xref: /openbmc/linux/drivers/pci/pci.c (revision cf028200)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28 
29 const char *pci_power_names[] = {
30 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33 
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36 
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39 
40 unsigned int pci_pm_d3_delay;
41 
42 static void pci_pme_list_scan(struct work_struct *work);
43 
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47 
48 struct pci_pme_device {
49 	struct list_head list;
50 	struct pci_dev *dev;
51 };
52 
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54 
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 	unsigned int delay = dev->d3_delay;
58 
59 	if (delay < pci_pm_d3_delay)
60 		delay = pci_pm_d3_delay;
61 
62 	msleep(delay);
63 }
64 
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68 
69 #define DEFAULT_CARDBUS_IO_SIZE		(256)
70 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74 
75 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80 
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82 
83 /*
84  * The default CLS is used if arch didn't set CLS explicitly and not
85  * all pci devices agree on the same value.  Arch can override either
86  * the dfl or actual value as it sees fit.  Don't forget this is
87  * measured in 32-bit words, not bytes.
88  */
89 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91 
92 /*
93  * If we set up a device for bus mastering, we need to check the latency
94  * timer as certain BIOSes forget to set it properly.
95  */
96 unsigned int pcibios_max_latency = 255;
97 
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100 
101 /**
102  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103  * @bus: pointer to PCI bus structure to search
104  *
105  * Given a PCI bus, returns the highest PCI bus number present in the set
106  * including the given PCI bus and its list of child PCI buses.
107  */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 	struct list_head *tmp;
111 	unsigned char max, n;
112 
113 	max = bus->busn_res.end;
114 	list_for_each(tmp, &bus->children) {
115 		n = pci_bus_max_busnr(pci_bus_b(tmp));
116 		if(n > max)
117 			max = n;
118 	}
119 	return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122 
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 	/*
127 	 * Make sure the BAR is actually a memory resource, not an IO resource
128 	 */
129 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 		WARN_ON(1);
131 		return NULL;
132 	}
133 	return ioremap_nocache(pci_resource_start(pdev, bar),
134 				     pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138 
139 #define PCI_FIND_CAP_TTL	48
140 
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142 				   u8 pos, int cap, int *ttl)
143 {
144 	u8 id;
145 
146 	while ((*ttl)--) {
147 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
148 		if (pos < 0x40)
149 			break;
150 		pos &= ~3;
151 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152 					 &id);
153 		if (id == 0xff)
154 			break;
155 		if (id == cap)
156 			return pos;
157 		pos += PCI_CAP_LIST_NEXT;
158 	}
159 	return 0;
160 }
161 
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163 			       u8 pos, int cap)
164 {
165 	int ttl = PCI_FIND_CAP_TTL;
166 
167 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169 
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172 	return __pci_find_next_cap(dev->bus, dev->devfn,
173 				   pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176 
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178 				    unsigned int devfn, u8 hdr_type)
179 {
180 	u16 status;
181 
182 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183 	if (!(status & PCI_STATUS_CAP_LIST))
184 		return 0;
185 
186 	switch (hdr_type) {
187 	case PCI_HEADER_TYPE_NORMAL:
188 	case PCI_HEADER_TYPE_BRIDGE:
189 		return PCI_CAPABILITY_LIST;
190 	case PCI_HEADER_TYPE_CARDBUS:
191 		return PCI_CB_CAPABILITY_LIST;
192 	default:
193 		return 0;
194 	}
195 
196 	return 0;
197 }
198 
199 /**
200  * pci_find_capability - query for devices' capabilities
201  * @dev: PCI device to query
202  * @cap: capability code
203  *
204  * Tell if a device supports a given PCI capability.
205  * Returns the address of the requested capability structure within the
206  * device's PCI configuration space or 0 in case the device does not
207  * support it.  Possible values for @cap:
208  *
209  *  %PCI_CAP_ID_PM           Power Management
210  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
211  *  %PCI_CAP_ID_VPD          Vital Product Data
212  *  %PCI_CAP_ID_SLOTID       Slot Identification
213  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
214  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
215  *  %PCI_CAP_ID_PCIX         PCI-X
216  *  %PCI_CAP_ID_EXP          PCI Express
217  */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220 	int pos;
221 
222 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223 	if (pos)
224 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225 
226 	return pos;
227 }
228 
229 /**
230  * pci_bus_find_capability - query for devices' capabilities
231  * @bus:   the PCI bus to query
232  * @devfn: PCI device to query
233  * @cap:   capability code
234  *
235  * Like pci_find_capability() but works for pci devices that do not have a
236  * pci_dev structure set up yet.
237  *
238  * Returns the address of the requested capability structure within the
239  * device's PCI configuration space or 0 in case the device does not
240  * support it.
241  */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244 	int pos;
245 	u8 hdr_type;
246 
247 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248 
249 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250 	if (pos)
251 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
252 
253 	return pos;
254 }
255 
256 /**
257  * pci_find_next_ext_capability - Find an extended capability
258  * @dev: PCI device to query
259  * @start: address at which to start looking (0 to start at beginning of list)
260  * @cap: capability code
261  *
262  * Returns the address of the next matching extended capability structure
263  * within the device's PCI configuration space or 0 if the device does
264  * not support it.  Some capabilities can occur several times, e.g., the
265  * vendor-specific capability, and this provides a way to find them all.
266  */
267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
268 {
269 	u32 header;
270 	int ttl;
271 	int pos = PCI_CFG_SPACE_SIZE;
272 
273 	/* minimum 8 bytes per capability */
274 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
275 
276 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
277 		return 0;
278 
279 	if (start)
280 		pos = start;
281 
282 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 		return 0;
284 
285 	/*
286 	 * If we have no capabilities, this is indicated by cap ID,
287 	 * cap version and next pointer all being 0.
288 	 */
289 	if (header == 0)
290 		return 0;
291 
292 	while (ttl-- > 0) {
293 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
294 			return pos;
295 
296 		pos = PCI_EXT_CAP_NEXT(header);
297 		if (pos < PCI_CFG_SPACE_SIZE)
298 			break;
299 
300 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
301 			break;
302 	}
303 
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
307 
308 /**
309  * pci_find_ext_capability - Find an extended capability
310  * @dev: PCI device to query
311  * @cap: capability code
312  *
313  * Returns the address of the requested extended capability structure
314  * within the device's PCI configuration space or 0 if the device does
315  * not support it.  Possible values for @cap:
316  *
317  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
318  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
319  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
320  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
321  */
322 int pci_find_ext_capability(struct pci_dev *dev, int cap)
323 {
324 	return pci_find_next_ext_capability(dev, 0, cap);
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327 
328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
329 {
330 	int rc, ttl = PCI_FIND_CAP_TTL;
331 	u8 cap, mask;
332 
333 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
334 		mask = HT_3BIT_CAP_MASK;
335 	else
336 		mask = HT_5BIT_CAP_MASK;
337 
338 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
339 				      PCI_CAP_ID_HT, &ttl);
340 	while (pos) {
341 		rc = pci_read_config_byte(dev, pos + 3, &cap);
342 		if (rc != PCIBIOS_SUCCESSFUL)
343 			return 0;
344 
345 		if ((cap & mask) == ht_cap)
346 			return pos;
347 
348 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
349 					      pos + PCI_CAP_LIST_NEXT,
350 					      PCI_CAP_ID_HT, &ttl);
351 	}
352 
353 	return 0;
354 }
355 /**
356  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357  * @dev: PCI device to query
358  * @pos: Position from which to continue searching
359  * @ht_cap: Hypertransport capability code
360  *
361  * To be used in conjunction with pci_find_ht_capability() to search for
362  * all capabilities matching @ht_cap. @pos should always be a value returned
363  * from pci_find_ht_capability().
364  *
365  * NB. To be 100% safe against broken PCI devices, the caller should take
366  * steps to avoid an infinite loop.
367  */
368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
369 {
370 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
371 }
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
373 
374 /**
375  * pci_find_ht_capability - query a device's Hypertransport capabilities
376  * @dev: PCI device to query
377  * @ht_cap: Hypertransport capability code
378  *
379  * Tell if a device supports a given Hypertransport capability.
380  * Returns an address within the device's PCI configuration space
381  * or 0 in case the device does not support the request capability.
382  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383  * which has a Hypertransport capability matching @ht_cap.
384  */
385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
386 {
387 	int pos;
388 
389 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
390 	if (pos)
391 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
392 
393 	return pos;
394 }
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
396 
397 /**
398  * pci_find_parent_resource - return resource region of parent bus of given region
399  * @dev: PCI device structure contains resources to be searched
400  * @res: child resource record for which parent is sought
401  *
402  *  For given resource region of given device, return the resource
403  *  region of parent bus the given region is contained in or where
404  *  it should be allocated from.
405  */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 	const struct pci_bus *bus = dev->bus;
410 	int i;
411 	struct resource *best = NULL, *r;
412 
413 	pci_bus_for_each_resource(bus, r, i) {
414 		if (!r)
415 			continue;
416 		if (res->start && !(res->start >= r->start && res->end <= r->end))
417 			continue;	/* Not contained */
418 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
419 			continue;	/* Wrong type */
420 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
421 			return r;	/* Exact match */
422 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423 		if (r->flags & IORESOURCE_PREFETCH)
424 			continue;
425 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
426 		if (!best)
427 			best = r;
428 	}
429 	return best;
430 }
431 
432 /**
433  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434  * @dev: PCI device to have its BARs restored
435  *
436  * Restore the BAR values for a given device, so as to make it
437  * accessible by its driver.
438  */
439 static void
440 pci_restore_bars(struct pci_dev *dev)
441 {
442 	int i;
443 
444 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
445 		pci_update_resource(dev, i);
446 }
447 
448 static struct pci_platform_pm_ops *pci_platform_pm;
449 
450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
451 {
452 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
453 	    || !ops->sleep_wake || !ops->can_wakeup)
454 		return -EINVAL;
455 	pci_platform_pm = ops;
456 	return 0;
457 }
458 
459 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
460 {
461 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
462 }
463 
464 static inline int platform_pci_set_power_state(struct pci_dev *dev,
465                                                 pci_power_t t)
466 {
467 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
468 }
469 
470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
471 {
472 	return pci_platform_pm ?
