1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pci-ats.h> 33 #include <asm/setup.h> 34 #include <asm/dma.h> 35 #include <linux/aer.h> 36 #include "pci.h" 37 38 DEFINE_MUTEX(pci_slot_mutex); 39 40 const char *pci_power_names[] = { 41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 42 }; 43 EXPORT_SYMBOL_GPL(pci_power_names); 44 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 static void pci_dev_d3_sleep(struct pci_dev *dev) 67 { 68 unsigned int delay = dev->d3_delay; 69 70 if (delay < pci_pm_d3_delay) 71 delay = pci_pm_d3_delay; 72 73 if (delay) 74 msleep(delay); 75 } 76 77 #ifdef CONFIG_PCI_DOMAINS 78 int pci_domains_supported = 1; 79 #endif 80 81 #define DEFAULT_CARDBUS_IO_SIZE (256) 82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 86 87 #define DEFAULT_HOTPLUG_IO_SIZE (256) 88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 92 93 #define DEFAULT_HOTPLUG_BUS_SIZE 1 94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 95 96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 97 98 /* 99 * The default CLS is used if arch didn't set CLS explicitly and not 100 * all pci devices agree on the same value. Arch can override either 101 * the dfl or actual value as it sees fit. Don't forget this is 102 * measured in 32-bit words, not bytes. 103 */ 104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 105 u8 pci_cache_line_size; 106 107 /* 108 * If we set up a device for bus mastering, we need to check the latency 109 * timer as certain BIOSes forget to set it properly. 110 */ 111 unsigned int pcibios_max_latency = 255; 112 113 /* If set, the PCIe ARI capability will not be used. */ 114 static bool pcie_ari_disabled; 115 116 /* If set, the PCIe ATS capability will not be used. */ 117 static bool pcie_ats_disabled; 118 119 /* If set, the PCI config space of each device is printed during boot. */ 120 bool pci_early_dump; 121 122 bool pci_ats_disabled(void) 123 { 124 return pcie_ats_disabled; 125 } 126 127 /* Disable bridge_d3 for all PCIe ports */ 128 static bool pci_bridge_d3_disable; 129 /* Force bridge_d3 for all PCIe ports */ 130 static bool pci_bridge_d3_force; 131 132 static int __init pcie_port_pm_setup(char *str) 133 { 134 if (!strcmp(str, "off")) 135 pci_bridge_d3_disable = true; 136 else if (!strcmp(str, "force")) 137 pci_bridge_d3_force = true; 138 return 1; 139 } 140 __setup("pcie_port_pm=", pcie_port_pm_setup); 141 142 /* Time to wait after a reset for device to become responsive */ 143 #define PCIE_RESET_READY_POLL_MS 60000 144 145 /** 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 147 * @bus: pointer to PCI bus structure to search 148 * 149 * Given a PCI bus, returns the highest PCI bus number present in the set 150 * including the given PCI bus and its list of child PCI buses. 151 */ 152 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 153 { 154 struct pci_bus *tmp; 155 unsigned char max, n; 156 157 max = bus->busn_res.end; 158 list_for_each_entry(tmp, &bus->children, node) { 159 n = pci_bus_max_busnr(tmp); 160 if (n > max) 161 max = n; 162 } 163 return max; 164 } 165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 166 167 #ifdef CONFIG_HAS_IOMEM 168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 169 { 170 struct resource *res = &pdev->resource[bar]; 171 172 /* 173 * Make sure the BAR is actually a memory resource, not an IO resource 174 */ 175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 177 return NULL; 178 } 179 return ioremap_nocache(res->start, resource_size(res)); 180 } 181 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 182 183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 184 { 185 /* 186 * Make sure the BAR is actually a memory resource, not an IO resource 187 */ 188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 189 WARN_ON(1); 190 return NULL; 191 } 192 return ioremap_wc(pci_resource_start(pdev, bar), 193 pci_resource_len(pdev, bar)); 194 } 195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 196 #endif 197 198 /** 199 * pci_dev_str_match_path - test if a path string matches a device 200 * @dev: the PCI device to test 201 * @path: string to match the device against 202 * @endptr: pointer to the string after the match 203 * 204 * Test if a string (typically from a kernel parameter) formatted as a 205 * path of device/function addresses matches a PCI device. The string must 206 * be of the form: 207 * 208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 209 * 210 * A path for a device can be obtained using 'lspci -t'. Using a path 211 * is more robust against bus renumbering than using only a single bus, 212 * device and function address. 213 * 214 * Returns 1 if the string matches the device, 0 if it does not and 215 * a negative error code if it fails to parse the string. 216 */ 217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 218 const char **endptr) 219 { 220 int ret; 221 int seg, bus, slot, func; 222 char *wpath, *p; 223 char end; 224 225 *endptr = strchrnul(path, ';'); 226 227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 228 if (!wpath) 229 return -ENOMEM; 230 231 while (1) { 232 p = strrchr(wpath, '/'); 233 if (!p) 234 break; 235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 236 if (ret != 2) { 237 ret = -EINVAL; 238 goto free_and_exit; 239 } 240 241 if (dev->devfn != PCI_DEVFN(slot, func)) { 242 ret = 0; 243 goto free_and_exit; 244 } 245 246 /* 247 * Note: we don't need to get a reference to the upstream 248 * bridge because we hold a reference to the top level 249 * device which should hold a reference to the bridge, 250 * and so on. 251 */ 252 dev = pci_upstream_bridge(dev); 253 if (!dev) { 254 ret = 0; 255 goto free_and_exit; 256 } 257 258 *p = 0; 259 } 260 261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 262 &func, &end); 263 if (ret != 4) { 264 seg = 0; 265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 266 if (ret != 3) { 267 ret = -EINVAL; 268 goto free_and_exit; 269 } 270 } 271 272 ret = (seg == pci_domain_nr(dev->bus) && 273 bus == dev->bus->number && 274 dev->devfn == PCI_DEVFN(slot, func)); 275 276 free_and_exit: 277 kfree(wpath); 278 return ret; 279 } 280 281 /** 282 * pci_dev_str_match - test if a string matches a device 283 * @dev: the PCI device to test 284 * @p: string to match the device against 285 * @endptr: pointer to the string after the match 286 * 287 * Test if a string (typically from a kernel parameter) matches a specified 288 * PCI device. The string may be of one of the following formats: 289 * 290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 292 * 293 * The first format specifies a PCI bus/device/function address which 294 * may change if new hardware is inserted, if motherboard firmware changes, 295 * or due to changes caused in kernel parameters. If the domain is 296 * left unspecified, it is taken to be 0. In order to be robust against 297 * bus renumbering issues, a path of PCI device/function numbers may be used 298 * to address the specific device. The path for a device can be determined 299 * through the use of 'lspci -t'. 300 * 301 * The second format matches devices using IDs in the configuration 302 * space which may match multiple devices in the system. A value of 0 303 * for any field will match all devices. (Note: this differs from 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 305 * legacy reasons and convenience so users don't have to specify 306 * FFFFFFFFs on the command line.) 307 * 308 * Returns 1 if the string matches the device, 0 if it does not and 309 * a negative error code if the string cannot be parsed. 310 */ 311 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 312 const char **endptr) 313 { 314 int ret; 315 int count; 316 unsigned short vendor, device, subsystem_vendor, subsystem_device; 317 318 if (strncmp(p, "pci:", 4) == 0) { 319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 320 p += 4; 321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 322 &subsystem_vendor, &subsystem_device, &count); 323 if (ret != 4) { 324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 325 if (ret != 2) 326 return -EINVAL; 327 328 subsystem_vendor = 0; 329 subsystem_device = 0; 330 } 331 332 p += count; 333 334 if ((!vendor || vendor == dev->vendor) && 335 (!device || device == dev->device) && 336 (!subsystem_vendor || 337 subsystem_vendor == dev->subsystem_vendor) && 338 (!subsystem_device || 339 subsystem_device == dev->subsystem_device)) 340 goto found; 341 } else { 342 /* 343 * PCI Bus, Device, Function IDs are specified 344 * (optionally, may include a path of devfns following it) 345 */ 346 ret = pci_dev_str_match_path(dev, p, &p); 347 if (ret < 0) 348 return ret; 349 else if (ret) 350 goto found; 351 } 352 353 *endptr = p; 354 return 0; 355 356 found: 357 *endptr = p; 358 return 1; 359 } 360 361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 362 u8 pos, int cap, int *ttl) 363 { 364 u8 id; 365 u16 ent; 366 367 pci_bus_read_config_byte(bus, devfn, pos, &pos); 368 369 while ((*ttl)--) { 370 if (pos < 0x40) 371 break; 372 pos &= ~3; 373 pci_bus_read_config_word(bus, devfn, pos, &ent); 374 375 id = ent & 0xff; 376 if (id == 0xff) 377 break; 378 if (id == cap) 379 return pos; 380 pos = (ent >> 8); 381 } 382 return 0; 383 } 384 385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 386 u8 pos, int cap) 387 { 388 int ttl = PCI_FIND_CAP_TTL; 389 390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 391 } 392 393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 394 { 395 return __pci_find_next_cap(dev->bus, dev->devfn, 396 pos + PCI_CAP_LIST_NEXT, cap); 397 } 398 EXPORT_SYMBOL_GPL(pci_find_next_capability); 399 400 static int __pci_bus_find_cap_start(struct pci_bus *bus, 401 unsigned int devfn, u8 hdr_type) 402 { 403 u16 status; 404 405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 406 if (!(status & PCI_STATUS_CAP_LIST)) 407 return 0; 408 409 switch (hdr_type) { 410 case PCI_HEADER_TYPE_NORMAL: 411 case PCI_HEADER_TYPE_BRIDGE: 412 return PCI_CAPABILITY_LIST; 413 case PCI_HEADER_TYPE_CARDBUS: 414 return PCI_CB_CAPABILITY_LIST; 415 } 416 417 return 0; 418 } 419 420 /** 421 * pci_find_capability - query for devices' capabilities 422 * @dev: PCI device to query 423 * @cap: capability code 424 * 425 * Tell if a device supports a given PCI capability. 426 * Returns the address of the requested capability structure within the 427 * device's PCI configuration space or 0 in case the device does not 428 * support it. Possible values for @cap: 429 * 430 * %PCI_CAP_ID_PM Power Management 431 * %PCI_CAP_ID_AGP Accelerated Graphics Port 432 * %PCI_CAP_ID_VPD Vital Product Data 433 * %PCI_CAP_ID_SLOTID Slot Identification 434 * %PCI_CAP_ID_MSI Message Signalled Interrupts 435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 436 * %PCI_CAP_ID_PCIX PCI-X 437 * %PCI_CAP_ID_EXP PCI Express 438 */ 439 int pci_find_capability(struct pci_dev *dev, int cap) 440 { 441 int pos; 442 443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 444 if (pos) 445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 446 447 return pos; 448 } 449 EXPORT_SYMBOL(pci_find_capability); 450 451 /** 452 * pci_bus_find_capability - query for devices' capabilities 453 * @bus: the PCI bus to query 454 * @devfn: PCI device to query 455 * @cap: capability code 456 * 457 * Like pci_find_capability() but works for pci devices that do not have a 458 * pci_dev structure set up yet. 459 * 460 * Returns the address of the requested capability structure within the 461 * device's PCI configuration space or 0 in case the device does not 462 * support it. 463 */ 464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 465 { 466 int pos; 467 u8 hdr_type; 468 469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 470 471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 472 if (pos) 473 pos = __pci_find_next_cap(bus, devfn, pos, cap); 474 475 return pos; 476 } 477 EXPORT_SYMBOL(pci_bus_find_capability); 478 479 /** 480 * pci_find_next_ext_capability - Find an extended capability 481 * @dev: PCI device to query 482 * @start: address at which to start looking (0 to start at beginning of list) 483 * @cap: capability code 484 * 485 * Returns the address of the next matching extended capability structure 486 * within the device's PCI configuration space or 0 if the device does 487 * not support it. Some capabilities can occur several times, e.g., the 488 * vendor-specific capability, and this provides a way to find them all. 489 */ 490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 491 { 492 u32 header; 493 int ttl; 494 int pos = PCI_CFG_SPACE_SIZE; 495 496 /* minimum 8 bytes per capability */ 497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 498 499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 500 return 0; 501 502 if (start) 503 pos = start; 504 505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 506 return 0; 507 508 /* 509 * If we have no capabilities, this is indicated by cap ID, 510 * cap version and next pointer all being 0. 511 */ 512 if (header == 0) 513 return 0; 514 515 while (ttl-- > 0) { 516 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 517 return pos; 518 519 pos = PCI_EXT_CAP_NEXT(header); 520 if (pos < PCI_CFG_SPACE_SIZE) 521 break; 522 523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 524 break; 525 } 526 527 return 0; 528 } 529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 530 531 /** 532 * pci_find_ext_capability - Find an extended capability 533 * @dev: PCI device to query 534 * @cap: capability code 535 * 536 * Returns the address of the requested extended capability structure 537 * within the device's PCI configuration space or 0 if the device does 538 * not support it. Possible values for @cap: 539 * 540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 541 * %PCI_EXT_CAP_ID_VC Virtual Channel 542 * %PCI_EXT_CAP_ID_DSN Device Serial Number 543 * %PCI_EXT_CAP_ID_PWR Power Budgeting 544 */ 545 int pci_find_ext_capability(struct pci_dev *dev, int cap) 546 { 547 return pci_find_next_ext_capability(dev, 0, cap); 548 } 549 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 550 551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 552 { 553 int rc, ttl = PCI_FIND_CAP_TTL; 554 u8 cap, mask; 555 556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 557 mask = HT_3BIT_CAP_MASK; 558 else 559 mask = HT_5BIT_CAP_MASK; 560 561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 562 PCI_CAP_ID_HT, &ttl); 563 while (pos) { 564 rc = pci_read_config_byte(dev, pos + 3, &cap); 565 if (rc != PCIBIOS_SUCCESSFUL) 566 return 0; 567 568 if ((cap & mask) == ht_cap) 569 return pos; 570 571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 572 pos + PCI_CAP_LIST_NEXT, 573 PCI_CAP_ID_HT, &ttl); 574 } 575 576 return 0; 577 } 578 /** 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 580 * @dev: PCI device to query 581 * @pos: Position from which to continue searching 582 * @ht_cap: Hypertransport capability code 583 * 584 * To be used in conjunction with pci_find_ht_capability() to search for 585 * all capabilities matching @ht_cap. @pos should always be a value returned 586 * from pci_find_ht_capability(). 587 * 588 * NB. To be 100% safe against broken PCI devices, the caller should take 589 * steps to avoid an infinite loop. 590 */ 591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 592 { 593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 596 597 /** 598 * pci_find_ht_capability - query a device's Hypertransport capabilities 599 * @dev: PCI device to query 600 * @ht_cap: Hypertransport capability code 601 * 602 * Tell if a device supports a given Hypertransport capability. 603 * Returns an address within the device's PCI configuration space 604 * or 0 in case the device does not support the request capability. 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 606 * which has a Hypertransport capability matching @ht_cap. 607 */ 608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 609 { 610 int pos; 611 612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 613 if (pos) 614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 615 616 return pos; 617 } 618 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 619 620 /** 621 * pci_find_parent_resource - return resource region of parent bus of given region 622 * @dev: PCI device structure contains resources to be searched 623 * @res: child resource record for which parent is sought 624 * 625 * For given resource region of given device, return the resource 626 * region of parent bus the given region is contained in. 627 */ 628 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 629 struct resource *res) 630 { 631 const struct pci_bus *bus = dev->bus; 632 struct resource *r; 633 int i; 634 635 pci_bus_for_each_resource(bus, r, i) { 636 if (!r) 637 continue; 638 if (resource_contains(r, res)) { 639 640 /* 641 * If the window is prefetchable but the BAR is 642 * not, the allocator made a mistake. 643 */ 644 if (r->flags & IORESOURCE_PREFETCH && 645 !(res->flags & IORESOURCE_PREFETCH)) 646 return NULL; 647 648 /* 649 * If we're below a transparent bridge, there may 650 * be both a positively-decoded aperture and a 651 * subtractively-decoded region that contain the BAR. 652 * We want the positively-decoded one, so this depends 653 * on pci_bus_for_each_resource() giving us those 654 * first. 655 */ 656 return r; 657 } 658 } 659 return NULL; 660 } 661 EXPORT_SYMBOL(pci_find_parent_resource); 662 663 /** 664 * pci_find_resource - Return matching PCI device resource 665 * @dev: PCI device to query 666 * @res: Resource to look for 667 * 668 * Goes over standard PCI resources (BARs) and checks if the given resource 669 * is partially or fully contained in any of them. In that case the 670 * matching resource is returned, %NULL otherwise. 671 */ 672 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 673 { 674 int i; 675 676 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 677 struct resource *r = &dev->resource[i]; 678 679 if (r->start && resource_contains(r, res)) 680 return r; 681 } 682 683 return NULL; 684 } 685 EXPORT_SYMBOL(pci_find_resource); 686 687 /** 688 * pci_find_pcie_root_port - return PCIe Root Port 689 * @dev: PCI device to query 690 * 691 * Traverse up the parent chain and return the PCIe Root Port PCI Device 692 * for a given PCI Device. 693 */ 694 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 695 { 696 struct pci_dev *bridge, *highest_pcie_bridge = dev; 697 698 bridge = pci_upstream_bridge(dev); 699 while (bridge && pci_is_pcie(bridge)) { 700 highest_pcie_bridge = bridge; 701 bridge = pci_upstream_bridge(bridge); 702 } 703 704 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 705 return NULL; 706 707 return highest_pcie_bridge; 708 } 709 EXPORT_SYMBOL(pci_find_pcie_root_port); 710 711 /** 712 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 713 * @dev: the PCI device to operate on 714 * @pos: config space offset of status word 715 * @mask: mask of bit(s) to care about in status word 716 * 717 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 718 */ 719 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 720 { 721 int i; 722 723 /* Wait for Transaction Pending bit clean */ 724 for (i = 0; i < 4; i++) { 725 u16 status; 726 if (i) 727 msleep((1 << (i - 1)) * 100); 728 729 pci_read_config_word(dev, pos, &status); 730 if (!(status & mask)) 731 return 1; 732 } 733 734 return 0; 735 } 736 737 /** 738 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 739 * @dev: PCI device to have its BARs restored 740 * 741 * Restore the BAR values for a given device, so as to make it 742 * accessible by its driver. 743 */ 744 static void pci_restore_bars(struct pci_dev *dev) 745 { 746 int i; 747 748 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 749 pci_update_resource(dev, i); 750 } 751 752 static const struct pci_platform_pm_ops *pci_platform_pm; 753 754 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 755 { 756 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 757 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 758 return -EINVAL; 759 pci_platform_pm = ops; 760 return 0; 761 } 762 763 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 764 { 765 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 766 } 767 768 static inline int platform_pci_set_power_state(struct pci_dev *dev, 769 pci_power_t t) 770 { 771 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 772 } 773 774 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 775 { 776 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 777 } 778 779 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 780 { 781 return pci_platform_pm ? 782 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 783 } 784 785 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 786 { 787 return pci_platform_pm ? 788 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 789 } 790 791 static inline bool platform_pci_need_resume(struct pci_dev *dev) 792 { 793 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 794 } 795 796 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 797 { 798 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 799 } 800 801 /** 802 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 803 * given PCI device 804 * @dev: PCI device to handle. 805 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 806 * 807 * RETURN VALUE: 808 * -EINVAL if the requested state is invalid. 809 * -EIO if device does not support PCI PM or its PM capabilities register has a 810 * wrong version, or device doesn't support the requested state. 811 * 0 if device already is in the requested state. 812 * 0 if device's power state has been successfully changed. 813 */ 814 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 815 { 816 u16 pmcsr; 817 bool need_restore = false; 818 819 /* Check if we're already there */ 820 if (dev->current_state == state) 821 return 0; 822 823 if (!dev->pm_cap) 824 return -EIO; 825 826 if (state < PCI_D0 || state > PCI_D3hot) 827 return -EINVAL; 828 829 /* Validate current state: 830 * Can enter D0 from any state, but if we can only go deeper 831 * to sleep if we're already in a low power state 832 */ 833 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 834 && dev->current_state > state) { 835 pci_err(dev, "invalid power transition (from state %d to %d)\n", 836 dev->current_state, state); 837 return -EINVAL; 838 } 839 840 /* check if this device supports the desired state */ 841 if ((state == PCI_D1 && !dev->d1_support) 842 || (state == PCI_D2 && !dev->d2_support)) 843 return -EIO; 844 845 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 846 847 /* If we're (effectively) in D3, force entire word to 0. 848 * This doesn't affect PME_Status, disables PME_En, and 849 * sets PowerState to 0. 