1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3hot_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3hot_delay; 67 68 if (delay < pci_pm_d3hot_delay) 69 delay = pci_pm_d3hot_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 88 /* hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 /* 91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 93 * pci=hpmemsize=nnM overrides both 94 */ 95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 97 98 #define DEFAULT_HOTPLUG_BUS_SIZE 1 99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 100 101 102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 105 #elif defined CONFIG_PCIE_BUS_SAFE 106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 109 #elif defined CONFIG_PCIE_BUS_PEER2PEER 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 111 #else 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 113 #endif 114 115 /* 116 * The default CLS is used if arch didn't set CLS explicitly and not 117 * all pci devices agree on the same value. Arch can override either 118 * the dfl or actual value as it sees fit. Don't forget this is 119 * measured in 32-bit words, not bytes. 120 */ 121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 122 u8 pci_cache_line_size; 123 124 /* 125 * If we set up a device for bus mastering, we need to check the latency 126 * timer as certain BIOSes forget to set it properly. 127 */ 128 unsigned int pcibios_max_latency = 255; 129 130 /* If set, the PCIe ARI capability will not be used. */ 131 static bool pcie_ari_disabled; 132 133 /* If set, the PCIe ATS capability will not be used. */ 134 static bool pcie_ats_disabled; 135 136 /* If set, the PCI config space of each device is printed during boot. */ 137 bool pci_early_dump; 138 139 bool pci_ats_disabled(void) 140 { 141 return pcie_ats_disabled; 142 } 143 EXPORT_SYMBOL_GPL(pci_ats_disabled); 144 145 /* Disable bridge_d3 for all PCIe ports */ 146 static bool pci_bridge_d3_disable; 147 /* Force bridge_d3 for all PCIe ports */ 148 static bool pci_bridge_d3_force; 149 150 static int __init pcie_port_pm_setup(char *str) 151 { 152 if (!strcmp(str, "off")) 153 pci_bridge_d3_disable = true; 154 else if (!strcmp(str, "force")) 155 pci_bridge_d3_force = true; 156 return 1; 157 } 158 __setup("pcie_port_pm=", pcie_port_pm_setup); 159 160 /* Time to wait after a reset for device to become responsive */ 161 #define PCIE_RESET_READY_POLL_MS 60000 162 163 /** 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 165 * @bus: pointer to PCI bus structure to search 166 * 167 * Given a PCI bus, returns the highest PCI bus number present in the set 168 * including the given PCI bus and its list of child PCI buses. 169 */ 170 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 171 { 172 struct pci_bus *tmp; 173 unsigned char max, n; 174 175 max = bus->busn_res.end; 176 list_for_each_entry(tmp, &bus->children, node) { 177 n = pci_bus_max_busnr(tmp); 178 if (n > max) 179 max = n; 180 } 181 return max; 182 } 183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 184 185 /** 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 187 * @pdev: the PCI device 188 * 189 * Returns error bits set in PCI_STATUS and clears them. 190 */ 191 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 192 { 193 u16 status; 194 int ret; 195 196 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 197 if (ret != PCIBIOS_SUCCESSFUL) 198 return -EIO; 199 200 status &= PCI_STATUS_ERROR_BITS; 201 if (status) 202 pci_write_config_word(pdev, PCI_STATUS, status); 203 204 return status; 205 } 206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 207 208 #ifdef CONFIG_HAS_IOMEM 209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 210 { 211 struct resource *res = &pdev->resource[bar]; 212 213 /* 214 * Make sure the BAR is actually a memory resource, not an IO resource 215 */ 216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 218 return NULL; 219 } 220 return ioremap(res->start, resource_size(res)); 221 } 222 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 223 224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 225 { 226 /* 227 * Make sure the BAR is actually a memory resource, not an IO resource 228 */ 229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 230 WARN_ON(1); 231 return NULL; 232 } 233 return ioremap_wc(pci_resource_start(pdev, bar), 234 pci_resource_len(pdev, bar)); 235 } 236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 237 #endif 238 239 /** 240 * pci_dev_str_match_path - test if a path string matches a device 241 * @dev: the PCI device to test 242 * @path: string to match the device against 243 * @endptr: pointer to the string after the match 244 * 245 * Test if a string (typically from a kernel parameter) formatted as a 246 * path of device/function addresses matches a PCI device. The string must 247 * be of the form: 248 * 249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 250 * 251 * A path for a device can be obtained using 'lspci -t'. Using a path 252 * is more robust against bus renumbering than using only a single bus, 253 * device and function address. 254 * 255 * Returns 1 if the string matches the device, 0 if it does not and 256 * a negative error code if it fails to parse the string. 257 */ 258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 259 const char **endptr) 260 { 261 int ret; 262 int seg, bus, slot, func; 263 char *wpath, *p; 264 char end; 265 266 *endptr = strchrnul(path, ';'); 267 268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 269 if (!wpath) 270 return -ENOMEM; 271 272 while (1) { 273 p = strrchr(wpath, '/'); 274 if (!p) 275 break; 276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 277 if (ret != 2) { 278 ret = -EINVAL; 279 goto free_and_exit; 280 } 281 282 if (dev->devfn != PCI_DEVFN(slot, func)) { 283 ret = 0; 284 goto free_and_exit; 285 } 286 287 /* 288 * Note: we don't need to get a reference to the upstream 289 * bridge because we hold a reference to the top level 290 * device which should hold a reference to the bridge, 291 * and so on. 292 */ 293 dev = pci_upstream_bridge(dev); 294 if (!dev) { 295 ret = 0; 296 goto free_and_exit; 297 } 298 299 *p = 0; 300 } 301 302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 303 &func, &end); 304 if (ret != 4) { 305 seg = 0; 306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 307 if (ret != 3) { 308 ret = -EINVAL; 309 goto free_and_exit; 310 } 311 } 312 313 ret = (seg == pci_domain_nr(dev->bus) && 314 bus == dev->bus->number && 315 dev->devfn == PCI_DEVFN(slot, func)); 316 317 free_and_exit: 318 kfree(wpath); 319 return ret; 320 } 321 322 /** 323 * pci_dev_str_match - test if a string matches a device 324 * @dev: the PCI device to test 325 * @p: string to match the device against 326 * @endptr: pointer to the string after the match 327 * 328 * Test if a string (typically from a kernel parameter) matches a specified 329 * PCI device. The string may be of one of the following formats: 330 * 331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 333 * 334 * The first format specifies a PCI bus/device/function address which 335 * may change if new hardware is inserted, if motherboard firmware changes, 336 * or due to changes caused in kernel parameters. If the domain is 337 * left unspecified, it is taken to be 0. In order to be robust against 338 * bus renumbering issues, a path of PCI device/function numbers may be used 339 * to address the specific device. The path for a device can be determined 340 * through the use of 'lspci -t'. 341 * 342 * The second format matches devices using IDs in the configuration 343 * space which may match multiple devices in the system. A value of 0 344 * for any field will match all devices. (Note: this differs from 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 346 * legacy reasons and convenience so users don't have to specify 347 * FFFFFFFFs on the command line.) 348 * 349 * Returns 1 if the string matches the device, 0 if it does not and 350 * a negative error code if the string cannot be parsed. 351 */ 352 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 353 const char **endptr) 354 { 355 int ret; 356 int count; 357 unsigned short vendor, device, subsystem_vendor, subsystem_device; 358 359 if (strncmp(p, "pci:", 4) == 0) { 360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 361 p += 4; 362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 363 &subsystem_vendor, &subsystem_device, &count); 364 if (ret != 4) { 365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 366 if (ret != 2) 367 return -EINVAL; 368 369 subsystem_vendor = 0; 370 subsystem_device = 0; 371 } 372 373 p += count; 374 375 if ((!vendor || vendor == dev->vendor) && 376 (!device || device == dev->device) && 377 (!subsystem_vendor || 378 subsystem_vendor == dev->subsystem_vendor) && 379 (!subsystem_device || 380 subsystem_device == dev->subsystem_device)) 381 goto found; 382 } else { 383 /* 384 * PCI Bus, Device, Function IDs are specified 385 * (optionally, may include a path of devfns following it) 386 */ 387 ret = pci_dev_str_match_path(dev, p, &p); 388 if (ret < 0) 389 return ret; 390 else if (ret) 391 goto found; 392 } 393 394 *endptr = p; 395 return 0; 396 397 found: 398 *endptr = p; 399 return 1; 400 } 401 402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 403 u8 pos, int cap, int *ttl) 404 { 405 u8 id; 406 u16 ent; 407 408 pci_bus_read_config_byte(bus, devfn, pos, &pos); 409 410 while ((*ttl)--) { 411 if (pos < 0x40) 412 break; 413 pos &= ~3; 414 pci_bus_read_config_word(bus, devfn, pos, &ent); 415 416 id = ent & 0xff; 417 if (id == 0xff) 418 break; 419 if (id == cap) 420 return pos; 421 pos = (ent >> 8); 422 } 423 return 0; 424 } 425 426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap) 428 { 429 int ttl = PCI_FIND_CAP_TTL; 430 431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 432 } 433 434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 435 { 436 return __pci_find_next_cap(dev->bus, dev->devfn, 437 pos + PCI_CAP_LIST_NEXT, cap); 438 } 439 EXPORT_SYMBOL_GPL(pci_find_next_capability); 440 441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 442 unsigned int devfn, u8 hdr_type) 443 { 444 u16 status; 445 446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 447 if (!(status & PCI_STATUS_CAP_LIST)) 448 return 0; 449 450 switch (hdr_type) { 451 case PCI_HEADER_TYPE_NORMAL: 452 case PCI_HEADER_TYPE_BRIDGE: 453 return PCI_CAPABILITY_LIST; 454 case PCI_HEADER_TYPE_CARDBUS: 455 return PCI_CB_CAPABILITY_LIST; 456 } 457 458 return 0; 459 } 460 461 /** 462 * pci_find_capability - query for devices' capabilities 463 * @dev: PCI device to query 464 * @cap: capability code 465 * 466 * Tell if a device supports a given PCI capability. 467 * Returns the address of the requested capability structure within the 468 * device's PCI configuration space or 0 in case the device does not 469 * support it. Possible values for @cap include: 470 * 471 * %PCI_CAP_ID_PM Power Management 472 * %PCI_CAP_ID_AGP Accelerated Graphics Port 473 * %PCI_CAP_ID_VPD Vital Product Data 474 * %PCI_CAP_ID_SLOTID Slot Identification 475 * %PCI_CAP_ID_MSI Message Signalled Interrupts 476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 477 * %PCI_CAP_ID_PCIX PCI-X 478 * %PCI_CAP_ID_EXP PCI Express 479 */ 480 u8 pci_find_capability(struct pci_dev *dev, int cap) 481 { 482 u8 pos; 483 484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 485 if (pos) 486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 487 488 return pos; 489 } 490 EXPORT_SYMBOL(pci_find_capability); 491 492 /** 493 * pci_bus_find_capability - query for devices' capabilities 494 * @bus: the PCI bus to query 495 * @devfn: PCI device to query 496 * @cap: capability code 497 * 498 * Like pci_find_capability() but works for PCI devices that do not have a 499 * pci_dev structure set up yet. 500 * 501 * Returns the address of the requested capability structure within the 502 * device's PCI configuration space or 0 in case the device does not 503 * support it. 504 */ 505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 506 { 507 u8 hdr_type, pos; 508 509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 510 511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 512 if (pos) 513 pos = __pci_find_next_cap(bus, devfn, pos, cap); 514 515 return pos; 516 } 517 EXPORT_SYMBOL(pci_bus_find_capability); 518 519 /** 520 * pci_find_next_ext_capability - Find an extended capability 521 * @dev: PCI device to query 522 * @start: address at which to start looking (0 to start at beginning of list) 523 * @cap: capability code 524 * 525 * Returns the address of the next matching extended capability structure 526 * within the device's PCI configuration space or 0 if the device does 527 * not support it. Some capabilities can occur several times, e.g., the 528 * vendor-specific capability, and this provides a way to find them all. 529 */ 530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 531 { 532 u32 header; 533 int ttl; 534 u16 pos = PCI_CFG_SPACE_SIZE; 535 536 /* minimum 8 bytes per capability */ 537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 538 539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 540 return 0; 541 542 if (start) 543 pos = start; 544 545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 546 return 0; 547 548 /* 549 * If we have no capabilities, this is indicated by cap ID, 550 * cap version and next pointer all being 0. 551 */ 552 if (header == 0) 553 return 0; 554 555 while (ttl-- > 0) { 556 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 557 return pos; 558 559 pos = PCI_EXT_CAP_NEXT(header); 560 if (pos < PCI_CFG_SPACE_SIZE) 561 break; 562 563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 564 break; 565 } 566 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 570 571 /** 572 * pci_find_ext_capability - Find an extended capability 573 * @dev: PCI device to query 574 * @cap: capability code 575 * 576 * Returns the address of the requested extended capability structure 577 * within the device's PCI configuration space or 0 if the device does 578 * not support it. Possible values for @cap include: 579 * 580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 581 * %PCI_EXT_CAP_ID_VC Virtual Channel 582 * %PCI_EXT_CAP_ID_DSN Device Serial Number 583 * %PCI_EXT_CAP_ID_PWR Power Budgeting 584 */ 585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 586 { 587 return pci_find_next_ext_capability(dev, 0, cap); 588 } 589 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 590 591 /** 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number 593 * @dev: PCI device to query 594 * 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 596 * Number. 597 * 598 * Returns the DSN, or zero if the capability does not exist. 599 */ 600 u64 pci_get_dsn(struct pci_dev *dev) 601 { 602 u32 dword; 603 u64 dsn; 604 int pos; 605 606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 607 if (!pos) 608 return 0; 609 610 /* 611 * The Device Serial Number is two dwords offset 4 bytes from the 612 * capability position. The specification says that the first dword is 613 * the lower half, and the second dword is the upper half. 614 */ 615 pos += 4; 616 pci_read_config_dword(dev, pos, &dword); 617 dsn = (u64)dword; 618 pci_read_config_dword(dev, pos + 4, &dword); 619 dsn |= ((u64)dword) << 32; 620 621 return dsn; 622 } 623 EXPORT_SYMBOL_GPL(pci_get_dsn); 624 625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 626 { 627 int rc, ttl = PCI_FIND_CAP_TTL; 628 u8 cap, mask; 629 630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 631 mask = HT_3BIT_CAP_MASK; 632 else 633 mask = HT_5BIT_CAP_MASK; 634 635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 636 PCI_CAP_ID_HT, &ttl); 637 while (pos) { 638 rc = pci_read_config_byte(dev, pos + 3, &cap); 639 if (rc != PCIBIOS_SUCCESSFUL) 640 return 0; 641 642 if ((cap & mask) == ht_cap) 643 return pos; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 646 pos + PCI_CAP_LIST_NEXT, 647 PCI_CAP_ID_HT, &ttl); 648 } 649 650 return 0; 651 } 652 653 /** 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 655 * @dev: PCI device to query 656 * @pos: Position from which to continue searching 657 * @ht_cap: HyperTransport capability code 658 * 659 * To be used in conjunction with pci_find_ht_capability() to search for 660 * all capabilities matching @ht_cap. @pos should always be a value returned 661 * from pci_find_ht_capability(). 662 * 663 * NB. To be 100% safe against broken PCI devices, the caller should take 664 * steps to avoid an infinite loop. 665 */ 666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 667 { 668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 669 } 670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 671 672 /** 673 * pci_find_ht_capability - query a device's HyperTransport capabilities 674 * @dev: PCI device to query 675 * @ht_cap: HyperTransport capability code 676 * 677 * Tell if a device supports a given HyperTransport capability. 678 * Returns an address within the device's PCI configuration space 679 * or 0 in case the device does not support the request capability. 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 681 * which has a HyperTransport capability matching @ht_cap. 682 */ 683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 684 { 685 u8 pos; 686 687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 688 if (pos) 689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 690 691 return pos; 692 } 693 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 694 695 /** 696 * pci_find_vsec_capability - Find a vendor-specific extended capability 697 * @dev: PCI device to query 698 * @vendor: Vendor ID for which capability is defined 699 * @cap: Vendor-specific capability ID 700 * 701 * If @dev has Vendor ID @vendor, search for a VSEC capability with 702 * VSEC ID @cap. If found, return the capability offset in 703 * config space; otherwise return 0. 704 */ 705 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 706 { 707 u16 vsec = 0; 708 u32 header; 709 710 if (vendor != dev->vendor) 711 return 0; 712 713 while ((vsec = pci_find_next_ext_capability(dev, vsec, 714 PCI_EXT_CAP_ID_VNDR))) { 715 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 716 &header) == PCIBIOS_SUCCESSFUL && 717 PCI_VNDR_HEADER_ID(header) == cap) 718 return vsec; 719 } 720 721 return 0; 722 } 723 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 724 725 /** 726 * pci_find_parent_resource - return resource region of parent bus of given 727 * region 728 * @dev: PCI device structure contains resources to be searched 729 * @res: child resource record for which parent is sought 730 * 731 * For given resource region of given device, return the resource region of 732 * parent bus the given region is contained in. 733 */ 734 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 735 struct resource *res) 736 { 737 const struct pci_bus *bus = dev->bus; 738 struct resource *r; 739 int i; 740 741 pci_bus_for_each_resource(bus, r, i) { 742 if (!r) 743 continue; 744 if (resource_contains(r, res)) { 745 746 /* 747 * If the window is prefetchable but the BAR is 748 * not, the allocator made a mistake. 749 */ 750 if (r->flags & IORESOURCE_PREFETCH && 751 !(res->flags & IORESOURCE_PREFETCH)) 752 return NULL; 753 754 /* 755 * If we're below a transparent bridge, there may 756 * be both a positively-decoded aperture and a 757 * subtractively-decoded region that contain the BAR. 758 * We want the positively-decoded one, so this depends 759 * on pci_bus_for_each_resource() giving us those 760 * first. 761 */ 762 return r; 763 } 764 } 765 return NULL; 766 } 767 EXPORT_SYMBOL(pci_find_parent_resource); 768 769 /** 770 * pci_find_resource - Return matching PCI device resource 771 * @dev: PCI device to query 772 * @res: Resource to look for 773 * 774 * Goes over standard PCI resources (BARs) and checks if the given resource 775 * is partially or fully contained in any of them. In that case the 776 * matching resource is returned, %NULL otherwise. 777 */ 778 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 779 { 780 int i; 781 782 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 783 struct resource *r = &dev->resource[i]; 784 785 if (r->start && resource_contains(r, res)) 786 return r; 787 } 788 789 return NULL; 790 } 791 EXPORT_SYMBOL(pci_find_resource); 792 793 /** 794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 795 * @dev: the PCI device to operate on 796 * @pos: config space offset of status word 797 * @mask: mask of bit(s) to care about in status word 798 * 799 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 800 */ 801 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 802 { 803 int i; 804 805 /* Wait for Transaction Pending bit clean */ 806 for (i = 0; i < 4; i++) { 807 u16 status; 808 if (i) 809 msleep((1 << (i - 1)) * 100); 810 811 pci_read_config_word(dev, pos, &status); 812 if (!(status & mask)) 813 return 1; 814 } 815 816 return 0; 817 } 818 819 static int pci_acs_enable; 820 821 /** 822 * pci_request_acs - ask for ACS to be enabled if supported 823 */ 824 void pci_request_acs(void) 825 { 826 pci_acs_enable = 1; 827 } 828 829 static const char *disable_acs_redir_param; 830 831 /** 832 * pci_disable_acs_redir - disable ACS redirect capabilities 833 * @dev: the PCI device 834 * 835 * For only devices specified in the disable_acs_redir parameter. 836 */ 837 static void pci_disable_acs_redir(struct pci_dev *dev) 838 { 839 int ret = 0; 840 const char *p; 841 int pos; 842 u16 ctrl; 843 844 if (!disable_acs_redir_param) 845 return; 846 847 p = disable_acs_redir_param; 848 while (*p) { 849 ret = pci_dev_str_match(dev, p, &p); 850 if (ret < 0) { 851 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 852 disable_acs_redir_param); 853 854 break; 855 } else if (ret == 1) { 856 /* Found a match */ 857 break; 858 } 859 860 if (*p != ';' && *p != ',') { 861 /* End of param or invalid format */ 862 break; 863 } 864 p++; 865 } 866 867 if (ret != 1) 868 return; 869 870 if (!pci_dev_specific_disable_acs_redir(dev)) 871 return; 872 873 pos = dev->acs_cap; 874 if (!pos) { 875 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 876 return; 877 } 878 879 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 880 881 /* P2P Request & Completion Redirect */ 882 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 883 884 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 885 886 pci_info(dev, "disabled ACS redirect\n"); 887 } 888 889 /** 890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 891 * @dev: the PCI device 892 */ 893 static void pci_std_enable_acs(struct pci_dev *dev) 894 { 895 int pos; 896 u16 cap; 897 u16 ctrl; 898 899 pos = dev->acs_cap; 900 if (!pos) 901 return; 902 903 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 904 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 905 906 /* Source Validation */ 907 ctrl |= (cap & PCI_ACS_SV); 908 909 /* P2P Request Redirect */ 910 ctrl |= (cap & PCI_ACS_RR); 911 912 /* P2P Completion Redirect */ 913 ctrl |= (cap & PCI_ACS_CR); 914 915 /* Upstream Forwarding */ 916 ctrl |= (cap & PCI_ACS_UF); 917 918 /* Enable Translation Blocking for external devices */ 919 if (dev->external_facing || dev->untrusted) 920 ctrl |= (cap & PCI_ACS_TB); 921 922 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 923 } 924 925 /** 926 * pci_enable_acs - enable ACS if hardware support it 927 * @dev: the PCI device 928 */ 929 static void pci_enable_acs(struct pci_dev *dev) 930 { 931 if (!pci_acs_enable) 932 goto disable_acs_redir; 933 934 if (!pci_dev_specific_enable_acs(dev)) 935 goto disable_acs_redir; 936 937 pci_std_enable_acs(dev); 938 939 disable_acs_redir: 940 /* 941 * Note: pci_disable_acs_redir() must be called even if ACS was not 942 * enabled by the kernel because it may have been enabled by 943 * platform firmware. So if we are told to disable it, we should 944 * always disable it after setting the kernel's default 945 * preferences. 946 */ 947 pci_disable_acs_redir(dev); 948 } 949 950 /** 951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 952 * @dev: PCI device to have its BARs restored 953 * 954 * Restore the BAR values for a given device, so as to make it 955 * accessible by its driver. 