473 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
474 }
475 
476 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
477 {
478 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
479 }
480 
481 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
482 {
483 	return pci_platform_pm ?
484 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
485 }
486 
487 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
488 {
489 	return pci_platform_pm ?
490 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
491 }
492 
493 /**
494  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
495  *                           given PCI device
496  * @dev: PCI device to handle.
497  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
498  *
499  * RETURN VALUE:
500  * -EINVAL if the requested state is invalid.
501  * -EIO if device does not support PCI PM or its PM capabilities register has a
502  * wrong version, or device doesn't support the requested state.
503  * 0 if device already is in the requested state.
504  * 0 if device's power state has been successfully changed.
505  */
506 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
507 {
508 	u16 pmcsr;
509 	bool need_restore = false;
510 
511 	/* Check if we're already there */
512 	if (dev->current_state == state)
513 		return 0;
514 
515 	if (!dev->pm_cap)
516 		return -EIO;
517 
518 	if (state < PCI_D0 || state > PCI_D3hot)
519 		return -EINVAL;
520 
521 	/* Validate current state:
522 	 * Can enter D0 from any state, but if we can only go deeper
523 	 * to sleep if we're already in a low power state
524 	 */
525 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
526 	    && dev->current_state > state) {
527 		dev_err(&dev->dev, "invalid power transition "
528 			"(from state %d to %d)\n", dev->current_state, state);
529 		return -EINVAL;
530 	}
531 
532 	/* check if this device supports the desired state */
533 	if ((state == PCI_D1 && !dev->d1_support)
534 	   || (state == PCI_D2 && !dev->d2_support))
535 		return -EIO;
536 
537 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
538 
539 	/* If we're (effectively) in D3, force entire word to 0.
540 	 * This doesn't affect PME_Status, disables PME_En, and
541 	 * sets PowerState to 0.
542 	 */
543 	switch (dev->current_state) {
544 	case PCI_D0:
545 	case PCI_D1:
546 	case PCI_D2:
547 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
548 		pmcsr |= state;
549 		break;
550 	case PCI_D3hot:
551 	case PCI_D3cold:
552 	case PCI_UNKNOWN: /* Boot-up */
553 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
554 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
555 			need_restore = true;
556 		/* Fall-through: force to D0 */
557 	default:
558 		pmcsr = 0;
559 		break;
560 	}
561 
562 	/* enter specified state */
563 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
564 
565 	/* Mandatory power management transition delays */
566 	/* see PCI PM 1.1 5.6.1 table 18 */
567 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
568 		pci_dev_d3_sleep(dev);
569 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
570 		udelay(PCI_PM_D2_DELAY);
571 
572 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
573 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
574 	if (dev->current_state != state && printk_ratelimit())
575 		dev_info(&dev->dev, "Refused to change power state, "
576 			"currently in D%d\n", dev->current_state);
577 
578 	/*
579 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
580 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
581 	 * from D3hot to D0 _may_ perform an internal reset, thereby
582 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
583 	 * For example, at least some versions of the 3c905B and the
584 	 * 3c556B exhibit this behaviour.
585 	 *
586 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
587 	 * devices in a D3hot state at boot.  Consequently, we need to
588 	 * restore at least the BARs so that the device will be
589 	 * accessible to its driver.
590 	 */
591 	if (need_restore)
592 		pci_restore_bars(dev);
593 
594 	if (dev->bus->self)
595 		pcie_aspm_pm_state_change(dev->bus->self);
596 
597 	return 0;
598 }
599 
600 /**
601  * pci_update_current_state - Read PCI power state of given device from its
602  *                            PCI PM registers and cache it
603  * @dev: PCI device to handle.
604  * @state: State to cache in case the device doesn't have the PM capability
605  */
606 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
607 {
608 	if (dev->pm_cap) {
609 		u16 pmcsr;
610 
611 		/*
612 		 * Configuration space is not accessible for device in
613 		 * D3cold, so just keep or set D3cold for safety
614 		 */
615 		if (dev->current_state == PCI_D3cold)
616 			return;
617 		if (state == PCI_D3cold) {
618 			dev->current_state = PCI_D3cold;
619 			return;
620 		}
621 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
622 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
623 	} else {
624 		dev->current_state = state;
625 	}
626 }
627 
628 /**
629  * pci_power_up - Put the given device into D0 forcibly
630  * @dev: PCI device to power up
631  */
632 void pci_power_up(struct pci_dev *dev)
633 {
634 	if (platform_pci_power_manageable(dev))
635 		platform_pci_set_power_state(dev, PCI_D0);
636 
637 	pci_raw_set_power_state(dev, PCI_D0);
638 	pci_update_current_state(dev, PCI_D0);
639 }
640 
641 /**
642  * pci_platform_power_transition - Use platform to change device power state
643  * @dev: PCI device to handle.
644  * @state: State to put the device into.
645  */
646 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
647 {
648 	int error;
649 
650 	if (platform_pci_power_manageable(dev)) {
651 		error = platform_pci_set_power_state(dev, state);
652 		if (!error)
653 			pci_update_current_state(dev, state);
654 		/* Fall back to PCI_D0 if native PM is not supported */
655 		if (!dev->pm_cap)
656 			dev->current_state = PCI_D0;
657 	} else {
658 		error = -ENODEV;
659 		/* Fall back to PCI_D0 if native PM is not supported */
660 		if (!dev->pm_cap)
661 			dev->current_state = PCI_D0;
662 	}
663 
664 	return error;
665 }
666 
667 /**
668  * __pci_start_power_transition - Start power transition of a PCI device
669  * @dev: PCI device to handle.
670  * @state: State to put the device into.
671  */
672 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
673 {
674 	if (state == PCI_D0) {
675 		pci_platform_power_transition(dev, PCI_D0);
676 		/*
677 		 * Mandatory power management transition delays, see
678 		 * PCI Express Base Specification Revision 2.0 Section
679 		 * 6.6.1: Conventional Reset.  Do not delay for
680 		 * devices powered on/off by corresponding bridge,
681 		 * because have already delayed for the bridge.
682 		 */
683 		if (dev->runtime_d3cold) {
684 			msleep(dev->d3cold_delay);
685 			/*
686 			 * When powering on a bridge from D3cold, the
687 			 * whole hierarchy may be powered on into
688 			 * D0uninitialized state, resume them to give
689 			 * them a chance to suspend again
690 			 */
691 			pci_wakeup_bus(dev->subordinate);
692 		}
693 	}
694 }
695 
696 /**
697  * __pci_dev_set_current_state - Set current state of a PCI device
698  * @dev: Device to handle
699  * @data: pointer to state to be set
700  */
701 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
702 {
703 	pci_power_t state = *(pci_power_t *)data;
704 
705 	dev->current_state = state;
706 	return 0;
707 }
708 
709 /**
710  * __pci_bus_set_current_state - Walk given bus and set current state of devices
711  * @bus: Top bus of the subtree to walk.
712  * @state: state to be set
713  */
714 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
715 {
716 	if (bus)
717 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
718 }
719 
720 /**
721  * __pci_complete_power_transition - Complete power transition of a PCI device
722  * @dev: PCI device to handle.
723  * @state: State to put the device into.
724  *
725  * This function should not be called directly by device drivers.
726  */
727 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
728 {
729 	int ret;
730 
731 	if (state <= PCI_D0)
732 		return -EINVAL;
733 	ret = pci_platform_power_transition(dev, state);
734 	/* Power off the bridge may power off the whole hierarchy */
735 	if (!ret && state == PCI_D3cold)
736 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
737 	return ret;
738 }
739 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
740 
741 /**
742  * pci_set_power_state - Set the power state of a PCI device
743  * @dev: PCI device to handle.
744  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
745  *
746  * Transition a device to a new power state, using the platform firmware and/or
747  * the device's PCI PM registers.
748  *
749  * RETURN VALUE:
750  * -EINVAL if the requested state is invalid.
751  * -EIO if device does not support PCI PM or its PM capabilities register has a
752  * wrong version, or device doesn't support the requested state.
753  * 0 if device already is in the requested state.
754  * 0 if device's power state has been successfully changed.
755  */
756 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
757 {
758 	int error;
759 
760 	/* bound the state we're entering */
761 	if (state > PCI_D3cold)
762 		state = PCI_D3cold;
763 	else if (state < PCI_D0)
764 		state = PCI_D0;
765 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
766 		/*
767 		 * If the device or the parent bridge do not support PCI PM,
768 		 * ignore the request if we're doing anything other than putting
769 		 * it into D0 (which would only happen on boot).
770 		 */
771 		return 0;
772 
773 	/* Check if we're already there */
774 	if (dev->current_state == state)
775 		return 0;
776 
777 	__pci_start_power_transition(dev, state);
778 
779 	/* This device is quirked not to be put into D3, so
780 	   don't put it in D3 */
781 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
782 		return 0;
783 
784 	/*
785 	 * To put device in D3cold, we put device into D3hot in native
786 	 * way, then put device into D3cold with platform ops
787 	 */
788 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
789 					PCI_D3hot : state);
790 
791 	if (!__pci_complete_power_transition(dev, state))
792 		error = 0;
793 	/*
794 	 * When aspm_policy is "powersave" this call ensures
795 	 * that ASPM is configured.
796 	 */
797 	if (!error && dev->bus->self)
798 		pcie_aspm_powersave_config_link(dev->bus->self);
799 
800 	return error;
801 }
802 
803 /**
804  * pci_choose_state - Choose the power state of a PCI device
805  * @dev: PCI device to be suspended
806  * @state: target sleep state for the whole system. This is the value
807  *	that is passed to suspend() function.
808  *
809  * Returns PCI power state suitable for given device and given system
810  * message.
