1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pci-aspm.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 static void pci_dev_d3_sleep(struct pci_dev *dev) 66 { 67 unsigned int delay = dev->d3_delay; 68 69 if (delay < pci_pm_d3_delay) 70 delay = pci_pm_d3_delay; 71 72 if (delay) 73 msleep(delay); 74 } 75 76 #ifdef CONFIG_PCI_DOMAINS 77 int pci_domains_supported = 1; 78 #endif 79 80 #define DEFAULT_CARDBUS_IO_SIZE (256) 81 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 85 86 #define DEFAULT_HOTPLUG_IO_SIZE (256) 87 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 91 92 #define DEFAULT_HOTPLUG_BUS_SIZE 1 93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 94 95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 96 97 /* 98 * The default CLS is used if arch didn't set CLS explicitly and not 99 * all pci devices agree on the same value. Arch can override either 100 * the dfl or actual value as it sees fit. Don't forget this is 101 * measured in 32-bit words, not bytes. 102 */ 103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 104 u8 pci_cache_line_size; 105 106 /* 107 * If we set up a device for bus mastering, we need to check the latency 108 * timer as certain BIOSes forget to set it properly. 109 */ 110 unsigned int pcibios_max_latency = 255; 111 112 /* If set, the PCIe ARI capability will not be used. */ 113 static bool pcie_ari_disabled; 114 115 /* Disable bridge_d3 for all PCIe ports */ 116 static bool pci_bridge_d3_disable; 117 /* Force bridge_d3 for all PCIe ports */ 118 static bool pci_bridge_d3_force; 119 120 static int __init pcie_port_pm_setup(char *str) 121 { 122 if (!strcmp(str, "off")) 123 pci_bridge_d3_disable = true; 124 else if (!strcmp(str, "force")) 125 pci_bridge_d3_force = true; 126 return 1; 127 } 128 __setup("pcie_port_pm=", pcie_port_pm_setup); 129 130 /* Time to wait after a reset for device to become responsive */ 131 #define PCIE_RESET_READY_POLL_MS 60000 132 133 /** 134 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 135 * @bus: pointer to PCI bus structure to search 136 * 137 * Given a PCI bus, returns the highest PCI bus number present in the set 138 * including the given PCI bus and its list of child PCI buses. 139 */ 140 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 141 { 142 struct pci_bus *tmp; 143 unsigned char max, n; 144 145 max = bus->busn_res.end; 146 list_for_each_entry(tmp, &bus->children, node) { 147 n = pci_bus_max_busnr(tmp); 148 if (n > max) 149 max = n; 150 } 151 return max; 152 } 153 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 154 155 #ifdef CONFIG_HAS_IOMEM 156 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 157 { 158 struct resource *res = &pdev->resource[bar]; 159 160 /* 161 * Make sure the BAR is actually a memory resource, not an IO resource 162 */ 163 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 164 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 165 return NULL; 166 } 167 return ioremap_nocache(res->start, resource_size(res)); 168 } 169 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 170 171 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 172 { 173 /* 174 * Make sure the BAR is actually a memory resource, not an IO resource 175 */ 176 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 177 WARN_ON(1); 178 return NULL; 179 } 180 return ioremap_wc(pci_resource_start(pdev, bar), 181 pci_resource_len(pdev, bar)); 182 } 183 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 184 #endif 185 186 187 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 188 u8 pos, int cap, int *ttl) 189 { 190 u8 id; 191 u16 ent; 192 193 pci_bus_read_config_byte(bus, devfn, pos, &pos); 194 195 while ((*ttl)--) { 196 if (pos < 0x40) 197 break; 198 pos &= ~3; 199 pci_bus_read_config_word(bus, devfn, pos, &ent); 200 201 id = ent & 0xff; 202 if (id == 0xff) 203 break; 204 if (id == cap) 205 return pos; 206 pos = (ent >> 8); 207 } 208 return 0; 209 } 210 211 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 212 u8 pos, int cap) 213 { 214 int ttl = PCI_FIND_CAP_TTL; 215 216 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 217 } 218 219 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 220 { 221 return __pci_find_next_cap(dev->bus, dev->devfn, 222 pos + PCI_CAP_LIST_NEXT, cap); 223 } 224 EXPORT_SYMBOL_GPL(pci_find_next_capability); 225 226 static int __pci_bus_find_cap_start(struct pci_bus *bus, 227 unsigned int devfn, u8 hdr_type) 228 { 229 u16 status; 230 231 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 232 if (!(status & PCI_STATUS_CAP_LIST)) 233 return 0; 234 235 switch (hdr_type) { 236 case PCI_HEADER_TYPE_NORMAL: 237 case PCI_HEADER_TYPE_BRIDGE: 238 return PCI_CAPABILITY_LIST; 239 case PCI_HEADER_TYPE_CARDBUS: 240 return PCI_CB_CAPABILITY_LIST; 241 } 242 243 return 0; 244 } 245 246 /** 247 * pci_find_capability - query for devices' capabilities 248 * @dev: PCI device to query 249 * @cap: capability code 250 * 251 * Tell if a device supports a given PCI capability. 252 * Returns the address of the requested capability structure within the 253 * device's PCI configuration space or 0 in case the device does not 254 * support it. Possible values for @cap: 255 * 256 * %PCI_CAP_ID_PM Power Management 257 * %PCI_CAP_ID_AGP Accelerated Graphics Port 258 * %PCI_CAP_ID_VPD Vital Product Data 259 * %PCI_CAP_ID_SLOTID Slot Identification 260 * %PCI_CAP_ID_MSI Message Signalled Interrupts 261 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 262 * %PCI_CAP_ID_PCIX PCI-X 263 * %PCI_CAP_ID_EXP PCI Express 264 */ 265 int pci_find_capability(struct pci_dev *dev, int cap) 266 { 267 int pos; 268 269 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 270 if (pos) 271 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 272 273 return pos; 274 } 275 EXPORT_SYMBOL(pci_find_capability); 276 277 /** 278 * pci_bus_find_capability - query for devices' capabilities 279 * @bus: the PCI bus to query 280 * @devfn: PCI device to query 281 * @cap: capability code 282 * 283 * Like pci_find_capability() but works for pci devices that do not have a 284 * pci_dev structure set up yet. 285 * 286 * Returns the address of the requested capability structure within the 287 * device's PCI configuration space or 0 in case the device does not 288 * support it. 289 */ 290 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 291 { 292 int pos; 293 u8 hdr_type; 294 295 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 296 297 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 298 if (pos) 299 pos = __pci_find_next_cap(bus, devfn, pos, cap); 300 301 return pos; 302 } 303 EXPORT_SYMBOL(pci_bus_find_capability); 304 305 /** 306 * pci_find_next_ext_capability - Find an extended capability 307 * @dev: PCI device to query 308 * @start: address at which to start looking (0 to start at beginning of list) 309 * @cap: capability code 310 * 311 * Returns the address of the next matching extended capability structure 312 * within the device's PCI configuration space or 0 if the device does 313 * not support it. Some capabilities can occur several times, e.g., the 314 * vendor-specific capability, and this provides a way to find them all. 315 */ 316 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 317 { 318 u32 header; 319 int ttl; 320 int pos = PCI_CFG_SPACE_SIZE; 321 322 /* minimum 8 bytes per capability */ 323 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 324 325 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 326 return 0; 327 328 if (start) 329 pos = start; 330 331 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 332 return 0; 333 334 /* 335 * If we have no capabilities, this is indicated by cap ID, 336 * cap version and next pointer all being 0. 337 */ 338 if (header == 0) 339 return 0; 340 341 while (ttl-- > 0) { 342 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 343 return pos; 344 345 pos = PCI_EXT_CAP_NEXT(header); 346 if (pos < PCI_CFG_SPACE_SIZE) 347 break; 348 349 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 350 break; 351 } 352 353 return 0; 354 } 355 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 356 357 /** 358 * pci_find_ext_capability - Find an extended capability 359 * @dev: PCI device to query 360 * @cap: capability code 361 * 362 * Returns the address of the requested extended capability structure 363 * within the device's PCI configuration space or 0 if the device does 364 * not support it. Possible values for @cap: 365 * 366 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 367 * %PCI_EXT_CAP_ID_VC Virtual Channel 368 * %PCI_EXT_CAP_ID_DSN Device Serial Number 369 * %PCI_EXT_CAP_ID_PWR Power Budgeting 370 */ 371 int pci_find_ext_capability(struct pci_dev *dev, int cap) 372 { 373 return pci_find_next_ext_capability(dev, 0, cap); 374 } 375 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 376 377 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 378 { 379 int rc, ttl = PCI_FIND_CAP_TTL; 380 u8 cap, mask; 381 382 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 383 mask = HT_3BIT_CAP_MASK; 384 else 385 mask = HT_5BIT_CAP_MASK; 386 387 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 388 PCI_CAP_ID_HT, &ttl); 389 while (pos) { 390 rc = pci_read_config_byte(dev, pos + 3, &cap); 391 if (rc != PCIBIOS_SUCCESSFUL) 392 return 0; 393 394 if ((cap & mask) == ht_cap) 395 return pos; 396 397 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 398 pos + PCI_CAP_LIST_NEXT, 399 PCI_CAP_ID_HT, &ttl); 400 } 401 402 return 0; 403 } 404 /** 405 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 406 * @dev: PCI device to query 407 * @pos: Position from which to continue searching 408 * @ht_cap: Hypertransport capability code 409 * 410 * To be used in conjunction with pci_find_ht_capability() to search for 411 * all capabilities matching @ht_cap. @pos should always be a value returned 412 * from pci_find_ht_capability(). 413 * 414 * NB. To be 100% safe against broken PCI devices, the caller should take 415 * steps to avoid an infinite loop. 416 */ 417 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 418 { 419 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 420 } 421 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 422 423 /** 424 * pci_find_ht_capability - query a device's Hypertransport capabilities 425 * @dev: PCI device to query 426 * @ht_cap: Hypertransport capability code 427 * 428 * Tell if a device supports a given Hypertransport capability. 429 * Returns an address within the device's PCI configuration space 430 * or 0 in case the device does not support the request capability. 431 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 432 * which has a Hypertransport capability matching @ht_cap. 433 */ 434 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 435 { 436 int pos; 437 438 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 439 if (pos) 440 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 441 442 return pos; 443 } 444 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 445 446 /** 447 * pci_find_parent_resource - return resource region of parent bus of given region 448 * @dev: PCI device structure contains resources to be searched 449 * @res: child resource record for which parent is sought 450 * 451 * For given resource region of given device, return the resource 452 * region of parent bus the given region is contained in. 453 */ 454 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 455 struct resource *res) 456 { 457 const struct pci_bus *bus = dev->bus; 458 struct resource *r; 459 int i; 460 461 pci_bus_for_each_resource(bus, r, i) { 462 if (!r) 463 continue; 464 if (resource_contains(r, res)) { 465 466 /* 467 * If the window is prefetchable but the BAR is 468 * not, the allocator made a mistake. 469 */ 470 if (r->flags & IORESOURCE_PREFETCH && 471 !(res->flags & IORESOURCE_PREFETCH)) 472 return NULL; 473 474 /* 475 * If we're below a transparent bridge, there may 476 * be both a positively-decoded aperture and a 477 * subtractively-decoded region that contain the BAR. 478 * We want the positively-decoded one, so this depends 479 * on pci_bus_for_each_resource() giving us those 480 * first. 481 */ 482 return r; 483 } 484 } 485 return NULL; 486 } 487 EXPORT_SYMBOL(pci_find_parent_resource); 488 489 /** 490 * pci_find_resource - Return matching PCI device resource 491 * @dev: PCI device to query 492 * @res: Resource to look for 493 * 494 * Goes over standard PCI resources (BARs) and checks if the given resource 495 * is partially or fully contained in any of them. In that case the 496 * matching resource is returned, %NULL otherwise. 497 */ 498 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 499 { 500 int i; 501 502 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 503 struct resource *r = &dev->resource[i]; 504 505 if (r->start && resource_contains(r, res)) 506 return r; 507 } 508 509 return NULL; 510 } 511 EXPORT_SYMBOL(pci_find_resource); 512 513 /** 514 * pci_find_pcie_root_port - return PCIe Root Port 515 * @dev: PCI device to query 516 * 517 * Traverse up the parent chain and return the PCIe Root Port PCI Device 518 * for a given PCI Device. 519 */ 520 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 521 { 522 struct pci_dev *bridge, *highest_pcie_bridge = dev; 523 524 bridge = pci_upstream_bridge(dev); 525 while (bridge && pci_is_pcie(bridge)) { 526 highest_pcie_bridge = bridge; 527 bridge = pci_upstream_bridge(bridge); 528 } 529 530 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 531 return NULL; 532 533 return highest_pcie_bridge; 534 } 535 EXPORT_SYMBOL(pci_find_pcie_root_port); 536 537 /** 538 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 539 * @dev: the PCI device to operate on 540 * @pos: config space offset of status word 541 * @mask: mask of bit(s) to care about in status word 542 * 543 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 544 */ 545 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 546 { 547 int i; 548 549 /* Wait for Transaction Pending bit clean */ 550 for (i = 0; i < 4; i++) { 551 u16 status; 552 if (i) 553 msleep((1 << (i - 1)) * 100); 554 555 pci_read_config_word(dev, pos, &status); 556 if (!(status & mask)) 557 return 1; 558 } 559 560 return 0; 561 } 562 563 /** 564 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 565 * @dev: PCI device to have its BARs restored 566 * 567 * Restore the BAR values for a given device, so as to make it 568 * accessible by its driver. 569 */ 570 static void pci_restore_bars(struct pci_dev *dev) 571 { 572 int i; 573 574 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 575 pci_update_resource(dev, i); 576 } 577 578 static const struct pci_platform_pm_ops *pci_platform_pm; 579 580 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 581 { 582 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 583 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 584 return -EINVAL; 585 pci_platform_pm = ops; 586 return 0; 587 } 588 589 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 590 { 591 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 592 } 593 594 static inline int platform_pci_set_power_state(struct pci_dev *dev, 595 pci_power_t t) 596 { 597 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 598 } 599 600 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 601 { 602 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 603 } 604 605 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 606 { 607 return pci_platform_pm ? 608 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 609 } 610 611 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 612 { 613 return pci_platform_pm ? 614 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 615 } 616 617 static inline bool platform_pci_need_resume(struct pci_dev *dev) 618 { 619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 620 } 621 622 /** 623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 624 * given PCI device 625 * @dev: PCI device to handle. 626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 627 * 628 * RETURN VALUE: 629 * -EINVAL if the requested state is invalid. 630 * -EIO if device does not support PCI PM or its PM capabilities register has a 631 * wrong version, or device doesn't support the requested state. 632 * 0 if device already is in the requested state. 633 * 0 if device's power state has been successfully changed. 634 */ 635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 636 { 637 u16 pmcsr; 638 bool need_restore = false; 639 640 /* Check if we're already there */ 641 if (dev->current_state == state) 642 return 0; 643 644 if (!dev->pm_cap) 645 return -EIO; 646 647 if (state < PCI_D0 || state > PCI_D3hot) 648 return -EINVAL; 649 650 /* Validate current state: 651 * Can enter D0 from any state, but if we can only go deeper 652 * to sleep if we're already in a low power state 653 */ 654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 655 && dev->current_state > state) { 656 pci_err(dev, "invalid power transition (from state %d to %d)\n", 657 dev->current_state, state); 658 return -EINVAL; 659 } 660 661 /* check if this device supports the desired state */ 662 if ((state == PCI_D1 && !dev->d1_support) 663 || (state == PCI_D2 && !dev->d2_support)) 664 return -EIO; 665 666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 667 668 /* If we're (effectively) in D3, force entire word to 0. 669 * This doesn't affect PME_Status, disables PME_En, and 670 * sets PowerState to 0. 671 */ 672 switch (dev->current_state) { 673 case PCI_D0: 674 case PCI_D1: 675 case PCI_D2: 676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 677 pmcsr |= state; 678 break; 679 case PCI_D3hot: 680 case PCI_D3cold: 681 case PCI_UNKNOWN: /* Boot-up */ 682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 684 need_restore = true; 685 /* Fall-through: force to D0 */ 686 default: 687 pmcsr = 0; 688 break; 689 } 690 691 /* enter specified state */ 692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 693 694 /* Mandatory power management transition delays */ 695 /* see PCI PM 1.1 5.6.1 table 18 */ 696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 697 pci_dev_d3_sleep(dev); 698 else if (state == PCI_D2 || dev->current_state == PCI_D2) 699 udelay(PCI_PM_D2_DELAY); 700 701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 703 if (dev->current_state != state && printk_ratelimit()) 704 pci_info(dev, "Refused to change power state, currently in D%d\n", 705 dev->current_state); 706 707 /* 708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 710 * from D3hot to D0 _may_ perform an internal reset, thereby 711 * going to "D0 Uninitialized" rather than "D0 Initialized". 712 * For example, at least some versions of the 3c905B and the 713 * 3c556B exhibit this behaviour. 714 * 715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 716 * devices in a D3hot state at boot. Consequently, we need to 717 * restore at least the BARs so that the device will be 718 * accessible to its driver. 719 */ 720 if (need_restore) 721 pci_restore_bars(dev); 722 723 if (dev->bus->self) 724 pcie_aspm_pm_state_change(dev->bus->self); 725 726 return 0; 727 } 728 729 /** 730 * pci_update_current_state - Read power state of given device and cache it 731 * @dev: PCI device to handle. 732 * @state: State to cache in case the device doesn't have the PM capability 733 * 734 * The power state is read from the PMCSR register, which however is 735 * inaccessible in D3cold. The platform firmware is therefore queried first 736 * to detect accessibility of the register. In case the platform firmware 737 * reports an incorrect state or the device isn't power manageable by the 738 * platform at all, we try to detect D3cold by testing accessibility of the 739 * vendor ID in config space. 740 */ 741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 742 { 743 if (platform_pci_get_power_state(dev) == PCI_D3cold || 744 !pci_device_is_present(dev)) { 745 dev->current_state = PCI_D3cold; 746 } else if (dev->pm_cap) { 747 u16 pmcsr; 748 749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 751 } else { 752 dev->current_state = state; 753 } 754 } 755 756 /** 757 * pci_power_up - Put the given device into D0 forcibly 758 * @dev: PCI device to power up 759 */ 760 void pci_power_up(struct pci_dev *dev) 761 { 762 if (platform_pci_power_manageable(dev)) 763 platform_pci_set_power_state(dev, PCI_D0); 764 765 pci_raw_set_power_state(dev, PCI_D0); 766 pci_update_current_state(dev, PCI_D0); 767 } 768 769 /** 770 * pci_platform_power_transition - Use platform to change device power state 771 * @dev: PCI device to handle. 772 * @state: State to put the device into. 773 */ 774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 775 { 776 int error; 777 778 if (platform_pci_power_manageable(dev)) { 779 error = platform_pci_set_power_state(dev, state); 780 if (!error) 781 pci_update_current_state(dev, state); 782 } else 783 error = -ENODEV; 784 785 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 786 dev->current_state = PCI_D0; 787 788 return error; 789 } 790 791 /** 792 * pci_wakeup - Wake up a PCI device 793 * @pci_dev: Device to handle. 