xref: /openbmc/linux/drivers/pci/pci.c (revision d2ba09c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3_delay;
68 
69 	if (delay < pci_pm_d3_delay)
70 		delay = pci_pm_d3_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
76 #ifdef CONFIG_PCI_DOMAINS
77 int pci_domains_supported = 1;
78 #endif
79 
80 #define DEFAULT_CARDBUS_IO_SIZE		(256)
81 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
85 
86 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
87 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
91 
92 #define DEFAULT_HOTPLUG_BUS_SIZE	1
93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
94 
95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
96 
97 /*
98  * The default CLS is used if arch didn't set CLS explicitly and not
99  * all pci devices agree on the same value.  Arch can override either
100  * the dfl or actual value as it sees fit.  Don't forget this is
101  * measured in 32-bit words, not bytes.
102  */
103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
104 u8 pci_cache_line_size;
105 
106 /*
107  * If we set up a device for bus mastering, we need to check the latency
108  * timer as certain BIOSes forget to set it properly.
109  */
110 unsigned int pcibios_max_latency = 255;
111 
112 /* If set, the PCIe ARI capability will not be used. */
113 static bool pcie_ari_disabled;
114 
115 /* Disable bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_disable;
117 /* Force bridge_d3 for all PCIe ports */
118 static bool pci_bridge_d3_force;
119 
120 static int __init pcie_port_pm_setup(char *str)
121 {
122 	if (!strcmp(str, "off"))
123 		pci_bridge_d3_disable = true;
124 	else if (!strcmp(str, "force"))
125 		pci_bridge_d3_force = true;
126 	return 1;
127 }
128 __setup("pcie_port_pm=", pcie_port_pm_setup);
129 
130 /* Time to wait after a reset for device to become responsive */
131 #define PCIE_RESET_READY_POLL_MS 60000
132 
133 /**
134  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
135  * @bus: pointer to PCI bus structure to search
136  *
137  * Given a PCI bus, returns the highest PCI bus number present in the set
138  * including the given PCI bus and its list of child PCI buses.
139  */
140 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
141 {
142 	struct pci_bus *tmp;
143 	unsigned char max, n;
144 
145 	max = bus->busn_res.end;
146 	list_for_each_entry(tmp, &bus->children, node) {
147 		n = pci_bus_max_busnr(tmp);
148 		if (n > max)
149 			max = n;
150 	}
151 	return max;
152 }
153 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
154 
155 #ifdef CONFIG_HAS_IOMEM
156 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
157 {
158 	struct resource *res = &pdev->resource[bar];
159 
160 	/*
161 	 * Make sure the BAR is actually a memory resource, not an IO resource
162 	 */
163 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
164 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
165 		return NULL;
166 	}
167 	return ioremap_nocache(res->start, resource_size(res));
168 }
169 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
170 
171 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
172 {
173 	/*
174 	 * Make sure the BAR is actually a memory resource, not an IO resource
175 	 */
176 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
177 		WARN_ON(1);
178 		return NULL;
179 	}
180 	return ioremap_wc(pci_resource_start(pdev, bar),
181 			  pci_resource_len(pdev, bar));
182 }
183 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
184 #endif
185 
186 
187 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
188 				   u8 pos, int cap, int *ttl)
189 {
190 	u8 id;
191 	u16 ent;
192 
193 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
194 
195 	while ((*ttl)--) {
196 		if (pos < 0x40)
197 			break;
198 		pos &= ~3;
199 		pci_bus_read_config_word(bus, devfn, pos, &ent);
200 
201 		id = ent & 0xff;
202 		if (id == 0xff)
203 			break;
204 		if (id == cap)
205 			return pos;
206 		pos = (ent >> 8);
207 	}
208 	return 0;
209 }
210 
211 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
212 			       u8 pos, int cap)
213 {
214 	int ttl = PCI_FIND_CAP_TTL;
215 
216 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
217 }
218 
219 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
220 {
221 	return __pci_find_next_cap(dev->bus, dev->devfn,
222 				   pos + PCI_CAP_LIST_NEXT, cap);
223 }
224 EXPORT_SYMBOL_GPL(pci_find_next_capability);
225 
226 static int __pci_bus_find_cap_start(struct pci_bus *bus,
227 				    unsigned int devfn, u8 hdr_type)
228 {
229 	u16 status;
230 
231 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
232 	if (!(status & PCI_STATUS_CAP_LIST))
233 		return 0;
234 
235 	switch (hdr_type) {
236 	case PCI_HEADER_TYPE_NORMAL:
237 	case PCI_HEADER_TYPE_BRIDGE:
238 		return PCI_CAPABILITY_LIST;
239 	case PCI_HEADER_TYPE_CARDBUS:
240 		return PCI_CB_CAPABILITY_LIST;
241 	}
242 
243 	return 0;
244 }
245 
246 /**
247  * pci_find_capability - query for devices' capabilities
248  * @dev: PCI device to query
249  * @cap: capability code
250  *
251  * Tell if a device supports a given PCI capability.
252  * Returns the address of the requested capability structure within the
253  * device's PCI configuration space or 0 in case the device does not
254  * support it.  Possible values for @cap:
255  *
256  *  %PCI_CAP_ID_PM           Power Management
257  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
258  *  %PCI_CAP_ID_VPD          Vital Product Data
259  *  %PCI_CAP_ID_SLOTID       Slot Identification
260  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
261  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
262  *  %PCI_CAP_ID_PCIX         PCI-X
263  *  %PCI_CAP_ID_EXP          PCI Express
264  */
265 int pci_find_capability(struct pci_dev *dev, int cap)
266 {
267 	int pos;
268 
269 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
270 	if (pos)
271 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
272 
273 	return pos;
274 }
275 EXPORT_SYMBOL(pci_find_capability);
276 
277 /**
278  * pci_bus_find_capability - query for devices' capabilities
279  * @bus:   the PCI bus to query
280  * @devfn: PCI device to query
281  * @cap:   capability code
282  *
283  * Like pci_find_capability() but works for pci devices that do not have a
284  * pci_dev structure set up yet.
285  *
286  * Returns the address of the requested capability structure within the
287  * device's PCI configuration space or 0 in case the device does not
288  * support it.
289  */
290 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
291 {
292 	int pos;
293 	u8 hdr_type;
294 
295 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
296 
297 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
298 	if (pos)
299 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
300 
301 	return pos;
302 }
303 EXPORT_SYMBOL(pci_bus_find_capability);
304 
305 /**
306  * pci_find_next_ext_capability - Find an extended capability
307  * @dev: PCI device to query
308  * @start: address at which to start looking (0 to start at beginning of list)
309  * @cap: capability code
310  *
311  * Returns the address of the next matching extended capability structure
312  * within the device's PCI configuration space or 0 if the device does
313  * not support it.  Some capabilities can occur several times, e.g., the
314  * vendor-specific capability, and this provides a way to find them all.
315  */
316 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
317 {
318 	u32 header;
319 	int ttl;
320 	int pos = PCI_CFG_SPACE_SIZE;
321 
322 	/* minimum 8 bytes per capability */
323 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
324 
325 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
326 		return 0;
327 
328 	if (start)
329 		pos = start;
330 
331 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
332 		return 0;
333 
334 	/*
335 	 * If we have no capabilities, this is indicated by cap ID,
336 	 * cap version and next pointer all being 0.
337 	 */
338 	if (header == 0)
339 		return 0;
340 
341 	while (ttl-- > 0) {
342 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
343 			return pos;
344 
345 		pos = PCI_EXT_CAP_NEXT(header);
346 		if (pos < PCI_CFG_SPACE_SIZE)
347 			break;
348 
349 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
350 			break;
351 	}
352 
353 	return 0;
354 }
355 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
356 
357 /**
358  * pci_find_ext_capability - Find an extended capability
359  * @dev: PCI device to query
360  * @cap: capability code
361  *
362  * Returns the address of the requested extended capability structure
363  * within the device's PCI configuration space or 0 if the device does
364  * not support it.  Possible values for @cap:
365  *
366  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
367  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
368  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
369  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
370  */
371 int pci_find_ext_capability(struct pci_dev *dev, int cap)
372 {
373 	return pci_find_next_ext_capability(dev, 0, cap);
374 }
375 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
376 
377 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
378 {
379 	int rc, ttl = PCI_FIND_CAP_TTL;
380 	u8 cap, mask;
381 
382 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
383 		mask = HT_3BIT_CAP_MASK;
384 	else
385 		mask = HT_5BIT_CAP_MASK;
386 
387 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
388 				      PCI_CAP_ID_HT, &ttl);
389 	while (pos) {
390 		rc = pci_read_config_byte(dev, pos + 3, &cap);
391 		if (rc != PCIBIOS_SUCCESSFUL)
392 			return 0;
393 
394 		if ((cap & mask) == ht_cap)
395 			return pos;
396 
397 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
398 					      pos + PCI_CAP_LIST_NEXT,
399 					      PCI_CAP_ID_HT, &ttl);
400 	}
401 
402 	return 0;
403 }
404 /**
405  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
406  * @dev: PCI device to query
407  * @pos: Position from which to continue searching
408  * @ht_cap: Hypertransport capability code
409  *
410  * To be used in conjunction with pci_find_ht_capability() to search for
411  * all capabilities matching @ht_cap. @pos should always be a value returned
412  * from pci_find_ht_capability().
413  *
414  * NB. To be 100% safe against broken PCI devices, the caller should take
415  * steps to avoid an infinite loop.
416  */
417 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
418 {
419 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
420 }
421 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
422 
423 /**
424  * pci_find_ht_capability - query a device's Hypertransport capabilities
425  * @dev: PCI device to query
426  * @ht_cap: Hypertransport capability code
427  *
428  * Tell if a device supports a given Hypertransport capability.
429  * Returns an address within the device's PCI configuration space
430  * or 0 in case the device does not support the request capability.
431  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
432  * which has a Hypertransport capability matching @ht_cap.
433  */
434 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
435 {
436 	int pos;
437 
438 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
439 	if (pos)
440 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
441 
442 	return pos;
443 }
444 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
445 
446 /**
447  * pci_find_parent_resource - return resource region of parent bus of given region
448  * @dev: PCI device structure contains resources to be searched
449  * @res: child resource record for which parent is sought
450  *
451  *  For given resource region of given device, return the resource
452  *  region of parent bus the given region is contained in.
453  */
454 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
455 					  struct resource *res)
456 {
457 	const struct pci_bus *bus = dev->bus;
458 	struct resource *r;
459 	int i;
460 
461 	pci_bus_for_each_resource(bus, r, i) {
462 		if (!r)
463 			continue;
464 		if (resource_contains(r, res)) {
465 
466 			/*
467 			 * If the window is prefetchable but the BAR is
468 			 * not, the allocator made a mistake.
469 			 */
470 			if (r->flags & IORESOURCE_PREFETCH &&
471 			    !(res->flags & IORESOURCE_PREFETCH))
472 				return NULL;
473 
474 			/*
475 			 * If we're below a transparent bridge, there may
476 			 * be both a positively-decoded aperture and a
477 			 * subtractively-decoded region that contain the BAR.
478 			 * We want the positively-decoded one, so this depends
479 			 * on pci_bus_for_each_resource() giving us those
480 			 * first.
481 			 */
482 			return r;
483 		}
484 	}
485 	return NULL;
486 }
487 EXPORT_SYMBOL(pci_find_parent_resource);
488 
489 /**
490  * pci_find_resource - Return matching PCI device resource
491  * @dev: PCI device to query
492  * @res: Resource to look for
493  *
494  * Goes over standard PCI resources (BARs) and checks if the given resource
495  * is partially or fully contained in any of them. In that case the
496  * matching resource is returned, %NULL otherwise.
497  */
498 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
499 {
500 	int i;
501 
502 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
503 		struct resource *r = &dev->resource[i];
504 
505 		if (r->start && resource_contains(r, res))
506 			return r;
507 	}
508 
509 	return NULL;
510 }
511 EXPORT_SYMBOL(pci_find_resource);
512 
513 /**
514  * pci_find_pcie_root_port - return PCIe Root Port
515  * @dev: PCI device to query
516  *
517  * Traverse up the parent chain and return the PCIe Root Port PCI Device
518  * for a given PCI Device.
519  */
520 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
521 {
522 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
523 
524 	bridge = pci_upstream_bridge(dev);
525 	while (bridge && pci_is_pcie(bridge)) {
526 		highest_pcie_bridge = bridge;
527 		bridge = pci_upstream_bridge(bridge);
528 	}
529 
530 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
531 		return NULL;
532 
533 	return highest_pcie_bridge;
534 }
535 EXPORT_SYMBOL(pci_find_pcie_root_port);
536 
537 /**
538  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
539  * @dev: the PCI device to operate on
540  * @pos: config space offset of status word
541  * @mask: mask of bit(s) to care about in status word
542  *
543  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
544  */
545 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
546 {
547 	int i;
548 
549 	/* Wait for Transaction Pending bit clean */
550 	for (i = 0; i < 4; i++) {
551 		u16 status;
552 		if (i)
553 			msleep((1 << (i - 1)) * 100);
554 
555 		pci_read_config_word(dev, pos, &status);
556 		if (!(status & mask))
557 			return 1;
558 	}
559 
560 	return 0;
561 }
562 
563 /**
564  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
565  * @dev: PCI device to have its BARs restored
566  *
567  * Restore the BAR values for a given device, so as to make it
568  * accessible by its driver.
569  */
570 static void pci_restore_bars(struct pci_dev *dev)
571 {
572 	int i;
573 
574 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
575 		pci_update_resource(dev, i);
576 }
577 
578 static const struct pci_platform_pm_ops *pci_platform_pm;
579 
580 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
581 {
582 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
583 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
584 		return -EINVAL;
585 	pci_platform_pm = ops;
586 	return 0;
587 }
588 
589 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
590 {
591 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
592 }
593 
594 static inline int platform_pci_set_power_state(struct pci_dev *dev,
595 					       pci_power_t t)
596 {
597 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
598 }
599 
600 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
601 {
602 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
603 }
604 
605 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
606 {
607 	return pci_platform_pm ?
608 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
609 }
610 
611 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
612 {
613 	return pci_platform_pm ?
614 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
615 }
616 
617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
618 {
619 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
620 }
621 
622 /**
623  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
624  *                           given PCI device
625  * @dev: PCI device to handle.
626  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
627  *
628  * RETURN VALUE:
629  * -EINVAL if the requested state is invalid.
630  * -EIO if device does not support PCI PM or its PM capabilities register has a
631  * wrong version, or device doesn't support the requested state.
632  * 0 if device already is in the requested state.
633  * 0 if device's power state has been successfully changed.
634  */
635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
636 {
637 	u16 pmcsr;
638 	bool need_restore = false;
639 
640 	/* Check if we're already there */
641 	if (dev->current_state == state)
642 		return 0;
643 
644 	if (!dev->pm_cap)
645 		return -EIO;
646 
647 	if (state < PCI_D0 || state > PCI_D3hot)
648 		return -EINVAL;
649 
650 	/* Validate current state:
651 	 * Can enter D0 from any state, but if we can only go deeper
652 	 * to sleep if we're already in a low power state
653 	 */
654 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 	    && dev->current_state > state) {
656 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
657 			dev->current_state, state);
658 		return -EINVAL;
659 	}
660 
661 	/* check if this device supports the desired state */
662 	if ((state == PCI_D1 && !dev->d1_support)
663 	   || (state == PCI_D2 && !dev->d2_support))
664 		return -EIO;
665 
666 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
667 
668 	/* If we're (effectively) in D3, force entire word to 0.
669 	 * This doesn't affect PME_Status, disables PME_En, and
670 	 * sets PowerState to 0.
671 	 */
672 	switch (dev->current_state) {
673 	case PCI_D0:
674 	case PCI_D1:
675 	case PCI_D2:
676 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 		pmcsr |= state;
678 		break;
679 	case PCI_D3hot:
680 	case PCI_D3cold:
681 	case PCI_UNKNOWN: /* Boot-up */
682 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
684 			need_restore = true;
685 		/* Fall-through: force to D0 */
686 	default:
687 		pmcsr = 0;
688 		break;
689 	}
690 
691 	/* enter specified state */
692 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
693 
694 	/* Mandatory power management transition delays */
695 	/* see PCI PM 1.1 5.6.1 table 18 */
696 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 		pci_dev_d3_sleep(dev);
698 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 		udelay(PCI_PM_D2_DELAY);
700 
701 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 	if (dev->current_state != state && printk_ratelimit())
704 		pci_info(dev, "Refused to change power state, currently in D%d\n",
705 			 dev->current_state);
706 
707 	/*
708 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 	 * from D3hot to D0 _may_ perform an internal reset, thereby
711 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 	 * For example, at least some versions of the 3c905B and the
713 	 * 3c556B exhibit this behaviour.
714 	 *
715 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 	 * devices in a D3hot state at boot.  Consequently, we need to
717 	 * restore at least the BARs so that the device will be
718 	 * accessible to its driver.
719 	 */
720 	if (need_restore)
721 		pci_restore_bars(dev);
722 
723 	if (dev->bus->self)
724 		pcie_aspm_pm_state_change(dev->bus->self);
725 
726 	return 0;
727 }
728 
729 /**
730  * pci_update_current_state - Read power state of given device and cache it
731  * @dev: PCI device to handle.
732  * @state: State to cache in case the device doesn't have the PM capability
733  *
734  * The power state is read from the PMCSR register, which however is
735  * inaccessible in D3cold.  The platform firmware is therefore queried first
736  * to detect accessibility of the register.  In case the platform firmware
737  * reports an incorrect state or the device isn't power manageable by the
738  * platform at all, we try to detect D3cold by testing accessibility of the
739  * vendor ID in config space.
740  */
741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
742 {
743 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 	    !pci_device_is_present(dev)) {
745 		dev->current_state = PCI_D3cold;
746 	} else if (dev->pm_cap) {
747 		u16 pmcsr;
748 
749 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
751 	} else {
752 		dev->current_state = state;
753 	}
754 }
755 
756 /**
757  * pci_power_up - Put the given device into D0 forcibly
758  * @dev: PCI device to power up
759  */
760 void pci_power_up(struct pci_dev *dev)
761 {
762 	if (platform_pci_power_manageable(dev))
763 		platform_pci_set_power_state(dev, PCI_D0);
764 
765 	pci_raw_set_power_state(dev, PCI_D0);
766 	pci_update_current_state(dev, PCI_D0);
767 }
768 
769 /**
770  * pci_platform_power_transition - Use platform to change device power state
771  * @dev: PCI device to handle.
772  * @state: State to put the device into.
773  */
774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
775 {
776 	int error;
777 
778 	if (platform_pci_power_manageable(dev)) {
779 		error = platform_pci_set_power_state(dev, state);
780 		if (!error)
781 			pci_update_current_state(dev, state);
782 	} else
783 		error = -ENODEV;
784 
785 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 		dev->current_state = PCI_D0;
787 
788 	return error;
789 }
790 
791 /**
792  * pci_wakeup - Wake up a PCI device
793  * @pci_dev: Device to handle.
794  * @ign: ignored parameter
795  */
796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
797 {
798 	pci_wakeup_event(pci_dev);
799 	pm_request_resume(&pci_dev->dev);
800 	return 0;
801 }
802 
803 /**
804  * pci_wakeup_bus - Walk given bus and wake up devices on it
805  * @bus: Top bus of the subtree to walk.
806  */
807 void pci_wakeup_bus(struct pci_bus *bus)
808 {
809 	if (bus)
810 		pci_walk_bus(bus, pci_wakeup, NULL);
811 }
812 
813 /**
814  * __pci_start_power_transition - Start power transition of a PCI device
815  * @dev: PCI device to handle.
816  * @state: State to put the device into.
817  */
818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
819 {
820 	if (state == PCI_D0) {
821 		pci_platform_power_transition(dev, PCI_D0);
822 		/*
823 		 * Mandatory power management transition delays, see
824 		 * PCI Express Base Specification Revision 2.0 Section
825 		 * 6.6.1: Conventional Reset.  Do not delay for
826 		 * devices powered on/off by corresponding bridge,
827 		 * because have already delayed for the bridge.
828 		 */
829 		if (dev->runtime_d3cold) {
830 			if (dev->d3cold_delay)
831 				msleep(dev->d3cold_delay);
832 			/*
833 			 * When powering on a bridge from D3cold, the
834 			 * whole hierarchy may be powered on into
835 			 * D0uninitialized state, resume them to give
836 			 * them a chance to suspend again
837 			 */
838 			pci_wakeup_bus(dev->subordinate);
839 		}
840 	}
841 }
842 
843 /**
844  * __pci_dev_set_current_state - Set current state of a PCI device
845  * @dev: Device to handle
846  * @data: pointer to state to be set
847  */
848 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
849 {
850 	pci_power_t state = *(pci_power_t *)data;
851 
852 	dev->current_state = state;
853 	return 0;
854 }
855 
856 /**
857  * pci_bus_set_current_state - Walk given bus and set current state of devices
858  * @bus: Top bus of the subtree to walk.