811  */
812 
813 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
814 {
815 	pci_power_t ret;
816 
817 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
818 		return PCI_D0;
819 
820 	ret = platform_pci_choose_state(dev);
821 	if (ret != PCI_POWER_ERROR)
822 		return ret;
823 
824 	switch (state.event) {
825 	case PM_EVENT_ON:
826 		return PCI_D0;
827 	case PM_EVENT_FREEZE:
828 	case PM_EVENT_PRETHAW:
829 		/* REVISIT both freeze and pre-thaw "should" use D0 */
830 	case PM_EVENT_SUSPEND:
831 	case PM_EVENT_HIBERNATE:
832 		return PCI_D3hot;
833 	default:
834 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
835 			 state.event);
836 		BUG();
837 	}
838 	return PCI_D0;
839 }
840 
841 EXPORT_SYMBOL(pci_choose_state);
842 
843 #define PCI_EXP_SAVE_REGS	7
844 
845 
846 static struct pci_cap_saved_state *pci_find_saved_cap(
847 	struct pci_dev *pci_dev, char cap)
848 {
849 	struct pci_cap_saved_state *tmp;
850 	struct hlist_node *pos;
851 
852 	hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
853 		if (tmp->cap.cap_nr == cap)
854 			return tmp;
855 	}
856 	return NULL;
857 }
858 
859 static int pci_save_pcie_state(struct pci_dev *dev)
860 {
861 	int i = 0;
862 	struct pci_cap_saved_state *save_state;
863 	u16 *cap;
864 
865 	if (!pci_is_pcie(dev))
866 		return 0;
867 
868 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
869 	if (!save_state) {
870 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
871 		return -ENOMEM;
872 	}
873 
874 	cap = (u16 *)&save_state->cap.data[0];
875 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
876 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
877 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
878 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
879 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
880 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
881 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
882 
883 	return 0;
884 }
885 
886 static void pci_restore_pcie_state(struct pci_dev *dev)
887 {
888 	int i = 0;
889 	struct pci_cap_saved_state *save_state;
890 	u16 *cap;
891 
892 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
893 	if (!save_state)
894 		return;
895 
896 	cap = (u16 *)&save_state->cap.data[0];
897 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
898 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
899 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
900 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
901 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
902 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
903 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
904 }
905 
906 
907 static int pci_save_pcix_state(struct pci_dev *dev)
908 {
909 	int pos;
910 	struct pci_cap_saved_state *save_state;
911 
912 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
913 	if (pos <= 0)
914 		return 0;
915 
916 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
917 	if (!save_state) {
918 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
919 		return -ENOMEM;
920 	}
921 
922 	pci_read_config_word(dev, pos + PCI_X_CMD,
923 			     (u16 *)save_state->cap.data);
924 
925 	return 0;
926 }
927 
928 static void pci_restore_pcix_state(struct pci_dev *dev)
929 {
930 	int i = 0, pos;
931 	struct pci_cap_saved_state *save_state;
932 	u16 *cap;
933 
934 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
935 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
936 	if (!save_state || pos <= 0)
937 		return;
938 	cap = (u16 *)&save_state->cap.data[0];
939 
940 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
941 }
942 
943 
944 /**
945  * pci_save_state - save the PCI configuration space of a device before suspending
946  * @dev: - PCI device that we're dealing with
947  */
948 int
949 pci_save_state(struct pci_dev *dev)
950 {
951 	int i;
952 	/* XXX: 100% dword access ok here? */
953 	for (i = 0; i < 16; i++)
954 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
955 	dev->state_saved = true;
956 	if ((i = pci_save_pcie_state(dev)) != 0)
957 		return i;
958 	if ((i = pci_save_pcix_state(dev)) != 0)
959 		return i;
960 	return 0;
961 }
962 
963 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
964 				     u32 saved_val, int retry)
965 {
966 	u32 val;
967 
968 	pci_read_config_dword(pdev, offset, &val);
969 	if (val == saved_val)
970 		return;
971 
972 	for (;;) {
973 		dev_dbg(&pdev->dev, "restoring config space at offset "
974 			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
975 		pci_write_config_dword(pdev, offset, saved_val);
976 		if (retry-- <= 0)
977 			return;
978 
979 		pci_read_config_dword(pdev, offset, &val);
980 		if (val == saved_val)
981 			return;
982 
983 		mdelay(1);
984 	}
985 }
986 
987 static void pci_restore_config_space_range(struct pci_dev *pdev,
988 					   int start, int end, int retry)
989 {
990 	int index;
991 
992 	for (index = end; index >= start; index--)
993 		pci_restore_config_dword(pdev, 4 * index,
994 					 pdev->saved_config_space[index],
995 					 retry);
996 }
997 
998 static void pci_restore_config_space(struct pci_dev *pdev)
999 {
1000 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1001 		pci_restore_config_space_range(pdev, 10, 15, 0);
1002 		/* Restore BARs before the command register. */
1003 		pci_restore_config_space_range(pdev, 4, 9, 10);
1004 		pci_restore_config_space_range(pdev, 0, 3, 0);
1005 	} else {
1006 		pci_restore_config_space_range(pdev, 0, 15, 0);
1007 	}
1008 }
1009 
1010 /**
1011  * pci_restore_state - Restore the saved state of a PCI device
1012  * @dev: - PCI device that we're dealing with
1013  */
1014 void pci_restore_state(struct pci_dev *dev)
1015 {
1016 	if (!dev->state_saved)
1017 		return;
1018 
1019 	/* PCI Express register must be restored first */
1020 	pci_restore_pcie_state(dev);
1021 	pci_restore_ats_state(dev);
1022 
1023 	pci_restore_config_space(dev);
1024 
1025 	pci_restore_pcix_state(dev);
1026 	pci_restore_msi_state(dev);
1027 	pci_restore_iov_state(dev);
1028 
1029 	dev->state_saved = false;
1030 }
1031 
1032 struct pci_saved_state {
1033 	u32 config_space[16];
1034 	struct pci_cap_saved_data cap[0];
1035 };
1036 
1037 /**
1038  * pci_store_saved_state - Allocate and return an opaque struct containing
1039  *			   the device saved state.
1040  * @dev: PCI device that we're dealing with
1041  *
1042  * Rerturn NULL if no state or error.
1043  */
1044 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1045 {
1046 	struct pci_saved_state *state;
1047 	struct pci_cap_saved_state *tmp;
1048 	struct pci_cap_saved_data *cap;
1049 	struct hlist_node *pos;
1050 	size_t size;
1051 
1052 	if (!dev->state_saved)
1053 		return NULL;
1054 
1055 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1056 
1057 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1058 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1059 
1060 	state = kzalloc(size, GFP_KERNEL);
1061 	if (!state)
1062 		return NULL;
1063 
1064 	memcpy(state->config_space, dev->saved_config_space,
1065 	       sizeof(state->config_space));
1066 
1067 	cap = state->cap;
1068 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1069 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1070 		memcpy(cap, &tmp->cap, len);
1071 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1072 	}
1073 	/* Empty cap_save terminates list */
1074 
1075 	return state;
1076 }
1077 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1078 
1079 /**
1080  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1081  * @dev: PCI device that we're dealing with
1082  * @state: Saved state returned from pci_store_saved_state()
1083  */
1084 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1085 {
1086 	struct pci_cap_saved_data *cap;
1087 
1088 	dev->state_saved = false;
1089 
1090 	if (!state)
1091 		return 0;
1092 
1093 	memcpy(dev->saved_config_space, state->config_space,
1094 	       sizeof(state->config_space));
1095 
1096 	cap = state->cap;
1097 	while (cap->size) {
1098 		struct pci_cap_saved_state *tmp;
1099 
1100 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1101 		if (!tmp || tmp->cap.size != cap->size)
1102 			return -EINVAL;
1103 
1104 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1105 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1106 		       sizeof(struct pci_cap_saved_data) + cap->size);
1107 	}
1108 
1109 	dev->state_saved = true;
1110 	return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1113 
1114 /**
1115  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1116  *				   and free the memory allocated for it.
1117  * @dev: PCI device that we're dealing with
1118  * @state: Pointer to saved state returned from pci_store_saved_state()
1119  */
1120 int pci_load_and_free_saved_state(struct pci_dev *dev,
1121 				  struct pci_saved_state **state)
1122 {
1123 	int ret = pci_load_saved_state(dev, *state);
1124 	kfree(*state);
1125 	*state = NULL;
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1129 
1130 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1131 {
1132 	int err;
1133 
1134 	err = pci_set_power_state(dev, PCI_D0);
1135 	if (err < 0 && err != -EIO)
1136 		return err;
1137 	err = pcibios_enable_device(dev, bars);
1138 	if (err < 0)
1139 		return err;
1140 	pci_fixup_device(pci_fixup_enable, dev);
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  * pci_reenable_device - Resume abandoned device
1147  * @dev: PCI device to be resumed
1148  *
1149  *  Note this function is a backend of pci_default_resume and is not supposed
1150  *  to be called by normal code, write proper resume handler and use it instead.
1151  */
1152 int pci_reenable_device(struct pci_dev *dev)
1153 {
1154 	if (pci_is_enabled(dev))
1155 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1156 	return 0;
1157 }
1158 
1159 static int __pci_enable_device_flags(struct pci_dev *dev,
1160 				     resource_size_t flags)
1161 {
1162 	int err;
1163 	int i, bars = 0;
1164 
1165 	/*
1166 	 * Power state could be unknown at this point, either due to a fresh
1167 	 * boot or a device removal call.  So get the current power state
1168 	 * so that things like MSI message writing will behave as expected
1169 	 * (e.g. if the device really is in D0 at enable time).
1170 	 */
1171 	if (dev->pm_cap) {
1172 		u16 pmcsr;
1173 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1174 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1175 	}
1176 
1177 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
1178 		return 0;		/* already enabled */
1179 
1180 	/* only skip sriov related */
1181 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1182 		if (dev->resource[i].flags & flags)
1183 			bars |= (1 << i);
1184 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1185 		if (dev->resource[i].flags & flags)
1186 			bars |= (1 << i);
1187 
1188 	err = do_pci_enable_device(dev, bars);
1189 	if (err < 0)
1190 		atomic_dec(&dev->enable_cnt);
1191 	return err;
1192 }
1193 
1194 /**
1195  * pci_enable_device_io - Initialize a device for use with IO space
1196  * @dev: PCI device to be initialized
1197  *
1198  *  Initialize device before it's used by a driver. Ask low-level code
1199  *  to enable I/O resources. Wake up the device if it was suspended.