794 * @ign: ignored parameter 795 */ 796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 797 { 798 pci_wakeup_event(pci_dev); 799 pm_request_resume(&pci_dev->dev); 800 return 0; 801 } 802 803 /** 804 * pci_wakeup_bus - Walk given bus and wake up devices on it 805 * @bus: Top bus of the subtree to walk. 806 */ 807 void pci_wakeup_bus(struct pci_bus *bus) 808 { 809 if (bus) 810 pci_walk_bus(bus, pci_wakeup, NULL); 811 } 812 813 /** 814 * __pci_start_power_transition - Start power transition of a PCI device 815 * @dev: PCI device to handle. 816 * @state: State to put the device into. 817 */ 818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 819 { 820 if (state == PCI_D0) { 821 pci_platform_power_transition(dev, PCI_D0); 822 /* 823 * Mandatory power management transition delays, see 824 * PCI Express Base Specification Revision 2.0 Section 825 * 6.6.1: Conventional Reset. Do not delay for 826 * devices powered on/off by corresponding bridge, 827 * because have already delayed for the bridge. 828 */ 829 if (dev->runtime_d3cold) { 830 if (dev->d3cold_delay) 831 msleep(dev->d3cold_delay); 832 /* 833 * When powering on a bridge from D3cold, the 834 * whole hierarchy may be powered on into 835 * D0uninitialized state, resume them to give 836 * them a chance to suspend again 837 */ 838 pci_wakeup_bus(dev->subordinate); 839 } 840 } 841 } 842 843 /** 844 * __pci_dev_set_current_state - Set current state of a PCI device 845 * @dev: Device to handle 846 * @data: pointer to state to be set 847 */ 848 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 849 { 850 pci_power_t state = *(pci_power_t *)data; 851 852 dev->current_state = state; 853 return 0; 854 } 855 856 /** 857 * pci_bus_set_current_state - Walk given bus and set current state of devices 858 * @bus: Top bus of the subtree to walk. 859 * @state: state to be set 860 */ 861 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 862 { 863 if (bus) 864 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 865 } 866 867 /** 868 * __pci_complete_power_transition - Complete power transition of a PCI device 869 * @dev: PCI device to handle. 870 * @state: State to put the device into. 871 * 872 * This function should not be called directly by device drivers. 873 */ 874 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 875 { 876 int ret; 877 878 if (state <= PCI_D0) 879 return -EINVAL; 880 ret = pci_platform_power_transition(dev, state); 881 /* Power off the bridge may power off the whole hierarchy */ 882 if (!ret && state == PCI_D3cold) 883 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 884 return ret; 885 } 886 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 887 888 /** 889 * pci_set_power_state - Set the power state of a PCI device 890 * @dev: PCI device to handle. 891 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 892 * 893 * Transition a device to a new power state, using the platform firmware and/or 894 * the device's PCI PM registers. 895 * 896 * RETURN VALUE: 897 * -EINVAL if the requested state is invalid. 898 * -EIO if device does not support PCI PM or its PM capabilities register has a 899 * wrong version, or device doesn't support the requested state. 900 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 901 * 0 if device already is in the requested state. 902 * 0 if the transition is to D3 but D3 is not supported. 903 * 0 if device's power state has been successfully changed. 904 */ 905 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 906 { 907 int error; 908 909 /* bound the state we're entering */ 910 if (state > PCI_D3cold) 911 state = PCI_D3cold; 912 else if (state < PCI_D0) 913 state = PCI_D0; 914 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 915 /* 916 * If the device or the parent bridge do not support PCI PM, 917 * ignore the request if we're doing anything other than putting 918 * it into D0 (which would only happen on boot). 919 */ 920 return 0; 921 922 /* Check if we're already there */ 923 if (dev->current_state == state) 924 return 0; 925 926 __pci_start_power_transition(dev, state); 927 928 /* This device is quirked not to be put into D3, so 929 don't put it in D3 */ 930 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 931 return 0; 932 933 /* 934 * To put device in D3cold, we put device into D3hot in native 935 * way, then put device into D3cold with platform ops 936 */ 937 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 938 PCI_D3hot : state); 939 940 if (!__pci_complete_power_transition(dev, state)) 941 error = 0; 942 943 return error; 944 } 945 EXPORT_SYMBOL(pci_set_power_state); 946 947 /** 948 * pci_choose_state - Choose the power state of a PCI device 949 * @dev: PCI device to be suspended 950 * @state: target sleep state for the whole system. This is the value 951 * that is passed to suspend() function. 952 * 953 * Returns PCI power state suitable for given device and given system 954 * message. 955 */ 956 957 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 958 { 959 pci_power_t ret; 960 961 if (!dev->pm_cap) 962 return PCI_D0; 963 964 ret = platform_pci_choose_state(dev); 965 if (ret != PCI_POWER_ERROR) 966 return ret; 967 968 switch (state.event) { 969 case PM_EVENT_ON: 970 return PCI_D0; 971 case PM_EVENT_FREEZE: 972 case PM_EVENT_PRETHAW: 973 /* REVISIT both freeze and pre-thaw "should" use D0 */ 974 case PM_EVENT_SUSPEND: 975 case PM_EVENT_HIBERNATE: 976 return PCI_D3hot; 977 default: 978 pci_info(dev, "unrecognized suspend event %d\n", 979 state.event); 980 BUG(); 981 } 982 return PCI_D0; 983 } 984 EXPORT_SYMBOL(pci_choose_state); 985 986 #define PCI_EXP_SAVE_REGS 7 987 988 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 989 u16 cap, bool extended) 990 { 991 struct pci_cap_saved_state *tmp; 992 993 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 994 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 995 return tmp; 996 } 997 return NULL; 998 } 999 1000 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1001 { 1002 return _pci_find_saved_cap(dev, cap, false); 1003 } 1004 1005 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1006 { 1007 return _pci_find_saved_cap(dev, cap, true); 1008 } 1009 1010 static int pci_save_pcie_state(struct pci_dev *dev) 1011 { 1012 int i = 0; 1013 struct pci_cap_saved_state *save_state; 1014 u16 *cap; 1015 1016 if (!pci_is_pcie(dev)) 1017 return 0; 1018 1019 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1020 if (!save_state) { 1021 pci_err(dev, "buffer not found in %s\n", __func__); 1022 return -ENOMEM; 1023 } 1024 1025 cap = (u16 *)&save_state->cap.data[0]; 1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1029 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1030 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1031 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1032 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1033 1034 return 0; 1035 } 1036 1037 static void pci_restore_pcie_state(struct pci_dev *dev) 1038 { 1039 int i = 0; 1040 struct pci_cap_saved_state *save_state; 1041 u16 *cap; 1042 1043 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1044 if (!save_state) 1045 return; 1046 1047 cap = (u16 *)&save_state->cap.data[0]; 1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1051 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1052 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1053 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1054 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1055 } 1056 1057 1058 static int pci_save_pcix_state(struct pci_dev *dev) 1059 { 1060 int pos; 1061 struct pci_cap_saved_state *save_state; 1062 1063 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1064 if (!pos) 1065 return 0; 1066 1067 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1068 if (!save_state) { 1069 pci_err(dev, "buffer not found in %s\n", __func__); 1070 return -ENOMEM; 1071 } 1072 1073 pci_read_config_word(dev, pos + PCI_X_CMD, 1074 (u16 *)save_state->cap.data); 1075 1076 return 0; 1077 } 1078 1079 static void pci_restore_pcix_state(struct pci_dev *dev) 1080 { 1081 int i = 0, pos; 1082 struct pci_cap_saved_state *save_state; 1083 u16 *cap; 1084 1085 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1086 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1087 if (!save_state || !pos) 1088 return; 1089 cap = (u16 *)&save_state->cap.data[0]; 1090 1091 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1092 } 1093 1094 1095 /** 1096 * pci_save_state - save the PCI configuration space of a device before suspending 1097 * @dev: - PCI device that we're dealing with 1098 */ 1099 int pci_save_state(struct pci_dev *dev) 1100 { 1101 int i; 1102 /* XXX: 100% dword access ok here? */ 1103 for (i = 0; i < 16; i++) 1104 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1105 dev->state_saved = true; 1106 1107 i = pci_save_pcie_state(dev); 1108 if (i != 0) 1109 return i; 1110 1111 i = pci_save_pcix_state(dev); 1112 if (i != 0) 1113 return i; 1114 1115 return pci_save_vc_state(dev); 1116 } 1117 EXPORT_SYMBOL(pci_save_state); 1118 1119 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1120 u32 saved_val, int retry) 1121 { 1122 u32 val; 1123 1124 pci_read_config_dword(pdev, offset, &val); 1125 if (val == saved_val) 1126 return; 1127 1128 for (;;) { 1129 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1130 offset, val, saved_val); 1131 pci_write_config_dword(pdev, offset, saved_val); 1132 if (retry-- <= 0) 1133 return; 1134 1135 pci_read_config_dword(pdev, offset, &val); 1136 if (val == saved_val) 1137 return; 1138 1139 mdelay(1); 1140 } 1141 } 1142 1143 static void pci_restore_config_space_range(struct pci_dev *pdev, 1144 int start, int end, int retry) 1145 { 1146 int index; 1147 1148 for (index = end; index >= start; index--) 1149 pci_restore_config_dword(pdev, 4 * index, 1150 pdev->saved_config_space[index], 1151 retry); 1152 } 1153 1154 static void pci_restore_config_space(struct pci_dev *pdev) 1155 { 1156 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1157 pci_restore_config_space_range(pdev, 10, 15, 0); 1158 /* Restore BARs before the command register. */ 1159 pci_restore_config_space_range(pdev, 4, 9, 10); 1160 pci_restore_config_space_range(pdev, 0, 3, 0); 1161 } else { 1162 pci_restore_config_space_range(pdev, 0, 15, 0); 1163 } 1164 } 1165 1166 /** 1167 * pci_restore_state - Restore the saved state of a PCI device 1168 * @dev: - PCI device that we're dealing with 1169 */ 1170 void pci_restore_state(struct pci_dev *dev) 1171 { 1172 if (!dev->state_saved) 1173 return; 1174 1175 /* PCI Express register must be restored first */ 1176 pci_restore_pcie_state(dev); 1177 pci_restore_pasid_state(dev); 1178 pci_restore_pri_state(dev); 1179 pci_restore_ats_state(dev); 1180 pci_restore_vc_state(dev); 1181 1182 pci_cleanup_aer_error_status_regs(dev); 1183 1184 pci_restore_config_space(dev); 1185 1186 pci_restore_pcix_state(dev); 1187 pci_restore_msi_state(dev); 1188 1189 /* Restore ACS and IOV configuration state */ 1190 pci_enable_acs(dev); 1191 pci_restore_iov_state(dev); 1192 1193 dev->state_saved = false; 1194 } 1195 EXPORT_SYMBOL(pci_restore_state); 1196 1197 struct pci_saved_state { 1198 u32 config_space[16]; 1199 struct pci_cap_saved_data cap[0]; 1200 }; 1201 1202 /** 1203 * pci_store_saved_state - Allocate and return an opaque struct containing 1204 * the device saved state. 1205 * @dev: PCI device that we're dealing with 1206 * 1207 * Return NULL if no state or error. 1208 */ 1209 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1210 { 1211 struct pci_saved_state *state; 1212 struct pci_cap_saved_state *tmp; 1213 struct pci_cap_saved_data *cap; 1214 size_t size; 1215 1216 if (!dev->state_saved) 1217 return NULL; 1218 1219 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1220 1221 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1222 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1223 1224 state = kzalloc(size, GFP_KERNEL); 1225 if (!state) 1226 return NULL; 1227 1228 memcpy(state->config_space, dev->saved_config_space, 1229 sizeof(state->config_space)); 1230 1231 cap = state->cap; 1232 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1233 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1234 memcpy(cap, &tmp->cap, len); 1235 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1236 } 1237 /* Empty cap_save terminates list */ 1238 1239 return state; 1240 } 1241 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1242 1243 /** 1244 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1245 * @dev: PCI device that we're dealing with 1246 * @state: Saved state returned from pci_store_saved_state() 1247 */ 1248 int pci_load_saved_state(struct pci_dev *dev, 1249 struct pci_saved_state *state) 1250 { 1251 struct pci_cap_saved_data *cap; 1252 1253 dev->state_saved = false; 1254 1255 if (!state) 1256 return 0; 1257 1258 memcpy(dev->saved_config_space, state->config_space, 1259 sizeof(state->config_space)); 1260 1261 cap = state->cap; 1262 while (cap->size) { 1263 struct pci_cap_saved_state *tmp; 1264 1265 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1266 if (!tmp || tmp->cap.size != cap->size) 1267 return -EINVAL; 1268 1269 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1270 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1271 sizeof(struct pci_cap_saved_data) + cap->size); 1272 } 1273 1274 dev->state_saved = true; 1275 return 0; 1276 } 1277 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1278 1279 /** 1280 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1281 * and free the memory allocated for it. 1282 * @dev: PCI device that we're dealing with 1283 * @state: Pointer to saved state returned from pci_store_saved_state() 1284 */ 1285 int pci_load_and_free_saved_state(struct pci_dev *dev, 1286 struct pci_saved_state **state) 1287 { 1288 int ret = pci_load_saved_state(dev, *state); 1289 kfree(*state); 1290 *state = NULL; 1291 return ret; 1292 } 1293 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1294 1295 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1296 { 1297 return pci_enable_resources(dev, bars); 1298 } 1299 1300 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1301 { 1302 int err; 1303 struct pci_dev *bridge; 1304 u16 cmd; 1305 u8 pin; 1306 1307 err = pci_set_power_state(dev, PCI_D0); 1308 if (err < 0 && err != -EIO) 1309 return err; 1310 1311 bridge = pci_upstream_bridge(dev); 1312 if (bridge) 1313 pcie_aspm_powersave_config_link(bridge); 1314 1315 err = pcibios_enable_device(dev, bars); 1316 if (err < 0) 1317 return err; 1318 pci_fixup_device(pci_fixup_enable, dev); 1319 1320 if (dev->msi_enabled || dev->msix_enabled) 1321 return 0; 1322 1323 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1324 if (pin) { 1325 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1326 if (cmd & PCI_COMMAND_INTX_DISABLE) 1327 pci_write_config_word(dev, PCI_COMMAND, 1328 cmd & ~PCI_COMMAND_INTX_DISABLE); 1329 } 1330 1331 return 0; 1332 } 1333 1334 /** 1335 * pci_reenable_device - Resume abandoned device 1336 * @dev: PCI device to be resumed 1337 * 1338 * Note this function is a backend of pci_default_resume and is not supposed 1339 * to be called by normal code, write proper resume handler and use it instead. 1340 */ 1341 int pci_reenable_device(struct pci_dev *dev) 1342 { 1343 if (pci_is_enabled(dev)) 1344 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1345 return 0; 1346 } 1347 EXPORT_SYMBOL(pci_reenable_device); 1348 1349 static void pci_enable_bridge(struct pci_dev *dev) 1350 { 1351 struct pci_dev *bridge; 1352 int retval; 1353 1354 bridge = pci_upstream_bridge(dev); 1355 if (bridge) 1356 pci_enable_bridge(bridge); 1357 1358 if (pci_is_enabled(dev)) { 1359 if (!dev->is_busmaster) 1360 pci_set_master(dev); 1361 return; 1362 } 1363 1364 retval = pci_enable_device(dev); 1365 if (retval) 1366 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1367 retval); 1368 pci_set_master(dev); 1369 } 1370 1371 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1372 { 1373 struct pci_dev *bridge; 1374 int err; 1375 int i, bars = 0; 1376 1377 /* 1378 * Power state could be unknown at this point, either due to a fresh 1379 * boot or a device removal call. So get the current power state 1380 * so that things like MSI message writing will behave as expected 1381 * (e.g. if the device really is in D0 at enable time). 1382 */ 1383 if (dev->pm_cap) { 1384 u16 pmcsr; 1385 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1386 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1387 } 1388 1389 if (atomic_inc_return(&dev->enable_cnt) > 1) 1390 return 0; /* already enabled */ 1391 1392 bridge = pci_upstream_bridge(dev); 1393 if (bridge) 1394 pci_enable_bridge(bridge); 1395 1396 /* only skip sriov related */ 1397 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1398 if (dev->resource[i].flags & flags) 1399 bars |= (1 << i); 1400 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1401 if (dev->resource[i].flags & flags) 1402 bars |= (1 << i); 1403 1404 err = do_pci_enable_device(dev, bars); 1405 if (err < 0) 1406 atomic_dec(&dev->enable_cnt); 1407 return err; 1408 } 1409 1410 /** 1411 * pci_enable_device_io - Initialize a device for use with IO space 1412 * @dev: PCI device to be initialized 1413 * 1414 * Initialize device before it's used by a driver. Ask low-level code 1415 * to enable I/O resources. Wake up the device if it was suspended. 1416 * Beware, this function can fail. 1417 */ 1418 int pci_enable_device_io(struct pci_dev *dev) 1419 { 1420 return pci_enable_device_flags(dev, IORESOURCE_IO); 1421 } 1422 EXPORT_SYMBOL(pci_enable_device_io); 1423 1424 /** 1425 * pci_enable_device_mem - Initialize a device for use with Memory space 1426 * @dev: PCI device to be initialized 1427 * 1428 * Initialize device before it's used by a driver. Ask low-level code 1429 * to enable Memory resources. Wake up the device if it was suspended. 1430 * Beware, this function can fail. 1431 */ 1432 int pci_enable_device_mem(struct pci_dev *dev) 1433 { 1434 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1435 } 1436 EXPORT_SYMBOL(pci_enable_device_mem); 1437 1438 /** 1439 * pci_enable_device - Initialize device before it's used by a driver. 1440 * @dev: PCI device to be initialized 1441 * 1442 * Initialize device before it's used by a driver. Ask low-level code 1443 * to enable I/O and memory. Wake up the device if it was suspended. 1444 * Beware, this function can fail. 1445 * 1446 * Note we don't actually enable the device many times if we call 1447 * this function repeatedly (we just increment the count). 1448 */ 1449 int pci_enable_device(struct pci_dev *dev) 1450 { 1451 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1452 } 1453 EXPORT_SYMBOL(pci_enable_device); 1454 1455 /* 1456 * Managed PCI resources. This manages device on/off, intx/msi/msix 1457 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1458 * there's no need to track it separately. pci_devres is initialized 1459 * when a device is enabled using managed PCI device enable interface. 1460 */ 1461 struct pci_devres { 1462 unsigned int enabled:1; 1463 unsigned int pinned:1; 1464 unsigned int orig_intx:1; 1465 unsigned int restore_intx:1; 1466 unsigned int mwi:1; 1467 u32 region_mask; 1468 }; 1469 1470 static void pcim_release(struct device *gendev, void *res) 1471 { 1472 struct pci_dev *dev = to_pci_dev(gendev); 1473 struct pci_devres *this = res; 1474 int i; 1475 1476 if (dev->msi_enabled) 1477 pci_disable_msi(dev); 1478 if (dev->msix_enabled) 1479 pci_disable_msix(dev); 1480 1481 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1482 if (this->region_mask & (1 << i)) 1483 pci_release_region(dev, i); 1484 1485 if (this->mwi) 1486 pci_clear_mwi(dev); 1487 1488 if (this->restore_intx) 1489 pci_intx(dev, this->orig_intx); 1490 1491 if (this->enabled && !this->pinned) 1492 pci_disable_device(dev); 1493 } 1494 1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1496 { 1497 struct pci_devres *dr, *new_dr; 1498 1499 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1500 if (dr) 1501 return dr; 1502 1503 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1504 if (!new_dr) 1505 return NULL; 1506 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1507 } 1508 1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1510 { 1511 if (pci_is_managed(pdev)) 1512 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1513 return NULL; 1514 } 1515 1516 /** 1517 * pcim_enable_device - Managed pci_enable_device() 1518 * @pdev: PCI device to be initialized 1519 * 1520 * Managed pci_enable_device(). 1521 */ 1522 int pcim_enable_device(struct pci_dev *pdev) 1523 { 1524 struct pci_devres *dr; 1525 int rc; 1526 1527 dr = get_pci_dr(pdev); 1528 if (unlikely(!dr)) 1529 return -ENOMEM; 1530 if (dr->enabled) 1531 return 0; 1532 1533 rc = pci_enable_device(pdev); 1534 if (!rc) { 1535 pdev->is_managed = 1; 1536 dr->enabled = 1; 1537 } 1538 return rc; 1539 } 1540 EXPORT_SYMBOL(pcim_enable_device); 1541 1542 /** 1543 * pcim_pin_device - Pin managed PCI device 1544 * @pdev: PCI device to pin 1545 * 1546 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1547 * driver detach. @pdev must have been enabled with 1548 * pcim_enable_device(). 