
4229 
4230 	dr->mwi = 1;
4231 	return pci_set_mwi(dev);
4232 }
4233 EXPORT_SYMBOL(pcim_set_mwi);
4234 
4235 /**
4236  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4237  * @dev: the PCI device for which MWI is enabled
4238  *
4239  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4240  * Callers are not required to check the return value.
4241  *
4242  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4243  */
4244 int pci_try_set_mwi(struct pci_dev *dev)
4245 {
4246 #ifdef PCI_DISABLE_MWI
4247 	return 0;
4248 #else
4249 	return pci_set_mwi(dev);
4250 #endif
4251 }
4252 EXPORT_SYMBOL(pci_try_set_mwi);
4253 
4254 /**
4255  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4256  * @dev: the PCI device to disable
4257  *
4258  * Disables PCI Memory-Write-Invalidate transaction on the device
4259  */
4260 void pci_clear_mwi(struct pci_dev *dev)
4261 {
4262 #ifndef PCI_DISABLE_MWI
4263 	u16 cmd;
4264 
4265 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4266 	if (cmd & PCI_COMMAND_INVALIDATE) {
4267 		cmd &= ~PCI_COMMAND_INVALIDATE;
4268 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4269 	}
4270 #endif
4271 }
4272 EXPORT_SYMBOL(pci_clear_mwi);
4273 
4274 /**
4275  * pci_intx - enables/disables PCI INTx for device dev
4276  * @pdev: the PCI device to operate on
4277  * @enable: boolean: whether to enable or disable PCI INTx
4278  *
4279  * Enables/disables PCI INTx for device @pdev
4280  */
4281 void pci_intx(struct pci_dev *pdev, int enable)
4282 {
4283 	u16 pci_command, new;
4284 
4285 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4286 
4287 	if (enable)
4288 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4289 	else
4290 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4291 
4292 	if (new != pci_command) {
4293 		struct pci_devres *dr;
4294 
4295 		pci_write_config_word(pdev, PCI_COMMAND, new);
4296 
4297 		dr = find_pci_dr(pdev);
4298 		if (dr && !dr->restore_intx) {
4299 			dr->restore_intx = 1;
4300 			dr->orig_intx = !enable;
4301 		}
4302 	}
4303 }
4304 EXPORT_SYMBOL_GPL(pci_intx);
4305 
4306 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4307 {
4308 	struct pci_bus *bus = dev->bus;
4309 	bool mask_updated = true;
4310 	u32 cmd_status_dword;
4311 	u16 origcmd, newcmd;
4312 	unsigned long flags;
4313 	bool irq_pending;
4314 
4315 	/*
4316 	 * We do a single dword read to retrieve both command and status.
4317 	 * Document assumptions that make this possible.
4318 	 */
4319 	BUILD_BUG_ON(PCI_COMMAND % 4);
4320 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4321 
4322 	raw_spin_lock_irqsave(&pci_lock, flags);
4323 
4324 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4325 
4326 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4327 
4328 	/*
4329 	 * Check interrupt status register to see whether our device
4330 	 * triggered the interrupt (when masking) or the next IRQ is
4331 	 * already pending (when unmasking).
4332 	 */
4333 	if (mask != irq_pending) {
4334 		mask_updated = false;
4335 		goto done;
4336 	}
4337 
4338 	origcmd = cmd_status_dword;
4339 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4340 	if (mask)
4341 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4342 	if (newcmd != origcmd)
4343 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4344 
4345 done:
4346 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4347 
4348 	return mask_updated;
4349 }
4350 
4351 /**
4352  * pci_check_and_mask_intx - mask INTx on pending interrupt
4353  * @dev: the PCI device to operate on
4354  *
4355  * Check if the device dev has its INTx line asserted, mask it and return
4356  * true in that case. False is returned if no interrupt was pending.
4357  */
4358 bool pci_check_and_mask_intx(struct pci_dev *dev)
4359 {
4360 	return pci_check_and_set_intx_mask(dev, true);
4361 }
4362 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4363 
4364 /**
4365  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4366  * @dev: the PCI device to operate on
4367  *
4368  * Check if the device dev has its INTx line asserted, unmask it if not and
4369  * return true. False is returned and the mask remains active if there was
4370  * still an interrupt pending.
4371  */
4372 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4373 {
4374 	return pci_check_and_set_intx_mask(dev, false);
4375 }
4376 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4377 
4378 /**
4379  * pci_wait_for_pending_transaction - wait for pending transaction
4380  * @dev: the PCI device to operate on
4381  *
4382  * Return 0 if transaction is pending 1 otherwise.
4383  */
4384 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4385 {
4386 	if (!pci_is_pcie(dev))
4387 		return 1;
4388 
4389 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4390 				    PCI_EXP_DEVSTA_TRPND);
4391 }
4392 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4393 
4394 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4395 {
4396 	int delay = 1;
4397 	u32 id;
4398 
4399 	/*
4400 	 * After reset, the device should not silently discard config
4401 	 * requests, but it may still indicate that it needs more time by
4402 	 * responding to them with CRS completions.  The Root Port will
4403 	 * generally synthesize ~0 data to complete the read (except when
4404 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4405 	 * case it synthesizes 0x0001 data).
4406 	 *
4407 	 * Wait for the device to return a non-CRS completion.  Read the
4408 	 * Command register instead of Vendor ID so we don't have to
4409 	 * contend with the CRS SV value.
4410 	 */
4411 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4412 	while (id == ~0) {
4413 		if (delay > timeout) {
4414 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4415 				 delay - 1, reset_type);
4416 			return -ENOTTY;
4417 		}
4418 
4419 		if (delay > 1000)
4420 			pci_info(dev, "not ready %dms after %s; waiting\n",
4421 				 delay - 1, reset_type);
4422 
4423 		msleep(delay);
4424 		delay *= 2;
4425 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4426 	}
4427 
4428 	if (delay > 1000)
4429 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4430 			 reset_type);
4431 
4432 	return 0;
4433 }
4434 
4435 /**
4436  * pcie_has_flr - check if a device supports function level resets
4437  * @dev: device to check
4438  *
4439  * Returns true if the device advertises support for PCIe function level
4440  * resets.
4441  */
4442 bool pcie_has_flr(struct pci_dev *dev)
4443 {
4444 	u32 cap;
4445 
4446 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4447 		return false;
4448 
4449 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4450 	return cap & PCI_EXP_DEVCAP_FLR;
4451 }
4452 EXPORT_SYMBOL_GPL(pcie_has_flr);
4453 
4454 /**
4455  * pcie_flr - initiate a PCIe function level reset
4456  * @dev: device to reset
4457  *
4458  * Initiate a function level reset on @dev.  The caller should ensure the
4459  * device supports FLR before calling this function, e.g. by using the
4460  * pcie_has_flr() helper.
4461  */
4462 int pcie_flr(struct pci_dev *dev)
4463 {
4464 	if (!pci_wait_for_pending_transaction(dev))
4465 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4466 
4467 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4468 
4469 	if (dev->imm_ready)
4470 		return 0;
4471 
4472 	/*
4473 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4474 	 * 100ms, but may silently discard requests while the FLR is in
4475 	 * progress.  Wait 100ms before trying to access the device.
4476 	 */
4477 	msleep(100);
4478 
4479 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4480 }
4481 EXPORT_SYMBOL_GPL(pcie_flr);
4482 
4483 static int pci_af_flr(struct pci_dev *dev, int probe)
4484 {
4485 	int pos;
4486 	u8 cap;
4487 
4488 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4489 	if (!pos)
4490 		return -ENOTTY;
4491 
4492 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4493 		return -ENOTTY;
4494 
4495 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4496 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4497 		return -ENOTTY;
4498 
4499 	if (probe)
4500 		return 0;
4501 
4502 	/*
4503 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4504 	 * is used, so we use the conrol offset rather than status and shift
4505 	 * the test bit to match.