956 */ 957 static void pci_restore_bars(struct pci_dev *dev) 958 { 959 int i; 960 961 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 962 pci_update_resource(dev, i); 963 } 964 965 static const struct pci_platform_pm_ops *pci_platform_pm; 966 967 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 968 { 969 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 970 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 971 return -EINVAL; 972 pci_platform_pm = ops; 973 return 0; 974 } 975 976 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 977 { 978 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 979 } 980 981 static inline int platform_pci_set_power_state(struct pci_dev *dev, 982 pci_power_t t) 983 { 984 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 985 } 986 987 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 988 { 989 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 990 } 991 992 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 993 { 994 if (pci_platform_pm && pci_platform_pm->refresh_state) 995 pci_platform_pm->refresh_state(dev); 996 } 997 998 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 999 { 1000 return pci_platform_pm ? 1001 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 1002 } 1003 1004 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1005 { 1006 return pci_platform_pm ? 1007 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 1008 } 1009 1010 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1011 { 1012 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 1013 } 1014 1015 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1016 { 1017 if (pci_platform_pm && pci_platform_pm->bridge_d3) 1018 return pci_platform_pm->bridge_d3(dev); 1019 return false; 1020 } 1021 1022 /** 1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 1024 * given PCI device 1025 * @dev: PCI device to handle. 1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1027 * 1028 * RETURN VALUE: 1029 * -EINVAL if the requested state is invalid. 1030 * -EIO if device does not support PCI PM or its PM capabilities register has a 1031 * wrong version, or device doesn't support the requested state. 1032 * 0 if device already is in the requested state. 1033 * 0 if device's power state has been successfully changed. 1034 */ 1035 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1036 { 1037 u16 pmcsr; 1038 bool need_restore = false; 1039 1040 /* Check if we're already there */ 1041 if (dev->current_state == state) 1042 return 0; 1043 1044 if (!dev->pm_cap) 1045 return -EIO; 1046 1047 if (state < PCI_D0 || state > PCI_D3hot) 1048 return -EINVAL; 1049 1050 /* 1051 * Validate transition: We can enter D0 from any state, but if 1052 * we're already in a low-power state, we can only go deeper. E.g., 1053 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1054 * we'd have to go from D3 to D0, then to D1. 1055 */ 1056 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1057 && dev->current_state > state) { 1058 pci_err(dev, "invalid power transition (from %s to %s)\n", 1059 pci_power_name(dev->current_state), 1060 pci_power_name(state)); 1061 return -EINVAL; 1062 } 1063 1064 /* Check if this device supports the desired state */ 1065 if ((state == PCI_D1 && !dev->d1_support) 1066 || (state == PCI_D2 && !dev->d2_support)) 1067 return -EIO; 1068 1069 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1070 if (pmcsr == (u16) ~0) { 1071 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1072 pci_power_name(dev->current_state), 1073 pci_power_name(state)); 1074 return -EIO; 1075 } 1076 1077 /* 1078 * If we're (effectively) in D3, force entire word to 0. 1079 * This doesn't affect PME_Status, disables PME_En, and 1080 * sets PowerState to 0. 1081 */ 1082 switch (dev->current_state) { 1083 case PCI_D0: 1084 case PCI_D1: 1085 case PCI_D2: 1086 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1087 pmcsr |= state; 1088 break; 1089 case PCI_D3hot: 1090 case PCI_D3cold: 1091 case PCI_UNKNOWN: /* Boot-up */ 1092 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1093 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1094 need_restore = true; 1095 fallthrough; /* force to D0 */ 1096 default: 1097 pmcsr = 0; 1098 break; 1099 } 1100 1101 /* Enter specified state */ 1102 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1103 1104 /* 1105 * Mandatory power management transition delays; see PCI PM 1.1 1106 * 5.6.1 table 18 1107 */ 1108 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1109 pci_dev_d3_sleep(dev); 1110 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1111 udelay(PCI_PM_D2_DELAY); 1112 1113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1114 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1115 if (dev->current_state != state) 1116 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1117 pci_power_name(dev->current_state), 1118 pci_power_name(state)); 1119 1120 /* 1121 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1122 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1123 * from D3hot to D0 _may_ perform an internal reset, thereby 1124 * going to "D0 Uninitialized" rather than "D0 Initialized". 1125 * For example, at least some versions of the 3c905B and the 1126 * 3c556B exhibit this behaviour. 1127 * 1128 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1129 * devices in a D3hot state at boot. Consequently, we need to 1130 * restore at least the BARs so that the device will be 1131 * accessible to its driver. 1132 */ 1133 if (need_restore) 1134 pci_restore_bars(dev); 1135 1136 if (dev->bus->self) 1137 pcie_aspm_pm_state_change(dev->bus->self); 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * pci_update_current_state - Read power state of given device and cache it 1144 * @dev: PCI device to handle. 1145 * @state: State to cache in case the device doesn't have the PM capability 1146 * 1147 * The power state is read from the PMCSR register, which however is 1148 * inaccessible in D3cold. The platform firmware is therefore queried first 1149 * to detect accessibility of the register. In case the platform firmware 1150 * reports an incorrect state or the device isn't power manageable by the 1151 * platform at all, we try to detect D3cold by testing accessibility of the 1152 * vendor ID in config space. 1153 */ 1154 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1155 { 1156 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1157 !pci_device_is_present(dev)) { 1158 dev->current_state = PCI_D3cold; 1159 } else if (dev->pm_cap) { 1160 u16 pmcsr; 1161 1162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1163 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1164 } else { 1165 dev->current_state = state; 1166 } 1167 } 1168 1169 /** 1170 * pci_refresh_power_state - Refresh the given device's power state data 1171 * @dev: Target PCI device. 1172 * 1173 * Ask the platform to refresh the devices power state information and invoke 1174 * pci_update_current_state() to update its current PCI power state. 1175 */ 1176 void pci_refresh_power_state(struct pci_dev *dev) 1177 { 1178 if (platform_pci_power_manageable(dev)) 1179 platform_pci_refresh_power_state(dev); 1180 1181 pci_update_current_state(dev, dev->current_state); 1182 } 1183 1184 /** 1185 * pci_platform_power_transition - Use platform to change device power state 1186 * @dev: PCI device to handle. 1187 * @state: State to put the device into. 1188 */ 1189 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1190 { 1191 int error; 1192 1193 if (platform_pci_power_manageable(dev)) { 1194 error = platform_pci_set_power_state(dev, state); 1195 if (!error) 1196 pci_update_current_state(dev, state); 1197 } else 1198 error = -ENODEV; 1199 1200 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1201 dev->current_state = PCI_D0; 1202 1203 return error; 1204 } 1205 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1206 1207 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1208 { 1209 pm_request_resume(&pci_dev->dev); 1210 return 0; 1211 } 1212 1213 /** 1214 * pci_resume_bus - Walk given bus and runtime resume devices on it 1215 * @bus: Top bus of the subtree to walk. 1216 */ 1217 void pci_resume_bus(struct pci_bus *bus) 1218 { 1219 if (bus) 1220 pci_walk_bus(bus, pci_resume_one, NULL); 1221 } 1222 1223 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1224 { 1225 int delay = 1; 1226 u32 id; 1227 1228 /* 1229 * After reset, the device should not silently discard config 1230 * requests, but it may still indicate that it needs more time by 1231 * responding to them with CRS completions. The Root Port will 1232 * generally synthesize ~0 data to complete the read (except when 1233 * CRS SV is enabled and the read was for the Vendor ID; in that 1234 * case it synthesizes 0x0001 data). 1235 * 1236 * Wait for the device to return a non-CRS completion. Read the 1237 * Command register instead of Vendor ID so we don't have to 1238 * contend with the CRS SV value. 1239 */ 1240 pci_read_config_dword(dev, PCI_COMMAND, &id); 1241 while (id == ~0) { 1242 if (delay > timeout) { 1243 pci_warn(dev, "not ready %dms after %s; giving up\n", 1244 delay - 1, reset_type); 1245 return -ENOTTY; 1246 } 1247 1248 if (delay > 1000) 1249 pci_info(dev, "not ready %dms after %s; waiting\n", 1250 delay - 1, reset_type); 1251 1252 msleep(delay); 1253 delay *= 2; 1254 pci_read_config_dword(dev, PCI_COMMAND, &id); 1255 } 1256 1257 if (delay > 1000) 1258 pci_info(dev, "ready %dms after %s\n", delay - 1, 1259 reset_type); 1260 1261 return 0; 1262 } 1263 1264 /** 1265 * pci_power_up - Put the given device into D0 1266 * @dev: PCI device to power up 1267 */ 1268 int pci_power_up(struct pci_dev *dev) 1269 { 1270 pci_platform_power_transition(dev, PCI_D0); 1271 1272 /* 1273 * Mandatory power management transition delays are handled in 1274 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1275 * corresponding bridge. 1276 */ 1277 if (dev->runtime_d3cold) { 1278 /* 1279 * When powering on a bridge from D3cold, the whole hierarchy 1280 * may be powered on into D0uninitialized state, resume them to 1281 * give them a chance to suspend again 1282 */ 1283 pci_resume_bus(dev->subordinate); 1284 } 1285 1286 return pci_raw_set_power_state(dev, PCI_D0); 1287 } 1288 1289 /** 1290 * __pci_dev_set_current_state - Set current state of a PCI device 1291 * @dev: Device to handle 1292 * @data: pointer to state to be set 1293 */ 1294 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1295 { 1296 pci_power_t state = *(pci_power_t *)data; 1297 1298 dev->current_state = state; 1299 return 0; 1300 } 1301 1302 /** 1303 * pci_bus_set_current_state - Walk given bus and set current state of devices 1304 * @bus: Top bus of the subtree to walk. 1305 * @state: state to be set 1306 */ 1307 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1308 { 1309 if (bus) 1310 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1311 } 1312 1313 /** 1314 * pci_set_power_state - Set the power state of a PCI device 1315 * @dev: PCI device to handle. 1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1317 * 1318 * Transition a device to a new power state, using the platform firmware and/or 1319 * the device's PCI PM registers. 1320 * 1321 * RETURN VALUE: 1322 * -EINVAL if the requested state is invalid. 1323 * -EIO if device does not support PCI PM or its PM capabilities register has a 1324 * wrong version, or device doesn't support the requested state. 1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1326 * 0 if device already is in the requested state. 1327 * 0 if the transition is to D3 but D3 is not supported. 1328 * 0 if device's power state has been successfully changed. 1329 */ 1330 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1331 { 1332 int error; 1333 1334 /* Bound the state we're entering */ 1335 if (state > PCI_D3cold) 1336 state = PCI_D3cold; 1337 else if (state < PCI_D0) 1338 state = PCI_D0; 1339 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1340 1341 /* 1342 * If the device or the parent bridge do not support PCI 1343 * PM, ignore the request if we're doing anything other 1344 * than putting it into D0 (which would only happen on 1345 * boot). 1346 */ 1347 return 0; 1348 1349 /* Check if we're already there */ 1350 if (dev->current_state == state) 1351 return 0; 1352 1353 if (state == PCI_D0) 1354 return pci_power_up(dev); 1355 1356 /* 1357 * This device is quirked not to be put into D3, so don't put it in 1358 * D3 1359 */ 1360 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1361 return 0; 1362 1363 /* 1364 * To put device in D3cold, we put device into D3hot in native 1365 * way, then put device into D3cold with platform ops 1366 */ 1367 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1368 PCI_D3hot : state); 1369 1370 if (pci_platform_power_transition(dev, state)) 1371 return error; 1372 1373 /* Powering off a bridge may power off the whole hierarchy */ 1374 if (state == PCI_D3cold) 1375 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1376 1377 return 0; 1378 } 1379 EXPORT_SYMBOL(pci_set_power_state); 1380 1381 /** 1382 * pci_choose_state - Choose the power state of a PCI device 1383 * @dev: PCI device to be suspended 1384 * @state: target sleep state for the whole system. This is the value 1385 * that is passed to suspend() function. 1386 * 1387 * Returns PCI power state suitable for given device and given system 1388 * message. 1389 */ 1390 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1391 { 1392 pci_power_t ret; 1393 1394 if (!dev->pm_cap) 1395 return PCI_D0; 1396 1397 ret = platform_pci_choose_state(dev); 1398 if (ret != PCI_POWER_ERROR) 1399 return ret; 1400 1401 switch (state.event) { 1402 case PM_EVENT_ON: 1403 return PCI_D0; 1404 case PM_EVENT_FREEZE: 1405 case PM_EVENT_PRETHAW: 1406 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1407 case PM_EVENT_SUSPEND: 1408 case PM_EVENT_HIBERNATE: 1409 return PCI_D3hot; 1410 default: 1411 pci_info(dev, "unrecognized suspend event %d\n", 1412 state.event); 1413 BUG(); 1414 } 1415 return PCI_D0; 1416 } 1417 EXPORT_SYMBOL(pci_choose_state); 1418 1419 #define PCI_EXP_SAVE_REGS 7 1420 1421 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1422 u16 cap, bool extended) 1423 { 1424 struct pci_cap_saved_state *tmp; 1425 1426 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1427 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1428 return tmp; 1429 } 1430 return NULL; 1431 } 1432 1433 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1434 { 1435 return _pci_find_saved_cap(dev, cap, false); 1436 } 1437 1438 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1439 { 1440 return _pci_find_saved_cap(dev, cap, true); 1441 } 1442 1443 static int pci_save_pcie_state(struct pci_dev *dev) 1444 { 1445 int i = 0; 1446 struct pci_cap_saved_state *save_state; 1447 u16 *cap; 1448 1449 if (!pci_is_pcie(dev)) 1450 return 0; 1451 1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1453 if (!save_state) { 1454 pci_err(dev, "buffer not found in %s\n", __func__); 1455 return -ENOMEM; 1456 } 1457 1458 cap = (u16 *)&save_state->cap.data[0]; 1459 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1460 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1461 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1462 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1466 1467 return 0; 1468 } 1469 1470 static void pci_restore_pcie_state(struct pci_dev *dev) 1471 { 1472 int i = 0; 1473 struct pci_cap_saved_state *save_state; 1474 u16 *cap; 1475 1476 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1477 if (!save_state) 1478 return; 1479 1480 cap = (u16 *)&save_state->cap.data[0]; 1481 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1482 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1483 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1484 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1485 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1486 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1487 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1488 } 1489 1490 static int pci_save_pcix_state(struct pci_dev *dev) 1491 { 1492 int pos; 1493 struct pci_cap_saved_state *save_state; 1494 1495 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1496 if (!pos) 1497 return 0; 1498 1499 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1500 if (!save_state) { 1501 pci_err(dev, "buffer not found in %s\n", __func__); 1502 return -ENOMEM; 1503 } 1504 1505 pci_read_config_word(dev, pos + PCI_X_CMD, 1506 (u16 *)save_state->cap.data); 1507 1508 return 0; 1509 } 1510 1511 static void pci_restore_pcix_state(struct pci_dev *dev) 1512 { 1513 int i = 0, pos; 1514 struct pci_cap_saved_state *save_state; 1515 u16 *cap; 1516 1517 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1518 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1519 if (!save_state || !pos) 1520 return; 1521 cap = (u16 *)&save_state->cap.data[0]; 1522 1523 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1524 } 1525 1526 static void pci_save_ltr_state(struct pci_dev *dev) 1527 { 1528 int ltr; 1529 struct pci_cap_saved_state *save_state; 1530 u16 *cap; 1531 1532 if (!pci_is_pcie(dev)) 1533 return; 1534 1535 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1536 if (!ltr) 1537 return; 1538 1539 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1540 if (!save_state) { 1541 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1542 return; 1543 } 1544 1545 cap = (u16 *)&save_state->cap.data[0]; 1546 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1547 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1548 } 1549 1550 static void pci_restore_ltr_state(struct pci_dev *dev) 1551 { 1552 struct pci_cap_saved_state *save_state; 1553 int ltr; 1554 u16 *cap; 1555 1556 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1557 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1558 if (!save_state || !ltr) 1559 return; 1560 1561 cap = (u16 *)&save_state->cap.data[0]; 1562 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1563 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1564 } 1565 1566 /** 1567 * pci_save_state - save the PCI configuration space of a device before 1568 * suspending 1569 * @dev: PCI device that we're dealing with 1570 */ 1571 int pci_save_state(struct pci_dev *dev) 1572 { 1573 int i; 1574 /* XXX: 100% dword access ok here? */ 1575 for (i = 0; i < 16; i++) { 1576 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1577 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1578 i * 4, dev->saved_config_space[i]); 1579 } 1580 dev->state_saved = true; 1581 1582 i = pci_save_pcie_state(dev); 1583 if (i != 0) 1584 return i; 1585 1586 i = pci_save_pcix_state(dev); 1587 if (i != 0) 1588 return i; 1589 1590 pci_save_ltr_state(dev); 1591 pci_save_dpc_state(dev); 1592 pci_save_aer_state(dev); 1593 pci_save_ptm_state(dev); 1594 return pci_save_vc_state(dev); 1595 } 1596 EXPORT_SYMBOL(pci_save_state); 1597 1598 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1599 u32 saved_val, int retry, bool force) 1600 { 1601 u32 val; 1602 1603 pci_read_config_dword(pdev, offset, &val); 1604 if (!force && val == saved_val) 1605 return; 1606 1607 for (;;) { 1608 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1609 offset, val, saved_val); 1610 pci_write_config_dword(pdev, offset, saved_val); 1611 if (retry-- <= 0) 1612 return; 1613 1614 pci_read_config_dword(pdev, offset, &val); 1615 if (val == saved_val) 1616 return; 1617 1618 mdelay(1); 1619 } 1620 } 1621 1622 static void pci_restore_config_space_range(struct pci_dev *pdev, 1623 int start, int end, int retry, 1624 bool force) 1625 { 1626 int index; 1627 1628 for (index = end; index >= start; index--) 1629 pci_restore_config_dword(pdev, 4 * index, 1630 pdev->saved_config_space[index], 1631 retry, force); 1632 } 1633 1634 static void pci_restore_config_space(struct pci_dev *pdev) 1635 { 1636 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1637 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1638 /* Restore BARs before the command register. */ 1639 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1640 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1641 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1642 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1643 1644 /* 1645 * Force rewriting of prefetch registers to avoid S3 resume 1646 * issues on Intel PCI bridges that occur when these 1647 * registers are not explicitly written. 1648 */ 1649 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1650 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1651 } else { 1652 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1653 } 1654 } 1655 1656 static void pci_restore_rebar_state(struct pci_dev *pdev) 1657 { 1658 unsigned int pos, nbars, i; 1659 u32 ctrl; 1660 1661 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1662 if (!pos) 1663 return; 1664 1665 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1666 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1667 PCI_REBAR_CTRL_NBAR_SHIFT; 1668 1669 for (i = 0; i < nbars; i++, pos += 8) { 1670 struct resource *res; 1671 int bar_idx, size; 1672 1673 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1674 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1675 res = pdev->resource + bar_idx; 1676 size = pci_rebar_bytes_to_size(resource_size(res)); 1677 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1678 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1679 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1680 } 1681 } 1682 1683 /** 1684 * pci_restore_state - Restore the saved state of a PCI device 1685 * @dev: PCI device that we're dealing with 1686 */ 1687 void pci_restore_state(struct pci_dev *dev) 1688 { 1689 if (!dev->state_saved) 1690 return; 1691 1692 /* 1693 * Restore max latencies (in the LTR capability) before enabling 1694 * LTR itself (in the PCIe capability). 1695 */ 1696 pci_restore_ltr_state(dev); 1697 1698 pci_restore_pcie_state(dev); 1699 pci_restore_pasid_state(dev); 1700 pci_restore_pri_state(dev); 1701 pci_restore_ats_state(dev); 1702 pci_restore_vc_state(dev); 1703 pci_restore_rebar_state(dev); 1704 pci_restore_dpc_state(dev); 1705 pci_restore_ptm_state(dev); 1706 1707 pci_aer_clear_status(dev); 1708 pci_restore_aer_state(dev); 1709 1710 pci_restore_config_space(dev); 1711 1712 pci_restore_pcix_state(dev); 1713 pci_restore_msi_state(dev); 1714 1715 /* Restore ACS and IOV configuration state */ 1716 pci_enable_acs(dev); 1717 pci_restore_iov_state(dev); 1718 1719 dev->state_saved = false; 1720 } 1721 EXPORT_SYMBOL(pci_restore_state); 1722 1723 struct pci_saved_state { 1724 u32 config_space[16]; 1725 struct pci_cap_saved_data cap[]; 1726 }; 1727 1728 /** 1729 * pci_store_saved_state - Allocate and return an opaque struct containing 1730 * the device saved state. 1731 * @dev: PCI device that we're dealing with 1732 * 1733 * Return NULL if no state or error. 