1549 */ 1550 void pcim_pin_device(struct pci_dev *pdev) 1551 { 1552 struct pci_devres *dr; 1553 1554 dr = find_pci_dr(pdev); 1555 WARN_ON(!dr || !dr->enabled); 1556 if (dr) 1557 dr->pinned = 1; 1558 } 1559 EXPORT_SYMBOL(pcim_pin_device); 1560 1561 /* 1562 * pcibios_add_device - provide arch specific hooks when adding device dev 1563 * @dev: the PCI device being added 1564 * 1565 * Permits the platform to provide architecture specific functionality when 1566 * devices are added. This is the default implementation. Architecture 1567 * implementations can override this. 1568 */ 1569 int __weak pcibios_add_device(struct pci_dev *dev) 1570 { 1571 return 0; 1572 } 1573 1574 /** 1575 * pcibios_release_device - provide arch specific hooks when releasing device dev 1576 * @dev: the PCI device being released 1577 * 1578 * Permits the platform to provide architecture specific functionality when 1579 * devices are released. This is the default implementation. Architecture 1580 * implementations can override this. 1581 */ 1582 void __weak pcibios_release_device(struct pci_dev *dev) {} 1583 1584 /** 1585 * pcibios_disable_device - disable arch specific PCI resources for device dev 1586 * @dev: the PCI device to disable 1587 * 1588 * Disables architecture specific PCI resources for the device. This 1589 * is the default implementation. Architecture implementations can 1590 * override this. 1591 */ 1592 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1593 1594 /** 1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1596 * @irq: ISA IRQ to penalize 1597 * @active: IRQ active or not 1598 * 1599 * Permits the platform to provide architecture-specific functionality when 1600 * penalizing ISA IRQs. This is the default implementation. Architecture 1601 * implementations can override this. 1602 */ 1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1604 1605 static void do_pci_disable_device(struct pci_dev *dev) 1606 { 1607 u16 pci_command; 1608 1609 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1610 if (pci_command & PCI_COMMAND_MASTER) { 1611 pci_command &= ~PCI_COMMAND_MASTER; 1612 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1613 } 1614 1615 pcibios_disable_device(dev); 1616 } 1617 1618 /** 1619 * pci_disable_enabled_device - Disable device without updating enable_cnt 1620 * @dev: PCI device to disable 1621 * 1622 * NOTE: This function is a backend of PCI power management routines and is 1623 * not supposed to be called drivers. 1624 */ 1625 void pci_disable_enabled_device(struct pci_dev *dev) 1626 { 1627 if (pci_is_enabled(dev)) 1628 do_pci_disable_device(dev); 1629 } 1630 1631 /** 1632 * pci_disable_device - Disable PCI device after use 1633 * @dev: PCI device to be disabled 1634 * 1635 * Signal to the system that the PCI device is not in use by the system 1636 * anymore. This only involves disabling PCI bus-mastering, if active. 1637 * 1638 * Note we don't actually disable the device until all callers of 1639 * pci_enable_device() have called pci_disable_device(). 1640 */ 1641 void pci_disable_device(struct pci_dev *dev) 1642 { 1643 struct pci_devres *dr; 1644 1645 dr = find_pci_dr(dev); 1646 if (dr) 1647 dr->enabled = 0; 1648 1649 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1650 "disabling already-disabled device"); 1651 1652 if (atomic_dec_return(&dev->enable_cnt) != 0) 1653 return; 1654 1655 do_pci_disable_device(dev); 1656 1657 dev->is_busmaster = 0; 1658 } 1659 EXPORT_SYMBOL(pci_disable_device); 1660 1661 /** 1662 * pcibios_set_pcie_reset_state - set reset state for device dev 1663 * @dev: the PCIe device reset 1664 * @state: Reset state to enter into 1665 * 1666 * 1667 * Sets the PCIe reset state for the device. This is the default 1668 * implementation. Architecture implementations can override this. 1669 */ 1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1671 enum pcie_reset_state state) 1672 { 1673 return -EINVAL; 1674 } 1675 1676 /** 1677 * pci_set_pcie_reset_state - set reset state for device dev 1678 * @dev: the PCIe device reset 1679 * @state: Reset state to enter into 1680 * 1681 * 1682 * Sets the PCI reset state for the device. 1683 */ 1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1685 { 1686 return pcibios_set_pcie_reset_state(dev, state); 1687 } 1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1689 1690 /** 1691 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1692 * @dev: PCIe root port or event collector. 1693 */ 1694 void pcie_clear_root_pme_status(struct pci_dev *dev) 1695 { 1696 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1697 } 1698 1699 /** 1700 * pci_check_pme_status - Check if given device has generated PME. 1701 * @dev: Device to check. 1702 * 1703 * Check the PME status of the device and if set, clear it and clear PME enable 1704 * (if set). Return 'true' if PME status and PME enable were both set or 1705 * 'false' otherwise. 1706 */ 1707 bool pci_check_pme_status(struct pci_dev *dev) 1708 { 1709 int pmcsr_pos; 1710 u16 pmcsr; 1711 bool ret = false; 1712 1713 if (!dev->pm_cap) 1714 return false; 1715 1716 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1717 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1718 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1719 return false; 1720 1721 /* Clear PME status. */ 1722 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1723 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1724 /* Disable PME to avoid interrupt flood. */ 1725 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1726 ret = true; 1727 } 1728 1729 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1730 1731 return ret; 1732 } 1733 1734 /** 1735 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1736 * @dev: Device to handle. 1737 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1738 * 1739 * Check if @dev has generated PME and queue a resume request for it in that 1740 * case. 1741 */ 1742 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1743 { 1744 if (pme_poll_reset && dev->pme_poll) 1745 dev->pme_poll = false; 1746 1747 if (pci_check_pme_status(dev)) { 1748 pci_wakeup_event(dev); 1749 pm_request_resume(&dev->dev); 1750 } 1751 return 0; 1752 } 1753 1754 /** 1755 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1756 * @bus: Top bus of the subtree to walk. 1757 */ 1758 void pci_pme_wakeup_bus(struct pci_bus *bus) 1759 { 1760 if (bus) 1761 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1762 } 1763 1764 1765 /** 1766 * pci_pme_capable - check the capability of PCI device to generate PME# 1767 * @dev: PCI device to handle. 1768 * @state: PCI state from which device will issue PME#. 1769 */ 1770 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1771 { 1772 if (!dev->pm_cap) 1773 return false; 1774 1775 return !!(dev->pme_support & (1 << state)); 1776 } 1777 EXPORT_SYMBOL(pci_pme_capable); 1778 1779 static void pci_pme_list_scan(struct work_struct *work) 1780 { 1781 struct pci_pme_device *pme_dev, *n; 1782 1783 mutex_lock(&pci_pme_list_mutex); 1784 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1785 if (pme_dev->dev->pme_poll) { 1786 struct pci_dev *bridge; 1787 1788 bridge = pme_dev->dev->bus->self; 1789 /* 1790 * If bridge is in low power state, the 1791 * configuration space of subordinate devices 1792 * may be not accessible 1793 */ 1794 if (bridge && bridge->current_state != PCI_D0) 1795 continue; 1796 pci_pme_wakeup(pme_dev->dev, NULL); 1797 } else { 1798 list_del(&pme_dev->list); 1799 kfree(pme_dev); 1800 } 1801 } 1802 if (!list_empty(&pci_pme_list)) 1803 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1804 msecs_to_jiffies(PME_TIMEOUT)); 1805 mutex_unlock(&pci_pme_list_mutex); 1806 } 1807 1808 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1809 { 1810 u16 pmcsr; 1811 1812 if (!dev->pme_support) 1813 return; 1814 1815 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1816 /* Clear PME_Status by writing 1 to it and enable PME# */ 1817 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1818 if (!enable) 1819 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1820 1821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1822 } 1823 1824 /** 1825 * pci_pme_restore - Restore PME configuration after config space restore. 1826 * @dev: PCI device to update. 1827 */ 1828 void pci_pme_restore(struct pci_dev *dev) 1829 { 1830 u16 pmcsr; 1831 1832 if (!dev->pme_support) 1833 return; 1834 1835 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1836 if (dev->wakeup_prepared) { 1837 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1838 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1839 } else { 1840 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1841 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1842 } 1843 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1844 } 1845 1846 /** 1847 * pci_pme_active - enable or disable PCI device's PME# function 1848 * @dev: PCI device to handle. 1849 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1850 * 1851 * The caller must verify that the device is capable of generating PME# before 1852 * calling this function with @enable equal to 'true'. 1853 */ 1854 void pci_pme_active(struct pci_dev *dev, bool enable) 1855 { 1856 __pci_pme_active(dev, enable); 1857 1858 /* 1859 * PCI (as opposed to PCIe) PME requires that the device have 1860 * its PME# line hooked up correctly. Not all hardware vendors 1861 * do this, so the PME never gets delivered and the device 1862 * remains asleep. The easiest way around this is to 1863 * periodically walk the list of suspended devices and check 1864 * whether any have their PME flag set. The assumption is that 1865 * we'll wake up often enough anyway that this won't be a huge 1866 * hit, and the power savings from the devices will still be a 1867 * win. 1868 * 1869 * Although PCIe uses in-band PME message instead of PME# line 1870 * to report PME, PME does not work for some PCIe devices in 1871 * reality. For example, there are devices that set their PME 1872 * status bits, but don't really bother to send a PME message; 1873 * there are PCI Express Root Ports that don't bother to 1874 * trigger interrupts when they receive PME messages from the 1875 * devices below. So PME poll is used for PCIe devices too. 1876 */ 1877 1878 if (dev->pme_poll) { 1879 struct pci_pme_device *pme_dev; 1880 if (enable) { 1881 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1882 GFP_KERNEL); 1883 if (!pme_dev) { 1884 pci_warn(dev, "can't enable PME#\n"); 1885 return; 1886 } 1887 pme_dev->dev = dev; 1888 mutex_lock(&pci_pme_list_mutex); 1889 list_add(&pme_dev->list, &pci_pme_list); 1890 if (list_is_singular(&pci_pme_list)) 1891 queue_delayed_work(system_freezable_wq, 1892 &pci_pme_work, 1893 msecs_to_jiffies(PME_TIMEOUT)); 1894 mutex_unlock(&pci_pme_list_mutex); 1895 } else { 1896 mutex_lock(&pci_pme_list_mutex); 1897 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1898 if (pme_dev->dev == dev) { 1899 list_del(&pme_dev->list); 1900 kfree(pme_dev); 1901 break; 1902 } 1903 } 1904 mutex_unlock(&pci_pme_list_mutex); 1905 } 1906 } 1907 1908 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1909 } 1910 EXPORT_SYMBOL(pci_pme_active); 1911 1912 /** 1913 * __pci_enable_wake - enable PCI device as wakeup event source 1914 * @dev: PCI device affected 1915 * @state: PCI state from which device will issue wakeup events 1916 * @enable: True to enable event generation; false to disable 1917 * 1918 * This enables the device as a wakeup event source, or disables it. 1919 * When such events involves platform-specific hooks, those hooks are 1920 * called automatically by this routine. 1921 * 1922 * Devices with legacy power management (no standard PCI PM capabilities) 1923 * always require such platform hooks. 1924 * 1925 * RETURN VALUE: 1926 * 0 is returned on success 1927 * -EINVAL is returned if device is not supposed to wake up the system 1928 * Error code depending on the platform is returned if both the platform and 1929 * the native mechanism fail to enable the generation of wake-up events 1930 */ 1931 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1932 { 1933 int ret = 0; 1934 1935 /* 1936 * Bridges can only signal wakeup on behalf of subordinate devices, 1937 * but that is set up elsewhere, so skip them. 1938 */ 1939 if (pci_has_subordinate(dev)) 1940 return 0; 1941 1942 /* Don't do the same thing twice in a row for one device. */ 1943 if (!!enable == !!dev->wakeup_prepared) 1944 return 0; 1945 1946 /* 1947 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1948 * Anderson we should be doing PME# wake enable followed by ACPI wake 1949 * enable. To disable wake-up we call the platform first, for symmetry. 1950 */ 1951 1952 if (enable) { 1953 int error; 1954 1955 if (pci_pme_capable(dev, state)) 1956 pci_pme_active(dev, true); 1957 else 1958 ret = 1; 1959 error = platform_pci_set_wakeup(dev, true); 1960 if (ret) 1961 ret = error; 1962 if (!ret) 1963 dev->wakeup_prepared = true; 1964 } else { 1965 platform_pci_set_wakeup(dev, false); 1966 pci_pme_active(dev, false); 1967 dev->wakeup_prepared = false; 1968 } 1969 1970 return ret; 1971 } 1972 1973 /** 1974 * pci_enable_wake - change wakeup settings for a PCI device 1975 * @pci_dev: Target device 1976 * @state: PCI state from which device will issue wakeup events 1977 * @enable: Whether or not to enable event generation 1978 * 1979 * If @enable is set, check device_may_wakeup() for the device before calling 1980 * __pci_enable_wake() for it. 1981 */ 1982 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 1983 { 1984 if (enable && !device_may_wakeup(&pci_dev->dev)) 1985 return -EINVAL; 1986 1987 return __pci_enable_wake(pci_dev, state, enable); 1988 } 1989 EXPORT_SYMBOL(pci_enable_wake); 1990 1991 /** 1992 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1993 * @dev: PCI device to prepare 1994 * @enable: True to enable wake-up event generation; false to disable 1995 * 1996 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1997 * and this function allows them to set that up cleanly - pci_enable_wake() 1998 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1999 * ordering constraints. 2000 * 2001 * This function only returns error code if the device is not allowed to wake 2002 * up the system from sleep or it is not capable of generating PME# from both 2003 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2004 */ 2005 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2006 { 2007 return pci_pme_capable(dev, PCI_D3cold) ? 2008 pci_enable_wake(dev, PCI_D3cold, enable) : 2009 pci_enable_wake(dev, PCI_D3hot, enable); 2010 } 2011 EXPORT_SYMBOL(pci_wake_from_d3); 2012 2013 /** 2014 * pci_target_state - find an appropriate low power state for a given PCI dev 2015 * @dev: PCI device 2016 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2017 * 2018 * Use underlying platform code to find a supported low power state for @dev. 2019 * If the platform can't manage @dev, return the deepest state from which it 2020 * can generate wake events, based on any available PME info. 2021 */ 2022 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2023 { 2024 pci_power_t target_state = PCI_D3hot; 2025 2026 if (platform_pci_power_manageable(dev)) { 2027 /* 2028 * Call the platform to choose the target state of the device 2029 * and enable wake-up from this state if supported. 2030 */ 2031 pci_power_t state = platform_pci_choose_state(dev); 2032 2033 switch (state) { 2034 case PCI_POWER_ERROR: 2035 case PCI_UNKNOWN: 2036 break; 2037 case PCI_D1: 2038 case PCI_D2: 2039 if (pci_no_d1d2(dev)) 2040 break; 2041 default: 2042 target_state = state; 2043 } 2044 2045 return target_state; 2046 } 2047 2048 if (!dev->pm_cap) 2049 target_state = PCI_D0; 2050 2051 /* 2052 * If the device is in D3cold even though it's not power-manageable by 2053 * the platform, it may have been powered down by non-standard means. 2054 * Best to let it slumber. 2055 */ 2056 if (dev->current_state == PCI_D3cold) 2057 target_state = PCI_D3cold; 2058 2059 if (wakeup) { 2060 /* 2061 * Find the deepest state from which the device can generate 2062 * wake-up events, make it the target state and enable device 2063 * to generate PME#. 2064 */ 2065 if (dev->pme_support) { 2066 while (target_state 2067 && !(dev->pme_support & (1 << target_state))) 2068 target_state--; 2069 } 2070 } 2071 2072 return target_state; 2073 } 2074 2075 /** 2076 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2077 * @dev: Device to handle. 2078 * 2079 * Choose the power state appropriate for the device depending on whether 2080 * it can wake up the system and/or is power manageable by the platform 2081 * (PCI_D3hot is the default) and put the device into that state. 2082 */ 2083 int pci_prepare_to_sleep(struct pci_dev *dev) 2084 { 2085 bool wakeup = device_may_wakeup(&dev->dev); 2086 pci_power_t target_state = pci_target_state(dev, wakeup); 2087 int error; 2088 2089 if (target_state == PCI_POWER_ERROR) 2090 return -EIO; 2091 2092 pci_enable_wake(dev, target_state, wakeup); 2093 2094 error = pci_set_power_state(dev, target_state); 2095 2096 if (error) 2097 pci_enable_wake(dev, target_state, false); 2098 2099 return error; 2100 } 2101 EXPORT_SYMBOL(pci_prepare_to_sleep); 2102 2103 /** 2104 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2105 * @dev: Device to handle. 2106 * 2107 * Disable device's system wake-up capability and put it into D0. 2108 */ 2109 int pci_back_from_sleep(struct pci_dev *dev) 2110 { 2111 pci_enable_wake(dev, PCI_D0, false); 2112 return pci_set_power_state(dev, PCI_D0); 2113 } 2114 EXPORT_SYMBOL(pci_back_from_sleep); 2115 2116 /** 2117 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2118 * @dev: PCI device being suspended. 2119 * 2120 * Prepare @dev to generate wake-up events at run time and put it into a low 2121 * power state. 2122 */ 2123 int pci_finish_runtime_suspend(struct pci_dev *dev) 2124 { 2125 pci_power_t target_state; 2126 int error; 2127 2128 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2129 if (target_state == PCI_POWER_ERROR) 2130 return -EIO; 2131 2132 dev->runtime_d3cold = target_state == PCI_D3cold; 2133 2134 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2135 2136 error = pci_set_power_state(dev, target_state); 2137 2138 if (error) { 2139 pci_enable_wake(dev, target_state, false); 2140 dev->runtime_d3cold = false; 2141 } 2142 2143 return error; 2144 } 2145 2146 /** 2147 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2148 * @dev: Device to check. 2149 * 2150 * Return true if the device itself is capable of generating wake-up events 2151 * (through the platform or using the native PCIe PME) or if the device supports 2152 * PME and one of its upstream bridges can generate wake-up events. 2153 */ 2154 bool pci_dev_run_wake(struct pci_dev *dev) 2155 { 2156 struct pci_bus *bus = dev->bus; 2157 2158 if (!dev->pme_support) 2159 return false; 2160 2161 /* PME-capable in principle, but not from the target power state */ 2162 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2163 return false; 2164 2165 if (device_can_wakeup(&dev->dev)) 2166 return true; 2167 2168 while (bus->parent) { 2169 struct pci_dev *bridge = bus->self; 2170 2171 if (device_can_wakeup(&bridge->dev)) 2172 return true; 2173 2174 bus = bus->parent; 2175 } 2176 2177 /* We have reached the root bus. */ 2178 if (bus->bridge) 2179 return device_can_wakeup(bus->bridge); 2180 2181 return false; 2182 } 2183 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2184 2185 /** 2186 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2187 * @pci_dev: Device to check. 2188 * 2189 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2190 * reconfigured due to wakeup settings difference between system and runtime 2191 * suspend and the current power state of it is suitable for the upcoming 2192 * (system) transition. 2193 * 2194 * If the device is not configured for system wakeup, disable PME for it before 2195 * returning 'true' to prevent it from waking up the system unnecessarily. 2196 */ 2197 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2198 { 2199 struct device *dev = &pci_dev->dev; 2200 bool wakeup = device_may_wakeup(dev); 2201 2202 if (!pm_runtime_suspended(dev) 2203 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2204 || platform_pci_need_resume(pci_dev)) 2205 return false; 2206 2207 /* 2208 * At this point the device is good to go unless it's been configured 2209 * to generate PME at the runtime suspend time, but it is not supposed 2210 * to wake up the system. In that case, simply disable PME for it 2211 * (it will have to be re-enabled on exit from system resume). 2212 * 2213 * If the device's power state is D3cold and the platform check above 2214 * hasn't triggered, the device's configuration is suitable and we don't 2215 * need to manipulate it at all. 2216 */ 2217 spin_lock_irq(&dev->power.lock); 2218 2219 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2220 !wakeup) 2221 __pci_pme_active(pci_dev, false); 2222 2223 spin_unlock_irq(&dev->power.lock); 2224 return true; 2225 } 2226 2227 /** 2228 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2229 * @pci_dev: Device to handle. 2230 * 2231 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2232 * it might have been disabled during the prepare phase of system suspend if 2233 * the device was not configured for system wakeup. 