859  * @state: state to be set
860  */
861 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
862 {
863 	if (bus)
864 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
865 }
866 
867 /**
868  * __pci_complete_power_transition - Complete power transition of a PCI device
869  * @dev: PCI device to handle.
870  * @state: State to put the device into.
871  *
872  * This function should not be called directly by device drivers.
873  */
874 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
875 {
876 	int ret;
877 
878 	if (state <= PCI_D0)
879 		return -EINVAL;
880 	ret = pci_platform_power_transition(dev, state);
881 	/* Power off the bridge may power off the whole hierarchy */
882 	if (!ret && state == PCI_D3cold)
883 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
884 	return ret;
885 }
886 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
887 
888 /**
889  * pci_set_power_state - Set the power state of a PCI device
890  * @dev: PCI device to handle.
891  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
892  *
893  * Transition a device to a new power state, using the platform firmware and/or
894  * the device's PCI PM registers.
895  *
896  * RETURN VALUE:
897  * -EINVAL if the requested state is invalid.
898  * -EIO if device does not support PCI PM or its PM capabilities register has a
899  * wrong version, or device doesn't support the requested state.
900  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
901  * 0 if device already is in the requested state.
902  * 0 if the transition is to D3 but D3 is not supported.
903  * 0 if device's power state has been successfully changed.
904  */
905 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
906 {
907 	int error;
908 
909 	/* bound the state we're entering */
910 	if (state > PCI_D3cold)
911 		state = PCI_D3cold;
912 	else if (state < PCI_D0)
913 		state = PCI_D0;
914 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
915 		/*
916 		 * If the device or the parent bridge do not support PCI PM,
917 		 * ignore the request if we're doing anything other than putting
918 		 * it into D0 (which would only happen on boot).
919 		 */
920 		return 0;
921 
922 	/* Check if we're already there */
923 	if (dev->current_state == state)
924 		return 0;
925 
926 	__pci_start_power_transition(dev, state);
927 
928 	/* This device is quirked not to be put into D3, so
929 	   don't put it in D3 */
930 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
931 		return 0;
932 
933 	/*
934 	 * To put device in D3cold, we put device into D3hot in native
935 	 * way, then put device into D3cold with platform ops
936 	 */
937 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
938 					PCI_D3hot : state);
939 
940 	if (!__pci_complete_power_transition(dev, state))
941 		error = 0;
942 
943 	return error;
944 }
945 EXPORT_SYMBOL(pci_set_power_state);
946 
947 /**
948  * pci_choose_state - Choose the power state of a PCI device
949  * @dev: PCI device to be suspended
950  * @state: target sleep state for the whole system. This is the value
951  *	that is passed to suspend() function.
952  *
953  * Returns PCI power state suitable for given device and given system
954  * message.
955  */
956 
957 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
958 {
959 	pci_power_t ret;
960 
961 	if (!dev->pm_cap)
962 		return PCI_D0;
963 
964 	ret = platform_pci_choose_state(dev);
965 	if (ret != PCI_POWER_ERROR)
966 		return ret;
967 
968 	switch (state.event) {
969 	case PM_EVENT_ON:
970 		return PCI_D0;
971 	case PM_EVENT_FREEZE:
972 	case PM_EVENT_PRETHAW:
973 		/* REVISIT both freeze and pre-thaw "should" use D0 */
974 	case PM_EVENT_SUSPEND:
975 	case PM_EVENT_HIBERNATE:
976 		return PCI_D3hot;
977 	default:
978 		pci_info(dev, "unrecognized suspend event %d\n",
979 			 state.event);
980 		BUG();
981 	}
982 	return PCI_D0;
983 }
984 EXPORT_SYMBOL(pci_choose_state);
985 
986 #define PCI_EXP_SAVE_REGS	7
987 
988 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
989 						       u16 cap, bool extended)
990 {
991 	struct pci_cap_saved_state *tmp;
992 
993 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
994 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
995 			return tmp;
996 	}
997 	return NULL;
998 }
999 
1000 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1001 {
1002 	return _pci_find_saved_cap(dev, cap, false);
1003 }
1004 
1005 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1006 {
1007 	return _pci_find_saved_cap(dev, cap, true);
1008 }
1009 
1010 static int pci_save_pcie_state(struct pci_dev *dev)
1011 {
1012 	int i = 0;
1013 	struct pci_cap_saved_state *save_state;
1014 	u16 *cap;
1015 
1016 	if (!pci_is_pcie(dev))
1017 		return 0;
1018 
1019 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1020 	if (!save_state) {
1021 		pci_err(dev, "buffer not found in %s\n", __func__);
1022 		return -ENOMEM;
1023 	}
1024 
1025 	cap = (u16 *)&save_state->cap.data[0];
1026 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1027 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1028 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1029 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1030 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1031 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1032 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1033 
1034 	return 0;
1035 }
1036 
1037 static void pci_restore_pcie_state(struct pci_dev *dev)
1038 {
1039 	int i = 0;
1040 	struct pci_cap_saved_state *save_state;
1041 	u16 *cap;
1042 
1043 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1044 	if (!save_state)
1045 		return;
1046 
1047 	cap = (u16 *)&save_state->cap.data[0];
1048 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1049 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1050 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1051 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1052 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1053 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1054 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1055 }
1056 
1057 
1058 static int pci_save_pcix_state(struct pci_dev *dev)
1059 {
1060 	int pos;
1061 	struct pci_cap_saved_state *save_state;
1062 
1063 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1064 	if (!pos)
1065 		return 0;
1066 
1067 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1068 	if (!save_state) {
1069 		pci_err(dev, "buffer not found in %s\n", __func__);
1070 		return -ENOMEM;
1071 	}
1072 
1073 	pci_read_config_word(dev, pos + PCI_X_CMD,
1074 			     (u16 *)save_state->cap.data);
1075 
1076 	return 0;
1077 }
1078 
1079 static void pci_restore_pcix_state(struct pci_dev *dev)
1080 {
1081 	int i = 0, pos;
1082 	struct pci_cap_saved_state *save_state;
1083 	u16 *cap;
1084 
1085 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1086 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1087 	if (!save_state || !pos)
1088 		return;
1089 	cap = (u16 *)&save_state->cap.data[0];
1090 
1091 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1092 }
1093 
1094 
1095 /**
1096  * pci_save_state - save the PCI configuration space of a device before suspending
1097  * @dev: - PCI device that we're dealing with
1098  */
1099 int pci_save_state(struct pci_dev *dev)
1100 {
1101 	int i;
1102 	/* XXX: 100% dword access ok here? */
1103 	for (i = 0; i < 16; i++)
1104 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1105 	dev->state_saved = true;
1106 
1107 	i = pci_save_pcie_state(dev);
1108 	if (i != 0)
1109 		return i;
1110 
1111 	i = pci_save_pcix_state(dev);
1112 	if (i != 0)
1113 		return i;
1114 
1115 	return pci_save_vc_state(dev);
1116 }
1117 EXPORT_SYMBOL(pci_save_state);
1118 
1119 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1120 				     u32 saved_val, int retry)
1121 {
1122 	u32 val;
1123 
1124 	pci_read_config_dword(pdev, offset, &val);
1125 	if (val == saved_val)
1126 		return;
1127 
1128 	for (;;) {
1129 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1130 			offset, val, saved_val);
1131 		pci_write_config_dword(pdev, offset, saved_val);
1132 		if (retry-- <= 0)
1133 			return;
1134 
1135 		pci_read_config_dword(pdev, offset, &val);
1136 		if (val == saved_val)
1137 			return;
1138 
1139 		mdelay(1);
1140 	}
1141 }
1142 
1143 static void pci_restore_config_space_range(struct pci_dev *pdev,
1144 					   int start, int end, int retry)
1145 {
1146 	int index;
1147 
1148 	for (index = end; index >= start; index--)
1149 		pci_restore_config_dword(pdev, 4 * index,
1150 					 pdev->saved_config_space[index],
1151 					 retry);
1152 }
1153 
1154 static void pci_restore_config_space(struct pci_dev *pdev)
1155 {
1156 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1157 		pci_restore_config_space_range(pdev, 10, 15, 0);
1158 		/* Restore BARs before the command register. */
1159 		pci_restore_config_space_range(pdev, 4, 9, 10);
1160 		pci_restore_config_space_range(pdev, 0, 3, 0);
1161 	} else {
1162 		pci_restore_config_space_range(pdev, 0, 15, 0);
1163 	}
1164 }
1165 
1166 /**
1167  * pci_restore_state - Restore the saved state of a PCI device
1168  * @dev: - PCI device that we're dealing with
1169  */
1170 void pci_restore_state(struct pci_dev *dev)
1171 {
1172 	if (!dev->state_saved)
1173 		return;
1174 
1175 	/* PCI Express register must be restored first */
1176 	pci_restore_pcie_state(dev);
1177 	pci_restore_pasid_state(dev);
1178 	pci_restore_pri_state(dev);
1179 	pci_restore_ats_state(dev);
1180 	pci_restore_vc_state(dev);
1181 
1182 	pci_cleanup_aer_error_status_regs(dev);
1183 
1184 	pci_restore_config_space(dev);
1185 
1186 	pci_restore_pcix_state(dev);
1187 	pci_restore_msi_state(dev);
1188 
1189 	/* Restore ACS and IOV configuration state */
1190 	pci_enable_acs(dev);
1191 	pci_restore_iov_state(dev);
1192 
1193 	dev->state_saved = false;
1194 }
1195 EXPORT_SYMBOL(pci_restore_state);
1196 
1197 struct pci_saved_state {
1198 	u32 config_space[16];
1199 	struct pci_cap_saved_data cap[0];
1200 };
1201 
1202 /**
1203  * pci_store_saved_state - Allocate and return an opaque struct containing
1204  *			   the device saved state.
1205  * @dev: PCI device that we're dealing with
1206  *
1207  * Return NULL if no state or error.
1208  */
1209 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1210 {
1211 	struct pci_saved_state *state;
1212 	struct pci_cap_saved_state *tmp;
1213 	struct pci_cap_saved_data *cap;
1214 	size_t size;
1215 
1216 	if (!dev->state_saved)
1217 		return NULL;
1218 
1219 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1220 
1221 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1222 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1223 
1224 	state = kzalloc(size, GFP_KERNEL);
1225 	if (!state)
1226 		return NULL;
1227 
1228 	memcpy(state->config_space, dev->saved_config_space,
1229 	       sizeof(state->config_space));
1230 
1231 	cap = state->cap;
1232 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1233 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1234 		memcpy(cap, &tmp->cap, len);
1235 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1236 	}
1237 	/* Empty cap_save terminates list */
1238 
1239 	return state;
1240 }
1241 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1242 
1243 /**
1244  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1245  * @dev: PCI device that we're dealing with
1246  * @state: Saved state returned from pci_store_saved_state()
1247  */
1248 int pci_load_saved_state(struct pci_dev *dev,
1249 			 struct pci_saved_state *state)
1250 {
1251 	struct pci_cap_saved_data *cap;
1252 
1253 	dev->state_saved = false;
1254 
1255 	if (!state)
1256 		return 0;
1257 
1258 	memcpy(dev->saved_config_space, state->config_space,
1259 	       sizeof(state->config_space));
1260 
1261 	cap = state->cap;
1262 	while (cap->size) {
1263 		struct pci_cap_saved_state *tmp;
1264 
1265 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1266 		if (!tmp || tmp->cap.size != cap->size)
1267 			return -EINVAL;
1268 
1269 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1270 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1271 		       sizeof(struct pci_cap_saved_data) + cap->size);
1272 	}
1273 
1274 	dev->state_saved = true;
1275 	return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1278 
1279 /**
1280  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1281  *				   and free the memory allocated for it.
1282  * @dev: PCI device that we're dealing with
1283  * @state: Pointer to saved state returned from pci_store_saved_state()
1284  */
1285 int pci_load_and_free_saved_state(struct pci_dev *dev,
1286 				  struct pci_saved_state **state)
1287 {
1288 	int ret = pci_load_saved_state(dev, *state);
1289 	kfree(*state);
1290 	*state = NULL;
1291 	return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1294 
1295 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1296 {
1297 	return pci_enable_resources(dev, bars);
1298 }
1299 
1300 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1301 {
1302 	int err;
1303 	struct pci_dev *bridge;
1304 	u16 cmd;
1305 	u8 pin;
1306 
1307 	err = pci_set_power_state(dev, PCI_D0);
1308 	if (err < 0 && err != -EIO)
1309 		return err;
1310 
1311 	bridge = pci_upstream_bridge(dev);
1312 	if (bridge)
1313 		pcie_aspm_powersave_config_link(bridge);
1314 
1315 	err = pcibios_enable_device(dev, bars);
1316 	if (err < 0)
1317 		return err;
1318 	pci_fixup_device(pci_fixup_enable, dev);
1319 
1320 	if (dev->msi_enabled || dev->msix_enabled)
1321 		return 0;
1322 
1323 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1324 	if (pin) {
1325 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1326 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1327 			pci_write_config_word(dev, PCI_COMMAND,
1328 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 /**
1335  * pci_reenable_device - Resume abandoned device
1336  * @dev: PCI device to be resumed
1337  *
1338  *  Note this function is a backend of pci_default_resume and is not supposed
1339  *  to be called by normal code, write proper resume handler and use it instead.
1340  */
1341 int pci_reenable_device(struct pci_dev *dev)
1342 {
1343 	if (pci_is_enabled(dev))
1344 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1345 	return 0;
1346 }
1347 EXPORT_SYMBOL(pci_reenable_device);
1348 
1349 static void pci_enable_bridge(struct pci_dev *dev)
1350 {
1351 	struct pci_dev *bridge;
1352 	int retval;
1353 
1354 	bridge = pci_upstream_bridge(dev);
1355 	if (bridge)
1356 		pci_enable_bridge(bridge);
1357 
1358 	if (pci_is_enabled(dev)) {
1359 		if (!dev->is_busmaster)
1360 			pci_set_master(dev);
1361 		return;
1362 	}
1363 
1364 	retval = pci_enable_device(dev);
1365 	if (retval)
1366 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1367 			retval);
1368 	pci_set_master(dev);
1369 }
1370 
1371 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1372 {
1373 	struct pci_dev *bridge;
1374 	int err;
1375 	int i, bars = 0;
1376 
1377 	/*
1378 	 * Power state could be unknown at this point, either due to a fresh
1379 	 * boot or a device removal call.  So get the current power state
1380 	 * so that things like MSI message writing will behave as expected
1381 	 * (e.g. if the device really is in D0 at enable time).
1382 	 */
1383 	if (dev->pm_cap) {
1384 		u16 pmcsr;
1385 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1387 	}
1388 
1389 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1390 		return 0;		/* already enabled */
1391 
1392 	bridge = pci_upstream_bridge(dev);
1393 	if (bridge)
1394 		pci_enable_bridge(bridge);
1395 
1396 	/* only skip sriov related */
1397 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1398 		if (dev->resource[i].flags & flags)
1399 			bars |= (1 << i);
1400 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1401 		if (dev->resource[i].flags & flags)
1402 			bars |= (1 << i);
1403 
1404 	err = do_pci_enable_device(dev, bars);
1405 	if (err < 0)
1406 		atomic_dec(&dev->enable_cnt);
1407 	return err;
1408 }
1409 
1410 /**
1411  * pci_enable_device_io - Initialize a device for use with IO space
1412  * @dev: PCI device to be initialized
1413  *
1414  *  Initialize device before it's used by a driver. Ask low-level code
1415  *  to enable I/O resources. Wake up the device if it was suspended.
1416  *  Beware, this function can fail.
1417  */
1418 int pci_enable_device_io(struct pci_dev *dev)
1419 {
1420 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1421 }
1422 EXPORT_SYMBOL(pci_enable_device_io);
1423 
1424 /**
1425  * pci_enable_device_mem - Initialize a device for use with Memory space
1426  * @dev: PCI device to be initialized
1427  *
1428  *  Initialize device before it's used by a driver. Ask low-level code
1429  *  to enable Memory resources. Wake up the device if it was suspended.
1430  *  Beware, this function can fail.
1431  */
1432 int pci_enable_device_mem(struct pci_dev *dev)
1433 {
1434 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1435 }
1436 EXPORT_SYMBOL(pci_enable_device_mem);
1437 
1438 /**
1439  * pci_enable_device - Initialize device before it's used by a driver.
1440  * @dev: PCI device to be initialized
1441  *
1442  *  Initialize device before it's used by a driver. Ask low-level code
1443  *  to enable I/O and memory. Wake up the device if it was suspended.
1444  *  Beware, this function can fail.
1445  *
1446  *  Note we don't actually enable the device many times if we call
1447  *  this function repeatedly (we just increment the count).
1448  */
1449 int pci_enable_device(struct pci_dev *dev)
1450 {
1451 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1452 }
1453 EXPORT_SYMBOL(pci_enable_device);
1454 
1455 /*
1456  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1457  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1458  * there's no need to track it separately.  pci_devres is initialized
1459  * when a device is enabled using managed PCI device enable interface.
1460  */
1461 struct pci_devres {
1462 	unsigned int enabled:1;
1463 	unsigned int pinned:1;
1464 	unsigned int orig_intx:1;
1465 	unsigned int restore_intx:1;
1466 	unsigned int mwi:1;
1467 	u32 region_mask;
1468 };
1469 
1470 static void pcim_release(struct device *gendev, void *res)
1471 {
1472 	struct pci_dev *dev = to_pci_dev(gendev);
1473 	struct pci_devres *this = res;
1474 	int i;
1475 
1476 	if (dev->msi_enabled)
1477 		pci_disable_msi(dev);
1478 	if (dev->msix_enabled)
1479 		pci_disable_msix(dev);
1480 
1481 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1482 		if (this->region_mask & (1 << i))
1483 			pci_release_region(dev, i);
1484 
1485 	if (this->mwi)
1486 		pci_clear_mwi(dev);
1487 
1488 	if (this->restore_intx)
1489 		pci_intx(dev, this->orig_intx);
1490 
1491 	if (this->enabled && !this->pinned)
1492 		pci_disable_device(dev);
1493 }
1494 
1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1496 {
1497 	struct pci_devres *dr, *new_dr;
1498 
1499 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500 	if (dr)
1501 		return dr;
1502 
1503 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1504 	if (!new_dr)
1505 		return NULL;
1506 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1507 }
1508 
1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1510 {
1511 	if (pci_is_managed(pdev))
1512 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1513 	return NULL;
1514 }
1515 
1516 /**
1517  * pcim_enable_device - Managed pci_enable_device()
1518  * @pdev: PCI device to be initialized
1519  *
1520  * Managed pci_enable_device().
1521  */
1522 int pcim_enable_device(struct pci_dev *pdev)
1523 {
1524 	struct pci_devres *dr;
1525 	int rc;
1526 
1527 	dr = get_pci_dr(pdev);
1528 	if (unlikely(!dr))
1529 		return -ENOMEM;
1530 	if (dr->enabled)
1531 		return 0;
1532 
1533 	rc = pci_enable_device(pdev);
1534 	if (!rc) {
1535 		pdev->is_managed = 1;
1536 		dr->enabled = 1;
1537 	}
1538 	return rc;
1539 }
1540 EXPORT_SYMBOL(pcim_enable_device);
1541 
1542 /**
1543  * pcim_pin_device - Pin managed PCI device
1544  * @pdev: PCI device to pin
1545  *
1546  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1547  * driver detach.  @pdev must have been enabled with
1548  * pcim_enable_device().
1549  */
1550 void pcim_pin_device(struct pci_dev *pdev)
1551 {
1552 	struct pci_devres *dr;
1553 
1554 	dr = find_pci_dr(pdev);
1555 	WARN_ON(!dr || !dr->enabled);
1556 	if (dr)
1557 		dr->pinned = 1;
1558 }
1559 EXPORT_SYMBOL(pcim_pin_device);
1560 
1561 /*
1562  * pcibios_add_device - provide arch specific hooks when adding device dev
1563  * @dev: the PCI device being added
1564  *
1565  * Permits the platform to provide architecture specific functionality when
1566  * devices are added. This is the default implementation. Architecture
1567  * implementations can override this.
1568  */
1569 int __weak pcibios_add_device(struct pci_dev *dev)
1570 {
1571 	return 0;
1572 }
1573 
1574 /**
1575  * pcibios_release_device - provide arch specific hooks when releasing device dev
1576  * @dev: the PCI device being released
1577  *
1578  * Permits the platform to provide architecture specific functionality when
1579  * devices are released. This is the default implementation. Architecture
1580  * implementations can override this.
1581  */
1582 void __weak pcibios_release_device(struct pci_dev *dev) {}
1583 
1584 /**
1585  * pcibios_disable_device - disable arch specific PCI resources for device dev
1586  * @dev: the PCI device to disable
1587  *
1588  * Disables architecture specific PCI resources for the device. This
1589  * is the default implementation. Architecture implementations can
1590  * override this.
1591  */
1592 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1593 
1594 /**
1595  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596  * @irq: ISA IRQ to penalize
1597  * @active: IRQ active or not
1598  *
1599  * Permits the platform to provide architecture-specific functionality when
1600  * penalizing ISA IRQs. This is the default implementation. Architecture
1601  * implementations can override this.