1734 */ 1735 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1736 { 1737 struct pci_saved_state *state; 1738 struct pci_cap_saved_state *tmp; 1739 struct pci_cap_saved_data *cap; 1740 size_t size; 1741 1742 if (!dev->state_saved) 1743 return NULL; 1744 1745 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1746 1747 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1748 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1749 1750 state = kzalloc(size, GFP_KERNEL); 1751 if (!state) 1752 return NULL; 1753 1754 memcpy(state->config_space, dev->saved_config_space, 1755 sizeof(state->config_space)); 1756 1757 cap = state->cap; 1758 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1759 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1760 memcpy(cap, &tmp->cap, len); 1761 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1762 } 1763 /* Empty cap_save terminates list */ 1764 1765 return state; 1766 } 1767 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1768 1769 /** 1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1771 * @dev: PCI device that we're dealing with 1772 * @state: Saved state returned from pci_store_saved_state() 1773 */ 1774 int pci_load_saved_state(struct pci_dev *dev, 1775 struct pci_saved_state *state) 1776 { 1777 struct pci_cap_saved_data *cap; 1778 1779 dev->state_saved = false; 1780 1781 if (!state) 1782 return 0; 1783 1784 memcpy(dev->saved_config_space, state->config_space, 1785 sizeof(state->config_space)); 1786 1787 cap = state->cap; 1788 while (cap->size) { 1789 struct pci_cap_saved_state *tmp; 1790 1791 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1792 if (!tmp || tmp->cap.size != cap->size) 1793 return -EINVAL; 1794 1795 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1796 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1797 sizeof(struct pci_cap_saved_data) + cap->size); 1798 } 1799 1800 dev->state_saved = true; 1801 return 0; 1802 } 1803 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1804 1805 /** 1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1807 * and free the memory allocated for it. 1808 * @dev: PCI device that we're dealing with 1809 * @state: Pointer to saved state returned from pci_store_saved_state() 1810 */ 1811 int pci_load_and_free_saved_state(struct pci_dev *dev, 1812 struct pci_saved_state **state) 1813 { 1814 int ret = pci_load_saved_state(dev, *state); 1815 kfree(*state); 1816 *state = NULL; 1817 return ret; 1818 } 1819 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1820 1821 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1822 { 1823 return pci_enable_resources(dev, bars); 1824 } 1825 1826 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1827 { 1828 int err; 1829 struct pci_dev *bridge; 1830 u16 cmd; 1831 u8 pin; 1832 1833 err = pci_set_power_state(dev, PCI_D0); 1834 if (err < 0 && err != -EIO) 1835 return err; 1836 1837 bridge = pci_upstream_bridge(dev); 1838 if (bridge) 1839 pcie_aspm_powersave_config_link(bridge); 1840 1841 err = pcibios_enable_device(dev, bars); 1842 if (err < 0) 1843 return err; 1844 pci_fixup_device(pci_fixup_enable, dev); 1845 1846 if (dev->msi_enabled || dev->msix_enabled) 1847 return 0; 1848 1849 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1850 if (pin) { 1851 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1852 if (cmd & PCI_COMMAND_INTX_DISABLE) 1853 pci_write_config_word(dev, PCI_COMMAND, 1854 cmd & ~PCI_COMMAND_INTX_DISABLE); 1855 } 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * pci_reenable_device - Resume abandoned device 1862 * @dev: PCI device to be resumed 1863 * 1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1865 * to be called by normal code, write proper resume handler and use it instead. 1866 */ 1867 int pci_reenable_device(struct pci_dev *dev) 1868 { 1869 if (pci_is_enabled(dev)) 1870 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1871 return 0; 1872 } 1873 EXPORT_SYMBOL(pci_reenable_device); 1874 1875 static void pci_enable_bridge(struct pci_dev *dev) 1876 { 1877 struct pci_dev *bridge; 1878 int retval; 1879 1880 bridge = pci_upstream_bridge(dev); 1881 if (bridge) 1882 pci_enable_bridge(bridge); 1883 1884 if (pci_is_enabled(dev)) { 1885 if (!dev->is_busmaster) 1886 pci_set_master(dev); 1887 return; 1888 } 1889 1890 retval = pci_enable_device(dev); 1891 if (retval) 1892 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1893 retval); 1894 pci_set_master(dev); 1895 } 1896 1897 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1898 { 1899 struct pci_dev *bridge; 1900 int err; 1901 int i, bars = 0; 1902 1903 if (atomic_inc_return(&dev->enable_cnt) > 1) { 1904 pci_update_current_state(dev, dev->current_state); 1905 return 0; /* already enabled */ 1906 } 1907 1908 bridge = pci_upstream_bridge(dev); 1909 if (bridge) 1910 pci_enable_bridge(bridge); 1911 1912 /* only skip sriov related */ 1913 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1914 if (dev->resource[i].flags & flags) 1915 bars |= (1 << i); 1916 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1917 if (dev->resource[i].flags & flags) 1918 bars |= (1 << i); 1919 1920 err = do_pci_enable_device(dev, bars); 1921 if (err < 0) 1922 atomic_dec(&dev->enable_cnt); 1923 return err; 1924 } 1925 1926 /** 1927 * pci_enable_device_io - Initialize a device for use with IO space 1928 * @dev: PCI device to be initialized 1929 * 1930 * Initialize device before it's used by a driver. Ask low-level code 1931 * to enable I/O resources. Wake up the device if it was suspended. 1932 * Beware, this function can fail. 1933 */ 1934 int pci_enable_device_io(struct pci_dev *dev) 1935 { 1936 return pci_enable_device_flags(dev, IORESOURCE_IO); 1937 } 1938 EXPORT_SYMBOL(pci_enable_device_io); 1939 1940 /** 1941 * pci_enable_device_mem - Initialize a device for use with Memory space 1942 * @dev: PCI device to be initialized 1943 * 1944 * Initialize device before it's used by a driver. Ask low-level code 1945 * to enable Memory resources. Wake up the device if it was suspended. 1946 * Beware, this function can fail. 1947 */ 1948 int pci_enable_device_mem(struct pci_dev *dev) 1949 { 1950 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1951 } 1952 EXPORT_SYMBOL(pci_enable_device_mem); 1953 1954 /** 1955 * pci_enable_device - Initialize device before it's used by a driver. 1956 * @dev: PCI device to be initialized 1957 * 1958 * Initialize device before it's used by a driver. Ask low-level code 1959 * to enable I/O and memory. Wake up the device if it was suspended. 1960 * Beware, this function can fail. 1961 * 1962 * Note we don't actually enable the device many times if we call 1963 * this function repeatedly (we just increment the count). 1964 */ 1965 int pci_enable_device(struct pci_dev *dev) 1966 { 1967 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1968 } 1969 EXPORT_SYMBOL(pci_enable_device); 1970 1971 /* 1972 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1973 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1974 * there's no need to track it separately. pci_devres is initialized 1975 * when a device is enabled using managed PCI device enable interface. 1976 */ 1977 struct pci_devres { 1978 unsigned int enabled:1; 1979 unsigned int pinned:1; 1980 unsigned int orig_intx:1; 1981 unsigned int restore_intx:1; 1982 unsigned int mwi:1; 1983 u32 region_mask; 1984 }; 1985 1986 static void pcim_release(struct device *gendev, void *res) 1987 { 1988 struct pci_dev *dev = to_pci_dev(gendev); 1989 struct pci_devres *this = res; 1990 int i; 1991 1992 if (dev->msi_enabled) 1993 pci_disable_msi(dev); 1994 if (dev->msix_enabled) 1995 pci_disable_msix(dev); 1996 1997 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1998 if (this->region_mask & (1 << i)) 1999 pci_release_region(dev, i); 2000 2001 if (this->mwi) 2002 pci_clear_mwi(dev); 2003 2004 if (this->restore_intx) 2005 pci_intx(dev, this->orig_intx); 2006 2007 if (this->enabled && !this->pinned) 2008 pci_disable_device(dev); 2009 } 2010 2011 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2012 { 2013 struct pci_devres *dr, *new_dr; 2014 2015 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2016 if (dr) 2017 return dr; 2018 2019 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2020 if (!new_dr) 2021 return NULL; 2022 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2023 } 2024 2025 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2026 { 2027 if (pci_is_managed(pdev)) 2028 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2029 return NULL; 2030 } 2031 2032 /** 2033 * pcim_enable_device - Managed pci_enable_device() 2034 * @pdev: PCI device to be initialized 2035 * 2036 * Managed pci_enable_device(). 2037 */ 2038 int pcim_enable_device(struct pci_dev *pdev) 2039 { 2040 struct pci_devres *dr; 2041 int rc; 2042 2043 dr = get_pci_dr(pdev); 2044 if (unlikely(!dr)) 2045 return -ENOMEM; 2046 if (dr->enabled) 2047 return 0; 2048 2049 rc = pci_enable_device(pdev); 2050 if (!rc) { 2051 pdev->is_managed = 1; 2052 dr->enabled = 1; 2053 } 2054 return rc; 2055 } 2056 EXPORT_SYMBOL(pcim_enable_device); 2057 2058 /** 2059 * pcim_pin_device - Pin managed PCI device 2060 * @pdev: PCI device to pin 2061 * 2062 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2063 * driver detach. @pdev must have been enabled with 2064 * pcim_enable_device(). 2065 */ 2066 void pcim_pin_device(struct pci_dev *pdev) 2067 { 2068 struct pci_devres *dr; 2069 2070 dr = find_pci_dr(pdev); 2071 WARN_ON(!dr || !dr->enabled); 2072 if (dr) 2073 dr->pinned = 1; 2074 } 2075 EXPORT_SYMBOL(pcim_pin_device); 2076 2077 /* 2078 * pcibios_add_device - provide arch specific hooks when adding device dev 2079 * @dev: the PCI device being added 2080 * 2081 * Permits the platform to provide architecture specific functionality when 2082 * devices are added. This is the default implementation. Architecture 2083 * implementations can override this. 2084 */ 2085 int __weak pcibios_add_device(struct pci_dev *dev) 2086 { 2087 return 0; 2088 } 2089 2090 /** 2091 * pcibios_release_device - provide arch specific hooks when releasing 2092 * device dev 2093 * @dev: the PCI device being released 2094 * 2095 * Permits the platform to provide architecture specific functionality when 2096 * devices are released. This is the default implementation. Architecture 2097 * implementations can override this. 2098 */ 2099 void __weak pcibios_release_device(struct pci_dev *dev) {} 2100 2101 /** 2102 * pcibios_disable_device - disable arch specific PCI resources for device dev 2103 * @dev: the PCI device to disable 2104 * 2105 * Disables architecture specific PCI resources for the device. This 2106 * is the default implementation. Architecture implementations can 2107 * override this. 2108 */ 2109 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2110 2111 /** 2112 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2113 * @irq: ISA IRQ to penalize 2114 * @active: IRQ active or not 2115 * 2116 * Permits the platform to provide architecture-specific functionality when 2117 * penalizing ISA IRQs. This is the default implementation. Architecture 2118 * implementations can override this. 2119 */ 2120 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2121 2122 static void do_pci_disable_device(struct pci_dev *dev) 2123 { 2124 u16 pci_command; 2125 2126 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2127 if (pci_command & PCI_COMMAND_MASTER) { 2128 pci_command &= ~PCI_COMMAND_MASTER; 2129 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2130 } 2131 2132 pcibios_disable_device(dev); 2133 } 2134 2135 /** 2136 * pci_disable_enabled_device - Disable device without updating enable_cnt 2137 * @dev: PCI device to disable 2138 * 2139 * NOTE: This function is a backend of PCI power management routines and is 2140 * not supposed to be called drivers. 2141 */ 2142 void pci_disable_enabled_device(struct pci_dev *dev) 2143 { 2144 if (pci_is_enabled(dev)) 2145 do_pci_disable_device(dev); 2146 } 2147 2148 /** 2149 * pci_disable_device - Disable PCI device after use 2150 * @dev: PCI device to be disabled 2151 * 2152 * Signal to the system that the PCI device is not in use by the system 2153 * anymore. This only involves disabling PCI bus-mastering, if active. 2154 * 2155 * Note we don't actually disable the device until all callers of 2156 * pci_enable_device() have called pci_disable_device(). 2157 */ 2158 void pci_disable_device(struct pci_dev *dev) 2159 { 2160 struct pci_devres *dr; 2161 2162 dr = find_pci_dr(dev); 2163 if (dr) 2164 dr->enabled = 0; 2165 2166 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2167 "disabling already-disabled device"); 2168 2169 if (atomic_dec_return(&dev->enable_cnt) != 0) 2170 return; 2171 2172 do_pci_disable_device(dev); 2173 2174 dev->is_busmaster = 0; 2175 } 2176 EXPORT_SYMBOL(pci_disable_device); 2177 2178 /** 2179 * pcibios_set_pcie_reset_state - set reset state for device dev 2180 * @dev: the PCIe device reset 2181 * @state: Reset state to enter into 2182 * 2183 * Set the PCIe reset state for the device. This is the default 2184 * implementation. Architecture implementations can override this. 2185 */ 2186 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2187 enum pcie_reset_state state) 2188 { 2189 return -EINVAL; 2190 } 2191 2192 /** 2193 * pci_set_pcie_reset_state - set reset state for device dev 2194 * @dev: the PCIe device reset 2195 * @state: Reset state to enter into 2196 * 2197 * Sets the PCI reset state for the device. 2198 */ 2199 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2200 { 2201 return pcibios_set_pcie_reset_state(dev, state); 2202 } 2203 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2204 2205 void pcie_clear_device_status(struct pci_dev *dev) 2206 { 2207 u16 sta; 2208 2209 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2210 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2211 } 2212 2213 /** 2214 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2215 * @dev: PCIe root port or event collector. 2216 */ 2217 void pcie_clear_root_pme_status(struct pci_dev *dev) 2218 { 2219 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2220 } 2221 2222 /** 2223 * pci_check_pme_status - Check if given device has generated PME. 2224 * @dev: Device to check. 2225 * 2226 * Check the PME status of the device and if set, clear it and clear PME enable 2227 * (if set). Return 'true' if PME status and PME enable were both set or 2228 * 'false' otherwise. 2229 */ 2230 bool pci_check_pme_status(struct pci_dev *dev) 2231 { 2232 int pmcsr_pos; 2233 u16 pmcsr; 2234 bool ret = false; 2235 2236 if (!dev->pm_cap) 2237 return false; 2238 2239 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2240 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2241 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2242 return false; 2243 2244 /* Clear PME status. */ 2245 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2246 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2247 /* Disable PME to avoid interrupt flood. */ 2248 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2249 ret = true; 2250 } 2251 2252 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2253 2254 return ret; 2255 } 2256 2257 /** 2258 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2259 * @dev: Device to handle. 2260 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2261 * 2262 * Check if @dev has generated PME and queue a resume request for it in that 2263 * case. 2264 */ 2265 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2266 { 2267 if (pme_poll_reset && dev->pme_poll) 2268 dev->pme_poll = false; 2269 2270 if (pci_check_pme_status(dev)) { 2271 pci_wakeup_event(dev); 2272 pm_request_resume(&dev->dev); 2273 } 2274 return 0; 2275 } 2276 2277 /** 2278 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2279 * @bus: Top bus of the subtree to walk. 2280 */ 2281 void pci_pme_wakeup_bus(struct pci_bus *bus) 2282 { 2283 if (bus) 2284 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2285 } 2286 2287 2288 /** 2289 * pci_pme_capable - check the capability of PCI device to generate PME# 2290 * @dev: PCI device to handle. 2291 * @state: PCI state from which device will issue PME#. 2292 */ 2293 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2294 { 2295 if (!dev->pm_cap) 2296 return false; 2297 2298 return !!(dev->pme_support & (1 << state)); 2299 } 2300 EXPORT_SYMBOL(pci_pme_capable); 2301 2302 static void pci_pme_list_scan(struct work_struct *work) 2303 { 2304 struct pci_pme_device *pme_dev, *n; 2305 2306 mutex_lock(&pci_pme_list_mutex); 2307 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2308 if (pme_dev->dev->pme_poll) { 2309 struct pci_dev *bridge; 2310 2311 bridge = pme_dev->dev->bus->self; 2312 /* 2313 * If bridge is in low power state, the 2314 * configuration space of subordinate devices 2315 * may be not accessible 2316 */ 2317 if (bridge && bridge->current_state != PCI_D0) 2318 continue; 2319 /* 2320 * If the device is in D3cold it should not be 2321 * polled either. 2322 */ 2323 if (pme_dev->dev->current_state == PCI_D3cold) 2324 continue; 2325 2326 pci_pme_wakeup(pme_dev->dev, NULL); 2327 } else { 2328 list_del(&pme_dev->list); 2329 kfree(pme_dev); 2330 } 2331 } 2332 if (!list_empty(&pci_pme_list)) 2333 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2334 msecs_to_jiffies(PME_TIMEOUT)); 2335 mutex_unlock(&pci_pme_list_mutex); 2336 } 2337 2338 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2339 { 2340 u16 pmcsr; 2341 2342 if (!dev->pme_support) 2343 return; 2344 2345 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2346 /* Clear PME_Status by writing 1 to it and enable PME# */ 2347 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2348 if (!enable) 2349 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2350 2351 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2352 } 2353 2354 /** 2355 * pci_pme_restore - Restore PME configuration after config space restore. 2356 * @dev: PCI device to update. 2357 */ 2358 void pci_pme_restore(struct pci_dev *dev) 2359 { 2360 u16 pmcsr; 2361 2362 if (!dev->pme_support) 2363 return; 2364 2365 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2366 if (dev->wakeup_prepared) { 2367 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2368 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2369 } else { 2370 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2371 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2372 } 2373 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2374 } 2375 2376 /** 2377 * pci_pme_active - enable or disable PCI device's PME# function 2378 * @dev: PCI device to handle. 2379 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2380 * 2381 * The caller must verify that the device is capable of generating PME# before 2382 * calling this function with @enable equal to 'true'. 2383 */ 2384 void pci_pme_active(struct pci_dev *dev, bool enable) 2385 { 2386 __pci_pme_active(dev, enable); 2387 2388 /* 2389 * PCI (as opposed to PCIe) PME requires that the device have 2390 * its PME# line hooked up correctly. Not all hardware vendors 2391 * do this, so the PME never gets delivered and the device 2392 * remains asleep. The easiest way around this is to 2393 * periodically walk the list of suspended devices and check 2394 * whether any have their PME flag set. The assumption is that 2395 * we'll wake up often enough anyway that this won't be a huge 2396 * hit, and the power savings from the devices will still be a 2397 * win. 2398 * 2399 * Although PCIe uses in-band PME message instead of PME# line 2400 * to report PME, PME does not work for some PCIe devices in 2401 * reality. For example, there are devices that set their PME 2402 * status bits, but don't really bother to send a PME message; 2403 * there are PCI Express Root Ports that don't bother to 2404 * trigger interrupts when they receive PME messages from the 2405 * devices below. So PME poll is used for PCIe devices too. 2406 */ 2407 2408 if (dev->pme_poll) { 2409 struct pci_pme_device *pme_dev; 2410 if (enable) { 2411 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2412 GFP_KERNEL); 2413 if (!pme_dev) { 2414 pci_warn(dev, "can't enable PME#\n"); 2415 return; 2416 } 2417 pme_dev->dev = dev; 2418 mutex_lock(&pci_pme_list_mutex); 2419 list_add(&pme_dev->list, &pci_pme_list); 2420 if (list_is_singular(&pci_pme_list)) 2421 queue_delayed_work(system_freezable_wq, 2422 &pci_pme_work, 2423 msecs_to_jiffies(PME_TIMEOUT)); 2424 mutex_unlock(&pci_pme_list_mutex); 2425 } else { 2426 mutex_lock(&pci_pme_list_mutex); 2427 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2428 if (pme_dev->dev == dev) { 2429 list_del(&pme_dev->list); 2430 kfree(pme_dev); 2431 break; 2432 } 2433 } 2434 mutex_unlock(&pci_pme_list_mutex); 2435 } 2436 } 2437 2438 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2439 } 2440 EXPORT_SYMBOL(pci_pme_active); 2441 2442 /** 2443 * __pci_enable_wake - enable PCI device as wakeup event source 2444 * @dev: PCI device affected 2445 * @state: PCI state from which device will issue wakeup events 2446 * @enable: True to enable event generation; false to disable 2447 * 2448 * This enables the device as a wakeup event source, or disables it. 2449 * When such events involves platform-specific hooks, those hooks are 2450 * called automatically by this routine. 2451 * 2452 * Devices with legacy power management (no standard PCI PM capabilities) 2453 * always require such platform hooks. 2454 * 2455 * RETURN VALUE: 2456 * 0 is returned on success 2457 * -EINVAL is returned if device is not supposed to wake up the system 2458 * Error code depending on the platform is returned if both the platform and 2459 * the native mechanism fail to enable the generation of wake-up events 2460 */ 2461 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2462 { 2463 int ret = 0; 2464 2465 /* 2466 * Bridges that are not power-manageable directly only signal 2467 * wakeup on behalf of subordinate devices which is set up 2468 * elsewhere, so skip them. However, bridges that are 2469 * power-manageable may signal wakeup for themselves (for example, 2470 * on a hotplug event) and they need to be covered here. 2471 */ 2472 if (!pci_power_manageable(dev)) 2473 return 0; 2474 2475 /* Don't do the same thing twice in a row for one device. */ 2476 if (!!enable == !!dev->wakeup_prepared) 2477 return 0; 2478 2479 /* 2480 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2481 * Anderson we should be doing PME# wake enable followed by ACPI wake 2482 * enable. To disable wake-up we call the platform first, for symmetry. 2483 */ 2484 2485 if (enable) { 2486 int error; 2487 2488 if (pci_pme_capable(dev, state)) 2489 pci_pme_active(dev, true); 2490 else 2491 ret = 1; 2492 error = platform_pci_set_wakeup(dev, true); 2493 if (ret) 2494 ret = error; 2495 if (!ret) 2496 dev->wakeup_prepared = true; 2497 } else { 2498 platform_pci_set_wakeup(dev, false); 2499 pci_pme_active(dev, false); 2500 dev->wakeup_prepared = false; 2501 } 2502 2503 return ret; 2504 } 2505 2506 /** 2507 * pci_enable_wake - change wakeup settings for a PCI device 2508 * @pci_dev: Target device 2509 * @state: PCI state from which device will issue wakeup events 2510 * @enable: Whether or not to enable event generation 2511 * 2512 * If @enable is set, check device_may_wakeup() for the device before calling 2513 * __pci_enable_wake() for it. 2514 */ 2515 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2516 { 2517 if (enable && !device_may_wakeup(&pci_dev->dev)) 2518 return -EINVAL; 2519 2520 return __pci_enable_wake(pci_dev, state, enable); 2521 } 2522 EXPORT_SYMBOL(pci_enable_wake); 2523 2524 /** 2525 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2526 * @dev: PCI device to prepare 2527 * @enable: True to enable wake-up event generation; false to disable 2528 * 2529 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2530 * and this function allows them to set that up cleanly - pci_enable_wake() 2531 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2532 * ordering constraints. 2533 * 2534 * This function only returns error code if the device is not allowed to wake 2535 * up the system from sleep or it is not capable of generating PME# from both 2536 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2537 */ 2538 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2539 { 2540 return pci_pme_capable(dev, PCI_D3cold) ? 2541 pci_enable_wake(dev, PCI_D3cold, enable) : 2542 pci_enable_wake(dev, PCI_D3hot, enable); 2543 } 2544 EXPORT_SYMBOL(pci_wake_from_d3); 2545 2546 /** 2547 * pci_target_state - find an appropriate low power state for a given PCI dev 2548 * @dev: PCI device 2549 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2550 * 2551 * Use underlying platform code to find a supported low power state for @dev. 2552 * If the platform can't manage @dev, return the deepest state from which it 2553 * can generate wake events, based on any available PME info. 2554 */ 2555 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2556 { 2557 pci_power_t target_state = PCI_D3hot; 2558 2559 if (platform_pci_power_manageable(dev)) { 2560 /* 2561 * Call the platform to find the target state for the device. 2562 */ 2563 pci_power_t state = platform_pci_choose_state(dev); 2564 2565 switch (state) { 2566 case PCI_POWER_ERROR: 2567 case PCI_UNKNOWN: 2568 break; 2569 case PCI_D1: 2570 case PCI_D2: 2571 if (pci_no_d1d2(dev)) 2572 break; 2573 fallthrough; 2574 default: 2575 target_state = state; 2576 } 2577 2578 return target_state; 2579 } 2580 2581 if (!dev->pm_cap) 2582 target_state = PCI_D0; 2583 2584 /* 2585 * If the device is in D3cold even though it's not power-manageable by 2586 * the platform, it may have been powered down by non-standard means. 2587 * Best to let it slumber. 2588 */ 2589 if (dev->current_state == PCI_D3cold) 2590 target_state = PCI_D3cold; 2591 2592 if (wakeup) { 2593 /* 2594 * Find the deepest state from which the device can generate 2595 * PME#. 