1200  *  Beware, this function can fail.
1201  */
1202 int pci_enable_device_io(struct pci_dev *dev)
1203 {
1204 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
1205 }
1206 
1207 /**
1208  * pci_enable_device_mem - Initialize a device for use with Memory space
1209  * @dev: PCI device to be initialized
1210  *
1211  *  Initialize device before it's used by a driver. Ask low-level code
1212  *  to enable Memory resources. Wake up the device if it was suspended.
1213  *  Beware, this function can fail.
1214  */
1215 int pci_enable_device_mem(struct pci_dev *dev)
1216 {
1217 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1218 }
1219 
1220 /**
1221  * pci_enable_device - Initialize device before it's used by a driver.
1222  * @dev: PCI device to be initialized
1223  *
1224  *  Initialize device before it's used by a driver. Ask low-level code
1225  *  to enable I/O and memory. Wake up the device if it was suspended.
1226  *  Beware, this function can fail.
1227  *
1228  *  Note we don't actually enable the device many times if we call
1229  *  this function repeatedly (we just increment the count).
1230  */
1231 int pci_enable_device(struct pci_dev *dev)
1232 {
1233 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1234 }
1235 
1236 /*
1237  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1238  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1239  * there's no need to track it separately.  pci_devres is initialized
1240  * when a device is enabled using managed PCI device enable interface.
1241  */
1242 struct pci_devres {
1243 	unsigned int enabled:1;
1244 	unsigned int pinned:1;
1245 	unsigned int orig_intx:1;
1246 	unsigned int restore_intx:1;
1247 	u32 region_mask;
1248 };
1249 
1250 static void pcim_release(struct device *gendev, void *res)
1251 {
1252 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1253 	struct pci_devres *this = res;
1254 	int i;
1255 
1256 	if (dev->msi_enabled)
1257 		pci_disable_msi(dev);
1258 	if (dev->msix_enabled)
1259 		pci_disable_msix(dev);
1260 
1261 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1262 		if (this->region_mask & (1 << i))
1263 			pci_release_region(dev, i);
1264 
1265 	if (this->restore_intx)
1266 		pci_intx(dev, this->orig_intx);
1267 
1268 	if (this->enabled && !this->pinned)
1269 		pci_disable_device(dev);
1270 }
1271 
1272 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1273 {
1274 	struct pci_devres *dr, *new_dr;
1275 
1276 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1277 	if (dr)
1278 		return dr;
1279 
1280 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1281 	if (!new_dr)
1282 		return NULL;
1283 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1284 }
1285 
1286 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1287 {
1288 	if (pci_is_managed(pdev))
1289 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1290 	return NULL;
1291 }
1292 
1293 /**
1294  * pcim_enable_device - Managed pci_enable_device()
1295  * @pdev: PCI device to be initialized
1296  *
1297  * Managed pci_enable_device().
1298  */
1299 int pcim_enable_device(struct pci_dev *pdev)
1300 {
1301 	struct pci_devres *dr;
1302 	int rc;
1303 
1304 	dr = get_pci_dr(pdev);
1305 	if (unlikely(!dr))
1306 		return -ENOMEM;
1307 	if (dr->enabled)
1308 		return 0;
1309 
1310 	rc = pci_enable_device(pdev);
1311 	if (!rc) {
1312 		pdev->is_managed = 1;
1313 		dr->enabled = 1;
1314 	}
1315 	return rc;
1316 }
1317 
1318 /**
1319  * pcim_pin_device - Pin managed PCI device
1320  * @pdev: PCI device to pin
1321  *
1322  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1323  * driver detach.  @pdev must have been enabled with
1324  * pcim_enable_device().
1325  */
1326 void pcim_pin_device(struct pci_dev *pdev)
1327 {
1328 	struct pci_devres *dr;
1329 
1330 	dr = find_pci_dr(pdev);
1331 	WARN_ON(!dr || !dr->enabled);
1332 	if (dr)
1333 		dr->pinned = 1;
1334 }
1335 
1336 /**
1337  * pcibios_disable_device - disable arch specific PCI resources for device dev
1338  * @dev: the PCI device to disable
1339  *
1340  * Disables architecture specific PCI resources for the device. This
1341  * is the default implementation. Architecture implementations can
1342  * override this.
1343  */
1344 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1345 
1346 static void do_pci_disable_device(struct pci_dev *dev)
1347 {
1348 	u16 pci_command;
1349 
1350 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1351 	if (pci_command & PCI_COMMAND_MASTER) {
1352 		pci_command &= ~PCI_COMMAND_MASTER;
1353 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1354 	}
1355 
1356 	pcibios_disable_device(dev);
1357 }
1358 
1359 /**
1360  * pci_disable_enabled_device - Disable device without updating enable_cnt
1361  * @dev: PCI device to disable
1362  *
1363  * NOTE: This function is a backend of PCI power management routines and is
1364  * not supposed to be called drivers.
1365  */
1366 void pci_disable_enabled_device(struct pci_dev *dev)
1367 {
1368 	if (pci_is_enabled(dev))
1369 		do_pci_disable_device(dev);
1370 }
1371 
1372 /**
1373  * pci_disable_device - Disable PCI device after use
1374  * @dev: PCI device to be disabled
1375  *
1376  * Signal to the system that the PCI device is not in use by the system
1377  * anymore.  This only involves disabling PCI bus-mastering, if active.
1378  *
1379  * Note we don't actually disable the device until all callers of
1380  * pci_enable_device() have called pci_disable_device().
1381  */
1382 void
1383 pci_disable_device(struct pci_dev *dev)
1384 {
1385 	struct pci_devres *dr;
1386 
1387 	dr = find_pci_dr(dev);
1388 	if (dr)
1389 		dr->enabled = 0;
1390 
1391 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1392 		return;
1393 
1394 	do_pci_disable_device(dev);
1395 
1396 	dev->is_busmaster = 0;
1397 }
1398 
1399 /**
1400  * pcibios_set_pcie_reset_state - set reset state for device dev
1401  * @dev: the PCIe device reset
1402  * @state: Reset state to enter into
1403  *
1404  *
1405  * Sets the PCIe reset state for the device. This is the default
1406  * implementation. Architecture implementations can override this.
1407  */
1408 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1409 					enum pcie_reset_state state)
1410 {
1411 	return -EINVAL;
1412 }
1413 
1414 /**
1415  * pci_set_pcie_reset_state - set reset state for device dev
1416  * @dev: the PCIe device reset
1417  * @state: Reset state to enter into
1418  *
1419  *
1420  * Sets the PCI reset state for the device.
1421  */
1422 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1423 {
1424 	return pcibios_set_pcie_reset_state(dev, state);
1425 }
1426 
1427 /**
1428  * pci_check_pme_status - Check if given device has generated PME.
1429  * @dev: Device to check.
1430  *
1431  * Check the PME status of the device and if set, clear it and clear PME enable
1432  * (if set).  Return 'true' if PME status and PME enable were both set or
1433  * 'false' otherwise.
1434  */
1435 bool pci_check_pme_status(struct pci_dev *dev)
1436 {
1437 	int pmcsr_pos;
1438 	u16 pmcsr;
1439 	bool ret = false;
1440 
1441 	if (!dev->pm_cap)
1442 		return false;
1443 
1444 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1445 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1446 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1447 		return false;
1448 
1449 	/* Clear PME status. */
1450 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1451 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1452 		/* Disable PME to avoid interrupt flood. */
1453 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1454 		ret = true;
1455 	}
1456 
1457 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1458 
1459 	return ret;
1460 }
1461 
1462 /**
1463  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1464  * @dev: Device to handle.
1465  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1466  *
1467  * Check if @dev has generated PME and queue a resume request for it in that
1468  * case.
1469  */
1470 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1471 {
1472 	if (pme_poll_reset && dev->pme_poll)
1473 		dev->pme_poll = false;
1474 
1475 	if (pci_check_pme_status(dev)) {
1476 		pci_wakeup_event(dev);
1477 		pm_request_resume(&dev->dev);
1478 	}
1479 	return 0;
1480 }
1481 
1482 /**
1483  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1484  * @bus: Top bus of the subtree to walk.
1485  */
1486 void pci_pme_wakeup_bus(struct pci_bus *bus)
1487 {
1488 	if (bus)
1489 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1490 }
1491 
1492 /**
1493  * pci_wakeup - Wake up a PCI device
1494  * @pci_dev: Device to handle.
1495  * @ign: ignored parameter
1496  */
1497 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1498 {
1499 	pci_wakeup_event(pci_dev);
1500 	pm_request_resume(&pci_dev->dev);
1501 	return 0;
1502 }
1503 
1504 /**
1505  * pci_wakeup_bus - Walk given bus and wake up devices on it
1506  * @bus: Top bus of the subtree to walk.
1507  */
1508 void pci_wakeup_bus(struct pci_bus *bus)
1509 {
1510 	if (bus)
1511 		pci_walk_bus(bus, pci_wakeup, NULL);
1512 }
1513 
1514 /**
1515  * pci_pme_capable - check the capability of PCI device to generate PME#
1516  * @dev: PCI device to handle.
1517  * @state: PCI state from which device will issue PME#.
1518  */
1519 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1520 {
1521 	if (!dev->pm_cap)
1522 		return false;
1523 
1524 	return !!(dev->pme_support & (1 << state));
1525 }
1526 
1527 static void pci_pme_list_scan(struct work_struct *work)
1528 {
1529 	struct pci_pme_device *pme_dev, *n;
1530 
1531 	mutex_lock(&pci_pme_list_mutex);
1532 	if (!list_empty(&pci_pme_list)) {
1533 		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1534 			if (pme_dev->dev->pme_poll) {
1535 				struct pci_dev *bridge;
1536 
1537 				bridge = pme_dev->dev->bus->self;
1538 				/*
1539 				 * If bridge is in low power state, the
1540 				 * configuration space of subordinate devices
1541 				 * may be not accessible
1542 				 */
1543 				if (bridge && bridge->current_state != PCI_D0)
1544 					continue;
1545 				pci_pme_wakeup(pme_dev->dev, NULL);
1546 			} else {
1547 				list_del(&pme_dev->list);
1548 				kfree(pme_dev);
1549 			}
1550 		}
1551 		if (!list_empty(&pci_pme_list))
1552 			schedule_delayed_work(&pci_pme_work,
1553 					      msecs_to_jiffies(PME_TIMEOUT));
1554 	}
1555 	mutex_unlock(&pci_pme_list_mutex);
1556 }
1557 
1558 /**
1559  * pci_pme_active - enable or disable PCI device's PME# function
1560  * @dev: PCI device to handle.