2234 */ 2235 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2236 { 2237 struct device *dev = &pci_dev->dev; 2238 2239 if (!pci_dev_run_wake(pci_dev)) 2240 return; 2241 2242 spin_lock_irq(&dev->power.lock); 2243 2244 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2245 __pci_pme_active(pci_dev, true); 2246 2247 spin_unlock_irq(&dev->power.lock); 2248 } 2249 2250 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2251 { 2252 struct device *dev = &pdev->dev; 2253 struct device *parent = dev->parent; 2254 2255 if (parent) 2256 pm_runtime_get_sync(parent); 2257 pm_runtime_get_noresume(dev); 2258 /* 2259 * pdev->current_state is set to PCI_D3cold during suspending, 2260 * so wait until suspending completes 2261 */ 2262 pm_runtime_barrier(dev); 2263 /* 2264 * Only need to resume devices in D3cold, because config 2265 * registers are still accessible for devices suspended but 2266 * not in D3cold. 2267 */ 2268 if (pdev->current_state == PCI_D3cold) 2269 pm_runtime_resume(dev); 2270 } 2271 2272 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2273 { 2274 struct device *dev = &pdev->dev; 2275 struct device *parent = dev->parent; 2276 2277 pm_runtime_put(dev); 2278 if (parent) 2279 pm_runtime_put_sync(parent); 2280 } 2281 2282 /** 2283 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2284 * @bridge: Bridge to check 2285 * 2286 * This function checks if it is possible to move the bridge to D3. 2287 * Currently we only allow D3 for recent enough PCIe ports. 2288 */ 2289 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2290 { 2291 if (!pci_is_pcie(bridge)) 2292 return false; 2293 2294 switch (pci_pcie_type(bridge)) { 2295 case PCI_EXP_TYPE_ROOT_PORT: 2296 case PCI_EXP_TYPE_UPSTREAM: 2297 case PCI_EXP_TYPE_DOWNSTREAM: 2298 if (pci_bridge_d3_disable) 2299 return false; 2300 2301 /* 2302 * Hotplug interrupts cannot be delivered if the link is down, 2303 * so parents of a hotplug port must stay awake. In addition, 2304 * hotplug ports handled by firmware in System Management Mode 2305 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2306 * For simplicity, disallow in general for now. 2307 */ 2308 if (bridge->is_hotplug_bridge) 2309 return false; 2310 2311 if (pci_bridge_d3_force) 2312 return true; 2313 2314 /* 2315 * It should be safe to put PCIe ports from 2015 or newer 2316 * to D3. 2317 */ 2318 if (dmi_get_bios_year() >= 2015) 2319 return true; 2320 break; 2321 } 2322 2323 return false; 2324 } 2325 2326 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2327 { 2328 bool *d3cold_ok = data; 2329 2330 if (/* The device needs to be allowed to go D3cold ... */ 2331 dev->no_d3cold || !dev->d3cold_allowed || 2332 2333 /* ... and if it is wakeup capable to do so from D3cold. */ 2334 (device_may_wakeup(&dev->dev) && 2335 !pci_pme_capable(dev, PCI_D3cold)) || 2336 2337 /* If it is a bridge it must be allowed to go to D3. */ 2338 !pci_power_manageable(dev)) 2339 2340 *d3cold_ok = false; 2341 2342 return !*d3cold_ok; 2343 } 2344 2345 /* 2346 * pci_bridge_d3_update - Update bridge D3 capabilities 2347 * @dev: PCI device which is changed 2348 * 2349 * Update upstream bridge PM capabilities accordingly depending on if the 2350 * device PM configuration was changed or the device is being removed. The 2351 * change is also propagated upstream. 2352 */ 2353 void pci_bridge_d3_update(struct pci_dev *dev) 2354 { 2355 bool remove = !device_is_registered(&dev->dev); 2356 struct pci_dev *bridge; 2357 bool d3cold_ok = true; 2358 2359 bridge = pci_upstream_bridge(dev); 2360 if (!bridge || !pci_bridge_d3_possible(bridge)) 2361 return; 2362 2363 /* 2364 * If D3 is currently allowed for the bridge, removing one of its 2365 * children won't change that. 2366 */ 2367 if (remove && bridge->bridge_d3) 2368 return; 2369 2370 /* 2371 * If D3 is currently allowed for the bridge and a child is added or 2372 * changed, disallowance of D3 can only be caused by that child, so 2373 * we only need to check that single device, not any of its siblings. 2374 * 2375 * If D3 is currently not allowed for the bridge, checking the device 2376 * first may allow us to skip checking its siblings. 2377 */ 2378 if (!remove) 2379 pci_dev_check_d3cold(dev, &d3cold_ok); 2380 2381 /* 2382 * If D3 is currently not allowed for the bridge, this may be caused 2383 * either by the device being changed/removed or any of its siblings, 2384 * so we need to go through all children to find out if one of them 2385 * continues to block D3. 2386 */ 2387 if (d3cold_ok && !bridge->bridge_d3) 2388 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2389 &d3cold_ok); 2390 2391 if (bridge->bridge_d3 != d3cold_ok) { 2392 bridge->bridge_d3 = d3cold_ok; 2393 /* Propagate change to upstream bridges */ 2394 pci_bridge_d3_update(bridge); 2395 } 2396 } 2397 2398 /** 2399 * pci_d3cold_enable - Enable D3cold for device 2400 * @dev: PCI device to handle 2401 * 2402 * This function can be used in drivers to enable D3cold from the device 2403 * they handle. It also updates upstream PCI bridge PM capabilities 2404 * accordingly. 2405 */ 2406 void pci_d3cold_enable(struct pci_dev *dev) 2407 { 2408 if (dev->no_d3cold) { 2409 dev->no_d3cold = false; 2410 pci_bridge_d3_update(dev); 2411 } 2412 } 2413 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2414 2415 /** 2416 * pci_d3cold_disable - Disable D3cold for device 2417 * @dev: PCI device to handle 2418 * 2419 * This function can be used in drivers to disable D3cold from the device 2420 * they handle. It also updates upstream PCI bridge PM capabilities 2421 * accordingly. 2422 */ 2423 void pci_d3cold_disable(struct pci_dev *dev) 2424 { 2425 if (!dev->no_d3cold) { 2426 dev->no_d3cold = true; 2427 pci_bridge_d3_update(dev); 2428 } 2429 } 2430 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2431 2432 /** 2433 * pci_pm_init - Initialize PM functions of given PCI device 2434 * @dev: PCI device to handle. 2435 */ 2436 void pci_pm_init(struct pci_dev *dev) 2437 { 2438 int pm; 2439 u16 pmc; 2440 2441 pm_runtime_forbid(&dev->dev); 2442 pm_runtime_set_active(&dev->dev); 2443 pm_runtime_enable(&dev->dev); 2444 device_enable_async_suspend(&dev->dev); 2445 dev->wakeup_prepared = false; 2446 2447 dev->pm_cap = 0; 2448 dev->pme_support = 0; 2449 2450 /* find PCI PM capability in list */ 2451 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2452 if (!pm) 2453 return; 2454 /* Check device's ability to generate PME# */ 2455 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2456 2457 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2458 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2459 pmc & PCI_PM_CAP_VER_MASK); 2460 return; 2461 } 2462 2463 dev->pm_cap = pm; 2464 dev->d3_delay = PCI_PM_D3_WAIT; 2465 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2466 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2467 dev->d3cold_allowed = true; 2468 2469 dev->d1_support = false; 2470 dev->d2_support = false; 2471 if (!pci_no_d1d2(dev)) { 2472 if (pmc & PCI_PM_CAP_D1) 2473 dev->d1_support = true; 2474 if (pmc & PCI_PM_CAP_D2) 2475 dev->d2_support = true; 2476 2477 if (dev->d1_support || dev->d2_support) 2478 pci_printk(KERN_DEBUG, dev, "supports%s%s\n", 2479 dev->d1_support ? " D1" : "", 2480 dev->d2_support ? " D2" : ""); 2481 } 2482 2483 pmc &= PCI_PM_CAP_PME_MASK; 2484 if (pmc) { 2485 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n", 2486 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2487 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2488 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2489 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2490 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2491 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2492 dev->pme_poll = true; 2493 /* 2494 * Make device's PM flags reflect the wake-up capability, but 2495 * let the user space enable it to wake up the system as needed. 2496 */ 2497 device_set_wakeup_capable(&dev->dev, true); 2498 /* Disable the PME# generation functionality */ 2499 pci_pme_active(dev, false); 2500 } 2501 } 2502 2503 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2504 { 2505 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2506 2507 switch (prop) { 2508 case PCI_EA_P_MEM: 2509 case PCI_EA_P_VF_MEM: 2510 flags |= IORESOURCE_MEM; 2511 break; 2512 case PCI_EA_P_MEM_PREFETCH: 2513 case PCI_EA_P_VF_MEM_PREFETCH: 2514 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2515 break; 2516 case PCI_EA_P_IO: 2517 flags |= IORESOURCE_IO; 2518 break; 2519 default: 2520 return 0; 2521 } 2522 2523 return flags; 2524 } 2525 2526 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2527 u8 prop) 2528 { 2529 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2530 return &dev->resource[bei]; 2531 #ifdef CONFIG_PCI_IOV 2532 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2533 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2534 return &dev->resource[PCI_IOV_RESOURCES + 2535 bei - PCI_EA_BEI_VF_BAR0]; 2536 #endif 2537 else if (bei == PCI_EA_BEI_ROM) 2538 return &dev->resource[PCI_ROM_RESOURCE]; 2539 else 2540 return NULL; 2541 } 2542 2543 /* Read an Enhanced Allocation (EA) entry */ 2544 static int pci_ea_read(struct pci_dev *dev, int offset) 2545 { 2546 struct resource *res; 2547 int ent_size, ent_offset = offset; 2548 resource_size_t start, end; 2549 unsigned long flags; 2550 u32 dw0, bei, base, max_offset; 2551 u8 prop; 2552 bool support_64 = (sizeof(resource_size_t) >= 8); 2553 2554 pci_read_config_dword(dev, ent_offset, &dw0); 2555 ent_offset += 4; 2556 2557 /* Entry size field indicates DWORDs after 1st */ 2558 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2559 2560 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2561 goto out; 2562 2563 bei = (dw0 & PCI_EA_BEI) >> 4; 2564 prop = (dw0 & PCI_EA_PP) >> 8; 2565 2566 /* 2567 * If the Property is in the reserved range, try the Secondary 2568 * Property instead. 2569 */ 2570 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2571 prop = (dw0 & PCI_EA_SP) >> 16; 2572 if (prop > PCI_EA_P_BRIDGE_IO) 2573 goto out; 2574 2575 res = pci_ea_get_resource(dev, bei, prop); 2576 if (!res) { 2577 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2578 goto out; 2579 } 2580 2581 flags = pci_ea_flags(dev, prop); 2582 if (!flags) { 2583 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2584 goto out; 2585 } 2586 2587 /* Read Base */ 2588 pci_read_config_dword(dev, ent_offset, &base); 2589 start = (base & PCI_EA_FIELD_MASK); 2590 ent_offset += 4; 2591 2592 /* Read MaxOffset */ 2593 pci_read_config_dword(dev, ent_offset, &max_offset); 2594 ent_offset += 4; 2595 2596 /* Read Base MSBs (if 64-bit entry) */ 2597 if (base & PCI_EA_IS_64) { 2598 u32 base_upper; 2599 2600 pci_read_config_dword(dev, ent_offset, &base_upper); 2601 ent_offset += 4; 2602 2603 flags |= IORESOURCE_MEM_64; 2604 2605 /* entry starts above 32-bit boundary, can't use */ 2606 if (!support_64 && base_upper) 2607 goto out; 2608 2609 if (support_64) 2610 start |= ((u64)base_upper << 32); 2611 } 2612 2613 end = start + (max_offset | 0x03); 2614 2615 /* Read MaxOffset MSBs (if 64-bit entry) */ 2616 if (max_offset & PCI_EA_IS_64) { 2617 u32 max_offset_upper; 2618 2619 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2620 ent_offset += 4; 2621 2622 flags |= IORESOURCE_MEM_64; 2623 2624 /* entry too big, can't use */ 2625 if (!support_64 && max_offset_upper) 2626 goto out; 2627 2628 if (support_64) 2629 end += ((u64)max_offset_upper << 32); 2630 } 2631 2632 if (end < start) { 2633 pci_err(dev, "EA Entry crosses address boundary\n"); 2634 goto out; 2635 } 2636 2637 if (ent_size != ent_offset - offset) { 2638 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2639 ent_size, ent_offset - offset); 2640 goto out; 2641 } 2642 2643 res->name = pci_name(dev); 2644 res->start = start; 2645 res->end = end; 2646 res->flags = flags; 2647 2648 if (bei <= PCI_EA_BEI_BAR5) 2649 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2650 bei, res, prop); 2651 else if (bei == PCI_EA_BEI_ROM) 2652 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2653 res, prop); 2654 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2655 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2656 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2657 else 2658 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2659 bei, res, prop); 2660 2661 out: 2662 return offset + ent_size; 2663 } 2664 2665 /* Enhanced Allocation Initialization */ 2666 void pci_ea_init(struct pci_dev *dev) 2667 { 2668 int ea; 2669 u8 num_ent; 2670 int offset; 2671 int i; 2672 2673 /* find PCI EA capability in list */ 2674 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2675 if (!ea) 2676 return; 2677 2678 /* determine the number of entries */ 2679 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2680 &num_ent); 2681 num_ent &= PCI_EA_NUM_ENT_MASK; 2682 2683 offset = ea + PCI_EA_FIRST_ENT; 2684 2685 /* Skip DWORD 2 for type 1 functions */ 2686 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2687 offset += 4; 2688 2689 /* parse each EA entry */ 2690 for (i = 0; i < num_ent; ++i) 2691 offset = pci_ea_read(dev, offset); 2692 } 2693 2694 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2695 struct pci_cap_saved_state *new_cap) 2696 { 2697 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2698 } 2699 2700 /** 2701 * _pci_add_cap_save_buffer - allocate buffer for saving given 2702 * capability registers 2703 * @dev: the PCI device 2704 * @cap: the capability to allocate the buffer for 2705 * @extended: Standard or Extended capability ID 2706 * @size: requested size of the buffer 2707 */ 2708 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2709 bool extended, unsigned int size) 2710 { 2711 int pos; 2712 struct pci_cap_saved_state *save_state; 2713 2714 if (extended) 2715 pos = pci_find_ext_capability(dev, cap); 2716 else 2717 pos = pci_find_capability(dev, cap); 2718 2719 if (!pos) 2720 return 0; 2721 2722 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2723 if (!save_state) 2724 return -ENOMEM; 2725 2726 save_state->cap.cap_nr = cap; 2727 save_state->cap.cap_extended = extended; 2728 save_state->cap.size = size; 2729 pci_add_saved_cap(dev, save_state); 2730 2731 return 0; 2732 } 2733 2734 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2735 { 2736 return _pci_add_cap_save_buffer(dev, cap, false, size); 2737 } 2738 2739 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2740 { 2741 return _pci_add_cap_save_buffer(dev, cap, true, size); 2742 } 2743 2744 /** 2745 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2746 * @dev: the PCI device 2747 */ 2748 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2749 { 2750 int error; 2751 2752 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2753 PCI_EXP_SAVE_REGS * sizeof(u16)); 2754 if (error) 2755 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 2756 2757 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2758 if (error) 2759 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 2760 2761 pci_allocate_vc_save_buffers(dev); 2762 } 2763 2764 void pci_free_cap_save_buffers(struct pci_dev *dev) 2765 { 2766 struct pci_cap_saved_state *tmp; 2767 struct hlist_node *n; 2768 2769 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2770 kfree(tmp); 2771 } 2772 2773 /** 2774 * pci_configure_ari - enable or disable ARI forwarding 2775 * @dev: the PCI device 2776 * 2777 * If @dev and its upstream bridge both support ARI, enable ARI in the 2778 * bridge. Otherwise, disable ARI in the bridge. 2779 */ 2780 void pci_configure_ari(struct pci_dev *dev) 2781 { 2782 u32 cap; 2783 struct pci_dev *bridge; 2784 2785 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2786 return; 2787 2788 bridge = dev->bus->self; 2789 if (!bridge) 2790 return; 2791 2792 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2793 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2794 return; 2795 2796 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2797 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2798 PCI_EXP_DEVCTL2_ARI); 2799 bridge->ari_enabled = 1; 2800 } else { 2801 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2802 PCI_EXP_DEVCTL2_ARI); 2803 bridge->ari_enabled = 0; 2804 } 2805 } 2806 2807 static int pci_acs_enable; 2808 2809 /** 2810 * pci_request_acs - ask for ACS to be enabled if supported 2811 */ 2812 void pci_request_acs(void) 2813 { 2814 pci_acs_enable = 1; 2815 } 2816 2817 /** 2818 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2819 * @dev: the PCI device 2820 */ 2821 static void pci_std_enable_acs(struct pci_dev *dev) 2822 { 2823 int pos; 2824 u16 cap; 2825 u16 ctrl; 2826 2827 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2828 if (!pos) 2829 return; 2830 2831 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2832 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2833 2834 /* Source Validation */ 2835 ctrl |= (cap & PCI_ACS_SV); 2836 2837 /* P2P Request Redirect */ 2838 ctrl |= (cap & PCI_ACS_RR); 2839 2840 /* P2P Completion Redirect */ 2841 ctrl |= (cap & PCI_ACS_CR); 2842 2843 /* Upstream Forwarding */ 2844 ctrl |= (cap & PCI_ACS_UF); 2845 2846 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2847 } 2848 2849 /** 2850 * pci_enable_acs - enable ACS if hardware support it 2851 * @dev: the PCI device 2852 */ 2853 void pci_enable_acs(struct pci_dev *dev) 2854 { 2855 if (!pci_acs_enable) 2856 return; 2857 2858 if (!pci_dev_specific_enable_acs(dev)) 2859 return; 2860 2861 pci_std_enable_acs(dev); 2862 } 2863 2864 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2865 { 2866 int pos; 2867 u16 cap, ctrl; 2868 2869 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2870 if (!pos) 2871 return false; 2872 2873 /* 2874 * Except for egress control, capabilities are either required 2875 * or only required if controllable. Features missing from the 2876 * capability field can therefore be assumed as hard-wired enabled. 2877 */ 2878 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2879 acs_flags &= (cap | PCI_ACS_EC); 2880 2881 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2882 return (ctrl & acs_flags) == acs_flags; 2883 } 2884 2885 /** 2886 * pci_acs_enabled - test ACS against required flags for a given device 2887 * @pdev: device to test 2888 * @acs_flags: required PCI ACS flags 2889 * 2890 * Return true if the device supports the provided flags. Automatically 2891 * filters out flags that are not implemented on multifunction devices. 2892 * 2893 * Note that this interface checks the effective ACS capabilities of the 2894 * device rather than the actual capabilities. For instance, most single 2895 * function endpoints are not required to support ACS because they have no 2896 * opportunity for peer-to-peer access. We therefore return 'true' 2897 * regardless of whether the device exposes an ACS capability. This makes 2898 * it much easier for callers of this function to ignore the actual type 2899 * or topology of the device when testing ACS support. 2900 */ 2901 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2902 { 2903 int ret; 2904 2905 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2906 if (ret >= 0) 2907 return ret > 0; 2908 2909 /* 2910 * Conventional PCI and PCI-X devices never support ACS, either 2911 * effectively or actually. The shared bus topology implies that 2912 * any device on the bus can receive or snoop DMA. 2913 */ 2914 if (!pci_is_pcie(pdev)) 2915 return false; 2916 2917 switch (pci_pcie_type(pdev)) { 2918 /* 2919 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2920 * but since their primary interface is PCI/X, we conservatively 2921 * handle them as we would a non-PCIe device. 2922 */ 2923 case PCI_EXP_TYPE_PCIE_BRIDGE: 2924 /* 2925 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2926 * applicable... must never implement an ACS Extended Capability...". 2927 * This seems arbitrary, but we take a conservative interpretation 2928 * of this statement. 2929 */ 2930 case PCI_EXP_TYPE_PCI_BRIDGE: 2931 case PCI_EXP_TYPE_RC_EC: 2932 return false; 2933 /* 2934 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2935 * implement ACS in order to indicate their peer-to-peer capabilities, 2936 * regardless of whether they are single- or multi-function devices. 2937 */ 2938 case PCI_EXP_TYPE_DOWNSTREAM: 2939 case PCI_EXP_TYPE_ROOT_PORT: 2940 return pci_acs_flags_enabled(pdev, acs_flags); 2941 /* 2942 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2943 * implemented by the remaining PCIe types to indicate peer-to-peer 2944 * capabilities, but only when they are part of a multifunction 2945 * device. The footnote for section 6.12 indicates the specific 2946 * PCIe types included here. 2947 */ 2948 case PCI_EXP_TYPE_ENDPOINT: 2949 case PCI_EXP_TYPE_UPSTREAM: 2950 case PCI_EXP_TYPE_LEG_END: 2951 case PCI_EXP_TYPE_RC_END: 2952 if (!pdev->multifunction) 2953 break; 2954 2955 return pci_acs_flags_enabled(pdev, acs_flags); 2956 } 2957 2958 /* 2959 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2960 * to single function devices with the exception of downstream ports. 2961 */ 2962 return true; 2963 } 2964 2965 /** 2966 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2967 * @start: starting downstream device 2968 * @end: ending upstream device or NULL to search to the root bus 2969 * @acs_flags: required flags 2970 * 2971 * Walk up a device tree from start to end testing PCI ACS support. If 2972 * any step along the way does not support the required flags, return false. 