4506 	 */
4507 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4508 				 PCI_AF_STATUS_TP << 8))
4509 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4510 
4511 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4512 
4513 	if (dev->imm_ready)
4514 		return 0;
4515 
4516 	/*
4517 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4518 	 * updated 27 July 2006; a device must complete an FLR within
4519 	 * 100ms, but may silently discard requests while the FLR is in
4520 	 * progress.  Wait 100ms before trying to access the device.
4521 	 */
4522 	msleep(100);
4523 
4524 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4525 }
4526 
4527 /**
4528  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4529  * @dev: Device to reset.
4530  * @probe: If set, only check if the device can be reset this way.
4531  *
4532  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4533  * unset, it will be reinitialized internally when going from PCI_D3hot to
4534  * PCI_D0.  If that's the case and the device is not in a low-power state
4535  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4536  *
4537  * NOTE: This causes the caller to sleep for twice the device power transition
4538  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4539  * by default (i.e. unless the @dev's d3_delay field has a different value).
4540  * Moreover, only devices in D0 can be reset by this function.
4541  */
4542 static int pci_pm_reset(struct pci_dev *dev, int probe)
4543 {
4544 	u16 csr;
4545 
4546 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4547 		return -ENOTTY;
4548 
4549 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4550 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4551 		return -ENOTTY;
4552 
4553 	if (probe)
4554 		return 0;
4555 
4556 	if (dev->current_state != PCI_D0)
4557 		return -EINVAL;
4558 
4559 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4560 	csr |= PCI_D3hot;
4561 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4562 	pci_dev_d3_sleep(dev);
4563 
4564 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4565 	csr |= PCI_D0;
4566 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4567 	pci_dev_d3_sleep(dev);
4568 
4569 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4570 }
4571 /**
4572  * pcie_wait_for_link - Wait until link is active or inactive
4573  * @pdev: Bridge device
4574  * @active: waiting for active or inactive?
4575  *
4576  * Use this to wait till link becomes active or inactive.
4577  */
4578 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4579 {
4580 	int timeout = 1000;
4581 	bool ret;
4582 	u16 lnk_status;
4583 
4584 	/*
4585 	 * Some controllers might not implement link active reporting. In this
4586 	 * case, we wait for 1000 + 100 ms.
4587 	 */
4588 	if (!pdev->link_active_reporting) {
4589 		msleep(1100);
4590 		return true;
4591 	}
4592 
4593 	/*
4594 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4595 	 * after which we should expect an link active if the reset was
4596 	 * successful. If so, software must wait a minimum 100ms before sending
4597 	 * configuration requests to devices downstream this port.
4598 	 *
4599 	 * If the link fails to activate, either the device was physically
4600 	 * removed or the link is permanently failed.
4601 	 */
4602 	if (active)
4603 		msleep(20);
4604 	for (;;) {
4605 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4606 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4607 		if (ret == active)
4608 			break;
4609 		if (timeout <= 0)
4610 			break;
4611 		msleep(10);
4612 		timeout -= 10;
4613 	}
4614 	if (active && ret)
4615 		msleep(100);
4616 	else if (ret != active)
4617 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4618 			active ? "set" : "cleared");
4619 	return ret == active;
4620 }
4621 
4622 void pci_reset_secondary_bus(struct pci_dev *dev)
4623 {
4624 	u16 ctrl;
4625 
4626 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4627 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4628 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4629 
4630 	/*
4631 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4632 	 * this to 2ms to ensure that we meet the minimum requirement.
4633 	 */
4634 	msleep(2);
4635 
4636 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4637 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4638 
4639 	/*
4640 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4641 	 * Assuming a minimum 33MHz clock this results in a 1s
4642 	 * delay before we can consider subordinate devices to
4643 	 * be re-initialized.  PCIe has some ways to shorten this,
4644 	 * but we don't make use of them yet.
4645 	 */
4646 	ssleep(1);
4647 }
4648 
4649 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4650 {
4651 	pci_reset_secondary_bus(dev);
4652 }
4653 
4654 /**
4655  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4656  * @dev: Bridge device
4657  *
4658  * Use the bridge control register to assert reset on the secondary bus.
4659  * Devices on the secondary bus are left in power-on state.
4660  */
4661 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4662 {
4663 	pcibios_reset_secondary_bus(dev);
4664 
4665 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4666 }
4667 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4668 
4669 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4670 {
4671 	struct pci_dev *pdev;
4672 
4673 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4674 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4675 		return -ENOTTY;
4676 
4677 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4678 		if (pdev != dev)
4679 			return -ENOTTY;
4680 
4681 	if (probe)
4682 		return 0;
4683 
4684 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4685 }
4686 
4687 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4688 {
4689 	int rc = -ENOTTY;
4690 
4691 	if (!hotplug || !try_module_get(hotplug->owner))
4692 		return rc;
4693 
4694 	if (hotplug->ops->reset_slot)
4695 		rc = hotplug->ops->reset_slot(hotplug, probe);
4696 
4697 	module_put(hotplug->owner);
4698 
4699 	return rc;
4700 }
4701 
4702 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4703 {
4704 	struct pci_dev *pdev;
4705 
4706 	if (dev->subordinate || !dev->slot ||
4707 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4708 		return -ENOTTY;
4709 
4710 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4711 		if (pdev != dev && pdev->slot == dev->slot)
4712 			return -ENOTTY;
4713 
4714 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4715 }
4716 
4717 static void pci_dev_lock(struct pci_dev *dev)
4718 {
4719 	pci_cfg_access_lock(dev);
4720 	/* block PM suspend, driver probe, etc. */
4721 	device_lock(&dev->dev);
4722 }
4723 
4724 /* Return 1 on successful lock, 0 on contention */
4725 static int pci_dev_trylock(struct pci_dev *dev)
4726 {
4727 	if (pci_cfg_access_trylock(dev)) {
4728 		if (device_trylock(&dev->dev))
4729 			return 1;
4730 		pci_cfg_access_unlock(dev);
4731 	}
4732 
4733 	return 0;
4734 }
4735 
4736 static void pci_dev_unlock(struct pci_dev *dev)
4737 {
4738 	device_unlock(&dev->dev);
4739 	pci_cfg_access_unlock(dev);
4740 }
4741 
4742 static void pci_dev_save_and_disable(struct pci_dev *dev)
4743 {
4744 	const struct pci_error_handlers *err_handler =
4745 			dev->driver ? dev->driver->err_handler : NULL;
4746 
4747 	/*
4748 	 * dev->driver->err_handler->reset_prepare() is protected against
4749 	 * races with ->remove() by the device lock, which must be held by
4750 	 * the caller.
4751 	 */
4752 	if (err_handler && err_handler->reset_prepare)
4753 		err_handler->reset_prepare(dev);
4754 
4755 	/*
4756 	 * Wake-up device prior to save.  PM registers default to D0 after
4757 	 * reset and a simple register restore doesn't reliably return
4758 	 * to a non-D0 state anyway.
4759 	 */
4760 	pci_set_power_state(dev, PCI_D0);
4761 
4762 	pci_save_state(dev);
4763 	/*
4764 	 * Disable the device by clearing the Command register, except for
4765 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4766 	 * BARs, but also prevents the device from being Bus Master, preventing
4767 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4768 	 * compliant devices, INTx-disable prevents legacy interrupts.
4769 	 */
4770 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4771 }
4772 
4773 static void pci_dev_restore(struct pci_dev *dev)
4774 {
4775 	const struct pci_error_handlers *err_handler =
4776 			dev->driver ? dev->driver->err_handler : NULL;
4777 
4778 	pci_restore_state(dev);
4779 
4780 	/*
4781 	 * dev->driver->err_handler->reset_done() is protected against
4782 	 * races with ->remove() by the device lock, which must be held by
4783 	 * the caller.