2596 */ 2597 if (dev->pme_support) { 2598 while (target_state 2599 && !(dev->pme_support & (1 << target_state))) 2600 target_state--; 2601 } 2602 } 2603 2604 return target_state; 2605 } 2606 2607 /** 2608 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2609 * into a sleep state 2610 * @dev: Device to handle. 2611 * 2612 * Choose the power state appropriate for the device depending on whether 2613 * it can wake up the system and/or is power manageable by the platform 2614 * (PCI_D3hot is the default) and put the device into that state. 2615 */ 2616 int pci_prepare_to_sleep(struct pci_dev *dev) 2617 { 2618 bool wakeup = device_may_wakeup(&dev->dev); 2619 pci_power_t target_state = pci_target_state(dev, wakeup); 2620 int error; 2621 2622 if (target_state == PCI_POWER_ERROR) 2623 return -EIO; 2624 2625 /* 2626 * There are systems (for example, Intel mobile chips since Coffee 2627 * Lake) where the power drawn while suspended can be significantly 2628 * reduced by disabling PTM on PCIe root ports as this allows the 2629 * port to enter a lower-power PM state and the SoC to reach a 2630 * lower-power idle state as a whole. 2631 */ 2632 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2633 pci_disable_ptm(dev); 2634 2635 pci_enable_wake(dev, target_state, wakeup); 2636 2637 error = pci_set_power_state(dev, target_state); 2638 2639 if (error) { 2640 pci_enable_wake(dev, target_state, false); 2641 pci_restore_ptm_state(dev); 2642 } 2643 2644 return error; 2645 } 2646 EXPORT_SYMBOL(pci_prepare_to_sleep); 2647 2648 /** 2649 * pci_back_from_sleep - turn PCI device on during system-wide transition 2650 * into working state 2651 * @dev: Device to handle. 2652 * 2653 * Disable device's system wake-up capability and put it into D0. 2654 */ 2655 int pci_back_from_sleep(struct pci_dev *dev) 2656 { 2657 pci_enable_wake(dev, PCI_D0, false); 2658 return pci_set_power_state(dev, PCI_D0); 2659 } 2660 EXPORT_SYMBOL(pci_back_from_sleep); 2661 2662 /** 2663 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2664 * @dev: PCI device being suspended. 2665 * 2666 * Prepare @dev to generate wake-up events at run time and put it into a low 2667 * power state. 2668 */ 2669 int pci_finish_runtime_suspend(struct pci_dev *dev) 2670 { 2671 pci_power_t target_state; 2672 int error; 2673 2674 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2675 if (target_state == PCI_POWER_ERROR) 2676 return -EIO; 2677 2678 dev->runtime_d3cold = target_state == PCI_D3cold; 2679 2680 /* 2681 * There are systems (for example, Intel mobile chips since Coffee 2682 * Lake) where the power drawn while suspended can be significantly 2683 * reduced by disabling PTM on PCIe root ports as this allows the 2684 * port to enter a lower-power PM state and the SoC to reach a 2685 * lower-power idle state as a whole. 2686 */ 2687 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2688 pci_disable_ptm(dev); 2689 2690 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2691 2692 error = pci_set_power_state(dev, target_state); 2693 2694 if (error) { 2695 pci_enable_wake(dev, target_state, false); 2696 pci_restore_ptm_state(dev); 2697 dev->runtime_d3cold = false; 2698 } 2699 2700 return error; 2701 } 2702 2703 /** 2704 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2705 * @dev: Device to check. 2706 * 2707 * Return true if the device itself is capable of generating wake-up events 2708 * (through the platform or using the native PCIe PME) or if the device supports 2709 * PME and one of its upstream bridges can generate wake-up events. 2710 */ 2711 bool pci_dev_run_wake(struct pci_dev *dev) 2712 { 2713 struct pci_bus *bus = dev->bus; 2714 2715 if (!dev->pme_support) 2716 return false; 2717 2718 /* PME-capable in principle, but not from the target power state */ 2719 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2720 return false; 2721 2722 if (device_can_wakeup(&dev->dev)) 2723 return true; 2724 2725 while (bus->parent) { 2726 struct pci_dev *bridge = bus->self; 2727 2728 if (device_can_wakeup(&bridge->dev)) 2729 return true; 2730 2731 bus = bus->parent; 2732 } 2733 2734 /* We have reached the root bus. */ 2735 if (bus->bridge) 2736 return device_can_wakeup(bus->bridge); 2737 2738 return false; 2739 } 2740 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2741 2742 /** 2743 * pci_dev_need_resume - Check if it is necessary to resume the device. 2744 * @pci_dev: Device to check. 2745 * 2746 * Return 'true' if the device is not runtime-suspended or it has to be 2747 * reconfigured due to wakeup settings difference between system and runtime 2748 * suspend, or the current power state of it is not suitable for the upcoming 2749 * (system-wide) transition. 2750 */ 2751 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2752 { 2753 struct device *dev = &pci_dev->dev; 2754 pci_power_t target_state; 2755 2756 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2757 return true; 2758 2759 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2760 2761 /* 2762 * If the earlier platform check has not triggered, D3cold is just power 2763 * removal on top of D3hot, so no need to resume the device in that 2764 * case. 2765 */ 2766 return target_state != pci_dev->current_state && 2767 target_state != PCI_D3cold && 2768 pci_dev->current_state != PCI_D3hot; 2769 } 2770 2771 /** 2772 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2773 * @pci_dev: Device to check. 2774 * 2775 * If the device is suspended and it is not configured for system wakeup, 2776 * disable PME for it to prevent it from waking up the system unnecessarily. 2777 * 2778 * Note that if the device's power state is D3cold and the platform check in 2779 * pci_dev_need_resume() has not triggered, the device's configuration need not 2780 * be changed. 2781 */ 2782 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2783 { 2784 struct device *dev = &pci_dev->dev; 2785 2786 spin_lock_irq(&dev->power.lock); 2787 2788 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2789 pci_dev->current_state < PCI_D3cold) 2790 __pci_pme_active(pci_dev, false); 2791 2792 spin_unlock_irq(&dev->power.lock); 2793 } 2794 2795 /** 2796 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2797 * @pci_dev: Device to handle. 2798 * 2799 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2800 * it might have been disabled during the prepare phase of system suspend if 2801 * the device was not configured for system wakeup. 2802 */ 2803 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2804 { 2805 struct device *dev = &pci_dev->dev; 2806 2807 if (!pci_dev_run_wake(pci_dev)) 2808 return; 2809 2810 spin_lock_irq(&dev->power.lock); 2811 2812 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2813 __pci_pme_active(pci_dev, true); 2814 2815 spin_unlock_irq(&dev->power.lock); 2816 } 2817 2818 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2819 { 2820 struct device *dev = &pdev->dev; 2821 struct device *parent = dev->parent; 2822 2823 if (parent) 2824 pm_runtime_get_sync(parent); 2825 pm_runtime_get_noresume(dev); 2826 /* 2827 * pdev->current_state is set to PCI_D3cold during suspending, 2828 * so wait until suspending completes 2829 */ 2830 pm_runtime_barrier(dev); 2831 /* 2832 * Only need to resume devices in D3cold, because config 2833 * registers are still accessible for devices suspended but 2834 * not in D3cold. 2835 */ 2836 if (pdev->current_state == PCI_D3cold) 2837 pm_runtime_resume(dev); 2838 } 2839 2840 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2841 { 2842 struct device *dev = &pdev->dev; 2843 struct device *parent = dev->parent; 2844 2845 pm_runtime_put(dev); 2846 if (parent) 2847 pm_runtime_put_sync(parent); 2848 } 2849 2850 static const struct dmi_system_id bridge_d3_blacklist[] = { 2851 #ifdef CONFIG_X86 2852 { 2853 /* 2854 * Gigabyte X299 root port is not marked as hotplug capable 2855 * which allows Linux to power manage it. However, this 2856 * confuses the BIOS SMI handler so don't power manage root 2857 * ports on that system. 2858 */ 2859 .ident = "X299 DESIGNARE EX-CF", 2860 .matches = { 2861 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2862 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2863 }, 2864 }, 2865 #endif 2866 { } 2867 }; 2868 2869 /** 2870 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2871 * @bridge: Bridge to check 2872 * 2873 * This function checks if it is possible to move the bridge to D3. 2874 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2875 */ 2876 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2877 { 2878 if (!pci_is_pcie(bridge)) 2879 return false; 2880 2881 switch (pci_pcie_type(bridge)) { 2882 case PCI_EXP_TYPE_ROOT_PORT: 2883 case PCI_EXP_TYPE_UPSTREAM: 2884 case PCI_EXP_TYPE_DOWNSTREAM: 2885 if (pci_bridge_d3_disable) 2886 return false; 2887 2888 /* 2889 * Hotplug ports handled by firmware in System Management Mode 2890 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2891 */ 2892 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2893 return false; 2894 2895 if (pci_bridge_d3_force) 2896 return true; 2897 2898 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2899 if (bridge->is_thunderbolt) 2900 return true; 2901 2902 /* Platform might know better if the bridge supports D3 */ 2903 if (platform_pci_bridge_d3(bridge)) 2904 return true; 2905 2906 /* 2907 * Hotplug ports handled natively by the OS were not validated 2908 * by vendors for runtime D3 at least until 2018 because there 2909 * was no OS support. 2910 */ 2911 if (bridge->is_hotplug_bridge) 2912 return false; 2913 2914 if (dmi_check_system(bridge_d3_blacklist)) 2915 return false; 2916 2917 /* 2918 * It should be safe to put PCIe ports from 2015 or newer 2919 * to D3. 2920 */ 2921 if (dmi_get_bios_year() >= 2015) 2922 return true; 2923 break; 2924 } 2925 2926 return false; 2927 } 2928 2929 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2930 { 2931 bool *d3cold_ok = data; 2932 2933 if (/* The device needs to be allowed to go D3cold ... */ 2934 dev->no_d3cold || !dev->d3cold_allowed || 2935 2936 /* ... and if it is wakeup capable to do so from D3cold. */ 2937 (device_may_wakeup(&dev->dev) && 2938 !pci_pme_capable(dev, PCI_D3cold)) || 2939 2940 /* If it is a bridge it must be allowed to go to D3. */ 2941 !pci_power_manageable(dev)) 2942 2943 *d3cold_ok = false; 2944 2945 return !*d3cold_ok; 2946 } 2947 2948 /* 2949 * pci_bridge_d3_update - Update bridge D3 capabilities 2950 * @dev: PCI device which is changed 2951 * 2952 * Update upstream bridge PM capabilities accordingly depending on if the 2953 * device PM configuration was changed or the device is being removed. The 2954 * change is also propagated upstream. 2955 */ 2956 void pci_bridge_d3_update(struct pci_dev *dev) 2957 { 2958 bool remove = !device_is_registered(&dev->dev); 2959 struct pci_dev *bridge; 2960 bool d3cold_ok = true; 2961 2962 bridge = pci_upstream_bridge(dev); 2963 if (!bridge || !pci_bridge_d3_possible(bridge)) 2964 return; 2965 2966 /* 2967 * If D3 is currently allowed for the bridge, removing one of its 2968 * children won't change that. 2969 */ 2970 if (remove && bridge->bridge_d3) 2971 return; 2972 2973 /* 2974 * If D3 is currently allowed for the bridge and a child is added or 2975 * changed, disallowance of D3 can only be caused by that child, so 2976 * we only need to check that single device, not any of its siblings. 2977 * 2978 * If D3 is currently not allowed for the bridge, checking the device 2979 * first may allow us to skip checking its siblings. 2980 */ 2981 if (!remove) 2982 pci_dev_check_d3cold(dev, &d3cold_ok); 2983 2984 /* 2985 * If D3 is currently not allowed for the bridge, this may be caused 2986 * either by the device being changed/removed or any of its siblings, 2987 * so we need to go through all children to find out if one of them 2988 * continues to block D3. 2989 */ 2990 if (d3cold_ok && !bridge->bridge_d3) 2991 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2992 &d3cold_ok); 2993 2994 if (bridge->bridge_d3 != d3cold_ok) { 2995 bridge->bridge_d3 = d3cold_ok; 2996 /* Propagate change to upstream bridges */ 2997 pci_bridge_d3_update(bridge); 2998 } 2999 } 3000 3001 /** 3002 * pci_d3cold_enable - Enable D3cold for device 3003 * @dev: PCI device to handle 3004 * 3005 * This function can be used in drivers to enable D3cold from the device 3006 * they handle. It also updates upstream PCI bridge PM capabilities 3007 * accordingly. 3008 */ 3009 void pci_d3cold_enable(struct pci_dev *dev) 3010 { 3011 if (dev->no_d3cold) { 3012 dev->no_d3cold = false; 3013 pci_bridge_d3_update(dev); 3014 } 3015 } 3016 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3017 3018 /** 3019 * pci_d3cold_disable - Disable D3cold for device 3020 * @dev: PCI device to handle 3021 * 3022 * This function can be used in drivers to disable D3cold from the device 3023 * they handle. It also updates upstream PCI bridge PM capabilities 3024 * accordingly. 3025 */ 3026 void pci_d3cold_disable(struct pci_dev *dev) 3027 { 3028 if (!dev->no_d3cold) { 3029 dev->no_d3cold = true; 3030 pci_bridge_d3_update(dev); 3031 } 3032 } 3033 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3034 3035 /** 3036 * pci_pm_init - Initialize PM functions of given PCI device 3037 * @dev: PCI device to handle. 3038 */ 3039 void pci_pm_init(struct pci_dev *dev) 3040 { 3041 int pm; 3042 u16 status; 3043 u16 pmc; 3044 3045 pm_runtime_forbid(&dev->dev); 3046 pm_runtime_set_active(&dev->dev); 3047 pm_runtime_enable(&dev->dev); 3048 device_enable_async_suspend(&dev->dev); 3049 dev->wakeup_prepared = false; 3050 3051 dev->pm_cap = 0; 3052 dev->pme_support = 0; 3053 3054 /* find PCI PM capability in list */ 3055 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3056 if (!pm) 3057 return; 3058 /* Check device's ability to generate PME# */ 3059 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3060 3061 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3062 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3063 pmc & PCI_PM_CAP_VER_MASK); 3064 return; 3065 } 3066 3067 dev->pm_cap = pm; 3068 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3069 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3070 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3071 dev->d3cold_allowed = true; 3072 3073 dev->d1_support = false; 3074 dev->d2_support = false; 3075 if (!pci_no_d1d2(dev)) { 3076 if (pmc & PCI_PM_CAP_D1) 3077 dev->d1_support = true; 3078 if (pmc & PCI_PM_CAP_D2) 3079 dev->d2_support = true; 3080 3081 if (dev->d1_support || dev->d2_support) 3082 pci_info(dev, "supports%s%s\n", 3083 dev->d1_support ? " D1" : "", 3084 dev->d2_support ? " D2" : ""); 3085 } 3086 3087 pmc &= PCI_PM_CAP_PME_MASK; 3088 if (pmc) { 3089 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3090 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3091 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3092 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3093 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3094 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3095 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3096 dev->pme_poll = true; 3097 /* 3098 * Make device's PM flags reflect the wake-up capability, but 3099 * let the user space enable it to wake up the system as needed. 3100 */ 3101 device_set_wakeup_capable(&dev->dev, true); 3102 /* Disable the PME# generation functionality */ 3103 pci_pme_active(dev, false); 3104 } 3105 3106 pci_read_config_word(dev, PCI_STATUS, &status); 3107 if (status & PCI_STATUS_IMM_READY) 3108 dev->imm_ready = 1; 3109 } 3110 3111 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3112 { 3113 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3114 3115 switch (prop) { 3116 case PCI_EA_P_MEM: 3117 case PCI_EA_P_VF_MEM: 3118 flags |= IORESOURCE_MEM; 3119 break; 3120 case PCI_EA_P_MEM_PREFETCH: 3121 case PCI_EA_P_VF_MEM_PREFETCH: 3122 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3123 break; 3124 case PCI_EA_P_IO: 3125 flags |= IORESOURCE_IO; 3126 break; 3127 default: 3128 return 0; 3129 } 3130 3131 return flags; 3132 } 3133 3134 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3135 u8 prop) 3136 { 3137 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3138 return &dev->resource[bei]; 3139 #ifdef CONFIG_PCI_IOV 3140 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3141 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3142 return &dev->resource[PCI_IOV_RESOURCES + 3143 bei - PCI_EA_BEI_VF_BAR0]; 3144 #endif 3145 else if (bei == PCI_EA_BEI_ROM) 3146 return &dev->resource[PCI_ROM_RESOURCE]; 3147 else 3148 return NULL; 3149 } 3150 3151 /* Read an Enhanced Allocation (EA) entry */ 3152 static int pci_ea_read(struct pci_dev *dev, int offset) 3153 { 3154 struct resource *res; 3155 int ent_size, ent_offset = offset; 3156 resource_size_t start, end; 3157 unsigned long flags; 3158 u32 dw0, bei, base, max_offset; 3159 u8 prop; 3160 bool support_64 = (sizeof(resource_size_t) >= 8); 3161 3162 pci_read_config_dword(dev, ent_offset, &dw0); 3163 ent_offset += 4; 3164 3165 /* Entry size field indicates DWORDs after 1st */ 3166 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3167 3168 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3169 goto out; 3170 3171 bei = (dw0 & PCI_EA_BEI) >> 4; 3172 prop = (dw0 & PCI_EA_PP) >> 8; 3173 3174 /* 3175 * If the Property is in the reserved range, try the Secondary 3176 * Property instead. 3177 */ 3178 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3179 prop = (dw0 & PCI_EA_SP) >> 16; 3180 if (prop > PCI_EA_P_BRIDGE_IO) 3181 goto out; 3182 3183 res = pci_ea_get_resource(dev, bei, prop); 3184 if (!res) { 3185 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3186 goto out; 3187 } 3188 3189 flags = pci_ea_flags(dev, prop); 3190 if (!flags) { 3191 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3192 goto out; 3193 } 3194 3195 /* Read Base */ 3196 pci_read_config_dword(dev, ent_offset, &base); 3197 start = (base & PCI_EA_FIELD_MASK); 3198 ent_offset += 4; 3199 3200 /* Read MaxOffset */ 3201 pci_read_config_dword(dev, ent_offset, &max_offset); 3202 ent_offset += 4; 3203 3204 /* Read Base MSBs (if 64-bit entry) */ 3205 if (base & PCI_EA_IS_64) { 3206 u32 base_upper; 3207 3208 pci_read_config_dword(dev, ent_offset, &base_upper); 3209 ent_offset += 4; 3210 3211 flags |= IORESOURCE_MEM_64; 3212 3213 /* entry starts above 32-bit boundary, can't use */ 3214 if (!support_64 && base_upper) 3215 goto out; 3216 3217 if (support_64) 3218 start |= ((u64)base_upper << 32); 3219 } 3220 3221 end = start + (max_offset | 0x03); 3222 3223 /* Read MaxOffset MSBs (if 64-bit entry) */ 3224 if (max_offset & PCI_EA_IS_64) { 3225 u32 max_offset_upper; 3226 3227 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3228 ent_offset += 4; 3229 3230 flags |= IORESOURCE_MEM_64; 3231 3232 /* entry too big, can't use */ 3233 if (!support_64 && max_offset_upper) 3234 goto out; 3235 3236 if (support_64) 3237 end += ((u64)max_offset_upper << 32); 3238 } 3239 3240 if (end < start) { 3241 pci_err(dev, "EA Entry crosses address boundary\n"); 3242 goto out; 3243 } 3244 3245 if (ent_size != ent_offset - offset) { 3246 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3247 ent_size, ent_offset - offset); 3248 goto out; 3249 } 3250 3251 res->name = pci_name(dev); 3252 res->start = start; 3253 res->end = end; 3254 res->flags = flags; 3255 3256 if (bei <= PCI_EA_BEI_BAR5) 3257 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3258 bei, res, prop); 3259 else if (bei == PCI_EA_BEI_ROM) 3260 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3261 res, prop); 3262 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3263 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3264 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3265 else 3266 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3267 bei, res, prop); 3268 3269 out: 3270 return offset + ent_size; 3271 } 3272 3273 /* Enhanced Allocation Initialization */ 3274 void pci_ea_init(struct pci_dev *dev) 3275 { 3276 int ea; 3277 u8 num_ent; 3278 int offset; 3279 int i; 3280 3281 /* find PCI EA capability in list */ 3282 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3283 if (!ea) 3284 return; 3285 3286 /* determine the number of entries */ 3287 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3288 &num_ent); 3289 num_ent &= PCI_EA_NUM_ENT_MASK; 3290 3291 offset = ea + PCI_EA_FIRST_ENT; 3292 3293 /* Skip DWORD 2 for type 1 functions */ 3294 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3295 offset += 4; 3296 3297 /* parse each EA entry */ 3298 for (i = 0; i < num_ent; ++i) 3299 offset = pci_ea_read(dev, offset); 3300 } 3301 3302 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3303 struct pci_cap_saved_state *new_cap) 3304 { 3305 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3306 } 3307 3308 /** 3309 * _pci_add_cap_save_buffer - allocate buffer for saving given 3310 * capability registers 3311 * @dev: the PCI device 3312 * @cap: the capability to allocate the buffer for 3313 * @extended: Standard or Extended capability ID 3314 * @size: requested size of the buffer 3315 */ 3316 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3317 bool extended, unsigned int size) 3318 { 3319 int pos; 3320 struct pci_cap_saved_state *save_state; 3321 3322 if (extended) 3323 pos = pci_find_ext_capability(dev, cap); 3324 else 3325 pos = pci_find_capability(dev, cap); 3326 3327 if (!pos) 3328 return 0; 3329 3330 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3331 if (!save_state) 3332 return -ENOMEM; 3333 3334 save_state->cap.cap_nr = cap; 3335 save_state->cap.cap_extended = extended; 3336 save_state->cap.size = size; 3337 pci_add_saved_cap(dev, save_state); 3338 3339 return 0; 3340 } 3341 3342 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3343 { 3344 return _pci_add_cap_save_buffer(dev, cap, false, size); 3345 } 3346 3347 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3348 { 3349 return _pci_add_cap_save_buffer(dev, cap, true, size); 3350 } 3351 3352 /** 3353 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3354 * @dev: the PCI device 3355 */ 3356 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3357 { 3358 int error; 3359 3360 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3361 PCI_EXP_SAVE_REGS * sizeof(u16)); 3362 if (error) 3363 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3364 3365 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3366 if (error) 3367 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3368 3369 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3370 2 * sizeof(u16)); 3371 if (error) 3372 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3373 3374 pci_allocate_vc_save_buffers(dev); 3375 } 3376 3377 void pci_free_cap_save_buffers(struct pci_dev *dev) 3378 { 3379 struct pci_cap_saved_state *tmp; 3380 struct hlist_node *n; 3381 3382 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3383 kfree(tmp); 3384 } 3385 3386 /** 3387 * pci_configure_ari - enable or disable ARI forwarding 3388 * @dev: the PCI device 3389 * 3390 * If @dev and its upstream bridge both support ARI, enable ARI in the 3391 * bridge. Otherwise, disable ARI in the bridge. 3392 */ 3393 void pci_configure_ari(struct pci_dev *dev) 3394 { 3395 u32 cap; 3396 struct pci_dev *bridge; 3397 3398 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3399 return; 3400 3401 bridge = dev->bus->self; 3402 if (!bridge) 3403 return; 3404 3405 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3406 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3407 return; 3408 3409 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3410 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3411 PCI_EXP_DEVCTL2_ARI); 3412 bridge->ari_enabled = 1; 3413 } else { 3414 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3415 PCI_EXP_DEVCTL2_ARI); 3416 bridge->ari_enabled = 0; 3417 } 3418 } 3419 3420 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3421 { 3422 int pos; 3423 u16 cap, ctrl; 3424 3425 pos = pdev->acs_cap; 3426 if (!pos) 3427 return false; 3428 3429 /* 3430 * Except for egress control, capabilities are either required 3431 * or only required if controllable. Features missing from the 3432 * capability field can therefore be assumed as hard-wired enabled. 