1602  */
1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1604 
1605 static void do_pci_disable_device(struct pci_dev *dev)
1606 {
1607 	u16 pci_command;
1608 
1609 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610 	if (pci_command & PCI_COMMAND_MASTER) {
1611 		pci_command &= ~PCI_COMMAND_MASTER;
1612 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1613 	}
1614 
1615 	pcibios_disable_device(dev);
1616 }
1617 
1618 /**
1619  * pci_disable_enabled_device - Disable device without updating enable_cnt
1620  * @dev: PCI device to disable
1621  *
1622  * NOTE: This function is a backend of PCI power management routines and is
1623  * not supposed to be called drivers.
1624  */
1625 void pci_disable_enabled_device(struct pci_dev *dev)
1626 {
1627 	if (pci_is_enabled(dev))
1628 		do_pci_disable_device(dev);
1629 }
1630 
1631 /**
1632  * pci_disable_device - Disable PCI device after use
1633  * @dev: PCI device to be disabled
1634  *
1635  * Signal to the system that the PCI device is not in use by the system
1636  * anymore.  This only involves disabling PCI bus-mastering, if active.
1637  *
1638  * Note we don't actually disable the device until all callers of
1639  * pci_enable_device() have called pci_disable_device().
1640  */
1641 void pci_disable_device(struct pci_dev *dev)
1642 {
1643 	struct pci_devres *dr;
1644 
1645 	dr = find_pci_dr(dev);
1646 	if (dr)
1647 		dr->enabled = 0;
1648 
1649 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650 		      "disabling already-disabled device");
1651 
1652 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1653 		return;
1654 
1655 	do_pci_disable_device(dev);
1656 
1657 	dev->is_busmaster = 0;
1658 }
1659 EXPORT_SYMBOL(pci_disable_device);
1660 
1661 /**
1662  * pcibios_set_pcie_reset_state - set reset state for device dev
1663  * @dev: the PCIe device reset
1664  * @state: Reset state to enter into
1665  *
1666  *
1667  * Sets the PCIe reset state for the device. This is the default
1668  * implementation. Architecture implementations can override this.
1669  */
1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671 					enum pcie_reset_state state)
1672 {
1673 	return -EINVAL;
1674 }
1675 
1676 /**
1677  * pci_set_pcie_reset_state - set reset state for device dev
1678  * @dev: the PCIe device reset
1679  * @state: Reset state to enter into
1680  *
1681  *
1682  * Sets the PCI reset state for the device.
1683  */
1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1685 {
1686 	return pcibios_set_pcie_reset_state(dev, state);
1687 }
1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1689 
1690 /**
1691  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1692  * @dev: PCIe root port or event collector.
1693  */
1694 void pcie_clear_root_pme_status(struct pci_dev *dev)
1695 {
1696 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1697 }
1698 
1699 /**
1700  * pci_check_pme_status - Check if given device has generated PME.
1701  * @dev: Device to check.
1702  *
1703  * Check the PME status of the device and if set, clear it and clear PME enable
1704  * (if set).  Return 'true' if PME status and PME enable were both set or
1705  * 'false' otherwise.
1706  */
1707 bool pci_check_pme_status(struct pci_dev *dev)
1708 {
1709 	int pmcsr_pos;
1710 	u16 pmcsr;
1711 	bool ret = false;
1712 
1713 	if (!dev->pm_cap)
1714 		return false;
1715 
1716 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1717 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1718 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1719 		return false;
1720 
1721 	/* Clear PME status. */
1722 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1723 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1724 		/* Disable PME to avoid interrupt flood. */
1725 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1726 		ret = true;
1727 	}
1728 
1729 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1730 
1731 	return ret;
1732 }
1733 
1734 /**
1735  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1736  * @dev: Device to handle.
1737  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1738  *
1739  * Check if @dev has generated PME and queue a resume request for it in that
1740  * case.
1741  */
1742 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1743 {
1744 	if (pme_poll_reset && dev->pme_poll)
1745 		dev->pme_poll = false;
1746 
1747 	if (pci_check_pme_status(dev)) {
1748 		pci_wakeup_event(dev);
1749 		pm_request_resume(&dev->dev);
1750 	}
1751 	return 0;
1752 }
1753 
1754 /**
1755  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1756  * @bus: Top bus of the subtree to walk.
1757  */
1758 void pci_pme_wakeup_bus(struct pci_bus *bus)
1759 {
1760 	if (bus)
1761 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1762 }
1763 
1764 
1765 /**
1766  * pci_pme_capable - check the capability of PCI device to generate PME#
1767  * @dev: PCI device to handle.
1768  * @state: PCI state from which device will issue PME#.
1769  */
1770 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1771 {
1772 	if (!dev->pm_cap)
1773 		return false;
1774 
1775 	return !!(dev->pme_support & (1 << state));
1776 }
1777 EXPORT_SYMBOL(pci_pme_capable);
1778 
1779 static void pci_pme_list_scan(struct work_struct *work)
1780 {
1781 	struct pci_pme_device *pme_dev, *n;
1782 
1783 	mutex_lock(&pci_pme_list_mutex);
1784 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1785 		if (pme_dev->dev->pme_poll) {
1786 			struct pci_dev *bridge;
1787 
1788 			bridge = pme_dev->dev->bus->self;
1789 			/*
1790 			 * If bridge is in low power state, the
1791 			 * configuration space of subordinate devices
1792 			 * may be not accessible
1793 			 */
1794 			if (bridge && bridge->current_state != PCI_D0)
1795 				continue;
1796 			pci_pme_wakeup(pme_dev->dev, NULL);
1797 		} else {
1798 			list_del(&pme_dev->list);
1799 			kfree(pme_dev);
1800 		}
1801 	}
1802 	if (!list_empty(&pci_pme_list))
1803 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1804 				   msecs_to_jiffies(PME_TIMEOUT));
1805 	mutex_unlock(&pci_pme_list_mutex);
1806 }
1807 
1808 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1809 {
1810 	u16 pmcsr;
1811 
1812 	if (!dev->pme_support)
1813 		return;
1814 
1815 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816 	/* Clear PME_Status by writing 1 to it and enable PME# */
1817 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1818 	if (!enable)
1819 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1820 
1821 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1822 }
1823 
1824 /**
1825  * pci_pme_restore - Restore PME configuration after config space restore.
1826  * @dev: PCI device to update.
1827  */
1828 void pci_pme_restore(struct pci_dev *dev)
1829 {
1830 	u16 pmcsr;
1831 
1832 	if (!dev->pme_support)
1833 		return;
1834 
1835 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1836 	if (dev->wakeup_prepared) {
1837 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1838 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1839 	} else {
1840 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1841 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1842 	}
1843 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1844 }
1845 
1846 /**
1847  * pci_pme_active - enable or disable PCI device's PME# function
1848  * @dev: PCI device to handle.
1849  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1850  *
1851  * The caller must verify that the device is capable of generating PME# before
1852  * calling this function with @enable equal to 'true'.
1853  */
1854 void pci_pme_active(struct pci_dev *dev, bool enable)
1855 {
1856 	__pci_pme_active(dev, enable);
1857 
1858 	/*
1859 	 * PCI (as opposed to PCIe) PME requires that the device have
1860 	 * its PME# line hooked up correctly. Not all hardware vendors
1861 	 * do this, so the PME never gets delivered and the device
1862 	 * remains asleep. The easiest way around this is to
1863 	 * periodically walk the list of suspended devices and check
1864 	 * whether any have their PME flag set. The assumption is that
1865 	 * we'll wake up often enough anyway that this won't be a huge
1866 	 * hit, and the power savings from the devices will still be a
1867 	 * win.
1868 	 *
1869 	 * Although PCIe uses in-band PME message instead of PME# line
1870 	 * to report PME, PME does not work for some PCIe devices in
1871 	 * reality.  For example, there are devices that set their PME
1872 	 * status bits, but don't really bother to send a PME message;
1873 	 * there are PCI Express Root Ports that don't bother to
1874 	 * trigger interrupts when they receive PME messages from the
1875 	 * devices below.  So PME poll is used for PCIe devices too.
1876 	 */
1877 
1878 	if (dev->pme_poll) {
1879 		struct pci_pme_device *pme_dev;
1880 		if (enable) {
1881 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1882 					  GFP_KERNEL);
1883 			if (!pme_dev) {
1884 				pci_warn(dev, "can't enable PME#\n");
1885 				return;
1886 			}
1887 			pme_dev->dev = dev;
1888 			mutex_lock(&pci_pme_list_mutex);
1889 			list_add(&pme_dev->list, &pci_pme_list);
1890 			if (list_is_singular(&pci_pme_list))
1891 				queue_delayed_work(system_freezable_wq,
1892 						   &pci_pme_work,
1893 						   msecs_to_jiffies(PME_TIMEOUT));
1894 			mutex_unlock(&pci_pme_list_mutex);
1895 		} else {
1896 			mutex_lock(&pci_pme_list_mutex);
1897 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1898 				if (pme_dev->dev == dev) {
1899 					list_del(&pme_dev->list);
1900 					kfree(pme_dev);
1901 					break;
1902 				}
1903 			}
1904 			mutex_unlock(&pci_pme_list_mutex);
1905 		}
1906 	}
1907 
1908 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1909 }
1910 EXPORT_SYMBOL(pci_pme_active);
1911 
1912 /**
1913  * __pci_enable_wake - enable PCI device as wakeup event source
1914  * @dev: PCI device affected
1915  * @state: PCI state from which device will issue wakeup events
1916  * @enable: True to enable event generation; false to disable
1917  *
1918  * This enables the device as a wakeup event source, or disables it.
1919  * When such events involves platform-specific hooks, those hooks are
1920  * called automatically by this routine.
1921  *
1922  * Devices with legacy power management (no standard PCI PM capabilities)
1923  * always require such platform hooks.
1924  *
1925  * RETURN VALUE:
1926  * 0 is returned on success
1927  * -EINVAL is returned if device is not supposed to wake up the system
1928  * Error code depending on the platform is returned if both the platform and
1929  * the native mechanism fail to enable the generation of wake-up events
1930  */
1931 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1932 {
1933 	int ret = 0;
1934 
1935 	/*
1936 	 * Bridges can only signal wakeup on behalf of subordinate devices,
1937 	 * but that is set up elsewhere, so skip them.
1938 	 */
1939 	if (pci_has_subordinate(dev))
1940 		return 0;
1941 
1942 	/* Don't do the same thing twice in a row for one device. */
1943 	if (!!enable == !!dev->wakeup_prepared)
1944 		return 0;
1945 
1946 	/*
1947 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1948 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1949 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1950 	 */
1951 
1952 	if (enable) {
1953 		int error;
1954 
1955 		if (pci_pme_capable(dev, state))
1956 			pci_pme_active(dev, true);
1957 		else
1958 			ret = 1;
1959 		error = platform_pci_set_wakeup(dev, true);
1960 		if (ret)
1961 			ret = error;
1962 		if (!ret)
1963 			dev->wakeup_prepared = true;
1964 	} else {
1965 		platform_pci_set_wakeup(dev, false);
1966 		pci_pme_active(dev, false);
1967 		dev->wakeup_prepared = false;
1968 	}
1969 
1970 	return ret;
1971 }
1972 
1973 /**
1974  * pci_enable_wake - change wakeup settings for a PCI device
1975  * @pci_dev: Target device
1976  * @state: PCI state from which device will issue wakeup events
1977  * @enable: Whether or not to enable event generation
1978  *
1979  * If @enable is set, check device_may_wakeup() for the device before calling
1980  * __pci_enable_wake() for it.
1981  */
1982 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1983 {
1984 	if (enable && !device_may_wakeup(&pci_dev->dev))
1985 		return -EINVAL;
1986 
1987 	return __pci_enable_wake(pci_dev, state, enable);
1988 }
1989 EXPORT_SYMBOL(pci_enable_wake);
1990 
1991 /**
1992  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1993  * @dev: PCI device to prepare
1994  * @enable: True to enable wake-up event generation; false to disable
1995  *
1996  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1997  * and this function allows them to set that up cleanly - pci_enable_wake()
1998  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1999  * ordering constraints.
2000  *
2001  * This function only returns error code if the device is not allowed to wake
2002  * up the system from sleep or it is not capable of generating PME# from both
2003  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2004  */
2005 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2006 {
2007 	return pci_pme_capable(dev, PCI_D3cold) ?
2008 			pci_enable_wake(dev, PCI_D3cold, enable) :
2009 			pci_enable_wake(dev, PCI_D3hot, enable);
2010 }
2011 EXPORT_SYMBOL(pci_wake_from_d3);
2012 
2013 /**
2014  * pci_target_state - find an appropriate low power state for a given PCI dev
2015  * @dev: PCI device
2016  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2017  *
2018  * Use underlying platform code to find a supported low power state for @dev.
2019  * If the platform can't manage @dev, return the deepest state from which it
2020  * can generate wake events, based on any available PME info.
2021  */
2022 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2023 {
2024 	pci_power_t target_state = PCI_D3hot;
2025 
2026 	if (platform_pci_power_manageable(dev)) {
2027 		/*
2028 		 * Call the platform to choose the target state of the device
2029 		 * and enable wake-up from this state if supported.
2030 		 */
2031 		pci_power_t state = platform_pci_choose_state(dev);
2032 
2033 		switch (state) {
2034 		case PCI_POWER_ERROR:
2035 		case PCI_UNKNOWN:
2036 			break;
2037 		case PCI_D1:
2038 		case PCI_D2:
2039 			if (pci_no_d1d2(dev))
2040 				break;
2041 		default:
2042 			target_state = state;
2043 		}
2044 
2045 		return target_state;
2046 	}
2047 
2048 	if (!dev->pm_cap)
2049 		target_state = PCI_D0;
2050 
2051 	/*
2052 	 * If the device is in D3cold even though it's not power-manageable by
2053 	 * the platform, it may have been powered down by non-standard means.
2054 	 * Best to let it slumber.
2055 	 */
2056 	if (dev->current_state == PCI_D3cold)
2057 		target_state = PCI_D3cold;
2058 
2059 	if (wakeup) {
2060 		/*
2061 		 * Find the deepest state from which the device can generate
2062 		 * wake-up events, make it the target state and enable device
2063 		 * to generate PME#.
2064 		 */
2065 		if (dev->pme_support) {
2066 			while (target_state
2067 			      && !(dev->pme_support & (1 << target_state)))
2068 				target_state--;
2069 		}
2070 	}
2071 
2072 	return target_state;
2073 }
2074 
2075 /**
2076  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2077  * @dev: Device to handle.
2078  *
2079  * Choose the power state appropriate for the device depending on whether
2080  * it can wake up the system and/or is power manageable by the platform
2081  * (PCI_D3hot is the default) and put the device into that state.
2082  */
2083 int pci_prepare_to_sleep(struct pci_dev *dev)
2084 {
2085 	bool wakeup = device_may_wakeup(&dev->dev);
2086 	pci_power_t target_state = pci_target_state(dev, wakeup);
2087 	int error;
2088 
2089 	if (target_state == PCI_POWER_ERROR)
2090 		return -EIO;
2091 
2092 	pci_enable_wake(dev, target_state, wakeup);
2093 
2094 	error = pci_set_power_state(dev, target_state);
2095 
2096 	if (error)
2097 		pci_enable_wake(dev, target_state, false);
2098 
2099 	return error;
2100 }
2101 EXPORT_SYMBOL(pci_prepare_to_sleep);
2102 
2103 /**
2104  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2105  * @dev: Device to handle.
2106  *
2107  * Disable device's system wake-up capability and put it into D0.
2108  */
2109 int pci_back_from_sleep(struct pci_dev *dev)
2110 {
2111 	pci_enable_wake(dev, PCI_D0, false);
2112 	return pci_set_power_state(dev, PCI_D0);
2113 }
2114 EXPORT_SYMBOL(pci_back_from_sleep);
2115 
2116 /**
2117  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2118  * @dev: PCI device being suspended.
2119  *
2120  * Prepare @dev to generate wake-up events at run time and put it into a low
2121  * power state.
2122  */
2123 int pci_finish_runtime_suspend(struct pci_dev *dev)
2124 {
2125 	pci_power_t target_state;
2126 	int error;
2127 
2128 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2129 	if (target_state == PCI_POWER_ERROR)
2130 		return -EIO;
2131 
2132 	dev->runtime_d3cold = target_state == PCI_D3cold;
2133 
2134 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2135 
2136 	error = pci_set_power_state(dev, target_state);
2137 
2138 	if (error) {
2139 		pci_enable_wake(dev, target_state, false);
2140 		dev->runtime_d3cold = false;
2141 	}
2142 
2143 	return error;
2144 }
2145 
2146 /**
2147  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2148  * @dev: Device to check.
2149  *
2150  * Return true if the device itself is capable of generating wake-up events
2151  * (through the platform or using the native PCIe PME) or if the device supports
2152  * PME and one of its upstream bridges can generate wake-up events.
2153  */
2154 bool pci_dev_run_wake(struct pci_dev *dev)
2155 {
2156 	struct pci_bus *bus = dev->bus;
2157 
2158 	if (!dev->pme_support)
2159 		return false;
2160 
2161 	/* PME-capable in principle, but not from the target power state */
2162 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2163 		return false;
2164 
2165 	if (device_can_wakeup(&dev->dev))
2166 		return true;
2167 
2168 	while (bus->parent) {
2169 		struct pci_dev *bridge = bus->self;
2170 
2171 		if (device_can_wakeup(&bridge->dev))
2172 			return true;
2173 
2174 		bus = bus->parent;
2175 	}
2176 
2177 	/* We have reached the root bus. */
2178 	if (bus->bridge)
2179 		return device_can_wakeup(bus->bridge);
2180 
2181 	return false;
2182 }
2183 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2184 
2185 /**
2186  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2187  * @pci_dev: Device to check.
2188  *
2189  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2190  * reconfigured due to wakeup settings difference between system and runtime
2191  * suspend and the current power state of it is suitable for the upcoming
2192  * (system) transition.
2193  *
2194  * If the device is not configured for system wakeup, disable PME for it before
2195  * returning 'true' to prevent it from waking up the system unnecessarily.
2196  */
2197 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2198 {
2199 	struct device *dev = &pci_dev->dev;
2200 	bool wakeup = device_may_wakeup(dev);
2201 
2202 	if (!pm_runtime_suspended(dev)
2203 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2204 	    || platform_pci_need_resume(pci_dev))
2205 		return false;
2206 
2207 	/*
2208 	 * At this point the device is good to go unless it's been configured
2209 	 * to generate PME at the runtime suspend time, but it is not supposed
2210 	 * to wake up the system.  In that case, simply disable PME for it
2211 	 * (it will have to be re-enabled on exit from system resume).
2212 	 *
2213 	 * If the device's power state is D3cold and the platform check above
2214 	 * hasn't triggered, the device's configuration is suitable and we don't
2215 	 * need to manipulate it at all.
2216 	 */
2217 	spin_lock_irq(&dev->power.lock);
2218 
2219 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2220 	    !wakeup)
2221 		__pci_pme_active(pci_dev, false);
2222 
2223 	spin_unlock_irq(&dev->power.lock);
2224 	return true;
2225 }
2226 
2227 /**
2228  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2229  * @pci_dev: Device to handle.
2230  *
2231  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2232  * it might have been disabled during the prepare phase of system suspend if
2233  * the device was not configured for system wakeup.
2234  */
2235 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2236 {
2237 	struct device *dev = &pci_dev->dev;
2238 
2239 	if (!pci_dev_run_wake(pci_dev))
2240 		return;
2241 
2242 	spin_lock_irq(&dev->power.lock);
2243 
2244 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2245 		__pci_pme_active(pci_dev, true);
2246 
2247 	spin_unlock_irq(&dev->power.lock);
2248 }
2249 
2250 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2251 {
2252 	struct device *dev = &pdev->dev;
2253 	struct device *parent = dev->parent;
2254 
2255 	if (parent)
2256 		pm_runtime_get_sync(parent);
2257 	pm_runtime_get_noresume(dev);
2258 	/*
2259 	 * pdev->current_state is set to PCI_D3cold during suspending,
2260 	 * so wait until suspending completes
2261 	 */
2262 	pm_runtime_barrier(dev);
2263 	/*
2264 	 * Only need to resume devices in D3cold, because config
2265 	 * registers are still accessible for devices suspended but
2266 	 * not in D3cold.
2267 	 */
2268 	if (pdev->current_state == PCI_D3cold)
2269 		pm_runtime_resume(dev);
2270 }
2271 
2272 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2273 {
2274 	struct device *dev = &pdev->dev;
2275 	struct device *parent = dev->parent;
2276 
2277 	pm_runtime_put(dev);
2278 	if (parent)
2279 		pm_runtime_put_sync(parent);
2280 }
2281 
2282 /**
2283  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2284  * @bridge: Bridge to check
2285  *
2286  * This function checks if it is possible to move the bridge to D3.
2287  * Currently we only allow D3 for recent enough PCIe ports.