4784 	 */
4785 	if (err_handler && err_handler->reset_done)
4786 		err_handler->reset_done(dev);
4787 }
4788 
4789 /**
4790  * __pci_reset_function_locked - reset a PCI device function while holding
4791  * the @dev mutex lock.
4792  * @dev: PCI device to reset
4793  *
4794  * Some devices allow an individual function to be reset without affecting
4795  * other functions in the same device.  The PCI device must be responsive
4796  * to PCI config space in order to use this function.
4797  *
4798  * The device function is presumed to be unused and the caller is holding
4799  * the device mutex lock when this function is called.
4800  *
4801  * Resetting the device will make the contents of PCI configuration space
4802  * random, so any caller of this must be prepared to reinitialise the
4803  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4804  * etc.
4805  *
4806  * Returns 0 if the device function was successfully reset or negative if the
4807  * device doesn't support resetting a single function.
4808  */
4809 int __pci_reset_function_locked(struct pci_dev *dev)
4810 {
4811 	int rc;
4812 
4813 	might_sleep();
4814 
4815 	/*
4816 	 * A reset method returns -ENOTTY if it doesn't support this device
4817 	 * and we should try the next method.
4818 	 *
4819 	 * If it returns 0 (success), we're finished.  If it returns any
4820 	 * other error, we're also finished: this indicates that further
4821 	 * reset mechanisms might be broken on the device.
4822 	 */
4823 	rc = pci_dev_specific_reset(dev, 0);
4824 	if (rc != -ENOTTY)
4825 		return rc;
4826 	if (pcie_has_flr(dev)) {
4827 		rc = pcie_flr(dev);
4828 		if (rc != -ENOTTY)
4829 			return rc;
4830 	}
4831 	rc = pci_af_flr(dev, 0);
4832 	if (rc != -ENOTTY)
4833 		return rc;
4834 	rc = pci_pm_reset(dev, 0);
4835 	if (rc != -ENOTTY)
4836 		return rc;
4837 	rc = pci_dev_reset_slot_function(dev, 0);
4838 	if (rc != -ENOTTY)
4839 		return rc;
4840 	return pci_parent_bus_reset(dev, 0);
4841 }
4842 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4843 
4844 /**
4845  * pci_probe_reset_function - check whether the device can be safely reset
4846  * @dev: PCI device to reset
4847  *
4848  * Some devices allow an individual function to be reset without affecting
4849  * other functions in the same device.  The PCI device must be responsive
4850  * to PCI config space in order to use this function.
4851  *
4852  * Returns 0 if the device function can be reset or negative if the
4853  * device doesn't support resetting a single function.
4854  */
4855 int pci_probe_reset_function(struct pci_dev *dev)
4856 {
4857 	int rc;
4858 
4859 	might_sleep();
4860 
4861 	rc = pci_dev_specific_reset(dev, 1);
4862 	if (rc != -ENOTTY)
4863 		return rc;
4864 	if (pcie_has_flr(dev))
4865 		return 0;
4866 	rc = pci_af_flr(dev, 1);
4867 	if (rc != -ENOTTY)
4868 		return rc;
4869 	rc = pci_pm_reset(dev, 1);
4870 	if (rc != -ENOTTY)
4871 		return rc;
4872 	rc = pci_dev_reset_slot_function(dev, 1);
4873 	if (rc != -ENOTTY)
4874 		return rc;
4875 
4876 	return pci_parent_bus_reset(dev, 1);
4877 }
4878 
4879 /**
4880  * pci_reset_function - quiesce and reset a PCI device function
4881  * @dev: PCI device to reset
4882  *
4883  * Some devices allow an individual function to be reset without affecting
4884  * other functions in the same device.  The PCI device must be responsive
4885  * to PCI config space in order to use this function.
4886  *
4887  * This function does not just reset the PCI portion of a device, but
4888  * clears all the state associated with the device.  This function differs
4889  * from __pci_reset_function_locked() in that it saves and restores device state
4890  * over the reset and takes the PCI device lock.
4891  *
4892  * Returns 0 if the device function was successfully reset or negative if the
4893  * device doesn't support resetting a single function.
4894  */
4895 int pci_reset_function(struct pci_dev *dev)
4896 {
4897 	int rc;
4898 
4899 	if (!dev->reset_fn)
4900 		return -ENOTTY;
4901 
4902 	pci_dev_lock(dev);
4903 	pci_dev_save_and_disable(dev);
4904 
4905 	rc = __pci_reset_function_locked(dev);
4906 
4907 	pci_dev_restore(dev);
4908 	pci_dev_unlock(dev);
4909 
4910 	return rc;
4911 }
4912 EXPORT_SYMBOL_GPL(pci_reset_function);
4913 
4914 /**
4915  * pci_reset_function_locked - quiesce and reset a PCI device function
4916  * @dev: PCI device to reset
4917  *
4918  * Some devices allow an individual function to be reset without affecting
4919  * other functions in the same device.  The PCI device must be responsive
4920  * to PCI config space in order to use this function.
4921  *
4922  * This function does not just reset the PCI portion of a device, but
4923  * clears all the state associated with the device.  This function differs
4924  * from __pci_reset_function_locked() in that it saves and restores device state
4925  * over the reset.  It also differs from pci_reset_function() in that it
4926  * requires the PCI device lock to be held.
4927  *
4928  * Returns 0 if the device function was successfully reset or negative if the
4929  * device doesn't support resetting a single function.
4930  */
4931 int pci_reset_function_locked(struct pci_dev *dev)
4932 {
4933 	int rc;
4934 
4935 	if (!dev->reset_fn)
4936 		return -ENOTTY;
4937 
4938 	pci_dev_save_and_disable(dev);
4939 
4940 	rc = __pci_reset_function_locked(dev);
4941 
4942 	pci_dev_restore(dev);
4943 
4944 	return rc;
4945 }
4946 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4947 
4948 /**
4949  * pci_try_reset_function - quiesce and reset a PCI device function
4950  * @dev: PCI device to reset
4951  *
4952  * Same as above, except return -EAGAIN if unable to lock device.