850 */ 851 switch (dev->current_state) { 852 case PCI_D0: 853 case PCI_D1: 854 case PCI_D2: 855 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 856 pmcsr |= state; 857 break; 858 case PCI_D3hot: 859 case PCI_D3cold: 860 case PCI_UNKNOWN: /* Boot-up */ 861 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 862 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 863 need_restore = true; 864 /* Fall-through: force to D0 */ 865 default: 866 pmcsr = 0; 867 break; 868 } 869 870 /* enter specified state */ 871 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 872 873 /* Mandatory power management transition delays */ 874 /* see PCI PM 1.1 5.6.1 table 18 */ 875 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 876 pci_dev_d3_sleep(dev); 877 else if (state == PCI_D2 || dev->current_state == PCI_D2) 878 udelay(PCI_PM_D2_DELAY); 879 880 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 881 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 882 if (dev->current_state != state && printk_ratelimit()) 883 pci_info(dev, "Refused to change power state, currently in D%d\n", 884 dev->current_state); 885 886 /* 887 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 888 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 889 * from D3hot to D0 _may_ perform an internal reset, thereby 890 * going to "D0 Uninitialized" rather than "D0 Initialized". 891 * For example, at least some versions of the 3c905B and the 892 * 3c556B exhibit this behaviour. 893 * 894 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 895 * devices in a D3hot state at boot. Consequently, we need to 896 * restore at least the BARs so that the device will be 897 * accessible to its driver. 898 */ 899 if (need_restore) 900 pci_restore_bars(dev); 901 902 if (dev->bus->self) 903 pcie_aspm_pm_state_change(dev->bus->self); 904 905 return 0; 906 } 907 908 /** 909 * pci_update_current_state - Read power state of given device and cache it 910 * @dev: PCI device to handle. 911 * @state: State to cache in case the device doesn't have the PM capability 912 * 913 * The power state is read from the PMCSR register, which however is 914 * inaccessible in D3cold. The platform firmware is therefore queried first 915 * to detect accessibility of the register. In case the platform firmware 916 * reports an incorrect state or the device isn't power manageable by the 917 * platform at all, we try to detect D3cold by testing accessibility of the 918 * vendor ID in config space. 919 */ 920 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 921 { 922 if (platform_pci_get_power_state(dev) == PCI_D3cold || 923 !pci_device_is_present(dev)) { 924 dev->current_state = PCI_D3cold; 925 } else if (dev->pm_cap) { 926 u16 pmcsr; 927 928 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 929 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 930 } else { 931 dev->current_state = state; 932 } 933 } 934 935 /** 936 * pci_power_up - Put the given device into D0 forcibly 937 * @dev: PCI device to power up 938 */ 939 void pci_power_up(struct pci_dev *dev) 940 { 941 if (platform_pci_power_manageable(dev)) 942 platform_pci_set_power_state(dev, PCI_D0); 943 944 pci_raw_set_power_state(dev, PCI_D0); 945 pci_update_current_state(dev, PCI_D0); 946 } 947 948 /** 949 * pci_platform_power_transition - Use platform to change device power state 950 * @dev: PCI device to handle. 951 * @state: State to put the device into. 952 */ 953 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 954 { 955 int error; 956 957 if (platform_pci_power_manageable(dev)) { 958 error = platform_pci_set_power_state(dev, state); 959 if (!error) 960 pci_update_current_state(dev, state); 961 } else 962 error = -ENODEV; 963 964 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 965 dev->current_state = PCI_D0; 966 967 return error; 968 } 969 970 /** 971 * pci_wakeup - Wake up a PCI device 972 * @pci_dev: Device to handle. 973 * @ign: ignored parameter 974 */ 975 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 976 { 977 pci_wakeup_event(pci_dev); 978 pm_request_resume(&pci_dev->dev); 979 return 0; 980 } 981 982 /** 983 * pci_wakeup_bus - Walk given bus and wake up devices on it 984 * @bus: Top bus of the subtree to walk. 985 */ 986 void pci_wakeup_bus(struct pci_bus *bus) 987 { 988 if (bus) 989 pci_walk_bus(bus, pci_wakeup, NULL); 990 } 991 992 /** 993 * __pci_start_power_transition - Start power transition of a PCI device 994 * @dev: PCI device to handle. 995 * @state: State to put the device into. 996 */ 997 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 998 { 999 if (state == PCI_D0) { 1000 pci_platform_power_transition(dev, PCI_D0); 1001 /* 1002 * Mandatory power management transition delays, see 1003 * PCI Express Base Specification Revision 2.0 Section 1004 * 6.6.1: Conventional Reset. Do not delay for 1005 * devices powered on/off by corresponding bridge, 1006 * because have already delayed for the bridge. 1007 */ 1008 if (dev->runtime_d3cold) { 1009 if (dev->d3cold_delay && !dev->imm_ready) 1010 msleep(dev->d3cold_delay); 1011 /* 1012 * When powering on a bridge from D3cold, the 1013 * whole hierarchy may be powered on into 1014 * D0uninitialized state, resume them to give 1015 * them a chance to suspend again 1016 */ 1017 pci_wakeup_bus(dev->subordinate); 1018 } 1019 } 1020 } 1021 1022 /** 1023 * __pci_dev_set_current_state - Set current state of a PCI device 1024 * @dev: Device to handle 1025 * @data: pointer to state to be set 1026 */ 1027 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1028 { 1029 pci_power_t state = *(pci_power_t *)data; 1030 1031 dev->current_state = state; 1032 return 0; 1033 } 1034 1035 /** 1036 * pci_bus_set_current_state - Walk given bus and set current state of devices 1037 * @bus: Top bus of the subtree to walk. 1038 * @state: state to be set 1039 */ 1040 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1041 { 1042 if (bus) 1043 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1044 } 1045 1046 /** 1047 * __pci_complete_power_transition - Complete power transition of a PCI device 1048 * @dev: PCI device to handle. 1049 * @state: State to put the device into. 1050 * 1051 * This function should not be called directly by device drivers. 1052 */ 1053 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 1054 { 1055 int ret; 1056 1057 if (state <= PCI_D0) 1058 return -EINVAL; 1059 ret = pci_platform_power_transition(dev, state); 1060 /* Power off the bridge may power off the whole hierarchy */ 1061 if (!ret && state == PCI_D3cold) 1062 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1063 return ret; 1064 } 1065 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 1066 1067 /** 1068 * pci_set_power_state - Set the power state of a PCI device 1069 * @dev: PCI device to handle. 1070 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1071 * 1072 * Transition a device to a new power state, using the platform firmware and/or 1073 * the device's PCI PM registers. 1074 * 1075 * RETURN VALUE: 1076 * -EINVAL if the requested state is invalid. 1077 * -EIO if device does not support PCI PM or its PM capabilities register has a 1078 * wrong version, or device doesn't support the requested state. 1079 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1080 * 0 if device already is in the requested state. 1081 * 0 if the transition is to D3 but D3 is not supported. 1082 * 0 if device's power state has been successfully changed. 1083 */ 1084 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1085 { 1086 int error; 1087 1088 /* bound the state we're entering */ 1089 if (state > PCI_D3cold) 1090 state = PCI_D3cold; 1091 else if (state < PCI_D0) 1092 state = PCI_D0; 1093 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1094 /* 1095 * If the device or the parent bridge do not support PCI PM, 1096 * ignore the request if we're doing anything other than putting 1097 * it into D0 (which would only happen on boot). 1098 */ 1099 return 0; 1100 1101 /* Check if we're already there */ 1102 if (dev->current_state == state) 1103 return 0; 1104 1105 __pci_start_power_transition(dev, state); 1106 1107 /* This device is quirked not to be put into D3, so 1108 don't put it in D3 */ 1109 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1110 return 0; 1111 1112 /* 1113 * To put device in D3cold, we put device into D3hot in native 1114 * way, then put device into D3cold with platform ops 1115 */ 1116 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1117 PCI_D3hot : state); 1118 1119 if (!__pci_complete_power_transition(dev, state)) 1120 error = 0; 1121 1122 return error; 1123 } 1124 EXPORT_SYMBOL(pci_set_power_state); 1125 1126 /** 1127 * pci_choose_state - Choose the power state of a PCI device 1128 * @dev: PCI device to be suspended 1129 * @state: target sleep state for the whole system. This is the value 1130 * that is passed to suspend() function. 1131 * 1132 * Returns PCI power state suitable for given device and given system 1133 * message. 1134 */ 1135 1136 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1137 { 1138 pci_power_t ret; 1139 1140 if (!dev->pm_cap) 1141 return PCI_D0; 1142 1143 ret = platform_pci_choose_state(dev); 1144 if (ret != PCI_POWER_ERROR) 1145 return ret; 1146 1147 switch (state.event) { 1148 case PM_EVENT_ON: 1149 return PCI_D0; 1150 case PM_EVENT_FREEZE: 1151 case PM_EVENT_PRETHAW: 1152 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1153 case PM_EVENT_SUSPEND: 1154 case PM_EVENT_HIBERNATE: 1155 return PCI_D3hot; 1156 default: 1157 pci_info(dev, "unrecognized suspend event %d\n", 1158 state.event); 1159 BUG(); 1160 } 1161 return PCI_D0; 1162 } 1163 EXPORT_SYMBOL(pci_choose_state); 1164 1165 #define PCI_EXP_SAVE_REGS 7 1166 1167 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1168 u16 cap, bool extended) 1169 { 1170 struct pci_cap_saved_state *tmp; 1171 1172 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1173 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1174 return tmp; 1175 } 1176 return NULL; 1177 } 1178 1179 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1180 { 1181 return _pci_find_saved_cap(dev, cap, false); 1182 } 1183 1184 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1185 { 1186 return _pci_find_saved_cap(dev, cap, true); 1187 } 1188 1189 static int pci_save_pcie_state(struct pci_dev *dev) 1190 { 1191 int i = 0; 1192 struct pci_cap_saved_state *save_state; 1193 u16 *cap; 1194 1195 if (!pci_is_pcie(dev)) 1196 return 0; 1197 1198 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1199 if (!save_state) { 1200 pci_err(dev, "buffer not found in %s\n", __func__); 1201 return -ENOMEM; 1202 } 1203 1204 cap = (u16 *)&save_state->cap.data[0]; 1205 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1206 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1207 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1208 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1209 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1210 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1211 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1212 1213 return 0; 1214 } 1215 1216 static void pci_restore_pcie_state(struct pci_dev *dev) 1217 { 1218 int i = 0; 1219 struct pci_cap_saved_state *save_state; 1220 u16 *cap; 1221 1222 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1223 if (!save_state) 1224 return; 1225 1226 cap = (u16 *)&save_state->cap.data[0]; 1227 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1228 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1229 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1230 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1231 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1232 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1233 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1234 } 1235 1236 1237 static int pci_save_pcix_state(struct pci_dev *dev) 1238 { 1239 int pos; 1240 struct pci_cap_saved_state *save_state; 1241 1242 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1243 if (!pos) 1244 return 0; 1245 1246 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1247 if (!save_state) { 1248 pci_err(dev, "buffer not found in %s\n", __func__); 1249 return -ENOMEM; 1250 } 1251 1252 pci_read_config_word(dev, pos + PCI_X_CMD, 1253 (u16 *)save_state->cap.data); 1254 1255 return 0; 1256 } 1257 1258 static void pci_restore_pcix_state(struct pci_dev *dev) 1259 { 1260 int i = 0, pos; 1261 struct pci_cap_saved_state *save_state; 1262 u16 *cap; 1263 1264 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1265 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1266 if (!save_state || !pos) 1267 return; 1268 cap = (u16 *)&save_state->cap.data[0]; 1269 1270 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1271 } 1272 1273 1274 /** 1275 * pci_save_state - save the PCI configuration space of a device before suspending 1276 * @dev: - PCI device that we're dealing with 1277 */ 1278 int pci_save_state(struct pci_dev *dev) 1279 { 1280 int i; 1281 /* XXX: 100% dword access ok here? */ 1282 for (i = 0; i < 16; i++) 1283 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1284 dev->state_saved = true; 1285 1286 i = pci_save_pcie_state(dev); 1287 if (i != 0) 1288 return i; 1289 1290 i = pci_save_pcix_state(dev); 1291 if (i != 0) 1292 return i; 1293 1294 pci_save_dpc_state(dev); 1295 return pci_save_vc_state(dev); 1296 } 1297 EXPORT_SYMBOL(pci_save_state); 1298 1299 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1300 u32 saved_val, int retry, bool force) 1301 { 1302 u32 val; 1303 1304 pci_read_config_dword(pdev, offset, &val); 1305 if (!force && val == saved_val) 1306 return; 1307 1308 for (;;) { 1309 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1310 offset, val, saved_val); 1311 pci_write_config_dword(pdev, offset, saved_val); 1312 if (retry-- <= 0) 1313 return; 1314 1315 pci_read_config_dword(pdev, offset, &val); 1316 if (val == saved_val) 1317 return; 1318 1319 mdelay(1); 1320 } 1321 } 1322 1323 static void pci_restore_config_space_range(struct pci_dev *pdev, 1324 int start, int end, int retry, 1325 bool force) 1326 { 1327 int index; 1328 1329 for (index = end; index >= start; index--) 1330 pci_restore_config_dword(pdev, 4 * index, 1331 pdev->saved_config_space[index], 1332 retry, force); 1333 } 1334 1335 static void pci_restore_config_space(struct pci_dev *pdev) 1336 { 1337 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1338 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1339 /* Restore BARs before the command register. */ 1340 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1341 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1342 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1343 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1344 1345 /* 1346 * Force rewriting of prefetch registers to avoid S3 resume 1347 * issues on Intel PCI bridges that occur when these 1348 * registers are not explicitly written. 1349 */ 1350 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1351 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1352 } else { 1353 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1354 } 1355 } 1356 1357 static void pci_restore_rebar_state(struct pci_dev *pdev) 1358 { 1359 unsigned int pos, nbars, i; 1360 u32 ctrl; 1361 1362 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1363 if (!pos) 1364 return; 1365 1366 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1367 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1368 PCI_REBAR_CTRL_NBAR_SHIFT; 1369 1370 for (i = 0; i < nbars; i++, pos += 8) { 1371 struct resource *res; 1372 int bar_idx, size; 1373 1374 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1375 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1376 res = pdev->resource + bar_idx; 1377 size = order_base_2((resource_size(res) >> 20) | 1) - 1; 1378 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1379 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1380 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1381 } 1382 } 1383 1384 /** 1385 * pci_restore_state - Restore the saved state of a PCI device 1386 * @dev: - PCI device that we're dealing with 1387 */ 1388 void pci_restore_state(struct pci_dev *dev) 1389 { 1390 if (!dev->state_saved) 1391 return; 1392 1393 /* PCI Express register must be restored first */ 1394 pci_restore_pcie_state(dev); 1395 pci_restore_pasid_state(dev); 1396 pci_restore_pri_state(dev); 1397 pci_restore_ats_state(dev); 1398 pci_restore_vc_state(dev); 1399 pci_restore_rebar_state(dev); 1400 pci_restore_dpc_state(dev); 1401 1402 pci_cleanup_aer_error_status_regs(dev); 1403 1404 pci_restore_config_space(dev); 1405 1406 pci_restore_pcix_state(dev); 1407 pci_restore_msi_state(dev); 1408 1409 /* Restore ACS and IOV configuration state */ 1410 pci_enable_acs(dev); 1411 pci_restore_iov_state(dev); 1412 1413 dev->state_saved = false; 1414 } 1415 EXPORT_SYMBOL(pci_restore_state); 1416 1417 struct pci_saved_state { 1418 u32 config_space[16]; 1419 struct pci_cap_saved_data cap[0]; 1420 }; 1421 1422 /** 1423 * pci_store_saved_state - Allocate and return an opaque struct containing 1424 * the device saved state. 1425 * @dev: PCI device that we're dealing with 1426 * 1427 * Return NULL if no state or error. 1428 */ 1429 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1430 { 1431 struct pci_saved_state *state; 1432 struct pci_cap_saved_state *tmp; 1433 struct pci_cap_saved_data *cap; 1434 size_t size; 1435 1436 if (!dev->state_saved) 1437 return NULL; 1438 1439 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1440 1441 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1442 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1443 1444 state = kzalloc(size, GFP_KERNEL); 1445 if (!state) 1446 return NULL; 1447 1448 memcpy(state->config_space, dev->saved_config_space, 1449 sizeof(state->config_space)); 1450 1451 cap = state->cap; 1452 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1453 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1454 memcpy(cap, &tmp->cap, len); 1455 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1456 } 1457 /* Empty cap_save terminates list */ 1458 1459 return state; 1460 } 1461 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1462 1463 /** 1464 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1465 * @dev: PCI device that we're dealing with 1466 * @state: Saved state returned from pci_store_saved_state() 1467 */ 1468 int pci_load_saved_state(struct pci_dev *dev, 1469 struct pci_saved_state *state) 1470 { 1471 struct pci_cap_saved_data *cap; 1472 1473 dev->state_saved = false; 1474 1475 if (!state) 1476 return 0; 1477 1478 memcpy(dev->saved_config_space, state->config_space, 1479 sizeof(state->config_space)); 1480 1481 cap = state->cap; 1482 while (cap->size) { 1483 struct pci_cap_saved_state *tmp; 1484 1485 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1486 if (!tmp || tmp->cap.size != cap->size) 1487 return -EINVAL; 1488 1489 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1490 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1491 sizeof(struct pci_cap_saved_data) + cap->size); 1492 } 1493 1494 dev->state_saved = true; 1495 return 0; 1496 } 1497 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1498 1499 /** 1500 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1501 * and free the memory allocated for it. 1502 * @dev: PCI device that we're dealing with 1503 * @state: Pointer to saved state returned from pci_store_saved_state() 1504 */ 1505 int pci_load_and_free_saved_state(struct pci_dev *dev, 1506 struct pci_saved_state **state) 1507 { 1508 int ret = pci_load_saved_state(dev, *state); 1509 kfree(*state); 1510 *state = NULL; 1511 return ret; 1512 } 1513 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1514 1515 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1516 { 1517 return pci_enable_resources(dev, bars); 1518 } 1519 1520 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1521 { 1522 int err; 1523 struct pci_dev *bridge; 1524 u16 cmd; 1525 u8 pin; 1526 1527 err = pci_set_power_state(dev, PCI_D0); 1528 if (err < 0 && err != -EIO) 1529 return err; 1530 1531 bridge = pci_upstream_bridge(dev); 1532 if (bridge) 1533 pcie_aspm_powersave_config_link(bridge); 1534 1535 err = pcibios_enable_device(dev, bars); 1536 if (err < 0) 1537 return err; 1538 pci_fixup_device(pci_fixup_enable, dev); 1539 1540 if (dev->msi_enabled || dev->msix_enabled) 1541 return 0; 1542 1543 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1544 if (pin) { 1545 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1546 if (cmd & PCI_COMMAND_INTX_DISABLE) 1547 pci_write_config_word(dev, PCI_COMMAND, 1548 cmd & ~PCI_COMMAND_INTX_DISABLE); 1549 } 1550 1551 return 0; 1552 } 1553 1554 /** 1555 * pci_reenable_device - Resume abandoned device 1556 * @dev: PCI device to be resumed 1557 * 1558 * Note this function is a backend of pci_default_resume and is not supposed 1559 * to be called by normal code, write proper resume handler and use it instead. 1560 */ 1561 int pci_reenable_device(struct pci_dev *dev) 1562 { 1563 if (pci_is_enabled(dev)) 1564 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1565 return 0; 1566 } 1567 EXPORT_SYMBOL(pci_reenable_device); 1568 1569 static void pci_enable_bridge(struct pci_dev *dev) 1570 { 1571 struct pci_dev *bridge; 1572 int retval; 1573 1574 bridge = pci_upstream_bridge(dev); 1575 if (bridge) 1576 pci_enable_bridge(bridge); 1577 1578 if (pci_is_enabled(dev)) { 1579 if (!dev->is_busmaster) 1580 pci_set_master(dev); 1581 return; 1582 } 1583 1584 retval = pci_enable_device(dev); 1585 if (retval) 1586 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1587 retval); 1588 pci_set_master(dev); 1589 } 1590 1591 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1592 { 1593 struct pci_dev *bridge; 1594 int err; 1595 int i, bars = 0; 1596 1597 /* 1598 * Power state could be unknown at this point, either due to a fresh 1599 * boot or a device removal call. So get the current power state 1600 * so that things like MSI message writing will behave as expected 1601 * (e.g. if the device really is in D0 at enable time). 1602 */ 1603 if (dev->pm_cap) { 1604 u16 pmcsr; 1605 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1606 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1607 } 1608 1609 if (atomic_inc_return(&dev->enable_cnt) > 1) 1610 return 0; /* already enabled */ 1611 1612 bridge = pci_upstream_bridge(dev); 1613 if (bridge) 1614 pci_enable_bridge(bridge); 1615 1616 /* only skip sriov related */ 1617 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1618 if (dev->resource[i].flags & flags) 1619 bars |= (1 << i); 1620 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1621 if (dev->resource[i].flags & flags) 1622 bars |= (1 << i); 1623 1624 err = do_pci_enable_device(dev, bars); 1625 if (err < 0) 1626 atomic_dec(&dev->enable_cnt); 1627 return err; 1628 } 1629 1630 /** 1631 * pci_enable_device_io - Initialize a device for use with IO space 1632 * @dev: PCI device to be initialized 1633 * 1634 * Initialize device before it's used by a driver. Ask low-level code 1635 * to enable I/O resources. Wake up the device if it was suspended. 