1561  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1562  *
1563  * The caller must verify that the device is capable of generating PME# before
1564  * calling this function with @enable equal to 'true'.
1565  */
1566 void pci_pme_active(struct pci_dev *dev, bool enable)
1567 {
1568 	u16 pmcsr;
1569 
1570 	if (!dev->pm_cap)
1571 		return;
1572 
1573 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1574 	/* Clear PME_Status by writing 1 to it and enable PME# */
1575 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1576 	if (!enable)
1577 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1578 
1579 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1580 
1581 	/* PCI (as opposed to PCIe) PME requires that the device have
1582 	   its PME# line hooked up correctly. Not all hardware vendors
1583 	   do this, so the PME never gets delivered and the device
1584 	   remains asleep. The easiest way around this is to
1585 	   periodically walk the list of suspended devices and check
1586 	   whether any have their PME flag set. The assumption is that
1587 	   we'll wake up often enough anyway that this won't be a huge
1588 	   hit, and the power savings from the devices will still be a
1589 	   win. */
1590 
1591 	if (dev->pme_poll) {
1592 		struct pci_pme_device *pme_dev;
1593 		if (enable) {
1594 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1595 					  GFP_KERNEL);
1596 			if (!pme_dev)
1597 				goto out;
1598 			pme_dev->dev = dev;
1599 			mutex_lock(&pci_pme_list_mutex);
1600 			list_add(&pme_dev->list, &pci_pme_list);
1601 			if (list_is_singular(&pci_pme_list))
1602 				schedule_delayed_work(&pci_pme_work,
1603 						      msecs_to_jiffies(PME_TIMEOUT));
1604 			mutex_unlock(&pci_pme_list_mutex);
1605 		} else {
1606 			mutex_lock(&pci_pme_list_mutex);
1607 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1608 				if (pme_dev->dev == dev) {
1609 					list_del(&pme_dev->list);
1610 					kfree(pme_dev);
1611 					break;
1612 				}
1613 			}
1614 			mutex_unlock(&pci_pme_list_mutex);
1615 		}
1616 	}
1617 
1618 out:
1619 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1620 }
1621 
1622 /**
1623  * __pci_enable_wake - enable PCI device as wakeup event source
1624  * @dev: PCI device affected
1625  * @state: PCI state from which device will issue wakeup events
1626  * @runtime: True if the events are to be generated at run time
1627  * @enable: True to enable event generation; false to disable
1628  *
1629  * This enables the device as a wakeup event source, or disables it.
1630  * When such events involves platform-specific hooks, those hooks are
1631  * called automatically by this routine.
1632  *
1633  * Devices with legacy power management (no standard PCI PM capabilities)
1634  * always require such platform hooks.
1635  *
1636  * RETURN VALUE:
1637  * 0 is returned on success
1638  * -EINVAL is returned if device is not supposed to wake up the system
1639  * Error code depending on the platform is returned if both the platform and
1640  * the native mechanism fail to enable the generation of wake-up events
1641  */
1642 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1643 		      bool runtime, bool enable)
1644 {
1645 	int ret = 0;
1646 
1647 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1648 		return -EINVAL;
1649 
1650 	/* Don't do the same thing twice in a row for one device. */
1651 	if (!!enable == !!dev->wakeup_prepared)
1652 		return 0;
1653 
1654 	/*
1655 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1656 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1657 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1658 	 */
1659 
1660 	if (enable) {
1661 		int error;
1662 
1663 		if (pci_pme_capable(dev, state))
1664 			pci_pme_active(dev, true);
1665 		else
1666 			ret = 1;
1667 		error = runtime ? platform_pci_run_wake(dev, true) :
1668 					platform_pci_sleep_wake(dev, true);
1669 		if (ret)
1670 			ret = error;
1671 		if (!ret)
1672 			dev->wakeup_prepared = true;
1673 	} else {
1674 		if (runtime)
1675 			platform_pci_run_wake(dev, false);
1676 		else
1677 			platform_pci_sleep_wake(dev, false);
1678 		pci_pme_active(dev, false);
1679 		dev->wakeup_prepared = false;
1680 	}
1681 
1682 	return ret;
1683 }
1684 EXPORT_SYMBOL(__pci_enable_wake);
1685 
1686 /**
1687  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1688  * @dev: PCI device to prepare
1689  * @enable: True to enable wake-up event generation; false to disable
1690  *
1691  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1692  * and this function allows them to set that up cleanly - pci_enable_wake()
1693  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1694  * ordering constraints.
1695  *
1696  * This function only returns error code if the device is not capable of
1697  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1698  * enable wake-up power for it.
1699  */
1700 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1701 {
1702 	return pci_pme_capable(dev, PCI_D3cold) ?
1703 			pci_enable_wake(dev, PCI_D3cold, enable) :
1704 			pci_enable_wake(dev, PCI_D3hot, enable);
1705 }
1706 
1707 /**
1708  * pci_target_state - find an appropriate low power state for a given PCI dev
1709  * @dev: PCI device
1710  *
1711  * Use underlying platform code to find a supported low power state for @dev.
1712  * If the platform can't manage @dev, return the deepest state from which it
1713  * can generate wake events, based on any available PME info.
1714  */
1715 pci_power_t pci_target_state(struct pci_dev *dev)
1716 {
1717 	pci_power_t target_state = PCI_D3hot;
1718 
1719 	if (platform_pci_power_manageable(dev)) {
1720 		/*
1721 		 * Call the platform to choose the target state of the device
1722 		 * and enable wake-up from this state if supported.
1723 		 */
1724 		pci_power_t state = platform_pci_choose_state(dev);
1725 
1726 		switch (state) {
1727 		case PCI_POWER_ERROR:
1728 		case PCI_UNKNOWN:
1729 			break;
1730 		case PCI_D1:
1731 		case PCI_D2:
1732 			if (pci_no_d1d2(dev))
1733 				break;
1734 		default:
1735 			target_state = state;
1736 		}
1737 	} else if (!dev->pm_cap) {
1738 		target_state = PCI_D0;
1739 	} else if (device_may_wakeup(&dev->dev)) {
1740 		/*
1741 		 * Find the deepest state from which the device can generate
1742 		 * wake-up events, make it the target state and enable device
1743 		 * to generate PME#.
1744 		 */
1745 		if (dev->pme_support) {
1746 			while (target_state
1747 			      && !(dev->pme_support & (1 << target_state)))
1748 				target_state--;
1749 		}
1750 	}
1751 
1752 	return target_state;
1753 }
1754 
1755 /**
1756  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1757  * @dev: Device to handle.
1758  *
1759  * Choose the power state appropriate for the device depending on whether
1760  * it can wake up the system and/or is power manageable by the platform
1761  * (PCI_D3hot is the default) and put the device into that state.
1762  */
1763 int pci_prepare_to_sleep(struct pci_dev *dev)
1764 {
1765 	pci_power_t target_state = pci_target_state(dev);
1766 	int error;
1767 
1768 	if (target_state == PCI_POWER_ERROR)
1769 		return -EIO;
1770 
1771 	/* D3cold during system suspend/hibernate is not supported */
1772 	if (target_state > PCI_D3hot)
1773 		target_state = PCI_D3hot;
1774 
1775 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1776 
1777 	error = pci_set_power_state(dev, target_state);
1778 
1779 	if (error)
1780 		pci_enable_wake(dev, target_state, false);
1781 
1782 	return error;
1783 }
1784 
1785 /**
1786  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1787  * @dev: Device to handle.
1788  *
1789  * Disable device's system wake-up capability and put it into D0.
1790  */
1791 int pci_back_from_sleep(struct pci_dev *dev)
1792 {
1793 	pci_enable_wake(dev, PCI_D0, false);
1794 	return pci_set_power_state(dev, PCI_D0);
1795 }
1796 
1797 /**
1798  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1799  * @dev: PCI device being suspended.
1800  *
1801  * Prepare @dev to generate wake-up events at run time and put it into a low
1802  * power state.
1803  */
1804 int pci_finish_runtime_suspend(struct pci_dev *dev)
1805 {
1806 	pci_power_t target_state = pci_target_state(dev);
1807 	int error;
1808 
1809 	if (target_state == PCI_POWER_ERROR)
1810 		return -EIO;
1811 
1812 	dev->runtime_d3cold = target_state == PCI_D3cold;
1813 
1814 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1815 
1816 	error = pci_set_power_state(dev, target_state);
1817 
1818 	if (error) {
1819 		__pci_enable_wake(dev, target_state, true, false);
1820 		dev->runtime_d3cold = false;
1821 	}
1822 
1823 	return error;
1824 }
1825 
1826 /**
1827  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1828  * @dev: Device to check.
1829  *
1830  * Return true if the device itself is cabable of generating wake-up events
1831  * (through the platform or using the native PCIe PME) or if the device supports
1832  * PME and one of its upstream bridges can generate wake-up events.
1833  */
1834 bool pci_dev_run_wake(struct pci_dev *dev)
1835 {
1836 	struct pci_bus *bus = dev->bus;
1837 
1838 	if (device_run_wake(&dev->dev))
1839 		return true;
1840 
1841 	if (!dev->pme_support)
1842 		return false;
1843 
1844 	while (bus->parent) {
1845 		struct pci_dev *bridge = bus->self;
1846 
1847 		if (device_run_wake(&bridge->dev))
1848 			return true;
1849 
1850 		bus = bus->parent;
1851 	}
1852 
1853 	/* We have reached the root bus. */
1854 	if (bus->bridge)
1855 		return device_run_wake(bus->bridge);
1856 
1857 	return false;
1858 }
1859 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1860 
1861 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1862 {
1863 	struct device *dev = &pdev->dev;
1864 	struct device *parent = dev->parent;
1865 
1866 	if (parent)
1867 		pm_runtime_get_sync(parent);
1868 	pm_runtime_get_noresume(dev);
1869 	/*
1870 	 * pdev->current_state is set to PCI_D3cold during suspending,
1871 	 * so wait until suspending completes
1872 	 */
1873 	pm_runtime_barrier(dev);
1874 	/*
1875 	 * Only need to resume devices in D3cold, because config
1876 	 * registers are still accessible for devices suspended but
1877 	 * not in D3cold.