2973 */ 2974 bool pci_acs_path_enabled(struct pci_dev *start, 2975 struct pci_dev *end, u16 acs_flags) 2976 { 2977 struct pci_dev *pdev, *parent = start; 2978 2979 do { 2980 pdev = parent; 2981 2982 if (!pci_acs_enabled(pdev, acs_flags)) 2983 return false; 2984 2985 if (pci_is_root_bus(pdev->bus)) 2986 return (end == NULL); 2987 2988 parent = pdev->bus->self; 2989 } while (pdev != end); 2990 2991 return true; 2992 } 2993 2994 /** 2995 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 2996 * @pdev: PCI device 2997 * @bar: BAR to find 2998 * 2999 * Helper to find the position of the ctrl register for a BAR. 3000 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3001 * Returns -ENOENT if no ctrl register for the BAR could be found. 3002 */ 3003 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3004 { 3005 unsigned int pos, nbars, i; 3006 u32 ctrl; 3007 3008 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3009 if (!pos) 3010 return -ENOTSUPP; 3011 3012 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3013 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3014 PCI_REBAR_CTRL_NBAR_SHIFT; 3015 3016 for (i = 0; i < nbars; i++, pos += 8) { 3017 int bar_idx; 3018 3019 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3020 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3021 if (bar_idx == bar) 3022 return pos; 3023 } 3024 3025 return -ENOENT; 3026 } 3027 3028 /** 3029 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3030 * @pdev: PCI device 3031 * @bar: BAR to query 3032 * 3033 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3034 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3035 */ 3036 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3037 { 3038 int pos; 3039 u32 cap; 3040 3041 pos = pci_rebar_find_pos(pdev, bar); 3042 if (pos < 0) 3043 return 0; 3044 3045 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3046 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3047 } 3048 3049 /** 3050 * pci_rebar_get_current_size - get the current size of a BAR 3051 * @pdev: PCI device 3052 * @bar: BAR to set size to 3053 * 3054 * Read the size of a BAR from the resizable BAR config. 3055 * Returns size if found or negative error code. 3056 */ 3057 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3058 { 3059 int pos; 3060 u32 ctrl; 3061 3062 pos = pci_rebar_find_pos(pdev, bar); 3063 if (pos < 0) 3064 return pos; 3065 3066 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3067 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8; 3068 } 3069 3070 /** 3071 * pci_rebar_set_size - set a new size for a BAR 3072 * @pdev: PCI device 3073 * @bar: BAR to set size to 3074 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3075 * 3076 * Set the new size of a BAR as defined in the spec. 3077 * Returns zero if resizing was successful, error code otherwise. 3078 */ 3079 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3080 { 3081 int pos; 3082 u32 ctrl; 3083 3084 pos = pci_rebar_find_pos(pdev, bar); 3085 if (pos < 0) 3086 return pos; 3087 3088 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3089 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3090 ctrl |= size << 8; 3091 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3092 return 0; 3093 } 3094 3095 /** 3096 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3097 * @dev: the PCI device 3098 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3099 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3100 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3101 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3102 * 3103 * Return 0 if all upstream bridges support AtomicOp routing, egress 3104 * blocking is disabled on all upstream ports, and the root port supports 3105 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3106 * AtomicOp completion), or negative otherwise. 3107 */ 3108 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3109 { 3110 struct pci_bus *bus = dev->bus; 3111 struct pci_dev *bridge; 3112 u32 cap, ctl2; 3113 3114 if (!pci_is_pcie(dev)) 3115 return -EINVAL; 3116 3117 /* 3118 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3119 * AtomicOp requesters. For now, we only support endpoints as 3120 * requesters and root ports as completers. No endpoints as 3121 * completers, and no peer-to-peer. 3122 */ 3123 3124 switch (pci_pcie_type(dev)) { 3125 case PCI_EXP_TYPE_ENDPOINT: 3126 case PCI_EXP_TYPE_LEG_END: 3127 case PCI_EXP_TYPE_RC_END: 3128 break; 3129 default: 3130 return -EINVAL; 3131 } 3132 3133 while (bus->parent) { 3134 bridge = bus->self; 3135 3136 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3137 3138 switch (pci_pcie_type(bridge)) { 3139 /* Ensure switch ports support AtomicOp routing */ 3140 case PCI_EXP_TYPE_UPSTREAM: 3141 case PCI_EXP_TYPE_DOWNSTREAM: 3142 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3143 return -EINVAL; 3144 break; 3145 3146 /* Ensure root port supports all the sizes we care about */ 3147 case PCI_EXP_TYPE_ROOT_PORT: 3148 if ((cap & cap_mask) != cap_mask) 3149 return -EINVAL; 3150 break; 3151 } 3152 3153 /* Ensure upstream ports don't block AtomicOps on egress */ 3154 if (!bridge->has_secondary_link) { 3155 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3156 &ctl2); 3157 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3158 return -EINVAL; 3159 } 3160 3161 bus = bus->parent; 3162 } 3163 3164 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3165 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3166 return 0; 3167 } 3168 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3169 3170 /** 3171 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3172 * @dev: the PCI device 3173 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3174 * 3175 * Perform INTx swizzling for a device behind one level of bridge. This is 3176 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3177 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3178 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3179 * the PCI Express Base Specification, Revision 2.1) 3180 */ 3181 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3182 { 3183 int slot; 3184 3185 if (pci_ari_enabled(dev->bus)) 3186 slot = 0; 3187 else 3188 slot = PCI_SLOT(dev->devfn); 3189 3190 return (((pin - 1) + slot) % 4) + 1; 3191 } 3192 3193 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3194 { 3195 u8 pin; 3196 3197 pin = dev->pin; 3198 if (!pin) 3199 return -1; 3200 3201 while (!pci_is_root_bus(dev->bus)) { 3202 pin = pci_swizzle_interrupt_pin(dev, pin); 3203 dev = dev->bus->self; 3204 } 3205 *bridge = dev; 3206 return pin; 3207 } 3208 3209 /** 3210 * pci_common_swizzle - swizzle INTx all the way to root bridge 3211 * @dev: the PCI device 3212 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3213 * 3214 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3215 * bridges all the way up to a PCI root bus. 3216 */ 3217 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3218 { 3219 u8 pin = *pinp; 3220 3221 while (!pci_is_root_bus(dev->bus)) { 3222 pin = pci_swizzle_interrupt_pin(dev, pin); 3223 dev = dev->bus->self; 3224 } 3225 *pinp = pin; 3226 return PCI_SLOT(dev->devfn); 3227 } 3228 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3229 3230 /** 3231 * pci_release_region - Release a PCI bar 3232 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3233 * @bar: BAR to release 3234 * 3235 * Releases the PCI I/O and memory resources previously reserved by a 3236 * successful call to pci_request_region. Call this function only 3237 * after all use of the PCI regions has ceased. 3238 */ 3239 void pci_release_region(struct pci_dev *pdev, int bar) 3240 { 3241 struct pci_devres *dr; 3242 3243 if (pci_resource_len(pdev, bar) == 0) 3244 return; 3245 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3246 release_region(pci_resource_start(pdev, bar), 3247 pci_resource_len(pdev, bar)); 3248 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3249 release_mem_region(pci_resource_start(pdev, bar), 3250 pci_resource_len(pdev, bar)); 3251 3252 dr = find_pci_dr(pdev); 3253 if (dr) 3254 dr->region_mask &= ~(1 << bar); 3255 } 3256 EXPORT_SYMBOL(pci_release_region); 3257 3258 /** 3259 * __pci_request_region - Reserved PCI I/O and memory resource 3260 * @pdev: PCI device whose resources are to be reserved 3261 * @bar: BAR to be reserved 3262 * @res_name: Name to be associated with resource. 3263 * @exclusive: whether the region access is exclusive or not 3264 * 3265 * Mark the PCI region associated with PCI device @pdev BR @bar as 3266 * being reserved by owner @res_name. Do not access any 3267 * address inside the PCI regions unless this call returns 3268 * successfully. 3269 * 3270 * If @exclusive is set, then the region is marked so that userspace 3271 * is explicitly not allowed to map the resource via /dev/mem or 3272 * sysfs MMIO access. 3273 * 3274 * Returns 0 on success, or %EBUSY on error. A warning 3275 * message is also printed on failure. 3276 */ 3277 static int __pci_request_region(struct pci_dev *pdev, int bar, 3278 const char *res_name, int exclusive) 3279 { 3280 struct pci_devres *dr; 3281 3282 if (pci_resource_len(pdev, bar) == 0) 3283 return 0; 3284 3285 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3286 if (!request_region(pci_resource_start(pdev, bar), 3287 pci_resource_len(pdev, bar), res_name)) 3288 goto err_out; 3289 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3290 if (!__request_mem_region(pci_resource_start(pdev, bar), 3291 pci_resource_len(pdev, bar), res_name, 3292 exclusive)) 3293 goto err_out; 3294 } 3295 3296 dr = find_pci_dr(pdev); 3297 if (dr) 3298 dr->region_mask |= 1 << bar; 3299 3300 return 0; 3301 3302 err_out: 3303 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3304 &pdev->resource[bar]); 3305 return -EBUSY; 3306 } 3307 3308 /** 3309 * pci_request_region - Reserve PCI I/O and memory resource 3310 * @pdev: PCI device whose resources are to be reserved 3311 * @bar: BAR to be reserved 3312 * @res_name: Name to be associated with resource 3313 * 3314 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3315 * being reserved by owner @res_name. Do not access any 3316 * address inside the PCI regions unless this call returns 3317 * successfully. 3318 * 3319 * Returns 0 on success, or %EBUSY on error. A warning 3320 * message is also printed on failure. 3321 */ 3322 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3323 { 3324 return __pci_request_region(pdev, bar, res_name, 0); 3325 } 3326 EXPORT_SYMBOL(pci_request_region); 3327 3328 /** 3329 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3330 * @pdev: PCI device whose resources are to be reserved 3331 * @bar: BAR to be reserved 3332 * @res_name: Name to be associated with resource. 3333 * 3334 * Mark the PCI region associated with PCI device @pdev BR @bar as 3335 * being reserved by owner @res_name. Do not access any 3336 * address inside the PCI regions unless this call returns 3337 * successfully. 3338 * 3339 * Returns 0 on success, or %EBUSY on error. A warning 3340 * message is also printed on failure. 3341 * 3342 * The key difference that _exclusive makes it that userspace is 3343 * explicitly not allowed to map the resource via /dev/mem or 3344 * sysfs. 3345 */ 3346 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3347 const char *res_name) 3348 { 3349 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3350 } 3351 EXPORT_SYMBOL(pci_request_region_exclusive); 3352 3353 /** 3354 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3355 * @pdev: PCI device whose resources were previously reserved 3356 * @bars: Bitmask of BARs to be released 3357 * 3358 * Release selected PCI I/O and memory resources previously reserved. 3359 * Call this function only after all use of the PCI regions has ceased. 3360 */ 3361 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3362 { 3363 int i; 3364 3365 for (i = 0; i < 6; i++) 3366 if (bars & (1 << i)) 3367 pci_release_region(pdev, i); 3368 } 3369 EXPORT_SYMBOL(pci_release_selected_regions); 3370 3371 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3372 const char *res_name, int excl) 3373 { 3374 int i; 3375 3376 for (i = 0; i < 6; i++) 3377 if (bars & (1 << i)) 3378 if (__pci_request_region(pdev, i, res_name, excl)) 3379 goto err_out; 3380 return 0; 3381 3382 err_out: 3383 while (--i >= 0) 3384 if (bars & (1 << i)) 3385 pci_release_region(pdev, i); 3386 3387 return -EBUSY; 3388 } 3389 3390 3391 /** 3392 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3393 * @pdev: PCI device whose resources are to be reserved 3394 * @bars: Bitmask of BARs to be requested 3395 * @res_name: Name to be associated with resource 3396 */ 3397 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3398 const char *res_name) 3399 { 3400 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3401 } 3402 EXPORT_SYMBOL(pci_request_selected_regions); 3403 3404 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3405 const char *res_name) 3406 { 3407 return __pci_request_selected_regions(pdev, bars, res_name, 3408 IORESOURCE_EXCLUSIVE); 3409 } 3410 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3411 3412 /** 3413 * pci_release_regions - Release reserved PCI I/O and memory resources 3414 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3415 * 3416 * Releases all PCI I/O and memory resources previously reserved by a 3417 * successful call to pci_request_regions. Call this function only 3418 * after all use of the PCI regions has ceased. 3419 */ 3420 3421 void pci_release_regions(struct pci_dev *pdev) 3422 { 3423 pci_release_selected_regions(pdev, (1 << 6) - 1); 3424 } 3425 EXPORT_SYMBOL(pci_release_regions); 3426 3427 /** 3428 * pci_request_regions - Reserved PCI I/O and memory resources 3429 * @pdev: PCI device whose resources are to be reserved 3430 * @res_name: Name to be associated with resource. 3431 * 3432 * Mark all PCI regions associated with PCI device @pdev as 3433 * being reserved by owner @res_name. Do not access any 3434 * address inside the PCI regions unless this call returns 3435 * successfully. 3436 * 3437 * Returns 0 on success, or %EBUSY on error. A warning 3438 * message is also printed on failure. 3439 */ 3440 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3441 { 3442 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3443 } 3444 EXPORT_SYMBOL(pci_request_regions); 3445 3446 /** 3447 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3448 * @pdev: PCI device whose resources are to be reserved 3449 * @res_name: Name to be associated with resource. 3450 * 3451 * Mark all PCI regions associated with PCI device @pdev as 3452 * being reserved by owner @res_name. Do not access any 3453 * address inside the PCI regions unless this call returns 3454 * successfully. 3455 * 3456 * pci_request_regions_exclusive() will mark the region so that 3457 * /dev/mem and the sysfs MMIO access will not be allowed. 3458 * 3459 * Returns 0 on success, or %EBUSY on error. A warning 3460 * message is also printed on failure. 3461 */ 3462 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3463 { 3464 return pci_request_selected_regions_exclusive(pdev, 3465 ((1 << 6) - 1), res_name); 3466 } 3467 EXPORT_SYMBOL(pci_request_regions_exclusive); 3468 3469 /* 3470 * Record the PCI IO range (expressed as CPU physical address + size). 3471 * Return a negative value if an error has occured, zero otherwise 3472 */ 3473 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3474 resource_size_t size) 3475 { 3476 int ret = 0; 3477 #ifdef PCI_IOBASE 3478 struct logic_pio_hwaddr *range; 3479 3480 if (!size || addr + size < addr) 3481 return -EINVAL; 3482 3483 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3484 if (!range) 3485 return -ENOMEM; 3486 3487 range->fwnode = fwnode; 3488 range->size = size; 3489 range->hw_start = addr; 3490 range->flags = LOGIC_PIO_CPU_MMIO; 3491 3492 ret = logic_pio_register_range(range); 3493 if (ret) 3494 kfree(range); 3495 #endif 3496 3497 return ret; 3498 } 3499 3500 phys_addr_t pci_pio_to_address(unsigned long pio) 3501 { 3502 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3503 3504 #ifdef PCI_IOBASE 3505 if (pio >= MMIO_UPPER_LIMIT) 3506 return address; 3507 3508 address = logic_pio_to_hwaddr(pio); 3509 #endif 3510 3511 return address; 3512 } 3513 3514 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3515 { 3516 #ifdef PCI_IOBASE 3517 return logic_pio_trans_cpuaddr(address); 3518 #else 3519 if (address > IO_SPACE_LIMIT) 3520 return (unsigned long)-1; 3521 3522 return (unsigned long) address; 3523 #endif 3524 } 3525 3526 /** 3527 * pci_remap_iospace - Remap the memory mapped I/O space 3528 * @res: Resource describing the I/O space 3529 * @phys_addr: physical address of range to be mapped 3530 * 3531 * Remap the memory mapped I/O space described by the @res 3532 * and the CPU physical address @phys_addr into virtual address space. 3533 * Only architectures that have memory mapped IO functions defined 3534 * (and the PCI_IOBASE value defined) should call this function. 3535 */ 3536 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3537 { 3538 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3539 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3540 3541 if (!(res->flags & IORESOURCE_IO)) 3542 return -EINVAL; 3543 3544 if (res->end > IO_SPACE_LIMIT) 3545 return -EINVAL; 3546 3547 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3548 pgprot_device(PAGE_KERNEL)); 3549 #else 3550 /* this architecture does not have memory mapped I/O space, 3551 so this function should never be called */ 3552 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3553 return -ENODEV; 3554 #endif 3555 } 3556 EXPORT_SYMBOL(pci_remap_iospace); 3557 3558 /** 3559 * pci_unmap_iospace - Unmap the memory mapped I/O space 3560 * @res: resource to be unmapped 3561 * 3562 * Unmap the CPU virtual address @res from virtual address space. 3563 * Only architectures that have memory mapped IO functions defined 3564 * (and the PCI_IOBASE value defined) should call this function. 3565 */ 3566 void pci_unmap_iospace(struct resource *res) 3567 { 3568 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3569 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3570 3571 unmap_kernel_range(vaddr, resource_size(res)); 3572 #endif 3573 } 3574 EXPORT_SYMBOL(pci_unmap_iospace); 3575 3576 /** 3577 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3578 * @dev: Generic device to remap IO address for 3579 * @offset: Resource address to map 3580 * @size: Size of map 3581 * 3582 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3583 * detach. 3584 */ 3585 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3586 resource_size_t offset, 3587 resource_size_t size) 3588 { 3589 void __iomem **ptr, *addr; 3590 3591 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3592 if (!ptr) 3593 return NULL; 3594 3595 addr = pci_remap_cfgspace(offset, size); 3596 if (addr) { 3597 *ptr = addr; 3598 devres_add(dev, ptr); 3599 } else 3600 devres_free(ptr); 3601 3602 return addr; 3603 } 3604 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3605 3606 /** 3607 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3608 * @dev: generic device to handle the resource for 3609 * @res: configuration space resource to be handled 3610 * 3611 * Checks that a resource is a valid memory region, requests the memory 3612 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3613 * proper PCI configuration space memory attributes are guaranteed. 3614 * 3615 * All operations are managed and will be undone on driver detach. 3616 * 3617 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3618 * on failure. Usage example:: 3619 * 3620 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3621 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3622 * if (IS_ERR(base)) 3623 * return PTR_ERR(base); 3624 */ 3625 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3626 struct resource *res) 3627 { 3628 resource_size_t size; 3629 const char *name; 3630 void __iomem *dest_ptr; 3631 3632 BUG_ON(!dev); 3633 3634 if (!res || resource_type(res) != IORESOURCE_MEM) { 3635 dev_err(dev, "invalid resource\n"); 3636 return IOMEM_ERR_PTR(-EINVAL); 3637 } 3638 3639 size = resource_size(res); 3640 name = res->name ?: dev_name(dev); 3641 3642 if (!devm_request_mem_region(dev, res->start, size, name)) { 3643 dev_err(dev, "can't request region for resource %pR\n", res); 3644 return IOMEM_ERR_PTR(-EBUSY); 3645 } 3646 3647 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3648 if (!dest_ptr) { 3649 dev_err(dev, "ioremap failed for resource %pR\n", res); 3650 devm_release_mem_region(dev, res->start, size); 3651 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3652 } 3653 3654 return dest_ptr; 3655 } 3656 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3657 3658 static void __pci_set_master(struct pci_dev *dev, bool enable) 3659 { 3660 u16 old_cmd, cmd; 3661 3662 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3663 if (enable) 3664 cmd = old_cmd | PCI_COMMAND_MASTER; 3665 else 3666 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3667 if (cmd != old_cmd) { 3668 pci_dbg(dev, "%s bus mastering\n", 3669 enable ? "enabling" : "disabling"); 3670 pci_write_config_word(dev, PCI_COMMAND, cmd); 3671 } 3672 dev->is_busmaster = enable; 3673 } 3674 3675 /** 3676 * pcibios_setup - process "pci=" kernel boot arguments 3677 * @str: string used to pass in "pci=" kernel boot arguments 3678 * 3679 * Process kernel boot arguments. This is the default implementation. 