1636 * Beware, this function can fail. 1637 */ 1638 int pci_enable_device_io(struct pci_dev *dev) 1639 { 1640 return pci_enable_device_flags(dev, IORESOURCE_IO); 1641 } 1642 EXPORT_SYMBOL(pci_enable_device_io); 1643 1644 /** 1645 * pci_enable_device_mem - Initialize a device for use with Memory space 1646 * @dev: PCI device to be initialized 1647 * 1648 * Initialize device before it's used by a driver. Ask low-level code 1649 * to enable Memory resources. Wake up the device if it was suspended. 1650 * Beware, this function can fail. 1651 */ 1652 int pci_enable_device_mem(struct pci_dev *dev) 1653 { 1654 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1655 } 1656 EXPORT_SYMBOL(pci_enable_device_mem); 1657 1658 /** 1659 * pci_enable_device - Initialize device before it's used by a driver. 1660 * @dev: PCI device to be initialized 1661 * 1662 * Initialize device before it's used by a driver. Ask low-level code 1663 * to enable I/O and memory. Wake up the device if it was suspended. 1664 * Beware, this function can fail. 1665 * 1666 * Note we don't actually enable the device many times if we call 1667 * this function repeatedly (we just increment the count). 1668 */ 1669 int pci_enable_device(struct pci_dev *dev) 1670 { 1671 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1672 } 1673 EXPORT_SYMBOL(pci_enable_device); 1674 1675 /* 1676 * Managed PCI resources. This manages device on/off, intx/msi/msix 1677 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1678 * there's no need to track it separately. pci_devres is initialized 1679 * when a device is enabled using managed PCI device enable interface. 1680 */ 1681 struct pci_devres { 1682 unsigned int enabled:1; 1683 unsigned int pinned:1; 1684 unsigned int orig_intx:1; 1685 unsigned int restore_intx:1; 1686 unsigned int mwi:1; 1687 u32 region_mask; 1688 }; 1689 1690 static void pcim_release(struct device *gendev, void *res) 1691 { 1692 struct pci_dev *dev = to_pci_dev(gendev); 1693 struct pci_devres *this = res; 1694 int i; 1695 1696 if (dev->msi_enabled) 1697 pci_disable_msi(dev); 1698 if (dev->msix_enabled) 1699 pci_disable_msix(dev); 1700 1701 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1702 if (this->region_mask & (1 << i)) 1703 pci_release_region(dev, i); 1704 1705 if (this->mwi) 1706 pci_clear_mwi(dev); 1707 1708 if (this->restore_intx) 1709 pci_intx(dev, this->orig_intx); 1710 1711 if (this->enabled && !this->pinned) 1712 pci_disable_device(dev); 1713 } 1714 1715 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1716 { 1717 struct pci_devres *dr, *new_dr; 1718 1719 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1720 if (dr) 1721 return dr; 1722 1723 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1724 if (!new_dr) 1725 return NULL; 1726 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1727 } 1728 1729 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1730 { 1731 if (pci_is_managed(pdev)) 1732 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1733 return NULL; 1734 } 1735 1736 /** 1737 * pcim_enable_device - Managed pci_enable_device() 1738 * @pdev: PCI device to be initialized 1739 * 1740 * Managed pci_enable_device(). 1741 */ 1742 int pcim_enable_device(struct pci_dev *pdev) 1743 { 1744 struct pci_devres *dr; 1745 int rc; 1746 1747 dr = get_pci_dr(pdev); 1748 if (unlikely(!dr)) 1749 return -ENOMEM; 1750 if (dr->enabled) 1751 return 0; 1752 1753 rc = pci_enable_device(pdev); 1754 if (!rc) { 1755 pdev->is_managed = 1; 1756 dr->enabled = 1; 1757 } 1758 return rc; 1759 } 1760 EXPORT_SYMBOL(pcim_enable_device); 1761 1762 /** 1763 * pcim_pin_device - Pin managed PCI device 1764 * @pdev: PCI device to pin 1765 * 1766 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1767 * driver detach. @pdev must have been enabled with 1768 * pcim_enable_device(). 1769 */ 1770 void pcim_pin_device(struct pci_dev *pdev) 1771 { 1772 struct pci_devres *dr; 1773 1774 dr = find_pci_dr(pdev); 1775 WARN_ON(!dr || !dr->enabled); 1776 if (dr) 1777 dr->pinned = 1; 1778 } 1779 EXPORT_SYMBOL(pcim_pin_device); 1780 1781 /* 1782 * pcibios_add_device - provide arch specific hooks when adding device dev 1783 * @dev: the PCI device being added 1784 * 1785 * Permits the platform to provide architecture specific functionality when 1786 * devices are added. This is the default implementation. Architecture 1787 * implementations can override this. 1788 */ 1789 int __weak pcibios_add_device(struct pci_dev *dev) 1790 { 1791 return 0; 1792 } 1793 1794 /** 1795 * pcibios_release_device - provide arch specific hooks when releasing device dev 1796 * @dev: the PCI device being released 1797 * 1798 * Permits the platform to provide architecture specific functionality when 1799 * devices are released. This is the default implementation. Architecture 1800 * implementations can override this. 1801 */ 1802 void __weak pcibios_release_device(struct pci_dev *dev) {} 1803 1804 /** 1805 * pcibios_disable_device - disable arch specific PCI resources for device dev 1806 * @dev: the PCI device to disable 1807 * 1808 * Disables architecture specific PCI resources for the device. This 1809 * is the default implementation. Architecture implementations can 1810 * override this. 1811 */ 1812 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1813 1814 /** 1815 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1816 * @irq: ISA IRQ to penalize 1817 * @active: IRQ active or not 1818 * 1819 * Permits the platform to provide architecture-specific functionality when 1820 * penalizing ISA IRQs. This is the default implementation. Architecture 1821 * implementations can override this. 1822 */ 1823 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1824 1825 static void do_pci_disable_device(struct pci_dev *dev) 1826 { 1827 u16 pci_command; 1828 1829 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1830 if (pci_command & PCI_COMMAND_MASTER) { 1831 pci_command &= ~PCI_COMMAND_MASTER; 1832 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1833 } 1834 1835 pcibios_disable_device(dev); 1836 } 1837 1838 /** 1839 * pci_disable_enabled_device - Disable device without updating enable_cnt 1840 * @dev: PCI device to disable 1841 * 1842 * NOTE: This function is a backend of PCI power management routines and is 1843 * not supposed to be called drivers. 1844 */ 1845 void pci_disable_enabled_device(struct pci_dev *dev) 1846 { 1847 if (pci_is_enabled(dev)) 1848 do_pci_disable_device(dev); 1849 } 1850 1851 /** 1852 * pci_disable_device - Disable PCI device after use 1853 * @dev: PCI device to be disabled 1854 * 1855 * Signal to the system that the PCI device is not in use by the system 1856 * anymore. This only involves disabling PCI bus-mastering, if active. 1857 * 1858 * Note we don't actually disable the device until all callers of 1859 * pci_enable_device() have called pci_disable_device(). 1860 */ 1861 void pci_disable_device(struct pci_dev *dev) 1862 { 1863 struct pci_devres *dr; 1864 1865 dr = find_pci_dr(dev); 1866 if (dr) 1867 dr->enabled = 0; 1868 1869 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1870 "disabling already-disabled device"); 1871 1872 if (atomic_dec_return(&dev->enable_cnt) != 0) 1873 return; 1874 1875 do_pci_disable_device(dev); 1876 1877 dev->is_busmaster = 0; 1878 } 1879 EXPORT_SYMBOL(pci_disable_device); 1880 1881 /** 1882 * pcibios_set_pcie_reset_state - set reset state for device dev 1883 * @dev: the PCIe device reset 1884 * @state: Reset state to enter into 1885 * 1886 * 1887 * Sets the PCIe reset state for the device. This is the default 1888 * implementation. Architecture implementations can override this. 1889 */ 1890 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1891 enum pcie_reset_state state) 1892 { 1893 return -EINVAL; 1894 } 1895 1896 /** 1897 * pci_set_pcie_reset_state - set reset state for device dev 1898 * @dev: the PCIe device reset 1899 * @state: Reset state to enter into 1900 * 1901 * 1902 * Sets the PCI reset state for the device. 1903 */ 1904 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1905 { 1906 return pcibios_set_pcie_reset_state(dev, state); 1907 } 1908 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1909 1910 /** 1911 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1912 * @dev: PCIe root port or event collector. 1913 */ 1914 void pcie_clear_root_pme_status(struct pci_dev *dev) 1915 { 1916 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1917 } 1918 1919 /** 1920 * pci_check_pme_status - Check if given device has generated PME. 1921 * @dev: Device to check. 1922 * 1923 * Check the PME status of the device and if set, clear it and clear PME enable 1924 * (if set). Return 'true' if PME status and PME enable were both set or 1925 * 'false' otherwise. 1926 */ 1927 bool pci_check_pme_status(struct pci_dev *dev) 1928 { 1929 int pmcsr_pos; 1930 u16 pmcsr; 1931 bool ret = false; 1932 1933 if (!dev->pm_cap) 1934 return false; 1935 1936 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1937 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1938 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1939 return false; 1940 1941 /* Clear PME status. */ 1942 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1943 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1944 /* Disable PME to avoid interrupt flood. */ 1945 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1946 ret = true; 1947 } 1948 1949 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1950 1951 return ret; 1952 } 1953 1954 /** 1955 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1956 * @dev: Device to handle. 1957 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1958 * 1959 * Check if @dev has generated PME and queue a resume request for it in that 1960 * case. 1961 */ 1962 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1963 { 1964 if (pme_poll_reset && dev->pme_poll) 1965 dev->pme_poll = false; 1966 1967 if (pci_check_pme_status(dev)) { 1968 pci_wakeup_event(dev); 1969 pm_request_resume(&dev->dev); 1970 } 1971 return 0; 1972 } 1973 1974 /** 1975 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1976 * @bus: Top bus of the subtree to walk. 1977 */ 1978 void pci_pme_wakeup_bus(struct pci_bus *bus) 1979 { 1980 if (bus) 1981 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1982 } 1983 1984 1985 /** 1986 * pci_pme_capable - check the capability of PCI device to generate PME# 1987 * @dev: PCI device to handle. 1988 * @state: PCI state from which device will issue PME#. 1989 */ 1990 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1991 { 1992 if (!dev->pm_cap) 1993 return false; 1994 1995 return !!(dev->pme_support & (1 << state)); 1996 } 1997 EXPORT_SYMBOL(pci_pme_capable); 1998 1999 static void pci_pme_list_scan(struct work_struct *work) 2000 { 2001 struct pci_pme_device *pme_dev, *n; 2002 2003 mutex_lock(&pci_pme_list_mutex); 2004 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2005 if (pme_dev->dev->pme_poll) { 2006 struct pci_dev *bridge; 2007 2008 bridge = pme_dev->dev->bus->self; 2009 /* 2010 * If bridge is in low power state, the 2011 * configuration space of subordinate devices 2012 * may be not accessible 2013 */ 2014 if (bridge && bridge->current_state != PCI_D0) 2015 continue; 2016 pci_pme_wakeup(pme_dev->dev, NULL); 2017 } else { 2018 list_del(&pme_dev->list); 2019 kfree(pme_dev); 2020 } 2021 } 2022 if (!list_empty(&pci_pme_list)) 2023 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2024 msecs_to_jiffies(PME_TIMEOUT)); 2025 mutex_unlock(&pci_pme_list_mutex); 2026 } 2027 2028 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2029 { 2030 u16 pmcsr; 2031 2032 if (!dev->pme_support) 2033 return; 2034 2035 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2036 /* Clear PME_Status by writing 1 to it and enable PME# */ 2037 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2038 if (!enable) 2039 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2040 2041 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2042 } 2043 2044 /** 2045 * pci_pme_restore - Restore PME configuration after config space restore. 2046 * @dev: PCI device to update. 2047 */ 2048 void pci_pme_restore(struct pci_dev *dev) 2049 { 2050 u16 pmcsr; 2051 2052 if (!dev->pme_support) 2053 return; 2054 2055 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2056 if (dev->wakeup_prepared) { 2057 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2058 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2059 } else { 2060 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2061 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2062 } 2063 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2064 } 2065 2066 /** 2067 * pci_pme_active - enable or disable PCI device's PME# function 2068 * @dev: PCI device to handle. 2069 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2070 * 2071 * The caller must verify that the device is capable of generating PME# before 2072 * calling this function with @enable equal to 'true'. 2073 */ 2074 void pci_pme_active(struct pci_dev *dev, bool enable) 2075 { 2076 __pci_pme_active(dev, enable); 2077 2078 /* 2079 * PCI (as opposed to PCIe) PME requires that the device have 2080 * its PME# line hooked up correctly. Not all hardware vendors 2081 * do this, so the PME never gets delivered and the device 2082 * remains asleep. The easiest way around this is to 2083 * periodically walk the list of suspended devices and check 2084 * whether any have their PME flag set. The assumption is that 2085 * we'll wake up often enough anyway that this won't be a huge 2086 * hit, and the power savings from the devices will still be a 2087 * win. 2088 * 2089 * Although PCIe uses in-band PME message instead of PME# line 2090 * to report PME, PME does not work for some PCIe devices in 2091 * reality. For example, there are devices that set their PME 2092 * status bits, but don't really bother to send a PME message; 2093 * there are PCI Express Root Ports that don't bother to 2094 * trigger interrupts when they receive PME messages from the 2095 * devices below. So PME poll is used for PCIe devices too. 2096 */ 2097 2098 if (dev->pme_poll) { 2099 struct pci_pme_device *pme_dev; 2100 if (enable) { 2101 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2102 GFP_KERNEL); 2103 if (!pme_dev) { 2104 pci_warn(dev, "can't enable PME#\n"); 2105 return; 2106 } 2107 pme_dev->dev = dev; 2108 mutex_lock(&pci_pme_list_mutex); 2109 list_add(&pme_dev->list, &pci_pme_list); 2110 if (list_is_singular(&pci_pme_list)) 2111 queue_delayed_work(system_freezable_wq, 2112 &pci_pme_work, 2113 msecs_to_jiffies(PME_TIMEOUT)); 2114 mutex_unlock(&pci_pme_list_mutex); 2115 } else { 2116 mutex_lock(&pci_pme_list_mutex); 2117 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2118 if (pme_dev->dev == dev) { 2119 list_del(&pme_dev->list); 2120 kfree(pme_dev); 2121 break; 2122 } 2123 } 2124 mutex_unlock(&pci_pme_list_mutex); 2125 } 2126 } 2127 2128 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2129 } 2130 EXPORT_SYMBOL(pci_pme_active); 2131 2132 /** 2133 * __pci_enable_wake - enable PCI device as wakeup event source 2134 * @dev: PCI device affected 2135 * @state: PCI state from which device will issue wakeup events 2136 * @enable: True to enable event generation; false to disable 2137 * 2138 * This enables the device as a wakeup event source, or disables it. 2139 * When such events involves platform-specific hooks, those hooks are 2140 * called automatically by this routine. 2141 * 2142 * Devices with legacy power management (no standard PCI PM capabilities) 2143 * always require such platform hooks. 2144 * 2145 * RETURN VALUE: 2146 * 0 is returned on success 2147 * -EINVAL is returned if device is not supposed to wake up the system 2148 * Error code depending on the platform is returned if both the platform and 2149 * the native mechanism fail to enable the generation of wake-up events 2150 */ 2151 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2152 { 2153 int ret = 0; 2154 2155 /* 2156 * Bridges that are not power-manageable directly only signal 2157 * wakeup on behalf of subordinate devices which is set up 2158 * elsewhere, so skip them. However, bridges that are 2159 * power-manageable may signal wakeup for themselves (for example, 2160 * on a hotplug event) and they need to be covered here. 2161 */ 2162 if (!pci_power_manageable(dev)) 2163 return 0; 2164 2165 /* Don't do the same thing twice in a row for one device. */ 2166 if (!!enable == !!dev->wakeup_prepared) 2167 return 0; 2168 2169 /* 2170 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2171 * Anderson we should be doing PME# wake enable followed by ACPI wake 2172 * enable. To disable wake-up we call the platform first, for symmetry. 2173 */ 2174 2175 if (enable) { 2176 int error; 2177 2178 if (pci_pme_capable(dev, state)) 2179 pci_pme_active(dev, true); 2180 else 2181 ret = 1; 2182 error = platform_pci_set_wakeup(dev, true); 2183 if (ret) 2184 ret = error; 2185 if (!ret) 2186 dev->wakeup_prepared = true; 2187 } else { 2188 platform_pci_set_wakeup(dev, false); 2189 pci_pme_active(dev, false); 2190 dev->wakeup_prepared = false; 2191 } 2192 2193 return ret; 2194 } 2195 2196 /** 2197 * pci_enable_wake - change wakeup settings for a PCI device 2198 * @pci_dev: Target device 2199 * @state: PCI state from which device will issue wakeup events 2200 * @enable: Whether or not to enable event generation 2201 * 2202 * If @enable is set, check device_may_wakeup() for the device before calling 2203 * __pci_enable_wake() for it. 2204 */ 2205 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2206 { 2207 if (enable && !device_may_wakeup(&pci_dev->dev)) 2208 return -EINVAL; 2209 2210 return __pci_enable_wake(pci_dev, state, enable); 2211 } 2212 EXPORT_SYMBOL(pci_enable_wake); 2213 2214 /** 2215 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2216 * @dev: PCI device to prepare 2217 * @enable: True to enable wake-up event generation; false to disable 2218 * 2219 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2220 * and this function allows them to set that up cleanly - pci_enable_wake() 2221 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2222 * ordering constraints. 2223 * 2224 * This function only returns error code if the device is not allowed to wake 2225 * up the system from sleep or it is not capable of generating PME# from both 2226 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2227 */ 2228 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2229 { 2230 return pci_pme_capable(dev, PCI_D3cold) ? 2231 pci_enable_wake(dev, PCI_D3cold, enable) : 2232 pci_enable_wake(dev, PCI_D3hot, enable); 2233 } 2234 EXPORT_SYMBOL(pci_wake_from_d3); 2235 2236 /** 2237 * pci_target_state - find an appropriate low power state for a given PCI dev 2238 * @dev: PCI device 2239 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2240 * 2241 * Use underlying platform code to find a supported low power state for @dev. 2242 * If the platform can't manage @dev, return the deepest state from which it 2243 * can generate wake events, based on any available PME info. 2244 */ 2245 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2246 { 2247 pci_power_t target_state = PCI_D3hot; 2248 2249 if (platform_pci_power_manageable(dev)) { 2250 /* 2251 * Call the platform to find the target state for the device. 2252 */ 2253 pci_power_t state = platform_pci_choose_state(dev); 2254 2255 switch (state) { 2256 case PCI_POWER_ERROR: 2257 case PCI_UNKNOWN: 2258 break; 2259 case PCI_D1: 2260 case PCI_D2: 2261 if (pci_no_d1d2(dev)) 2262 break; 2263 /* else: fall through */ 2264 default: 2265 target_state = state; 2266 } 2267 2268 return target_state; 2269 } 2270 2271 if (!dev->pm_cap) 2272 target_state = PCI_D0; 2273 2274 /* 2275 * If the device is in D3cold even though it's not power-manageable by 2276 * the platform, it may have been powered down by non-standard means. 2277 * Best to let it slumber. 2278 */ 2279 if (dev->current_state == PCI_D3cold) 2280 target_state = PCI_D3cold; 2281 2282 if (wakeup) { 2283 /* 2284 * Find the deepest state from which the device can generate 2285 * PME#. 2286 */ 2287 if (dev->pme_support) { 2288 while (target_state 2289 && !(dev->pme_support & (1 << target_state))) 2290 target_state--; 2291 } 2292 } 2293 2294 return target_state; 2295 } 2296 2297 /** 2298 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2299 * @dev: Device to handle. 2300 * 2301 * Choose the power state appropriate for the device depending on whether 2302 * it can wake up the system and/or is power manageable by the platform 2303 * (PCI_D3hot is the default) and put the device into that state. 2304 */ 2305 int pci_prepare_to_sleep(struct pci_dev *dev) 2306 { 2307 bool wakeup = device_may_wakeup(&dev->dev); 2308 pci_power_t target_state = pci_target_state(dev, wakeup); 2309 int error; 2310 2311 if (target_state == PCI_POWER_ERROR) 2312 return -EIO; 2313 2314 pci_enable_wake(dev, target_state, wakeup); 2315 2316 error = pci_set_power_state(dev, target_state); 2317 2318 if (error) 2319 pci_enable_wake(dev, target_state, false); 2320 2321 return error; 2322 } 2323 EXPORT_SYMBOL(pci_prepare_to_sleep); 2324 2325 /** 2326 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2327 * @dev: Device to handle. 2328 * 2329 * Disable device's system wake-up capability and put it into D0. 2330 */ 2331 int pci_back_from_sleep(struct pci_dev *dev) 2332 { 2333 pci_enable_wake(dev, PCI_D0, false); 2334 return pci_set_power_state(dev, PCI_D0); 2335 } 2336 EXPORT_SYMBOL(pci_back_from_sleep); 2337 2338 /** 2339 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2340 * @dev: PCI device being suspended. 2341 * 2342 * Prepare @dev to generate wake-up events at run time and put it into a low 2343 * power state. 2344 */ 2345 int pci_finish_runtime_suspend(struct pci_dev *dev) 2346 { 2347 pci_power_t target_state; 2348 int error; 2349 2350 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2351 if (target_state == PCI_POWER_ERROR) 2352 return -EIO; 2353 2354 dev->runtime_d3cold = target_state == PCI_D3cold; 2355 2356 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2357 2358 error = pci_set_power_state(dev, target_state); 2359 2360 if (error) { 2361 pci_enable_wake(dev, target_state, false); 2362 dev->runtime_d3cold = false; 2363 } 2364 2365 return error; 2366 } 2367 2368 /** 2369 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2370 * @dev: Device to check. 