3433 */ 3434 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3435 acs_flags &= (cap | PCI_ACS_EC); 3436 3437 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3438 return (ctrl & acs_flags) == acs_flags; 3439 } 3440 3441 /** 3442 * pci_acs_enabled - test ACS against required flags for a given device 3443 * @pdev: device to test 3444 * @acs_flags: required PCI ACS flags 3445 * 3446 * Return true if the device supports the provided flags. Automatically 3447 * filters out flags that are not implemented on multifunction devices. 3448 * 3449 * Note that this interface checks the effective ACS capabilities of the 3450 * device rather than the actual capabilities. For instance, most single 3451 * function endpoints are not required to support ACS because they have no 3452 * opportunity for peer-to-peer access. We therefore return 'true' 3453 * regardless of whether the device exposes an ACS capability. This makes 3454 * it much easier for callers of this function to ignore the actual type 3455 * or topology of the device when testing ACS support. 3456 */ 3457 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3458 { 3459 int ret; 3460 3461 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3462 if (ret >= 0) 3463 return ret > 0; 3464 3465 /* 3466 * Conventional PCI and PCI-X devices never support ACS, either 3467 * effectively or actually. The shared bus topology implies that 3468 * any device on the bus can receive or snoop DMA. 3469 */ 3470 if (!pci_is_pcie(pdev)) 3471 return false; 3472 3473 switch (pci_pcie_type(pdev)) { 3474 /* 3475 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3476 * but since their primary interface is PCI/X, we conservatively 3477 * handle them as we would a non-PCIe device. 3478 */ 3479 case PCI_EXP_TYPE_PCIE_BRIDGE: 3480 /* 3481 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3482 * applicable... must never implement an ACS Extended Capability...". 3483 * This seems arbitrary, but we take a conservative interpretation 3484 * of this statement. 3485 */ 3486 case PCI_EXP_TYPE_PCI_BRIDGE: 3487 case PCI_EXP_TYPE_RC_EC: 3488 return false; 3489 /* 3490 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3491 * implement ACS in order to indicate their peer-to-peer capabilities, 3492 * regardless of whether they are single- or multi-function devices. 3493 */ 3494 case PCI_EXP_TYPE_DOWNSTREAM: 3495 case PCI_EXP_TYPE_ROOT_PORT: 3496 return pci_acs_flags_enabled(pdev, acs_flags); 3497 /* 3498 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3499 * implemented by the remaining PCIe types to indicate peer-to-peer 3500 * capabilities, but only when they are part of a multifunction 3501 * device. The footnote for section 6.12 indicates the specific 3502 * PCIe types included here. 3503 */ 3504 case PCI_EXP_TYPE_ENDPOINT: 3505 case PCI_EXP_TYPE_UPSTREAM: 3506 case PCI_EXP_TYPE_LEG_END: 3507 case PCI_EXP_TYPE_RC_END: 3508 if (!pdev->multifunction) 3509 break; 3510 3511 return pci_acs_flags_enabled(pdev, acs_flags); 3512 } 3513 3514 /* 3515 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3516 * to single function devices with the exception of downstream ports. 3517 */ 3518 return true; 3519 } 3520 3521 /** 3522 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3523 * @start: starting downstream device 3524 * @end: ending upstream device or NULL to search to the root bus 3525 * @acs_flags: required flags 3526 * 3527 * Walk up a device tree from start to end testing PCI ACS support. If 3528 * any step along the way does not support the required flags, return false. 3529 */ 3530 bool pci_acs_path_enabled(struct pci_dev *start, 3531 struct pci_dev *end, u16 acs_flags) 3532 { 3533 struct pci_dev *pdev, *parent = start; 3534 3535 do { 3536 pdev = parent; 3537 3538 if (!pci_acs_enabled(pdev, acs_flags)) 3539 return false; 3540 3541 if (pci_is_root_bus(pdev->bus)) 3542 return (end == NULL); 3543 3544 parent = pdev->bus->self; 3545 } while (pdev != end); 3546 3547 return true; 3548 } 3549 3550 /** 3551 * pci_acs_init - Initialize ACS if hardware supports it 3552 * @dev: the PCI device 3553 */ 3554 void pci_acs_init(struct pci_dev *dev) 3555 { 3556 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3557 3558 /* 3559 * Attempt to enable ACS regardless of capability because some Root 3560 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3561 * the standard ACS capability but still support ACS via those 3562 * quirks. 3563 */ 3564 pci_enable_acs(dev); 3565 } 3566 3567 /** 3568 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3569 * @pdev: PCI device 3570 * @bar: BAR to find 3571 * 3572 * Helper to find the position of the ctrl register for a BAR. 3573 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3574 * Returns -ENOENT if no ctrl register for the BAR could be found. 3575 */ 3576 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3577 { 3578 unsigned int pos, nbars, i; 3579 u32 ctrl; 3580 3581 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3582 if (!pos) 3583 return -ENOTSUPP; 3584 3585 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3586 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3587 PCI_REBAR_CTRL_NBAR_SHIFT; 3588 3589 for (i = 0; i < nbars; i++, pos += 8) { 3590 int bar_idx; 3591 3592 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3593 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3594 if (bar_idx == bar) 3595 return pos; 3596 } 3597 3598 return -ENOENT; 3599 } 3600 3601 /** 3602 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3603 * @pdev: PCI device 3604 * @bar: BAR to query 3605 * 3606 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3607 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3608 */ 3609 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3610 { 3611 int pos; 3612 u32 cap; 3613 3614 pos = pci_rebar_find_pos(pdev, bar); 3615 if (pos < 0) 3616 return 0; 3617 3618 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3619 cap &= PCI_REBAR_CAP_SIZES; 3620 3621 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3622 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3623 bar == 0 && cap == 0x7000) 3624 cap = 0x3f000; 3625 3626 return cap >> 4; 3627 } 3628 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3629 3630 /** 3631 * pci_rebar_get_current_size - get the current size of a BAR 3632 * @pdev: PCI device 3633 * @bar: BAR to set size to 3634 * 3635 * Read the size of a BAR from the resizable BAR config. 3636 * Returns size if found or negative error code. 3637 */ 3638 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3639 { 3640 int pos; 3641 u32 ctrl; 3642 3643 pos = pci_rebar_find_pos(pdev, bar); 3644 if (pos < 0) 3645 return pos; 3646 3647 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3648 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3649 } 3650 3651 /** 3652 * pci_rebar_set_size - set a new size for a BAR 3653 * @pdev: PCI device 3654 * @bar: BAR to set size to 3655 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3656 * 3657 * Set the new size of a BAR as defined in the spec. 3658 * Returns zero if resizing was successful, error code otherwise. 3659 */ 3660 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3661 { 3662 int pos; 3663 u32 ctrl; 3664 3665 pos = pci_rebar_find_pos(pdev, bar); 3666 if (pos < 0) 3667 return pos; 3668 3669 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3670 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3671 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3672 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3673 return 0; 3674 } 3675 3676 /** 3677 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3678 * @dev: the PCI device 3679 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3680 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3681 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3682 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3683 * 3684 * Return 0 if all upstream bridges support AtomicOp routing, egress 3685 * blocking is disabled on all upstream ports, and the root port supports 3686 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3687 * AtomicOp completion), or negative otherwise. 3688 */ 3689 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3690 { 3691 struct pci_bus *bus = dev->bus; 3692 struct pci_dev *bridge; 3693 u32 cap, ctl2; 3694 3695 if (!pci_is_pcie(dev)) 3696 return -EINVAL; 3697 3698 /* 3699 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3700 * AtomicOp requesters. For now, we only support endpoints as 3701 * requesters and root ports as completers. No endpoints as 3702 * completers, and no peer-to-peer. 3703 */ 3704 3705 switch (pci_pcie_type(dev)) { 3706 case PCI_EXP_TYPE_ENDPOINT: 3707 case PCI_EXP_TYPE_LEG_END: 3708 case PCI_EXP_TYPE_RC_END: 3709 break; 3710 default: 3711 return -EINVAL; 3712 } 3713 3714 while (bus->parent) { 3715 bridge = bus->self; 3716 3717 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3718 3719 switch (pci_pcie_type(bridge)) { 3720 /* Ensure switch ports support AtomicOp routing */ 3721 case PCI_EXP_TYPE_UPSTREAM: 3722 case PCI_EXP_TYPE_DOWNSTREAM: 3723 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3724 return -EINVAL; 3725 break; 3726 3727 /* Ensure root port supports all the sizes we care about */ 3728 case PCI_EXP_TYPE_ROOT_PORT: 3729 if ((cap & cap_mask) != cap_mask) 3730 return -EINVAL; 3731 break; 3732 } 3733 3734 /* Ensure upstream ports don't block AtomicOps on egress */ 3735 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3736 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3737 &ctl2); 3738 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3739 return -EINVAL; 3740 } 3741 3742 bus = bus->parent; 3743 } 3744 3745 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3746 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3747 return 0; 3748 } 3749 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3750 3751 /** 3752 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3753 * @dev: the PCI device 3754 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3755 * 3756 * Perform INTx swizzling for a device behind one level of bridge. This is 3757 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3758 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3759 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3760 * the PCI Express Base Specification, Revision 2.1) 3761 */ 3762 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3763 { 3764 int slot; 3765 3766 if (pci_ari_enabled(dev->bus)) 3767 slot = 0; 3768 else 3769 slot = PCI_SLOT(dev->devfn); 3770 3771 return (((pin - 1) + slot) % 4) + 1; 3772 } 3773 3774 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3775 { 3776 u8 pin; 3777 3778 pin = dev->pin; 3779 if (!pin) 3780 return -1; 3781 3782 while (!pci_is_root_bus(dev->bus)) { 3783 pin = pci_swizzle_interrupt_pin(dev, pin); 3784 dev = dev->bus->self; 3785 } 3786 *bridge = dev; 3787 return pin; 3788 } 3789 3790 /** 3791 * pci_common_swizzle - swizzle INTx all the way to root bridge 3792 * @dev: the PCI device 3793 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3794 * 3795 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3796 * bridges all the way up to a PCI root bus. 3797 */ 3798 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3799 { 3800 u8 pin = *pinp; 3801 3802 while (!pci_is_root_bus(dev->bus)) { 3803 pin = pci_swizzle_interrupt_pin(dev, pin); 3804 dev = dev->bus->self; 3805 } 3806 *pinp = pin; 3807 return PCI_SLOT(dev->devfn); 3808 } 3809 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3810 3811 /** 3812 * pci_release_region - Release a PCI bar 3813 * @pdev: PCI device whose resources were previously reserved by 3814 * pci_request_region() 3815 * @bar: BAR to release 3816 * 3817 * Releases the PCI I/O and memory resources previously reserved by a 3818 * successful call to pci_request_region(). Call this function only 3819 * after all use of the PCI regions has ceased. 3820 */ 3821 void pci_release_region(struct pci_dev *pdev, int bar) 3822 { 3823 struct pci_devres *dr; 3824 3825 if (pci_resource_len(pdev, bar) == 0) 3826 return; 3827 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3828 release_region(pci_resource_start(pdev, bar), 3829 pci_resource_len(pdev, bar)); 3830 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3831 release_mem_region(pci_resource_start(pdev, bar), 3832 pci_resource_len(pdev, bar)); 3833 3834 dr = find_pci_dr(pdev); 3835 if (dr) 3836 dr->region_mask &= ~(1 << bar); 3837 } 3838 EXPORT_SYMBOL(pci_release_region); 3839 3840 /** 3841 * __pci_request_region - Reserved PCI I/O and memory resource 3842 * @pdev: PCI device whose resources are to be reserved 3843 * @bar: BAR to be reserved 3844 * @res_name: Name to be associated with resource. 3845 * @exclusive: whether the region access is exclusive or not 3846 * 3847 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3848 * being reserved by owner @res_name. Do not access any 3849 * address inside the PCI regions unless this call returns 3850 * successfully. 3851 * 3852 * If @exclusive is set, then the region is marked so that userspace 3853 * is explicitly not allowed to map the resource via /dev/mem or 3854 * sysfs MMIO access. 3855 * 3856 * Returns 0 on success, or %EBUSY on error. A warning 3857 * message is also printed on failure. 3858 */ 3859 static int __pci_request_region(struct pci_dev *pdev, int bar, 3860 const char *res_name, int exclusive) 3861 { 3862 struct pci_devres *dr; 3863 3864 if (pci_resource_len(pdev, bar) == 0) 3865 return 0; 3866 3867 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3868 if (!request_region(pci_resource_start(pdev, bar), 3869 pci_resource_len(pdev, bar), res_name)) 3870 goto err_out; 3871 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3872 if (!__request_mem_region(pci_resource_start(pdev, bar), 3873 pci_resource_len(pdev, bar), res_name, 3874 exclusive)) 3875 goto err_out; 3876 } 3877 3878 dr = find_pci_dr(pdev); 3879 if (dr) 3880 dr->region_mask |= 1 << bar; 3881 3882 return 0; 3883 3884 err_out: 3885 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3886 &pdev->resource[bar]); 3887 return -EBUSY; 3888 } 3889 3890 /** 3891 * pci_request_region - Reserve PCI I/O and memory resource 3892 * @pdev: PCI device whose resources are to be reserved 3893 * @bar: BAR to be reserved 3894 * @res_name: Name to be associated with resource 3895 * 3896 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3897 * being reserved by owner @res_name. Do not access any 3898 * address inside the PCI regions unless this call returns 3899 * successfully. 3900 * 3901 * Returns 0 on success, or %EBUSY on error. A warning 3902 * message is also printed on failure. 3903 */ 3904 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3905 { 3906 return __pci_request_region(pdev, bar, res_name, 0); 3907 } 3908 EXPORT_SYMBOL(pci_request_region); 3909 3910 /** 3911 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3912 * @pdev: PCI device whose resources were previously reserved 3913 * @bars: Bitmask of BARs to be released 3914 * 3915 * Release selected PCI I/O and memory resources previously reserved. 3916 * Call this function only after all use of the PCI regions has ceased. 3917 */ 3918 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3919 { 3920 int i; 3921 3922 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3923 if (bars & (1 << i)) 3924 pci_release_region(pdev, i); 3925 } 3926 EXPORT_SYMBOL(pci_release_selected_regions); 3927 3928 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3929 const char *res_name, int excl) 3930 { 3931 int i; 3932 3933 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3934 if (bars & (1 << i)) 3935 if (__pci_request_region(pdev, i, res_name, excl)) 3936 goto err_out; 3937 return 0; 3938 3939 err_out: 3940 while (--i >= 0) 3941 if (bars & (1 << i)) 3942 pci_release_region(pdev, i); 3943 3944 return -EBUSY; 3945 } 3946 3947 3948 /** 3949 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3950 * @pdev: PCI device whose resources are to be reserved 3951 * @bars: Bitmask of BARs to be requested 3952 * @res_name: Name to be associated with resource 3953 */ 3954 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3955 const char *res_name) 3956 { 3957 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3958 } 3959 EXPORT_SYMBOL(pci_request_selected_regions); 3960 3961 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3962 const char *res_name) 3963 { 3964 return __pci_request_selected_regions(pdev, bars, res_name, 3965 IORESOURCE_EXCLUSIVE); 3966 } 3967 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3968 3969 /** 3970 * pci_release_regions - Release reserved PCI I/O and memory resources 3971 * @pdev: PCI device whose resources were previously reserved by 3972 * pci_request_regions() 3973 * 3974 * Releases all PCI I/O and memory resources previously reserved by a 3975 * successful call to pci_request_regions(). Call this function only 3976 * after all use of the PCI regions has ceased. 3977 */ 3978 3979 void pci_release_regions(struct pci_dev *pdev) 3980 { 3981 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3982 } 3983 EXPORT_SYMBOL(pci_release_regions); 3984 3985 /** 3986 * pci_request_regions - Reserve PCI I/O and memory resources 3987 * @pdev: PCI device whose resources are to be reserved 3988 * @res_name: Name to be associated with resource. 3989 * 3990 * Mark all PCI regions associated with PCI device @pdev as 3991 * being reserved by owner @res_name. Do not access any 3992 * address inside the PCI regions unless this call returns 3993 * successfully. 3994 * 3995 * Returns 0 on success, or %EBUSY on error. A warning 3996 * message is also printed on failure. 3997 */ 3998 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3999 { 4000 return pci_request_selected_regions(pdev, 4001 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4002 } 4003 EXPORT_SYMBOL(pci_request_regions); 4004 4005 /** 4006 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4007 * @pdev: PCI device whose resources are to be reserved 4008 * @res_name: Name to be associated with resource. 4009 * 4010 * Mark all PCI regions associated with PCI device @pdev as being reserved 4011 * by owner @res_name. Do not access any address inside the PCI regions 4012 * unless this call returns successfully. 4013 * 4014 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4015 * and the sysfs MMIO access will not be allowed. 4016 * 4017 * Returns 0 on success, or %EBUSY on error. A warning message is also 4018 * printed on failure. 4019 */ 4020 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4021 { 4022 return pci_request_selected_regions_exclusive(pdev, 4023 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4024 } 4025 EXPORT_SYMBOL(pci_request_regions_exclusive); 4026 4027 /* 4028 * Record the PCI IO range (expressed as CPU physical address + size). 4029 * Return a negative value if an error has occurred, zero otherwise 4030 */ 4031 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4032 resource_size_t size) 4033 { 4034 int ret = 0; 4035 #ifdef PCI_IOBASE 4036 struct logic_pio_hwaddr *range; 4037 4038 if (!size || addr + size < addr) 4039 return -EINVAL; 4040 4041 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4042 if (!range) 4043 return -ENOMEM; 4044 4045 range->fwnode = fwnode; 4046 range->size = size; 4047 range->hw_start = addr; 4048 range->flags = LOGIC_PIO_CPU_MMIO; 4049 4050 ret = logic_pio_register_range(range); 4051 if (ret) 4052 kfree(range); 4053 4054 /* Ignore duplicates due to deferred probing */ 4055 if (ret == -EEXIST) 4056 ret = 0; 4057 #endif 4058 4059 return ret; 4060 } 4061 4062 phys_addr_t pci_pio_to_address(unsigned long pio) 4063 { 4064 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4065 4066 #ifdef PCI_IOBASE 4067 if (pio >= MMIO_UPPER_LIMIT) 4068 return address; 4069 4070 address = logic_pio_to_hwaddr(pio); 4071 #endif 4072 4073 return address; 4074 } 4075 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4076 4077 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4078 { 4079 #ifdef PCI_IOBASE 4080 return logic_pio_trans_cpuaddr(address); 4081 #else 4082 if (address > IO_SPACE_LIMIT) 4083 return (unsigned long)-1; 4084 4085 return (unsigned long) address; 4086 #endif 4087 } 4088 4089 /** 4090 * pci_remap_iospace - Remap the memory mapped I/O space 4091 * @res: Resource describing the I/O space 4092 * @phys_addr: physical address of range to be mapped 4093 * 4094 * Remap the memory mapped I/O space described by the @res and the CPU 4095 * physical address @phys_addr into virtual address space. Only 4096 * architectures that have memory mapped IO functions defined (and the 4097 * PCI_IOBASE value defined) should call this function. 4098 */ 4099 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4100 { 4101 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4102 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4103 4104 if (!(res->flags & IORESOURCE_IO)) 4105 return -EINVAL; 4106 4107 if (res->end > IO_SPACE_LIMIT) 4108 return -EINVAL; 4109 4110 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4111 pgprot_device(PAGE_KERNEL)); 4112 #else 4113 /* 4114 * This architecture does not have memory mapped I/O space, 4115 * so this function should never be called 4116 */ 4117 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4118 return -ENODEV; 4119 #endif 4120 } 4121 EXPORT_SYMBOL(pci_remap_iospace); 4122 4123 /** 4124 * pci_unmap_iospace - Unmap the memory mapped I/O space 4125 * @res: resource to be unmapped 4126 * 4127 * Unmap the CPU virtual address @res from virtual address space. Only 4128 * architectures that have memory mapped IO functions defined (and the 4129 * PCI_IOBASE value defined) should call this function. 4130 */ 4131 void pci_unmap_iospace(struct resource *res) 4132 { 4133 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4134 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4135 4136 vunmap_range(vaddr, vaddr + resource_size(res)); 4137 #endif 4138 } 4139 EXPORT_SYMBOL(pci_unmap_iospace); 4140 4141 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4142 { 4143 struct resource **res = ptr; 4144 4145 pci_unmap_iospace(*res); 4146 } 4147 4148 /** 4149 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4150 * @dev: Generic device to remap IO address for 4151 * @res: Resource describing the I/O space 4152 * @phys_addr: physical address of range to be mapped 4153 * 4154 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4155 * detach. 4156 */ 4157 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4158 phys_addr_t phys_addr) 4159 { 4160 const struct resource **ptr; 4161 int error; 4162 4163 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4164 if (!ptr) 4165 return -ENOMEM; 4166 4167 error = pci_remap_iospace(res, phys_addr); 4168 if (error) { 4169 devres_free(ptr); 4170 } else { 4171 *ptr = res; 4172 devres_add(dev, ptr); 4173 } 4174 4175 return error; 4176 } 4177 EXPORT_SYMBOL(devm_pci_remap_iospace); 4178 4179 /** 4180 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4181 * @dev: Generic device to remap IO address for 4182 * @offset: Resource address to map 4183 * @size: Size of map 4184 * 4185 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4186 * detach. 4187 */ 4188 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4189 resource_size_t offset, 4190 resource_size_t size) 4191 { 4192 void __iomem **ptr, *addr; 4193 4194 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4195 if (!ptr) 4196 return NULL; 4197 4198 addr = pci_remap_cfgspace(offset, size); 4199 if (addr) { 4200 *ptr = addr; 4201 devres_add(dev, ptr); 4202 } else 4203 devres_free(ptr); 4204 4205 return addr; 4206 } 4207 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4208 4209 /** 4210 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4211 * @dev: generic device to handle the resource for 4212 * @res: configuration space resource to be handled 4213 * 4214 * Checks that a resource is a valid memory region, requests the memory 4215 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4216 * proper PCI configuration space memory attributes are guaranteed. 4217 * 4218 * All operations are managed and will be undone on driver detach. 