3680 * Architecture specific implementations can override this as necessary. 3681 */ 3682 char * __weak __init pcibios_setup(char *str) 3683 { 3684 return str; 3685 } 3686 3687 /** 3688 * pcibios_set_master - enable PCI bus-mastering for device dev 3689 * @dev: the PCI device to enable 3690 * 3691 * Enables PCI bus-mastering for the device. This is the default 3692 * implementation. Architecture specific implementations can override 3693 * this if necessary. 3694 */ 3695 void __weak pcibios_set_master(struct pci_dev *dev) 3696 { 3697 u8 lat; 3698 3699 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3700 if (pci_is_pcie(dev)) 3701 return; 3702 3703 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3704 if (lat < 16) 3705 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3706 else if (lat > pcibios_max_latency) 3707 lat = pcibios_max_latency; 3708 else 3709 return; 3710 3711 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3712 } 3713 3714 /** 3715 * pci_set_master - enables bus-mastering for device dev 3716 * @dev: the PCI device to enable 3717 * 3718 * Enables bus-mastering on the device and calls pcibios_set_master() 3719 * to do the needed arch specific settings. 3720 */ 3721 void pci_set_master(struct pci_dev *dev) 3722 { 3723 __pci_set_master(dev, true); 3724 pcibios_set_master(dev); 3725 } 3726 EXPORT_SYMBOL(pci_set_master); 3727 3728 /** 3729 * pci_clear_master - disables bus-mastering for device dev 3730 * @dev: the PCI device to disable 3731 */ 3732 void pci_clear_master(struct pci_dev *dev) 3733 { 3734 __pci_set_master(dev, false); 3735 } 3736 EXPORT_SYMBOL(pci_clear_master); 3737 3738 /** 3739 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3740 * @dev: the PCI device for which MWI is to be enabled 3741 * 3742 * Helper function for pci_set_mwi. 3743 * Originally copied from drivers/net/acenic.c. 3744 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3745 * 3746 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3747 */ 3748 int pci_set_cacheline_size(struct pci_dev *dev) 3749 { 3750 u8 cacheline_size; 3751 3752 if (!pci_cache_line_size) 3753 return -EINVAL; 3754 3755 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3756 equal to or multiple of the right value. */ 3757 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3758 if (cacheline_size >= pci_cache_line_size && 3759 (cacheline_size % pci_cache_line_size) == 0) 3760 return 0; 3761 3762 /* Write the correct value. */ 3763 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3764 /* Read it back. */ 3765 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3766 if (cacheline_size == pci_cache_line_size) 3767 return 0; 3768 3769 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n", 3770 pci_cache_line_size << 2); 3771 3772 return -EINVAL; 3773 } 3774 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3775 3776 /** 3777 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3778 * @dev: the PCI device for which MWI is enabled 3779 * 3780 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3781 * 3782 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3783 */ 3784 int pci_set_mwi(struct pci_dev *dev) 3785 { 3786 #ifdef PCI_DISABLE_MWI 3787 return 0; 3788 #else 3789 int rc; 3790 u16 cmd; 3791 3792 rc = pci_set_cacheline_size(dev); 3793 if (rc) 3794 return rc; 3795 3796 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3797 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3798 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 3799 cmd |= PCI_COMMAND_INVALIDATE; 3800 pci_write_config_word(dev, PCI_COMMAND, cmd); 3801 } 3802 return 0; 3803 #endif 3804 } 3805 EXPORT_SYMBOL(pci_set_mwi); 3806 3807 /** 3808 * pcim_set_mwi - a device-managed pci_set_mwi() 3809 * @dev: the PCI device for which MWI is enabled 3810 * 3811 * Managed pci_set_mwi(). 3812 * 3813 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3814 */ 3815 int pcim_set_mwi(struct pci_dev *dev) 3816 { 3817 struct pci_devres *dr; 3818 3819 dr = find_pci_dr(dev); 3820 if (!dr) 3821 return -ENOMEM; 3822 3823 dr->mwi = 1; 3824 return pci_set_mwi(dev); 3825 } 3826 EXPORT_SYMBOL(pcim_set_mwi); 3827 3828 /** 3829 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3830 * @dev: the PCI device for which MWI is enabled 3831 * 3832 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3833 * Callers are not required to check the return value. 3834 * 3835 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3836 */ 3837 int pci_try_set_mwi(struct pci_dev *dev) 3838 { 3839 #ifdef PCI_DISABLE_MWI 3840 return 0; 3841 #else 3842 return pci_set_mwi(dev); 3843 #endif 3844 } 3845 EXPORT_SYMBOL(pci_try_set_mwi); 3846 3847 /** 3848 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3849 * @dev: the PCI device to disable 3850 * 3851 * Disables PCI Memory-Write-Invalidate transaction on the device 3852 */ 3853 void pci_clear_mwi(struct pci_dev *dev) 3854 { 3855 #ifndef PCI_DISABLE_MWI 3856 u16 cmd; 3857 3858 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3859 if (cmd & PCI_COMMAND_INVALIDATE) { 3860 cmd &= ~PCI_COMMAND_INVALIDATE; 3861 pci_write_config_word(dev, PCI_COMMAND, cmd); 3862 } 3863 #endif 3864 } 3865 EXPORT_SYMBOL(pci_clear_mwi); 3866 3867 /** 3868 * pci_intx - enables/disables PCI INTx for device dev 3869 * @pdev: the PCI device to operate on 3870 * @enable: boolean: whether to enable or disable PCI INTx 3871 * 3872 * Enables/disables PCI INTx for device dev 3873 */ 3874 void pci_intx(struct pci_dev *pdev, int enable) 3875 { 3876 u16 pci_command, new; 3877 3878 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3879 3880 if (enable) 3881 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3882 else 3883 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3884 3885 if (new != pci_command) { 3886 struct pci_devres *dr; 3887 3888 pci_write_config_word(pdev, PCI_COMMAND, new); 3889 3890 dr = find_pci_dr(pdev); 3891 if (dr && !dr->restore_intx) { 3892 dr->restore_intx = 1; 3893 dr->orig_intx = !enable; 3894 } 3895 } 3896 } 3897 EXPORT_SYMBOL_GPL(pci_intx); 3898 3899 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3900 { 3901 struct pci_bus *bus = dev->bus; 3902 bool mask_updated = true; 3903 u32 cmd_status_dword; 3904 u16 origcmd, newcmd; 3905 unsigned long flags; 3906 bool irq_pending; 3907 3908 /* 3909 * We do a single dword read to retrieve both command and status. 3910 * Document assumptions that make this possible. 3911 */ 3912 BUILD_BUG_ON(PCI_COMMAND % 4); 3913 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3914 3915 raw_spin_lock_irqsave(&pci_lock, flags); 3916 3917 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3918 3919 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3920 3921 /* 3922 * Check interrupt status register to see whether our device 3923 * triggered the interrupt (when masking) or the next IRQ is 3924 * already pending (when unmasking). 3925 */ 3926 if (mask != irq_pending) { 3927 mask_updated = false; 3928 goto done; 3929 } 3930 3931 origcmd = cmd_status_dword; 3932 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3933 if (mask) 3934 newcmd |= PCI_COMMAND_INTX_DISABLE; 3935 if (newcmd != origcmd) 3936 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3937 3938 done: 3939 raw_spin_unlock_irqrestore(&pci_lock, flags); 3940 3941 return mask_updated; 3942 } 3943 3944 /** 3945 * pci_check_and_mask_intx - mask INTx on pending interrupt 3946 * @dev: the PCI device to operate on 3947 * 3948 * Check if the device dev has its INTx line asserted, mask it and 3949 * return true in that case. False is returned if no interrupt was 3950 * pending. 3951 */ 3952 bool pci_check_and_mask_intx(struct pci_dev *dev) 3953 { 3954 return pci_check_and_set_intx_mask(dev, true); 3955 } 3956 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3957 3958 /** 3959 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3960 * @dev: the PCI device to operate on 3961 * 3962 * Check if the device dev has its INTx line asserted, unmask it if not 3963 * and return true. False is returned and the mask remains active if 3964 * there was still an interrupt pending. 3965 */ 3966 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3967 { 3968 return pci_check_and_set_intx_mask(dev, false); 3969 } 3970 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3971 3972 /** 3973 * pci_wait_for_pending_transaction - waits for pending transaction 3974 * @dev: the PCI device to operate on 3975 * 3976 * Return 0 if transaction is pending 1 otherwise. 3977 */ 3978 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3979 { 3980 if (!pci_is_pcie(dev)) 3981 return 1; 3982 3983 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3984 PCI_EXP_DEVSTA_TRPND); 3985 } 3986 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3987 3988 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 3989 { 3990 int delay = 1; 3991 u32 id; 3992 3993 /* 3994 * After reset, the device should not silently discard config 3995 * requests, but it may still indicate that it needs more time by 3996 * responding to them with CRS completions. The Root Port will 3997 * generally synthesize ~0 data to complete the read (except when 3998 * CRS SV is enabled and the read was for the Vendor ID; in that 3999 * case it synthesizes 0x0001 data). 4000 * 4001 * Wait for the device to return a non-CRS completion. Read the 4002 * Command register instead of Vendor ID so we don't have to 4003 * contend with the CRS SV value. 4004 */ 4005 pci_read_config_dword(dev, PCI_COMMAND, &id); 4006 while (id == ~0) { 4007 if (delay > timeout) { 4008 pci_warn(dev, "not ready %dms after %s; giving up\n", 4009 delay - 1, reset_type); 4010 return -ENOTTY; 4011 } 4012 4013 if (delay > 1000) 4014 pci_info(dev, "not ready %dms after %s; waiting\n", 4015 delay - 1, reset_type); 4016 4017 msleep(delay); 4018 delay *= 2; 4019 pci_read_config_dword(dev, PCI_COMMAND, &id); 4020 } 4021 4022 if (delay > 1000) 4023 pci_info(dev, "ready %dms after %s\n", delay - 1, 4024 reset_type); 4025 4026 return 0; 4027 } 4028 4029 /** 4030 * pcie_has_flr - check if a device supports function level resets 4031 * @dev: device to check 4032 * 4033 * Returns true if the device advertises support for PCIe function level 4034 * resets. 4035 */ 4036 static bool pcie_has_flr(struct pci_dev *dev) 4037 { 4038 u32 cap; 4039 4040 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4041 return false; 4042 4043 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4044 return cap & PCI_EXP_DEVCAP_FLR; 4045 } 4046 4047 /** 4048 * pcie_flr - initiate a PCIe function level reset 4049 * @dev: device to reset 4050 * 4051 * Initiate a function level reset on @dev. The caller should ensure the 4052 * device supports FLR before calling this function, e.g. by using the 4053 * pcie_has_flr() helper. 4054 */ 4055 int pcie_flr(struct pci_dev *dev) 4056 { 4057 if (!pci_wait_for_pending_transaction(dev)) 4058 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4059 4060 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4061 4062 /* 4063 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4064 * 100ms, but may silently discard requests while the FLR is in 4065 * progress. Wait 100ms before trying to access the device. 4066 */ 4067 msleep(100); 4068 4069 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4070 } 4071 EXPORT_SYMBOL_GPL(pcie_flr); 4072 4073 static int pci_af_flr(struct pci_dev *dev, int probe) 4074 { 4075 int pos; 4076 u8 cap; 4077 4078 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4079 if (!pos) 4080 return -ENOTTY; 4081 4082 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4083 return -ENOTTY; 4084 4085 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4086 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4087 return -ENOTTY; 4088 4089 if (probe) 4090 return 0; 4091 4092 /* 4093 * Wait for Transaction Pending bit to clear. A word-aligned test 4094 * is used, so we use the conrol offset rather than status and shift 4095 * the test bit to match. 4096 */ 4097 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4098 PCI_AF_STATUS_TP << 8)) 4099 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4100 4101 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4102 4103 /* 4104 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4105 * updated 27 July 2006; a device must complete an FLR within 4106 * 100ms, but may silently discard requests while the FLR is in 4107 * progress. Wait 100ms before trying to access the device. 4108 */ 4109 msleep(100); 4110 4111 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4112 } 4113 4114 /** 4115 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4116 * @dev: Device to reset. 4117 * @probe: If set, only check if the device can be reset this way. 4118 * 4119 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4120 * unset, it will be reinitialized internally when going from PCI_D3hot to 4121 * PCI_D0. If that's the case and the device is not in a low-power state 4122 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4123 * 4124 * NOTE: This causes the caller to sleep for twice the device power transition 4125 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4126 * by default (i.e. unless the @dev's d3_delay field has a different value). 4127 * Moreover, only devices in D0 can be reset by this function. 4128 */ 4129 static int pci_pm_reset(struct pci_dev *dev, int probe) 4130 { 4131 u16 csr; 4132 4133 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4134 return -ENOTTY; 4135 4136 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4137 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4138 return -ENOTTY; 4139 4140 if (probe) 4141 return 0; 4142 4143 if (dev->current_state != PCI_D0) 4144 return -EINVAL; 4145 4146 csr &= ~PCI_PM_CTRL_STATE_MASK; 4147 csr |= PCI_D3hot; 4148 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4149 pci_dev_d3_sleep(dev); 4150 4151 csr &= ~PCI_PM_CTRL_STATE_MASK; 4152 csr |= PCI_D0; 4153 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4154 pci_dev_d3_sleep(dev); 4155 4156 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4157 } 4158 4159 void pci_reset_secondary_bus(struct pci_dev *dev) 4160 { 4161 u16 ctrl; 4162 4163 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4164 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4165 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4166 4167 /* 4168 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4169 * this to 2ms to ensure that we meet the minimum requirement. 4170 */ 4171 msleep(2); 4172 4173 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4174 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4175 4176 /* 4177 * Trhfa for conventional PCI is 2^25 clock cycles. 4178 * Assuming a minimum 33MHz clock this results in a 1s 4179 * delay before we can consider subordinate devices to 4180 * be re-initialized. PCIe has some ways to shorten this, 4181 * but we don't make use of them yet. 4182 */ 4183 ssleep(1); 4184 } 4185 4186 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4187 { 4188 pci_reset_secondary_bus(dev); 4189 } 4190 4191 /** 4192 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4193 * @dev: Bridge device 4194 * 4195 * Use the bridge control register to assert reset on the secondary bus. 4196 * Devices on the secondary bus are left in power-on state. 4197 */ 4198 int pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4199 { 4200 pcibios_reset_secondary_bus(dev); 4201 4202 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4203 } 4204 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4205 4206 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4207 { 4208 struct pci_dev *pdev; 4209 4210 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4211 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4212 return -ENOTTY; 4213 4214 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4215 if (pdev != dev) 4216 return -ENOTTY; 4217 4218 if (probe) 4219 return 0; 4220 4221 pci_reset_bridge_secondary_bus(dev->bus->self); 4222 4223 return 0; 4224 } 4225 4226 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4227 { 4228 int rc = -ENOTTY; 4229 4230 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4231 return rc; 4232 4233 if (hotplug->ops->reset_slot) 4234 rc = hotplug->ops->reset_slot(hotplug, probe); 4235 4236 module_put(hotplug->ops->owner); 4237 4238 return rc; 4239 } 4240 4241 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4242 { 4243 struct pci_dev *pdev; 4244 4245 if (dev->subordinate || !dev->slot || 4246 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4247 return -ENOTTY; 4248 4249 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4250 if (pdev != dev && pdev->slot == dev->slot) 4251 return -ENOTTY; 4252 4253 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4254 } 4255 4256 static void pci_dev_lock(struct pci_dev *dev) 4257 { 4258 pci_cfg_access_lock(dev); 4259 /* block PM suspend, driver probe, etc. */ 4260 device_lock(&dev->dev); 4261 } 4262 4263 /* Return 1 on successful lock, 0 on contention */ 4264 static int pci_dev_trylock(struct pci_dev *dev) 4265 { 4266 if (pci_cfg_access_trylock(dev)) { 4267 if (device_trylock(&dev->dev)) 4268 return 1; 4269 pci_cfg_access_unlock(dev); 4270 } 4271 4272 return 0; 4273 } 4274 4275 static void pci_dev_unlock(struct pci_dev *dev) 4276 { 4277 device_unlock(&dev->dev); 4278 pci_cfg_access_unlock(dev); 4279 } 4280 4281 static void pci_dev_save_and_disable(struct pci_dev *dev) 4282 { 4283 const struct pci_error_handlers *err_handler = 4284 dev->driver ? dev->driver->err_handler : NULL; 4285 4286 /* 4287 * dev->driver->err_handler->reset_prepare() is protected against 4288 * races with ->remove() by the device lock, which must be held by 4289 * the caller. 4290 */ 4291 if (err_handler && err_handler->reset_prepare) 4292 err_handler->reset_prepare(dev); 4293 4294 /* 4295 * Wake-up device prior to save. PM registers default to D0 after 4296 * reset and a simple register restore doesn't reliably return 4297 * to a non-D0 state anyway. 4298 */ 4299 pci_set_power_state(dev, PCI_D0); 4300 4301 pci_save_state(dev); 4302 /* 4303 * Disable the device by clearing the Command register, except for 4304 * INTx-disable which is set. This not only disables MMIO and I/O port 4305 * BARs, but also prevents the device from being Bus Master, preventing 4306 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4307 * compliant devices, INTx-disable prevents legacy interrupts. 4308 */ 4309 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4310 } 4311 4312 static void pci_dev_restore(struct pci_dev *dev) 4313 { 4314 const struct pci_error_handlers *err_handler = 4315 dev->driver ? dev->driver->err_handler : NULL; 4316 4317 pci_restore_state(dev); 4318 4319 /* 4320 * dev->driver->err_handler->reset_done() is protected against 4321 * races with ->remove() by the device lock, which must be held by 4322 * the caller. 4323 */ 4324 if (err_handler && err_handler->reset_done) 4325 err_handler->reset_done(dev); 4326 } 4327 4328 /** 4329 * __pci_reset_function_locked - reset a PCI device function while holding 4330 * the @dev mutex lock. 4331 * @dev: PCI device to reset 4332 * 4333 * Some devices allow an individual function to be reset without affecting 4334 * other functions in the same device. The PCI device must be responsive 4335 * to PCI config space in order to use this function. 4336 * 4337 * The device function is presumed to be unused and the caller is holding 4338 * the device mutex lock when this function is called. 4339 * Resetting the device will make the contents of PCI configuration space 4340 * random, so any caller of this must be prepared to reinitialise the 4341 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4342 * etc. 4343 * 4344 * Returns 0 if the device function was successfully reset or negative if the 4345 * device doesn't support resetting a single function. 4346 */ 4347 int __pci_reset_function_locked(struct pci_dev *dev) 4348 { 4349 int rc; 4350 4351 might_sleep(); 4352 4353 /* 4354 * A reset method returns -ENOTTY if it doesn't support this device 4355 * and we should try the next method. 4356 * 4357 * If it returns 0 (success), we're finished. If it returns any 4358 * other error, we're also finished: this indicates that further 4359 * reset mechanisms might be broken on the device. 4360 */ 4361 rc = pci_dev_specific_reset(dev, 0); 4362 if (rc != -ENOTTY) 4363 return rc; 4364 if (pcie_has_flr(dev)) { 4365 rc = pcie_flr(dev); 4366 if (rc != -ENOTTY) 4367 return rc; 4368 } 4369 rc = pci_af_flr(dev, 0); 4370 if (rc != -ENOTTY) 4371 return rc; 4372 rc = pci_pm_reset(dev, 0); 4373 if (rc != -ENOTTY) 4374 return rc; 4375 rc = pci_dev_reset_slot_function(dev, 0); 4376 if (rc != -ENOTTY) 4377 return rc; 4378 return pci_parent_bus_reset(dev, 0); 4379 } 4380 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4381 4382 /** 4383 * pci_probe_reset_function - check whether the device can be safely reset 4384 * @dev: PCI device to reset 4385 * 4386 * Some devices allow an individual function to be reset without affecting 4387 * other functions in the same device. The PCI device must be responsive 4388 * to PCI config space in order to use this function. 4389 * 4390 * Returns 0 if the device function can be reset or negative if the 4391 * device doesn't support resetting a single function. 