2371 * 2372 * Return true if the device itself is capable of generating wake-up events 2373 * (through the platform or using the native PCIe PME) or if the device supports 2374 * PME and one of its upstream bridges can generate wake-up events. 2375 */ 2376 bool pci_dev_run_wake(struct pci_dev *dev) 2377 { 2378 struct pci_bus *bus = dev->bus; 2379 2380 if (!dev->pme_support) 2381 return false; 2382 2383 /* PME-capable in principle, but not from the target power state */ 2384 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2385 return false; 2386 2387 if (device_can_wakeup(&dev->dev)) 2388 return true; 2389 2390 while (bus->parent) { 2391 struct pci_dev *bridge = bus->self; 2392 2393 if (device_can_wakeup(&bridge->dev)) 2394 return true; 2395 2396 bus = bus->parent; 2397 } 2398 2399 /* We have reached the root bus. */ 2400 if (bus->bridge) 2401 return device_can_wakeup(bus->bridge); 2402 2403 return false; 2404 } 2405 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2406 2407 /** 2408 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2409 * @pci_dev: Device to check. 2410 * 2411 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2412 * reconfigured due to wakeup settings difference between system and runtime 2413 * suspend and the current power state of it is suitable for the upcoming 2414 * (system) transition. 2415 * 2416 * If the device is not configured for system wakeup, disable PME for it before 2417 * returning 'true' to prevent it from waking up the system unnecessarily. 2418 */ 2419 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2420 { 2421 struct device *dev = &pci_dev->dev; 2422 bool wakeup = device_may_wakeup(dev); 2423 2424 if (!pm_runtime_suspended(dev) 2425 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2426 || platform_pci_need_resume(pci_dev)) 2427 return false; 2428 2429 /* 2430 * At this point the device is good to go unless it's been configured 2431 * to generate PME at the runtime suspend time, but it is not supposed 2432 * to wake up the system. In that case, simply disable PME for it 2433 * (it will have to be re-enabled on exit from system resume). 2434 * 2435 * If the device's power state is D3cold and the platform check above 2436 * hasn't triggered, the device's configuration is suitable and we don't 2437 * need to manipulate it at all. 2438 */ 2439 spin_lock_irq(&dev->power.lock); 2440 2441 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2442 !wakeup) 2443 __pci_pme_active(pci_dev, false); 2444 2445 spin_unlock_irq(&dev->power.lock); 2446 return true; 2447 } 2448 2449 /** 2450 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2451 * @pci_dev: Device to handle. 2452 * 2453 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2454 * it might have been disabled during the prepare phase of system suspend if 2455 * the device was not configured for system wakeup. 2456 */ 2457 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2458 { 2459 struct device *dev = &pci_dev->dev; 2460 2461 if (!pci_dev_run_wake(pci_dev)) 2462 return; 2463 2464 spin_lock_irq(&dev->power.lock); 2465 2466 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2467 __pci_pme_active(pci_dev, true); 2468 2469 spin_unlock_irq(&dev->power.lock); 2470 } 2471 2472 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2473 { 2474 struct device *dev = &pdev->dev; 2475 struct device *parent = dev->parent; 2476 2477 if (parent) 2478 pm_runtime_get_sync(parent); 2479 pm_runtime_get_noresume(dev); 2480 /* 2481 * pdev->current_state is set to PCI_D3cold during suspending, 2482 * so wait until suspending completes 2483 */ 2484 pm_runtime_barrier(dev); 2485 /* 2486 * Only need to resume devices in D3cold, because config 2487 * registers are still accessible for devices suspended but 2488 * not in D3cold. 2489 */ 2490 if (pdev->current_state == PCI_D3cold) 2491 pm_runtime_resume(dev); 2492 } 2493 2494 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2495 { 2496 struct device *dev = &pdev->dev; 2497 struct device *parent = dev->parent; 2498 2499 pm_runtime_put(dev); 2500 if (parent) 2501 pm_runtime_put_sync(parent); 2502 } 2503 2504 /** 2505 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2506 * @bridge: Bridge to check 2507 * 2508 * This function checks if it is possible to move the bridge to D3. 2509 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2510 */ 2511 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2512 { 2513 if (!pci_is_pcie(bridge)) 2514 return false; 2515 2516 switch (pci_pcie_type(bridge)) { 2517 case PCI_EXP_TYPE_ROOT_PORT: 2518 case PCI_EXP_TYPE_UPSTREAM: 2519 case PCI_EXP_TYPE_DOWNSTREAM: 2520 if (pci_bridge_d3_disable) 2521 return false; 2522 2523 /* 2524 * Hotplug ports handled by firmware in System Management Mode 2525 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2526 */ 2527 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2528 return false; 2529 2530 if (pci_bridge_d3_force) 2531 return true; 2532 2533 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2534 if (bridge->is_thunderbolt) 2535 return true; 2536 2537 /* Platform might know better if the bridge supports D3 */ 2538 if (platform_pci_bridge_d3(bridge)) 2539 return true; 2540 2541 /* 2542 * Hotplug ports handled natively by the OS were not validated 2543 * by vendors for runtime D3 at least until 2018 because there 2544 * was no OS support. 2545 */ 2546 if (bridge->is_hotplug_bridge) 2547 return false; 2548 2549 /* 2550 * It should be safe to put PCIe ports from 2015 or newer 2551 * to D3. 2552 */ 2553 if (dmi_get_bios_year() >= 2015) 2554 return true; 2555 break; 2556 } 2557 2558 return false; 2559 } 2560 2561 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2562 { 2563 bool *d3cold_ok = data; 2564 2565 if (/* The device needs to be allowed to go D3cold ... */ 2566 dev->no_d3cold || !dev->d3cold_allowed || 2567 2568 /* ... and if it is wakeup capable to do so from D3cold. */ 2569 (device_may_wakeup(&dev->dev) && 2570 !pci_pme_capable(dev, PCI_D3cold)) || 2571 2572 /* If it is a bridge it must be allowed to go to D3. */ 2573 !pci_power_manageable(dev)) 2574 2575 *d3cold_ok = false; 2576 2577 return !*d3cold_ok; 2578 } 2579 2580 /* 2581 * pci_bridge_d3_update - Update bridge D3 capabilities 2582 * @dev: PCI device which is changed 2583 * 2584 * Update upstream bridge PM capabilities accordingly depending on if the 2585 * device PM configuration was changed or the device is being removed. The 2586 * change is also propagated upstream. 2587 */ 2588 void pci_bridge_d3_update(struct pci_dev *dev) 2589 { 2590 bool remove = !device_is_registered(&dev->dev); 2591 struct pci_dev *bridge; 2592 bool d3cold_ok = true; 2593 2594 bridge = pci_upstream_bridge(dev); 2595 if (!bridge || !pci_bridge_d3_possible(bridge)) 2596 return; 2597 2598 /* 2599 * If D3 is currently allowed for the bridge, removing one of its 2600 * children won't change that. 2601 */ 2602 if (remove && bridge->bridge_d3) 2603 return; 2604 2605 /* 2606 * If D3 is currently allowed for the bridge and a child is added or 2607 * changed, disallowance of D3 can only be caused by that child, so 2608 * we only need to check that single device, not any of its siblings. 2609 * 2610 * If D3 is currently not allowed for the bridge, checking the device 2611 * first may allow us to skip checking its siblings. 2612 */ 2613 if (!remove) 2614 pci_dev_check_d3cold(dev, &d3cold_ok); 2615 2616 /* 2617 * If D3 is currently not allowed for the bridge, this may be caused 2618 * either by the device being changed/removed or any of its siblings, 2619 * so we need to go through all children to find out if one of them 2620 * continues to block D3. 2621 */ 2622 if (d3cold_ok && !bridge->bridge_d3) 2623 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2624 &d3cold_ok); 2625 2626 if (bridge->bridge_d3 != d3cold_ok) { 2627 bridge->bridge_d3 = d3cold_ok; 2628 /* Propagate change to upstream bridges */ 2629 pci_bridge_d3_update(bridge); 2630 } 2631 } 2632 2633 /** 2634 * pci_d3cold_enable - Enable D3cold for device 2635 * @dev: PCI device to handle 2636 * 2637 * This function can be used in drivers to enable D3cold from the device 2638 * they handle. It also updates upstream PCI bridge PM capabilities 2639 * accordingly. 2640 */ 2641 void pci_d3cold_enable(struct pci_dev *dev) 2642 { 2643 if (dev->no_d3cold) { 2644 dev->no_d3cold = false; 2645 pci_bridge_d3_update(dev); 2646 } 2647 } 2648 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2649 2650 /** 2651 * pci_d3cold_disable - Disable D3cold for device 2652 * @dev: PCI device to handle 2653 * 2654 * This function can be used in drivers to disable D3cold from the device 2655 * they handle. It also updates upstream PCI bridge PM capabilities 2656 * accordingly. 2657 */ 2658 void pci_d3cold_disable(struct pci_dev *dev) 2659 { 2660 if (!dev->no_d3cold) { 2661 dev->no_d3cold = true; 2662 pci_bridge_d3_update(dev); 2663 } 2664 } 2665 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2666 2667 /** 2668 * pci_pm_init - Initialize PM functions of given PCI device 2669 * @dev: PCI device to handle. 2670 */ 2671 void pci_pm_init(struct pci_dev *dev) 2672 { 2673 int pm; 2674 u16 status; 2675 u16 pmc; 2676 2677 pm_runtime_forbid(&dev->dev); 2678 pm_runtime_set_active(&dev->dev); 2679 pm_runtime_enable(&dev->dev); 2680 device_enable_async_suspend(&dev->dev); 2681 dev->wakeup_prepared = false; 2682 2683 dev->pm_cap = 0; 2684 dev->pme_support = 0; 2685 2686 /* find PCI PM capability in list */ 2687 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2688 if (!pm) 2689 return; 2690 /* Check device's ability to generate PME# */ 2691 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2692 2693 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2694 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2695 pmc & PCI_PM_CAP_VER_MASK); 2696 return; 2697 } 2698 2699 dev->pm_cap = pm; 2700 dev->d3_delay = PCI_PM_D3_WAIT; 2701 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2702 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2703 dev->d3cold_allowed = true; 2704 2705 dev->d1_support = false; 2706 dev->d2_support = false; 2707 if (!pci_no_d1d2(dev)) { 2708 if (pmc & PCI_PM_CAP_D1) 2709 dev->d1_support = true; 2710 if (pmc & PCI_PM_CAP_D2) 2711 dev->d2_support = true; 2712 2713 if (dev->d1_support || dev->d2_support) 2714 pci_printk(KERN_DEBUG, dev, "supports%s%s\n", 2715 dev->d1_support ? " D1" : "", 2716 dev->d2_support ? " D2" : ""); 2717 } 2718 2719 pmc &= PCI_PM_CAP_PME_MASK; 2720 if (pmc) { 2721 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n", 2722 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2723 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2724 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2725 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2726 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2727 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2728 dev->pme_poll = true; 2729 /* 2730 * Make device's PM flags reflect the wake-up capability, but 2731 * let the user space enable it to wake up the system as needed. 2732 */ 2733 device_set_wakeup_capable(&dev->dev, true); 2734 /* Disable the PME# generation functionality */ 2735 pci_pme_active(dev, false); 2736 } 2737 2738 pci_read_config_word(dev, PCI_STATUS, &status); 2739 if (status & PCI_STATUS_IMM_READY) 2740 dev->imm_ready = 1; 2741 } 2742 2743 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2744 { 2745 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2746 2747 switch (prop) { 2748 case PCI_EA_P_MEM: 2749 case PCI_EA_P_VF_MEM: 2750 flags |= IORESOURCE_MEM; 2751 break; 2752 case PCI_EA_P_MEM_PREFETCH: 2753 case PCI_EA_P_VF_MEM_PREFETCH: 2754 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2755 break; 2756 case PCI_EA_P_IO: 2757 flags |= IORESOURCE_IO; 2758 break; 2759 default: 2760 return 0; 2761 } 2762 2763 return flags; 2764 } 2765 2766 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2767 u8 prop) 2768 { 2769 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2770 return &dev->resource[bei]; 2771 #ifdef CONFIG_PCI_IOV 2772 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2773 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2774 return &dev->resource[PCI_IOV_RESOURCES + 2775 bei - PCI_EA_BEI_VF_BAR0]; 2776 #endif 2777 else if (bei == PCI_EA_BEI_ROM) 2778 return &dev->resource[PCI_ROM_RESOURCE]; 2779 else 2780 return NULL; 2781 } 2782 2783 /* Read an Enhanced Allocation (EA) entry */ 2784 static int pci_ea_read(struct pci_dev *dev, int offset) 2785 { 2786 struct resource *res; 2787 int ent_size, ent_offset = offset; 2788 resource_size_t start, end; 2789 unsigned long flags; 2790 u32 dw0, bei, base, max_offset; 2791 u8 prop; 2792 bool support_64 = (sizeof(resource_size_t) >= 8); 2793 2794 pci_read_config_dword(dev, ent_offset, &dw0); 2795 ent_offset += 4; 2796 2797 /* Entry size field indicates DWORDs after 1st */ 2798 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2799 2800 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2801 goto out; 2802 2803 bei = (dw0 & PCI_EA_BEI) >> 4; 2804 prop = (dw0 & PCI_EA_PP) >> 8; 2805 2806 /* 2807 * If the Property is in the reserved range, try the Secondary 2808 * Property instead. 2809 */ 2810 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2811 prop = (dw0 & PCI_EA_SP) >> 16; 2812 if (prop > PCI_EA_P_BRIDGE_IO) 2813 goto out; 2814 2815 res = pci_ea_get_resource(dev, bei, prop); 2816 if (!res) { 2817 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2818 goto out; 2819 } 2820 2821 flags = pci_ea_flags(dev, prop); 2822 if (!flags) { 2823 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2824 goto out; 2825 } 2826 2827 /* Read Base */ 2828 pci_read_config_dword(dev, ent_offset, &base); 2829 start = (base & PCI_EA_FIELD_MASK); 2830 ent_offset += 4; 2831 2832 /* Read MaxOffset */ 2833 pci_read_config_dword(dev, ent_offset, &max_offset); 2834 ent_offset += 4; 2835 2836 /* Read Base MSBs (if 64-bit entry) */ 2837 if (base & PCI_EA_IS_64) { 2838 u32 base_upper; 2839 2840 pci_read_config_dword(dev, ent_offset, &base_upper); 2841 ent_offset += 4; 2842 2843 flags |= IORESOURCE_MEM_64; 2844 2845 /* entry starts above 32-bit boundary, can't use */ 2846 if (!support_64 && base_upper) 2847 goto out; 2848 2849 if (support_64) 2850 start |= ((u64)base_upper << 32); 2851 } 2852 2853 end = start + (max_offset | 0x03); 2854 2855 /* Read MaxOffset MSBs (if 64-bit entry) */ 2856 if (max_offset & PCI_EA_IS_64) { 2857 u32 max_offset_upper; 2858 2859 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2860 ent_offset += 4; 2861 2862 flags |= IORESOURCE_MEM_64; 2863 2864 /* entry too big, can't use */ 2865 if (!support_64 && max_offset_upper) 2866 goto out; 2867 2868 if (support_64) 2869 end += ((u64)max_offset_upper << 32); 2870 } 2871 2872 if (end < start) { 2873 pci_err(dev, "EA Entry crosses address boundary\n"); 2874 goto out; 2875 } 2876 2877 if (ent_size != ent_offset - offset) { 2878 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2879 ent_size, ent_offset - offset); 2880 goto out; 2881 } 2882 2883 res->name = pci_name(dev); 2884 res->start = start; 2885 res->end = end; 2886 res->flags = flags; 2887 2888 if (bei <= PCI_EA_BEI_BAR5) 2889 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2890 bei, res, prop); 2891 else if (bei == PCI_EA_BEI_ROM) 2892 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2893 res, prop); 2894 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2895 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2896 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2897 else 2898 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2899 bei, res, prop); 2900 2901 out: 2902 return offset + ent_size; 2903 } 2904 2905 /* Enhanced Allocation Initialization */ 2906 void pci_ea_init(struct pci_dev *dev) 2907 { 2908 int ea; 2909 u8 num_ent; 2910 int offset; 2911 int i; 2912 2913 /* find PCI EA capability in list */ 2914 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2915 if (!ea) 2916 return; 2917 2918 /* determine the number of entries */ 2919 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2920 &num_ent); 2921 num_ent &= PCI_EA_NUM_ENT_MASK; 2922 2923 offset = ea + PCI_EA_FIRST_ENT; 2924 2925 /* Skip DWORD 2 for type 1 functions */ 2926 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2927 offset += 4; 2928 2929 /* parse each EA entry */ 2930 for (i = 0; i < num_ent; ++i) 2931 offset = pci_ea_read(dev, offset); 2932 } 2933 2934 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2935 struct pci_cap_saved_state *new_cap) 2936 { 2937 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2938 } 2939 2940 /** 2941 * _pci_add_cap_save_buffer - allocate buffer for saving given 2942 * capability registers 2943 * @dev: the PCI device 2944 * @cap: the capability to allocate the buffer for 2945 * @extended: Standard or Extended capability ID 2946 * @size: requested size of the buffer 2947 */ 2948 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2949 bool extended, unsigned int size) 2950 { 2951 int pos; 2952 struct pci_cap_saved_state *save_state; 2953 2954 if (extended) 2955 pos = pci_find_ext_capability(dev, cap); 2956 else 2957 pos = pci_find_capability(dev, cap); 2958 2959 if (!pos) 2960 return 0; 2961 2962 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2963 if (!save_state) 2964 return -ENOMEM; 2965 2966 save_state->cap.cap_nr = cap; 2967 save_state->cap.cap_extended = extended; 2968 save_state->cap.size = size; 2969 pci_add_saved_cap(dev, save_state); 2970 2971 return 0; 2972 } 2973 2974 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2975 { 2976 return _pci_add_cap_save_buffer(dev, cap, false, size); 2977 } 2978 2979 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2980 { 2981 return _pci_add_cap_save_buffer(dev, cap, true, size); 2982 } 2983 2984 /** 2985 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2986 * @dev: the PCI device 2987 */ 2988 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2989 { 2990 int error; 2991 2992 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2993 PCI_EXP_SAVE_REGS * sizeof(u16)); 2994 if (error) 2995 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 2996 2997 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2998 if (error) 2999 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3000 3001 pci_allocate_vc_save_buffers(dev); 3002 } 3003 3004 void pci_free_cap_save_buffers(struct pci_dev *dev) 3005 { 3006 struct pci_cap_saved_state *tmp; 3007 struct hlist_node *n; 3008 3009 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3010 kfree(tmp); 3011 } 3012 3013 /** 3014 * pci_configure_ari - enable or disable ARI forwarding 3015 * @dev: the PCI device 3016 * 3017 * If @dev and its upstream bridge both support ARI, enable ARI in the 3018 * bridge. Otherwise, disable ARI in the bridge. 3019 */ 3020 void pci_configure_ari(struct pci_dev *dev) 3021 { 3022 u32 cap; 3023 struct pci_dev *bridge; 3024 3025 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3026 return; 3027 3028 bridge = dev->bus->self; 3029 if (!bridge) 3030 return; 3031 3032 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3033 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3034 return; 3035 3036 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3037 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3038 PCI_EXP_DEVCTL2_ARI); 3039 bridge->ari_enabled = 1; 3040 } else { 3041 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3042 PCI_EXP_DEVCTL2_ARI); 3043 bridge->ari_enabled = 0; 3044 } 3045 } 3046 3047 static int pci_acs_enable; 3048 3049 /** 3050 * pci_request_acs - ask for ACS to be enabled if supported 3051 */ 3052 void pci_request_acs(void) 3053 { 3054 pci_acs_enable = 1; 3055 } 3056 3057 static const char *disable_acs_redir_param; 3058 3059 /** 3060 * pci_disable_acs_redir - disable ACS redirect capabilities 3061 * @dev: the PCI device 3062 * 3063 * For only devices specified in the disable_acs_redir parameter. 3064 */ 3065 static void pci_disable_acs_redir(struct pci_dev *dev) 3066 { 3067 int ret = 0; 3068 const char *p; 3069 int pos; 3070 u16 ctrl; 3071 3072 if (!disable_acs_redir_param) 3073 return; 3074 3075 p = disable_acs_redir_param; 3076 while (*p) { 3077 ret = pci_dev_str_match(dev, p, &p); 3078 if (ret < 0) { 3079 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3080 disable_acs_redir_param); 3081 3082 break; 3083 } else if (ret == 1) { 3084 /* Found a match */ 3085 break; 3086 } 3087 3088 if (*p != ';' && *p != ',') { 3089 /* End of param or invalid format */ 3090 break; 3091 } 3092 p++; 3093 } 3094 3095 if (ret != 1) 3096 return; 3097 3098 if (!pci_dev_specific_disable_acs_redir(dev)) 3099 return; 3100 3101 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3102 if (!pos) { 3103 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3104 return; 3105 } 3106 3107 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3108 3109 /* P2P Request & Completion Redirect */ 3110 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3111 3112 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3113 3114 pci_info(dev, "disabled ACS redirect\n"); 3115 } 3116 3117 /** 3118 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 3119 * @dev: the PCI device 3120 */ 3121 static void pci_std_enable_acs(struct pci_dev *dev) 3122 { 3123 int pos; 3124 u16 cap; 3125 u16 ctrl; 3126 3127 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3128 if (!pos) 3129 return; 3130 3131 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3132 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3133 3134 /* Source Validation */ 3135 ctrl |= (cap & PCI_ACS_SV); 3136 3137 /* P2P Request Redirect */ 3138 ctrl |= (cap & PCI_ACS_RR); 3139 3140 /* P2P Completion Redirect */ 3141 ctrl |= (cap & PCI_ACS_CR); 3142 3143 /* Upstream Forwarding */ 3144 ctrl |= (cap & PCI_ACS_UF); 3145 3146 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3147 } 3148 3149 /** 3150 * pci_enable_acs - enable ACS if hardware support it 3151 * @dev: the PCI device 3152 */ 3153 void pci_enable_acs(struct pci_dev *dev) 3154 { 3155 if (!pci_acs_enable) 3156 goto disable_acs_redir; 3157 3158 if (!pci_dev_specific_enable_acs(dev)) 3159 goto disable_acs_redir; 3160 3161 pci_std_enable_acs(dev); 3162 3163 disable_acs_redir: 3164 /* 3165 * Note: pci_disable_acs_redir() must be called even if ACS was not 3166 * enabled by the kernel because it may have been enabled by 3167 * platform firmware. So if we are told to disable it, we should 3168 * always disable it after setting the kernel's default 3169 * preferences. 3170 */ 3171 pci_disable_acs_redir(dev); 3172 } 3173 3174 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3175 { 3176 int pos; 3177 u16 cap, ctrl; 3178 3179 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3180 if (!pos) 3181 return false; 3182 3183 /* 3184 * Except for egress control, capabilities are either required 3185 * or only required if controllable. Features missing from the 3186 * capability field can therefore be assumed as hard-wired enabled. 