2288  */
2289 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2290 {
2291 	if (!pci_is_pcie(bridge))
2292 		return false;
2293 
2294 	switch (pci_pcie_type(bridge)) {
2295 	case PCI_EXP_TYPE_ROOT_PORT:
2296 	case PCI_EXP_TYPE_UPSTREAM:
2297 	case PCI_EXP_TYPE_DOWNSTREAM:
2298 		if (pci_bridge_d3_disable)
2299 			return false;
2300 
2301 		/*
2302 		 * Hotplug interrupts cannot be delivered if the link is down,
2303 		 * so parents of a hotplug port must stay awake. In addition,
2304 		 * hotplug ports handled by firmware in System Management Mode
2305 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2306 		 * For simplicity, disallow in general for now.
2307 		 */
2308 		if (bridge->is_hotplug_bridge)
2309 			return false;
2310 
2311 		if (pci_bridge_d3_force)
2312 			return true;
2313 
2314 		/*
2315 		 * It should be safe to put PCIe ports from 2015 or newer
2316 		 * to D3.
2317 		 */
2318 		if (dmi_get_bios_year() >= 2015)
2319 			return true;
2320 		break;
2321 	}
2322 
2323 	return false;
2324 }
2325 
2326 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2327 {
2328 	bool *d3cold_ok = data;
2329 
2330 	if (/* The device needs to be allowed to go D3cold ... */
2331 	    dev->no_d3cold || !dev->d3cold_allowed ||
2332 
2333 	    /* ... and if it is wakeup capable to do so from D3cold. */
2334 	    (device_may_wakeup(&dev->dev) &&
2335 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2336 
2337 	    /* If it is a bridge it must be allowed to go to D3. */
2338 	    !pci_power_manageable(dev))
2339 
2340 		*d3cold_ok = false;
2341 
2342 	return !*d3cold_ok;
2343 }
2344 
2345 /*
2346  * pci_bridge_d3_update - Update bridge D3 capabilities
2347  * @dev: PCI device which is changed
2348  *
2349  * Update upstream bridge PM capabilities accordingly depending on if the
2350  * device PM configuration was changed or the device is being removed.  The
2351  * change is also propagated upstream.
2352  */
2353 void pci_bridge_d3_update(struct pci_dev *dev)
2354 {
2355 	bool remove = !device_is_registered(&dev->dev);
2356 	struct pci_dev *bridge;
2357 	bool d3cold_ok = true;
2358 
2359 	bridge = pci_upstream_bridge(dev);
2360 	if (!bridge || !pci_bridge_d3_possible(bridge))
2361 		return;
2362 
2363 	/*
2364 	 * If D3 is currently allowed for the bridge, removing one of its
2365 	 * children won't change that.
2366 	 */
2367 	if (remove && bridge->bridge_d3)
2368 		return;
2369 
2370 	/*
2371 	 * If D3 is currently allowed for the bridge and a child is added or
2372 	 * changed, disallowance of D3 can only be caused by that child, so
2373 	 * we only need to check that single device, not any of its siblings.
2374 	 *
2375 	 * If D3 is currently not allowed for the bridge, checking the device
2376 	 * first may allow us to skip checking its siblings.
2377 	 */
2378 	if (!remove)
2379 		pci_dev_check_d3cold(dev, &d3cold_ok);
2380 
2381 	/*
2382 	 * If D3 is currently not allowed for the bridge, this may be caused
2383 	 * either by the device being changed/removed or any of its siblings,
2384 	 * so we need to go through all children to find out if one of them
2385 	 * continues to block D3.
2386 	 */
2387 	if (d3cold_ok && !bridge->bridge_d3)
2388 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2389 			     &d3cold_ok);
2390 
2391 	if (bridge->bridge_d3 != d3cold_ok) {
2392 		bridge->bridge_d3 = d3cold_ok;
2393 		/* Propagate change to upstream bridges */
2394 		pci_bridge_d3_update(bridge);
2395 	}
2396 }
2397 
2398 /**
2399  * pci_d3cold_enable - Enable D3cold for device
2400  * @dev: PCI device to handle
2401  *
2402  * This function can be used in drivers to enable D3cold from the device
2403  * they handle.  It also updates upstream PCI bridge PM capabilities
2404  * accordingly.
2405  */
2406 void pci_d3cold_enable(struct pci_dev *dev)
2407 {
2408 	if (dev->no_d3cold) {
2409 		dev->no_d3cold = false;
2410 		pci_bridge_d3_update(dev);
2411 	}
2412 }
2413 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2414 
2415 /**
2416  * pci_d3cold_disable - Disable D3cold for device
2417  * @dev: PCI device to handle
2418  *
2419  * This function can be used in drivers to disable D3cold from the device
2420  * they handle.  It also updates upstream PCI bridge PM capabilities
2421  * accordingly.
2422  */
2423 void pci_d3cold_disable(struct pci_dev *dev)
2424 {
2425 	if (!dev->no_d3cold) {
2426 		dev->no_d3cold = true;
2427 		pci_bridge_d3_update(dev);
2428 	}
2429 }
2430 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2431 
2432 /**
2433  * pci_pm_init - Initialize PM functions of given PCI device
2434  * @dev: PCI device to handle.
2435  */
2436 void pci_pm_init(struct pci_dev *dev)
2437 {
2438 	int pm;
2439 	u16 pmc;
2440 
2441 	pm_runtime_forbid(&dev->dev);
2442 	pm_runtime_set_active(&dev->dev);
2443 	pm_runtime_enable(&dev->dev);
2444 	device_enable_async_suspend(&dev->dev);
2445 	dev->wakeup_prepared = false;
2446 
2447 	dev->pm_cap = 0;
2448 	dev->pme_support = 0;
2449 
2450 	/* find PCI PM capability in list */
2451 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2452 	if (!pm)
2453 		return;
2454 	/* Check device's ability to generate PME# */
2455 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2456 
2457 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2458 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2459 			pmc & PCI_PM_CAP_VER_MASK);
2460 		return;
2461 	}
2462 
2463 	dev->pm_cap = pm;
2464 	dev->d3_delay = PCI_PM_D3_WAIT;
2465 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2466 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2467 	dev->d3cold_allowed = true;
2468 
2469 	dev->d1_support = false;
2470 	dev->d2_support = false;
2471 	if (!pci_no_d1d2(dev)) {
2472 		if (pmc & PCI_PM_CAP_D1)
2473 			dev->d1_support = true;
2474 		if (pmc & PCI_PM_CAP_D2)
2475 			dev->d2_support = true;
2476 
2477 		if (dev->d1_support || dev->d2_support)
2478 			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2479 				   dev->d1_support ? " D1" : "",
2480 				   dev->d2_support ? " D2" : "");
2481 	}
2482 
2483 	pmc &= PCI_PM_CAP_PME_MASK;
2484 	if (pmc) {
2485 		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2486 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2487 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2488 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2489 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2490 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2491 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2492 		dev->pme_poll = true;
2493 		/*
2494 		 * Make device's PM flags reflect the wake-up capability, but
2495 		 * let the user space enable it to wake up the system as needed.
2496 		 */
2497 		device_set_wakeup_capable(&dev->dev, true);
2498 		/* Disable the PME# generation functionality */
2499 		pci_pme_active(dev, false);
2500 	}
2501 }
2502 
2503 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2504 {
2505 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2506 
2507 	switch (prop) {
2508 	case PCI_EA_P_MEM:
2509 	case PCI_EA_P_VF_MEM:
2510 		flags |= IORESOURCE_MEM;
2511 		break;
2512 	case PCI_EA_P_MEM_PREFETCH:
2513 	case PCI_EA_P_VF_MEM_PREFETCH:
2514 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2515 		break;
2516 	case PCI_EA_P_IO:
2517 		flags |= IORESOURCE_IO;
2518 		break;
2519 	default:
2520 		return 0;
2521 	}
2522 
2523 	return flags;
2524 }
2525 
2526 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2527 					    u8 prop)
2528 {
2529 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2530 		return &dev->resource[bei];
2531 #ifdef CONFIG_PCI_IOV
2532 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2533 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2534 		return &dev->resource[PCI_IOV_RESOURCES +
2535 				      bei - PCI_EA_BEI_VF_BAR0];
2536 #endif
2537 	else if (bei == PCI_EA_BEI_ROM)
2538 		return &dev->resource[PCI_ROM_RESOURCE];
2539 	else
2540 		return NULL;
2541 }
2542 
2543 /* Read an Enhanced Allocation (EA) entry */
2544 static int pci_ea_read(struct pci_dev *dev, int offset)
2545 {
2546 	struct resource *res;
2547 	int ent_size, ent_offset = offset;
2548 	resource_size_t start, end;
2549 	unsigned long flags;
2550 	u32 dw0, bei, base, max_offset;
2551 	u8 prop;
2552 	bool support_64 = (sizeof(resource_size_t) >= 8);
2553 
2554 	pci_read_config_dword(dev, ent_offset, &dw0);
2555 	ent_offset += 4;
2556 
2557 	/* Entry size field indicates DWORDs after 1st */
2558 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2559 
2560 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2561 		goto out;
2562 
2563 	bei = (dw0 & PCI_EA_BEI) >> 4;
2564 	prop = (dw0 & PCI_EA_PP) >> 8;
2565 
2566 	/*
2567 	 * If the Property is in the reserved range, try the Secondary
2568 	 * Property instead.
2569 	 */
2570 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2571 		prop = (dw0 & PCI_EA_SP) >> 16;
2572 	if (prop > PCI_EA_P_BRIDGE_IO)
2573 		goto out;
2574 
2575 	res = pci_ea_get_resource(dev, bei, prop);
2576 	if (!res) {
2577 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2578 		goto out;
2579 	}
2580 
2581 	flags = pci_ea_flags(dev, prop);
2582 	if (!flags) {
2583 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2584 		goto out;
2585 	}
2586 
2587 	/* Read Base */
2588 	pci_read_config_dword(dev, ent_offset, &base);
2589 	start = (base & PCI_EA_FIELD_MASK);
2590 	ent_offset += 4;
2591 
2592 	/* Read MaxOffset */
2593 	pci_read_config_dword(dev, ent_offset, &max_offset);
2594 	ent_offset += 4;
2595 
2596 	/* Read Base MSBs (if 64-bit entry) */
2597 	if (base & PCI_EA_IS_64) {
2598 		u32 base_upper;
2599 
2600 		pci_read_config_dword(dev, ent_offset, &base_upper);
2601 		ent_offset += 4;
2602 
2603 		flags |= IORESOURCE_MEM_64;
2604 
2605 		/* entry starts above 32-bit boundary, can't use */
2606 		if (!support_64 && base_upper)
2607 			goto out;
2608 
2609 		if (support_64)
2610 			start |= ((u64)base_upper << 32);
2611 	}
2612 
2613 	end = start + (max_offset | 0x03);
2614 
2615 	/* Read MaxOffset MSBs (if 64-bit entry) */
2616 	if (max_offset & PCI_EA_IS_64) {
2617 		u32 max_offset_upper;
2618 
2619 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2620 		ent_offset += 4;
2621 
2622 		flags |= IORESOURCE_MEM_64;
2623 
2624 		/* entry too big, can't use */
2625 		if (!support_64 && max_offset_upper)
2626 			goto out;
2627 
2628 		if (support_64)
2629 			end += ((u64)max_offset_upper << 32);
2630 	}
2631 
2632 	if (end < start) {
2633 		pci_err(dev, "EA Entry crosses address boundary\n");
2634 		goto out;
2635 	}
2636 
2637 	if (ent_size != ent_offset - offset) {
2638 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2639 			ent_size, ent_offset - offset);
2640 		goto out;
2641 	}
2642 
2643 	res->name = pci_name(dev);
2644 	res->start = start;
2645 	res->end = end;
2646 	res->flags = flags;
2647 
2648 	if (bei <= PCI_EA_BEI_BAR5)
2649 		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2650 			   bei, res, prop);
2651 	else if (bei == PCI_EA_BEI_ROM)
2652 		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2653 			   res, prop);
2654 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2655 		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2656 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2657 	else
2658 		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2659 			   bei, res, prop);
2660 
2661 out:
2662 	return offset + ent_size;
2663 }
2664 
2665 /* Enhanced Allocation Initialization */
2666 void pci_ea_init(struct pci_dev *dev)
2667 {
2668 	int ea;
2669 	u8 num_ent;
2670 	int offset;
2671 	int i;
2672 
2673 	/* find PCI EA capability in list */
2674 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2675 	if (!ea)
2676 		return;
2677 
2678 	/* determine the number of entries */
2679 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2680 					&num_ent);
2681 	num_ent &= PCI_EA_NUM_ENT_MASK;
2682 
2683 	offset = ea + PCI_EA_FIRST_ENT;
2684 
2685 	/* Skip DWORD 2 for type 1 functions */
2686 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2687 		offset += 4;
2688 
2689 	/* parse each EA entry */
2690 	for (i = 0; i < num_ent; ++i)
2691 		offset = pci_ea_read(dev, offset);
2692 }
2693 
2694 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2695 	struct pci_cap_saved_state *new_cap)
2696 {
2697 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2698 }
2699 
2700 /**
2701  * _pci_add_cap_save_buffer - allocate buffer for saving given
2702  *                            capability registers
2703  * @dev: the PCI device
2704  * @cap: the capability to allocate the buffer for
2705  * @extended: Standard or Extended capability ID
2706  * @size: requested size of the buffer
2707  */
2708 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2709 				    bool extended, unsigned int size)
2710 {
2711 	int pos;
2712 	struct pci_cap_saved_state *save_state;
2713 
2714 	if (extended)
2715 		pos = pci_find_ext_capability(dev, cap);
2716 	else
2717 		pos = pci_find_capability(dev, cap);
2718 
2719 	if (!pos)
2720 		return 0;
2721 
2722 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2723 	if (!save_state)
2724 		return -ENOMEM;
2725 
2726 	save_state->cap.cap_nr = cap;
2727 	save_state->cap.cap_extended = extended;
2728 	save_state->cap.size = size;
2729 	pci_add_saved_cap(dev, save_state);
2730 
2731 	return 0;
2732 }
2733 
2734 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2735 {
2736 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2737 }
2738 
2739 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2740 {
2741 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2742 }
2743 
2744 /**
2745  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2746  * @dev: the PCI device
2747  */
2748 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2749 {
2750 	int error;
2751 
2752 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2753 					PCI_EXP_SAVE_REGS * sizeof(u16));
2754 	if (error)
2755 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2756 
2757 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2758 	if (error)
2759 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2760 
2761 	pci_allocate_vc_save_buffers(dev);
2762 }
2763 
2764 void pci_free_cap_save_buffers(struct pci_dev *dev)
2765 {
2766 	struct pci_cap_saved_state *tmp;
2767 	struct hlist_node *n;
2768 
2769 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2770 		kfree(tmp);
2771 }
2772 
2773 /**
2774  * pci_configure_ari - enable or disable ARI forwarding
2775  * @dev: the PCI device
2776  *
2777  * If @dev and its upstream bridge both support ARI, enable ARI in the
2778  * bridge.  Otherwise, disable ARI in the bridge.
2779  */
2780 void pci_configure_ari(struct pci_dev *dev)
2781 {
2782 	u32 cap;
2783 	struct pci_dev *bridge;
2784 
2785 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2786 		return;
2787 
2788 	bridge = dev->bus->self;
2789 	if (!bridge)
2790 		return;
2791 
2792 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2793 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2794 		return;
2795 
2796 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2797 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2798 					 PCI_EXP_DEVCTL2_ARI);
2799 		bridge->ari_enabled = 1;
2800 	} else {
2801 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2802 					   PCI_EXP_DEVCTL2_ARI);
2803 		bridge->ari_enabled = 0;
2804 	}
2805 }
2806 
2807 static int pci_acs_enable;
2808 
2809 /**
2810  * pci_request_acs - ask for ACS to be enabled if supported
2811  */
2812 void pci_request_acs(void)
2813 {
2814 	pci_acs_enable = 1;
2815 }
2816 
2817 /**
2818  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2819  * @dev: the PCI device
2820  */
2821 static void pci_std_enable_acs(struct pci_dev *dev)
2822 {
2823 	int pos;
2824 	u16 cap;
2825 	u16 ctrl;
2826 
2827 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2828 	if (!pos)
2829 		return;
2830 
2831 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2832 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2833 
2834 	/* Source Validation */
2835 	ctrl |= (cap & PCI_ACS_SV);
2836 
2837 	/* P2P Request Redirect */
2838 	ctrl |= (cap & PCI_ACS_RR);
2839 
2840 	/* P2P Completion Redirect */
2841 	ctrl |= (cap & PCI_ACS_CR);
2842 
2843 	/* Upstream Forwarding */
2844 	ctrl |= (cap & PCI_ACS_UF);
2845 
2846 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2847 }
2848 
2849 /**
2850  * pci_enable_acs - enable ACS if hardware support it
2851  * @dev: the PCI device
2852  */
2853 void pci_enable_acs(struct pci_dev *dev)
2854 {
2855 	if (!pci_acs_enable)
2856 		return;
2857 
2858 	if (!pci_dev_specific_enable_acs(dev))
2859 		return;
2860 
2861 	pci_std_enable_acs(dev);
2862 }
2863 
2864 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2865 {
2866 	int pos;
2867 	u16 cap, ctrl;
2868 
2869 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2870 	if (!pos)
2871 		return false;
2872 
2873 	/*
2874 	 * Except for egress control, capabilities are either required
2875 	 * or only required if controllable.  Features missing from the
2876 	 * capability field can therefore be assumed as hard-wired enabled.
2877 	 */
2878 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2879 	acs_flags &= (cap | PCI_ACS_EC);
2880 
2881 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2882 	return (ctrl & acs_flags) == acs_flags;
2883 }
2884 
2885 /**
2886  * pci_acs_enabled - test ACS against required flags for a given device
2887  * @pdev: device to test
2888  * @acs_flags: required PCI ACS flags
2889  *
2890  * Return true if the device supports the provided flags.  Automatically
2891  * filters out flags that are not implemented on multifunction devices.
2892  *
2893  * Note that this interface checks the effective ACS capabilities of the
2894  * device rather than the actual capabilities.  For instance, most single
2895  * function endpoints are not required to support ACS because they have no
2896  * opportunity for peer-to-peer access.  We therefore return 'true'
2897  * regardless of whether the device exposes an ACS capability.  This makes
2898  * it much easier for callers of this function to ignore the actual type
2899  * or topology of the device when testing ACS support.
2900  */
2901 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2902 {
2903 	int ret;
2904 
2905 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2906 	if (ret >= 0)
2907 		return ret > 0;
2908 
2909 	/*
2910 	 * Conventional PCI and PCI-X devices never support ACS, either
2911 	 * effectively or actually.  The shared bus topology implies that
2912 	 * any device on the bus can receive or snoop DMA.
2913 	 */
2914 	if (!pci_is_pcie(pdev))
2915 		return false;
2916 
2917 	switch (pci_pcie_type(pdev)) {
2918 	/*
2919 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2920 	 * but since their primary interface is PCI/X, we conservatively
2921 	 * handle them as we would a non-PCIe device.
2922 	 */
2923 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2924 	/*
2925 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2926 	 * applicable... must never implement an ACS Extended Capability...".
2927 	 * This seems arbitrary, but we take a conservative interpretation
2928 	 * of this statement.
2929 	 */
2930 	case PCI_EXP_TYPE_PCI_BRIDGE:
2931 	case PCI_EXP_TYPE_RC_EC:
2932 		return false;
2933 	/*
2934 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2935 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2936 	 * regardless of whether they are single- or multi-function devices.
2937 	 */
2938 	case PCI_EXP_TYPE_DOWNSTREAM:
2939 	case PCI_EXP_TYPE_ROOT_PORT:
2940 		return pci_acs_flags_enabled(pdev, acs_flags);
2941 	/*
2942 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2943 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2944 	 * capabilities, but only when they are part of a multifunction
2945 	 * device.  The footnote for section 6.12 indicates the specific
2946 	 * PCIe types included here.
2947 	 */
2948 	case PCI_EXP_TYPE_ENDPOINT:
2949 	case PCI_EXP_TYPE_UPSTREAM:
2950 	case PCI_EXP_TYPE_LEG_END:
2951 	case PCI_EXP_TYPE_RC_END:
2952 		if (!pdev->multifunction)
2953 			break;
2954 
2955 		return pci_acs_flags_enabled(pdev, acs_flags);
2956 	}
2957 
2958 	/*
2959 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2960 	 * to single function devices with the exception of downstream ports.
2961 	 */
2962 	return true;
2963 }
2964 
2965 /**
2966  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2967  * @start: starting downstream device
2968  * @end: ending upstream device or NULL to search to the root bus
2969  * @acs_flags: required flags
2970  *
2971  * Walk up a device tree from start to end testing PCI ACS support.  If
2972  * any step along the way does not support the required flags, return false.