1878 	 */
1879 	if (pdev->current_state == PCI_D3cold)
1880 		pm_runtime_resume(dev);
1881 }
1882 
1883 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1884 {
1885 	struct device *dev = &pdev->dev;
1886 	struct device *parent = dev->parent;
1887 
1888 	pm_runtime_put(dev);
1889 	if (parent)
1890 		pm_runtime_put_sync(parent);
1891 }
1892 
1893 /**
1894  * pci_pm_init - Initialize PM functions of given PCI device
1895  * @dev: PCI device to handle.
1896  */
1897 void pci_pm_init(struct pci_dev *dev)
1898 {
1899 	int pm;
1900 	u16 pmc;
1901 
1902 	pm_runtime_forbid(&dev->dev);
1903 	device_enable_async_suspend(&dev->dev);
1904 	dev->wakeup_prepared = false;
1905 
1906 	dev->pm_cap = 0;
1907 
1908 	/* find PCI PM capability in list */
1909 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1910 	if (!pm)
1911 		return;
1912 	/* Check device's ability to generate PME# */
1913 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1914 
1915 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1916 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1917 			pmc & PCI_PM_CAP_VER_MASK);
1918 		return;
1919 	}
1920 
1921 	dev->pm_cap = pm;
1922 	dev->d3_delay = PCI_PM_D3_WAIT;
1923 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1924 	dev->d3cold_allowed = true;
1925 
1926 	dev->d1_support = false;
1927 	dev->d2_support = false;
1928 	if (!pci_no_d1d2(dev)) {
1929 		if (pmc & PCI_PM_CAP_D1)
1930 			dev->d1_support = true;
1931 		if (pmc & PCI_PM_CAP_D2)
1932 			dev->d2_support = true;
1933 
1934 		if (dev->d1_support || dev->d2_support)
1935 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1936 				   dev->d1_support ? " D1" : "",
1937 				   dev->d2_support ? " D2" : "");
1938 	}
1939 
1940 	pmc &= PCI_PM_CAP_PME_MASK;
1941 	if (pmc) {
1942 		dev_printk(KERN_DEBUG, &dev->dev,
1943 			 "PME# supported from%s%s%s%s%s\n",
1944 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1945 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1946 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1947 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1948 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1949 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1950 		dev->pme_poll = true;
1951 		/*
1952 		 * Make device's PM flags reflect the wake-up capability, but
1953 		 * let the user space enable it to wake up the system as needed.
1954 		 */
1955 		device_set_wakeup_capable(&dev->dev, true);
1956 		/* Disable the PME# generation functionality */
1957 		pci_pme_active(dev, false);
1958 	} else {
1959 		dev->pme_support = 0;
1960 	}
1961 }
1962 
1963 /**
1964  * platform_pci_wakeup_init - init platform wakeup if present
1965  * @dev: PCI device
1966  *
1967  * Some devices don't have PCI PM caps but can still generate wakeup
1968  * events through platform methods (like ACPI events).  If @dev supports
1969  * platform wakeup events, set the device flag to indicate as much.  This
1970  * may be redundant if the device also supports PCI PM caps, but double
1971  * initialization should be safe in that case.
1972  */
1973 void platform_pci_wakeup_init(struct pci_dev *dev)
1974 {
1975 	if (!platform_pci_can_wakeup(dev))
1976 		return;
1977 
1978 	device_set_wakeup_capable(&dev->dev, true);
1979 	platform_pci_sleep_wake(dev, false);
1980 }
1981 
1982 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1983 	struct pci_cap_saved_state *new_cap)
1984 {
1985 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1986 }
1987 
1988 /**
1989  * pci_add_save_buffer - allocate buffer for saving given capability registers
1990  * @dev: the PCI device
1991  * @cap: the capability to allocate the buffer for
1992  * @size: requested size of the buffer
1993  */
1994 static int pci_add_cap_save_buffer(
1995 	struct pci_dev *dev, char cap, unsigned int size)
1996 {
1997 	int pos;
1998 	struct pci_cap_saved_state *save_state;
1999 
2000 	pos = pci_find_capability(dev, cap);
2001 	if (pos <= 0)
2002 		return 0;
2003 
2004 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2005 	if (!save_state)
2006 		return -ENOMEM;
2007 
2008 	save_state->cap.cap_nr = cap;
2009 	save_state->cap.size = size;
2010 	pci_add_saved_cap(dev, save_state);
2011 
2012 	return 0;
2013 }
2014 
2015 /**
2016  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2017  * @dev: the PCI device
2018  */
2019 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2020 {
2021 	int error;
2022 
2023 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2024 					PCI_EXP_SAVE_REGS * sizeof(u16));
2025 	if (error)
2026 		dev_err(&dev->dev,
2027 			"unable to preallocate PCI Express save buffer\n");
2028 
2029 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2030 	if (error)
2031 		dev_err(&dev->dev,
2032 			"unable to preallocate PCI-X save buffer\n");
2033 }
2034 
2035 void pci_free_cap_save_buffers(struct pci_dev *dev)
2036 {
2037 	struct pci_cap_saved_state *tmp;
2038 	struct hlist_node *pos, *n;
2039 
2040 	hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
2041 		kfree(tmp);
2042 }
2043 
2044 /**
2045  * pci_enable_ari - enable ARI forwarding if hardware support it
2046  * @dev: the PCI device
2047  */
2048 void pci_enable_ari(struct pci_dev *dev)
2049 {
2050 	u32 cap;
2051 	struct pci_dev *bridge;
2052 
2053 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2054 		return;
2055 
2056 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI))
2057 		return;
2058 
2059 	bridge = dev->bus->self;
2060 	if (!bridge)
2061 		return;
2062 
2063 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2064 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2065 		return;
2066 
2067 	pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_ARI);
2068 	bridge->ari_enabled = 1;
2069 }
2070 
2071 /**
2072  * pci_enable_ido - enable ID-based Ordering on a device
2073  * @dev: the PCI device
2074  * @type: which types of IDO to enable
2075  *
2076  * Enable ID-based ordering on @dev.  @type can contain the bits
2077  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2078  * which types of transactions are allowed to be re-ordered.
2079  */
2080 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2081 {
2082 	u16 ctrl = 0;
2083 
2084 	if (type & PCI_EXP_IDO_REQUEST)
2085 		ctrl |= PCI_EXP_IDO_REQ_EN;
2086 	if (type & PCI_EXP_IDO_COMPLETION)
2087 		ctrl |= PCI_EXP_IDO_CMP_EN;
2088 	if (ctrl)
2089 		pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2090 }
2091 EXPORT_SYMBOL(pci_enable_ido);
2092 
2093 /**
2094  * pci_disable_ido - disable ID-based ordering on a device
2095  * @dev: the PCI device
2096  * @type: which types of IDO to disable
2097  */
2098 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2099 {
2100 	u16 ctrl = 0;
2101 
2102 	if (type & PCI_EXP_IDO_REQUEST)
2103 		ctrl |= PCI_EXP_IDO_REQ_EN;
2104 	if (type & PCI_EXP_IDO_COMPLETION)
2105 		ctrl |= PCI_EXP_IDO_CMP_EN;
2106 	if (ctrl)
2107 		pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2108 }
2109 EXPORT_SYMBOL(pci_disable_ido);
2110 
2111 /**
2112  * pci_enable_obff - enable optimized buffer flush/fill
2113  * @dev: PCI device
2114  * @type: type of signaling to use
2115  *
2116  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2117  * signaling if possible, falling back to message signaling only if
2118  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2119  * be brought out of L0s or L1 to send the message.  It should be either
2120  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2121  *
2122  * If your device can benefit from receiving all messages, even at the
2123  * power cost of bringing the link back up from a low power state, use
2124  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2125  * preferred type).
2126  *
2127  * RETURNS:
2128  * Zero on success, appropriate error number on failure.
2129  */
2130 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2131 {
2132 	u32 cap;
2133 	u16 ctrl;
2134 	int ret;
2135 
2136 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2137 	if (!(cap & PCI_EXP_OBFF_MASK))
2138 		return -ENOTSUPP; /* no OBFF support at all */
2139 
2140 	/* Make sure the topology supports OBFF as well */
2141 	if (dev->bus->self) {
2142 		ret = pci_enable_obff(dev->bus->self, type);
2143 		if (ret)
2144 			return ret;
2145 	}
2146 
2147 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2148 	if (cap & PCI_EXP_OBFF_WAKE)
2149 		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2150 	else {
2151 		switch (type) {
2152 		case PCI_EXP_OBFF_SIGNAL_L0:
2153 			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2154 				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2155 			break;
2156 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2157 			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2158 			ctrl |= PCI_EXP_OBFF_MSGB_EN;
2159 			break;
2160 		default:
2161 			WARN(1, "bad OBFF signal type\n");
2162 			return -ENOTSUPP;
2163 		}
2164 	}
2165 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2166 
2167 	return 0;
2168 }
2169 EXPORT_SYMBOL(pci_enable_obff);
2170 
2171 /**
2172  * pci_disable_obff - disable optimized buffer flush/fill
2173  * @dev: PCI device
2174  *
2175  * Disable OBFF on @dev.
2176  */
2177 void pci_disable_obff(struct pci_dev *dev)
2178 {
2179 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2180 }
2181 EXPORT_SYMBOL(pci_disable_obff);
2182 
2183 /**
2184  * pci_ltr_supported - check whether a device supports LTR
2185  * @dev: PCI device
2186  *
2187  * RETURNS:
2188  * True if @dev supports latency tolerance reporting, false otherwise.