4953  */
4954 int pci_try_reset_function(struct pci_dev *dev)
4955 {
4956 	int rc;
4957 
4958 	if (!dev->reset_fn)
4959 		return -ENOTTY;
4960 
4961 	if (!pci_dev_trylock(dev))
4962 		return -EAGAIN;
4963 
4964 	pci_dev_save_and_disable(dev);
4965 	rc = __pci_reset_function_locked(dev);
4966 	pci_dev_restore(dev);
4967 	pci_dev_unlock(dev);
4968 
4969 	return rc;
4970 }
4971 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4972 
4973 /* Do any devices on or below this bus prevent a bus reset? */
4974 static bool pci_bus_resetable(struct pci_bus *bus)
4975 {
4976 	struct pci_dev *dev;
4977 
4978 
4979 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4980 		return false;
4981 
4982 	list_for_each_entry(dev, &bus->devices, bus_list) {
4983 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4984 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4985 			return false;
4986 	}
4987 
4988 	return true;
4989 }
4990 
4991 /* Lock devices from the top of the tree down */
4992 static void pci_bus_lock(struct pci_bus *bus)
4993 {
4994 	struct pci_dev *dev;
4995 
4996 	list_for_each_entry(dev, &bus->devices, bus_list) {
4997 		pci_dev_lock(dev);
4998 		if (dev->subordinate)
4999 			pci_bus_lock(dev->subordinate);
5000 	}
5001 }
5002 
5003 /* Unlock devices from the bottom of the tree up */
5004 static void pci_bus_unlock(struct pci_bus *bus)
5005 {
5006 	struct pci_dev *dev;
5007 
5008 	list_for_each_entry(dev, &bus->devices, bus_list) {
5009 		if (dev->subordinate)
5010 			pci_bus_unlock(dev->subordinate);
5011 		pci_dev_unlock(dev);
5012 	}
5013 }
5014 
5015 /* Return 1 on successful lock, 0 on contention */
5016 static int pci_bus_trylock(struct pci_bus *bus)
5017 {
5018 	struct pci_dev *dev;
5019 
5020 	list_for_each_entry(dev, &bus->devices, bus_list) {
5021 		if (!pci_dev_trylock(dev))
5022 			goto unlock;
5023 		if (dev->subordinate) {
5024 			if (!pci_bus_trylock(dev->subordinate)) {
5025 				pci_dev_unlock(dev);
5026 				goto unlock;
5027 			}
5028 		}
5029 	}
5030 	return 1;
5031 
5032 unlock:
5033 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5034 		if (dev->subordinate)
5035 			pci_bus_unlock(dev->subordinate);
5036 		pci_dev_unlock(dev);
5037 	}
5038 	return 0;
5039 }
5040 
5041 /* Do any devices on or below this slot prevent a bus reset? */
5042 static bool pci_slot_resetable(struct pci_slot *slot)
5043 {
5044 	struct pci_dev *dev;
5045 
5046 	if (slot->bus->self &&
5047 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5048 		return false;
5049 
5050 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5051 		if (!dev->slot || dev->slot != slot)
5052 			continue;
5053 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5054 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5055 			return false;
5056 	}
5057 
5058 	return true;
5059 }
5060 
5061 /* Lock devices from the top of the tree down */
5062 static void pci_slot_lock(struct pci_slot *slot)
5063 {
5064 	struct pci_dev *dev;
5065 
5066 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5067 		if (!dev->slot || dev->slot != slot)
5068 			continue;
5069 		pci_dev_lock(dev);
5070 		if (dev->subordinate)
5071 			pci_bus_lock(dev->subordinate);
5072 	}
5073 }
5074 
5075 /* Unlock devices from the bottom of the tree up */
5076 static void pci_slot_unlock(struct pci_slot *slot)
5077 {
5078 	struct pci_dev *dev;
5079 
5080 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5081 		if (!dev->slot || dev->slot != slot)
5082 			continue;
5083 		if (dev->subordinate)
5084 			pci_bus_unlock(dev->subordinate);
5085 		pci_dev_unlock(dev);
5086 	}
5087 }
5088 
5089 /* Return 1 on successful lock, 0 on contention */
5090 static int pci_slot_trylock(struct pci_slot *slot)
5091 {
5092 	struct pci_dev *dev;
5093 
5094 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5095 		if (!dev->slot || dev->slot != slot)
5096 			continue;
5097 		if (!pci_dev_trylock(dev))
5098 			goto unlock;
5099 		if (dev->subordinate) {
5100 			if (!pci_bus_trylock(dev->subordinate)) {
5101 				pci_dev_unlock(dev);
5102 				goto unlock;
5103 			}
5104 		}
5105 	}
5106 	return 1;
5107 
5108 unlock:
5109 	list_for_each_entry_continue_reverse(dev,
5110 					     &slot->bus->devices, bus_list) {
5111 		if (!dev->slot || dev->slot != slot)
5112 			continue;
5113 		if (dev->subordinate)
5114 			pci_bus_unlock(dev->subordinate);
5115 		pci_dev_unlock(dev);
5116 	}
5117 	return 0;
5118 }
5119 
5120 /*
5121  * Save and disable devices from the top of the tree down while holding
5122  * the @dev mutex lock for the entire tree.
5123  */
5124 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5125 {
5126 	struct pci_dev *dev;
5127 
5128 	list_for_each_entry(dev, &bus->devices, bus_list) {
5129 		pci_dev_save_and_disable(dev);
5130 		if (dev->subordinate)
5131 			pci_bus_save_and_disable_locked(dev->subordinate);
5132 	}
5133 }
5134 
5135 /*
5136  * Restore devices from top of the tree down while holding @dev mutex lock
5137  * for the entire tree.  Parent bridges need to be restored before we can
5138  * get to subordinate devices.
5139  */
5140 static void pci_bus_restore_locked(struct pci_bus *bus)
5141 {
5142 	struct pci_dev *dev;
5143 
5144 	list_for_each_entry(dev, &bus->devices, bus_list) {
5145 		pci_dev_restore(dev);
5146 		if (dev->subordinate)
5147 			pci_bus_restore_locked(dev->subordinate);
5148 	}
5149 }
5150 
5151 /*
5152  * Save and disable devices from the top of the tree down while holding
5153  * the @dev mutex lock for the entire tree.
5154  */
5155 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5156 {
5157 	struct pci_dev *dev;
5158 
5159 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5160 		if (!dev->slot || dev->slot != slot)
5161 			continue;
5162 		pci_dev_save_and_disable(dev);
5163 		if (dev->subordinate)
5164 			pci_bus_save_and_disable_locked(dev->subordinate);
5165 	}
5166 }
5167 
5168 /*
5169  * Restore devices from top of the tree down while holding @dev mutex lock
5170  * for the entire tree.  Parent bridges need to be restored before we can
5171  * get to subordinate devices.
5172  */
5173 static void pci_slot_restore_locked(struct pci_slot *slot)
5174 {
5175 	struct pci_dev *dev;
5176 
5177 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5178 		if (!dev->slot || dev->slot != slot)
5179 			continue;
5180 		pci_dev_restore(dev);
5181 		if (dev->subordinate)
5182 			pci_bus_restore_locked(dev->subordinate);
5183 	}
5184 }
5185 
5186 static int pci_slot_reset(struct pci_slot *slot, int probe)
5187 {
5188 	int rc;
5189 
5190 	if (!slot || !pci_slot_resetable(slot))
5191 		return -ENOTTY;
5192 
5193 	if (!probe)
5194 		pci_slot_lock(slot);
5195 
5196 	might_sleep();
5197 
5198 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5199 
5200 	if (!probe)
5201 		pci_slot_unlock(slot);
5202 
5203 	return rc;
5204 }
5205 
5206 /**
5207  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5208  * @slot: PCI slot to probe
5209  *
5210  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5211  */
5212 int pci_probe_reset_slot(struct pci_slot *slot)
5213 {
5214 	return pci_slot_reset(slot, 1);
5215 }
5216 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5217 
5218 /**
5219  * __pci_reset_slot - Try to reset a PCI slot
5220  * @slot: PCI slot to reset
5221  *
5222  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5223  * independent of other slots.  For instance, some slots may support slot power
5224  * control.  In the case of a 1:1 bus to slot architecture, this function may
5225  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5226  * Generally a slot reset should be attempted before a bus reset.  All of the
5227  * function of the slot and any subordinate buses behind the slot are reset
5228  * through this function.  PCI config space of all devices in the slot and
5229  * behind the slot is saved before and restored after reset.
5230  *
5231  * Same as above except return -EAGAIN if the slot cannot be locked
5232  */
5233 static int __pci_reset_slot(struct pci_slot *slot)
5234 {
5235 	int rc;
5236 
5237 	rc = pci_slot_reset(slot, 1);
5238 	if (rc)
5239 		return rc;
5240 
5241 	if (pci_slot_trylock(slot)) {
5242 		pci_slot_save_and_disable_locked(slot);
5243 		might_sleep();
5244 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5245 		pci_slot_restore_locked(slot);
5246 		pci_slot_unlock(slot);
5247 	} else
5248 		rc = -EAGAIN;
5249 
5250 	return rc;
5251 }
5252 
5253 static int pci_bus_reset(struct pci_bus *bus, int probe)
5254 {
5255 	int ret;
5256 
5257 	if (!bus->self || !pci_bus_resetable(bus))
5258 		return -ENOTTY;
5259 
5260 	if (probe)
5261 		return 0;
5262 
5263 	pci_bus_lock(bus);
5264 
5265 	might_sleep();
5266 
5267 	ret = pci_bridge_secondary_bus_reset(bus->self);
5268 
5269 	pci_bus_unlock(bus);
5270 
5271 	return ret;
5272 }
5273 
5274 /**
5275  * pci_bus_error_reset - reset the bridge's subordinate bus
5276  * @bridge: The parent device that connects to the bus to reset
5277  *
5278  * This function will first try to reset the slots on this bus if the method is
5279  * available. If slot reset fails or is not available, this will fall back to a
5280  * secondary bus reset.