3187 */ 3188 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3189 acs_flags &= (cap | PCI_ACS_EC); 3190 3191 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3192 return (ctrl & acs_flags) == acs_flags; 3193 } 3194 3195 /** 3196 * pci_acs_enabled - test ACS against required flags for a given device 3197 * @pdev: device to test 3198 * @acs_flags: required PCI ACS flags 3199 * 3200 * Return true if the device supports the provided flags. Automatically 3201 * filters out flags that are not implemented on multifunction devices. 3202 * 3203 * Note that this interface checks the effective ACS capabilities of the 3204 * device rather than the actual capabilities. For instance, most single 3205 * function endpoints are not required to support ACS because they have no 3206 * opportunity for peer-to-peer access. We therefore return 'true' 3207 * regardless of whether the device exposes an ACS capability. This makes 3208 * it much easier for callers of this function to ignore the actual type 3209 * or topology of the device when testing ACS support. 3210 */ 3211 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3212 { 3213 int ret; 3214 3215 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3216 if (ret >= 0) 3217 return ret > 0; 3218 3219 /* 3220 * Conventional PCI and PCI-X devices never support ACS, either 3221 * effectively or actually. The shared bus topology implies that 3222 * any device on the bus can receive or snoop DMA. 3223 */ 3224 if (!pci_is_pcie(pdev)) 3225 return false; 3226 3227 switch (pci_pcie_type(pdev)) { 3228 /* 3229 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3230 * but since their primary interface is PCI/X, we conservatively 3231 * handle them as we would a non-PCIe device. 3232 */ 3233 case PCI_EXP_TYPE_PCIE_BRIDGE: 3234 /* 3235 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3236 * applicable... must never implement an ACS Extended Capability...". 3237 * This seems arbitrary, but we take a conservative interpretation 3238 * of this statement. 3239 */ 3240 case PCI_EXP_TYPE_PCI_BRIDGE: 3241 case PCI_EXP_TYPE_RC_EC: 3242 return false; 3243 /* 3244 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3245 * implement ACS in order to indicate their peer-to-peer capabilities, 3246 * regardless of whether they are single- or multi-function devices. 3247 */ 3248 case PCI_EXP_TYPE_DOWNSTREAM: 3249 case PCI_EXP_TYPE_ROOT_PORT: 3250 return pci_acs_flags_enabled(pdev, acs_flags); 3251 /* 3252 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3253 * implemented by the remaining PCIe types to indicate peer-to-peer 3254 * capabilities, but only when they are part of a multifunction 3255 * device. The footnote for section 6.12 indicates the specific 3256 * PCIe types included here. 3257 */ 3258 case PCI_EXP_TYPE_ENDPOINT: 3259 case PCI_EXP_TYPE_UPSTREAM: 3260 case PCI_EXP_TYPE_LEG_END: 3261 case PCI_EXP_TYPE_RC_END: 3262 if (!pdev->multifunction) 3263 break; 3264 3265 return pci_acs_flags_enabled(pdev, acs_flags); 3266 } 3267 3268 /* 3269 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3270 * to single function devices with the exception of downstream ports. 3271 */ 3272 return true; 3273 } 3274 3275 /** 3276 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3277 * @start: starting downstream device 3278 * @end: ending upstream device or NULL to search to the root bus 3279 * @acs_flags: required flags 3280 * 3281 * Walk up a device tree from start to end testing PCI ACS support. If 3282 * any step along the way does not support the required flags, return false. 3283 */ 3284 bool pci_acs_path_enabled(struct pci_dev *start, 3285 struct pci_dev *end, u16 acs_flags) 3286 { 3287 struct pci_dev *pdev, *parent = start; 3288 3289 do { 3290 pdev = parent; 3291 3292 if (!pci_acs_enabled(pdev, acs_flags)) 3293 return false; 3294 3295 if (pci_is_root_bus(pdev->bus)) 3296 return (end == NULL); 3297 3298 parent = pdev->bus->self; 3299 } while (pdev != end); 3300 3301 return true; 3302 } 3303 3304 /** 3305 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3306 * @pdev: PCI device 3307 * @bar: BAR to find 3308 * 3309 * Helper to find the position of the ctrl register for a BAR. 3310 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3311 * Returns -ENOENT if no ctrl register for the BAR could be found. 3312 */ 3313 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3314 { 3315 unsigned int pos, nbars, i; 3316 u32 ctrl; 3317 3318 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3319 if (!pos) 3320 return -ENOTSUPP; 3321 3322 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3323 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3324 PCI_REBAR_CTRL_NBAR_SHIFT; 3325 3326 for (i = 0; i < nbars; i++, pos += 8) { 3327 int bar_idx; 3328 3329 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3330 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3331 if (bar_idx == bar) 3332 return pos; 3333 } 3334 3335 return -ENOENT; 3336 } 3337 3338 /** 3339 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3340 * @pdev: PCI device 3341 * @bar: BAR to query 3342 * 3343 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3344 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3345 */ 3346 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3347 { 3348 int pos; 3349 u32 cap; 3350 3351 pos = pci_rebar_find_pos(pdev, bar); 3352 if (pos < 0) 3353 return 0; 3354 3355 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3356 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3357 } 3358 3359 /** 3360 * pci_rebar_get_current_size - get the current size of a BAR 3361 * @pdev: PCI device 3362 * @bar: BAR to set size to 3363 * 3364 * Read the size of a BAR from the resizable BAR config. 3365 * Returns size if found or negative error code. 3366 */ 3367 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3368 { 3369 int pos; 3370 u32 ctrl; 3371 3372 pos = pci_rebar_find_pos(pdev, bar); 3373 if (pos < 0) 3374 return pos; 3375 3376 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3377 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3378 } 3379 3380 /** 3381 * pci_rebar_set_size - set a new size for a BAR 3382 * @pdev: PCI device 3383 * @bar: BAR to set size to 3384 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3385 * 3386 * Set the new size of a BAR as defined in the spec. 3387 * Returns zero if resizing was successful, error code otherwise. 3388 */ 3389 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3390 { 3391 int pos; 3392 u32 ctrl; 3393 3394 pos = pci_rebar_find_pos(pdev, bar); 3395 if (pos < 0) 3396 return pos; 3397 3398 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3399 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3400 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3401 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3402 return 0; 3403 } 3404 3405 /** 3406 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3407 * @dev: the PCI device 3408 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3409 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3410 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3411 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3412 * 3413 * Return 0 if all upstream bridges support AtomicOp routing, egress 3414 * blocking is disabled on all upstream ports, and the root port supports 3415 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3416 * AtomicOp completion), or negative otherwise. 3417 */ 3418 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3419 { 3420 struct pci_bus *bus = dev->bus; 3421 struct pci_dev *bridge; 3422 u32 cap, ctl2; 3423 3424 if (!pci_is_pcie(dev)) 3425 return -EINVAL; 3426 3427 /* 3428 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3429 * AtomicOp requesters. For now, we only support endpoints as 3430 * requesters and root ports as completers. No endpoints as 3431 * completers, and no peer-to-peer. 3432 */ 3433 3434 switch (pci_pcie_type(dev)) { 3435 case PCI_EXP_TYPE_ENDPOINT: 3436 case PCI_EXP_TYPE_LEG_END: 3437 case PCI_EXP_TYPE_RC_END: 3438 break; 3439 default: 3440 return -EINVAL; 3441 } 3442 3443 while (bus->parent) { 3444 bridge = bus->self; 3445 3446 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3447 3448 switch (pci_pcie_type(bridge)) { 3449 /* Ensure switch ports support AtomicOp routing */ 3450 case PCI_EXP_TYPE_UPSTREAM: 3451 case PCI_EXP_TYPE_DOWNSTREAM: 3452 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3453 return -EINVAL; 3454 break; 3455 3456 /* Ensure root port supports all the sizes we care about */ 3457 case PCI_EXP_TYPE_ROOT_PORT: 3458 if ((cap & cap_mask) != cap_mask) 3459 return -EINVAL; 3460 break; 3461 } 3462 3463 /* Ensure upstream ports don't block AtomicOps on egress */ 3464 if (!bridge->has_secondary_link) { 3465 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3466 &ctl2); 3467 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3468 return -EINVAL; 3469 } 3470 3471 bus = bus->parent; 3472 } 3473 3474 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3475 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3476 return 0; 3477 } 3478 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3479 3480 /** 3481 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3482 * @dev: the PCI device 3483 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3484 * 3485 * Perform INTx swizzling for a device behind one level of bridge. This is 3486 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3487 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3488 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3489 * the PCI Express Base Specification, Revision 2.1) 3490 */ 3491 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3492 { 3493 int slot; 3494 3495 if (pci_ari_enabled(dev->bus)) 3496 slot = 0; 3497 else 3498 slot = PCI_SLOT(dev->devfn); 3499 3500 return (((pin - 1) + slot) % 4) + 1; 3501 } 3502 3503 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3504 { 3505 u8 pin; 3506 3507 pin = dev->pin; 3508 if (!pin) 3509 return -1; 3510 3511 while (!pci_is_root_bus(dev->bus)) { 3512 pin = pci_swizzle_interrupt_pin(dev, pin); 3513 dev = dev->bus->self; 3514 } 3515 *bridge = dev; 3516 return pin; 3517 } 3518 3519 /** 3520 * pci_common_swizzle - swizzle INTx all the way to root bridge 3521 * @dev: the PCI device 3522 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3523 * 3524 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3525 * bridges all the way up to a PCI root bus. 3526 */ 3527 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3528 { 3529 u8 pin = *pinp; 3530 3531 while (!pci_is_root_bus(dev->bus)) { 3532 pin = pci_swizzle_interrupt_pin(dev, pin); 3533 dev = dev->bus->self; 3534 } 3535 *pinp = pin; 3536 return PCI_SLOT(dev->devfn); 3537 } 3538 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3539 3540 /** 3541 * pci_release_region - Release a PCI bar 3542 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3543 * @bar: BAR to release 3544 * 3545 * Releases the PCI I/O and memory resources previously reserved by a 3546 * successful call to pci_request_region. Call this function only 3547 * after all use of the PCI regions has ceased. 3548 */ 3549 void pci_release_region(struct pci_dev *pdev, int bar) 3550 { 3551 struct pci_devres *dr; 3552 3553 if (pci_resource_len(pdev, bar) == 0) 3554 return; 3555 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3556 release_region(pci_resource_start(pdev, bar), 3557 pci_resource_len(pdev, bar)); 3558 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3559 release_mem_region(pci_resource_start(pdev, bar), 3560 pci_resource_len(pdev, bar)); 3561 3562 dr = find_pci_dr(pdev); 3563 if (dr) 3564 dr->region_mask &= ~(1 << bar); 3565 } 3566 EXPORT_SYMBOL(pci_release_region); 3567 3568 /** 3569 * __pci_request_region - Reserved PCI I/O and memory resource 3570 * @pdev: PCI device whose resources are to be reserved 3571 * @bar: BAR to be reserved 3572 * @res_name: Name to be associated with resource. 3573 * @exclusive: whether the region access is exclusive or not 3574 * 3575 * Mark the PCI region associated with PCI device @pdev BR @bar as 3576 * being reserved by owner @res_name. Do not access any 3577 * address inside the PCI regions unless this call returns 3578 * successfully. 3579 * 3580 * If @exclusive is set, then the region is marked so that userspace 3581 * is explicitly not allowed to map the resource via /dev/mem or 3582 * sysfs MMIO access. 3583 * 3584 * Returns 0 on success, or %EBUSY on error. A warning 3585 * message is also printed on failure. 3586 */ 3587 static int __pci_request_region(struct pci_dev *pdev, int bar, 3588 const char *res_name, int exclusive) 3589 { 3590 struct pci_devres *dr; 3591 3592 if (pci_resource_len(pdev, bar) == 0) 3593 return 0; 3594 3595 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3596 if (!request_region(pci_resource_start(pdev, bar), 3597 pci_resource_len(pdev, bar), res_name)) 3598 goto err_out; 3599 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3600 if (!__request_mem_region(pci_resource_start(pdev, bar), 3601 pci_resource_len(pdev, bar), res_name, 3602 exclusive)) 3603 goto err_out; 3604 } 3605 3606 dr = find_pci_dr(pdev); 3607 if (dr) 3608 dr->region_mask |= 1 << bar; 3609 3610 return 0; 3611 3612 err_out: 3613 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3614 &pdev->resource[bar]); 3615 return -EBUSY; 3616 } 3617 3618 /** 3619 * pci_request_region - Reserve PCI I/O and memory resource 3620 * @pdev: PCI device whose resources are to be reserved 3621 * @bar: BAR to be reserved 3622 * @res_name: Name to be associated with resource 3623 * 3624 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3625 * being reserved by owner @res_name. Do not access any 3626 * address inside the PCI regions unless this call returns 3627 * successfully. 3628 * 3629 * Returns 0 on success, or %EBUSY on error. A warning 3630 * message is also printed on failure. 3631 */ 3632 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3633 { 3634 return __pci_request_region(pdev, bar, res_name, 0); 3635 } 3636 EXPORT_SYMBOL(pci_request_region); 3637 3638 /** 3639 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3640 * @pdev: PCI device whose resources are to be reserved 3641 * @bar: BAR to be reserved 3642 * @res_name: Name to be associated with resource. 3643 * 3644 * Mark the PCI region associated with PCI device @pdev BR @bar as 3645 * being reserved by owner @res_name. Do not access any 3646 * address inside the PCI regions unless this call returns 3647 * successfully. 3648 * 3649 * Returns 0 on success, or %EBUSY on error. A warning 3650 * message is also printed on failure. 3651 * 3652 * The key difference that _exclusive makes it that userspace is 3653 * explicitly not allowed to map the resource via /dev/mem or 3654 * sysfs. 3655 */ 3656 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3657 const char *res_name) 3658 { 3659 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3660 } 3661 EXPORT_SYMBOL(pci_request_region_exclusive); 3662 3663 /** 3664 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3665 * @pdev: PCI device whose resources were previously reserved 3666 * @bars: Bitmask of BARs to be released 3667 * 3668 * Release selected PCI I/O and memory resources previously reserved. 3669 * Call this function only after all use of the PCI regions has ceased. 3670 */ 3671 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3672 { 3673 int i; 3674 3675 for (i = 0; i < 6; i++) 3676 if (bars & (1 << i)) 3677 pci_release_region(pdev, i); 3678 } 3679 EXPORT_SYMBOL(pci_release_selected_regions); 3680 3681 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3682 const char *res_name, int excl) 3683 { 3684 int i; 3685 3686 for (i = 0; i < 6; i++) 3687 if (bars & (1 << i)) 3688 if (__pci_request_region(pdev, i, res_name, excl)) 3689 goto err_out; 3690 return 0; 3691 3692 err_out: 3693 while (--i >= 0) 3694 if (bars & (1 << i)) 3695 pci_release_region(pdev, i); 3696 3697 return -EBUSY; 3698 } 3699 3700 3701 /** 3702 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3703 * @pdev: PCI device whose resources are to be reserved 3704 * @bars: Bitmask of BARs to be requested 3705 * @res_name: Name to be associated with resource 3706 */ 3707 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3708 const char *res_name) 3709 { 3710 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3711 } 3712 EXPORT_SYMBOL(pci_request_selected_regions); 3713 3714 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3715 const char *res_name) 3716 { 3717 return __pci_request_selected_regions(pdev, bars, res_name, 3718 IORESOURCE_EXCLUSIVE); 3719 } 3720 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3721 3722 /** 3723 * pci_release_regions - Release reserved PCI I/O and memory resources 3724 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3725 * 3726 * Releases all PCI I/O and memory resources previously reserved by a 3727 * successful call to pci_request_regions. Call this function only 3728 * after all use of the PCI regions has ceased. 3729 */ 3730 3731 void pci_release_regions(struct pci_dev *pdev) 3732 { 3733 pci_release_selected_regions(pdev, (1 << 6) - 1); 3734 } 3735 EXPORT_SYMBOL(pci_release_regions); 3736 3737 /** 3738 * pci_request_regions - Reserved PCI I/O and memory resources 3739 * @pdev: PCI device whose resources are to be reserved 3740 * @res_name: Name to be associated with resource. 3741 * 3742 * Mark all PCI regions associated with PCI device @pdev as 3743 * being reserved by owner @res_name. Do not access any 3744 * address inside the PCI regions unless this call returns 3745 * successfully. 3746 * 3747 * Returns 0 on success, or %EBUSY on error. A warning 3748 * message is also printed on failure. 3749 */ 3750 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3751 { 3752 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3753 } 3754 EXPORT_SYMBOL(pci_request_regions); 3755 3756 /** 3757 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3758 * @pdev: PCI device whose resources are to be reserved 3759 * @res_name: Name to be associated with resource. 3760 * 3761 * Mark all PCI regions associated with PCI device @pdev as 3762 * being reserved by owner @res_name. Do not access any 3763 * address inside the PCI regions unless this call returns 3764 * successfully. 3765 * 3766 * pci_request_regions_exclusive() will mark the region so that 3767 * /dev/mem and the sysfs MMIO access will not be allowed. 3768 * 3769 * Returns 0 on success, or %EBUSY on error. A warning 3770 * message is also printed on failure. 3771 */ 3772 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3773 { 3774 return pci_request_selected_regions_exclusive(pdev, 3775 ((1 << 6) - 1), res_name); 3776 } 3777 EXPORT_SYMBOL(pci_request_regions_exclusive); 3778 3779 /* 3780 * Record the PCI IO range (expressed as CPU physical address + size). 3781 * Return a negative value if an error has occured, zero otherwise 3782 */ 3783 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3784 resource_size_t size) 3785 { 3786 int ret = 0; 3787 #ifdef PCI_IOBASE 3788 struct logic_pio_hwaddr *range; 3789 3790 if (!size || addr + size < addr) 3791 return -EINVAL; 3792 3793 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3794 if (!range) 3795 return -ENOMEM; 3796 3797 range->fwnode = fwnode; 3798 range->size = size; 3799 range->hw_start = addr; 3800 range->flags = LOGIC_PIO_CPU_MMIO; 3801 3802 ret = logic_pio_register_range(range); 3803 if (ret) 3804 kfree(range); 3805 #endif 3806 3807 return ret; 3808 } 3809 3810 phys_addr_t pci_pio_to_address(unsigned long pio) 3811 { 3812 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3813 3814 #ifdef PCI_IOBASE 3815 if (pio >= MMIO_UPPER_LIMIT) 3816 return address; 3817 3818 address = logic_pio_to_hwaddr(pio); 3819 #endif 3820 3821 return address; 3822 } 3823 3824 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3825 { 3826 #ifdef PCI_IOBASE 3827 return logic_pio_trans_cpuaddr(address); 3828 #else 3829 if (address > IO_SPACE_LIMIT) 3830 return (unsigned long)-1; 3831 3832 return (unsigned long) address; 3833 #endif 3834 } 3835 3836 /** 3837 * pci_remap_iospace - Remap the memory mapped I/O space 3838 * @res: Resource describing the I/O space 3839 * @phys_addr: physical address of range to be mapped 3840 * 3841 * Remap the memory mapped I/O space described by the @res 3842 * and the CPU physical address @phys_addr into virtual address space. 3843 * Only architectures that have memory mapped IO functions defined 3844 * (and the PCI_IOBASE value defined) should call this function. 3845 */ 3846 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3847 { 3848 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3849 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3850 3851 if (!(res->flags & IORESOURCE_IO)) 3852 return -EINVAL; 3853 3854 if (res->end > IO_SPACE_LIMIT) 3855 return -EINVAL; 3856 3857 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3858 pgprot_device(PAGE_KERNEL)); 3859 #else 3860 /* this architecture does not have memory mapped I/O space, 3861 so this function should never be called */ 3862 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3863 return -ENODEV; 3864 #endif 3865 } 3866 EXPORT_SYMBOL(pci_remap_iospace); 3867 3868 /** 3869 * pci_unmap_iospace - Unmap the memory mapped I/O space 3870 * @res: resource to be unmapped 3871 * 3872 * Unmap the CPU virtual address @res from virtual address space. 3873 * Only architectures that have memory mapped IO functions defined 3874 * (and the PCI_IOBASE value defined) should call this function. 3875 */ 3876 void pci_unmap_iospace(struct resource *res) 3877 { 3878 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3879 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3880 3881 unmap_kernel_range(vaddr, resource_size(res)); 3882 #endif 3883 } 3884 EXPORT_SYMBOL(pci_unmap_iospace); 3885 3886 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 3887 { 3888 struct resource **res = ptr; 3889 3890 pci_unmap_iospace(*res); 3891 } 3892 3893 /** 3894 * devm_pci_remap_iospace - Managed pci_remap_iospace() 3895 * @dev: Generic device to remap IO address for 3896 * @res: Resource describing the I/O space 3897 * @phys_addr: physical address of range to be mapped 3898 * 3899 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 3900 * detach. 