2973  */
2974 bool pci_acs_path_enabled(struct pci_dev *start,
2975 			  struct pci_dev *end, u16 acs_flags)
2976 {
2977 	struct pci_dev *pdev, *parent = start;
2978 
2979 	do {
2980 		pdev = parent;
2981 
2982 		if (!pci_acs_enabled(pdev, acs_flags))
2983 			return false;
2984 
2985 		if (pci_is_root_bus(pdev->bus))
2986 			return (end == NULL);
2987 
2988 		parent = pdev->bus->self;
2989 	} while (pdev != end);
2990 
2991 	return true;
2992 }
2993 
2994 /**
2995  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2996  * @pdev: PCI device
2997  * @bar: BAR to find
2998  *
2999  * Helper to find the position of the ctrl register for a BAR.
3000  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3001  * Returns -ENOENT if no ctrl register for the BAR could be found.
3002  */
3003 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3004 {
3005 	unsigned int pos, nbars, i;
3006 	u32 ctrl;
3007 
3008 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3009 	if (!pos)
3010 		return -ENOTSUPP;
3011 
3012 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3013 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3014 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3015 
3016 	for (i = 0; i < nbars; i++, pos += 8) {
3017 		int bar_idx;
3018 
3019 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3020 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3021 		if (bar_idx == bar)
3022 			return pos;
3023 	}
3024 
3025 	return -ENOENT;
3026 }
3027 
3028 /**
3029  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3030  * @pdev: PCI device
3031  * @bar: BAR to query
3032  *
3033  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3034  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3035  */
3036 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3037 {
3038 	int pos;
3039 	u32 cap;
3040 
3041 	pos = pci_rebar_find_pos(pdev, bar);
3042 	if (pos < 0)
3043 		return 0;
3044 
3045 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3046 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3047 }
3048 
3049 /**
3050  * pci_rebar_get_current_size - get the current size of a BAR
3051  * @pdev: PCI device
3052  * @bar: BAR to set size to
3053  *
3054  * Read the size of a BAR from the resizable BAR config.
3055  * Returns size if found or negative error code.
3056  */
3057 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3058 {
3059 	int pos;
3060 	u32 ctrl;
3061 
3062 	pos = pci_rebar_find_pos(pdev, bar);
3063 	if (pos < 0)
3064 		return pos;
3065 
3066 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3067 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3068 }
3069 
3070 /**
3071  * pci_rebar_set_size - set a new size for a BAR
3072  * @pdev: PCI device
3073  * @bar: BAR to set size to
3074  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3075  *
3076  * Set the new size of a BAR as defined in the spec.
3077  * Returns zero if resizing was successful, error code otherwise.
3078  */
3079 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3080 {
3081 	int pos;
3082 	u32 ctrl;
3083 
3084 	pos = pci_rebar_find_pos(pdev, bar);
3085 	if (pos < 0)
3086 		return pos;
3087 
3088 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3089 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3090 	ctrl |= size << 8;
3091 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3092 	return 0;
3093 }
3094 
3095 /**
3096  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3097  * @dev: the PCI device
3098  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3099  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3100  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3101  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3102  *
3103  * Return 0 if all upstream bridges support AtomicOp routing, egress
3104  * blocking is disabled on all upstream ports, and the root port supports
3105  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3106  * AtomicOp completion), or negative otherwise.
3107  */
3108 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3109 {
3110 	struct pci_bus *bus = dev->bus;
3111 	struct pci_dev *bridge;
3112 	u32 cap, ctl2;
3113 
3114 	if (!pci_is_pcie(dev))
3115 		return -EINVAL;
3116 
3117 	/*
3118 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3119 	 * AtomicOp requesters.  For now, we only support endpoints as
3120 	 * requesters and root ports as completers.  No endpoints as
3121 	 * completers, and no peer-to-peer.
3122 	 */
3123 
3124 	switch (pci_pcie_type(dev)) {
3125 	case PCI_EXP_TYPE_ENDPOINT:
3126 	case PCI_EXP_TYPE_LEG_END:
3127 	case PCI_EXP_TYPE_RC_END:
3128 		break;
3129 	default:
3130 		return -EINVAL;
3131 	}
3132 
3133 	while (bus->parent) {
3134 		bridge = bus->self;
3135 
3136 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3137 
3138 		switch (pci_pcie_type(bridge)) {
3139 		/* Ensure switch ports support AtomicOp routing */
3140 		case PCI_EXP_TYPE_UPSTREAM:
3141 		case PCI_EXP_TYPE_DOWNSTREAM:
3142 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3143 				return -EINVAL;
3144 			break;
3145 
3146 		/* Ensure root port supports all the sizes we care about */
3147 		case PCI_EXP_TYPE_ROOT_PORT:
3148 			if ((cap & cap_mask) != cap_mask)
3149 				return -EINVAL;
3150 			break;
3151 		}
3152 
3153 		/* Ensure upstream ports don't block AtomicOps on egress */
3154 		if (!bridge->has_secondary_link) {
3155 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3156 						   &ctl2);
3157 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3158 				return -EINVAL;
3159 		}
3160 
3161 		bus = bus->parent;
3162 	}
3163 
3164 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3165 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3166 	return 0;
3167 }
3168 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3169 
3170 /**
3171  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3172  * @dev: the PCI device
3173  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3174  *
3175  * Perform INTx swizzling for a device behind one level of bridge.  This is
3176  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3177  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3178  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3179  * the PCI Express Base Specification, Revision 2.1)
3180  */
3181 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3182 {
3183 	int slot;
3184 
3185 	if (pci_ari_enabled(dev->bus))
3186 		slot = 0;
3187 	else
3188 		slot = PCI_SLOT(dev->devfn);
3189 
3190 	return (((pin - 1) + slot) % 4) + 1;
3191 }
3192 
3193 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3194 {
3195 	u8 pin;
3196 
3197 	pin = dev->pin;
3198 	if (!pin)
3199 		return -1;
3200 
3201 	while (!pci_is_root_bus(dev->bus)) {
3202 		pin = pci_swizzle_interrupt_pin(dev, pin);
3203 		dev = dev->bus->self;
3204 	}
3205 	*bridge = dev;
3206 	return pin;
3207 }
3208 
3209 /**
3210  * pci_common_swizzle - swizzle INTx all the way to root bridge
3211  * @dev: the PCI device
3212  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3213  *
3214  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3215  * bridges all the way up to a PCI root bus.
3216  */
3217 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3218 {
3219 	u8 pin = *pinp;
3220 
3221 	while (!pci_is_root_bus(dev->bus)) {
3222 		pin = pci_swizzle_interrupt_pin(dev, pin);
3223 		dev = dev->bus->self;
3224 	}
3225 	*pinp = pin;
3226 	return PCI_SLOT(dev->devfn);
3227 }
3228 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3229 
3230 /**
3231  *	pci_release_region - Release a PCI bar
3232  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3233  *	@bar: BAR to release
3234  *
3235  *	Releases the PCI I/O and memory resources previously reserved by a
3236  *	successful call to pci_request_region.  Call this function only
3237  *	after all use of the PCI regions has ceased.
3238  */
3239 void pci_release_region(struct pci_dev *pdev, int bar)
3240 {
3241 	struct pci_devres *dr;
3242 
3243 	if (pci_resource_len(pdev, bar) == 0)
3244 		return;
3245 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3246 		release_region(pci_resource_start(pdev, bar),
3247 				pci_resource_len(pdev, bar));
3248 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3249 		release_mem_region(pci_resource_start(pdev, bar),
3250 				pci_resource_len(pdev, bar));
3251 
3252 	dr = find_pci_dr(pdev);
3253 	if (dr)
3254 		dr->region_mask &= ~(1 << bar);
3255 }
3256 EXPORT_SYMBOL(pci_release_region);
3257 
3258 /**
3259  *	__pci_request_region - Reserved PCI I/O and memory resource
3260  *	@pdev: PCI device whose resources are to be reserved
3261  *	@bar: BAR to be reserved
3262  *	@res_name: Name to be associated with resource.
3263  *	@exclusive: whether the region access is exclusive or not
3264  *
3265  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3266  *	being reserved by owner @res_name.  Do not access any
3267  *	address inside the PCI regions unless this call returns
3268  *	successfully.
3269  *
3270  *	If @exclusive is set, then the region is marked so that userspace
3271  *	is explicitly not allowed to map the resource via /dev/mem or
3272  *	sysfs MMIO access.
3273  *
3274  *	Returns 0 on success, or %EBUSY on error.  A warning
3275  *	message is also printed on failure.
3276  */
3277 static int __pci_request_region(struct pci_dev *pdev, int bar,
3278 				const char *res_name, int exclusive)
3279 {
3280 	struct pci_devres *dr;
3281 
3282 	if (pci_resource_len(pdev, bar) == 0)
3283 		return 0;
3284 
3285 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3286 		if (!request_region(pci_resource_start(pdev, bar),
3287 			    pci_resource_len(pdev, bar), res_name))
3288 			goto err_out;
3289 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3290 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3291 					pci_resource_len(pdev, bar), res_name,
3292 					exclusive))
3293 			goto err_out;
3294 	}
3295 
3296 	dr = find_pci_dr(pdev);
3297 	if (dr)
3298 		dr->region_mask |= 1 << bar;
3299 
3300 	return 0;
3301 
3302 err_out:
3303 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3304 		 &pdev->resource[bar]);
3305 	return -EBUSY;
3306 }
3307 
3308 /**
3309  *	pci_request_region - Reserve PCI I/O and memory resource
3310  *	@pdev: PCI device whose resources are to be reserved
3311  *	@bar: BAR to be reserved
3312  *	@res_name: Name to be associated with resource
3313  *
3314  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3315  *	being reserved by owner @res_name.  Do not access any
3316  *	address inside the PCI regions unless this call returns
3317  *	successfully.
3318  *
3319  *	Returns 0 on success, or %EBUSY on error.  A warning
3320  *	message is also printed on failure.
3321  */
3322 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3323 {
3324 	return __pci_request_region(pdev, bar, res_name, 0);
3325 }
3326 EXPORT_SYMBOL(pci_request_region);
3327 
3328 /**
3329  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3330  *	@pdev: PCI device whose resources are to be reserved
3331  *	@bar: BAR to be reserved
3332  *	@res_name: Name to be associated with resource.
3333  *
3334  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3335  *	being reserved by owner @res_name.  Do not access any
3336  *	address inside the PCI regions unless this call returns
3337  *	successfully.
3338  *
3339  *	Returns 0 on success, or %EBUSY on error.  A warning
3340  *	message is also printed on failure.
3341  *
3342  *	The key difference that _exclusive makes it that userspace is
3343  *	explicitly not allowed to map the resource via /dev/mem or
3344  *	sysfs.
3345  */
3346 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3347 				 const char *res_name)
3348 {
3349 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3350 }
3351 EXPORT_SYMBOL(pci_request_region_exclusive);
3352 
3353 /**
3354  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3355  * @pdev: PCI device whose resources were previously reserved
3356  * @bars: Bitmask of BARs to be released
3357  *
3358  * Release selected PCI I/O and memory resources previously reserved.
3359  * Call this function only after all use of the PCI regions has ceased.
3360  */
3361 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3362 {
3363 	int i;
3364 
3365 	for (i = 0; i < 6; i++)
3366 		if (bars & (1 << i))
3367 			pci_release_region(pdev, i);
3368 }
3369 EXPORT_SYMBOL(pci_release_selected_regions);
3370 
3371 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3372 					  const char *res_name, int excl)
3373 {
3374 	int i;
3375 
3376 	for (i = 0; i < 6; i++)
3377 		if (bars & (1 << i))
3378 			if (__pci_request_region(pdev, i, res_name, excl))
3379 				goto err_out;
3380 	return 0;
3381 
3382 err_out:
3383 	while (--i >= 0)
3384 		if (bars & (1 << i))
3385 			pci_release_region(pdev, i);
3386 
3387 	return -EBUSY;
3388 }
3389 
3390 
3391 /**
3392  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3393  * @pdev: PCI device whose resources are to be reserved
3394  * @bars: Bitmask of BARs to be requested
3395  * @res_name: Name to be associated with resource
3396  */
3397 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3398 				 const char *res_name)
3399 {
3400 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3401 }
3402 EXPORT_SYMBOL(pci_request_selected_regions);
3403 
3404 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3405 					   const char *res_name)
3406 {
3407 	return __pci_request_selected_regions(pdev, bars, res_name,
3408 			IORESOURCE_EXCLUSIVE);
3409 }
3410 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3411 
3412 /**
3413  *	pci_release_regions - Release reserved PCI I/O and memory resources
3414  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3415  *
3416  *	Releases all PCI I/O and memory resources previously reserved by a
3417  *	successful call to pci_request_regions.  Call this function only
3418  *	after all use of the PCI regions has ceased.
3419  */
3420 
3421 void pci_release_regions(struct pci_dev *pdev)
3422 {
3423 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3424 }
3425 EXPORT_SYMBOL(pci_release_regions);
3426 
3427 /**
3428  *	pci_request_regions - Reserved PCI I/O and memory resources
3429  *	@pdev: PCI device whose resources are to be reserved
3430  *	@res_name: Name to be associated with resource.
3431  *
3432  *	Mark all PCI regions associated with PCI device @pdev as
3433  *	being reserved by owner @res_name.  Do not access any
3434  *	address inside the PCI regions unless this call returns
3435  *	successfully.
3436  *
3437  *	Returns 0 on success, or %EBUSY on error.  A warning
3438  *	message is also printed on failure.
3439  */
3440 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3441 {
3442 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3443 }
3444 EXPORT_SYMBOL(pci_request_regions);
3445 
3446 /**
3447  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3448  *	@pdev: PCI device whose resources are to be reserved
3449  *	@res_name: Name to be associated with resource.
3450  *
3451  *	Mark all PCI regions associated with PCI device @pdev as
3452  *	being reserved by owner @res_name.  Do not access any
3453  *	address inside the PCI regions unless this call returns
3454  *	successfully.
3455  *
3456  *	pci_request_regions_exclusive() will mark the region so that
3457  *	/dev/mem and the sysfs MMIO access will not be allowed.
3458  *
3459  *	Returns 0 on success, or %EBUSY on error.  A warning
3460  *	message is also printed on failure.
3461  */
3462 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3463 {
3464 	return pci_request_selected_regions_exclusive(pdev,
3465 					((1 << 6) - 1), res_name);
3466 }
3467 EXPORT_SYMBOL(pci_request_regions_exclusive);
3468 
3469 /*
3470  * Record the PCI IO range (expressed as CPU physical address + size).
3471  * Return a negative value if an error has occured, zero otherwise
3472  */
3473 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3474 			resource_size_t	size)
3475 {
3476 	int ret = 0;
3477 #ifdef PCI_IOBASE
3478 	struct logic_pio_hwaddr *range;
3479 
3480 	if (!size || addr + size < addr)
3481 		return -EINVAL;
3482 
3483 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3484 	if (!range)
3485 		return -ENOMEM;
3486 
3487 	range->fwnode = fwnode;
3488 	range->size = size;
3489 	range->hw_start = addr;
3490 	range->flags = LOGIC_PIO_CPU_MMIO;
3491 
3492 	ret = logic_pio_register_range(range);
3493 	if (ret)
3494 		kfree(range);
3495 #endif
3496 
3497 	return ret;
3498 }
3499 
3500 phys_addr_t pci_pio_to_address(unsigned long pio)
3501 {
3502 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3503 
3504 #ifdef PCI_IOBASE
3505 	if (pio >= MMIO_UPPER_LIMIT)
3506 		return address;
3507 
3508 	address = logic_pio_to_hwaddr(pio);
3509 #endif
3510 
3511 	return address;
3512 }
3513 
3514 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3515 {
3516 #ifdef PCI_IOBASE
3517 	return logic_pio_trans_cpuaddr(address);
3518 #else
3519 	if (address > IO_SPACE_LIMIT)
3520 		return (unsigned long)-1;
3521 
3522 	return (unsigned long) address;
3523 #endif
3524 }
3525 
3526 /**
3527  *	pci_remap_iospace - Remap the memory mapped I/O space
3528  *	@res: Resource describing the I/O space
3529  *	@phys_addr: physical address of range to be mapped
3530  *
3531  *	Remap the memory mapped I/O space described by the @res
3532  *	and the CPU physical address @phys_addr into virtual address space.
3533  *	Only architectures that have memory mapped IO functions defined
3534  *	(and the PCI_IOBASE value defined) should call this function.
3535  */
3536 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3537 {
3538 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3539 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3540 
3541 	if (!(res->flags & IORESOURCE_IO))
3542 		return -EINVAL;
3543 
3544 	if (res->end > IO_SPACE_LIMIT)
3545 		return -EINVAL;
3546 
3547 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3548 				  pgprot_device(PAGE_KERNEL));
3549 #else
3550 	/* this architecture does not have memory mapped I/O space,
3551 	   so this function should never be called */
3552 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3553 	return -ENODEV;
3554 #endif
3555 }
3556 EXPORT_SYMBOL(pci_remap_iospace);
3557 
3558 /**
3559  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3560  *	@res: resource to be unmapped
3561  *
3562  *	Unmap the CPU virtual address @res from virtual address space.
3563  *	Only architectures that have memory mapped IO functions defined
3564  *	(and the PCI_IOBASE value defined) should call this function.
3565  */
3566 void pci_unmap_iospace(struct resource *res)
3567 {
3568 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3569 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3570 
3571 	unmap_kernel_range(vaddr, resource_size(res));
3572 #endif
3573 }
3574 EXPORT_SYMBOL(pci_unmap_iospace);
3575 
3576 /**
3577  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3578  * @dev: Generic device to remap IO address for
3579  * @offset: Resource address to map
3580  * @size: Size of map
3581  *
3582  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3583  * detach.
3584  */
3585 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3586 				      resource_size_t offset,
3587 				      resource_size_t size)
3588 {
3589 	void __iomem **ptr, *addr;
3590 
3591 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3592 	if (!ptr)
3593 		return NULL;
3594 
3595 	addr = pci_remap_cfgspace(offset, size);
3596 	if (addr) {
3597 		*ptr = addr;
3598 		devres_add(dev, ptr);
3599 	} else
3600 		devres_free(ptr);
3601 
3602 	return addr;
3603 }
3604 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3605 
3606 /**
3607  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3608  * @dev: generic device to handle the resource for
3609  * @res: configuration space resource to be handled
3610  *
3611  * Checks that a resource is a valid memory region, requests the memory
3612  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3613  * proper PCI configuration space memory attributes are guaranteed.
3614  *
3615  * All operations are managed and will be undone on driver detach.
3616  *
3617  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3618  * on failure. Usage example::
3619  *
3620  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3621  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3622  *	if (IS_ERR(base))
3623  *		return PTR_ERR(base);
3624  */
3625 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3626 					  struct resource *res)
3627 {
3628 	resource_size_t size;
3629 	const char *name;
3630 	void __iomem *dest_ptr;
3631 
3632 	BUG_ON(!dev);
3633 
3634 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3635 		dev_err(dev, "invalid resource\n");
3636 		return IOMEM_ERR_PTR(-EINVAL);
3637 	}
3638 
3639 	size = resource_size(res);
3640 	name = res->name ?: dev_name(dev);
3641 
3642 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3643 		dev_err(dev, "can't request region for resource %pR\n", res);
3644 		return IOMEM_ERR_PTR(-EBUSY);
3645 	}
3646 
3647 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3648 	if (!dest_ptr) {
3649 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3650 		devm_release_mem_region(dev, res->start, size);
3651 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3652 	}
3653 
3654 	return dest_ptr;
3655 }
3656 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3657 
3658 static void __pci_set_master(struct pci_dev *dev, bool enable)
3659 {
3660 	u16 old_cmd, cmd;
3661 
3662 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3663 	if (enable)
3664 		cmd = old_cmd | PCI_COMMAND_MASTER;
3665 	else
3666 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3667 	if (cmd != old_cmd) {
3668 		pci_dbg(dev, "%s bus mastering\n",
3669 			enable ? "enabling" : "disabling");
3670 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3671 	}
3672 	dev->is_busmaster = enable;
3673 }
3674 
3675 /**
3676  * pcibios_setup - process "pci=" kernel boot arguments
3677  * @str: string used to pass in "pci=" kernel boot arguments
3678  *
3679  * Process kernel boot arguments.  This is the default implementation.
3680  * Architecture specific implementations can override this as necessary.
3681  */
3682 char * __weak __init pcibios_setup(char *str)
3683 {
3684 	return str;
3685 }
3686 
3687 /**
3688  * pcibios_set_master - enable PCI bus-mastering for device dev
3689  * @dev: the PCI device to enable
3690  *
3691  * Enables PCI bus-mastering for the device.  This is the default
3692  * implementation.  Architecture specific implementations can override
3693  * this if necessary.
3694  */
3695 void __weak pcibios_set_master(struct pci_dev *dev)
3696 {
3697 	u8 lat;
3698 
3699 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3700 	if (pci_is_pcie(dev))
3701 		return;
3702 
3703 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3704 	if (lat < 16)
3705 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3706 	else if (lat > pcibios_max_latency)
3707 		lat = pcibios_max_latency;
3708 	else
3709 		return;
3710 
3711 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3712 }
3713 
3714 /**
3715  * pci_set_master - enables bus-mastering for device dev
3716  * @dev: the PCI device to enable
3717  *
3718  * Enables bus-mastering on the device and calls pcibios_set_master()
3719  * to do the needed arch specific settings.