5281  */
5282 int pci_bus_error_reset(struct pci_dev *bridge)
5283 {
5284 	struct pci_bus *bus = bridge->subordinate;
5285 	struct pci_slot *slot;
5286 
5287 	if (!bus)
5288 		return -ENOTTY;
5289 
5290 	mutex_lock(&pci_slot_mutex);
5291 	if (list_empty(&bus->slots))
5292 		goto bus_reset;
5293 
5294 	list_for_each_entry(slot, &bus->slots, list)
5295 		if (pci_probe_reset_slot(slot))
5296 			goto bus_reset;
5297 
5298 	list_for_each_entry(slot, &bus->slots, list)
5299 		if (pci_slot_reset(slot, 0))
5300 			goto bus_reset;
5301 
5302 	mutex_unlock(&pci_slot_mutex);
5303 	return 0;
5304 bus_reset:
5305 	mutex_unlock(&pci_slot_mutex);
5306 	return pci_bus_reset(bridge->subordinate, 0);
5307 }
5308 
5309 /**
5310  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5311  * @bus: PCI bus to probe
5312  *
5313  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5314  */
5315 int pci_probe_reset_bus(struct pci_bus *bus)
5316 {
5317 	return pci_bus_reset(bus, 1);
5318 }
5319 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5320 
5321 /**
5322  * __pci_reset_bus - Try to reset a PCI bus
5323  * @bus: top level PCI bus to reset
5324  *
5325  * Same as above except return -EAGAIN if the bus cannot be locked
5326  */
5327 static int __pci_reset_bus(struct pci_bus *bus)
5328 {
5329 	int rc;
5330 
5331 	rc = pci_bus_reset(bus, 1);
5332 	if (rc)
5333 		return rc;
5334 
5335 	if (pci_bus_trylock(bus)) {
5336 		pci_bus_save_and_disable_locked(bus);
5337 		might_sleep();
5338 		rc = pci_bridge_secondary_bus_reset(bus->self);
5339 		pci_bus_restore_locked(bus);
5340 		pci_bus_unlock(bus);
5341 	} else
5342 		rc = -EAGAIN;
5343 
5344 	return rc;
5345 }
5346 
5347 /**
5348  * pci_reset_bus - Try to reset a PCI bus
5349  * @pdev: top level PCI device to reset via slot/bus
5350  *
5351  * Same as above except return -EAGAIN if the bus cannot be locked
5352  */
5353 int pci_reset_bus(struct pci_dev *pdev)
5354 {
5355 	return (!pci_probe_reset_slot(pdev->slot)) ?
5356 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5357 }
5358 EXPORT_SYMBOL_GPL(pci_reset_bus);
5359 
5360 /**
5361  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5362  * @dev: PCI device to query
5363  *
5364  * Returns mmrbc: maximum designed memory read count in bytes or
5365  * appropriate error value.
5366  */
5367 int pcix_get_max_mmrbc(struct pci_dev *dev)
5368 {
5369 	int cap;
5370 	u32 stat;
5371 
5372 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5373 	if (!cap)
5374 		return -EINVAL;
5375 
5376 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5377 		return -EINVAL;
5378 
5379 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5380 }
5381 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5382 
5383 /**
5384  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5385  * @dev: PCI device to query
5386  *
5387  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5388  * value.
5389  */
5390 int pcix_get_mmrbc(struct pci_dev *dev)
5391 {
5392 	int cap;
5393 	u16 cmd;
5394 
5395 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5396 	if (!cap)
5397 		return -EINVAL;
5398 
5399 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5400 		return -EINVAL;
5401 
5402 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5403 }
5404 EXPORT_SYMBOL(pcix_get_mmrbc);
5405 
5406 /**
5407  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5408  * @dev: PCI device to query
5409  * @mmrbc: maximum memory read count in bytes
5410  *    valid values are 512, 1024, 2048, 4096
5411  *
5412  * If possible sets maximum memory read byte count, some bridges have errata
5413  * that prevent this.
5414  */
5415 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5416 {
5417 	int cap;
5418 	u32 stat, v, o;
5419 	u16 cmd;
5420 
5421 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5422 		return -EINVAL;
5423 
5424 	v = ffs(mmrbc) - 10;
5425 
5426 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5427 	if (!cap)
5428 		return -EINVAL;
5429 
5430 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5431 		return -EINVAL;
5432 
5433 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5434 		return -E2BIG;
5435 
5436 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5437 		return -EINVAL;
5438 
5439 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5440 	if (o != v) {
5441 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5442 			return -EIO;
5443 
5444 		cmd &= ~PCI_X_CMD_MAX_READ;
5445 		cmd |= v << 2;
5446 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5447 			return -EIO;
5448 	}
5449 	return 0;
5450 }
5451 EXPORT_SYMBOL(pcix_set_mmrbc);
5452 
5453 /**
5454  * pcie_get_readrq - get PCI Express read request size
5455  * @dev: PCI device to query
5456  *
5457  * Returns maximum memory read request in bytes or appropriate error value.
5458  */
5459 int pcie_get_readrq(struct pci_dev *dev)
5460 {
5461 	u16 ctl;
5462 
5463 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5464 
5465 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5466 }
5467 EXPORT_SYMBOL(pcie_get_readrq);
5468 
5469 /**
5470  * pcie_set_readrq - set PCI Express maximum memory read request
5471  * @dev: PCI device to query
5472  * @rq: maximum memory read count in bytes
5473  *    valid values are 128, 256, 512, 1024, 2048, 4096
5474  *
5475  * If possible sets maximum memory read request in bytes
5476  */
5477 int pcie_set_readrq(struct pci_dev *dev, int rq)
5478 {
5479 	u16 v;
5480 
5481 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5482 		return -EINVAL;
5483 
5484 	/*
5485 	 * If using the "performance" PCIe config, we clamp the read rq
5486 	 * size to the max packet size to keep the host bridge from
5487 	 * generating requests larger than we can cope with.
5488 	 */
5489 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5490 		int mps = pcie_get_mps(dev);
5491 
5492 		if (mps < rq)
5493 			rq = mps;
5494 	}
5495 
5496 	v = (ffs(rq) - 8) << 12;
5497 
5498 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5499 						  PCI_EXP_DEVCTL_READRQ, v);
5500 }
5501 EXPORT_SYMBOL(pcie_set_readrq);
5502 
5503 /**
5504  * pcie_get_mps - get PCI Express maximum payload size
5505  * @dev: PCI device to query
5506  *
5507  * Returns maximum payload size in bytes
5508  */
5509 int pcie_get_mps(struct pci_dev *dev)
5510 {
5511 	u16 ctl;
5512 
5513 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5514 
5515 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5516 }
5517 EXPORT_SYMBOL(pcie_get_mps);
5518 
5519 /**
5520  * pcie_set_mps - set PCI Express maximum payload size
5521  * @dev: PCI device to query
5522  * @mps: maximum payload size in bytes
5523  *    valid values are 128, 256, 512, 1024, 2048, 4096
5524  *
5525  * If possible sets maximum payload size
5526  */
5527 int pcie_set_mps(struct pci_dev *dev, int mps)
5528 {
5529 	u16 v;
5530 
5531 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5532 		return -EINVAL;
5533 
5534 	v = ffs(mps) - 8;
5535 	if (v > dev->pcie_mpss)
5536 		return -EINVAL;
5537 	v <<= 5;
5538 
5539 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5540 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5541 }
5542 EXPORT_SYMBOL(pcie_set_mps);
5543 
5544 /**
5545  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5546  *			      device and its bandwidth limitation
5547  * @dev: PCI device to query
5548  * @limiting_dev: storage for device causing the bandwidth limitation
5549  * @speed: storage for speed of limiting device
5550  * @width: storage for width of limiting device
5551  *
5552  * Walk up the PCI device chain and find the point where the minimum
5553  * bandwidth is available.  Return the bandwidth available there and (if
5554  * limiting_dev, speed, and width pointers are supplied) information about
5555  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5556  * raw bandwidth.