4219 * 4220 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4221 * on failure. Usage example:: 4222 * 4223 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4224 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4225 * if (IS_ERR(base)) 4226 * return PTR_ERR(base); 4227 */ 4228 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4229 struct resource *res) 4230 { 4231 resource_size_t size; 4232 const char *name; 4233 void __iomem *dest_ptr; 4234 4235 BUG_ON(!dev); 4236 4237 if (!res || resource_type(res) != IORESOURCE_MEM) { 4238 dev_err(dev, "invalid resource\n"); 4239 return IOMEM_ERR_PTR(-EINVAL); 4240 } 4241 4242 size = resource_size(res); 4243 4244 if (res->name) 4245 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4246 res->name); 4247 else 4248 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4249 if (!name) 4250 return IOMEM_ERR_PTR(-ENOMEM); 4251 4252 if (!devm_request_mem_region(dev, res->start, size, name)) { 4253 dev_err(dev, "can't request region for resource %pR\n", res); 4254 return IOMEM_ERR_PTR(-EBUSY); 4255 } 4256 4257 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4258 if (!dest_ptr) { 4259 dev_err(dev, "ioremap failed for resource %pR\n", res); 4260 devm_release_mem_region(dev, res->start, size); 4261 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4262 } 4263 4264 return dest_ptr; 4265 } 4266 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4267 4268 static void __pci_set_master(struct pci_dev *dev, bool enable) 4269 { 4270 u16 old_cmd, cmd; 4271 4272 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4273 if (enable) 4274 cmd = old_cmd | PCI_COMMAND_MASTER; 4275 else 4276 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4277 if (cmd != old_cmd) { 4278 pci_dbg(dev, "%s bus mastering\n", 4279 enable ? "enabling" : "disabling"); 4280 pci_write_config_word(dev, PCI_COMMAND, cmd); 4281 } 4282 dev->is_busmaster = enable; 4283 } 4284 4285 /** 4286 * pcibios_setup - process "pci=" kernel boot arguments 4287 * @str: string used to pass in "pci=" kernel boot arguments 4288 * 4289 * Process kernel boot arguments. This is the default implementation. 4290 * Architecture specific implementations can override this as necessary. 4291 */ 4292 char * __weak __init pcibios_setup(char *str) 4293 { 4294 return str; 4295 } 4296 4297 /** 4298 * pcibios_set_master - enable PCI bus-mastering for device dev 4299 * @dev: the PCI device to enable 4300 * 4301 * Enables PCI bus-mastering for the device. This is the default 4302 * implementation. Architecture specific implementations can override 4303 * this if necessary. 4304 */ 4305 void __weak pcibios_set_master(struct pci_dev *dev) 4306 { 4307 u8 lat; 4308 4309 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4310 if (pci_is_pcie(dev)) 4311 return; 4312 4313 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4314 if (lat < 16) 4315 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4316 else if (lat > pcibios_max_latency) 4317 lat = pcibios_max_latency; 4318 else 4319 return; 4320 4321 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4322 } 4323 4324 /** 4325 * pci_set_master - enables bus-mastering for device dev 4326 * @dev: the PCI device to enable 4327 * 4328 * Enables bus-mastering on the device and calls pcibios_set_master() 4329 * to do the needed arch specific settings. 4330 */ 4331 void pci_set_master(struct pci_dev *dev) 4332 { 4333 __pci_set_master(dev, true); 4334 pcibios_set_master(dev); 4335 } 4336 EXPORT_SYMBOL(pci_set_master); 4337 4338 /** 4339 * pci_clear_master - disables bus-mastering for device dev 4340 * @dev: the PCI device to disable 4341 */ 4342 void pci_clear_master(struct pci_dev *dev) 4343 { 4344 __pci_set_master(dev, false); 4345 } 4346 EXPORT_SYMBOL(pci_clear_master); 4347 4348 /** 4349 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4350 * @dev: the PCI device for which MWI is to be enabled 4351 * 4352 * Helper function for pci_set_mwi. 4353 * Originally copied from drivers/net/acenic.c. 4354 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4355 * 4356 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4357 */ 4358 int pci_set_cacheline_size(struct pci_dev *dev) 4359 { 4360 u8 cacheline_size; 4361 4362 if (!pci_cache_line_size) 4363 return -EINVAL; 4364 4365 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4366 equal to or multiple of the right value. */ 4367 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4368 if (cacheline_size >= pci_cache_line_size && 4369 (cacheline_size % pci_cache_line_size) == 0) 4370 return 0; 4371 4372 /* Write the correct value. */ 4373 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4374 /* Read it back. */ 4375 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4376 if (cacheline_size == pci_cache_line_size) 4377 return 0; 4378 4379 pci_dbg(dev, "cache line size of %d is not supported\n", 4380 pci_cache_line_size << 2); 4381 4382 return -EINVAL; 4383 } 4384 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4385 4386 /** 4387 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4388 * @dev: the PCI device for which MWI is enabled 4389 * 4390 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4391 * 4392 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4393 */ 4394 int pci_set_mwi(struct pci_dev *dev) 4395 { 4396 #ifdef PCI_DISABLE_MWI 4397 return 0; 4398 #else 4399 int rc; 4400 u16 cmd; 4401 4402 rc = pci_set_cacheline_size(dev); 4403 if (rc) 4404 return rc; 4405 4406 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4407 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4408 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4409 cmd |= PCI_COMMAND_INVALIDATE; 4410 pci_write_config_word(dev, PCI_COMMAND, cmd); 4411 } 4412 return 0; 4413 #endif 4414 } 4415 EXPORT_SYMBOL(pci_set_mwi); 4416 4417 /** 4418 * pcim_set_mwi - a device-managed pci_set_mwi() 4419 * @dev: the PCI device for which MWI is enabled 4420 * 4421 * Managed pci_set_mwi(). 4422 * 4423 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4424 */ 4425 int pcim_set_mwi(struct pci_dev *dev) 4426 { 4427 struct pci_devres *dr; 4428 4429 dr = find_pci_dr(dev); 4430 if (!dr) 4431 return -ENOMEM; 4432 4433 dr->mwi = 1; 4434 return pci_set_mwi(dev); 4435 } 4436 EXPORT_SYMBOL(pcim_set_mwi); 4437 4438 /** 4439 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4440 * @dev: the PCI device for which MWI is enabled 4441 * 4442 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4443 * Callers are not required to check the return value. 4444 * 4445 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4446 */ 4447 int pci_try_set_mwi(struct pci_dev *dev) 4448 { 4449 #ifdef PCI_DISABLE_MWI 4450 return 0; 4451 #else 4452 return pci_set_mwi(dev); 4453 #endif 4454 } 4455 EXPORT_SYMBOL(pci_try_set_mwi); 4456 4457 /** 4458 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4459 * @dev: the PCI device to disable 4460 * 4461 * Disables PCI Memory-Write-Invalidate transaction on the device 4462 */ 4463 void pci_clear_mwi(struct pci_dev *dev) 4464 { 4465 #ifndef PCI_DISABLE_MWI 4466 u16 cmd; 4467 4468 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4469 if (cmd & PCI_COMMAND_INVALIDATE) { 4470 cmd &= ~PCI_COMMAND_INVALIDATE; 4471 pci_write_config_word(dev, PCI_COMMAND, cmd); 4472 } 4473 #endif 4474 } 4475 EXPORT_SYMBOL(pci_clear_mwi); 4476 4477 /** 4478 * pci_disable_parity - disable parity checking for device 4479 * @dev: the PCI device to operate on 4480 * 4481 * Disable parity checking for device @dev 4482 */ 4483 void pci_disable_parity(struct pci_dev *dev) 4484 { 4485 u16 cmd; 4486 4487 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4488 if (cmd & PCI_COMMAND_PARITY) { 4489 cmd &= ~PCI_COMMAND_PARITY; 4490 pci_write_config_word(dev, PCI_COMMAND, cmd); 4491 } 4492 } 4493 4494 /** 4495 * pci_intx - enables/disables PCI INTx for device dev 4496 * @pdev: the PCI device to operate on 4497 * @enable: boolean: whether to enable or disable PCI INTx 4498 * 4499 * Enables/disables PCI INTx for device @pdev 4500 */ 4501 void pci_intx(struct pci_dev *pdev, int enable) 4502 { 4503 u16 pci_command, new; 4504 4505 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4506 4507 if (enable) 4508 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4509 else 4510 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4511 4512 if (new != pci_command) { 4513 struct pci_devres *dr; 4514 4515 pci_write_config_word(pdev, PCI_COMMAND, new); 4516 4517 dr = find_pci_dr(pdev); 4518 if (dr && !dr->restore_intx) { 4519 dr->restore_intx = 1; 4520 dr->orig_intx = !enable; 4521 } 4522 } 4523 } 4524 EXPORT_SYMBOL_GPL(pci_intx); 4525 4526 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4527 { 4528 struct pci_bus *bus = dev->bus; 4529 bool mask_updated = true; 4530 u32 cmd_status_dword; 4531 u16 origcmd, newcmd; 4532 unsigned long flags; 4533 bool irq_pending; 4534 4535 /* 4536 * We do a single dword read to retrieve both command and status. 4537 * Document assumptions that make this possible. 4538 */ 4539 BUILD_BUG_ON(PCI_COMMAND % 4); 4540 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4541 4542 raw_spin_lock_irqsave(&pci_lock, flags); 4543 4544 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4545 4546 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4547 4548 /* 4549 * Check interrupt status register to see whether our device 4550 * triggered the interrupt (when masking) or the next IRQ is 4551 * already pending (when unmasking). 4552 */ 4553 if (mask != irq_pending) { 4554 mask_updated = false; 4555 goto done; 4556 } 4557 4558 origcmd = cmd_status_dword; 4559 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4560 if (mask) 4561 newcmd |= PCI_COMMAND_INTX_DISABLE; 4562 if (newcmd != origcmd) 4563 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4564 4565 done: 4566 raw_spin_unlock_irqrestore(&pci_lock, flags); 4567 4568 return mask_updated; 4569 } 4570 4571 /** 4572 * pci_check_and_mask_intx - mask INTx on pending interrupt 4573 * @dev: the PCI device to operate on 4574 * 4575 * Check if the device dev has its INTx line asserted, mask it and return 4576 * true in that case. False is returned if no interrupt was pending. 4577 */ 4578 bool pci_check_and_mask_intx(struct pci_dev *dev) 4579 { 4580 return pci_check_and_set_intx_mask(dev, true); 4581 } 4582 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4583 4584 /** 4585 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4586 * @dev: the PCI device to operate on 4587 * 4588 * Check if the device dev has its INTx line asserted, unmask it if not and 4589 * return true. False is returned and the mask remains active if there was 4590 * still an interrupt pending. 4591 */ 4592 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4593 { 4594 return pci_check_and_set_intx_mask(dev, false); 4595 } 4596 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4597 4598 /** 4599 * pci_wait_for_pending_transaction - wait for pending transaction 4600 * @dev: the PCI device to operate on 4601 * 4602 * Return 0 if transaction is pending 1 otherwise. 4603 */ 4604 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4605 { 4606 if (!pci_is_pcie(dev)) 4607 return 1; 4608 4609 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4610 PCI_EXP_DEVSTA_TRPND); 4611 } 4612 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4613 4614 /** 4615 * pcie_has_flr - check if a device supports function level resets 4616 * @dev: device to check 4617 * 4618 * Returns true if the device advertises support for PCIe function level 4619 * resets. 4620 */ 4621 bool pcie_has_flr(struct pci_dev *dev) 4622 { 4623 u32 cap; 4624 4625 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4626 return false; 4627 4628 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4629 return cap & PCI_EXP_DEVCAP_FLR; 4630 } 4631 EXPORT_SYMBOL_GPL(pcie_has_flr); 4632 4633 /** 4634 * pcie_flr - initiate a PCIe function level reset 4635 * @dev: device to reset 4636 * 4637 * Initiate a function level reset on @dev. The caller should ensure the 4638 * device supports FLR before calling this function, e.g. by using the 4639 * pcie_has_flr() helper. 4640 */ 4641 int pcie_flr(struct pci_dev *dev) 4642 { 4643 if (!pci_wait_for_pending_transaction(dev)) 4644 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4645 4646 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4647 4648 if (dev->imm_ready) 4649 return 0; 4650 4651 /* 4652 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4653 * 100ms, but may silently discard requests while the FLR is in 4654 * progress. Wait 100ms before trying to access the device. 4655 */ 4656 msleep(100); 4657 4658 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4659 } 4660 EXPORT_SYMBOL_GPL(pcie_flr); 4661 4662 static int pci_af_flr(struct pci_dev *dev, int probe) 4663 { 4664 int pos; 4665 u8 cap; 4666 4667 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4668 if (!pos) 4669 return -ENOTTY; 4670 4671 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4672 return -ENOTTY; 4673 4674 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4675 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4676 return -ENOTTY; 4677 4678 if (probe) 4679 return 0; 4680 4681 /* 4682 * Wait for Transaction Pending bit to clear. A word-aligned test 4683 * is used, so we use the control offset rather than status and shift 4684 * the test bit to match. 4685 */ 4686 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4687 PCI_AF_STATUS_TP << 8)) 4688 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4689 4690 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4691 4692 if (dev->imm_ready) 4693 return 0; 4694 4695 /* 4696 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4697 * updated 27 July 2006; a device must complete an FLR within 4698 * 100ms, but may silently discard requests while the FLR is in 4699 * progress. Wait 100ms before trying to access the device. 4700 */ 4701 msleep(100); 4702 4703 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4704 } 4705 4706 /** 4707 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4708 * @dev: Device to reset. 4709 * @probe: If set, only check if the device can be reset this way. 4710 * 4711 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4712 * unset, it will be reinitialized internally when going from PCI_D3hot to 4713 * PCI_D0. If that's the case and the device is not in a low-power state 4714 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4715 * 4716 * NOTE: This causes the caller to sleep for twice the device power transition 4717 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4718 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4719 * Moreover, only devices in D0 can be reset by this function. 4720 */ 4721 static int pci_pm_reset(struct pci_dev *dev, int probe) 4722 { 4723 u16 csr; 4724 4725 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4726 return -ENOTTY; 4727 4728 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4729 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4730 return -ENOTTY; 4731 4732 if (probe) 4733 return 0; 4734 4735 if (dev->current_state != PCI_D0) 4736 return -EINVAL; 4737 4738 csr &= ~PCI_PM_CTRL_STATE_MASK; 4739 csr |= PCI_D3hot; 4740 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4741 pci_dev_d3_sleep(dev); 4742 4743 csr &= ~PCI_PM_CTRL_STATE_MASK; 4744 csr |= PCI_D0; 4745 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4746 pci_dev_d3_sleep(dev); 4747 4748 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4749 } 4750 4751 /** 4752 * pcie_wait_for_link_delay - Wait until link is active or inactive 4753 * @pdev: Bridge device 4754 * @active: waiting for active or inactive? 4755 * @delay: Delay to wait after link has become active (in ms) 4756 * 4757 * Use this to wait till link becomes active or inactive. 4758 */ 4759 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4760 int delay) 4761 { 4762 int timeout = 1000; 4763 bool ret; 4764 u16 lnk_status; 4765 4766 /* 4767 * Some controllers might not implement link active reporting. In this 4768 * case, we wait for 1000 ms + any delay requested by the caller. 4769 */ 4770 if (!pdev->link_active_reporting) { 4771 msleep(timeout + delay); 4772 return true; 4773 } 4774 4775 /* 4776 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4777 * after which we should expect an link active if the reset was 4778 * successful. If so, software must wait a minimum 100ms before sending 4779 * configuration requests to devices downstream this port. 4780 * 4781 * If the link fails to activate, either the device was physically 4782 * removed or the link is permanently failed. 4783 */ 4784 if (active) 4785 msleep(20); 4786 for (;;) { 4787 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4788 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4789 if (ret == active) 4790 break; 4791 if (timeout <= 0) 4792 break; 4793 msleep(10); 4794 timeout -= 10; 4795 } 4796 if (active && ret) 4797 msleep(delay); 4798 4799 return ret == active; 4800 } 4801 4802 /** 4803 * pcie_wait_for_link - Wait until link is active or inactive 4804 * @pdev: Bridge device 4805 * @active: waiting for active or inactive? 4806 * 4807 * Use this to wait till link becomes active or inactive. 4808 */ 4809 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4810 { 4811 return pcie_wait_for_link_delay(pdev, active, 100); 4812 } 4813 4814 /* 4815 * Find maximum D3cold delay required by all the devices on the bus. The 4816 * spec says 100 ms, but firmware can lower it and we allow drivers to 4817 * increase it as well. 4818 * 4819 * Called with @pci_bus_sem locked for reading. 4820 */ 4821 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4822 { 4823 const struct pci_dev *pdev; 4824 int min_delay = 100; 4825 int max_delay = 0; 4826 4827 list_for_each_entry(pdev, &bus->devices, bus_list) { 4828 if (pdev->d3cold_delay < min_delay) 4829 min_delay = pdev->d3cold_delay; 4830 if (pdev->d3cold_delay > max_delay) 4831 max_delay = pdev->d3cold_delay; 4832 } 4833 4834 return max(min_delay, max_delay); 4835 } 4836 4837 /** 4838 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4839 * @dev: PCI bridge 4840 * 4841 * Handle necessary delays before access to the devices on the secondary 4842 * side of the bridge are permitted after D3cold to D0 transition. 4843 * 4844 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4845 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4846 * 4.3.2. 4847 */ 4848 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4849 { 4850 struct pci_dev *child; 4851 int delay; 4852 4853 if (pci_dev_is_disconnected(dev)) 4854 return; 4855 4856 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4857 return; 4858 4859 down_read(&pci_bus_sem); 4860 4861 /* 4862 * We only deal with devices that are present currently on the bus. 4863 * For any hot-added devices the access delay is handled in pciehp 4864 * board_added(). In case of ACPI hotplug the firmware is expected 4865 * to configure the devices before OS is notified. 4866 */ 4867 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4868 up_read(&pci_bus_sem); 4869 return; 4870 } 4871 4872 /* Take d3cold_delay requirements into account */ 4873 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4874 if (!delay) { 4875 up_read(&pci_bus_sem); 4876 return; 4877 } 4878 4879 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4880 bus_list); 4881 up_read(&pci_bus_sem); 4882 4883 /* 4884 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4885 * accessing the device after reset (that is 1000 ms + 100 ms). In 4886 * practice this should not be needed because we don't do power 4887 * management for them (see pci_bridge_d3_possible()). 4888 */ 4889 if (!pci_is_pcie(dev)) { 4890 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4891 msleep(1000 + delay); 4892 return; 4893 } 4894 4895 /* 4896 * For PCIe downstream and root ports that do not support speeds 4897 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4898 * speeds (gen3) we need to wait first for the data link layer to 4899 * become active. 4900 * 4901 * However, 100 ms is the minimum and the PCIe spec says the 4902 * software must allow at least 1s before it can determine that the 4903 * device that did not respond is a broken device. There is 4904 * evidence that 100 ms is not always enough, for example certain 4905 * Titan Ridge xHCI controller does not always respond to 4906 * configuration requests if we only wait for 100 ms (see 4907 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4908 * 4909 * Therefore we wait for 100 ms and check for the device presence. 4910 * If it is still not present give it an additional 100 ms. 4911 */ 4912 if (!pcie_downstream_port(dev)) 4913 return; 4914 4915 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4916 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4917 msleep(delay); 4918 } else { 4919 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4920 delay); 4921 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4922 /* Did not train, no need to wait any further */ 4923 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4924 return; 4925 } 4926 } 4927 4928 if (!pci_device_is_present(child)) { 4929 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4930 msleep(delay); 4931 } 4932 } 4933 4934 void pci_reset_secondary_bus(struct pci_dev *dev) 4935 { 4936 u16 ctrl; 4937 4938 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4939 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4940 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4941 4942 /* 4943 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4944 * this to 2ms to ensure that we meet the minimum requirement. 4945 */ 4946 msleep(2); 4947 4948 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4949 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4950 4951 /* 4952 * Trhfa for conventional PCI is 2^25 clock cycles. 4953 * Assuming a minimum 33MHz clock this results in a 1s 4954 * delay before we can consider subordinate devices to 4955 * be re-initialized. PCIe has some ways to shorten this, 4956 * but we don't make use of them yet. 4957 */ 4958 ssleep(1); 4959 } 4960 4961 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4962 { 4963 pci_reset_secondary_bus(dev); 4964 } 4965 4966 /** 4967 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4968 * @dev: Bridge device 4969 * 4970 * Use the bridge control register to assert reset on the secondary bus. 4971 * Devices on the secondary bus are left in power-on state. 4972 */ 4973 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4974 { 4975 pcibios_reset_secondary_bus(dev); 4976 4977 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4978 } 4979 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4980 4981 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4982 { 4983 struct pci_dev *pdev; 4984 4985 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4986 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4987 return -ENOTTY; 4988 4989 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4990 if (pdev != dev) 4991 return -ENOTTY; 4992 4993 if (probe) 4994 return 0; 4995 4996 return pci_bridge_secondary_bus_reset(dev->bus->self); 4997 } 4998 4999 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 5000 { 5001 int rc = -ENOTTY; 5002 5003 if (!hotplug || !try_module_get(hotplug->owner)) 5004 return rc; 5005 5006 if (hotplug->ops->reset_slot) 5007 rc = hotplug->ops->reset_slot(hotplug, probe); 5008 5009 module_put(hotplug->owner); 5010 5011 return rc; 5012 } 5013 5014 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 5015 { 5016 if (dev->multifunction || dev->subordinate || !dev->slot || 5017 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5018 return -ENOTTY; 5019 5020 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5021 } 5022 5023 static void pci_dev_lock(struct pci_dev *dev) 5024 { 5025 pci_cfg_access_lock(dev); 5026 /* block PM suspend, driver probe, etc. */ 5027 device_lock(&dev->dev); 5028 } 5029 5030 /* Return 1 on successful lock, 0 on contention */ 5031 static int pci_dev_trylock(struct pci_dev *dev) 5032 { 5033 if (pci_cfg_access_trylock(dev)) { 5034 if (device_trylock(&dev->dev)) 5035 return 1; 5036 pci_cfg_access_unlock(dev); 5037 } 5038 5039 return 0; 5040 } 5041 5042 static void pci_dev_unlock(struct pci_dev *dev) 5043 { 5044 device_unlock(&dev->dev); 5045 pci_cfg_access_unlock(dev); 5046 } 5047 5048 static void pci_dev_save_and_disable(struct pci_dev *dev) 5049 { 5050 const struct pci_error_handlers *err_handler = 5051 dev->driver ? dev->driver->err_handler : NULL; 5052 5053 /* 5054 * dev->driver->err_handler->reset_prepare() is protected against 5055 * races with ->remove() by the device lock, which must be held by 5056 * the caller. 