2189  */
2190 static bool pci_ltr_supported(struct pci_dev *dev)
2191 {
2192 	u32 cap;
2193 
2194 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2195 
2196 	return cap & PCI_EXP_DEVCAP2_LTR;
2197 }
2198 
2199 /**
2200  * pci_enable_ltr - enable latency tolerance reporting
2201  * @dev: PCI device
2202  *
2203  * Enable LTR on @dev if possible, which means enabling it first on
2204  * upstream ports.
2205  *
2206  * RETURNS:
2207  * Zero on success, errno on failure.
2208  */
2209 int pci_enable_ltr(struct pci_dev *dev)
2210 {
2211 	int ret;
2212 
2213 	/* Only primary function can enable/disable LTR */
2214 	if (PCI_FUNC(dev->devfn) != 0)
2215 		return -EINVAL;
2216 
2217 	if (!pci_ltr_supported(dev))
2218 		return -ENOTSUPP;
2219 
2220 	/* Enable upstream ports first */
2221 	if (dev->bus->self) {
2222 		ret = pci_enable_ltr(dev->bus->self);
2223 		if (ret)
2224 			return ret;
2225 	}
2226 
2227 	return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2228 }
2229 EXPORT_SYMBOL(pci_enable_ltr);
2230 
2231 /**
2232  * pci_disable_ltr - disable latency tolerance reporting
2233  * @dev: PCI device
2234  */
2235 void pci_disable_ltr(struct pci_dev *dev)
2236 {
2237 	/* Only primary function can enable/disable LTR */
2238 	if (PCI_FUNC(dev->devfn) != 0)
2239 		return;
2240 
2241 	if (!pci_ltr_supported(dev))
2242 		return;
2243 
2244 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2245 }
2246 EXPORT_SYMBOL(pci_disable_ltr);
2247 
2248 static int __pci_ltr_scale(int *val)
2249 {
2250 	int scale = 0;
2251 
2252 	while (*val > 1023) {
2253 		*val = (*val + 31) / 32;
2254 		scale++;
2255 	}
2256 	return scale;
2257 }
2258 
2259 /**
2260  * pci_set_ltr - set LTR latency values
2261  * @dev: PCI device
2262  * @snoop_lat_ns: snoop latency in nanoseconds
2263  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2264  *
2265  * Figure out the scale and set the LTR values accordingly.
2266  */
2267 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2268 {
2269 	int pos, ret, snoop_scale, nosnoop_scale;
2270 	u16 val;
2271 
2272 	if (!pci_ltr_supported(dev))
2273 		return -ENOTSUPP;
2274 
2275 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2276 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2277 
2278 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2279 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2280 		return -EINVAL;
2281 
2282 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2283 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2284 		return -EINVAL;
2285 
2286 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2287 	if (!pos)
2288 		return -ENOTSUPP;
2289 
2290 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2291 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2292 	if (ret != 4)
2293 		return -EIO;
2294 
2295 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2296 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2297 	if (ret != 4)
2298 		return -EIO;
2299 
2300 	return 0;
2301 }
2302 EXPORT_SYMBOL(pci_set_ltr);
2303 
2304 static int pci_acs_enable;
2305 
2306 /**
2307  * pci_request_acs - ask for ACS to be enabled if supported
2308  */
2309 void pci_request_acs(void)
2310 {
2311 	pci_acs_enable = 1;
2312 }
2313 
2314 /**
2315  * pci_enable_acs - enable ACS if hardware support it
2316  * @dev: the PCI device
2317  */
2318 void pci_enable_acs(struct pci_dev *dev)
2319 {
2320 	int pos;
2321 	u16 cap;
2322 	u16 ctrl;
2323 
2324 	if (!pci_acs_enable)
2325 		return;
2326 
2327 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2328 	if (!pos)
2329 		return;
2330 
2331 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2332 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2333 
2334 	/* Source Validation */
2335 	ctrl |= (cap & PCI_ACS_SV);
2336 
2337 	/* P2P Request Redirect */
2338 	ctrl |= (cap & PCI_ACS_RR);
2339 
2340 	/* P2P Completion Redirect */
2341 	ctrl |= (cap & PCI_ACS_CR);
2342 
2343 	/* Upstream Forwarding */
2344 	ctrl |= (cap & PCI_ACS_UF);
2345 
2346 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2347 }
2348 
2349 /**
2350  * pci_acs_enabled - test ACS against required flags for a given device
2351  * @pdev: device to test
2352  * @acs_flags: required PCI ACS flags
2353  *
2354  * Return true if the device supports the provided flags.  Automatically
2355  * filters out flags that are not implemented on multifunction devices.
2356  */
2357 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2358 {
2359 	int pos, ret;
2360 	u16 ctrl;
2361 
2362 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2363 	if (ret >= 0)
2364 		return ret > 0;
2365 
2366 	if (!pci_is_pcie(pdev))
2367 		return false;
2368 
2369 	/* Filter out flags not applicable to multifunction */
2370 	if (pdev->multifunction)
2371 		acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2372 			      PCI_ACS_EC | PCI_ACS_DT);
2373 
2374 	if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2375 	    pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2376 	    pdev->multifunction) {
2377 		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2378 		if (!pos)
2379 			return false;
2380 
2381 		pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2382 		if ((ctrl & acs_flags) != acs_flags)
2383 			return false;
2384 	}
2385 
2386 	return true;
2387 }
2388 
2389 /**
2390  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2391  * @start: starting downstream device
2392  * @end: ending upstream device or NULL to search to the root bus
2393  * @acs_flags: required flags
2394  *
2395  * Walk up a device tree from start to end testing PCI ACS support.  If
2396  * any step along the way does not support the required flags, return false.
2397  */
2398 bool pci_acs_path_enabled(struct pci_dev *start,
2399 			  struct pci_dev *end, u16 acs_flags)
2400 {
2401 	struct pci_dev *pdev, *parent = start;
2402 
2403 	do {
2404 		pdev = parent;
2405 
2406 		if (!pci_acs_enabled(pdev, acs_flags))
2407 			return false;
2408 
2409 		if (pci_is_root_bus(pdev->bus))
2410 			return (end == NULL);
2411 
2412 		parent = pdev->bus->self;
2413 	} while (pdev != end);
2414 
2415 	return true;
2416 }
2417 
2418 /**
2419  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2420  * @dev: the PCI device
2421  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2422  *
2423  * Perform INTx swizzling for a device behind one level of bridge.  This is
2424  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2425  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2426  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2427  * the PCI Express Base Specification, Revision 2.1)
2428  */
2429 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2430 {
2431 	int slot;
2432 
2433 	if (pci_ari_enabled(dev->bus))
2434 		slot = 0;
2435 	else
2436 		slot = PCI_SLOT(dev->devfn);
2437 
2438 	return (((pin - 1) + slot) % 4) + 1;
2439 }
2440 
2441 int
2442 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2443 {
2444 	u8 pin;
2445 
2446 	pin = dev->pin;
2447 	if (!pin)
2448 		return -1;
2449 
2450 	while (!pci_is_root_bus(dev->bus)) {
2451 		pin = pci_swizzle_interrupt_pin(dev, pin);
2452 		dev = dev->bus->self;
2453 	}
2454 	*bridge = dev;
2455 	return pin;
2456 }
2457 
2458 /**
2459  * pci_common_swizzle - swizzle INTx all the way to root bridge
2460  * @dev: the PCI device
2461  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2462  *
2463  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2464  * bridges all the way up to a PCI root bus.
2465  */
2466 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2467 {
2468 	u8 pin = *pinp;
2469 
2470 	while (!pci_is_root_bus(dev->bus)) {
2471 		pin = pci_swizzle_interrupt_pin(dev, pin);
2472 		dev = dev->bus->self;
2473 	}
2474 	*pinp = pin;
2475 	return PCI_SLOT(dev->devfn);
2476 }
2477 
2478 /**
2479  *	pci_release_region - Release a PCI bar
2480  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2481  *	@bar: BAR to release
2482  *
2483  *	Releases the PCI I/O and memory resources previously reserved by a
2484  *	successful call to pci_request_region.  Call this function only
2485  *	after all use of the PCI regions has ceased.
2486  */
2487 void pci_release_region(struct pci_dev *pdev, int bar)
2488 {
2489 	struct pci_devres *dr;
2490 
2491 	if (pci_resource_len(pdev, bar) == 0)
2492 		return;
2493 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2494 		release_region(pci_resource_start(pdev, bar),
2495 				pci_resource_len(pdev, bar));
2496 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2497 		release_mem_region(pci_resource_start(pdev, bar),
2498 				pci_resource_len(pdev, bar));
2499 
2500 	dr = find_pci_dr(pdev);
2501 	if (dr)
2502 		dr->region_mask &= ~(1 << bar);
2503 }
2504 
2505 /**
2506  *	__pci_request_region - Reserved PCI I/O and memory resource
2507  *	@pdev: PCI device whose resources are to be reserved
2508  *	@bar: BAR to be reserved
2509  *	@res_name: Name to be associated with resource.
2510  *	@exclusive: whether the region access is exclusive or not
2511  *
2512  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2513  *	being reserved by owner @res_name.  Do not access any
2514  *	address inside the PCI regions unless this call returns
2515  *	successfully.
2516  *
2517  *	If @exclusive is set, then the region is marked so that userspace
2518  *	is explicitly not allowed to map the resource via /dev/mem or
2519  * 	sysfs MMIO access.
2520  *
2521  *	Returns 0 on success, or %EBUSY on error.  A warning
2522  *	message is also printed on failure.
2523  */
2524 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2525 									int exclusive)
2526 {
2527 	struct pci_devres *dr;
2528 
2529 	if (pci_resource_len(pdev, bar) == 0)
2530 		return 0;
2531 
2532 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2533 		if (!request_region(pci_resource_start(pdev, bar),
2534 			    pci_resource_len(pdev, bar), res_name))
2535 			goto err_out;
2536 	}
2537 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2538 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2539 					pci_resource_len(pdev, bar), res_name,
2540 					exclusive))
2541 			goto err_out;
2542 	}
2543 
2544 	dr = find_pci_dr(pdev);
2545 	if (dr)
2546 		dr->region_mask |= 1 << bar;
2547 
2548 	return 0;
2549 
2550 err_out:
2551 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2552 		 &pdev->resource[bar]);
2553 	return -EBUSY;
2554 }
2555 
2556 /**
2557  *	pci_request_region - Reserve PCI I/O and memory resource
2558  *	@pdev: PCI device whose resources are to be reserved
2559  *	@bar: BAR to be reserved
2560  *	@res_name: Name to be associated with resource
2561  *
2562  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2563  *	being reserved by owner @res_name.  Do not access any
2564  *	address inside the PCI regions unless this call returns
2565  *	successfully.