5557  */
5558 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5559 			     enum pci_bus_speed *speed,
5560 			     enum pcie_link_width *width)
5561 {
5562 	u16 lnksta;
5563 	enum pci_bus_speed next_speed;
5564 	enum pcie_link_width next_width;
5565 	u32 bw, next_bw;
5566 
5567 	if (speed)
5568 		*speed = PCI_SPEED_UNKNOWN;
5569 	if (width)
5570 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5571 
5572 	bw = 0;
5573 
5574 	while (dev) {
5575 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5576 
5577 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5578 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5579 			PCI_EXP_LNKSTA_NLW_SHIFT;
5580 
5581 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5582 
5583 		/* Check if current device limits the total bandwidth */
5584 		if (!bw || next_bw <= bw) {
5585 			bw = next_bw;
5586 
5587 			if (limiting_dev)
5588 				*limiting_dev = dev;
5589 			if (speed)
5590 				*speed = next_speed;
5591 			if (width)
5592 				*width = next_width;
5593 		}
5594 
5595 		dev = pci_upstream_bridge(dev);
5596 	}
5597 
5598 	return bw;
5599 }
5600 EXPORT_SYMBOL(pcie_bandwidth_available);
5601 
5602 /**
5603  * pcie_get_speed_cap - query for the PCI device's link speed capability
5604  * @dev: PCI device to query
5605  *
5606  * Query the PCI device speed capability.  Return the maximum link speed
5607  * supported by the device.
5608  */
5609 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5610 {
5611 	u32 lnkcap2, lnkcap;
5612 
5613 	/*
5614 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5615 	 * implementation note there recommends using the Supported Link
5616 	 * Speeds Vector in Link Capabilities 2 when supported.
5617 	 *
5618 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5619 	 * should use the Supported Link Speeds field in Link Capabilities,
5620 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5621 	 */
5622 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5623 	if (lnkcap2) { /* PCIe r3.0-compliant */
5624 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5625 			return PCIE_SPEED_16_0GT;
5626 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5627 			return PCIE_SPEED_8_0GT;
5628 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5629 			return PCIE_SPEED_5_0GT;
5630 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5631 			return PCIE_SPEED_2_5GT;
5632 		return PCI_SPEED_UNKNOWN;
5633 	}
5634 
5635 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5636 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5637 		return PCIE_SPEED_5_0GT;
5638 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5639 		return PCIE_SPEED_2_5GT;
5640 
5641 	return PCI_SPEED_UNKNOWN;
5642 }
5643 EXPORT_SYMBOL(pcie_get_speed_cap);
5644 
5645 /**
5646  * pcie_get_width_cap - query for the PCI device's link width capability
5647  * @dev: PCI device to query
5648  *
5649  * Query the PCI device width capability.  Return the maximum link width
5650  * supported by the device.
5651  */
5652 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5653 {
5654 	u32 lnkcap;
5655 
5656 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5657 	if (lnkcap)
5658 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5659 
5660 	return PCIE_LNK_WIDTH_UNKNOWN;
5661 }
5662 EXPORT_SYMBOL(pcie_get_width_cap);
5663 
5664 /**
5665  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5666  * @dev: PCI device
5667  * @speed: storage for link speed
5668  * @width: storage for link width
5669  *
5670  * Calculate a PCI device's link bandwidth by querying for its link speed
5671  * and width, multiplying them, and applying encoding overhead.  The result
5672  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5673  */
5674 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5675 			   enum pcie_link_width *width)
5676 {
5677 	*speed = pcie_get_speed_cap(dev);
5678 	*width = pcie_get_width_cap(dev);
5679 
5680 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5681 		return 0;
5682 
5683 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5684 }
5685 
5686 /**
5687  * __pcie_print_link_status - Report the PCI device's link speed and width
5688  * @dev: PCI device to query
5689  * @verbose: Print info even when enough bandwidth is available
5690  *
5691  * If the available bandwidth at the device is less than the device is
5692  * capable of, report the device's maximum possible bandwidth and the
5693  * upstream link that limits its performance.  If @verbose, always print
5694  * the available bandwidth, even if the device isn't constrained.
5695  */
5696 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5697 {
5698 	enum pcie_link_width width, width_cap;
5699 	enum pci_bus_speed speed, speed_cap;
5700 	struct pci_dev *limiting_dev = NULL;
5701 	u32 bw_avail, bw_cap;
5702 
5703 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5704 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5705 
5706 	if (bw_avail >= bw_cap && verbose)
5707 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5708 			 bw_cap / 1000, bw_cap % 1000,
5709 			 PCIE_SPEED2STR(speed_cap), width_cap);
5710 	else if (bw_avail < bw_cap)
5711 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5712 			 bw_avail / 1000, bw_avail % 1000,
5713 			 PCIE_SPEED2STR(speed), width,
5714 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5715 			 bw_cap / 1000, bw_cap % 1000,
5716 			 PCIE_SPEED2STR(speed_cap), width_cap);
5717 }
5718 
5719 /**
5720  * pcie_print_link_status - Report the PCI device's link speed and width
5721  * @dev: PCI device to query
5722  *
5723  * Report the available bandwidth at the device.
5724  */
5725 void pcie_print_link_status(struct pci_dev *dev)
5726 {
5727 	__pcie_print_link_status(dev, true);
5728 }
5729 EXPORT_SYMBOL(pcie_print_link_status);
5730 
5731 /**
5732  * pci_select_bars - Make BAR mask from the type of resource
5733  * @dev: the PCI device for which BAR mask is made
5734  * @flags: resource type mask to be selected
5735  *
5736  * This helper routine makes bar mask from the type of resource.
5737  */
5738 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5739 {
5740 	int i, bars = 0;
5741 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5742 		if (pci_resource_flags(dev, i) & flags)
5743 			bars |= (1 << i);
5744 	return bars;
5745 }
5746 EXPORT_SYMBOL(pci_select_bars);
5747 
5748 /* Some architectures require additional programming to enable VGA */
5749 static arch_set_vga_state_t arch_set_vga_state;
5750 
5751 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5752 {
5753 	arch_set_vga_state = func;	/* NULL disables */
5754 }
5755 
5756 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5757 				  unsigned int command_bits, u32 flags)
5758 {
5759 	if (arch_set_vga_state)
5760 		return arch_set_vga_state(dev, decode, command_bits,
5761 						flags);
5762 	return 0;
5763 }
5764 
5765 /**
5766  * pci_set_vga_state - set VGA decode state on device and parents if requested
5767  * @dev: the PCI device
5768  * @decode: true = enable decoding, false = disable decoding
5769  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5770  * @flags: traverse ancestors and change bridges
5771  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5772  */
5773 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5774 		      unsigned int command_bits, u32 flags)
5775 {
5776 	struct pci_bus *bus;
5777 	struct pci_dev *bridge;
5778 	u16 cmd;
5779 	int rc;
5780 
5781 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5782 
5783 	/* ARCH specific VGA enables */
5784 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5785 	if (rc)
5786 		return rc;
5787 
5788 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5789 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5790 		if (decode == true)
5791 			cmd |= command_bits;
5792 		else
5793 			cmd &= ~command_bits;
5794 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5795 	}
5796 
5797 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5798 		return 0;
5799 
5800 	bus = dev->bus;
5801 	while (bus) {
5802 		bridge = bus->self;
5803 		if (bridge) {
5804 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5805 					     &cmd);
5806 			if (decode == true)
5807 				cmd |= PCI_BRIDGE_CTL_VGA;
5808 			else
5809 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5810 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5811 					      cmd);
5812 		}
5813 		bus = bus->parent;
5814 	}
5815 	return 0;
5816 }
5817 
5818 /**
5819  * pci_add_dma_alias - Add a DMA devfn alias for a device
5820  * @dev: the PCI device for which alias is added
5821  * @devfn: alias slot and function
5822  *
5823  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5824  * which is used to program permissible bus-devfn source addresses for DMA
5825  * requests in an IOMMU.  These aliases factor into IOMMU group creation
5826  * and are useful for devices generating DMA requests beyond or different
5827  * from their logical bus-devfn.  Examples include device quirks where the
5828  * device simply uses the wrong devfn, as well as non-transparent bridges
5829  * where the alias may be a proxy for devices in another domain.