4392 */ 4393 int pci_probe_reset_function(struct pci_dev *dev) 4394 { 4395 int rc; 4396 4397 might_sleep(); 4398 4399 rc = pci_dev_specific_reset(dev, 1); 4400 if (rc != -ENOTTY) 4401 return rc; 4402 if (pcie_has_flr(dev)) 4403 return 0; 4404 rc = pci_af_flr(dev, 1); 4405 if (rc != -ENOTTY) 4406 return rc; 4407 rc = pci_pm_reset(dev, 1); 4408 if (rc != -ENOTTY) 4409 return rc; 4410 rc = pci_dev_reset_slot_function(dev, 1); 4411 if (rc != -ENOTTY) 4412 return rc; 4413 4414 return pci_parent_bus_reset(dev, 1); 4415 } 4416 4417 /** 4418 * pci_reset_function - quiesce and reset a PCI device function 4419 * @dev: PCI device to reset 4420 * 4421 * Some devices allow an individual function to be reset without affecting 4422 * other functions in the same device. The PCI device must be responsive 4423 * to PCI config space in order to use this function. 4424 * 4425 * This function does not just reset the PCI portion of a device, but 4426 * clears all the state associated with the device. This function differs 4427 * from __pci_reset_function_locked() in that it saves and restores device state 4428 * over the reset and takes the PCI device lock. 4429 * 4430 * Returns 0 if the device function was successfully reset or negative if the 4431 * device doesn't support resetting a single function. 4432 */ 4433 int pci_reset_function(struct pci_dev *dev) 4434 { 4435 int rc; 4436 4437 if (!dev->reset_fn) 4438 return -ENOTTY; 4439 4440 pci_dev_lock(dev); 4441 pci_dev_save_and_disable(dev); 4442 4443 rc = __pci_reset_function_locked(dev); 4444 4445 pci_dev_restore(dev); 4446 pci_dev_unlock(dev); 4447 4448 return rc; 4449 } 4450 EXPORT_SYMBOL_GPL(pci_reset_function); 4451 4452 /** 4453 * pci_reset_function_locked - quiesce and reset a PCI device function 4454 * @dev: PCI device to reset 4455 * 4456 * Some devices allow an individual function to be reset without affecting 4457 * other functions in the same device. The PCI device must be responsive 4458 * to PCI config space in order to use this function. 4459 * 4460 * This function does not just reset the PCI portion of a device, but 4461 * clears all the state associated with the device. This function differs 4462 * from __pci_reset_function_locked() in that it saves and restores device state 4463 * over the reset. It also differs from pci_reset_function() in that it 4464 * requires the PCI device lock to be held. 4465 * 4466 * Returns 0 if the device function was successfully reset or negative if the 4467 * device doesn't support resetting a single function. 4468 */ 4469 int pci_reset_function_locked(struct pci_dev *dev) 4470 { 4471 int rc; 4472 4473 if (!dev->reset_fn) 4474 return -ENOTTY; 4475 4476 pci_dev_save_and_disable(dev); 4477 4478 rc = __pci_reset_function_locked(dev); 4479 4480 pci_dev_restore(dev); 4481 4482 return rc; 4483 } 4484 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4485 4486 /** 4487 * pci_try_reset_function - quiesce and reset a PCI device function 4488 * @dev: PCI device to reset 4489 * 4490 * Same as above, except return -EAGAIN if unable to lock device. 4491 */ 4492 int pci_try_reset_function(struct pci_dev *dev) 4493 { 4494 int rc; 4495 4496 if (!dev->reset_fn) 4497 return -ENOTTY; 4498 4499 if (!pci_dev_trylock(dev)) 4500 return -EAGAIN; 4501 4502 pci_dev_save_and_disable(dev); 4503 rc = __pci_reset_function_locked(dev); 4504 pci_dev_restore(dev); 4505 pci_dev_unlock(dev); 4506 4507 return rc; 4508 } 4509 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4510 4511 /* Do any devices on or below this bus prevent a bus reset? */ 4512 static bool pci_bus_resetable(struct pci_bus *bus) 4513 { 4514 struct pci_dev *dev; 4515 4516 4517 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4518 return false; 4519 4520 list_for_each_entry(dev, &bus->devices, bus_list) { 4521 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4522 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4523 return false; 4524 } 4525 4526 return true; 4527 } 4528 4529 /* Lock devices from the top of the tree down */ 4530 static void pci_bus_lock(struct pci_bus *bus) 4531 { 4532 struct pci_dev *dev; 4533 4534 list_for_each_entry(dev, &bus->devices, bus_list) { 4535 pci_dev_lock(dev); 4536 if (dev->subordinate) 4537 pci_bus_lock(dev->subordinate); 4538 } 4539 } 4540 4541 /* Unlock devices from the bottom of the tree up */ 4542 static void pci_bus_unlock(struct pci_bus *bus) 4543 { 4544 struct pci_dev *dev; 4545 4546 list_for_each_entry(dev, &bus->devices, bus_list) { 4547 if (dev->subordinate) 4548 pci_bus_unlock(dev->subordinate); 4549 pci_dev_unlock(dev); 4550 } 4551 } 4552 4553 /* Return 1 on successful lock, 0 on contention */ 4554 static int pci_bus_trylock(struct pci_bus *bus) 4555 { 4556 struct pci_dev *dev; 4557 4558 list_for_each_entry(dev, &bus->devices, bus_list) { 4559 if (!pci_dev_trylock(dev)) 4560 goto unlock; 4561 if (dev->subordinate) { 4562 if (!pci_bus_trylock(dev->subordinate)) { 4563 pci_dev_unlock(dev); 4564 goto unlock; 4565 } 4566 } 4567 } 4568 return 1; 4569 4570 unlock: 4571 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4572 if (dev->subordinate) 4573 pci_bus_unlock(dev->subordinate); 4574 pci_dev_unlock(dev); 4575 } 4576 return 0; 4577 } 4578 4579 /* Do any devices on or below this slot prevent a bus reset? */ 4580 static bool pci_slot_resetable(struct pci_slot *slot) 4581 { 4582 struct pci_dev *dev; 4583 4584 if (slot->bus->self && 4585 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4586 return false; 4587 4588 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4589 if (!dev->slot || dev->slot != slot) 4590 continue; 4591 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4592 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4593 return false; 4594 } 4595 4596 return true; 4597 } 4598 4599 /* Lock devices from the top of the tree down */ 4600 static void pci_slot_lock(struct pci_slot *slot) 4601 { 4602 struct pci_dev *dev; 4603 4604 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4605 if (!dev->slot || dev->slot != slot) 4606 continue; 4607 pci_dev_lock(dev); 4608 if (dev->subordinate) 4609 pci_bus_lock(dev->subordinate); 4610 } 4611 } 4612 4613 /* Unlock devices from the bottom of the tree up */ 4614 static void pci_slot_unlock(struct pci_slot *slot) 4615 { 4616 struct pci_dev *dev; 4617 4618 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4619 if (!dev->slot || dev->slot != slot) 4620 continue; 4621 if (dev->subordinate) 4622 pci_bus_unlock(dev->subordinate); 4623 pci_dev_unlock(dev); 4624 } 4625 } 4626 4627 /* Return 1 on successful lock, 0 on contention */ 4628 static int pci_slot_trylock(struct pci_slot *slot) 4629 { 4630 struct pci_dev *dev; 4631 4632 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4633 if (!dev->slot || dev->slot != slot) 4634 continue; 4635 if (!pci_dev_trylock(dev)) 4636 goto unlock; 4637 if (dev->subordinate) { 4638 if (!pci_bus_trylock(dev->subordinate)) { 4639 pci_dev_unlock(dev); 4640 goto unlock; 4641 } 4642 } 4643 } 4644 return 1; 4645 4646 unlock: 4647 list_for_each_entry_continue_reverse(dev, 4648 &slot->bus->devices, bus_list) { 4649 if (!dev->slot || dev->slot != slot) 4650 continue; 4651 if (dev->subordinate) 4652 pci_bus_unlock(dev->subordinate); 4653 pci_dev_unlock(dev); 4654 } 4655 return 0; 4656 } 4657 4658 /* Save and disable devices from the top of the tree down */ 4659 static void pci_bus_save_and_disable(struct pci_bus *bus) 4660 { 4661 struct pci_dev *dev; 4662 4663 list_for_each_entry(dev, &bus->devices, bus_list) { 4664 pci_dev_lock(dev); 4665 pci_dev_save_and_disable(dev); 4666 pci_dev_unlock(dev); 4667 if (dev->subordinate) 4668 pci_bus_save_and_disable(dev->subordinate); 4669 } 4670 } 4671 4672 /* 4673 * Restore devices from top of the tree down - parent bridges need to be 4674 * restored before we can get to subordinate devices. 4675 */ 4676 static void pci_bus_restore(struct pci_bus *bus) 4677 { 4678 struct pci_dev *dev; 4679 4680 list_for_each_entry(dev, &bus->devices, bus_list) { 4681 pci_dev_lock(dev); 4682 pci_dev_restore(dev); 4683 pci_dev_unlock(dev); 4684 if (dev->subordinate) 4685 pci_bus_restore(dev->subordinate); 4686 } 4687 } 4688 4689 /* Save and disable devices from the top of the tree down */ 4690 static void pci_slot_save_and_disable(struct pci_slot *slot) 4691 { 4692 struct pci_dev *dev; 4693 4694 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4695 if (!dev->slot || dev->slot != slot) 4696 continue; 4697 pci_dev_save_and_disable(dev); 4698 if (dev->subordinate) 4699 pci_bus_save_and_disable(dev->subordinate); 4700 } 4701 } 4702 4703 /* 4704 * Restore devices from top of the tree down - parent bridges need to be 4705 * restored before we can get to subordinate devices. 4706 */ 4707 static void pci_slot_restore(struct pci_slot *slot) 4708 { 4709 struct pci_dev *dev; 4710 4711 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4712 if (!dev->slot || dev->slot != slot) 4713 continue; 4714 pci_dev_lock(dev); 4715 pci_dev_restore(dev); 4716 pci_dev_unlock(dev); 4717 if (dev->subordinate) 4718 pci_bus_restore(dev->subordinate); 4719 } 4720 } 4721 4722 static int pci_slot_reset(struct pci_slot *slot, int probe) 4723 { 4724 int rc; 4725 4726 if (!slot || !pci_slot_resetable(slot)) 4727 return -ENOTTY; 4728 4729 if (!probe) 4730 pci_slot_lock(slot); 4731 4732 might_sleep(); 4733 4734 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4735 4736 if (!probe) 4737 pci_slot_unlock(slot); 4738 4739 return rc; 4740 } 4741 4742 /** 4743 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4744 * @slot: PCI slot to probe 4745 * 4746 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4747 */ 4748 int pci_probe_reset_slot(struct pci_slot *slot) 4749 { 4750 return pci_slot_reset(slot, 1); 4751 } 4752 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4753 4754 /** 4755 * pci_reset_slot - reset a PCI slot 4756 * @slot: PCI slot to reset 4757 * 4758 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4759 * independent of other slots. For instance, some slots may support slot power 4760 * control. In the case of a 1:1 bus to slot architecture, this function may 4761 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4762 * Generally a slot reset should be attempted before a bus reset. All of the 4763 * function of the slot and any subordinate buses behind the slot are reset 4764 * through this function. PCI config space of all devices in the slot and 4765 * behind the slot is saved before and restored after reset. 4766 * 4767 * Return 0 on success, non-zero on error. 4768 */ 4769 int pci_reset_slot(struct pci_slot *slot) 4770 { 4771 int rc; 4772 4773 rc = pci_slot_reset(slot, 1); 4774 if (rc) 4775 return rc; 4776 4777 pci_slot_save_and_disable(slot); 4778 4779 rc = pci_slot_reset(slot, 0); 4780 4781 pci_slot_restore(slot); 4782 4783 return rc; 4784 } 4785 EXPORT_SYMBOL_GPL(pci_reset_slot); 4786 4787 /** 4788 * pci_try_reset_slot - Try to reset a PCI slot 4789 * @slot: PCI slot to reset 4790 * 4791 * Same as above except return -EAGAIN if the slot cannot be locked 4792 */ 4793 int pci_try_reset_slot(struct pci_slot *slot) 4794 { 4795 int rc; 4796 4797 rc = pci_slot_reset(slot, 1); 4798 if (rc) 4799 return rc; 4800 4801 pci_slot_save_and_disable(slot); 4802 4803 if (pci_slot_trylock(slot)) { 4804 might_sleep(); 4805 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4806 pci_slot_unlock(slot); 4807 } else 4808 rc = -EAGAIN; 4809 4810 pci_slot_restore(slot); 4811 4812 return rc; 4813 } 4814 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4815 4816 static int pci_bus_reset(struct pci_bus *bus, int probe) 4817 { 4818 if (!bus->self || !pci_bus_resetable(bus)) 4819 return -ENOTTY; 4820 4821 if (probe) 4822 return 0; 4823 4824 pci_bus_lock(bus); 4825 4826 might_sleep(); 4827 4828 pci_reset_bridge_secondary_bus(bus->self); 4829 4830 pci_bus_unlock(bus); 4831 4832 return 0; 4833 } 4834 4835 /** 4836 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4837 * @bus: PCI bus to probe 4838 * 4839 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4840 */ 4841 int pci_probe_reset_bus(struct pci_bus *bus) 4842 { 4843 return pci_bus_reset(bus, 1); 4844 } 4845 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4846 4847 /** 4848 * pci_reset_bus - reset a PCI bus 4849 * @bus: top level PCI bus to reset 4850 * 4851 * Do a bus reset on the given bus and any subordinate buses, saving 4852 * and restoring state of all devices. 4853 * 4854 * Return 0 on success, non-zero on error. 4855 */ 4856 int pci_reset_bus(struct pci_bus *bus) 4857 { 4858 int rc; 4859 4860 rc = pci_bus_reset(bus, 1); 4861 if (rc) 4862 return rc; 4863 4864 pci_bus_save_and_disable(bus); 4865 4866 rc = pci_bus_reset(bus, 0); 4867 4868 pci_bus_restore(bus); 4869 4870 return rc; 4871 } 4872 EXPORT_SYMBOL_GPL(pci_reset_bus); 4873 4874 /** 4875 * pci_try_reset_bus - Try to reset a PCI bus 4876 * @bus: top level PCI bus to reset 4877 * 4878 * Same as above except return -EAGAIN if the bus cannot be locked 4879 */ 4880 int pci_try_reset_bus(struct pci_bus *bus) 4881 { 4882 int rc; 4883 4884 rc = pci_bus_reset(bus, 1); 4885 if (rc) 4886 return rc; 4887 4888 pci_bus_save_and_disable(bus); 4889 4890 if (pci_bus_trylock(bus)) { 4891 might_sleep(); 4892 pci_reset_bridge_secondary_bus(bus->self); 4893 pci_bus_unlock(bus); 4894 } else 4895 rc = -EAGAIN; 4896 4897 pci_bus_restore(bus); 4898 4899 return rc; 4900 } 4901 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4902 4903 /** 4904 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4905 * @dev: PCI device to query 4906 * 4907 * Returns mmrbc: maximum designed memory read count in bytes 4908 * or appropriate error value. 4909 */ 4910 int pcix_get_max_mmrbc(struct pci_dev *dev) 4911 { 4912 int cap; 4913 u32 stat; 4914 4915 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4916 if (!cap) 4917 return -EINVAL; 4918 4919 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4920 return -EINVAL; 4921 4922 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4923 } 4924 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4925 4926 /** 4927 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4928 * @dev: PCI device to query 4929 * 4930 * Returns mmrbc: maximum memory read count in bytes 4931 * or appropriate error value. 4932 */ 4933 int pcix_get_mmrbc(struct pci_dev *dev) 4934 { 4935 int cap; 4936 u16 cmd; 4937 4938 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4939 if (!cap) 4940 return -EINVAL; 4941 4942 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4943 return -EINVAL; 4944 4945 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4946 } 4947 EXPORT_SYMBOL(pcix_get_mmrbc); 4948 4949 /** 4950 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4951 * @dev: PCI device to query 4952 * @mmrbc: maximum memory read count in bytes 4953 * valid values are 512, 1024, 2048, 4096 4954 * 4955 * If possible sets maximum memory read byte count, some bridges have erratas 4956 * that prevent this. 4957 */ 4958 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4959 { 4960 int cap; 4961 u32 stat, v, o; 4962 u16 cmd; 4963 4964 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4965 return -EINVAL; 4966 4967 v = ffs(mmrbc) - 10; 4968 4969 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4970 if (!cap) 4971 return -EINVAL; 4972 4973 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4974 return -EINVAL; 4975 4976 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4977 return -E2BIG; 4978 4979 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4980 return -EINVAL; 4981 4982 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4983 if (o != v) { 4984 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4985 return -EIO; 4986 4987 cmd &= ~PCI_X_CMD_MAX_READ; 4988 cmd |= v << 2; 4989 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4990 return -EIO; 4991 } 4992 return 0; 4993 } 4994 EXPORT_SYMBOL(pcix_set_mmrbc); 4995 4996 /** 4997 * pcie_get_readrq - get PCI Express read request size 4998 * @dev: PCI device to query 4999 * 5000 * Returns maximum memory read request in bytes 5001 * or appropriate error value. 5002 */ 5003 int pcie_get_readrq(struct pci_dev *dev) 5004 { 5005 u16 ctl; 5006 5007 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5008 5009 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5010 } 5011 EXPORT_SYMBOL(pcie_get_readrq); 5012 5013 /** 5014 * pcie_set_readrq - set PCI Express maximum memory read request 5015 * @dev: PCI device to query 5016 * @rq: maximum memory read count in bytes 5017 * valid values are 128, 256, 512, 1024, 2048, 4096 5018 * 5019 * If possible sets maximum memory read request in bytes 5020 */ 5021 int pcie_set_readrq(struct pci_dev *dev, int rq) 5022 { 5023 u16 v; 5024 5025 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5026 return -EINVAL; 5027 5028 /* 5029 * If using the "performance" PCIe config, we clamp the 5030 * read rq size to the max packet size to prevent the 5031 * host bridge generating requests larger than we can 5032 * cope with 5033 */ 5034 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5035 int mps = pcie_get_mps(dev); 5036 5037 if (mps < rq) 5038 rq = mps; 5039 } 5040 5041 v = (ffs(rq) - 8) << 12; 5042 5043 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5044 PCI_EXP_DEVCTL_READRQ, v); 5045 } 5046 EXPORT_SYMBOL(pcie_set_readrq); 5047 5048 /** 5049 * pcie_get_mps - get PCI Express maximum payload size 5050 * @dev: PCI device to query 5051 * 5052 * Returns maximum payload size in bytes 5053 */ 5054 int pcie_get_mps(struct pci_dev *dev) 5055 { 5056 u16 ctl; 5057 5058 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5059 5060 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5061 } 5062 EXPORT_SYMBOL(pcie_get_mps); 5063 5064 /** 5065 * pcie_set_mps - set PCI Express maximum payload size 5066 * @dev: PCI device to query 5067 * @mps: maximum payload size in bytes 5068 * valid values are 128, 256, 512, 1024, 2048, 4096 5069 * 5070 * If possible sets maximum payload size 5071 */ 5072 int pcie_set_mps(struct pci_dev *dev, int mps) 5073 { 5074 u16 v; 5075 5076 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5077 return -EINVAL; 5078 5079 v = ffs(mps) - 8; 5080 if (v > dev->pcie_mpss) 5081 return -EINVAL; 5082 v <<= 5; 5083 5084 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5085 PCI_EXP_DEVCTL_PAYLOAD, v); 5086 } 5087 EXPORT_SYMBOL(pcie_set_mps); 5088 5089 /** 5090 * pcie_get_minimum_link - determine minimum link settings of a PCI device 5091 * @dev: PCI device to query 5092 * @speed: storage for minimum speed 5093 * @width: storage for minimum width 5094 * 5095 * This function will walk up the PCI device chain and determine the minimum 5096 * link width and speed of the device. 5097 */ 5098 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 5099 enum pcie_link_width *width) 5100 { 5101 int ret; 5102 5103 *speed = PCI_SPEED_UNKNOWN; 5104 *width = PCIE_LNK_WIDTH_UNKNOWN; 5105 5106 while (dev) { 5107 u16 lnksta; 5108 enum pci_bus_speed next_speed; 5109 enum pcie_link_width next_width; 5110 5111 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5112 if (ret) 5113 return ret; 5114 5115 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5116 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5117 PCI_EXP_LNKSTA_NLW_SHIFT; 5118 5119 if (next_speed < *speed) 5120 *speed = next_speed; 5121 5122 if (next_width < *width) 5123 *width = next_width; 5124 5125 dev = dev->bus->self; 5126 } 5127 5128 return 0; 5129 } 5130 EXPORT_SYMBOL(pcie_get_minimum_link); 5131 5132 /** 5133 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5134 * device and its bandwidth limitation 5135 * @dev: PCI device to query 5136 * @limiting_dev: storage for device causing the bandwidth limitation 5137 * @speed: storage for speed of limiting device 5138 * @width: storage for width of limiting device 5139 * 5140 * Walk up the PCI device chain and find the point where the minimum 5141 * bandwidth is available. Return the bandwidth available there and (if 5142 * limiting_dev, speed, and width pointers are supplied) information about 5143 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5144 * raw bandwidth. 5145 */ 5146 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5147 enum pci_bus_speed *speed, 5148 enum pcie_link_width *width) 5149 { 5150 u16 lnksta; 5151 enum pci_bus_speed next_speed; 5152 enum pcie_link_width next_width; 5153 u32 bw, next_bw; 5154 5155 if (speed) 5156 *speed = PCI_SPEED_UNKNOWN; 5157 if (width) 5158 *width = PCIE_LNK_WIDTH_UNKNOWN; 5159 5160 bw = 0; 5161 5162 while (dev) { 5163 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5164 5165 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5166 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5167 PCI_EXP_LNKSTA_NLW_SHIFT; 5168 5169 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5170 5171 /* Check if current device limits the total bandwidth */ 5172 if (!bw || next_bw <= bw) { 5173 bw = next_bw; 5174 5175 if (limiting_dev) 5176 *limiting_dev = dev; 5177 if (speed) 5178 *speed = next_speed; 5179 if (width) 5180 *width = next_width; 5181 } 5182 5183 dev = pci_upstream_bridge(dev); 5184 } 5185 5186 return bw; 5187 } 5188 EXPORT_SYMBOL(pcie_bandwidth_available); 5189 5190 /** 5191 * pcie_get_speed_cap - query for the PCI device's link speed capability 5192 * @dev: PCI device to query 5193 * 5194 * Query the PCI device speed capability. Return the maximum link speed 5195 * supported by the device. 