3901 */ 3902 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 3903 phys_addr_t phys_addr) 3904 { 3905 const struct resource **ptr; 3906 int error; 3907 3908 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 3909 if (!ptr) 3910 return -ENOMEM; 3911 3912 error = pci_remap_iospace(res, phys_addr); 3913 if (error) { 3914 devres_free(ptr); 3915 } else { 3916 *ptr = res; 3917 devres_add(dev, ptr); 3918 } 3919 3920 return error; 3921 } 3922 EXPORT_SYMBOL(devm_pci_remap_iospace); 3923 3924 /** 3925 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3926 * @dev: Generic device to remap IO address for 3927 * @offset: Resource address to map 3928 * @size: Size of map 3929 * 3930 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3931 * detach. 3932 */ 3933 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3934 resource_size_t offset, 3935 resource_size_t size) 3936 { 3937 void __iomem **ptr, *addr; 3938 3939 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3940 if (!ptr) 3941 return NULL; 3942 3943 addr = pci_remap_cfgspace(offset, size); 3944 if (addr) { 3945 *ptr = addr; 3946 devres_add(dev, ptr); 3947 } else 3948 devres_free(ptr); 3949 3950 return addr; 3951 } 3952 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3953 3954 /** 3955 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3956 * @dev: generic device to handle the resource for 3957 * @res: configuration space resource to be handled 3958 * 3959 * Checks that a resource is a valid memory region, requests the memory 3960 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3961 * proper PCI configuration space memory attributes are guaranteed. 3962 * 3963 * All operations are managed and will be undone on driver detach. 3964 * 3965 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3966 * on failure. Usage example:: 3967 * 3968 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3969 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3970 * if (IS_ERR(base)) 3971 * return PTR_ERR(base); 3972 */ 3973 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3974 struct resource *res) 3975 { 3976 resource_size_t size; 3977 const char *name; 3978 void __iomem *dest_ptr; 3979 3980 BUG_ON(!dev); 3981 3982 if (!res || resource_type(res) != IORESOURCE_MEM) { 3983 dev_err(dev, "invalid resource\n"); 3984 return IOMEM_ERR_PTR(-EINVAL); 3985 } 3986 3987 size = resource_size(res); 3988 name = res->name ?: dev_name(dev); 3989 3990 if (!devm_request_mem_region(dev, res->start, size, name)) { 3991 dev_err(dev, "can't request region for resource %pR\n", res); 3992 return IOMEM_ERR_PTR(-EBUSY); 3993 } 3994 3995 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3996 if (!dest_ptr) { 3997 dev_err(dev, "ioremap failed for resource %pR\n", res); 3998 devm_release_mem_region(dev, res->start, size); 3999 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4000 } 4001 4002 return dest_ptr; 4003 } 4004 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4005 4006 static void __pci_set_master(struct pci_dev *dev, bool enable) 4007 { 4008 u16 old_cmd, cmd; 4009 4010 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4011 if (enable) 4012 cmd = old_cmd | PCI_COMMAND_MASTER; 4013 else 4014 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4015 if (cmd != old_cmd) { 4016 pci_dbg(dev, "%s bus mastering\n", 4017 enable ? "enabling" : "disabling"); 4018 pci_write_config_word(dev, PCI_COMMAND, cmd); 4019 } 4020 dev->is_busmaster = enable; 4021 } 4022 4023 /** 4024 * pcibios_setup - process "pci=" kernel boot arguments 4025 * @str: string used to pass in "pci=" kernel boot arguments 4026 * 4027 * Process kernel boot arguments. This is the default implementation. 4028 * Architecture specific implementations can override this as necessary. 4029 */ 4030 char * __weak __init pcibios_setup(char *str) 4031 { 4032 return str; 4033 } 4034 4035 /** 4036 * pcibios_set_master - enable PCI bus-mastering for device dev 4037 * @dev: the PCI device to enable 4038 * 4039 * Enables PCI bus-mastering for the device. This is the default 4040 * implementation. Architecture specific implementations can override 4041 * this if necessary. 4042 */ 4043 void __weak pcibios_set_master(struct pci_dev *dev) 4044 { 4045 u8 lat; 4046 4047 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4048 if (pci_is_pcie(dev)) 4049 return; 4050 4051 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4052 if (lat < 16) 4053 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4054 else if (lat > pcibios_max_latency) 4055 lat = pcibios_max_latency; 4056 else 4057 return; 4058 4059 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4060 } 4061 4062 /** 4063 * pci_set_master - enables bus-mastering for device dev 4064 * @dev: the PCI device to enable 4065 * 4066 * Enables bus-mastering on the device and calls pcibios_set_master() 4067 * to do the needed arch specific settings. 4068 */ 4069 void pci_set_master(struct pci_dev *dev) 4070 { 4071 __pci_set_master(dev, true); 4072 pcibios_set_master(dev); 4073 } 4074 EXPORT_SYMBOL(pci_set_master); 4075 4076 /** 4077 * pci_clear_master - disables bus-mastering for device dev 4078 * @dev: the PCI device to disable 4079 */ 4080 void pci_clear_master(struct pci_dev *dev) 4081 { 4082 __pci_set_master(dev, false); 4083 } 4084 EXPORT_SYMBOL(pci_clear_master); 4085 4086 /** 4087 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4088 * @dev: the PCI device for which MWI is to be enabled 4089 * 4090 * Helper function for pci_set_mwi. 4091 * Originally copied from drivers/net/acenic.c. 4092 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4093 * 4094 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4095 */ 4096 int pci_set_cacheline_size(struct pci_dev *dev) 4097 { 4098 u8 cacheline_size; 4099 4100 if (!pci_cache_line_size) 4101 return -EINVAL; 4102 4103 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4104 equal to or multiple of the right value. */ 4105 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4106 if (cacheline_size >= pci_cache_line_size && 4107 (cacheline_size % pci_cache_line_size) == 0) 4108 return 0; 4109 4110 /* Write the correct value. */ 4111 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4112 /* Read it back. */ 4113 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4114 if (cacheline_size == pci_cache_line_size) 4115 return 0; 4116 4117 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n", 4118 pci_cache_line_size << 2); 4119 4120 return -EINVAL; 4121 } 4122 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4123 4124 /** 4125 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4126 * @dev: the PCI device for which MWI is enabled 4127 * 4128 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4129 * 4130 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4131 */ 4132 int pci_set_mwi(struct pci_dev *dev) 4133 { 4134 #ifdef PCI_DISABLE_MWI 4135 return 0; 4136 #else 4137 int rc; 4138 u16 cmd; 4139 4140 rc = pci_set_cacheline_size(dev); 4141 if (rc) 4142 return rc; 4143 4144 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4145 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4146 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4147 cmd |= PCI_COMMAND_INVALIDATE; 4148 pci_write_config_word(dev, PCI_COMMAND, cmd); 4149 } 4150 return 0; 4151 #endif 4152 } 4153 EXPORT_SYMBOL(pci_set_mwi); 4154 4155 /** 4156 * pcim_set_mwi - a device-managed pci_set_mwi() 4157 * @dev: the PCI device for which MWI is enabled 4158 * 4159 * Managed pci_set_mwi(). 4160 * 4161 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4162 */ 4163 int pcim_set_mwi(struct pci_dev *dev) 4164 { 4165 struct pci_devres *dr; 4166 4167 dr = find_pci_dr(dev); 4168 if (!dr) 4169 return -ENOMEM; 4170 4171 dr->mwi = 1; 4172 return pci_set_mwi(dev); 4173 } 4174 EXPORT_SYMBOL(pcim_set_mwi); 4175 4176 /** 4177 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4178 * @dev: the PCI device for which MWI is enabled 4179 * 4180 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4181 * Callers are not required to check the return value. 4182 * 4183 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4184 */ 4185 int pci_try_set_mwi(struct pci_dev *dev) 4186 { 4187 #ifdef PCI_DISABLE_MWI 4188 return 0; 4189 #else 4190 return pci_set_mwi(dev); 4191 #endif 4192 } 4193 EXPORT_SYMBOL(pci_try_set_mwi); 4194 4195 /** 4196 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4197 * @dev: the PCI device to disable 4198 * 4199 * Disables PCI Memory-Write-Invalidate transaction on the device 4200 */ 4201 void pci_clear_mwi(struct pci_dev *dev) 4202 { 4203 #ifndef PCI_DISABLE_MWI 4204 u16 cmd; 4205 4206 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4207 if (cmd & PCI_COMMAND_INVALIDATE) { 4208 cmd &= ~PCI_COMMAND_INVALIDATE; 4209 pci_write_config_word(dev, PCI_COMMAND, cmd); 4210 } 4211 #endif 4212 } 4213 EXPORT_SYMBOL(pci_clear_mwi); 4214 4215 /** 4216 * pci_intx - enables/disables PCI INTx for device dev 4217 * @pdev: the PCI device to operate on 4218 * @enable: boolean: whether to enable or disable PCI INTx 4219 * 4220 * Enables/disables PCI INTx for device dev 4221 */ 4222 void pci_intx(struct pci_dev *pdev, int enable) 4223 { 4224 u16 pci_command, new; 4225 4226 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4227 4228 if (enable) 4229 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4230 else 4231 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4232 4233 if (new != pci_command) { 4234 struct pci_devres *dr; 4235 4236 pci_write_config_word(pdev, PCI_COMMAND, new); 4237 4238 dr = find_pci_dr(pdev); 4239 if (dr && !dr->restore_intx) { 4240 dr->restore_intx = 1; 4241 dr->orig_intx = !enable; 4242 } 4243 } 4244 } 4245 EXPORT_SYMBOL_GPL(pci_intx); 4246 4247 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4248 { 4249 struct pci_bus *bus = dev->bus; 4250 bool mask_updated = true; 4251 u32 cmd_status_dword; 4252 u16 origcmd, newcmd; 4253 unsigned long flags; 4254 bool irq_pending; 4255 4256 /* 4257 * We do a single dword read to retrieve both command and status. 4258 * Document assumptions that make this possible. 4259 */ 4260 BUILD_BUG_ON(PCI_COMMAND % 4); 4261 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4262 4263 raw_spin_lock_irqsave(&pci_lock, flags); 4264 4265 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4266 4267 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4268 4269 /* 4270 * Check interrupt status register to see whether our device 4271 * triggered the interrupt (when masking) or the next IRQ is 4272 * already pending (when unmasking). 4273 */ 4274 if (mask != irq_pending) { 4275 mask_updated = false; 4276 goto done; 4277 } 4278 4279 origcmd = cmd_status_dword; 4280 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4281 if (mask) 4282 newcmd |= PCI_COMMAND_INTX_DISABLE; 4283 if (newcmd != origcmd) 4284 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4285 4286 done: 4287 raw_spin_unlock_irqrestore(&pci_lock, flags); 4288 4289 return mask_updated; 4290 } 4291 4292 /** 4293 * pci_check_and_mask_intx - mask INTx on pending interrupt 4294 * @dev: the PCI device to operate on 4295 * 4296 * Check if the device dev has its INTx line asserted, mask it and 4297 * return true in that case. False is returned if no interrupt was 4298 * pending. 4299 */ 4300 bool pci_check_and_mask_intx(struct pci_dev *dev) 4301 { 4302 return pci_check_and_set_intx_mask(dev, true); 4303 } 4304 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4305 4306 /** 4307 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4308 * @dev: the PCI device to operate on 4309 * 4310 * Check if the device dev has its INTx line asserted, unmask it if not 4311 * and return true. False is returned and the mask remains active if 4312 * there was still an interrupt pending. 4313 */ 4314 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4315 { 4316 return pci_check_and_set_intx_mask(dev, false); 4317 } 4318 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4319 4320 /** 4321 * pci_wait_for_pending_transaction - waits for pending transaction 4322 * @dev: the PCI device to operate on 4323 * 4324 * Return 0 if transaction is pending 1 otherwise. 4325 */ 4326 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4327 { 4328 if (!pci_is_pcie(dev)) 4329 return 1; 4330 4331 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4332 PCI_EXP_DEVSTA_TRPND); 4333 } 4334 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4335 4336 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 4337 { 4338 int delay = 1; 4339 u32 id; 4340 4341 /* 4342 * After reset, the device should not silently discard config 4343 * requests, but it may still indicate that it needs more time by 4344 * responding to them with CRS completions. The Root Port will 4345 * generally synthesize ~0 data to complete the read (except when 4346 * CRS SV is enabled and the read was for the Vendor ID; in that 4347 * case it synthesizes 0x0001 data). 4348 * 4349 * Wait for the device to return a non-CRS completion. Read the 4350 * Command register instead of Vendor ID so we don't have to 4351 * contend with the CRS SV value. 4352 */ 4353 pci_read_config_dword(dev, PCI_COMMAND, &id); 4354 while (id == ~0) { 4355 if (delay > timeout) { 4356 pci_warn(dev, "not ready %dms after %s; giving up\n", 4357 delay - 1, reset_type); 4358 return -ENOTTY; 4359 } 4360 4361 if (delay > 1000) 4362 pci_info(dev, "not ready %dms after %s; waiting\n", 4363 delay - 1, reset_type); 4364 4365 msleep(delay); 4366 delay *= 2; 4367 pci_read_config_dword(dev, PCI_COMMAND, &id); 4368 } 4369 4370 if (delay > 1000) 4371 pci_info(dev, "ready %dms after %s\n", delay - 1, 4372 reset_type); 4373 4374 return 0; 4375 } 4376 4377 /** 4378 * pcie_has_flr - check if a device supports function level resets 4379 * @dev: device to check 4380 * 4381 * Returns true if the device advertises support for PCIe function level 4382 * resets. 4383 */ 4384 bool pcie_has_flr(struct pci_dev *dev) 4385 { 4386 u32 cap; 4387 4388 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4389 return false; 4390 4391 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4392 return cap & PCI_EXP_DEVCAP_FLR; 4393 } 4394 EXPORT_SYMBOL_GPL(pcie_has_flr); 4395 4396 /** 4397 * pcie_flr - initiate a PCIe function level reset 4398 * @dev: device to reset 4399 * 4400 * Initiate a function level reset on @dev. The caller should ensure the 4401 * device supports FLR before calling this function, e.g. by using the 4402 * pcie_has_flr() helper. 4403 */ 4404 int pcie_flr(struct pci_dev *dev) 4405 { 4406 if (!pci_wait_for_pending_transaction(dev)) 4407 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4408 4409 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4410 4411 if (dev->imm_ready) 4412 return 0; 4413 4414 /* 4415 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4416 * 100ms, but may silently discard requests while the FLR is in 4417 * progress. Wait 100ms before trying to access the device. 4418 */ 4419 msleep(100); 4420 4421 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4422 } 4423 EXPORT_SYMBOL_GPL(pcie_flr); 4424 4425 static int pci_af_flr(struct pci_dev *dev, int probe) 4426 { 4427 int pos; 4428 u8 cap; 4429 4430 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4431 if (!pos) 4432 return -ENOTTY; 4433 4434 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4435 return -ENOTTY; 4436 4437 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4438 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4439 return -ENOTTY; 4440 4441 if (probe) 4442 return 0; 4443 4444 /* 4445 * Wait for Transaction Pending bit to clear. A word-aligned test 4446 * is used, so we use the conrol offset rather than status and shift 4447 * the test bit to match. 4448 */ 4449 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4450 PCI_AF_STATUS_TP << 8)) 4451 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4452 4453 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4454 4455 if (dev->imm_ready) 4456 return 0; 4457 4458 /* 4459 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4460 * updated 27 July 2006; a device must complete an FLR within 4461 * 100ms, but may silently discard requests while the FLR is in 4462 * progress. Wait 100ms before trying to access the device. 4463 */ 4464 msleep(100); 4465 4466 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4467 } 4468 4469 /** 4470 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4471 * @dev: Device to reset. 4472 * @probe: If set, only check if the device can be reset this way. 4473 * 4474 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4475 * unset, it will be reinitialized internally when going from PCI_D3hot to 4476 * PCI_D0. If that's the case and the device is not in a low-power state 4477 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4478 * 4479 * NOTE: This causes the caller to sleep for twice the device power transition 4480 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4481 * by default (i.e. unless the @dev's d3_delay field has a different value). 4482 * Moreover, only devices in D0 can be reset by this function. 4483 */ 4484 static int pci_pm_reset(struct pci_dev *dev, int probe) 4485 { 4486 u16 csr; 4487 4488 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4489 return -ENOTTY; 4490 4491 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4492 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4493 return -ENOTTY; 4494 4495 if (probe) 4496 return 0; 4497 4498 if (dev->current_state != PCI_D0) 4499 return -EINVAL; 4500 4501 csr &= ~PCI_PM_CTRL_STATE_MASK; 4502 csr |= PCI_D3hot; 4503 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4504 pci_dev_d3_sleep(dev); 4505 4506 csr &= ~PCI_PM_CTRL_STATE_MASK; 4507 csr |= PCI_D0; 4508 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4509 pci_dev_d3_sleep(dev); 4510 4511 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4512 } 4513 /** 4514 * pcie_wait_for_link - Wait until link is active or inactive 4515 * @pdev: Bridge device 4516 * @active: waiting for active or inactive? 4517 * 4518 * Use this to wait till link becomes active or inactive. 4519 */ 4520 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4521 { 4522 int timeout = 1000; 4523 bool ret; 4524 u16 lnk_status; 4525 4526 /* 4527 * Some controllers might not implement link active reporting. In this 4528 * case, we wait for 1000 + 100 ms. 4529 */ 4530 if (!pdev->link_active_reporting) { 4531 msleep(1100); 4532 return true; 4533 } 4534 4535 /* 4536 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4537 * after which we should expect an link active if the reset was 4538 * successful. If so, software must wait a minimum 100ms before sending 4539 * configuration requests to devices downstream this port. 4540 * 4541 * If the link fails to activate, either the device was physically 4542 * removed or the link is permanently failed. 4543 */ 4544 if (active) 4545 msleep(20); 4546 for (;;) { 4547 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4548 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4549 if (ret == active) 4550 break; 4551 if (timeout <= 0) 4552 break; 4553 msleep(10); 4554 timeout -= 10; 4555 } 4556 if (active && ret) 4557 msleep(100); 4558 else if (ret != active) 4559 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4560 active ? "set" : "cleared"); 4561 return ret == active; 4562 } 4563 4564 void pci_reset_secondary_bus(struct pci_dev *dev) 4565 { 4566 u16 ctrl; 4567 4568 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4569 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4570 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4571 4572 /* 4573 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4574 * this to 2ms to ensure that we meet the minimum requirement. 4575 */ 4576 msleep(2); 4577 4578 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4579 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4580 4581 /* 4582 * Trhfa for conventional PCI is 2^25 clock cycles. 4583 * Assuming a minimum 33MHz clock this results in a 1s 4584 * delay before we can consider subordinate devices to 4585 * be re-initialized. PCIe has some ways to shorten this, 4586 * but we don't make use of them yet. 4587 */ 4588 ssleep(1); 4589 } 4590 4591 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4592 { 4593 pci_reset_secondary_bus(dev); 4594 } 4595 4596 /** 4597 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4598 * @dev: Bridge device 4599 * 4600 * Use the bridge control register to assert reset on the secondary bus. 4601 * Devices on the secondary bus are left in power-on state. 4602 */ 4603 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4604 { 4605 pcibios_reset_secondary_bus(dev); 4606 4607 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4608 } 4609 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4610 4611 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4612 { 4613 struct pci_dev *pdev; 4614 4615 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4616 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4617 return -ENOTTY; 4618 4619 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4620 if (pdev != dev) 4621 return -ENOTTY; 4622 4623 if (probe) 4624 return 0; 4625 4626 return pci_bridge_secondary_bus_reset(dev->bus->self); 4627 } 4628 4629 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4630 { 4631 int rc = -ENOTTY; 4632 4633 if (!hotplug || !try_module_get(hotplug->owner)) 4634 return rc; 4635 4636 if (hotplug->ops->reset_slot) 4637 rc = hotplug->ops->reset_slot(hotplug, probe); 4638 4639 module_put(hotplug->owner); 4640 4641 return rc; 4642 } 4643 4644 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4645 { 4646 struct pci_dev *pdev; 4647 4648 if (dev->subordinate || !dev->slot || 4649 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4650 return -ENOTTY; 4651 4652 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4653 if (pdev != dev && pdev->slot == dev->slot) 4654 return -ENOTTY; 4655 4656 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4657 } 4658 4659 static void pci_dev_lock(struct pci_dev *dev) 4660 { 4661 pci_cfg_access_lock(dev); 4662 /* block PM suspend, driver probe, etc. */ 4663 device_lock(&dev->dev); 4664 } 4665 4666 /* Return 1 on successful lock, 0 on contention */ 4667 static int pci_dev_trylock(struct pci_dev *dev) 4668 { 4669 if (pci_cfg_access_trylock(dev)) { 4670 if (device_trylock(&dev->dev)) 4671 return 1; 4672 pci_cfg_access_unlock(dev); 4673 } 4674 4675 return 0; 4676 } 4677 4678 static void pci_dev_unlock(struct pci_dev *dev) 4679 { 4680 device_unlock(&dev->dev); 4681 pci_cfg_access_unlock(dev); 4682 } 4683 4684 static void pci_dev_save_and_disable(struct pci_dev *dev) 4685 { 4686 const struct pci_error_handlers *err_handler = 4687 dev->driver ? dev->driver->err_handler : NULL; 4688 4689 /* 4690 * dev->driver->err_handler->reset_prepare() is protected against 4691 * races with ->remove() by the device lock, which must be held by 4692 * the caller. 