5830  *
5831  * IOMMU group creation is performed during device discovery or addition,
5832  * prior to any potential DMA mapping and therefore prior to driver probing
5833  * (especially for userspace assigned devices where IOMMU group definition
5834  * cannot be left as a userspace activity).  DMA aliases should therefore
5835  * be configured via quirks, such as the PCI fixup header quirk.
5836  */
5837 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5838 {
5839 	if (!dev->dma_alias_mask)
5840 		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5841 	if (!dev->dma_alias_mask) {
5842 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5843 		return;
5844 	}
5845 
5846 	set_bit(devfn, dev->dma_alias_mask);
5847 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5848 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5849 }
5850 
5851 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5852 {
5853 	return (dev1->dma_alias_mask &&
5854 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5855 	       (dev2->dma_alias_mask &&
5856 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5857 }
5858 
5859 bool pci_device_is_present(struct pci_dev *pdev)
5860 {
5861 	u32 v;
5862 
5863 	if (pci_dev_is_disconnected(pdev))
5864 		return false;
5865 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5866 }
5867 EXPORT_SYMBOL_GPL(pci_device_is_present);
5868 
5869 void pci_ignore_hotplug(struct pci_dev *dev)
5870 {
5871 	struct pci_dev *bridge = dev->bus->self;
5872 
5873 	dev->ignore_hotplug = 1;
5874 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5875 	if (bridge)
5876 		bridge->ignore_hotplug = 1;
5877 }
5878 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5879 
5880 resource_size_t __weak pcibios_default_alignment(void)
5881 {
5882 	return 0;
5883 }
5884 
5885 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5886 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5887 static DEFINE_SPINLOCK(resource_alignment_lock);
5888 
5889 /**
5890  * pci_specified_resource_alignment - get resource alignment specified by user.
5891  * @dev: the PCI device to get
5892  * @resize: whether or not to change resources' size when reassigning alignment
5893  *
5894  * RETURNS: Resource alignment if it is specified.
5895  *          Zero if it is not specified.
5896  */
5897 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5898 							bool *resize)
5899 {
5900 	int align_order, count;
5901 	resource_size_t align = pcibios_default_alignment();
5902 	const char *p;
5903 	int ret;
5904 
5905 	spin_lock(&resource_alignment_lock);
5906 	p = resource_alignment_param;
5907 	if (!*p && !align)
5908 		goto out;
5909 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5910 		align = 0;
5911 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5912 		goto out;
5913 	}
5914 
5915 	while (*p) {
5916 		count = 0;
5917 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5918 							p[count] == '@') {
5919 			p += count + 1;
5920 		} else {
5921 			align_order = -1;
5922 		}
5923 
5924 		ret = pci_dev_str_match(dev, p, &p);
5925 		if (ret == 1) {
5926 			*resize = true;
5927 			if (align_order == -1)
5928 				align = PAGE_SIZE;
5929 			else
5930 				align = 1 << align_order;
5931 			break;
5932 		} else if (ret < 0) {
5933 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5934 			       p);
5935 			break;
5936 		}
5937 
5938 		if (*p != ';' && *p != ',') {
5939 			/* End of param or invalid format */
5940 			break;
5941 		}
5942 		p++;
5943 	}
5944 out:
5945 	spin_unlock(&resource_alignment_lock);
5946 	return align;
5947 }
5948 
5949 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5950 					   resource_size_t align, bool resize)
5951 {
5952 	struct resource *r = &dev->resource[bar];
5953 	resource_size_t size;
5954 
5955 	if (!(r->flags & IORESOURCE_MEM))
5956 		return;
5957 
5958 	if (r->flags & IORESOURCE_PCI_FIXED) {
5959 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5960 			 bar, r, (unsigned long long)align);
5961 		return;
5962 	}
5963 
5964 	size = resource_size(r);
5965 	if (size >= align)
5966 		return;
5967 
5968 	/*
5969 	 * Increase the alignment of the resource.  There are two ways we
5970 	 * can do this:
5971 	 *
5972 	 * 1) Increase the size of the resource.  BARs are aligned on their
5973 	 *    size, so when we reallocate space for this resource, we'll
5974 	 *    allocate it with the larger alignment.  This also prevents
5975 	 *    assignment of any other BARs inside the alignment region, so
5976 	 *    if we're requesting page alignment, this means no other BARs
5977 	 *    will share the page.
5978 	 *
5979 	 *    The disadvantage is that this makes the resource larger than
5980 	 *    the hardware BAR, which may break drivers that compute things
5981 	 *    based on the resource size, e.g., to find registers at a
5982 	 *    fixed offset before the end of the BAR.
5983 	 *
5984 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5985 	 *    set r->start to the desired alignment.  By itself this
5986 	 *    doesn't prevent other BARs being put inside the alignment
5987 	 *    region, but if we realign *every* resource of every device in
5988 	 *    the system, none of them will share an alignment region.
5989 	 *
5990 	 * When the user has requested alignment for only some devices via
5991 	 * the "pci=resource_alignment" argument, "resize" is true and we
5992 	 * use the first method.  Otherwise we assume we're aligning all
5993 	 * devices and we use the second.
5994 	 */
5995 
5996 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5997 		 bar, r, (unsigned long long)align);
5998 
5999 	if (resize) {
6000 		r->start = 0;
6001 		r->end = align - 1;
6002 	} else {
6003 		r->flags &= ~IORESOURCE_SIZEALIGN;
6004 		r->flags |= IORESOURCE_STARTALIGN;
6005 		r->start = align;
6006 		r->end = r->start + size - 1;
6007 	}
6008 	r->flags |= IORESOURCE_UNSET;
6009 }
6010 
6011 /*
6012  * This function disables memory decoding and releases memory resources
6013  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6014  * It also rounds up size to specified alignment.
6015  * Later on, the kernel will assign page-aligned memory resource back
6016  * to the device.
6017  */
6018 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6019 {
6020 	int i;
6021 	struct resource *r;
6022 	resource_size_t align;
6023 	u16 command;
6024 	bool resize = false;
6025 
6026 	/*
6027 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6028 	 * 3.4.1.11.  Their resources are allocated from the space
6029 	 * described by the VF BARx register in the PF's SR-IOV capability.
6030 	 * We can't influence their alignment here.
6031 	 */
6032 	if (dev->is_virtfn)
6033 		return;
6034 
6035 	/* check if specified PCI is target device to reassign */
6036 	align = pci_specified_resource_alignment(dev, &resize);
6037 	if (!align)
6038 		return;
6039 
6040 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6041 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6042 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6043 		return;
6044 	}
6045 
6046 	pci_read_config_word(dev, PCI_COMMAND, &command);
6047 	command &= ~PCI_COMMAND_MEMORY;
6048 	pci_write_config_word(dev, PCI_COMMAND, command);
6049 
6050 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6051 		pci_request_resource_alignment(dev, i, align, resize);
6052 
6053 	/*
6054 	 * Need to disable bridge's resource window,
6055 	 * to enable the kernel to reassign new resource
6056 	 * window later on.