3720  */
3721 void pci_set_master(struct pci_dev *dev)
3722 {
3723 	__pci_set_master(dev, true);
3724 	pcibios_set_master(dev);
3725 }
3726 EXPORT_SYMBOL(pci_set_master);
3727 
3728 /**
3729  * pci_clear_master - disables bus-mastering for device dev
3730  * @dev: the PCI device to disable
3731  */
3732 void pci_clear_master(struct pci_dev *dev)
3733 {
3734 	__pci_set_master(dev, false);
3735 }
3736 EXPORT_SYMBOL(pci_clear_master);
3737 
3738 /**
3739  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3740  * @dev: the PCI device for which MWI is to be enabled
3741  *
3742  * Helper function for pci_set_mwi.
3743  * Originally copied from drivers/net/acenic.c.
3744  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3745  *
3746  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3747  */
3748 int pci_set_cacheline_size(struct pci_dev *dev)
3749 {
3750 	u8 cacheline_size;
3751 
3752 	if (!pci_cache_line_size)
3753 		return -EINVAL;
3754 
3755 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3756 	   equal to or multiple of the right value. */
3757 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3758 	if (cacheline_size >= pci_cache_line_size &&
3759 	    (cacheline_size % pci_cache_line_size) == 0)
3760 		return 0;
3761 
3762 	/* Write the correct value. */
3763 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3764 	/* Read it back. */
3765 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3766 	if (cacheline_size == pci_cache_line_size)
3767 		return 0;
3768 
3769 	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3770 		   pci_cache_line_size << 2);
3771 
3772 	return -EINVAL;
3773 }
3774 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3775 
3776 /**
3777  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3778  * @dev: the PCI device for which MWI is enabled
3779  *
3780  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3781  *
3782  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3783  */
3784 int pci_set_mwi(struct pci_dev *dev)
3785 {
3786 #ifdef PCI_DISABLE_MWI
3787 	return 0;
3788 #else
3789 	int rc;
3790 	u16 cmd;
3791 
3792 	rc = pci_set_cacheline_size(dev);
3793 	if (rc)
3794 		return rc;
3795 
3796 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3797 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3798 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3799 		cmd |= PCI_COMMAND_INVALIDATE;
3800 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3801 	}
3802 	return 0;
3803 #endif
3804 }
3805 EXPORT_SYMBOL(pci_set_mwi);
3806 
3807 /**
3808  * pcim_set_mwi - a device-managed pci_set_mwi()
3809  * @dev: the PCI device for which MWI is enabled
3810  *
3811  * Managed pci_set_mwi().
3812  *
3813  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3814  */
3815 int pcim_set_mwi(struct pci_dev *dev)
3816 {
3817 	struct pci_devres *dr;
3818 
3819 	dr = find_pci_dr(dev);
3820 	if (!dr)
3821 		return -ENOMEM;
3822 
3823 	dr->mwi = 1;
3824 	return pci_set_mwi(dev);
3825 }
3826 EXPORT_SYMBOL(pcim_set_mwi);
3827 
3828 /**
3829  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3830  * @dev: the PCI device for which MWI is enabled
3831  *
3832  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3833  * Callers are not required to check the return value.
3834  *
3835  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3836  */
3837 int pci_try_set_mwi(struct pci_dev *dev)
3838 {
3839 #ifdef PCI_DISABLE_MWI
3840 	return 0;
3841 #else
3842 	return pci_set_mwi(dev);
3843 #endif
3844 }
3845 EXPORT_SYMBOL(pci_try_set_mwi);
3846 
3847 /**
3848  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3849  * @dev: the PCI device to disable
3850  *
3851  * Disables PCI Memory-Write-Invalidate transaction on the device
3852  */
3853 void pci_clear_mwi(struct pci_dev *dev)
3854 {
3855 #ifndef PCI_DISABLE_MWI
3856 	u16 cmd;
3857 
3858 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3859 	if (cmd & PCI_COMMAND_INVALIDATE) {
3860 		cmd &= ~PCI_COMMAND_INVALIDATE;
3861 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3862 	}
3863 #endif
3864 }
3865 EXPORT_SYMBOL(pci_clear_mwi);
3866 
3867 /**
3868  * pci_intx - enables/disables PCI INTx for device dev
3869  * @pdev: the PCI device to operate on
3870  * @enable: boolean: whether to enable or disable PCI INTx
3871  *
3872  * Enables/disables PCI INTx for device dev
3873  */
3874 void pci_intx(struct pci_dev *pdev, int enable)
3875 {
3876 	u16 pci_command, new;
3877 
3878 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3879 
3880 	if (enable)
3881 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3882 	else
3883 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3884 
3885 	if (new != pci_command) {
3886 		struct pci_devres *dr;
3887 
3888 		pci_write_config_word(pdev, PCI_COMMAND, new);
3889 
3890 		dr = find_pci_dr(pdev);
3891 		if (dr && !dr->restore_intx) {
3892 			dr->restore_intx = 1;
3893 			dr->orig_intx = !enable;
3894 		}
3895 	}
3896 }
3897 EXPORT_SYMBOL_GPL(pci_intx);
3898 
3899 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3900 {
3901 	struct pci_bus *bus = dev->bus;
3902 	bool mask_updated = true;
3903 	u32 cmd_status_dword;
3904 	u16 origcmd, newcmd;
3905 	unsigned long flags;
3906 	bool irq_pending;
3907 
3908 	/*
3909 	 * We do a single dword read to retrieve both command and status.
3910 	 * Document assumptions that make this possible.
3911 	 */
3912 	BUILD_BUG_ON(PCI_COMMAND % 4);
3913 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3914 
3915 	raw_spin_lock_irqsave(&pci_lock, flags);
3916 
3917 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3918 
3919 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3920 
3921 	/*
3922 	 * Check interrupt status register to see whether our device
3923 	 * triggered the interrupt (when masking) or the next IRQ is
3924 	 * already pending (when unmasking).
3925 	 */
3926 	if (mask != irq_pending) {
3927 		mask_updated = false;
3928 		goto done;
3929 	}
3930 
3931 	origcmd = cmd_status_dword;
3932 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3933 	if (mask)
3934 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3935 	if (newcmd != origcmd)
3936 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3937 
3938 done:
3939 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3940 
3941 	return mask_updated;
3942 }
3943 
3944 /**
3945  * pci_check_and_mask_intx - mask INTx on pending interrupt
3946  * @dev: the PCI device to operate on
3947  *
3948  * Check if the device dev has its INTx line asserted, mask it and
3949  * return true in that case. False is returned if no interrupt was
3950  * pending.
3951  */
3952 bool pci_check_and_mask_intx(struct pci_dev *dev)
3953 {
3954 	return pci_check_and_set_intx_mask(dev, true);
3955 }
3956 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3957 
3958 /**
3959  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3960  * @dev: the PCI device to operate on
3961  *
3962  * Check if the device dev has its INTx line asserted, unmask it if not
3963  * and return true. False is returned and the mask remains active if
3964  * there was still an interrupt pending.
3965  */
3966 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3967 {
3968 	return pci_check_and_set_intx_mask(dev, false);
3969 }
3970 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3971 
3972 /**
3973  * pci_wait_for_pending_transaction - waits for pending transaction
3974  * @dev: the PCI device to operate on
3975  *
3976  * Return 0 if transaction is pending 1 otherwise.
3977  */
3978 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3979 {
3980 	if (!pci_is_pcie(dev))
3981 		return 1;
3982 
3983 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3984 				    PCI_EXP_DEVSTA_TRPND);
3985 }
3986 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3987 
3988 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
3989 {
3990 	int delay = 1;
3991 	u32 id;
3992 
3993 	/*
3994 	 * After reset, the device should not silently discard config
3995 	 * requests, but it may still indicate that it needs more time by
3996 	 * responding to them with CRS completions.  The Root Port will
3997 	 * generally synthesize ~0 data to complete the read (except when
3998 	 * CRS SV is enabled and the read was for the Vendor ID; in that
3999 	 * case it synthesizes 0x0001 data).
4000 	 *
4001 	 * Wait for the device to return a non-CRS completion.  Read the
4002 	 * Command register instead of Vendor ID so we don't have to
4003 	 * contend with the CRS SV value.
4004 	 */
4005 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4006 	while (id == ~0) {
4007 		if (delay > timeout) {
4008 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4009 				 delay - 1, reset_type);
4010 			return -ENOTTY;
4011 		}
4012 
4013 		if (delay > 1000)
4014 			pci_info(dev, "not ready %dms after %s; waiting\n",
4015 				 delay - 1, reset_type);
4016 
4017 		msleep(delay);
4018 		delay *= 2;
4019 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4020 	}
4021 
4022 	if (delay > 1000)
4023 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4024 			 reset_type);
4025 
4026 	return 0;
4027 }
4028 
4029 /**
4030  * pcie_has_flr - check if a device supports function level resets
4031  * @dev:	device to check
4032  *
4033  * Returns true if the device advertises support for PCIe function level
4034  * resets.
4035  */
4036 static bool pcie_has_flr(struct pci_dev *dev)
4037 {
4038 	u32 cap;
4039 
4040 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4041 		return false;
4042 
4043 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4044 	return cap & PCI_EXP_DEVCAP_FLR;
4045 }
4046 
4047 /**
4048  * pcie_flr - initiate a PCIe function level reset
4049  * @dev:	device to reset
4050  *
4051  * Initiate a function level reset on @dev.  The caller should ensure the
4052  * device supports FLR before calling this function, e.g. by using the
4053  * pcie_has_flr() helper.
4054  */
4055 int pcie_flr(struct pci_dev *dev)
4056 {
4057 	if (!pci_wait_for_pending_transaction(dev))
4058 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4059 
4060 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4061 
4062 	/*
4063 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4064 	 * 100ms, but may silently discard requests while the FLR is in
4065 	 * progress.  Wait 100ms before trying to access the device.
4066 	 */
4067 	msleep(100);
4068 
4069 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4070 }
4071 EXPORT_SYMBOL_GPL(pcie_flr);
4072 
4073 static int pci_af_flr(struct pci_dev *dev, int probe)
4074 {
4075 	int pos;
4076 	u8 cap;
4077 
4078 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4079 	if (!pos)
4080 		return -ENOTTY;
4081 
4082 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4083 		return -ENOTTY;
4084 
4085 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4086 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4087 		return -ENOTTY;
4088 
4089 	if (probe)
4090 		return 0;
4091 
4092 	/*
4093 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4094 	 * is used, so we use the conrol offset rather than status and shift
4095 	 * the test bit to match.
4096 	 */
4097 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4098 				 PCI_AF_STATUS_TP << 8))
4099 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4100 
4101 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4102 
4103 	/*
4104 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4105 	 * updated 27 July 2006; a device must complete an FLR within
4106 	 * 100ms, but may silently discard requests while the FLR is in
4107 	 * progress.  Wait 100ms before trying to access the device.
4108 	 */
4109 	msleep(100);
4110 
4111 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4112 }
4113 
4114 /**
4115  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4116  * @dev: Device to reset.
4117  * @probe: If set, only check if the device can be reset this way.
4118  *
4119  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4120  * unset, it will be reinitialized internally when going from PCI_D3hot to
4121  * PCI_D0.  If that's the case and the device is not in a low-power state
4122  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4123  *
4124  * NOTE: This causes the caller to sleep for twice the device power transition
4125  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4126  * by default (i.e. unless the @dev's d3_delay field has a different value).
4127  * Moreover, only devices in D0 can be reset by this function.
4128  */
4129 static int pci_pm_reset(struct pci_dev *dev, int probe)
4130 {
4131 	u16 csr;
4132 
4133 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4134 		return -ENOTTY;
4135 
4136 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4137 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4138 		return -ENOTTY;
4139 
4140 	if (probe)
4141 		return 0;
4142 
4143 	if (dev->current_state != PCI_D0)
4144 		return -EINVAL;
4145 
4146 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4147 	csr |= PCI_D3hot;
4148 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4149 	pci_dev_d3_sleep(dev);
4150 
4151 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4152 	csr |= PCI_D0;
4153 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4154 	pci_dev_d3_sleep(dev);
4155 
4156 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4157 }
4158 
4159 void pci_reset_secondary_bus(struct pci_dev *dev)
4160 {
4161 	u16 ctrl;
4162 
4163 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4164 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4165 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4166 
4167 	/*
4168 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4169 	 * this to 2ms to ensure that we meet the minimum requirement.
4170 	 */
4171 	msleep(2);
4172 
4173 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4174 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4175 
4176 	/*
4177 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4178 	 * Assuming a minimum 33MHz clock this results in a 1s
4179 	 * delay before we can consider subordinate devices to
4180 	 * be re-initialized.  PCIe has some ways to shorten this,
4181 	 * but we don't make use of them yet.
4182 	 */
4183 	ssleep(1);
4184 }
4185 
4186 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4187 {
4188 	pci_reset_secondary_bus(dev);
4189 }
4190 
4191 /**
4192  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4193  * @dev: Bridge device
4194  *
4195  * Use the bridge control register to assert reset on the secondary bus.
4196  * Devices on the secondary bus are left in power-on state.
4197  */
4198 int pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4199 {
4200 	pcibios_reset_secondary_bus(dev);
4201 
4202 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4203 }
4204 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4205 
4206 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4207 {
4208 	struct pci_dev *pdev;
4209 
4210 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4211 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4212 		return -ENOTTY;
4213 
4214 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4215 		if (pdev != dev)
4216 			return -ENOTTY;
4217 
4218 	if (probe)
4219 		return 0;
4220 
4221 	pci_reset_bridge_secondary_bus(dev->bus->self);
4222 
4223 	return 0;
4224 }
4225 
4226 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4227 {
4228 	int rc = -ENOTTY;
4229 
4230 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4231 		return rc;
4232 
4233 	if (hotplug->ops->reset_slot)
4234 		rc = hotplug->ops->reset_slot(hotplug, probe);
4235 
4236 	module_put(hotplug->ops->owner);
4237 
4238 	return rc;
4239 }
4240 
4241 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4242 {
4243 	struct pci_dev *pdev;
4244 
4245 	if (dev->subordinate || !dev->slot ||
4246 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4247 		return -ENOTTY;
4248 
4249 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4250 		if (pdev != dev && pdev->slot == dev->slot)
4251 			return -ENOTTY;
4252 
4253 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4254 }
4255 
4256 static void pci_dev_lock(struct pci_dev *dev)
4257 {
4258 	pci_cfg_access_lock(dev);
4259 	/* block PM suspend, driver probe, etc. */
4260 	device_lock(&dev->dev);
4261 }
4262 
4263 /* Return 1 on successful lock, 0 on contention */
4264 static int pci_dev_trylock(struct pci_dev *dev)
4265 {
4266 	if (pci_cfg_access_trylock(dev)) {
4267 		if (device_trylock(&dev->dev))
4268 			return 1;
4269 		pci_cfg_access_unlock(dev);
4270 	}
4271 
4272 	return 0;
4273 }
4274 
4275 static void pci_dev_unlock(struct pci_dev *dev)
4276 {
4277 	device_unlock(&dev->dev);
4278 	pci_cfg_access_unlock(dev);
4279 }
4280 
4281 static void pci_dev_save_and_disable(struct pci_dev *dev)
4282 {
4283 	const struct pci_error_handlers *err_handler =
4284 			dev->driver ? dev->driver->err_handler : NULL;
4285 
4286 	/*
4287 	 * dev->driver->err_handler->reset_prepare() is protected against
4288 	 * races with ->remove() by the device lock, which must be held by
4289 	 * the caller.
4290 	 */
4291 	if (err_handler && err_handler->reset_prepare)
4292 		err_handler->reset_prepare(dev);
4293 
4294 	/*
4295 	 * Wake-up device prior to save.  PM registers default to D0 after
4296 	 * reset and a simple register restore doesn't reliably return
4297 	 * to a non-D0 state anyway.
4298 	 */
4299 	pci_set_power_state(dev, PCI_D0);
4300 
4301 	pci_save_state(dev);
4302 	/*
4303 	 * Disable the device by clearing the Command register, except for
4304 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4305 	 * BARs, but also prevents the device from being Bus Master, preventing
4306 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4307 	 * compliant devices, INTx-disable prevents legacy interrupts.
4308 	 */
4309 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4310 }
4311 
4312 static void pci_dev_restore(struct pci_dev *dev)
4313 {
4314 	const struct pci_error_handlers *err_handler =
4315 			dev->driver ? dev->driver->err_handler : NULL;
4316 
4317 	pci_restore_state(dev);
4318 
4319 	/*
4320 	 * dev->driver->err_handler->reset_done() is protected against
4321 	 * races with ->remove() by the device lock, which must be held by
4322 	 * the caller.
4323 	 */
4324 	if (err_handler && err_handler->reset_done)
4325 		err_handler->reset_done(dev);
4326 }
4327 
4328 /**
4329  * __pci_reset_function_locked - reset a PCI device function while holding
4330  * the @dev mutex lock.
4331  * @dev: PCI device to reset
4332  *
4333  * Some devices allow an individual function to be reset without affecting
4334  * other functions in the same device.  The PCI device must be responsive
4335  * to PCI config space in order to use this function.
4336  *
4337  * The device function is presumed to be unused and the caller is holding
4338  * the device mutex lock when this function is called.
4339  * Resetting the device will make the contents of PCI configuration space
4340  * random, so any caller of this must be prepared to reinitialise the
4341  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4342  * etc.
4343  *
4344  * Returns 0 if the device function was successfully reset or negative if the
4345  * device doesn't support resetting a single function.
4346  */
4347 int __pci_reset_function_locked(struct pci_dev *dev)
4348 {
4349 	int rc;
4350 
4351 	might_sleep();
4352 
4353 	/*
4354 	 * A reset method returns -ENOTTY if it doesn't support this device
4355 	 * and we should try the next method.
4356 	 *
4357 	 * If it returns 0 (success), we're finished.  If it returns any
4358 	 * other error, we're also finished: this indicates that further
4359 	 * reset mechanisms might be broken on the device.
4360 	 */
4361 	rc = pci_dev_specific_reset(dev, 0);
4362 	if (rc != -ENOTTY)
4363 		return rc;
4364 	if (pcie_has_flr(dev)) {
4365 		rc = pcie_flr(dev);
4366 		if (rc != -ENOTTY)
4367 			return rc;
4368 	}
4369 	rc = pci_af_flr(dev, 0);
4370 	if (rc != -ENOTTY)
4371 		return rc;
4372 	rc = pci_pm_reset(dev, 0);
4373 	if (rc != -ENOTTY)
4374 		return rc;
4375 	rc = pci_dev_reset_slot_function(dev, 0);
4376 	if (rc != -ENOTTY)
4377 		return rc;
4378 	return pci_parent_bus_reset(dev, 0);
4379 }
4380 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4381 
4382 /**
4383  * pci_probe_reset_function - check whether the device can be safely reset
4384  * @dev: PCI device to reset
4385  *
4386  * Some devices allow an individual function to be reset without affecting
4387  * other functions in the same device.  The PCI device must be responsive
4388  * to PCI config space in order to use this function.
4389  *
4390  * Returns 0 if the device function can be reset or negative if the
4391  * device doesn't support resetting a single function.
4392  */
4393 int pci_probe_reset_function(struct pci_dev *dev)
4394 {
4395 	int rc;
4396 
4397 	might_sleep();
4398 
4399 	rc = pci_dev_specific_reset(dev, 1);
4400 	if (rc != -ENOTTY)
4401 		return rc;
4402 	if (pcie_has_flr(dev))
4403 		return 0;
4404 	rc = pci_af_flr(dev, 1);
4405 	if (rc != -ENOTTY)
4406 		return rc;
4407 	rc = pci_pm_reset(dev, 1);
4408 	if (rc != -ENOTTY)
4409 		return rc;
4410 	rc = pci_dev_reset_slot_function(dev, 1);
4411 	if (rc != -ENOTTY)
4412 		return rc;
4413 
4414 	return pci_parent_bus_reset(dev, 1);
4415 }
4416 
4417 /**
4418  * pci_reset_function - quiesce and reset a PCI device function
4419  * @dev: PCI device to reset
4420  *
4421  * Some devices allow an individual function to be reset without affecting
4422  * other functions in the same device.  The PCI device must be responsive
4423  * to PCI config space in order to use this function.
4424  *
4425  * This function does not just reset the PCI portion of a device, but
4426  * clears all the state associated with the device.  This function differs
4427  * from __pci_reset_function_locked() in that it saves and restores device state
4428  * over the reset and takes the PCI device lock.
4429  *
4430  * Returns 0 if the device function was successfully reset or negative if the
4431  * device doesn't support resetting a single function.