5057 */ 5058 if (err_handler && err_handler->reset_prepare) 5059 err_handler->reset_prepare(dev); 5060 5061 /* 5062 * Wake-up device prior to save. PM registers default to D0 after 5063 * reset and a simple register restore doesn't reliably return 5064 * to a non-D0 state anyway. 5065 */ 5066 pci_set_power_state(dev, PCI_D0); 5067 5068 pci_save_state(dev); 5069 /* 5070 * Disable the device by clearing the Command register, except for 5071 * INTx-disable which is set. This not only disables MMIO and I/O port 5072 * BARs, but also prevents the device from being Bus Master, preventing 5073 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5074 * compliant devices, INTx-disable prevents legacy interrupts. 5075 */ 5076 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5077 } 5078 5079 static void pci_dev_restore(struct pci_dev *dev) 5080 { 5081 const struct pci_error_handlers *err_handler = 5082 dev->driver ? dev->driver->err_handler : NULL; 5083 5084 pci_restore_state(dev); 5085 5086 /* 5087 * dev->driver->err_handler->reset_done() is protected against 5088 * races with ->remove() by the device lock, which must be held by 5089 * the caller. 5090 */ 5091 if (err_handler && err_handler->reset_done) 5092 err_handler->reset_done(dev); 5093 } 5094 5095 /** 5096 * __pci_reset_function_locked - reset a PCI device function while holding 5097 * the @dev mutex lock. 5098 * @dev: PCI device to reset 5099 * 5100 * Some devices allow an individual function to be reset without affecting 5101 * other functions in the same device. The PCI device must be responsive 5102 * to PCI config space in order to use this function. 5103 * 5104 * The device function is presumed to be unused and the caller is holding 5105 * the device mutex lock when this function is called. 5106 * 5107 * Resetting the device will make the contents of PCI configuration space 5108 * random, so any caller of this must be prepared to reinitialise the 5109 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5110 * etc. 5111 * 5112 * Returns 0 if the device function was successfully reset or negative if the 5113 * device doesn't support resetting a single function. 5114 */ 5115 int __pci_reset_function_locked(struct pci_dev *dev) 5116 { 5117 int rc; 5118 5119 might_sleep(); 5120 5121 /* 5122 * A reset method returns -ENOTTY if it doesn't support this device 5123 * and we should try the next method. 5124 * 5125 * If it returns 0 (success), we're finished. If it returns any 5126 * other error, we're also finished: this indicates that further 5127 * reset mechanisms might be broken on the device. 5128 */ 5129 rc = pci_dev_specific_reset(dev, 0); 5130 if (rc != -ENOTTY) 5131 return rc; 5132 if (pcie_has_flr(dev)) { 5133 rc = pcie_flr(dev); 5134 if (rc != -ENOTTY) 5135 return rc; 5136 } 5137 rc = pci_af_flr(dev, 0); 5138 if (rc != -ENOTTY) 5139 return rc; 5140 rc = pci_pm_reset(dev, 0); 5141 if (rc != -ENOTTY) 5142 return rc; 5143 rc = pci_dev_reset_slot_function(dev, 0); 5144 if (rc != -ENOTTY) 5145 return rc; 5146 return pci_parent_bus_reset(dev, 0); 5147 } 5148 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5149 5150 /** 5151 * pci_probe_reset_function - check whether the device can be safely reset 5152 * @dev: PCI device to reset 5153 * 5154 * Some devices allow an individual function to be reset without affecting 5155 * other functions in the same device. The PCI device must be responsive 5156 * to PCI config space in order to use this function. 5157 * 5158 * Returns 0 if the device function can be reset or negative if the 5159 * device doesn't support resetting a single function. 5160 */ 5161 int pci_probe_reset_function(struct pci_dev *dev) 5162 { 5163 int rc; 5164 5165 might_sleep(); 5166 5167 rc = pci_dev_specific_reset(dev, 1); 5168 if (rc != -ENOTTY) 5169 return rc; 5170 if (pcie_has_flr(dev)) 5171 return 0; 5172 rc = pci_af_flr(dev, 1); 5173 if (rc != -ENOTTY) 5174 return rc; 5175 rc = pci_pm_reset(dev, 1); 5176 if (rc != -ENOTTY) 5177 return rc; 5178 rc = pci_dev_reset_slot_function(dev, 1); 5179 if (rc != -ENOTTY) 5180 return rc; 5181 5182 return pci_parent_bus_reset(dev, 1); 5183 } 5184 5185 /** 5186 * pci_reset_function - quiesce and reset a PCI device function 5187 * @dev: PCI device to reset 5188 * 5189 * Some devices allow an individual function to be reset without affecting 5190 * other functions in the same device. The PCI device must be responsive 5191 * to PCI config space in order to use this function. 5192 * 5193 * This function does not just reset the PCI portion of a device, but 5194 * clears all the state associated with the device. This function differs 5195 * from __pci_reset_function_locked() in that it saves and restores device state 5196 * over the reset and takes the PCI device lock. 5197 * 5198 * Returns 0 if the device function was successfully reset or negative if the 5199 * device doesn't support resetting a single function. 5200 */ 5201 int pci_reset_function(struct pci_dev *dev) 5202 { 5203 int rc; 5204 5205 if (!dev->reset_fn) 5206 return -ENOTTY; 5207 5208 pci_dev_lock(dev); 5209 pci_dev_save_and_disable(dev); 5210 5211 rc = __pci_reset_function_locked(dev); 5212 5213 pci_dev_restore(dev); 5214 pci_dev_unlock(dev); 5215 5216 return rc; 5217 } 5218 EXPORT_SYMBOL_GPL(pci_reset_function); 5219 5220 /** 5221 * pci_reset_function_locked - quiesce and reset a PCI device function 5222 * @dev: PCI device to reset 5223 * 5224 * Some devices allow an individual function to be reset without affecting 5225 * other functions in the same device. The PCI device must be responsive 5226 * to PCI config space in order to use this function. 5227 * 5228 * This function does not just reset the PCI portion of a device, but 5229 * clears all the state associated with the device. This function differs 5230 * from __pci_reset_function_locked() in that it saves and restores device state 5231 * over the reset. It also differs from pci_reset_function() in that it 5232 * requires the PCI device lock to be held. 5233 * 5234 * Returns 0 if the device function was successfully reset or negative if the 5235 * device doesn't support resetting a single function. 5236 */ 5237 int pci_reset_function_locked(struct pci_dev *dev) 5238 { 5239 int rc; 5240 5241 if (!dev->reset_fn) 5242 return -ENOTTY; 5243 5244 pci_dev_save_and_disable(dev); 5245 5246 rc = __pci_reset_function_locked(dev); 5247 5248 pci_dev_restore(dev); 5249 5250 return rc; 5251 } 5252 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5253 5254 /** 5255 * pci_try_reset_function - quiesce and reset a PCI device function 5256 * @dev: PCI device to reset 5257 * 5258 * Same as above, except return -EAGAIN if unable to lock device. 5259 */ 5260 int pci_try_reset_function(struct pci_dev *dev) 5261 { 5262 int rc; 5263 5264 if (!dev->reset_fn) 5265 return -ENOTTY; 5266 5267 if (!pci_dev_trylock(dev)) 5268 return -EAGAIN; 5269 5270 pci_dev_save_and_disable(dev); 5271 rc = __pci_reset_function_locked(dev); 5272 pci_dev_restore(dev); 5273 pci_dev_unlock(dev); 5274 5275 return rc; 5276 } 5277 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5278 5279 /* Do any devices on or below this bus prevent a bus reset? */ 5280 static bool pci_bus_resetable(struct pci_bus *bus) 5281 { 5282 struct pci_dev *dev; 5283 5284 5285 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5286 return false; 5287 5288 list_for_each_entry(dev, &bus->devices, bus_list) { 5289 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5290 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5291 return false; 5292 } 5293 5294 return true; 5295 } 5296 5297 /* Lock devices from the top of the tree down */ 5298 static void pci_bus_lock(struct pci_bus *bus) 5299 { 5300 struct pci_dev *dev; 5301 5302 list_for_each_entry(dev, &bus->devices, bus_list) { 5303 pci_dev_lock(dev); 5304 if (dev->subordinate) 5305 pci_bus_lock(dev->subordinate); 5306 } 5307 } 5308 5309 /* Unlock devices from the bottom of the tree up */ 5310 static void pci_bus_unlock(struct pci_bus *bus) 5311 { 5312 struct pci_dev *dev; 5313 5314 list_for_each_entry(dev, &bus->devices, bus_list) { 5315 if (dev->subordinate) 5316 pci_bus_unlock(dev->subordinate); 5317 pci_dev_unlock(dev); 5318 } 5319 } 5320 5321 /* Return 1 on successful lock, 0 on contention */ 5322 static int pci_bus_trylock(struct pci_bus *bus) 5323 { 5324 struct pci_dev *dev; 5325 5326 list_for_each_entry(dev, &bus->devices, bus_list) { 5327 if (!pci_dev_trylock(dev)) 5328 goto unlock; 5329 if (dev->subordinate) { 5330 if (!pci_bus_trylock(dev->subordinate)) { 5331 pci_dev_unlock(dev); 5332 goto unlock; 5333 } 5334 } 5335 } 5336 return 1; 5337 5338 unlock: 5339 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5340 if (dev->subordinate) 5341 pci_bus_unlock(dev->subordinate); 5342 pci_dev_unlock(dev); 5343 } 5344 return 0; 5345 } 5346 5347 /* Do any devices on or below this slot prevent a bus reset? */ 5348 static bool pci_slot_resetable(struct pci_slot *slot) 5349 { 5350 struct pci_dev *dev; 5351 5352 if (slot->bus->self && 5353 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5354 return false; 5355 5356 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5357 if (!dev->slot || dev->slot != slot) 5358 continue; 5359 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5360 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5361 return false; 5362 } 5363 5364 return true; 5365 } 5366 5367 /* Lock devices from the top of the tree down */ 5368 static void pci_slot_lock(struct pci_slot *slot) 5369 { 5370 struct pci_dev *dev; 5371 5372 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5373 if (!dev->slot || dev->slot != slot) 5374 continue; 5375 pci_dev_lock(dev); 5376 if (dev->subordinate) 5377 pci_bus_lock(dev->subordinate); 5378 } 5379 } 5380 5381 /* Unlock devices from the bottom of the tree up */ 5382 static void pci_slot_unlock(struct pci_slot *slot) 5383 { 5384 struct pci_dev *dev; 5385 5386 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5387 if (!dev->slot || dev->slot != slot) 5388 continue; 5389 if (dev->subordinate) 5390 pci_bus_unlock(dev->subordinate); 5391 pci_dev_unlock(dev); 5392 } 5393 } 5394 5395 /* Return 1 on successful lock, 0 on contention */ 5396 static int pci_slot_trylock(struct pci_slot *slot) 5397 { 5398 struct pci_dev *dev; 5399 5400 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5401 if (!dev->slot || dev->slot != slot) 5402 continue; 5403 if (!pci_dev_trylock(dev)) 5404 goto unlock; 5405 if (dev->subordinate) { 5406 if (!pci_bus_trylock(dev->subordinate)) { 5407 pci_dev_unlock(dev); 5408 goto unlock; 5409 } 5410 } 5411 } 5412 return 1; 5413 5414 unlock: 5415 list_for_each_entry_continue_reverse(dev, 5416 &slot->bus->devices, bus_list) { 5417 if (!dev->slot || dev->slot != slot) 5418 continue; 5419 if (dev->subordinate) 5420 pci_bus_unlock(dev->subordinate); 5421 pci_dev_unlock(dev); 5422 } 5423 return 0; 5424 } 5425 5426 /* 5427 * Save and disable devices from the top of the tree down while holding 5428 * the @dev mutex lock for the entire tree. 5429 */ 5430 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5431 { 5432 struct pci_dev *dev; 5433 5434 list_for_each_entry(dev, &bus->devices, bus_list) { 5435 pci_dev_save_and_disable(dev); 5436 if (dev->subordinate) 5437 pci_bus_save_and_disable_locked(dev->subordinate); 5438 } 5439 } 5440 5441 /* 5442 * Restore devices from top of the tree down while holding @dev mutex lock 5443 * for the entire tree. Parent bridges need to be restored before we can 5444 * get to subordinate devices. 5445 */ 5446 static void pci_bus_restore_locked(struct pci_bus *bus) 5447 { 5448 struct pci_dev *dev; 5449 5450 list_for_each_entry(dev, &bus->devices, bus_list) { 5451 pci_dev_restore(dev); 5452 if (dev->subordinate) 5453 pci_bus_restore_locked(dev->subordinate); 5454 } 5455 } 5456 5457 /* 5458 * Save and disable devices from the top of the tree down while holding 5459 * the @dev mutex lock for the entire tree. 5460 */ 5461 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5462 { 5463 struct pci_dev *dev; 5464 5465 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5466 if (!dev->slot || dev->slot != slot) 5467 continue; 5468 pci_dev_save_and_disable(dev); 5469 if (dev->subordinate) 5470 pci_bus_save_and_disable_locked(dev->subordinate); 5471 } 5472 } 5473 5474 /* 5475 * Restore devices from top of the tree down while holding @dev mutex lock 5476 * for the entire tree. Parent bridges need to be restored before we can 5477 * get to subordinate devices. 5478 */ 5479 static void pci_slot_restore_locked(struct pci_slot *slot) 5480 { 5481 struct pci_dev *dev; 5482 5483 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5484 if (!dev->slot || dev->slot != slot) 5485 continue; 5486 pci_dev_restore(dev); 5487 if (dev->subordinate) 5488 pci_bus_restore_locked(dev->subordinate); 5489 } 5490 } 5491 5492 static int pci_slot_reset(struct pci_slot *slot, int probe) 5493 { 5494 int rc; 5495 5496 if (!slot || !pci_slot_resetable(slot)) 5497 return -ENOTTY; 5498 5499 if (!probe) 5500 pci_slot_lock(slot); 5501 5502 might_sleep(); 5503 5504 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5505 5506 if (!probe) 5507 pci_slot_unlock(slot); 5508 5509 return rc; 5510 } 5511 5512 /** 5513 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5514 * @slot: PCI slot to probe 5515 * 5516 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5517 */ 5518 int pci_probe_reset_slot(struct pci_slot *slot) 5519 { 5520 return pci_slot_reset(slot, 1); 5521 } 5522 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5523 5524 /** 5525 * __pci_reset_slot - Try to reset a PCI slot 5526 * @slot: PCI slot to reset 5527 * 5528 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5529 * independent of other slots. For instance, some slots may support slot power 5530 * control. In the case of a 1:1 bus to slot architecture, this function may 5531 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5532 * Generally a slot reset should be attempted before a bus reset. All of the 5533 * function of the slot and any subordinate buses behind the slot are reset 5534 * through this function. PCI config space of all devices in the slot and 5535 * behind the slot is saved before and restored after reset. 5536 * 5537 * Same as above except return -EAGAIN if the slot cannot be locked 5538 */ 5539 static int __pci_reset_slot(struct pci_slot *slot) 5540 { 5541 int rc; 5542 5543 rc = pci_slot_reset(slot, 1); 5544 if (rc) 5545 return rc; 5546 5547 if (pci_slot_trylock(slot)) { 5548 pci_slot_save_and_disable_locked(slot); 5549 might_sleep(); 5550 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5551 pci_slot_restore_locked(slot); 5552 pci_slot_unlock(slot); 5553 } else 5554 rc = -EAGAIN; 5555 5556 return rc; 5557 } 5558 5559 static int pci_bus_reset(struct pci_bus *bus, int probe) 5560 { 5561 int ret; 5562 5563 if (!bus->self || !pci_bus_resetable(bus)) 5564 return -ENOTTY; 5565 5566 if (probe) 5567 return 0; 5568 5569 pci_bus_lock(bus); 5570 5571 might_sleep(); 5572 5573 ret = pci_bridge_secondary_bus_reset(bus->self); 5574 5575 pci_bus_unlock(bus); 5576 5577 return ret; 5578 } 5579 5580 /** 5581 * pci_bus_error_reset - reset the bridge's subordinate bus 5582 * @bridge: The parent device that connects to the bus to reset 5583 * 5584 * This function will first try to reset the slots on this bus if the method is 5585 * available. If slot reset fails or is not available, this will fall back to a 5586 * secondary bus reset. 5587 */ 5588 int pci_bus_error_reset(struct pci_dev *bridge) 5589 { 5590 struct pci_bus *bus = bridge->subordinate; 5591 struct pci_slot *slot; 5592 5593 if (!bus) 5594 return -ENOTTY; 5595 5596 mutex_lock(&pci_slot_mutex); 5597 if (list_empty(&bus->slots)) 5598 goto bus_reset; 5599 5600 list_for_each_entry(slot, &bus->slots, list) 5601 if (pci_probe_reset_slot(slot)) 5602 goto bus_reset; 5603 5604 list_for_each_entry(slot, &bus->slots, list) 5605 if (pci_slot_reset(slot, 0)) 5606 goto bus_reset; 5607 5608 mutex_unlock(&pci_slot_mutex); 5609 return 0; 5610 bus_reset: 5611 mutex_unlock(&pci_slot_mutex); 5612 return pci_bus_reset(bridge->subordinate, 0); 5613 } 5614 5615 /** 5616 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5617 * @bus: PCI bus to probe 5618 * 5619 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5620 */ 5621 int pci_probe_reset_bus(struct pci_bus *bus) 5622 { 5623 return pci_bus_reset(bus, 1); 5624 } 5625 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5626 5627 /** 5628 * __pci_reset_bus - Try to reset a PCI bus 5629 * @bus: top level PCI bus to reset 5630 * 5631 * Same as above except return -EAGAIN if the bus cannot be locked 5632 */ 5633 static int __pci_reset_bus(struct pci_bus *bus) 5634 { 5635 int rc; 5636 5637 rc = pci_bus_reset(bus, 1); 5638 if (rc) 5639 return rc; 5640 5641 if (pci_bus_trylock(bus)) { 5642 pci_bus_save_and_disable_locked(bus); 5643 might_sleep(); 5644 rc = pci_bridge_secondary_bus_reset(bus->self); 5645 pci_bus_restore_locked(bus); 5646 pci_bus_unlock(bus); 5647 } else 5648 rc = -EAGAIN; 5649 5650 return rc; 5651 } 5652 5653 /** 5654 * pci_reset_bus - Try to reset a PCI bus 5655 * @pdev: top level PCI device to reset via slot/bus 5656 * 5657 * Same as above except return -EAGAIN if the bus cannot be locked 5658 */ 5659 int pci_reset_bus(struct pci_dev *pdev) 5660 { 5661 return (!pci_probe_reset_slot(pdev->slot)) ? 5662 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5663 } 5664 EXPORT_SYMBOL_GPL(pci_reset_bus); 5665 5666 /** 5667 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5668 * @dev: PCI device to query 5669 * 5670 * Returns mmrbc: maximum designed memory read count in bytes or 5671 * appropriate error value. 5672 */ 5673 int pcix_get_max_mmrbc(struct pci_dev *dev) 5674 { 5675 int cap; 5676 u32 stat; 5677 5678 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5679 if (!cap) 5680 return -EINVAL; 5681 5682 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5683 return -EINVAL; 5684 5685 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5686 } 5687 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5688 5689 /** 5690 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5691 * @dev: PCI device to query 5692 * 5693 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5694 * value. 5695 */ 5696 int pcix_get_mmrbc(struct pci_dev *dev) 5697 { 5698 int cap; 5699 u16 cmd; 5700 5701 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5702 if (!cap) 5703 return -EINVAL; 5704 5705 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5706 return -EINVAL; 5707 5708 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5709 } 5710 EXPORT_SYMBOL(pcix_get_mmrbc); 5711 5712 /** 5713 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5714 * @dev: PCI device to query 5715 * @mmrbc: maximum memory read count in bytes 5716 * valid values are 512, 1024, 2048, 4096 5717 * 5718 * If possible sets maximum memory read byte count, some bridges have errata 5719 * that prevent this. 5720 */ 5721 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5722 { 5723 int cap; 5724 u32 stat, v, o; 5725 u16 cmd; 5726 5727 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5728 return -EINVAL; 5729 5730 v = ffs(mmrbc) - 10; 5731 5732 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5733 if (!cap) 5734 return -EINVAL; 5735 5736 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5737 return -EINVAL; 5738 5739 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5740 return -E2BIG; 5741 5742 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5743 return -EINVAL; 5744 5745 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5746 if (o != v) { 5747 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5748 return -EIO; 5749 5750 cmd &= ~PCI_X_CMD_MAX_READ; 5751 cmd |= v << 2; 5752 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5753 return -EIO; 5754 } 5755 return 0; 5756 } 5757 EXPORT_SYMBOL(pcix_set_mmrbc); 5758 5759 /** 5760 * pcie_get_readrq - get PCI Express read request size 5761 * @dev: PCI device to query 5762 * 5763 * Returns maximum memory read request in bytes or appropriate error value. 5764 */ 5765 int pcie_get_readrq(struct pci_dev *dev) 5766 { 5767 u16 ctl; 5768 5769 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5770 5771 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5772 } 5773 EXPORT_SYMBOL(pcie_get_readrq); 5774 5775 /** 5776 * pcie_set_readrq - set PCI Express maximum memory read request 5777 * @dev: PCI device to query 5778 * @rq: maximum memory read count in bytes 5779 * valid values are 128, 256, 512, 1024, 2048, 4096 5780 * 5781 * If possible sets maximum memory read request in bytes 5782 */ 5783 int pcie_set_readrq(struct pci_dev *dev, int rq) 5784 { 5785 u16 v; 5786 int ret; 5787 5788 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5789 return -EINVAL; 5790 5791 /* 5792 * If using the "performance" PCIe config, we clamp the read rq 5793 * size to the max packet size to keep the host bridge from 5794 * generating requests larger than we can cope with. 5795 */ 5796 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5797 int mps = pcie_get_mps(dev); 5798 5799 if (mps < rq) 5800 rq = mps; 5801 } 5802 5803 v = (ffs(rq) - 8) << 12; 5804 5805 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5806 PCI_EXP_DEVCTL_READRQ, v); 5807 5808 return pcibios_err_to_errno(ret); 5809 } 5810 EXPORT_SYMBOL(pcie_set_readrq); 5811 5812 /** 5813 * pcie_get_mps - get PCI Express maximum payload size 5814 * @dev: PCI device to query 5815 * 5816 * Returns maximum payload size in bytes 5817 */ 5818 int pcie_get_mps(struct pci_dev *dev) 5819 { 5820 u16 ctl; 5821 5822 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5823 5824 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5825 } 5826 EXPORT_SYMBOL(pcie_get_mps); 5827 5828 /** 5829 * pcie_set_mps - set PCI Express maximum payload size 5830 * @dev: PCI device to query 5831 * @mps: maximum payload size in bytes 5832 * valid values are 128, 256, 512, 1024, 2048, 4096 5833 * 5834 * If possible sets maximum payload size 5835 */ 5836 int pcie_set_mps(struct pci_dev *dev, int mps) 5837 { 5838 u16 v; 5839 int ret; 5840 5841 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5842 return -EINVAL; 5843 5844 v = ffs(mps) - 8; 5845 if (v > dev->pcie_mpss) 5846 return -EINVAL; 5847 v <<= 5; 5848 5849 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5850 PCI_EXP_DEVCTL_PAYLOAD, v); 5851 5852 return pcibios_err_to_errno(ret); 5853 } 5854 EXPORT_SYMBOL(pcie_set_mps); 5855 5856 /** 5857 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5858 * device and its bandwidth limitation 5859 * @dev: PCI device to query 5860 * @limiting_dev: storage for device causing the bandwidth limitation 5861 * @speed: storage for speed of limiting device 5862 * @width: storage for width of limiting device 5863 * 5864 * Walk up the PCI device chain and find the point where the minimum 5865 * bandwidth is available. Return the bandwidth available there and (if 5866 * limiting_dev, speed, and width pointers are supplied) information about 5867 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5868 * raw bandwidth. 5869 */ 5870 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5871 enum pci_bus_speed *speed, 5872 enum pcie_link_width *width) 5873 { 5874 u16 lnksta; 5875 enum pci_bus_speed next_speed; 5876 enum pcie_link_width next_width; 5877 u32 bw, next_bw; 5878 5879 if (speed) 5880 *speed = PCI_SPEED_UNKNOWN; 5881 if (width) 5882 *width = PCIE_LNK_WIDTH_UNKNOWN; 5883 5884 bw = 0; 5885 5886 while (dev) { 5887 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5888 5889 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5890 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5891 PCI_EXP_LNKSTA_NLW_SHIFT; 5892 5893 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5894 5895 /* Check if current device limits the total bandwidth */ 5896 if (!bw || next_bw <= bw) { 5897 bw = next_bw; 5898 5899 if (limiting_dev) 5900 *limiting_dev = dev; 5901 if (speed) 5902 *speed = next_speed; 5903 if (width) 5904 *width = next_width; 5905 } 5906 5907 dev = pci_upstream_bridge(dev); 5908 } 5909 5910 return bw; 5911 } 5912 EXPORT_SYMBOL(pcie_bandwidth_available); 5913 5914 /** 5915 * pcie_get_speed_cap - query for the PCI device's link speed capability 5916 * @dev: PCI device to query 5917 * 5918 * Query the PCI device speed capability. Return the maximum link speed 5919 * supported by the device. 