6057 	 */
6058 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6059 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6060 			r = &dev->resource[i];
6061 			if (!(r->flags & IORESOURCE_MEM))
6062 				continue;
6063 			r->flags |= IORESOURCE_UNSET;
6064 			r->end = resource_size(r) - 1;
6065 			r->start = 0;
6066 		}
6067 		pci_disable_bridge_window(dev);
6068 	}
6069 }
6070 
6071 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
6072 {
6073 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
6074 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
6075 	spin_lock(&resource_alignment_lock);
6076 	strncpy(resource_alignment_param, buf, count);
6077 	resource_alignment_param[count] = '\0';
6078 	spin_unlock(&resource_alignment_lock);
6079 	return count;
6080 }
6081 
6082 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
6083 {
6084 	size_t count;
6085 	spin_lock(&resource_alignment_lock);
6086 	count = snprintf(buf, size, "%s", resource_alignment_param);
6087 	spin_unlock(&resource_alignment_lock);
6088 	return count;
6089 }
6090 
6091 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6092 {
6093 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
6094 }
6095 
6096 static ssize_t resource_alignment_store(struct bus_type *bus,
6097 					const char *buf, size_t count)
6098 {
6099 	return pci_set_resource_alignment_param(buf, count);
6100 }
6101 
6102 static BUS_ATTR_RW(resource_alignment);
6103 
6104 static int __init pci_resource_alignment_sysfs_init(void)
6105 {
6106 	return bus_create_file(&pci_bus_type,
6107 					&bus_attr_resource_alignment);
6108 }
6109 late_initcall(pci_resource_alignment_sysfs_init);
6110 
6111 static void pci_no_domains(void)
6112 {
6113 #ifdef CONFIG_PCI_DOMAINS
6114 	pci_domains_supported = 0;
6115 #endif
6116 }
6117 
6118 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6119 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6120 
6121 static int pci_get_new_domain_nr(void)
6122 {
6123 	return atomic_inc_return(&__domain_nr);
6124 }
6125 
6126 static int of_pci_bus_find_domain_nr(struct device *parent)
6127 {
6128 	static int use_dt_domains = -1;
6129 	int domain = -1;
6130 
6131 	if (parent)
6132 		domain = of_get_pci_domain_nr(parent->of_node);
6133 
6134 	/*
6135 	 * Check DT domain and use_dt_domains values.
6136 	 *
6137 	 * If DT domain property is valid (domain >= 0) and
6138 	 * use_dt_domains != 0, the DT assignment is valid since this means
6139 	 * we have not previously allocated a domain number by using
6140 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6141 	 * 1, to indicate that we have just assigned a domain number from
6142 	 * DT.
6143 	 *
6144 	 * If DT domain property value is not valid (ie domain < 0), and we
6145 	 * have not previously assigned a domain number from DT
6146 	 * (use_dt_domains != 1) we should assign a domain number by
6147 	 * using the:
6148 	 *
6149 	 * pci_get_new_domain_nr()
6150 	 *
6151 	 * API and update the use_dt_domains value to keep track of method we
6152 	 * are using to assign domain numbers (use_dt_domains = 0).
6153 	 *
6154 	 * All other combinations imply we have a platform that is trying
6155 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6156 	 * which is a recipe for domain mishandling and it is prevented by
6157 	 * invalidating the domain value (domain = -1) and printing a
6158 	 * corresponding error.
6159 	 */
6160 	if (domain >= 0 && use_dt_domains) {
6161 		use_dt_domains = 1;
6162 	} else if (domain < 0 && use_dt_domains != 1) {
6163 		use_dt_domains = 0;
6164 		domain = pci_get_new_domain_nr();
6165 	} else {
6166 		if (parent)
6167 			pr_err("Node %pOF has ", parent->of_node);
6168 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6169 		domain = -1;
6170 	}
6171 
6172 	return domain;
6173 }
6174 
6175 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6176 {
6177 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6178 			       acpi_pci_bus_find_domain_nr(bus);
6179 }
6180 #endif
6181 
6182 /**
6183  * pci_ext_cfg_avail - can we access extended PCI config space?
6184  *
6185  * Returns 1 if we can access PCI extended config space (offsets
6186  * greater than 0xff). This is the default implementation. Architecture
6187  * implementations can override this.
6188  */
6189 int __weak pci_ext_cfg_avail(void)
6190 {
6191 	return 1;
6192 }
6193 
6194 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6195 {
6196 }
6197 EXPORT_SYMBOL(pci_fixup_cardbus);
6198 
6199 static int __init pci_setup(char *str)
6200 {
6201 	while (str) {
6202 		char *k = strchr(str, ',');
6203 		if (k)
6204 			*k++ = 0;
6205 		if (*str && (str = pcibios_setup(str)) && *str) {
6206 			if (!strcmp(str, "nomsi")) {
6207 				pci_no_msi();
6208 			} else if (!strncmp(str, "noats", 5)) {
6209 				pr_info("PCIe: ATS is disabled\n");
6210 				pcie_ats_disabled = true;
6211 			} else if (!strcmp(str, "noaer")) {
6212 				pci_no_aer();
6213 			} else if (!strcmp(str, "earlydump")) {
6214 				pci_early_dump = true;
6215 			} else if (!strncmp(str, "realloc=", 8)) {
6216 				pci_realloc_get_opt(str + 8);
6217 			} else if (!strncmp(str, "realloc", 7)) {
6218 				pci_realloc_get_opt("on");
6219 			} else if (!strcmp(str, "nodomains")) {
6220 				pci_no_domains();
6221 			} else if (!strncmp(str, "noari", 5)) {
6222 				pcie_ari_disabled = true;
6223 			} else if (!strncmp(str, "cbiosize=", 9)) {
6224 				pci_cardbus_io_size = memparse(str + 9, &str);
6225 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6226 				pci_cardbus_mem_size = memparse(str + 10, &str);
6227 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6228 				pci_set_resource_alignment_param(str + 19,
6229 							strlen(str + 19));
6230 			} else if (!strncmp(str, "ecrc=", 5)) {
6231 				pcie_ecrc_get_policy(str + 5);
6232 			} else if (!strncmp(str, "hpiosize=", 9)) {
6233 				pci_hotplug_io_size = memparse(str + 9, &str);
6234 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6235 				pci_hotplug_mem_size = memparse(str + 10, &str);
6236 			} else if (!strncmp(str, "hpbussize=", 10)) {
6237 				pci_hotplug_bus_size =
6238 					simple_strtoul(str + 10, &str, 0);
6239 				if (pci_hotplug_bus_size > 0xff)
6240 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6241 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6242 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6243 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6244 				pcie_bus_config = PCIE_BUS_SAFE;
6245 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6246 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6247 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6248 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6249 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6250 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6251 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6252 				disable_acs_redir_param = str + 18;
6253 			} else {
6254 				pr_err("PCI: Unknown option `%s'\n", str);
6255 			}
6256 		}
6257 		str = k;
6258 	}
6259 	return 0;
6260 }
6261 early_param("pci", pci_setup);
6262 
6263 /*
6264  * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point
6265  * to data in the __initdata section which will be freed after the init
6266  * sequence is complete. We can't allocate memory in pci_setup() because some
6267  * architectures do not have any memory allocation service available during
6268  * an early_param() call. So we allocate memory and copy the variable here
6269  * before the init section is freed.
6270  */
6271 static int __init pci_realloc_setup_params(void)
6272 {
6273 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6274 
6275 	return 0;
6276 }
6277 pure_initcall(pci_realloc_setup_params);
6278