4693 */ 4694 if (err_handler && err_handler->reset_prepare) 4695 err_handler->reset_prepare(dev); 4696 4697 /* 4698 * Wake-up device prior to save. PM registers default to D0 after 4699 * reset and a simple register restore doesn't reliably return 4700 * to a non-D0 state anyway. 4701 */ 4702 pci_set_power_state(dev, PCI_D0); 4703 4704 pci_save_state(dev); 4705 /* 4706 * Disable the device by clearing the Command register, except for 4707 * INTx-disable which is set. This not only disables MMIO and I/O port 4708 * BARs, but also prevents the device from being Bus Master, preventing 4709 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4710 * compliant devices, INTx-disable prevents legacy interrupts. 4711 */ 4712 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4713 } 4714 4715 static void pci_dev_restore(struct pci_dev *dev) 4716 { 4717 const struct pci_error_handlers *err_handler = 4718 dev->driver ? dev->driver->err_handler : NULL; 4719 4720 pci_restore_state(dev); 4721 4722 /* 4723 * dev->driver->err_handler->reset_done() is protected against 4724 * races with ->remove() by the device lock, which must be held by 4725 * the caller. 4726 */ 4727 if (err_handler && err_handler->reset_done) 4728 err_handler->reset_done(dev); 4729 } 4730 4731 /** 4732 * __pci_reset_function_locked - reset a PCI device function while holding 4733 * the @dev mutex lock. 4734 * @dev: PCI device to reset 4735 * 4736 * Some devices allow an individual function to be reset without affecting 4737 * other functions in the same device. The PCI device must be responsive 4738 * to PCI config space in order to use this function. 4739 * 4740 * The device function is presumed to be unused and the caller is holding 4741 * the device mutex lock when this function is called. 4742 * Resetting the device will make the contents of PCI configuration space 4743 * random, so any caller of this must be prepared to reinitialise the 4744 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4745 * etc. 4746 * 4747 * Returns 0 if the device function was successfully reset or negative if the 4748 * device doesn't support resetting a single function. 4749 */ 4750 int __pci_reset_function_locked(struct pci_dev *dev) 4751 { 4752 int rc; 4753 4754 might_sleep(); 4755 4756 /* 4757 * A reset method returns -ENOTTY if it doesn't support this device 4758 * and we should try the next method. 4759 * 4760 * If it returns 0 (success), we're finished. If it returns any 4761 * other error, we're also finished: this indicates that further 4762 * reset mechanisms might be broken on the device. 4763 */ 4764 rc = pci_dev_specific_reset(dev, 0); 4765 if (rc != -ENOTTY) 4766 return rc; 4767 if (pcie_has_flr(dev)) { 4768 rc = pcie_flr(dev); 4769 if (rc != -ENOTTY) 4770 return rc; 4771 } 4772 rc = pci_af_flr(dev, 0); 4773 if (rc != -ENOTTY) 4774 return rc; 4775 rc = pci_pm_reset(dev, 0); 4776 if (rc != -ENOTTY) 4777 return rc; 4778 rc = pci_dev_reset_slot_function(dev, 0); 4779 if (rc != -ENOTTY) 4780 return rc; 4781 return pci_parent_bus_reset(dev, 0); 4782 } 4783 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4784 4785 /** 4786 * pci_probe_reset_function - check whether the device can be safely reset 4787 * @dev: PCI device to reset 4788 * 4789 * Some devices allow an individual function to be reset without affecting 4790 * other functions in the same device. The PCI device must be responsive 4791 * to PCI config space in order to use this function. 4792 * 4793 * Returns 0 if the device function can be reset or negative if the 4794 * device doesn't support resetting a single function. 4795 */ 4796 int pci_probe_reset_function(struct pci_dev *dev) 4797 { 4798 int rc; 4799 4800 might_sleep(); 4801 4802 rc = pci_dev_specific_reset(dev, 1); 4803 if (rc != -ENOTTY) 4804 return rc; 4805 if (pcie_has_flr(dev)) 4806 return 0; 4807 rc = pci_af_flr(dev, 1); 4808 if (rc != -ENOTTY) 4809 return rc; 4810 rc = pci_pm_reset(dev, 1); 4811 if (rc != -ENOTTY) 4812 return rc; 4813 rc = pci_dev_reset_slot_function(dev, 1); 4814 if (rc != -ENOTTY) 4815 return rc; 4816 4817 return pci_parent_bus_reset(dev, 1); 4818 } 4819 4820 /** 4821 * pci_reset_function - quiesce and reset a PCI device function 4822 * @dev: PCI device to reset 4823 * 4824 * Some devices allow an individual function to be reset without affecting 4825 * other functions in the same device. The PCI device must be responsive 4826 * to PCI config space in order to use this function. 4827 * 4828 * This function does not just reset the PCI portion of a device, but 4829 * clears all the state associated with the device. This function differs 4830 * from __pci_reset_function_locked() in that it saves and restores device state 4831 * over the reset and takes the PCI device lock. 4832 * 4833 * Returns 0 if the device function was successfully reset or negative if the 4834 * device doesn't support resetting a single function. 4835 */ 4836 int pci_reset_function(struct pci_dev *dev) 4837 { 4838 int rc; 4839 4840 if (!dev->reset_fn) 4841 return -ENOTTY; 4842 4843 pci_dev_lock(dev); 4844 pci_dev_save_and_disable(dev); 4845 4846 rc = __pci_reset_function_locked(dev); 4847 4848 pci_dev_restore(dev); 4849 pci_dev_unlock(dev); 4850 4851 return rc; 4852 } 4853 EXPORT_SYMBOL_GPL(pci_reset_function); 4854 4855 /** 4856 * pci_reset_function_locked - quiesce and reset a PCI device function 4857 * @dev: PCI device to reset 4858 * 4859 * Some devices allow an individual function to be reset without affecting 4860 * other functions in the same device. The PCI device must be responsive 4861 * to PCI config space in order to use this function. 4862 * 4863 * This function does not just reset the PCI portion of a device, but 4864 * clears all the state associated with the device. This function differs 4865 * from __pci_reset_function_locked() in that it saves and restores device state 4866 * over the reset. It also differs from pci_reset_function() in that it 4867 * requires the PCI device lock to be held. 4868 * 4869 * Returns 0 if the device function was successfully reset or negative if the 4870 * device doesn't support resetting a single function. 4871 */ 4872 int pci_reset_function_locked(struct pci_dev *dev) 4873 { 4874 int rc; 4875 4876 if (!dev->reset_fn) 4877 return -ENOTTY; 4878 4879 pci_dev_save_and_disable(dev); 4880 4881 rc = __pci_reset_function_locked(dev); 4882 4883 pci_dev_restore(dev); 4884 4885 return rc; 4886 } 4887 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4888 4889 /** 4890 * pci_try_reset_function - quiesce and reset a PCI device function 4891 * @dev: PCI device to reset 4892 * 4893 * Same as above, except return -EAGAIN if unable to lock device. 4894 */ 4895 int pci_try_reset_function(struct pci_dev *dev) 4896 { 4897 int rc; 4898 4899 if (!dev->reset_fn) 4900 return -ENOTTY; 4901 4902 if (!pci_dev_trylock(dev)) 4903 return -EAGAIN; 4904 4905 pci_dev_save_and_disable(dev); 4906 rc = __pci_reset_function_locked(dev); 4907 pci_dev_restore(dev); 4908 pci_dev_unlock(dev); 4909 4910 return rc; 4911 } 4912 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4913 4914 /* Do any devices on or below this bus prevent a bus reset? */ 4915 static bool pci_bus_resetable(struct pci_bus *bus) 4916 { 4917 struct pci_dev *dev; 4918 4919 4920 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4921 return false; 4922 4923 list_for_each_entry(dev, &bus->devices, bus_list) { 4924 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4925 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4926 return false; 4927 } 4928 4929 return true; 4930 } 4931 4932 /* Lock devices from the top of the tree down */ 4933 static void pci_bus_lock(struct pci_bus *bus) 4934 { 4935 struct pci_dev *dev; 4936 4937 list_for_each_entry(dev, &bus->devices, bus_list) { 4938 pci_dev_lock(dev); 4939 if (dev->subordinate) 4940 pci_bus_lock(dev->subordinate); 4941 } 4942 } 4943 4944 /* Unlock devices from the bottom of the tree up */ 4945 static void pci_bus_unlock(struct pci_bus *bus) 4946 { 4947 struct pci_dev *dev; 4948 4949 list_for_each_entry(dev, &bus->devices, bus_list) { 4950 if (dev->subordinate) 4951 pci_bus_unlock(dev->subordinate); 4952 pci_dev_unlock(dev); 4953 } 4954 } 4955 4956 /* Return 1 on successful lock, 0 on contention */ 4957 static int pci_bus_trylock(struct pci_bus *bus) 4958 { 4959 struct pci_dev *dev; 4960 4961 list_for_each_entry(dev, &bus->devices, bus_list) { 4962 if (!pci_dev_trylock(dev)) 4963 goto unlock; 4964 if (dev->subordinate) { 4965 if (!pci_bus_trylock(dev->subordinate)) { 4966 pci_dev_unlock(dev); 4967 goto unlock; 4968 } 4969 } 4970 } 4971 return 1; 4972 4973 unlock: 4974 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4975 if (dev->subordinate) 4976 pci_bus_unlock(dev->subordinate); 4977 pci_dev_unlock(dev); 4978 } 4979 return 0; 4980 } 4981 4982 /* Do any devices on or below this slot prevent a bus reset? */ 4983 static bool pci_slot_resetable(struct pci_slot *slot) 4984 { 4985 struct pci_dev *dev; 4986 4987 if (slot->bus->self && 4988 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4989 return false; 4990 4991 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4992 if (!dev->slot || dev->slot != slot) 4993 continue; 4994 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4995 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4996 return false; 4997 } 4998 4999 return true; 5000 } 5001 5002 /* Lock devices from the top of the tree down */ 5003 static void pci_slot_lock(struct pci_slot *slot) 5004 { 5005 struct pci_dev *dev; 5006 5007 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5008 if (!dev->slot || dev->slot != slot) 5009 continue; 5010 pci_dev_lock(dev); 5011 if (dev->subordinate) 5012 pci_bus_lock(dev->subordinate); 5013 } 5014 } 5015 5016 /* Unlock devices from the bottom of the tree up */ 5017 static void pci_slot_unlock(struct pci_slot *slot) 5018 { 5019 struct pci_dev *dev; 5020 5021 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5022 if (!dev->slot || dev->slot != slot) 5023 continue; 5024 if (dev->subordinate) 5025 pci_bus_unlock(dev->subordinate); 5026 pci_dev_unlock(dev); 5027 } 5028 } 5029 5030 /* Return 1 on successful lock, 0 on contention */ 5031 static int pci_slot_trylock(struct pci_slot *slot) 5032 { 5033 struct pci_dev *dev; 5034 5035 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5036 if (!dev->slot || dev->slot != slot) 5037 continue; 5038 if (!pci_dev_trylock(dev)) 5039 goto unlock; 5040 if (dev->subordinate) { 5041 if (!pci_bus_trylock(dev->subordinate)) { 5042 pci_dev_unlock(dev); 5043 goto unlock; 5044 } 5045 } 5046 } 5047 return 1; 5048 5049 unlock: 5050 list_for_each_entry_continue_reverse(dev, 5051 &slot->bus->devices, bus_list) { 5052 if (!dev->slot || dev->slot != slot) 5053 continue; 5054 if (dev->subordinate) 5055 pci_bus_unlock(dev->subordinate); 5056 pci_dev_unlock(dev); 5057 } 5058 return 0; 5059 } 5060 5061 /* Save and disable devices from the top of the tree down */ 5062 static void pci_bus_save_and_disable(struct pci_bus *bus) 5063 { 5064 struct pci_dev *dev; 5065 5066 list_for_each_entry(dev, &bus->devices, bus_list) { 5067 pci_dev_lock(dev); 5068 pci_dev_save_and_disable(dev); 5069 pci_dev_unlock(dev); 5070 if (dev->subordinate) 5071 pci_bus_save_and_disable(dev->subordinate); 5072 } 5073 } 5074 5075 /* 5076 * Restore devices from top of the tree down - parent bridges need to be 5077 * restored before we can get to subordinate devices. 5078 */ 5079 static void pci_bus_restore(struct pci_bus *bus) 5080 { 5081 struct pci_dev *dev; 5082 5083 list_for_each_entry(dev, &bus->devices, bus_list) { 5084 pci_dev_lock(dev); 5085 pci_dev_restore(dev); 5086 pci_dev_unlock(dev); 5087 if (dev->subordinate) 5088 pci_bus_restore(dev->subordinate); 5089 } 5090 } 5091 5092 /* Save and disable devices from the top of the tree down */ 5093 static void pci_slot_save_and_disable(struct pci_slot *slot) 5094 { 5095 struct pci_dev *dev; 5096 5097 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5098 if (!dev->slot || dev->slot != slot) 5099 continue; 5100 pci_dev_save_and_disable(dev); 5101 if (dev->subordinate) 5102 pci_bus_save_and_disable(dev->subordinate); 5103 } 5104 } 5105 5106 /* 5107 * Restore devices from top of the tree down - parent bridges need to be 5108 * restored before we can get to subordinate devices. 5109 */ 5110 static void pci_slot_restore(struct pci_slot *slot) 5111 { 5112 struct pci_dev *dev; 5113 5114 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5115 if (!dev->slot || dev->slot != slot) 5116 continue; 5117 pci_dev_lock(dev); 5118 pci_dev_restore(dev); 5119 pci_dev_unlock(dev); 5120 if (dev->subordinate) 5121 pci_bus_restore(dev->subordinate); 5122 } 5123 } 5124 5125 static int pci_slot_reset(struct pci_slot *slot, int probe) 5126 { 5127 int rc; 5128 5129 if (!slot || !pci_slot_resetable(slot)) 5130 return -ENOTTY; 5131 5132 if (!probe) 5133 pci_slot_lock(slot); 5134 5135 might_sleep(); 5136 5137 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5138 5139 if (!probe) 5140 pci_slot_unlock(slot); 5141 5142 return rc; 5143 } 5144 5145 /** 5146 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5147 * @slot: PCI slot to probe 5148 * 5149 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5150 */ 5151 int pci_probe_reset_slot(struct pci_slot *slot) 5152 { 5153 return pci_slot_reset(slot, 1); 5154 } 5155 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5156 5157 /** 5158 * __pci_reset_slot - Try to reset a PCI slot 5159 * @slot: PCI slot to reset 5160 * 5161 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5162 * independent of other slots. For instance, some slots may support slot power 5163 * control. In the case of a 1:1 bus to slot architecture, this function may 5164 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5165 * Generally a slot reset should be attempted before a bus reset. All of the 5166 * function of the slot and any subordinate buses behind the slot are reset 5167 * through this function. PCI config space of all devices in the slot and 5168 * behind the slot is saved before and restored after reset. 5169 * 5170 * Same as above except return -EAGAIN if the slot cannot be locked 5171 */ 5172 static int __pci_reset_slot(struct pci_slot *slot) 5173 { 5174 int rc; 5175 5176 rc = pci_slot_reset(slot, 1); 5177 if (rc) 5178 return rc; 5179 5180 pci_slot_save_and_disable(slot); 5181 5182 if (pci_slot_trylock(slot)) { 5183 might_sleep(); 5184 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5185 pci_slot_unlock(slot); 5186 } else 5187 rc = -EAGAIN; 5188 5189 pci_slot_restore(slot); 5190 5191 return rc; 5192 } 5193 5194 static int pci_bus_reset(struct pci_bus *bus, int probe) 5195 { 5196 int ret; 5197 5198 if (!bus->self || !pci_bus_resetable(bus)) 5199 return -ENOTTY; 5200 5201 if (probe) 5202 return 0; 5203 5204 pci_bus_lock(bus); 5205 5206 might_sleep(); 5207 5208 ret = pci_bridge_secondary_bus_reset(bus->self); 5209 5210 pci_bus_unlock(bus); 5211 5212 return ret; 5213 } 5214 5215 /** 5216 * pci_bus_error_reset - reset the bridge's subordinate bus 5217 * @bridge: The parent device that connects to the bus to reset 5218 * 5219 * This function will first try to reset the slots on this bus if the method is 5220 * available. If slot reset fails or is not available, this will fall back to a 5221 * secondary bus reset. 5222 */ 5223 int pci_bus_error_reset(struct pci_dev *bridge) 5224 { 5225 struct pci_bus *bus = bridge->subordinate; 5226 struct pci_slot *slot; 5227 5228 if (!bus) 5229 return -ENOTTY; 5230 5231 mutex_lock(&pci_slot_mutex); 5232 if (list_empty(&bus->slots)) 5233 goto bus_reset; 5234 5235 list_for_each_entry(slot, &bus->slots, list) 5236 if (pci_probe_reset_slot(slot)) 5237 goto bus_reset; 5238 5239 list_for_each_entry(slot, &bus->slots, list) 5240 if (pci_slot_reset(slot, 0)) 5241 goto bus_reset; 5242 5243 mutex_unlock(&pci_slot_mutex); 5244 return 0; 5245 bus_reset: 5246 mutex_unlock(&pci_slot_mutex); 5247 return pci_bus_reset(bridge->subordinate, 0); 5248 } 5249 5250 /** 5251 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5252 * @bus: PCI bus to probe 5253 * 5254 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5255 */ 5256 int pci_probe_reset_bus(struct pci_bus *bus) 5257 { 5258 return pci_bus_reset(bus, 1); 5259 } 5260 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5261 5262 /** 5263 * __pci_reset_bus - Try to reset a PCI bus 5264 * @bus: top level PCI bus to reset 5265 * 5266 * Same as above except return -EAGAIN if the bus cannot be locked 5267 */ 5268 static int __pci_reset_bus(struct pci_bus *bus) 5269 { 5270 int rc; 5271 5272 rc = pci_bus_reset(bus, 1); 5273 if (rc) 5274 return rc; 5275 5276 pci_bus_save_and_disable(bus); 5277 5278 if (pci_bus_trylock(bus)) { 5279 might_sleep(); 5280 rc = pci_bridge_secondary_bus_reset(bus->self); 5281 pci_bus_unlock(bus); 5282 } else 5283 rc = -EAGAIN; 5284 5285 pci_bus_restore(bus); 5286 5287 return rc; 5288 } 5289 5290 /** 5291 * pci_reset_bus - Try to reset a PCI bus 5292 * @pdev: top level PCI device to reset via slot/bus 5293 * 5294 * Same as above except return -EAGAIN if the bus cannot be locked 5295 */ 5296 int pci_reset_bus(struct pci_dev *pdev) 5297 { 5298 return (!pci_probe_reset_slot(pdev->slot)) ? 5299 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5300 } 5301 EXPORT_SYMBOL_GPL(pci_reset_bus); 5302 5303 /** 5304 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5305 * @dev: PCI device to query 5306 * 5307 * Returns mmrbc: maximum designed memory read count in bytes 5308 * or appropriate error value. 5309 */ 5310 int pcix_get_max_mmrbc(struct pci_dev *dev) 5311 { 5312 int cap; 5313 u32 stat; 5314 5315 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5316 if (!cap) 5317 return -EINVAL; 5318 5319 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5320 return -EINVAL; 5321 5322 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5323 } 5324 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5325 5326 /** 5327 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5328 * @dev: PCI device to query 5329 * 5330 * Returns mmrbc: maximum memory read count in bytes 5331 * or appropriate error value. 5332 */ 5333 int pcix_get_mmrbc(struct pci_dev *dev) 5334 { 5335 int cap; 5336 u16 cmd; 5337 5338 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5339 if (!cap) 5340 return -EINVAL; 5341 5342 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5343 return -EINVAL; 5344 5345 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5346 } 5347 EXPORT_SYMBOL(pcix_get_mmrbc); 5348 5349 /** 5350 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5351 * @dev: PCI device to query 5352 * @mmrbc: maximum memory read count in bytes 5353 * valid values are 512, 1024, 2048, 4096 5354 * 5355 * If possible sets maximum memory read byte count, some bridges have erratas 5356 * that prevent this. 5357 */ 5358 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5359 { 5360 int cap; 5361 u32 stat, v, o; 5362 u16 cmd; 5363 5364 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5365 return -EINVAL; 5366 5367 v = ffs(mmrbc) - 10; 5368 5369 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5370 if (!cap) 5371 return -EINVAL; 5372 5373 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5374 return -EINVAL; 5375 5376 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5377 return -E2BIG; 5378 5379 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5380 return -EINVAL; 5381 5382 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5383 if (o != v) { 5384 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5385 return -EIO; 5386 5387 cmd &= ~PCI_X_CMD_MAX_READ; 5388 cmd |= v << 2; 5389 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5390 return -EIO; 5391 } 5392 return 0; 5393 } 5394 EXPORT_SYMBOL(pcix_set_mmrbc); 5395 5396 /** 5397 * pcie_get_readrq - get PCI Express read request size 5398 * @dev: PCI device to query 5399 * 5400 * Returns maximum memory read request in bytes 5401 * or appropriate error value. 5402 */ 5403 int pcie_get_readrq(struct pci_dev *dev) 5404 { 5405 u16 ctl; 5406 5407 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5408 5409 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5410 } 5411 EXPORT_SYMBOL(pcie_get_readrq); 5412 5413 /** 5414 * pcie_set_readrq - set PCI Express maximum memory read request 5415 * @dev: PCI device to query 5416 * @rq: maximum memory read count in bytes 5417 * valid values are 128, 256, 512, 1024, 2048, 4096 5418 * 5419 * If possible sets maximum memory read request in bytes 5420 */ 5421 int pcie_set_readrq(struct pci_dev *dev, int rq) 5422 { 5423 u16 v; 5424 5425 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5426 return -EINVAL; 5427 5428 /* 5429 * If using the "performance" PCIe config, we clamp the 5430 * read rq size to the max packet size to prevent the 5431 * host bridge generating requests larger than we can 5432 * cope with 5433 */ 5434 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5435 int mps = pcie_get_mps(dev); 5436 5437 if (mps < rq) 5438 rq = mps; 5439 } 5440 5441 v = (ffs(rq) - 8) << 12; 5442 5443 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5444 PCI_EXP_DEVCTL_READRQ, v); 5445 } 5446 EXPORT_SYMBOL(pcie_set_readrq); 5447 5448 /** 5449 * pcie_get_mps - get PCI Express maximum payload size 5450 * @dev: PCI device to query 5451 * 5452 * Returns maximum payload size in bytes 5453 */ 5454 int pcie_get_mps(struct pci_dev *dev) 5455 { 5456 u16 ctl; 5457 5458 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5459 5460 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5461 } 5462 EXPORT_SYMBOL(pcie_get_mps); 5463 5464 /** 5465 * pcie_set_mps - set PCI Express maximum payload size 5466 * @dev: PCI device to query 5467 * @mps: maximum payload size in bytes 5468 * valid values are 128, 256, 512, 1024, 2048, 4096 5469 * 5470 * If possible sets maximum payload size 5471 */ 5472 int pcie_set_mps(struct pci_dev *dev, int mps) 5473 { 5474 u16 v; 5475 5476 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5477 return -EINVAL; 5478 5479 v = ffs(mps) - 8; 5480 if (v > dev->pcie_mpss) 5481 return -EINVAL; 5482 v <<= 5; 5483 5484 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5485 PCI_EXP_DEVCTL_PAYLOAD, v); 5486 } 5487 EXPORT_SYMBOL(pcie_set_mps); 5488 5489 /** 5490 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5491 * device and its bandwidth limitation 5492 * @dev: PCI device to query 5493 * @limiting_dev: storage for device causing the bandwidth limitation 5494 * @speed: storage for speed of limiting device 5495 * @width: storage for width of limiting device 5496 * 5497 * Walk up the PCI device chain and find the point where the minimum 5498 * bandwidth is available. Return the bandwidth available there and (if 5499 * limiting_dev, speed, and width pointers are supplied) information about 5500 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5501 * raw bandwidth. 