5920 */ 5921 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5922 { 5923 u32 lnkcap2, lnkcap; 5924 5925 /* 5926 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5927 * implementation note there recommends using the Supported Link 5928 * Speeds Vector in Link Capabilities 2 when supported. 5929 * 5930 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5931 * should use the Supported Link Speeds field in Link Capabilities, 5932 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5933 */ 5934 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5935 5936 /* PCIe r3.0-compliant */ 5937 if (lnkcap2) 5938 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5939 5940 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5941 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5942 return PCIE_SPEED_5_0GT; 5943 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5944 return PCIE_SPEED_2_5GT; 5945 5946 return PCI_SPEED_UNKNOWN; 5947 } 5948 EXPORT_SYMBOL(pcie_get_speed_cap); 5949 5950 /** 5951 * pcie_get_width_cap - query for the PCI device's link width capability 5952 * @dev: PCI device to query 5953 * 5954 * Query the PCI device width capability. Return the maximum link width 5955 * supported by the device. 5956 */ 5957 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5958 { 5959 u32 lnkcap; 5960 5961 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5962 if (lnkcap) 5963 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5964 5965 return PCIE_LNK_WIDTH_UNKNOWN; 5966 } 5967 EXPORT_SYMBOL(pcie_get_width_cap); 5968 5969 /** 5970 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5971 * @dev: PCI device 5972 * @speed: storage for link speed 5973 * @width: storage for link width 5974 * 5975 * Calculate a PCI device's link bandwidth by querying for its link speed 5976 * and width, multiplying them, and applying encoding overhead. The result 5977 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5978 */ 5979 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5980 enum pcie_link_width *width) 5981 { 5982 *speed = pcie_get_speed_cap(dev); 5983 *width = pcie_get_width_cap(dev); 5984 5985 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5986 return 0; 5987 5988 return *width * PCIE_SPEED2MBS_ENC(*speed); 5989 } 5990 5991 /** 5992 * __pcie_print_link_status - Report the PCI device's link speed and width 5993 * @dev: PCI device to query 5994 * @verbose: Print info even when enough bandwidth is available 5995 * 5996 * If the available bandwidth at the device is less than the device is 5997 * capable of, report the device's maximum possible bandwidth and the 5998 * upstream link that limits its performance. If @verbose, always print 5999 * the available bandwidth, even if the device isn't constrained. 6000 */ 6001 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6002 { 6003 enum pcie_link_width width, width_cap; 6004 enum pci_bus_speed speed, speed_cap; 6005 struct pci_dev *limiting_dev = NULL; 6006 u32 bw_avail, bw_cap; 6007 6008 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6009 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6010 6011 if (bw_avail >= bw_cap && verbose) 6012 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6013 bw_cap / 1000, bw_cap % 1000, 6014 pci_speed_string(speed_cap), width_cap); 6015 else if (bw_avail < bw_cap) 6016 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6017 bw_avail / 1000, bw_avail % 1000, 6018 pci_speed_string(speed), width, 6019 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6020 bw_cap / 1000, bw_cap % 1000, 6021 pci_speed_string(speed_cap), width_cap); 6022 } 6023 6024 /** 6025 * pcie_print_link_status - Report the PCI device's link speed and width 6026 * @dev: PCI device to query 6027 * 6028 * Report the available bandwidth at the device. 6029 */ 6030 void pcie_print_link_status(struct pci_dev *dev) 6031 { 6032 __pcie_print_link_status(dev, true); 6033 } 6034 EXPORT_SYMBOL(pcie_print_link_status); 6035 6036 /** 6037 * pci_select_bars - Make BAR mask from the type of resource 6038 * @dev: the PCI device for which BAR mask is made 6039 * @flags: resource type mask to be selected 6040 * 6041 * This helper routine makes bar mask from the type of resource. 6042 */ 6043 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6044 { 6045 int i, bars = 0; 6046 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6047 if (pci_resource_flags(dev, i) & flags) 6048 bars |= (1 << i); 6049 return bars; 6050 } 6051 EXPORT_SYMBOL(pci_select_bars); 6052 6053 /* Some architectures require additional programming to enable VGA */ 6054 static arch_set_vga_state_t arch_set_vga_state; 6055 6056 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6057 { 6058 arch_set_vga_state = func; /* NULL disables */ 6059 } 6060 6061 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6062 unsigned int command_bits, u32 flags) 6063 { 6064 if (arch_set_vga_state) 6065 return arch_set_vga_state(dev, decode, command_bits, 6066 flags); 6067 return 0; 6068 } 6069 6070 /** 6071 * pci_set_vga_state - set VGA decode state on device and parents if requested 6072 * @dev: the PCI device 6073 * @decode: true = enable decoding, false = disable decoding 6074 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6075 * @flags: traverse ancestors and change bridges 6076 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6077 */ 6078 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6079 unsigned int command_bits, u32 flags) 6080 { 6081 struct pci_bus *bus; 6082 struct pci_dev *bridge; 6083 u16 cmd; 6084 int rc; 6085 6086 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6087 6088 /* ARCH specific VGA enables */ 6089 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6090 if (rc) 6091 return rc; 6092 6093 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6094 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6095 if (decode) 6096 cmd |= command_bits; 6097 else 6098 cmd &= ~command_bits; 6099 pci_write_config_word(dev, PCI_COMMAND, cmd); 6100 } 6101 6102 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6103 return 0; 6104 6105 bus = dev->bus; 6106 while (bus) { 6107 bridge = bus->self; 6108 if (bridge) { 6109 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6110 &cmd); 6111 if (decode) 6112 cmd |= PCI_BRIDGE_CTL_VGA; 6113 else 6114 cmd &= ~PCI_BRIDGE_CTL_VGA; 6115 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6116 cmd); 6117 } 6118 bus = bus->parent; 6119 } 6120 return 0; 6121 } 6122 6123 #ifdef CONFIG_ACPI 6124 bool pci_pr3_present(struct pci_dev *pdev) 6125 { 6126 struct acpi_device *adev; 6127 6128 if (acpi_disabled) 6129 return false; 6130 6131 adev = ACPI_COMPANION(&pdev->dev); 6132 if (!adev) 6133 return false; 6134 6135 return adev->power.flags.power_resources && 6136 acpi_has_method(adev->handle, "_PR3"); 6137 } 6138 EXPORT_SYMBOL_GPL(pci_pr3_present); 6139 #endif 6140 6141 /** 6142 * pci_add_dma_alias - Add a DMA devfn alias for a device 6143 * @dev: the PCI device for which alias is added 6144 * @devfn_from: alias slot and function 6145 * @nr_devfns: number of subsequent devfns to alias 6146 * 6147 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6148 * which is used to program permissible bus-devfn source addresses for DMA 6149 * requests in an IOMMU. These aliases factor into IOMMU group creation 6150 * and are useful for devices generating DMA requests beyond or different 6151 * from their logical bus-devfn. Examples include device quirks where the 6152 * device simply uses the wrong devfn, as well as non-transparent bridges 6153 * where the alias may be a proxy for devices in another domain. 6154 * 6155 * IOMMU group creation is performed during device discovery or addition, 6156 * prior to any potential DMA mapping and therefore prior to driver probing 6157 * (especially for userspace assigned devices where IOMMU group definition 6158 * cannot be left as a userspace activity). DMA aliases should therefore 6159 * be configured via quirks, such as the PCI fixup header quirk. 6160 */ 6161 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6162 { 6163 int devfn_to; 6164 6165 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6166 devfn_to = devfn_from + nr_devfns - 1; 6167 6168 if (!dev->dma_alias_mask) 6169 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6170 if (!dev->dma_alias_mask) { 6171 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6172 return; 6173 } 6174 6175 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6176 6177 if (nr_devfns == 1) 6178 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6179 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6180 else if (nr_devfns > 1) 6181 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6182 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6183 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6184 } 6185 6186 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6187 { 6188 return (dev1->dma_alias_mask && 6189 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6190 (dev2->dma_alias_mask && 6191 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6192 pci_real_dma_dev(dev1) == dev2 || 6193 pci_real_dma_dev(dev2) == dev1; 6194 } 6195 6196 bool pci_device_is_present(struct pci_dev *pdev) 6197 { 6198 u32 v; 6199 6200 if (pci_dev_is_disconnected(pdev)) 6201 return false; 6202 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6203 } 6204 EXPORT_SYMBOL_GPL(pci_device_is_present); 6205 6206 void pci_ignore_hotplug(struct pci_dev *dev) 6207 { 6208 struct pci_dev *bridge = dev->bus->self; 6209 6210 dev->ignore_hotplug = 1; 6211 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6212 if (bridge) 6213 bridge->ignore_hotplug = 1; 6214 } 6215 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6216 6217 /** 6218 * pci_real_dma_dev - Get PCI DMA device for PCI device 6219 * @dev: the PCI device that may have a PCI DMA alias 6220 * 6221 * Permits the platform to provide architecture-specific functionality to 6222 * devices needing to alias DMA to another PCI device on another PCI bus. If 6223 * the PCI device is on the same bus, it is recommended to use 6224 * pci_add_dma_alias(). This is the default implementation. Architecture 6225 * implementations can override this. 6226 */ 6227 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6228 { 6229 return dev; 6230 } 6231 6232 resource_size_t __weak pcibios_default_alignment(void) 6233 { 6234 return 0; 6235 } 6236 6237 /* 6238 * Arches that don't want to expose struct resource to userland as-is in 6239 * sysfs and /proc can implement their own pci_resource_to_user(). 6240 */ 6241 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6242 const struct resource *rsrc, 6243 resource_size_t *start, resource_size_t *end) 6244 { 6245 *start = rsrc->start; 6246 *end = rsrc->end; 6247 } 6248 6249 static char *resource_alignment_param; 6250 static DEFINE_SPINLOCK(resource_alignment_lock); 6251 6252 /** 6253 * pci_specified_resource_alignment - get resource alignment specified by user. 6254 * @dev: the PCI device to get 6255 * @resize: whether or not to change resources' size when reassigning alignment 6256 * 6257 * RETURNS: Resource alignment if it is specified. 6258 * Zero if it is not specified. 6259 */ 6260 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6261 bool *resize) 6262 { 6263 int align_order, count; 6264 resource_size_t align = pcibios_default_alignment(); 6265 const char *p; 6266 int ret; 6267 6268 spin_lock(&resource_alignment_lock); 6269 p = resource_alignment_param; 6270 if (!p || !*p) 6271 goto out; 6272 if (pci_has_flag(PCI_PROBE_ONLY)) { 6273 align = 0; 6274 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6275 goto out; 6276 } 6277 6278 while (*p) { 6279 count = 0; 6280 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6281 p[count] == '@') { 6282 p += count + 1; 6283 if (align_order > 63) { 6284 pr_err("PCI: Invalid requested alignment (order %d)\n", 6285 align_order); 6286 align_order = PAGE_SHIFT; 6287 } 6288 } else { 6289 align_order = PAGE_SHIFT; 6290 } 6291 6292 ret = pci_dev_str_match(dev, p, &p); 6293 if (ret == 1) { 6294 *resize = true; 6295 align = 1ULL << align_order; 6296 break; 6297 } else if (ret < 0) { 6298 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6299 p); 6300 break; 6301 } 6302 6303 if (*p != ';' && *p != ',') { 6304 /* End of param or invalid format */ 6305 break; 6306 } 6307 p++; 6308 } 6309 out: 6310 spin_unlock(&resource_alignment_lock); 6311 return align; 6312 } 6313 6314 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6315 resource_size_t align, bool resize) 6316 { 6317 struct resource *r = &dev->resource[bar]; 6318 resource_size_t size; 6319 6320 if (!(r->flags & IORESOURCE_MEM)) 6321 return; 6322 6323 if (r->flags & IORESOURCE_PCI_FIXED) { 6324 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6325 bar, r, (unsigned long long)align); 6326 return; 6327 } 6328 6329 size = resource_size(r); 6330 if (size >= align) 6331 return; 6332 6333 /* 6334 * Increase the alignment of the resource. There are two ways we 6335 * can do this: 6336 * 6337 * 1) Increase the size of the resource. BARs are aligned on their 6338 * size, so when we reallocate space for this resource, we'll 6339 * allocate it with the larger alignment. This also prevents 6340 * assignment of any other BARs inside the alignment region, so 6341 * if we're requesting page alignment, this means no other BARs 6342 * will share the page. 6343 * 6344 * The disadvantage is that this makes the resource larger than 6345 * the hardware BAR, which may break drivers that compute things 6346 * based on the resource size, e.g., to find registers at a 6347 * fixed offset before the end of the BAR. 6348 * 6349 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6350 * set r->start to the desired alignment. By itself this 6351 * doesn't prevent other BARs being put inside the alignment 6352 * region, but if we realign *every* resource of every device in 6353 * the system, none of them will share an alignment region. 6354 * 6355 * When the user has requested alignment for only some devices via 6356 * the "pci=resource_alignment" argument, "resize" is true and we 6357 * use the first method. Otherwise we assume we're aligning all 6358 * devices and we use the second. 6359 */ 6360 6361 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6362 bar, r, (unsigned long long)align); 6363 6364 if (resize) { 6365 r->start = 0; 6366 r->end = align - 1; 6367 } else { 6368 r->flags &= ~IORESOURCE_SIZEALIGN; 6369 r->flags |= IORESOURCE_STARTALIGN; 6370 r->start = align; 6371 r->end = r->start + size - 1; 6372 } 6373 r->flags |= IORESOURCE_UNSET; 6374 } 6375 6376 /* 6377 * This function disables memory decoding and releases memory resources 6378 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6379 * It also rounds up size to specified alignment. 6380 * Later on, the kernel will assign page-aligned memory resource back 6381 * to the device. 6382 */ 6383 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6384 { 6385 int i; 6386 struct resource *r; 6387 resource_size_t align; 6388 u16 command; 6389 bool resize = false; 6390 6391 /* 6392 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6393 * 3.4.1.11. Their resources are allocated from the space 6394 * described by the VF BARx register in the PF's SR-IOV capability. 6395 * We can't influence their alignment here. 6396 */ 6397 if (dev->is_virtfn) 6398 return; 6399 6400 /* check if specified PCI is target device to reassign */ 6401 align = pci_specified_resource_alignment(dev, &resize); 6402 if (!align) 6403 return; 6404 6405 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6406 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6407 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6408 return; 6409 } 6410 6411 pci_read_config_word(dev, PCI_COMMAND, &command); 6412 command &= ~PCI_COMMAND_MEMORY; 6413 pci_write_config_word(dev, PCI_COMMAND, command); 6414 6415 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6416 pci_request_resource_alignment(dev, i, align, resize); 6417 6418 /* 6419 * Need to disable bridge's resource window, 6420 * to enable the kernel to reassign new resource 6421 * window later on. 6422 */ 6423 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6424 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6425 r = &dev->resource[i]; 6426 if (!(r->flags & IORESOURCE_MEM)) 6427 continue; 6428 r->flags |= IORESOURCE_UNSET; 6429 r->end = resource_size(r) - 1; 6430 r->start = 0; 6431 } 6432 pci_disable_bridge_window(dev); 6433 } 6434 } 6435 6436 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6437 { 6438 size_t count = 0; 6439 6440 spin_lock(&resource_alignment_lock); 6441 if (resource_alignment_param) 6442 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6443 spin_unlock(&resource_alignment_lock); 6444 6445 /* 6446 * When set by the command line, resource_alignment_param will not 6447 * have a trailing line feed, which is ugly. So conditionally add 6448 * it here. 6449 */ 6450 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6451 buf[count - 1] = '\n'; 6452 buf[count++] = 0; 6453 } 6454 6455 return count; 6456 } 6457 6458 static ssize_t resource_alignment_store(struct bus_type *bus, 6459 const char *buf, size_t count) 6460 { 6461 char *param = kstrndup(buf, count, GFP_KERNEL); 6462 6463 if (!param) 6464 return -ENOMEM; 6465 6466 spin_lock(&resource_alignment_lock); 6467 kfree(resource_alignment_param); 6468 resource_alignment_param = param; 6469 spin_unlock(&resource_alignment_lock); 6470 return count; 6471 } 6472 6473 static BUS_ATTR_RW(resource_alignment); 6474 6475 static int __init pci_resource_alignment_sysfs_init(void) 6476 { 6477 return bus_create_file(&pci_bus_type, 6478 &bus_attr_resource_alignment); 6479 } 6480 late_initcall(pci_resource_alignment_sysfs_init); 6481 6482 static void pci_no_domains(void) 6483 { 6484 #ifdef CONFIG_PCI_DOMAINS 6485 pci_domains_supported = 0; 6486 #endif 6487 } 6488 6489 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6490 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6491 6492 static int pci_get_new_domain_nr(void) 6493 { 6494 return atomic_inc_return(&__domain_nr); 6495 } 6496 6497 static int of_pci_bus_find_domain_nr(struct device *parent) 6498 { 6499 static int use_dt_domains = -1; 6500 int domain = -1; 6501 6502 if (parent) 6503 domain = of_get_pci_domain_nr(parent->of_node); 6504 6505 /* 6506 * Check DT domain and use_dt_domains values. 6507 * 6508 * If DT domain property is valid (domain >= 0) and 6509 * use_dt_domains != 0, the DT assignment is valid since this means 6510 * we have not previously allocated a domain number by using 6511 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6512 * 1, to indicate that we have just assigned a domain number from 6513 * DT. 6514 * 6515 * If DT domain property value is not valid (ie domain < 0), and we 6516 * have not previously assigned a domain number from DT 6517 * (use_dt_domains != 1) we should assign a domain number by 6518 * using the: 6519 * 6520 * pci_get_new_domain_nr() 6521 * 6522 * API and update the use_dt_domains value to keep track of method we 6523 * are using to assign domain numbers (use_dt_domains = 0). 6524 * 6525 * All other combinations imply we have a platform that is trying 6526 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6527 * which is a recipe for domain mishandling and it is prevented by 6528 * invalidating the domain value (domain = -1) and printing a 6529 * corresponding error. 6530 */ 6531 if (domain >= 0 && use_dt_domains) { 6532 use_dt_domains = 1; 6533 } else if (domain < 0 && use_dt_domains != 1) { 6534 use_dt_domains = 0; 6535 domain = pci_get_new_domain_nr(); 6536 } else { 6537 if (parent) 6538 pr_err("Node %pOF has ", parent->of_node); 6539 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6540 domain = -1; 6541 } 6542 6543 return domain; 6544 } 6545 6546 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6547 { 6548 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6549 acpi_pci_bus_find_domain_nr(bus); 6550 } 6551 #endif 6552 6553 /** 6554 * pci_ext_cfg_avail - can we access extended PCI config space? 6555 * 6556 * Returns 1 if we can access PCI extended config space (offsets 6557 * greater than 0xff). This is the default implementation. Architecture 6558 * implementations can override this. 6559 */ 6560 int __weak pci_ext_cfg_avail(void) 6561 { 6562 return 1; 6563 } 6564 6565 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6566 { 6567 } 6568 EXPORT_SYMBOL(pci_fixup_cardbus); 6569 6570 static int __init pci_setup(char *str) 6571 { 6572 while (str) { 6573 char *k = strchr(str, ','); 6574 if (k) 6575 *k++ = 0; 6576 if (*str && (str = pcibios_setup(str)) && *str) { 6577 if (!strcmp(str, "nomsi")) { 6578 pci_no_msi(); 6579 } else if (!strncmp(str, "noats", 5)) { 6580 pr_info("PCIe: ATS is disabled\n"); 6581 pcie_ats_disabled = true; 6582 } else if (!strcmp(str, "noaer")) { 6583 pci_no_aer(); 6584 } else if (!strcmp(str, "earlydump")) { 6585 pci_early_dump = true; 6586 } else if (!strncmp(str, "realloc=", 8)) { 6587 pci_realloc_get_opt(str + 8); 6588 } else if (!strncmp(str, "realloc", 7)) { 6589 pci_realloc_get_opt("on"); 6590 } else if (!strcmp(str, "nodomains")) { 6591 pci_no_domains(); 6592 } else if (!strncmp(str, "noari", 5)) { 6593 pcie_ari_disabled = true; 6594 } else if (!strncmp(str, "cbiosize=", 9)) { 6595 pci_cardbus_io_size = memparse(str + 9, &str); 6596 } else if (!strncmp(str, "cbmemsize=", 10)) { 6597 pci_cardbus_mem_size = memparse(str + 10, &str); 6598 } else if (!strncmp(str, "resource_alignment=", 19)) { 6599 resource_alignment_param = str + 19; 6600 } else if (!strncmp(str, "ecrc=", 5)) { 6601 pcie_ecrc_get_policy(str + 5); 6602 } else if (!strncmp(str, "hpiosize=", 9)) { 6603 pci_hotplug_io_size = memparse(str + 9, &str); 6604 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6605 pci_hotplug_mmio_size = memparse(str + 11, &str); 6606 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6607 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6608 } else if (!strncmp(str, "hpmemsize=", 10)) { 6609 pci_hotplug_mmio_size = memparse(str + 10, &str); 6610 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6611 } else if (!strncmp(str, "hpbussize=", 10)) { 6612 pci_hotplug_bus_size = 6613 simple_strtoul(str + 10, &str, 0); 6614 if (pci_hotplug_bus_size > 0xff) 6615 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6616 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6617 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6618 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6619 pcie_bus_config = PCIE_BUS_SAFE; 6620 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6621 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6622 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6623 pcie_bus_config = PCIE_BUS_PEER2PEER; 6624 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6625 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6626 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6627 disable_acs_redir_param = str + 18; 6628 } else { 6629 pr_err("PCI: Unknown option `%s'\n", str); 6630 } 6631 } 6632 str = k; 6633 } 6634 return 0; 6635 } 6636 early_param("pci", pci_setup); 6637 6638 /* 6639 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6640 * in pci_setup(), above, to point to data in the __initdata section which 6641 * will be freed after the init sequence is complete. We can't allocate memory 6642 * in pci_setup() because some architectures do not have any memory allocation 6643 * service available during an early_param() call. So we allocate memory and 6644 * copy the variable here before the init section is freed. 6645 * 6646 */ 6647 static int __init pci_realloc_setup_params(void) 6648 { 6649 resource_alignment_param = kstrdup(resource_alignment_param, 6650 GFP_KERNEL); 6651 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6652 6653 return 0; 6654 } 6655 pure_initcall(pci_realloc_setup_params); 6656