4432  */
4433 int pci_reset_function(struct pci_dev *dev)
4434 {
4435 	int rc;
4436 
4437 	if (!dev->reset_fn)
4438 		return -ENOTTY;
4439 
4440 	pci_dev_lock(dev);
4441 	pci_dev_save_and_disable(dev);
4442 
4443 	rc = __pci_reset_function_locked(dev);
4444 
4445 	pci_dev_restore(dev);
4446 	pci_dev_unlock(dev);
4447 
4448 	return rc;
4449 }
4450 EXPORT_SYMBOL_GPL(pci_reset_function);
4451 
4452 /**
4453  * pci_reset_function_locked - quiesce and reset a PCI device function
4454  * @dev: PCI device to reset
4455  *
4456  * Some devices allow an individual function to be reset without affecting
4457  * other functions in the same device.  The PCI device must be responsive
4458  * to PCI config space in order to use this function.
4459  *
4460  * This function does not just reset the PCI portion of a device, but
4461  * clears all the state associated with the device.  This function differs
4462  * from __pci_reset_function_locked() in that it saves and restores device state
4463  * over the reset.  It also differs from pci_reset_function() in that it
4464  * requires the PCI device lock to be held.
4465  *
4466  * Returns 0 if the device function was successfully reset or negative if the
4467  * device doesn't support resetting a single function.
4468  */
4469 int pci_reset_function_locked(struct pci_dev *dev)
4470 {
4471 	int rc;
4472 
4473 	if (!dev->reset_fn)
4474 		return -ENOTTY;
4475 
4476 	pci_dev_save_and_disable(dev);
4477 
4478 	rc = __pci_reset_function_locked(dev);
4479 
4480 	pci_dev_restore(dev);
4481 
4482 	return rc;
4483 }
4484 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4485 
4486 /**
4487  * pci_try_reset_function - quiesce and reset a PCI device function
4488  * @dev: PCI device to reset
4489  *
4490  * Same as above, except return -EAGAIN if unable to lock device.
4491  */
4492 int pci_try_reset_function(struct pci_dev *dev)
4493 {
4494 	int rc;
4495 
4496 	if (!dev->reset_fn)
4497 		return -ENOTTY;
4498 
4499 	if (!pci_dev_trylock(dev))
4500 		return -EAGAIN;
4501 
4502 	pci_dev_save_and_disable(dev);
4503 	rc = __pci_reset_function_locked(dev);
4504 	pci_dev_restore(dev);
4505 	pci_dev_unlock(dev);
4506 
4507 	return rc;
4508 }
4509 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4510 
4511 /* Do any devices on or below this bus prevent a bus reset? */
4512 static bool pci_bus_resetable(struct pci_bus *bus)
4513 {
4514 	struct pci_dev *dev;
4515 
4516 
4517 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4518 		return false;
4519 
4520 	list_for_each_entry(dev, &bus->devices, bus_list) {
4521 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4522 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4523 			return false;
4524 	}
4525 
4526 	return true;
4527 }
4528 
4529 /* Lock devices from the top of the tree down */
4530 static void pci_bus_lock(struct pci_bus *bus)
4531 {
4532 	struct pci_dev *dev;
4533 
4534 	list_for_each_entry(dev, &bus->devices, bus_list) {
4535 		pci_dev_lock(dev);
4536 		if (dev->subordinate)
4537 			pci_bus_lock(dev->subordinate);
4538 	}
4539 }
4540 
4541 /* Unlock devices from the bottom of the tree up */
4542 static void pci_bus_unlock(struct pci_bus *bus)
4543 {
4544 	struct pci_dev *dev;
4545 
4546 	list_for_each_entry(dev, &bus->devices, bus_list) {
4547 		if (dev->subordinate)
4548 			pci_bus_unlock(dev->subordinate);
4549 		pci_dev_unlock(dev);
4550 	}
4551 }
4552 
4553 /* Return 1 on successful lock, 0 on contention */
4554 static int pci_bus_trylock(struct pci_bus *bus)
4555 {
4556 	struct pci_dev *dev;
4557 
4558 	list_for_each_entry(dev, &bus->devices, bus_list) {
4559 		if (!pci_dev_trylock(dev))
4560 			goto unlock;
4561 		if (dev->subordinate) {
4562 			if (!pci_bus_trylock(dev->subordinate)) {
4563 				pci_dev_unlock(dev);
4564 				goto unlock;
4565 			}
4566 		}
4567 	}
4568 	return 1;
4569 
4570 unlock:
4571 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4572 		if (dev->subordinate)
4573 			pci_bus_unlock(dev->subordinate);
4574 		pci_dev_unlock(dev);
4575 	}
4576 	return 0;
4577 }
4578 
4579 /* Do any devices on or below this slot prevent a bus reset? */
4580 static bool pci_slot_resetable(struct pci_slot *slot)
4581 {
4582 	struct pci_dev *dev;
4583 
4584 	if (slot->bus->self &&
4585 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4586 		return false;
4587 
4588 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4589 		if (!dev->slot || dev->slot != slot)
4590 			continue;
4591 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4592 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4593 			return false;
4594 	}
4595 
4596 	return true;
4597 }
4598 
4599 /* Lock devices from the top of the tree down */
4600 static void pci_slot_lock(struct pci_slot *slot)
4601 {
4602 	struct pci_dev *dev;
4603 
4604 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4605 		if (!dev->slot || dev->slot != slot)
4606 			continue;
4607 		pci_dev_lock(dev);
4608 		if (dev->subordinate)
4609 			pci_bus_lock(dev->subordinate);
4610 	}
4611 }
4612 
4613 /* Unlock devices from the bottom of the tree up */
4614 static void pci_slot_unlock(struct pci_slot *slot)
4615 {
4616 	struct pci_dev *dev;
4617 
4618 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4619 		if (!dev->slot || dev->slot != slot)
4620 			continue;
4621 		if (dev->subordinate)
4622 			pci_bus_unlock(dev->subordinate);
4623 		pci_dev_unlock(dev);
4624 	}
4625 }
4626 
4627 /* Return 1 on successful lock, 0 on contention */
4628 static int pci_slot_trylock(struct pci_slot *slot)
4629 {
4630 	struct pci_dev *dev;
4631 
4632 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4633 		if (!dev->slot || dev->slot != slot)
4634 			continue;
4635 		if (!pci_dev_trylock(dev))
4636 			goto unlock;
4637 		if (dev->subordinate) {
4638 			if (!pci_bus_trylock(dev->subordinate)) {
4639 				pci_dev_unlock(dev);
4640 				goto unlock;
4641 			}
4642 		}
4643 	}
4644 	return 1;
4645 
4646 unlock:
4647 	list_for_each_entry_continue_reverse(dev,
4648 					     &slot->bus->devices, bus_list) {
4649 		if (!dev->slot || dev->slot != slot)
4650 			continue;
4651 		if (dev->subordinate)
4652 			pci_bus_unlock(dev->subordinate);
4653 		pci_dev_unlock(dev);
4654 	}
4655 	return 0;
4656 }
4657 
4658 /* Save and disable devices from the top of the tree down */
4659 static void pci_bus_save_and_disable(struct pci_bus *bus)
4660 {
4661 	struct pci_dev *dev;
4662 
4663 	list_for_each_entry(dev, &bus->devices, bus_list) {
4664 		pci_dev_lock(dev);
4665 		pci_dev_save_and_disable(dev);
4666 		pci_dev_unlock(dev);
4667 		if (dev->subordinate)
4668 			pci_bus_save_and_disable(dev->subordinate);
4669 	}
4670 }
4671 
4672 /*
4673  * Restore devices from top of the tree down - parent bridges need to be
4674  * restored before we can get to subordinate devices.
4675  */
4676 static void pci_bus_restore(struct pci_bus *bus)
4677 {
4678 	struct pci_dev *dev;
4679 
4680 	list_for_each_entry(dev, &bus->devices, bus_list) {
4681 		pci_dev_lock(dev);
4682 		pci_dev_restore(dev);
4683 		pci_dev_unlock(dev);
4684 		if (dev->subordinate)
4685 			pci_bus_restore(dev->subordinate);
4686 	}
4687 }
4688 
4689 /* Save and disable devices from the top of the tree down */
4690 static void pci_slot_save_and_disable(struct pci_slot *slot)
4691 {
4692 	struct pci_dev *dev;
4693 
4694 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4695 		if (!dev->slot || dev->slot != slot)
4696 			continue;
4697 		pci_dev_save_and_disable(dev);
4698 		if (dev->subordinate)
4699 			pci_bus_save_and_disable(dev->subordinate);
4700 	}
4701 }
4702 
4703 /*
4704  * Restore devices from top of the tree down - parent bridges need to be
4705  * restored before we can get to subordinate devices.
4706  */
4707 static void pci_slot_restore(struct pci_slot *slot)
4708 {
4709 	struct pci_dev *dev;
4710 
4711 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4712 		if (!dev->slot || dev->slot != slot)
4713 			continue;
4714 		pci_dev_lock(dev);
4715 		pci_dev_restore(dev);
4716 		pci_dev_unlock(dev);
4717 		if (dev->subordinate)
4718 			pci_bus_restore(dev->subordinate);
4719 	}
4720 }
4721 
4722 static int pci_slot_reset(struct pci_slot *slot, int probe)
4723 {
4724 	int rc;
4725 
4726 	if (!slot || !pci_slot_resetable(slot))
4727 		return -ENOTTY;
4728 
4729 	if (!probe)
4730 		pci_slot_lock(slot);
4731 
4732 	might_sleep();
4733 
4734 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4735 
4736 	if (!probe)
4737 		pci_slot_unlock(slot);
4738 
4739 	return rc;
4740 }
4741 
4742 /**
4743  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4744  * @slot: PCI slot to probe
4745  *
4746  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4747  */
4748 int pci_probe_reset_slot(struct pci_slot *slot)
4749 {
4750 	return pci_slot_reset(slot, 1);
4751 }
4752 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4753 
4754 /**
4755  * pci_reset_slot - reset a PCI slot
4756  * @slot: PCI slot to reset
4757  *
4758  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4759  * independent of other slots.  For instance, some slots may support slot power
4760  * control.  In the case of a 1:1 bus to slot architecture, this function may
4761  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4762  * Generally a slot reset should be attempted before a bus reset.  All of the
4763  * function of the slot and any subordinate buses behind the slot are reset
4764  * through this function.  PCI config space of all devices in the slot and
4765  * behind the slot is saved before and restored after reset.
4766  *
4767  * Return 0 on success, non-zero on error.
4768  */
4769 int pci_reset_slot(struct pci_slot *slot)
4770 {
4771 	int rc;
4772 
4773 	rc = pci_slot_reset(slot, 1);
4774 	if (rc)
4775 		return rc;
4776 
4777 	pci_slot_save_and_disable(slot);
4778 
4779 	rc = pci_slot_reset(slot, 0);
4780 
4781 	pci_slot_restore(slot);
4782 
4783 	return rc;
4784 }
4785 EXPORT_SYMBOL_GPL(pci_reset_slot);
4786 
4787 /**
4788  * pci_try_reset_slot - Try to reset a PCI slot
4789  * @slot: PCI slot to reset
4790  *
4791  * Same as above except return -EAGAIN if the slot cannot be locked
4792  */
4793 int pci_try_reset_slot(struct pci_slot *slot)
4794 {
4795 	int rc;
4796 
4797 	rc = pci_slot_reset(slot, 1);
4798 	if (rc)
4799 		return rc;
4800 
4801 	pci_slot_save_and_disable(slot);
4802 
4803 	if (pci_slot_trylock(slot)) {
4804 		might_sleep();
4805 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4806 		pci_slot_unlock(slot);
4807 	} else
4808 		rc = -EAGAIN;
4809 
4810 	pci_slot_restore(slot);
4811 
4812 	return rc;
4813 }
4814 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4815 
4816 static int pci_bus_reset(struct pci_bus *bus, int probe)
4817 {
4818 	if (!bus->self || !pci_bus_resetable(bus))
4819 		return -ENOTTY;
4820 
4821 	if (probe)
4822 		return 0;
4823 
4824 	pci_bus_lock(bus);
4825 
4826 	might_sleep();
4827 
4828 	pci_reset_bridge_secondary_bus(bus->self);
4829 
4830 	pci_bus_unlock(bus);
4831 
4832 	return 0;
4833 }
4834 
4835 /**
4836  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4837  * @bus: PCI bus to probe
4838  *
4839  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4840  */
4841 int pci_probe_reset_bus(struct pci_bus *bus)
4842 {
4843 	return pci_bus_reset(bus, 1);
4844 }
4845 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4846 
4847 /**
4848  * pci_reset_bus - reset a PCI bus
4849  * @bus: top level PCI bus to reset
4850  *
4851  * Do a bus reset on the given bus and any subordinate buses, saving
4852  * and restoring state of all devices.
4853  *
4854  * Return 0 on success, non-zero on error.
4855  */
4856 int pci_reset_bus(struct pci_bus *bus)
4857 {
4858 	int rc;
4859 
4860 	rc = pci_bus_reset(bus, 1);
4861 	if (rc)
4862 		return rc;
4863 
4864 	pci_bus_save_and_disable(bus);
4865 
4866 	rc = pci_bus_reset(bus, 0);
4867 
4868 	pci_bus_restore(bus);
4869 
4870 	return rc;
4871 }
4872 EXPORT_SYMBOL_GPL(pci_reset_bus);
4873 
4874 /**
4875  * pci_try_reset_bus - Try to reset a PCI bus
4876  * @bus: top level PCI bus to reset
4877  *
4878  * Same as above except return -EAGAIN if the bus cannot be locked
4879  */
4880 int pci_try_reset_bus(struct pci_bus *bus)
4881 {
4882 	int rc;
4883 
4884 	rc = pci_bus_reset(bus, 1);
4885 	if (rc)
4886 		return rc;
4887 
4888 	pci_bus_save_and_disable(bus);
4889 
4890 	if (pci_bus_trylock(bus)) {
4891 		might_sleep();
4892 		pci_reset_bridge_secondary_bus(bus->self);
4893 		pci_bus_unlock(bus);
4894 	} else
4895 		rc = -EAGAIN;
4896 
4897 	pci_bus_restore(bus);
4898 
4899 	return rc;
4900 }
4901 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4902 
4903 /**
4904  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4905  * @dev: PCI device to query
4906  *
4907  * Returns mmrbc: maximum designed memory read count in bytes
4908  *    or appropriate error value.
4909  */
4910 int pcix_get_max_mmrbc(struct pci_dev *dev)
4911 {
4912 	int cap;
4913 	u32 stat;
4914 
4915 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4916 	if (!cap)
4917 		return -EINVAL;
4918 
4919 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4920 		return -EINVAL;
4921 
4922 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4923 }
4924 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4925 
4926 /**
4927  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4928  * @dev: PCI device to query
4929  *
4930  * Returns mmrbc: maximum memory read count in bytes
4931  *    or appropriate error value.
4932  */
4933 int pcix_get_mmrbc(struct pci_dev *dev)
4934 {
4935 	int cap;
4936 	u16 cmd;
4937 
4938 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4939 	if (!cap)
4940 		return -EINVAL;
4941 
4942 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4943 		return -EINVAL;
4944 
4945 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4946 }
4947 EXPORT_SYMBOL(pcix_get_mmrbc);
4948 
4949 /**
4950  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4951  * @dev: PCI device to query
4952  * @mmrbc: maximum memory read count in bytes
4953  *    valid values are 512, 1024, 2048, 4096
4954  *
4955  * If possible sets maximum memory read byte count, some bridges have erratas
4956  * that prevent this.
4957  */
4958 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4959 {
4960 	int cap;
4961 	u32 stat, v, o;
4962 	u16 cmd;
4963 
4964 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4965 		return -EINVAL;
4966 
4967 	v = ffs(mmrbc) - 10;
4968 
4969 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4970 	if (!cap)
4971 		return -EINVAL;
4972 
4973 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4974 		return -EINVAL;
4975 
4976 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4977 		return -E2BIG;
4978 
4979 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4980 		return -EINVAL;
4981 
4982 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4983 	if (o != v) {
4984 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4985 			return -EIO;
4986 
4987 		cmd &= ~PCI_X_CMD_MAX_READ;
4988 		cmd |= v << 2;
4989 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4990 			return -EIO;
4991 	}
4992 	return 0;
4993 }
4994 EXPORT_SYMBOL(pcix_set_mmrbc);
4995 
4996 /**
4997  * pcie_get_readrq - get PCI Express read request size
4998  * @dev: PCI device to query
4999  *
5000  * Returns maximum memory read request in bytes
5001  *    or appropriate error value.
5002  */
5003 int pcie_get_readrq(struct pci_dev *dev)
5004 {
5005 	u16 ctl;
5006 
5007 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5008 
5009 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5010 }
5011 EXPORT_SYMBOL(pcie_get_readrq);
5012 
5013 /**
5014  * pcie_set_readrq - set PCI Express maximum memory read request
5015  * @dev: PCI device to query
5016  * @rq: maximum memory read count in bytes
5017  *    valid values are 128, 256, 512, 1024, 2048, 4096
5018  *
5019  * If possible sets maximum memory read request in bytes
5020  */
5021 int pcie_set_readrq(struct pci_dev *dev, int rq)
5022 {
5023 	u16 v;
5024 
5025 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5026 		return -EINVAL;
5027 
5028 	/*
5029 	 * If using the "performance" PCIe config, we clamp the
5030 	 * read rq size to the max packet size to prevent the
5031 	 * host bridge generating requests larger than we can
5032 	 * cope with
5033 	 */
5034 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5035 		int mps = pcie_get_mps(dev);
5036 
5037 		if (mps < rq)
5038 			rq = mps;
5039 	}
5040 
5041 	v = (ffs(rq) - 8) << 12;
5042 
5043 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5044 						  PCI_EXP_DEVCTL_READRQ, v);
5045 }
5046 EXPORT_SYMBOL(pcie_set_readrq);
5047 
5048 /**
5049  * pcie_get_mps - get PCI Express maximum payload size
5050  * @dev: PCI device to query
5051  *
5052  * Returns maximum payload size in bytes
5053  */
5054 int pcie_get_mps(struct pci_dev *dev)
5055 {
5056 	u16 ctl;
5057 
5058 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5059 
5060 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5061 }
5062 EXPORT_SYMBOL(pcie_get_mps);
5063 
5064 /**
5065  * pcie_set_mps - set PCI Express maximum payload size
5066  * @dev: PCI device to query
5067  * @mps: maximum payload size in bytes
5068  *    valid values are 128, 256, 512, 1024, 2048, 4096
5069  *
5070  * If possible sets maximum payload size
5071  */
5072 int pcie_set_mps(struct pci_dev *dev, int mps)
5073 {
5074 	u16 v;
5075 
5076 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5077 		return -EINVAL;
5078 
5079 	v = ffs(mps) - 8;
5080 	if (v > dev->pcie_mpss)
5081 		return -EINVAL;
5082 	v <<= 5;
5083 
5084 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5085 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5086 }
5087 EXPORT_SYMBOL(pcie_set_mps);
5088 
5089 /**
5090  * pcie_get_minimum_link - determine minimum link settings of a PCI device
5091  * @dev: PCI device to query
5092  * @speed: storage for minimum speed
5093  * @width: storage for minimum width
5094  *
5095  * This function will walk up the PCI device chain and determine the minimum
5096  * link width and speed of the device.
5097  */
5098 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5099 			  enum pcie_link_width *width)
5100 {
5101 	int ret;
5102 
5103 	*speed = PCI_SPEED_UNKNOWN;
5104 	*width = PCIE_LNK_WIDTH_UNKNOWN;
5105 
5106 	while (dev) {
5107 		u16 lnksta;
5108 		enum pci_bus_speed next_speed;
5109 		enum pcie_link_width next_width;
5110 
5111 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5112 		if (ret)
5113 			return ret;
5114 
5115 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5116 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5117 			PCI_EXP_LNKSTA_NLW_SHIFT;
5118 
5119 		if (next_speed < *speed)
5120 			*speed = next_speed;
5121 
5122 		if (next_width < *width)
5123 			*width = next_width;
5124 
5125 		dev = dev->bus->self;
5126 	}
5127 
5128 	return 0;
5129 }
5130 EXPORT_SYMBOL(pcie_get_minimum_link);
5131 
5132 /**
5133  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5134  *			      device and its bandwidth limitation
5135  * @dev: PCI device to query
5136  * @limiting_dev: storage for device causing the bandwidth limitation
5137  * @speed: storage for speed of limiting device
5138  * @width: storage for width of limiting device
5139  *
5140  * Walk up the PCI device chain and find the point where the minimum
5141  * bandwidth is available.  Return the bandwidth available there and (if
5142  * limiting_dev, speed, and width pointers are supplied) information about
5143  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5144  * raw bandwidth.