5196 */ 5197 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5198 { 5199 u32 lnkcap2, lnkcap; 5200 5201 /* 5202 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link 5203 * Speeds Vector in Link Capabilities 2 when supported, falling 5204 * back to Max Link Speed in Link Capabilities otherwise. 5205 */ 5206 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5207 if (lnkcap2) { /* PCIe r3.0-compliant */ 5208 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5209 return PCIE_SPEED_16_0GT; 5210 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5211 return PCIE_SPEED_8_0GT; 5212 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5213 return PCIE_SPEED_5_0GT; 5214 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5215 return PCIE_SPEED_2_5GT; 5216 return PCI_SPEED_UNKNOWN; 5217 } 5218 5219 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5220 if (lnkcap) { 5221 if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB) 5222 return PCIE_SPEED_16_0GT; 5223 else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB) 5224 return PCIE_SPEED_8_0GT; 5225 else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB) 5226 return PCIE_SPEED_5_0GT; 5227 else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB) 5228 return PCIE_SPEED_2_5GT; 5229 } 5230 5231 return PCI_SPEED_UNKNOWN; 5232 } 5233 5234 /** 5235 * pcie_get_width_cap - query for the PCI device's link width capability 5236 * @dev: PCI device to query 5237 * 5238 * Query the PCI device width capability. Return the maximum link width 5239 * supported by the device. 5240 */ 5241 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5242 { 5243 u32 lnkcap; 5244 5245 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5246 if (lnkcap) 5247 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5248 5249 return PCIE_LNK_WIDTH_UNKNOWN; 5250 } 5251 5252 /** 5253 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5254 * @dev: PCI device 5255 * @speed: storage for link speed 5256 * @width: storage for link width 5257 * 5258 * Calculate a PCI device's link bandwidth by querying for its link speed 5259 * and width, multiplying them, and applying encoding overhead. The result 5260 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5261 */ 5262 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5263 enum pcie_link_width *width) 5264 { 5265 *speed = pcie_get_speed_cap(dev); 5266 *width = pcie_get_width_cap(dev); 5267 5268 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5269 return 0; 5270 5271 return *width * PCIE_SPEED2MBS_ENC(*speed); 5272 } 5273 5274 /** 5275 * pcie_print_link_status - Report the PCI device's link speed and width 5276 * @dev: PCI device to query 5277 * 5278 * Report the available bandwidth at the device. If this is less than the 5279 * device is capable of, report the device's maximum possible bandwidth and 5280 * the upstream link that limits its performance to less than that. 5281 */ 5282 void pcie_print_link_status(struct pci_dev *dev) 5283 { 5284 enum pcie_link_width width, width_cap; 5285 enum pci_bus_speed speed, speed_cap; 5286 struct pci_dev *limiting_dev = NULL; 5287 u32 bw_avail, bw_cap; 5288 5289 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5290 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5291 5292 if (bw_avail >= bw_cap) 5293 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5294 bw_cap / 1000, bw_cap % 1000, 5295 PCIE_SPEED2STR(speed_cap), width_cap); 5296 else 5297 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5298 bw_avail / 1000, bw_avail % 1000, 5299 PCIE_SPEED2STR(speed), width, 5300 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5301 bw_cap / 1000, bw_cap % 1000, 5302 PCIE_SPEED2STR(speed_cap), width_cap); 5303 } 5304 EXPORT_SYMBOL(pcie_print_link_status); 5305 5306 /** 5307 * pci_select_bars - Make BAR mask from the type of resource 5308 * @dev: the PCI device for which BAR mask is made 5309 * @flags: resource type mask to be selected 5310 * 5311 * This helper routine makes bar mask from the type of resource. 5312 */ 5313 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5314 { 5315 int i, bars = 0; 5316 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5317 if (pci_resource_flags(dev, i) & flags) 5318 bars |= (1 << i); 5319 return bars; 5320 } 5321 EXPORT_SYMBOL(pci_select_bars); 5322 5323 /* Some architectures require additional programming to enable VGA */ 5324 static arch_set_vga_state_t arch_set_vga_state; 5325 5326 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5327 { 5328 arch_set_vga_state = func; /* NULL disables */ 5329 } 5330 5331 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5332 unsigned int command_bits, u32 flags) 5333 { 5334 if (arch_set_vga_state) 5335 return arch_set_vga_state(dev, decode, command_bits, 5336 flags); 5337 return 0; 5338 } 5339 5340 /** 5341 * pci_set_vga_state - set VGA decode state on device and parents if requested 5342 * @dev: the PCI device 5343 * @decode: true = enable decoding, false = disable decoding 5344 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5345 * @flags: traverse ancestors and change bridges 5346 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5347 */ 5348 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5349 unsigned int command_bits, u32 flags) 5350 { 5351 struct pci_bus *bus; 5352 struct pci_dev *bridge; 5353 u16 cmd; 5354 int rc; 5355 5356 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5357 5358 /* ARCH specific VGA enables */ 5359 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5360 if (rc) 5361 return rc; 5362 5363 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5364 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5365 if (decode == true) 5366 cmd |= command_bits; 5367 else 5368 cmd &= ~command_bits; 5369 pci_write_config_word(dev, PCI_COMMAND, cmd); 5370 } 5371 5372 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5373 return 0; 5374 5375 bus = dev->bus; 5376 while (bus) { 5377 bridge = bus->self; 5378 if (bridge) { 5379 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5380 &cmd); 5381 if (decode == true) 5382 cmd |= PCI_BRIDGE_CTL_VGA; 5383 else 5384 cmd &= ~PCI_BRIDGE_CTL_VGA; 5385 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5386 cmd); 5387 } 5388 bus = bus->parent; 5389 } 5390 return 0; 5391 } 5392 5393 /** 5394 * pci_add_dma_alias - Add a DMA devfn alias for a device 5395 * @dev: the PCI device for which alias is added 5396 * @devfn: alias slot and function 5397 * 5398 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5399 * It should be called early, preferably as PCI fixup header quirk. 5400 */ 5401 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5402 { 5403 if (!dev->dma_alias_mask) 5404 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5405 sizeof(long), GFP_KERNEL); 5406 if (!dev->dma_alias_mask) { 5407 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5408 return; 5409 } 5410 5411 set_bit(devfn, dev->dma_alias_mask); 5412 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5413 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5414 } 5415 5416 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5417 { 5418 return (dev1->dma_alias_mask && 5419 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5420 (dev2->dma_alias_mask && 5421 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5422 } 5423 5424 bool pci_device_is_present(struct pci_dev *pdev) 5425 { 5426 u32 v; 5427 5428 if (pci_dev_is_disconnected(pdev)) 5429 return false; 5430 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5431 } 5432 EXPORT_SYMBOL_GPL(pci_device_is_present); 5433 5434 void pci_ignore_hotplug(struct pci_dev *dev) 5435 { 5436 struct pci_dev *bridge = dev->bus->self; 5437 5438 dev->ignore_hotplug = 1; 5439 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5440 if (bridge) 5441 bridge->ignore_hotplug = 1; 5442 } 5443 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5444 5445 resource_size_t __weak pcibios_default_alignment(void) 5446 { 5447 return 0; 5448 } 5449 5450 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5451 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5452 static DEFINE_SPINLOCK(resource_alignment_lock); 5453 5454 /** 5455 * pci_specified_resource_alignment - get resource alignment specified by user. 5456 * @dev: the PCI device to get 5457 * @resize: whether or not to change resources' size when reassigning alignment 5458 * 5459 * RETURNS: Resource alignment if it is specified. 5460 * Zero if it is not specified. 5461 */ 5462 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5463 bool *resize) 5464 { 5465 int seg, bus, slot, func, align_order, count; 5466 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5467 resource_size_t align = pcibios_default_alignment(); 5468 char *p; 5469 5470 spin_lock(&resource_alignment_lock); 5471 p = resource_alignment_param; 5472 if (!*p && !align) 5473 goto out; 5474 if (pci_has_flag(PCI_PROBE_ONLY)) { 5475 align = 0; 5476 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5477 goto out; 5478 } 5479 5480 while (*p) { 5481 count = 0; 5482 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5483 p[count] == '@') { 5484 p += count + 1; 5485 } else { 5486 align_order = -1; 5487 } 5488 if (strncmp(p, "pci:", 4) == 0) { 5489 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5490 p += 4; 5491 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5492 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5493 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5494 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5495 p); 5496 break; 5497 } 5498 subsystem_vendor = subsystem_device = 0; 5499 } 5500 p += count; 5501 if ((!vendor || (vendor == dev->vendor)) && 5502 (!device || (device == dev->device)) && 5503 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5504 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5505 *resize = true; 5506 if (align_order == -1) 5507 align = PAGE_SIZE; 5508 else 5509 align = 1 << align_order; 5510 /* Found */ 5511 break; 5512 } 5513 } 5514 else { 5515 if (sscanf(p, "%x:%x:%x.%x%n", 5516 &seg, &bus, &slot, &func, &count) != 4) { 5517 seg = 0; 5518 if (sscanf(p, "%x:%x.%x%n", 5519 &bus, &slot, &func, &count) != 3) { 5520 /* Invalid format */ 5521 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5522 p); 5523 break; 5524 } 5525 } 5526 p += count; 5527 if (seg == pci_domain_nr(dev->bus) && 5528 bus == dev->bus->number && 5529 slot == PCI_SLOT(dev->devfn) && 5530 func == PCI_FUNC(dev->devfn)) { 5531 *resize = true; 5532 if (align_order == -1) 5533 align = PAGE_SIZE; 5534 else 5535 align = 1 << align_order; 5536 /* Found */ 5537 break; 5538 } 5539 } 5540 if (*p != ';' && *p != ',') { 5541 /* End of param or invalid format */ 5542 break; 5543 } 5544 p++; 5545 } 5546 out: 5547 spin_unlock(&resource_alignment_lock); 5548 return align; 5549 } 5550 5551 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5552 resource_size_t align, bool resize) 5553 { 5554 struct resource *r = &dev->resource[bar]; 5555 resource_size_t size; 5556 5557 if (!(r->flags & IORESOURCE_MEM)) 5558 return; 5559 5560 if (r->flags & IORESOURCE_PCI_FIXED) { 5561 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5562 bar, r, (unsigned long long)align); 5563 return; 5564 } 5565 5566 size = resource_size(r); 5567 if (size >= align) 5568 return; 5569 5570 /* 5571 * Increase the alignment of the resource. There are two ways we 5572 * can do this: 5573 * 5574 * 1) Increase the size of the resource. BARs are aligned on their 5575 * size, so when we reallocate space for this resource, we'll 5576 * allocate it with the larger alignment. This also prevents 5577 * assignment of any other BARs inside the alignment region, so 5578 * if we're requesting page alignment, this means no other BARs 5579 * will share the page. 5580 * 5581 * The disadvantage is that this makes the resource larger than 5582 * the hardware BAR, which may break drivers that compute things 5583 * based on the resource size, e.g., to find registers at a 5584 * fixed offset before the end of the BAR. 5585 * 5586 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5587 * set r->start to the desired alignment. By itself this 5588 * doesn't prevent other BARs being put inside the alignment 5589 * region, but if we realign *every* resource of every device in 5590 * the system, none of them will share an alignment region. 5591 * 5592 * When the user has requested alignment for only some devices via 5593 * the "pci=resource_alignment" argument, "resize" is true and we 5594 * use the first method. Otherwise we assume we're aligning all 5595 * devices and we use the second. 5596 */ 5597 5598 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 5599 bar, r, (unsigned long long)align); 5600 5601 if (resize) { 5602 r->start = 0; 5603 r->end = align - 1; 5604 } else { 5605 r->flags &= ~IORESOURCE_SIZEALIGN; 5606 r->flags |= IORESOURCE_STARTALIGN; 5607 r->start = align; 5608 r->end = r->start + size - 1; 5609 } 5610 r->flags |= IORESOURCE_UNSET; 5611 } 5612 5613 /* 5614 * This function disables memory decoding and releases memory resources 5615 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5616 * It also rounds up size to specified alignment. 5617 * Later on, the kernel will assign page-aligned memory resource back 5618 * to the device. 5619 */ 5620 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5621 { 5622 int i; 5623 struct resource *r; 5624 resource_size_t align; 5625 u16 command; 5626 bool resize = false; 5627 5628 /* 5629 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5630 * 3.4.1.11. Their resources are allocated from the space 5631 * described by the VF BARx register in the PF's SR-IOV capability. 5632 * We can't influence their alignment here. 5633 */ 5634 if (dev->is_virtfn) 5635 return; 5636 5637 /* check if specified PCI is target device to reassign */ 5638 align = pci_specified_resource_alignment(dev, &resize); 5639 if (!align) 5640 return; 5641 5642 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5643 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5644 pci_warn(dev, "Can't reassign resources to host bridge\n"); 5645 return; 5646 } 5647 5648 pci_read_config_word(dev, PCI_COMMAND, &command); 5649 command &= ~PCI_COMMAND_MEMORY; 5650 pci_write_config_word(dev, PCI_COMMAND, command); 5651 5652 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5653 pci_request_resource_alignment(dev, i, align, resize); 5654 5655 /* 5656 * Need to disable bridge's resource window, 5657 * to enable the kernel to reassign new resource 5658 * window later on. 5659 */ 5660 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5661 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5662 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5663 r = &dev->resource[i]; 5664 if (!(r->flags & IORESOURCE_MEM)) 5665 continue; 5666 r->flags |= IORESOURCE_UNSET; 5667 r->end = resource_size(r) - 1; 5668 r->start = 0; 5669 } 5670 pci_disable_bridge_window(dev); 5671 } 5672 } 5673 5674 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5675 { 5676 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5677 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5678 spin_lock(&resource_alignment_lock); 5679 strncpy(resource_alignment_param, buf, count); 5680 resource_alignment_param[count] = '\0'; 5681 spin_unlock(&resource_alignment_lock); 5682 return count; 5683 } 5684 5685 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5686 { 5687 size_t count; 5688 spin_lock(&resource_alignment_lock); 5689 count = snprintf(buf, size, "%s", resource_alignment_param); 5690 spin_unlock(&resource_alignment_lock); 5691 return count; 5692 } 5693 5694 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5695 { 5696 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5697 } 5698 5699 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5700 const char *buf, size_t count) 5701 { 5702 return pci_set_resource_alignment_param(buf, count); 5703 } 5704 5705 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5706 pci_resource_alignment_store); 5707 5708 static int __init pci_resource_alignment_sysfs_init(void) 5709 { 5710 return bus_create_file(&pci_bus_type, 5711 &bus_attr_resource_alignment); 5712 } 5713 late_initcall(pci_resource_alignment_sysfs_init); 5714 5715 static void pci_no_domains(void) 5716 { 5717 #ifdef CONFIG_PCI_DOMAINS 5718 pci_domains_supported = 0; 5719 #endif 5720 } 5721 5722 #ifdef CONFIG_PCI_DOMAINS 5723 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5724 5725 int pci_get_new_domain_nr(void) 5726 { 5727 return atomic_inc_return(&__domain_nr); 5728 } 5729 5730 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5731 static int of_pci_bus_find_domain_nr(struct device *parent) 5732 { 5733 static int use_dt_domains = -1; 5734 int domain = -1; 5735 5736 if (parent) 5737 domain = of_get_pci_domain_nr(parent->of_node); 5738 /* 5739 * Check DT domain and use_dt_domains values. 5740 * 5741 * If DT domain property is valid (domain >= 0) and 5742 * use_dt_domains != 0, the DT assignment is valid since this means 5743 * we have not previously allocated a domain number by using 5744 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5745 * 1, to indicate that we have just assigned a domain number from 5746 * DT. 5747 * 5748 * If DT domain property value is not valid (ie domain < 0), and we 5749 * have not previously assigned a domain number from DT 5750 * (use_dt_domains != 1) we should assign a domain number by 5751 * using the: 5752 * 5753 * pci_get_new_domain_nr() 5754 * 5755 * API and update the use_dt_domains value to keep track of method we 5756 * are using to assign domain numbers (use_dt_domains = 0). 5757 * 5758 * All other combinations imply we have a platform that is trying 5759 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5760 * which is a recipe for domain mishandling and it is prevented by 5761 * invalidating the domain value (domain = -1) and printing a 5762 * corresponding error. 5763 */ 5764 if (domain >= 0 && use_dt_domains) { 5765 use_dt_domains = 1; 5766 } else if (domain < 0 && use_dt_domains != 1) { 5767 use_dt_domains = 0; 5768 domain = pci_get_new_domain_nr(); 5769 } else { 5770 if (parent) 5771 pr_err("Node %pOF has ", parent->of_node); 5772 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 5773 domain = -1; 5774 } 5775 5776 return domain; 5777 } 5778 5779 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5780 { 5781 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5782 acpi_pci_bus_find_domain_nr(bus); 5783 } 5784 #endif 5785 #endif 5786 5787 /** 5788 * pci_ext_cfg_avail - can we access extended PCI config space? 5789 * 5790 * Returns 1 if we can access PCI extended config space (offsets 5791 * greater than 0xff). This is the default implementation. Architecture 5792 * implementations can override this. 5793 */ 5794 int __weak pci_ext_cfg_avail(void) 5795 { 5796 return 1; 5797 } 5798 5799 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5800 { 5801 } 5802 EXPORT_SYMBOL(pci_fixup_cardbus); 5803 5804 static int __init pci_setup(char *str) 5805 { 5806 while (str) { 5807 char *k = strchr(str, ','); 5808 if (k) 5809 *k++ = 0; 5810 if (*str && (str = pcibios_setup(str)) && *str) { 5811 if (!strcmp(str, "nomsi")) { 5812 pci_no_msi(); 5813 } else if (!strcmp(str, "noaer")) { 5814 pci_no_aer(); 5815 } else if (!strncmp(str, "realloc=", 8)) { 5816 pci_realloc_get_opt(str + 8); 5817 } else if (!strncmp(str, "realloc", 7)) { 5818 pci_realloc_get_opt("on"); 5819 } else if (!strcmp(str, "nodomains")) { 5820 pci_no_domains(); 5821 } else if (!strncmp(str, "noari", 5)) { 5822 pcie_ari_disabled = true; 5823 } else if (!strncmp(str, "cbiosize=", 9)) { 5824 pci_cardbus_io_size = memparse(str + 9, &str); 5825 } else if (!strncmp(str, "cbmemsize=", 10)) { 5826 pci_cardbus_mem_size = memparse(str + 10, &str); 5827 } else if (!strncmp(str, "resource_alignment=", 19)) { 5828 pci_set_resource_alignment_param(str + 19, 5829 strlen(str + 19)); 5830 } else if (!strncmp(str, "ecrc=", 5)) { 5831 pcie_ecrc_get_policy(str + 5); 5832 } else if (!strncmp(str, "hpiosize=", 9)) { 5833 pci_hotplug_io_size = memparse(str + 9, &str); 5834 } else if (!strncmp(str, "hpmemsize=", 10)) { 5835 pci_hotplug_mem_size = memparse(str + 10, &str); 5836 } else if (!strncmp(str, "hpbussize=", 10)) { 5837 pci_hotplug_bus_size = 5838 simple_strtoul(str + 10, &str, 0); 5839 if (pci_hotplug_bus_size > 0xff) 5840 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5841 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5842 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5843 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5844 pcie_bus_config = PCIE_BUS_SAFE; 5845 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5846 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5847 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5848 pcie_bus_config = PCIE_BUS_PEER2PEER; 5849 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5850 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5851 } else { 5852 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5853 str); 5854 } 5855 } 5856 str = k; 5857 } 5858 return 0; 5859 } 5860 early_param("pci", pci_setup); 5861