5502 */ 5503 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5504 enum pci_bus_speed *speed, 5505 enum pcie_link_width *width) 5506 { 5507 u16 lnksta; 5508 enum pci_bus_speed next_speed; 5509 enum pcie_link_width next_width; 5510 u32 bw, next_bw; 5511 5512 if (speed) 5513 *speed = PCI_SPEED_UNKNOWN; 5514 if (width) 5515 *width = PCIE_LNK_WIDTH_UNKNOWN; 5516 5517 bw = 0; 5518 5519 while (dev) { 5520 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5521 5522 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5523 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5524 PCI_EXP_LNKSTA_NLW_SHIFT; 5525 5526 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5527 5528 /* Check if current device limits the total bandwidth */ 5529 if (!bw || next_bw <= bw) { 5530 bw = next_bw; 5531 5532 if (limiting_dev) 5533 *limiting_dev = dev; 5534 if (speed) 5535 *speed = next_speed; 5536 if (width) 5537 *width = next_width; 5538 } 5539 5540 dev = pci_upstream_bridge(dev); 5541 } 5542 5543 return bw; 5544 } 5545 EXPORT_SYMBOL(pcie_bandwidth_available); 5546 5547 /** 5548 * pcie_get_speed_cap - query for the PCI device's link speed capability 5549 * @dev: PCI device to query 5550 * 5551 * Query the PCI device speed capability. Return the maximum link speed 5552 * supported by the device. 5553 */ 5554 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5555 { 5556 u32 lnkcap2, lnkcap; 5557 5558 /* 5559 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5560 * implementation note there recommends using the Supported Link 5561 * Speeds Vector in Link Capabilities 2 when supported. 5562 * 5563 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5564 * should use the Supported Link Speeds field in Link Capabilities, 5565 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5566 */ 5567 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5568 if (lnkcap2) { /* PCIe r3.0-compliant */ 5569 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5570 return PCIE_SPEED_16_0GT; 5571 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5572 return PCIE_SPEED_8_0GT; 5573 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5574 return PCIE_SPEED_5_0GT; 5575 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5576 return PCIE_SPEED_2_5GT; 5577 return PCI_SPEED_UNKNOWN; 5578 } 5579 5580 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5581 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5582 return PCIE_SPEED_5_0GT; 5583 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5584 return PCIE_SPEED_2_5GT; 5585 5586 return PCI_SPEED_UNKNOWN; 5587 } 5588 EXPORT_SYMBOL(pcie_get_speed_cap); 5589 5590 /** 5591 * pcie_get_width_cap - query for the PCI device's link width capability 5592 * @dev: PCI device to query 5593 * 5594 * Query the PCI device width capability. Return the maximum link width 5595 * supported by the device. 5596 */ 5597 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5598 { 5599 u32 lnkcap; 5600 5601 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5602 if (lnkcap) 5603 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5604 5605 return PCIE_LNK_WIDTH_UNKNOWN; 5606 } 5607 EXPORT_SYMBOL(pcie_get_width_cap); 5608 5609 /** 5610 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5611 * @dev: PCI device 5612 * @speed: storage for link speed 5613 * @width: storage for link width 5614 * 5615 * Calculate a PCI device's link bandwidth by querying for its link speed 5616 * and width, multiplying them, and applying encoding overhead. The result 5617 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5618 */ 5619 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5620 enum pcie_link_width *width) 5621 { 5622 *speed = pcie_get_speed_cap(dev); 5623 *width = pcie_get_width_cap(dev); 5624 5625 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5626 return 0; 5627 5628 return *width * PCIE_SPEED2MBS_ENC(*speed); 5629 } 5630 5631 /** 5632 * __pcie_print_link_status - Report the PCI device's link speed and width 5633 * @dev: PCI device to query 5634 * @verbose: Print info even when enough bandwidth is available 5635 * 5636 * If the available bandwidth at the device is less than the device is 5637 * capable of, report the device's maximum possible bandwidth and the 5638 * upstream link that limits its performance. If @verbose, always print 5639 * the available bandwidth, even if the device isn't constrained. 5640 */ 5641 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5642 { 5643 enum pcie_link_width width, width_cap; 5644 enum pci_bus_speed speed, speed_cap; 5645 struct pci_dev *limiting_dev = NULL; 5646 u32 bw_avail, bw_cap; 5647 5648 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5649 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5650 5651 if (bw_avail >= bw_cap && verbose) 5652 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5653 bw_cap / 1000, bw_cap % 1000, 5654 PCIE_SPEED2STR(speed_cap), width_cap); 5655 else if (bw_avail < bw_cap) 5656 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5657 bw_avail / 1000, bw_avail % 1000, 5658 PCIE_SPEED2STR(speed), width, 5659 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5660 bw_cap / 1000, bw_cap % 1000, 5661 PCIE_SPEED2STR(speed_cap), width_cap); 5662 } 5663 5664 /** 5665 * pcie_print_link_status - Report the PCI device's link speed and width 5666 * @dev: PCI device to query 5667 * 5668 * Report the available bandwidth at the device. 5669 */ 5670 void pcie_print_link_status(struct pci_dev *dev) 5671 { 5672 __pcie_print_link_status(dev, true); 5673 } 5674 EXPORT_SYMBOL(pcie_print_link_status); 5675 5676 /** 5677 * pci_select_bars - Make BAR mask from the type of resource 5678 * @dev: the PCI device for which BAR mask is made 5679 * @flags: resource type mask to be selected 5680 * 5681 * This helper routine makes bar mask from the type of resource. 5682 */ 5683 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5684 { 5685 int i, bars = 0; 5686 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5687 if (pci_resource_flags(dev, i) & flags) 5688 bars |= (1 << i); 5689 return bars; 5690 } 5691 EXPORT_SYMBOL(pci_select_bars); 5692 5693 /* Some architectures require additional programming to enable VGA */ 5694 static arch_set_vga_state_t arch_set_vga_state; 5695 5696 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5697 { 5698 arch_set_vga_state = func; /* NULL disables */ 5699 } 5700 5701 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5702 unsigned int command_bits, u32 flags) 5703 { 5704 if (arch_set_vga_state) 5705 return arch_set_vga_state(dev, decode, command_bits, 5706 flags); 5707 return 0; 5708 } 5709 5710 /** 5711 * pci_set_vga_state - set VGA decode state on device and parents if requested 5712 * @dev: the PCI device 5713 * @decode: true = enable decoding, false = disable decoding 5714 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5715 * @flags: traverse ancestors and change bridges 5716 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5717 */ 5718 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5719 unsigned int command_bits, u32 flags) 5720 { 5721 struct pci_bus *bus; 5722 struct pci_dev *bridge; 5723 u16 cmd; 5724 int rc; 5725 5726 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5727 5728 /* ARCH specific VGA enables */ 5729 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5730 if (rc) 5731 return rc; 5732 5733 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5734 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5735 if (decode == true) 5736 cmd |= command_bits; 5737 else 5738 cmd &= ~command_bits; 5739 pci_write_config_word(dev, PCI_COMMAND, cmd); 5740 } 5741 5742 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5743 return 0; 5744 5745 bus = dev->bus; 5746 while (bus) { 5747 bridge = bus->self; 5748 if (bridge) { 5749 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5750 &cmd); 5751 if (decode == true) 5752 cmd |= PCI_BRIDGE_CTL_VGA; 5753 else 5754 cmd &= ~PCI_BRIDGE_CTL_VGA; 5755 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5756 cmd); 5757 } 5758 bus = bus->parent; 5759 } 5760 return 0; 5761 } 5762 5763 /** 5764 * pci_add_dma_alias - Add a DMA devfn alias for a device 5765 * @dev: the PCI device for which alias is added 5766 * @devfn: alias slot and function 5767 * 5768 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 5769 * which is used to program permissible bus-devfn source addresses for DMA 5770 * requests in an IOMMU. These aliases factor into IOMMU group creation 5771 * and are useful for devices generating DMA requests beyond or different 5772 * from their logical bus-devfn. Examples include device quirks where the 5773 * device simply uses the wrong devfn, as well as non-transparent bridges 5774 * where the alias may be a proxy for devices in another domain. 5775 * 5776 * IOMMU group creation is performed during device discovery or addition, 5777 * prior to any potential DMA mapping and therefore prior to driver probing 5778 * (especially for userspace assigned devices where IOMMU group definition 5779 * cannot be left as a userspace activity). DMA aliases should therefore 5780 * be configured via quirks, such as the PCI fixup header quirk. 5781 */ 5782 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5783 { 5784 if (!dev->dma_alias_mask) 5785 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL); 5786 if (!dev->dma_alias_mask) { 5787 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5788 return; 5789 } 5790 5791 set_bit(devfn, dev->dma_alias_mask); 5792 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5793 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5794 } 5795 5796 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5797 { 5798 return (dev1->dma_alias_mask && 5799 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5800 (dev2->dma_alias_mask && 5801 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5802 } 5803 5804 bool pci_device_is_present(struct pci_dev *pdev) 5805 { 5806 u32 v; 5807 5808 if (pci_dev_is_disconnected(pdev)) 5809 return false; 5810 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5811 } 5812 EXPORT_SYMBOL_GPL(pci_device_is_present); 5813 5814 void pci_ignore_hotplug(struct pci_dev *dev) 5815 { 5816 struct pci_dev *bridge = dev->bus->self; 5817 5818 dev->ignore_hotplug = 1; 5819 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5820 if (bridge) 5821 bridge->ignore_hotplug = 1; 5822 } 5823 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5824 5825 resource_size_t __weak pcibios_default_alignment(void) 5826 { 5827 return 0; 5828 } 5829 5830 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5831 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5832 static DEFINE_SPINLOCK(resource_alignment_lock); 5833 5834 /** 5835 * pci_specified_resource_alignment - get resource alignment specified by user. 5836 * @dev: the PCI device to get 5837 * @resize: whether or not to change resources' size when reassigning alignment 5838 * 5839 * RETURNS: Resource alignment if it is specified. 5840 * Zero if it is not specified. 5841 */ 5842 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5843 bool *resize) 5844 { 5845 int align_order, count; 5846 resource_size_t align = pcibios_default_alignment(); 5847 const char *p; 5848 int ret; 5849 5850 spin_lock(&resource_alignment_lock); 5851 p = resource_alignment_param; 5852 if (!*p && !align) 5853 goto out; 5854 if (pci_has_flag(PCI_PROBE_ONLY)) { 5855 align = 0; 5856 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5857 goto out; 5858 } 5859 5860 while (*p) { 5861 count = 0; 5862 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5863 p[count] == '@') { 5864 p += count + 1; 5865 } else { 5866 align_order = -1; 5867 } 5868 5869 ret = pci_dev_str_match(dev, p, &p); 5870 if (ret == 1) { 5871 *resize = true; 5872 if (align_order == -1) 5873 align = PAGE_SIZE; 5874 else 5875 align = 1 << align_order; 5876 break; 5877 } else if (ret < 0) { 5878 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 5879 p); 5880 break; 5881 } 5882 5883 if (*p != ';' && *p != ',') { 5884 /* End of param or invalid format */ 5885 break; 5886 } 5887 p++; 5888 } 5889 out: 5890 spin_unlock(&resource_alignment_lock); 5891 return align; 5892 } 5893 5894 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5895 resource_size_t align, bool resize) 5896 { 5897 struct resource *r = &dev->resource[bar]; 5898 resource_size_t size; 5899 5900 if (!(r->flags & IORESOURCE_MEM)) 5901 return; 5902 5903 if (r->flags & IORESOURCE_PCI_FIXED) { 5904 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5905 bar, r, (unsigned long long)align); 5906 return; 5907 } 5908 5909 size = resource_size(r); 5910 if (size >= align) 5911 return; 5912 5913 /* 5914 * Increase the alignment of the resource. There are two ways we 5915 * can do this: 5916 * 5917 * 1) Increase the size of the resource. BARs are aligned on their 5918 * size, so when we reallocate space for this resource, we'll 5919 * allocate it with the larger alignment. This also prevents 5920 * assignment of any other BARs inside the alignment region, so 5921 * if we're requesting page alignment, this means no other BARs 5922 * will share the page. 5923 * 5924 * The disadvantage is that this makes the resource larger than 5925 * the hardware BAR, which may break drivers that compute things 5926 * based on the resource size, e.g., to find registers at a 5927 * fixed offset before the end of the BAR. 5928 * 5929 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5930 * set r->start to the desired alignment. By itself this 5931 * doesn't prevent other BARs being put inside the alignment 5932 * region, but if we realign *every* resource of every device in 5933 * the system, none of them will share an alignment region. 5934 * 5935 * When the user has requested alignment for only some devices via 5936 * the "pci=resource_alignment" argument, "resize" is true and we 5937 * use the first method. Otherwise we assume we're aligning all 5938 * devices and we use the second. 5939 */ 5940 5941 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 5942 bar, r, (unsigned long long)align); 5943 5944 if (resize) { 5945 r->start = 0; 5946 r->end = align - 1; 5947 } else { 5948 r->flags &= ~IORESOURCE_SIZEALIGN; 5949 r->flags |= IORESOURCE_STARTALIGN; 5950 r->start = align; 5951 r->end = r->start + size - 1; 5952 } 5953 r->flags |= IORESOURCE_UNSET; 5954 } 5955 5956 /* 5957 * This function disables memory decoding and releases memory resources 5958 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5959 * It also rounds up size to specified alignment. 5960 * Later on, the kernel will assign page-aligned memory resource back 5961 * to the device. 5962 */ 5963 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5964 { 5965 int i; 5966 struct resource *r; 5967 resource_size_t align; 5968 u16 command; 5969 bool resize = false; 5970 5971 /* 5972 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5973 * 3.4.1.11. Their resources are allocated from the space 5974 * described by the VF BARx register in the PF's SR-IOV capability. 5975 * We can't influence their alignment here. 5976 */ 5977 if (dev->is_virtfn) 5978 return; 5979 5980 /* check if specified PCI is target device to reassign */ 5981 align = pci_specified_resource_alignment(dev, &resize); 5982 if (!align) 5983 return; 5984 5985 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5986 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5987 pci_warn(dev, "Can't reassign resources to host bridge\n"); 5988 return; 5989 } 5990 5991 pci_read_config_word(dev, PCI_COMMAND, &command); 5992 command &= ~PCI_COMMAND_MEMORY; 5993 pci_write_config_word(dev, PCI_COMMAND, command); 5994 5995 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5996 pci_request_resource_alignment(dev, i, align, resize); 5997 5998 /* 5999 * Need to disable bridge's resource window, 6000 * to enable the kernel to reassign new resource 6001 * window later on. 6002 */ 6003 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 6004 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 6005 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6006 r = &dev->resource[i]; 6007 if (!(r->flags & IORESOURCE_MEM)) 6008 continue; 6009 r->flags |= IORESOURCE_UNSET; 6010 r->end = resource_size(r) - 1; 6011 r->start = 0; 6012 } 6013 pci_disable_bridge_window(dev); 6014 } 6015 } 6016 6017 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 6018 { 6019 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 6020 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 6021 spin_lock(&resource_alignment_lock); 6022 strncpy(resource_alignment_param, buf, count); 6023 resource_alignment_param[count] = '\0'; 6024 spin_unlock(&resource_alignment_lock); 6025 return count; 6026 } 6027 6028 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 6029 { 6030 size_t count; 6031 spin_lock(&resource_alignment_lock); 6032 count = snprintf(buf, size, "%s", resource_alignment_param); 6033 spin_unlock(&resource_alignment_lock); 6034 return count; 6035 } 6036 6037 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 6038 { 6039 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 6040 } 6041 6042 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 6043 const char *buf, size_t count) 6044 { 6045 return pci_set_resource_alignment_param(buf, count); 6046 } 6047 6048 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 6049 pci_resource_alignment_store); 6050 6051 static int __init pci_resource_alignment_sysfs_init(void) 6052 { 6053 return bus_create_file(&pci_bus_type, 6054 &bus_attr_resource_alignment); 6055 } 6056 late_initcall(pci_resource_alignment_sysfs_init); 6057 6058 static void pci_no_domains(void) 6059 { 6060 #ifdef CONFIG_PCI_DOMAINS 6061 pci_domains_supported = 0; 6062 #endif 6063 } 6064 6065 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6066 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6067 6068 static int pci_get_new_domain_nr(void) 6069 { 6070 return atomic_inc_return(&__domain_nr); 6071 } 6072 6073 static int of_pci_bus_find_domain_nr(struct device *parent) 6074 { 6075 static int use_dt_domains = -1; 6076 int domain = -1; 6077 6078 if (parent) 6079 domain = of_get_pci_domain_nr(parent->of_node); 6080 /* 6081 * Check DT domain and use_dt_domains values. 6082 * 6083 * If DT domain property is valid (domain >= 0) and 6084 * use_dt_domains != 0, the DT assignment is valid since this means 6085 * we have not previously allocated a domain number by using 6086 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6087 * 1, to indicate that we have just assigned a domain number from 6088 * DT. 6089 * 6090 * If DT domain property value is not valid (ie domain < 0), and we 6091 * have not previously assigned a domain number from DT 6092 * (use_dt_domains != 1) we should assign a domain number by 6093 * using the: 6094 * 6095 * pci_get_new_domain_nr() 6096 * 6097 * API and update the use_dt_domains value to keep track of method we 6098 * are using to assign domain numbers (use_dt_domains = 0). 6099 * 6100 * All other combinations imply we have a platform that is trying 6101 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6102 * which is a recipe for domain mishandling and it is prevented by 6103 * invalidating the domain value (domain = -1) and printing a 6104 * corresponding error. 6105 */ 6106 if (domain >= 0 && use_dt_domains) { 6107 use_dt_domains = 1; 6108 } else if (domain < 0 && use_dt_domains != 1) { 6109 use_dt_domains = 0; 6110 domain = pci_get_new_domain_nr(); 6111 } else { 6112 if (parent) 6113 pr_err("Node %pOF has ", parent->of_node); 6114 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6115 domain = -1; 6116 } 6117 6118 return domain; 6119 } 6120 6121 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6122 { 6123 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6124 acpi_pci_bus_find_domain_nr(bus); 6125 } 6126 #endif 6127 6128 /** 6129 * pci_ext_cfg_avail - can we access extended PCI config space? 6130 * 6131 * Returns 1 if we can access PCI extended config space (offsets 6132 * greater than 0xff). This is the default implementation. Architecture 6133 * implementations can override this. 6134 */ 6135 int __weak pci_ext_cfg_avail(void) 6136 { 6137 return 1; 6138 } 6139 6140 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6141 { 6142 } 6143 EXPORT_SYMBOL(pci_fixup_cardbus); 6144 6145 static int __init pci_setup(char *str) 6146 { 6147 while (str) { 6148 char *k = strchr(str, ','); 6149 if (k) 6150 *k++ = 0; 6151 if (*str && (str = pcibios_setup(str)) && *str) { 6152 if (!strcmp(str, "nomsi")) { 6153 pci_no_msi(); 6154 } else if (!strncmp(str, "noats", 5)) { 6155 pr_info("PCIe: ATS is disabled\n"); 6156 pcie_ats_disabled = true; 6157 } else if (!strcmp(str, "noaer")) { 6158 pci_no_aer(); 6159 } else if (!strcmp(str, "earlydump")) { 6160 pci_early_dump = true; 6161 } else if (!strncmp(str, "realloc=", 8)) { 6162 pci_realloc_get_opt(str + 8); 6163 } else if (!strncmp(str, "realloc", 7)) { 6164 pci_realloc_get_opt("on"); 6165 } else if (!strcmp(str, "nodomains")) { 6166 pci_no_domains(); 6167 } else if (!strncmp(str, "noari", 5)) { 6168 pcie_ari_disabled = true; 6169 } else if (!strncmp(str, "cbiosize=", 9)) { 6170 pci_cardbus_io_size = memparse(str + 9, &str); 6171 } else if (!strncmp(str, "cbmemsize=", 10)) { 6172 pci_cardbus_mem_size = memparse(str + 10, &str); 6173 } else if (!strncmp(str, "resource_alignment=", 19)) { 6174 pci_set_resource_alignment_param(str + 19, 6175 strlen(str + 19)); 6176 } else if (!strncmp(str, "ecrc=", 5)) { 6177 pcie_ecrc_get_policy(str + 5); 6178 } else if (!strncmp(str, "hpiosize=", 9)) { 6179 pci_hotplug_io_size = memparse(str + 9, &str); 6180 } else if (!strncmp(str, "hpmemsize=", 10)) { 6181 pci_hotplug_mem_size = memparse(str + 10, &str); 6182 } else if (!strncmp(str, "hpbussize=", 10)) { 6183 pci_hotplug_bus_size = 6184 simple_strtoul(str + 10, &str, 0); 6185 if (pci_hotplug_bus_size > 0xff) 6186 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6187 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6188 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6189 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6190 pcie_bus_config = PCIE_BUS_SAFE; 6191 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6192 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6193 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6194 pcie_bus_config = PCIE_BUS_PEER2PEER; 6195 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6196 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6197 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6198 disable_acs_redir_param = str + 18; 6199 } else { 6200 printk(KERN_ERR "PCI: Unknown option `%s'\n", 6201 str); 6202 } 6203 } 6204 str = k; 6205 } 6206 return 0; 6207 } 6208 early_param("pci", pci_setup); 6209