5145  */
5146 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5147 			     enum pci_bus_speed *speed,
5148 			     enum pcie_link_width *width)
5149 {
5150 	u16 lnksta;
5151 	enum pci_bus_speed next_speed;
5152 	enum pcie_link_width next_width;
5153 	u32 bw, next_bw;
5154 
5155 	if (speed)
5156 		*speed = PCI_SPEED_UNKNOWN;
5157 	if (width)
5158 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5159 
5160 	bw = 0;
5161 
5162 	while (dev) {
5163 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5164 
5165 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5166 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5167 			PCI_EXP_LNKSTA_NLW_SHIFT;
5168 
5169 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5170 
5171 		/* Check if current device limits the total bandwidth */
5172 		if (!bw || next_bw <= bw) {
5173 			bw = next_bw;
5174 
5175 			if (limiting_dev)
5176 				*limiting_dev = dev;
5177 			if (speed)
5178 				*speed = next_speed;
5179 			if (width)
5180 				*width = next_width;
5181 		}
5182 
5183 		dev = pci_upstream_bridge(dev);
5184 	}
5185 
5186 	return bw;
5187 }
5188 EXPORT_SYMBOL(pcie_bandwidth_available);
5189 
5190 /**
5191  * pcie_get_speed_cap - query for the PCI device's link speed capability
5192  * @dev: PCI device to query
5193  *
5194  * Query the PCI device speed capability.  Return the maximum link speed
5195  * supported by the device.
5196  */
5197 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5198 {
5199 	u32 lnkcap2, lnkcap;
5200 
5201 	/*
5202 	 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5203 	 * Speeds Vector in Link Capabilities 2 when supported, falling
5204 	 * back to Max Link Speed in Link Capabilities otherwise.
5205 	 */
5206 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5207 	if (lnkcap2) { /* PCIe r3.0-compliant */
5208 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5209 			return PCIE_SPEED_16_0GT;
5210 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5211 			return PCIE_SPEED_8_0GT;
5212 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5213 			return PCIE_SPEED_5_0GT;
5214 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5215 			return PCIE_SPEED_2_5GT;
5216 		return PCI_SPEED_UNKNOWN;
5217 	}
5218 
5219 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5220 	if (lnkcap) {
5221 		if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5222 			return PCIE_SPEED_16_0GT;
5223 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5224 			return PCIE_SPEED_8_0GT;
5225 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5226 			return PCIE_SPEED_5_0GT;
5227 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5228 			return PCIE_SPEED_2_5GT;
5229 	}
5230 
5231 	return PCI_SPEED_UNKNOWN;
5232 }
5233 
5234 /**
5235  * pcie_get_width_cap - query for the PCI device's link width capability
5236  * @dev: PCI device to query
5237  *
5238  * Query the PCI device width capability.  Return the maximum link width
5239  * supported by the device.
5240  */
5241 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5242 {
5243 	u32 lnkcap;
5244 
5245 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5246 	if (lnkcap)
5247 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5248 
5249 	return PCIE_LNK_WIDTH_UNKNOWN;
5250 }
5251 
5252 /**
5253  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5254  * @dev: PCI device
5255  * @speed: storage for link speed
5256  * @width: storage for link width
5257  *
5258  * Calculate a PCI device's link bandwidth by querying for its link speed
5259  * and width, multiplying them, and applying encoding overhead.  The result
5260  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5261  */
5262 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5263 			   enum pcie_link_width *width)
5264 {
5265 	*speed = pcie_get_speed_cap(dev);
5266 	*width = pcie_get_width_cap(dev);
5267 
5268 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5269 		return 0;
5270 
5271 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5272 }
5273 
5274 /**
5275  * pcie_print_link_status - Report the PCI device's link speed and width
5276  * @dev: PCI device to query
5277  *
5278  * Report the available bandwidth at the device.  If this is less than the
5279  * device is capable of, report the device's maximum possible bandwidth and
5280  * the upstream link that limits its performance to less than that.
5281  */
5282 void pcie_print_link_status(struct pci_dev *dev)
5283 {
5284 	enum pcie_link_width width, width_cap;
5285 	enum pci_bus_speed speed, speed_cap;
5286 	struct pci_dev *limiting_dev = NULL;
5287 	u32 bw_avail, bw_cap;
5288 
5289 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5290 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5291 
5292 	if (bw_avail >= bw_cap)
5293 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5294 			 bw_cap / 1000, bw_cap % 1000,
5295 			 PCIE_SPEED2STR(speed_cap), width_cap);
5296 	else
5297 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5298 			 bw_avail / 1000, bw_avail % 1000,
5299 			 PCIE_SPEED2STR(speed), width,
5300 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5301 			 bw_cap / 1000, bw_cap % 1000,
5302 			 PCIE_SPEED2STR(speed_cap), width_cap);
5303 }
5304 EXPORT_SYMBOL(pcie_print_link_status);
5305 
5306 /**
5307  * pci_select_bars - Make BAR mask from the type of resource
5308  * @dev: the PCI device for which BAR mask is made
5309  * @flags: resource type mask to be selected
5310  *
5311  * This helper routine makes bar mask from the type of resource.
5312  */
5313 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5314 {
5315 	int i, bars = 0;
5316 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5317 		if (pci_resource_flags(dev, i) & flags)
5318 			bars |= (1 << i);
5319 	return bars;
5320 }
5321 EXPORT_SYMBOL(pci_select_bars);
5322 
5323 /* Some architectures require additional programming to enable VGA */
5324 static arch_set_vga_state_t arch_set_vga_state;
5325 
5326 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5327 {
5328 	arch_set_vga_state = func;	/* NULL disables */
5329 }
5330 
5331 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5332 				  unsigned int command_bits, u32 flags)
5333 {
5334 	if (arch_set_vga_state)
5335 		return arch_set_vga_state(dev, decode, command_bits,
5336 						flags);
5337 	return 0;
5338 }
5339 
5340 /**
5341  * pci_set_vga_state - set VGA decode state on device and parents if requested
5342  * @dev: the PCI device
5343  * @decode: true = enable decoding, false = disable decoding
5344  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5345  * @flags: traverse ancestors and change bridges
5346  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5347  */
5348 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5349 		      unsigned int command_bits, u32 flags)
5350 {
5351 	struct pci_bus *bus;
5352 	struct pci_dev *bridge;
5353 	u16 cmd;
5354 	int rc;
5355 
5356 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5357 
5358 	/* ARCH specific VGA enables */
5359 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5360 	if (rc)
5361 		return rc;
5362 
5363 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5364 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5365 		if (decode == true)
5366 			cmd |= command_bits;
5367 		else
5368 			cmd &= ~command_bits;
5369 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5370 	}
5371 
5372 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5373 		return 0;
5374 
5375 	bus = dev->bus;
5376 	while (bus) {
5377 		bridge = bus->self;
5378 		if (bridge) {
5379 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5380 					     &cmd);
5381 			if (decode == true)
5382 				cmd |= PCI_BRIDGE_CTL_VGA;
5383 			else
5384 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5385 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5386 					      cmd);
5387 		}
5388 		bus = bus->parent;
5389 	}
5390 	return 0;
5391 }
5392 
5393 /**
5394  * pci_add_dma_alias - Add a DMA devfn alias for a device
5395  * @dev: the PCI device for which alias is added
5396  * @devfn: alias slot and function
5397  *
5398  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5399  * It should be called early, preferably as PCI fixup header quirk.
5400  */
5401 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5402 {
5403 	if (!dev->dma_alias_mask)
5404 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5405 					      sizeof(long), GFP_KERNEL);
5406 	if (!dev->dma_alias_mask) {
5407 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5408 		return;
5409 	}
5410 
5411 	set_bit(devfn, dev->dma_alias_mask);
5412 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5413 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5414 }
5415 
5416 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5417 {
5418 	return (dev1->dma_alias_mask &&
5419 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5420 	       (dev2->dma_alias_mask &&
5421 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5422 }
5423 
5424 bool pci_device_is_present(struct pci_dev *pdev)
5425 {
5426 	u32 v;
5427 
5428 	if (pci_dev_is_disconnected(pdev))
5429 		return false;
5430 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5431 }
5432 EXPORT_SYMBOL_GPL(pci_device_is_present);
5433 
5434 void pci_ignore_hotplug(struct pci_dev *dev)
5435 {
5436 	struct pci_dev *bridge = dev->bus->self;
5437 
5438 	dev->ignore_hotplug = 1;
5439 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5440 	if (bridge)
5441 		bridge->ignore_hotplug = 1;
5442 }
5443 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5444 
5445 resource_size_t __weak pcibios_default_alignment(void)
5446 {
5447 	return 0;
5448 }
5449 
5450 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5451 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5452 static DEFINE_SPINLOCK(resource_alignment_lock);
5453 
5454 /**
5455  * pci_specified_resource_alignment - get resource alignment specified by user.
5456  * @dev: the PCI device to get
5457  * @resize: whether or not to change resources' size when reassigning alignment
5458  *
5459  * RETURNS: Resource alignment if it is specified.
5460  *          Zero if it is not specified.
5461  */
5462 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5463 							bool *resize)
5464 {
5465 	int seg, bus, slot, func, align_order, count;
5466 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5467 	resource_size_t align = pcibios_default_alignment();
5468 	char *p;
5469 
5470 	spin_lock(&resource_alignment_lock);
5471 	p = resource_alignment_param;
5472 	if (!*p && !align)
5473 		goto out;
5474 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5475 		align = 0;
5476 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5477 		goto out;
5478 	}
5479 
5480 	while (*p) {
5481 		count = 0;
5482 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5483 							p[count] == '@') {
5484 			p += count + 1;
5485 		} else {
5486 			align_order = -1;
5487 		}
5488 		if (strncmp(p, "pci:", 4) == 0) {
5489 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5490 			p += 4;
5491 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5492 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5493 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5494 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5495 						p);
5496 					break;
5497 				}
5498 				subsystem_vendor = subsystem_device = 0;
5499 			}
5500 			p += count;
5501 			if ((!vendor || (vendor == dev->vendor)) &&
5502 				(!device || (device == dev->device)) &&
5503 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5504 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5505 				*resize = true;
5506 				if (align_order == -1)
5507 					align = PAGE_SIZE;
5508 				else
5509 					align = 1 << align_order;
5510 				/* Found */
5511 				break;
5512 			}
5513 		}
5514 		else {
5515 			if (sscanf(p, "%x:%x:%x.%x%n",
5516 				&seg, &bus, &slot, &func, &count) != 4) {
5517 				seg = 0;
5518 				if (sscanf(p, "%x:%x.%x%n",
5519 						&bus, &slot, &func, &count) != 3) {
5520 					/* Invalid format */
5521 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5522 						p);
5523 					break;
5524 				}
5525 			}
5526 			p += count;
5527 			if (seg == pci_domain_nr(dev->bus) &&
5528 				bus == dev->bus->number &&
5529 				slot == PCI_SLOT(dev->devfn) &&
5530 				func == PCI_FUNC(dev->devfn)) {
5531 				*resize = true;
5532 				if (align_order == -1)
5533 					align = PAGE_SIZE;
5534 				else
5535 					align = 1 << align_order;
5536 				/* Found */
5537 				break;
5538 			}
5539 		}
5540 		if (*p != ';' && *p != ',') {
5541 			/* End of param or invalid format */
5542 			break;
5543 		}
5544 		p++;
5545 	}
5546 out:
5547 	spin_unlock(&resource_alignment_lock);
5548 	return align;
5549 }
5550 
5551 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5552 					   resource_size_t align, bool resize)
5553 {
5554 	struct resource *r = &dev->resource[bar];
5555 	resource_size_t size;
5556 
5557 	if (!(r->flags & IORESOURCE_MEM))
5558 		return;
5559 
5560 	if (r->flags & IORESOURCE_PCI_FIXED) {
5561 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5562 			 bar, r, (unsigned long long)align);
5563 		return;
5564 	}
5565 
5566 	size = resource_size(r);
5567 	if (size >= align)
5568 		return;
5569 
5570 	/*
5571 	 * Increase the alignment of the resource.  There are two ways we
5572 	 * can do this:
5573 	 *
5574 	 * 1) Increase the size of the resource.  BARs are aligned on their
5575 	 *    size, so when we reallocate space for this resource, we'll
5576 	 *    allocate it with the larger alignment.  This also prevents
5577 	 *    assignment of any other BARs inside the alignment region, so
5578 	 *    if we're requesting page alignment, this means no other BARs
5579 	 *    will share the page.
5580 	 *
5581 	 *    The disadvantage is that this makes the resource larger than
5582 	 *    the hardware BAR, which may break drivers that compute things
5583 	 *    based on the resource size, e.g., to find registers at a
5584 	 *    fixed offset before the end of the BAR.
5585 	 *
5586 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5587 	 *    set r->start to the desired alignment.  By itself this
5588 	 *    doesn't prevent other BARs being put inside the alignment
5589 	 *    region, but if we realign *every* resource of every device in
5590 	 *    the system, none of them will share an alignment region.
5591 	 *
5592 	 * When the user has requested alignment for only some devices via
5593 	 * the "pci=resource_alignment" argument, "resize" is true and we
5594 	 * use the first method.  Otherwise we assume we're aligning all
5595 	 * devices and we use the second.
5596 	 */
5597 
5598 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5599 		 bar, r, (unsigned long long)align);
5600 
5601 	if (resize) {
5602 		r->start = 0;
5603 		r->end = align - 1;
5604 	} else {
5605 		r->flags &= ~IORESOURCE_SIZEALIGN;
5606 		r->flags |= IORESOURCE_STARTALIGN;
5607 		r->start = align;
5608 		r->end = r->start + size - 1;
5609 	}
5610 	r->flags |= IORESOURCE_UNSET;
5611 }
5612 
5613 /*
5614  * This function disables memory decoding and releases memory resources
5615  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5616  * It also rounds up size to specified alignment.
5617  * Later on, the kernel will assign page-aligned memory resource back
5618  * to the device.
5619  */
5620 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5621 {
5622 	int i;
5623 	struct resource *r;
5624 	resource_size_t align;
5625 	u16 command;
5626 	bool resize = false;
5627 
5628 	/*
5629 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5630 	 * 3.4.1.11.  Their resources are allocated from the space
5631 	 * described by the VF BARx register in the PF's SR-IOV capability.
5632 	 * We can't influence their alignment here.
5633 	 */
5634 	if (dev->is_virtfn)
5635 		return;
5636 
5637 	/* check if specified PCI is target device to reassign */
5638 	align = pci_specified_resource_alignment(dev, &resize);
5639 	if (!align)
5640 		return;
5641 
5642 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5643 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5644 		pci_warn(dev, "Can't reassign resources to host bridge\n");
5645 		return;
5646 	}
5647 
5648 	pci_read_config_word(dev, PCI_COMMAND, &command);
5649 	command &= ~PCI_COMMAND_MEMORY;
5650 	pci_write_config_word(dev, PCI_COMMAND, command);
5651 
5652 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5653 		pci_request_resource_alignment(dev, i, align, resize);
5654 
5655 	/*
5656 	 * Need to disable bridge's resource window,
5657 	 * to enable the kernel to reassign new resource
5658 	 * window later on.
5659 	 */
5660 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5661 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5662 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5663 			r = &dev->resource[i];
5664 			if (!(r->flags & IORESOURCE_MEM))
5665 				continue;
5666 			r->flags |= IORESOURCE_UNSET;
5667 			r->end = resource_size(r) - 1;
5668 			r->start = 0;
5669 		}
5670 		pci_disable_bridge_window(dev);
5671 	}
5672 }
5673 
5674 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5675 {
5676 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5677 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5678 	spin_lock(&resource_alignment_lock);
5679 	strncpy(resource_alignment_param, buf, count);
5680 	resource_alignment_param[count] = '\0';
5681 	spin_unlock(&resource_alignment_lock);
5682 	return count;
5683 }
5684 
5685 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5686 {
5687 	size_t count;
5688 	spin_lock(&resource_alignment_lock);
5689 	count = snprintf(buf, size, "%s", resource_alignment_param);
5690 	spin_unlock(&resource_alignment_lock);
5691 	return count;
5692 }
5693 
5694 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5695 {
5696 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5697 }
5698 
5699 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5700 					const char *buf, size_t count)
5701 {
5702 	return pci_set_resource_alignment_param(buf, count);
5703 }
5704 
5705 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5706 					pci_resource_alignment_store);
5707 
5708 static int __init pci_resource_alignment_sysfs_init(void)
5709 {
5710 	return bus_create_file(&pci_bus_type,
5711 					&bus_attr_resource_alignment);
5712 }
5713 late_initcall(pci_resource_alignment_sysfs_init);
5714 
5715 static void pci_no_domains(void)
5716 {
5717 #ifdef CONFIG_PCI_DOMAINS
5718 	pci_domains_supported = 0;
5719 #endif
5720 }
5721 
5722 #ifdef CONFIG_PCI_DOMAINS
5723 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5724 
5725 int pci_get_new_domain_nr(void)
5726 {
5727 	return atomic_inc_return(&__domain_nr);
5728 }
5729 
5730 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5731 static int of_pci_bus_find_domain_nr(struct device *parent)
5732 {
5733 	static int use_dt_domains = -1;
5734 	int domain = -1;
5735 
5736 	if (parent)
5737 		domain = of_get_pci_domain_nr(parent->of_node);
5738 	/*
5739 	 * Check DT domain and use_dt_domains values.
5740 	 *
5741 	 * If DT domain property is valid (domain >= 0) and
5742 	 * use_dt_domains != 0, the DT assignment is valid since this means
5743 	 * we have not previously allocated a domain number by using
5744 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5745 	 * 1, to indicate that we have just assigned a domain number from
5746 	 * DT.
5747 	 *
5748 	 * If DT domain property value is not valid (ie domain < 0), and we
5749 	 * have not previously assigned a domain number from DT
5750 	 * (use_dt_domains != 1) we should assign a domain number by
5751 	 * using the:
5752 	 *
5753 	 * pci_get_new_domain_nr()
5754 	 *
5755 	 * API and update the use_dt_domains value to keep track of method we
5756 	 * are using to assign domain numbers (use_dt_domains = 0).
5757 	 *
5758 	 * All other combinations imply we have a platform that is trying
5759 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5760 	 * which is a recipe for domain mishandling and it is prevented by
5761 	 * invalidating the domain value (domain = -1) and printing a
5762 	 * corresponding error.
5763 	 */
5764 	if (domain >= 0 && use_dt_domains) {
5765 		use_dt_domains = 1;
5766 	} else if (domain < 0 && use_dt_domains != 1) {
5767 		use_dt_domains = 0;
5768 		domain = pci_get_new_domain_nr();
5769 	} else {
5770 		if (parent)
5771 			pr_err("Node %pOF has ", parent->of_node);
5772 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
5773 		domain = -1;
5774 	}
5775 
5776 	return domain;
5777 }
5778 
5779 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5780 {
5781 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5782 			       acpi_pci_bus_find_domain_nr(bus);
5783 }
5784 #endif
5785 #endif
5786 
5787 /**
5788  * pci_ext_cfg_avail - can we access extended PCI config space?
5789  *
5790  * Returns 1 if we can access PCI extended config space (offsets
5791  * greater than 0xff). This is the default implementation. Architecture
5792  * implementations can override this.
5793  */
5794 int __weak pci_ext_cfg_avail(void)
5795 {
5796 	return 1;
5797 }
5798 
5799 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5800 {
5801 }
5802 EXPORT_SYMBOL(pci_fixup_cardbus);
5803 
5804 static int __init pci_setup(char *str)
5805 {
5806 	while (str) {
5807 		char *k = strchr(str, ',');
5808 		if (k)
5809 			*k++ = 0;
5810 		if (*str && (str = pcibios_setup(str)) && *str) {
5811 			if (!strcmp(str, "nomsi")) {
5812 				pci_no_msi();
5813 			} else if (!strcmp(str, "noaer")) {
5814 				pci_no_aer();
5815 			} else if (!strncmp(str, "realloc=", 8)) {
5816 				pci_realloc_get_opt(str + 8);
5817 			} else if (!strncmp(str, "realloc", 7)) {
5818 				pci_realloc_get_opt("on");
5819 			} else if (!strcmp(str, "nodomains")) {
5820 				pci_no_domains();
5821 			} else if (!strncmp(str, "noari", 5)) {
5822 				pcie_ari_disabled = true;
5823 			} else if (!strncmp(str, "cbiosize=", 9)) {
5824 				pci_cardbus_io_size = memparse(str + 9, &str);
5825 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5826 				pci_cardbus_mem_size = memparse(str + 10, &str);
5827 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5828 				pci_set_resource_alignment_param(str + 19,
5829 							strlen(str + 19));
5830 			} else if (!strncmp(str, "ecrc=", 5)) {
5831 				pcie_ecrc_get_policy(str + 5);
5832 			} else if (!strncmp(str, "hpiosize=", 9)) {
5833 				pci_hotplug_io_size = memparse(str + 9, &str);
5834 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5835 				pci_hotplug_mem_size = memparse(str + 10, &str);
5836 			} else if (!strncmp(str, "hpbussize=", 10)) {
5837 				pci_hotplug_bus_size =
5838 					simple_strtoul(str + 10, &str, 0);
5839 				if (pci_hotplug_bus_size > 0xff)
5840 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5841 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5842 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5843 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5844 				pcie_bus_config = PCIE_BUS_SAFE;
5845 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5846 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5847 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5848 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5849 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5850 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5851 			} else {
5852 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5853 						str);
5854 			}
5855 		}
5856 		str = k;
5857 	}
5858 	return 0;
5859 }
5860 early_param("pci", pci_setup);
5861