2566  *
2567  *	Returns 0 on success, or %EBUSY on error.  A warning
2568  *	message is also printed on failure.
2569  */
2570 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2571 {
2572 	return __pci_request_region(pdev, bar, res_name, 0);
2573 }
2574 
2575 /**
2576  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2577  *	@pdev: PCI device whose resources are to be reserved
2578  *	@bar: BAR to be reserved
2579  *	@res_name: Name to be associated with resource.
2580  *
2581  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2582  *	being reserved by owner @res_name.  Do not access any
2583  *	address inside the PCI regions unless this call returns
2584  *	successfully.
2585  *
2586  *	Returns 0 on success, or %EBUSY on error.  A warning
2587  *	message is also printed on failure.
2588  *
2589  *	The key difference that _exclusive makes it that userspace is
2590  *	explicitly not allowed to map the resource via /dev/mem or
2591  * 	sysfs.
2592  */
2593 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2594 {
2595 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2596 }
2597 /**
2598  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2599  * @pdev: PCI device whose resources were previously reserved
2600  * @bars: Bitmask of BARs to be released
2601  *
2602  * Release selected PCI I/O and memory resources previously reserved.
2603  * Call this function only after all use of the PCI regions has ceased.
2604  */
2605 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2606 {
2607 	int i;
2608 
2609 	for (i = 0; i < 6; i++)
2610 		if (bars & (1 << i))
2611 			pci_release_region(pdev, i);
2612 }
2613 
2614 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2615 				 const char *res_name, int excl)
2616 {
2617 	int i;
2618 
2619 	for (i = 0; i < 6; i++)
2620 		if (bars & (1 << i))
2621 			if (__pci_request_region(pdev, i, res_name, excl))
2622 				goto err_out;
2623 	return 0;
2624 
2625 err_out:
2626 	while(--i >= 0)
2627 		if (bars & (1 << i))
2628 			pci_release_region(pdev, i);
2629 
2630 	return -EBUSY;
2631 }
2632 
2633 
2634 /**
2635  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2636  * @pdev: PCI device whose resources are to be reserved
2637  * @bars: Bitmask of BARs to be requested
2638  * @res_name: Name to be associated with resource
2639  */
2640 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2641 				 const char *res_name)
2642 {
2643 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2644 }
2645 
2646 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2647 				 int bars, const char *res_name)
2648 {
2649 	return __pci_request_selected_regions(pdev, bars, res_name,
2650 			IORESOURCE_EXCLUSIVE);
2651 }
2652 
2653 /**
2654  *	pci_release_regions - Release reserved PCI I/O and memory resources
2655  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2656  *
2657  *	Releases all PCI I/O and memory resources previously reserved by a
2658  *	successful call to pci_request_regions.  Call this function only
2659  *	after all use of the PCI regions has ceased.
2660  */
2661 
2662 void pci_release_regions(struct pci_dev *pdev)
2663 {
2664 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2665 }
2666 
2667 /**
2668  *	pci_request_regions - Reserved PCI I/O and memory resources
2669  *	@pdev: PCI device whose resources are to be reserved
2670  *	@res_name: Name to be associated with resource.
2671  *
2672  *	Mark all PCI regions associated with PCI device @pdev as
2673  *	being reserved by owner @res_name.  Do not access any
2674  *	address inside the PCI regions unless this call returns
2675  *	successfully.
2676  *
2677  *	Returns 0 on success, or %EBUSY on error.  A warning
2678  *	message is also printed on failure.
2679  */
2680 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2681 {
2682 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2683 }
2684 
2685 /**
2686  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2687  *	@pdev: PCI device whose resources are to be reserved
2688  *	@res_name: Name to be associated with resource.
2689  *
2690  *	Mark all PCI regions associated with PCI device @pdev as
2691  *	being reserved by owner @res_name.  Do not access any
2692  *	address inside the PCI regions unless this call returns
2693  *	successfully.
2694  *
2695  *	pci_request_regions_exclusive() will mark the region so that
2696  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2697  *
2698  *	Returns 0 on success, or %EBUSY on error.  A warning
2699  *	message is also printed on failure.
2700  */
2701 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2702 {
2703 	return pci_request_selected_regions_exclusive(pdev,
2704 					((1 << 6) - 1), res_name);
2705 }
2706 
2707 static void __pci_set_master(struct pci_dev *dev, bool enable)
2708 {
2709 	u16 old_cmd, cmd;
2710 
2711 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2712 	if (enable)
2713 		cmd = old_cmd | PCI_COMMAND_MASTER;
2714 	else
2715 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2716 	if (cmd != old_cmd) {
2717 		dev_dbg(&dev->dev, "%s bus mastering\n",
2718 			enable ? "enabling" : "disabling");
2719 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2720 	}
2721 	dev->is_busmaster = enable;
2722 }
2723 
2724 /**
2725  * pcibios_setup - process "pci=" kernel boot arguments
2726  * @str: string used to pass in "pci=" kernel boot arguments
2727  *
2728  * Process kernel boot arguments.  This is the default implementation.
2729  * Architecture specific implementations can override this as necessary.
2730  */
2731 char * __weak __init pcibios_setup(char *str)
2732 {
2733 	return str;
2734 }
2735 
2736 /**
2737  * pcibios_set_master - enable PCI bus-mastering for device dev
2738  * @dev: the PCI device to enable
2739  *
2740  * Enables PCI bus-mastering for the device.  This is the default
2741  * implementation.  Architecture specific implementations can override
2742  * this if necessary.
2743  */
2744 void __weak pcibios_set_master(struct pci_dev *dev)
2745 {
2746 	u8 lat;
2747 
2748 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2749 	if (pci_is_pcie(dev))
2750 		return;
2751 
2752 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2753 	if (lat < 16)
2754 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2755 	else if (lat > pcibios_max_latency)
2756 		lat = pcibios_max_latency;
2757 	else
2758 		return;
2759 	dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2760 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2761 }
2762 
2763 /**
2764  * pci_set_master - enables bus-mastering for device dev
2765  * @dev: the PCI device to enable
2766  *
2767  * Enables bus-mastering on the device and calls pcibios_set_master()
2768  * to do the needed arch specific settings.
2769  */
2770 void pci_set_master(struct pci_dev *dev)
2771 {
2772 	__pci_set_master(dev, true);
2773 	pcibios_set_master(dev);
2774 }
2775 
2776 /**
2777  * pci_clear_master - disables bus-mastering for device dev
2778  * @dev: the PCI device to disable
2779  */
2780 void pci_clear_master(struct pci_dev *dev)
2781 {
2782 	__pci_set_master(dev, false);
2783 }
2784 
2785 /**
2786  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2787  * @dev: the PCI device for which MWI is to be enabled
2788  *
2789  * Helper function for pci_set_mwi.
2790  * Originally copied from drivers/net/acenic.c.
2791  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2792  *
2793  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2794  */
2795 int pci_set_cacheline_size(struct pci_dev *dev)
2796 {
2797 	u8 cacheline_size;
2798 
2799 	if (!pci_cache_line_size)
2800 		return -EINVAL;
2801 
2802 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2803 	   equal to or multiple of the right value. */
2804 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2805 	if (cacheline_size >= pci_cache_line_size &&
2806 	    (cacheline_size % pci_cache_line_size) == 0)
2807 		return 0;
2808 
2809 	/* Write the correct value. */
2810 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2811 	/* Read it back. */
2812 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2813 	if (cacheline_size == pci_cache_line_size)
2814 		return 0;
2815 
2816 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2817 		   "supported\n", pci_cache_line_size << 2);
2818 
2819 	return -EINVAL;
2820 }
2821 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2822 
2823 #ifdef PCI_DISABLE_MWI
2824 int pci_set_mwi(struct pci_dev *dev)
2825 {
2826 	return 0;
2827 }
2828 
2829 int pci_try_set_mwi(struct pci_dev *dev)
2830 {
2831 	return 0;
2832 }
2833 
2834 void pci_clear_mwi(struct pci_dev *dev)
2835 {
2836 }
2837 
2838 #else
2839 
2840 /**
2841  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2842  * @dev: the PCI device for which MWI is enabled
2843  *
2844  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2845  *
2846  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2847  */
2848 int
2849 pci_set_mwi(struct pci_dev *dev)
2850 {
2851 	int rc;
2852 	u16 cmd;
2853 
2854 	rc = pci_set_cacheline_size(dev);
2855 	if (rc)
2856 		return rc;
2857 
2858 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2859 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2860 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2861 		cmd |= PCI_COMMAND_INVALIDATE;
2862 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 /**
2869  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2870  * @dev: the PCI device for which MWI is enabled
2871  *
2872  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2873  * Callers are not required to check the return value.
2874  *
2875  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2876  */
2877 int pci_try_set_mwi(struct pci_dev *dev)
2878 {
2879 	int rc = pci_set_mwi(dev);
2880 	return rc;
2881 }
2882 
2883 /**
2884  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2885  * @dev: the PCI device to disable
2886  *
2887  * Disables PCI Memory-Write-Invalidate transaction on the device
2888  */
2889 void
2890 pci_clear_mwi(struct pci_dev *dev)
2891 {
2892 	u16 cmd;
2893 
2894 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2895 	if (cmd & PCI_COMMAND_INVALIDATE) {
2896 		cmd &= ~PCI_COMMAND_INVALIDATE;
2897 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2898 	}
2899 }
2900 #endif /* ! PCI_DISABLE_MWI */
2901 
2902 /**
2903  * pci_intx - enables/disables PCI INTx for device dev
2904  * @pdev: the PCI device to operate on
2905  * @enable: boolean: whether to enable or disable PCI INTx
2906  *
2907  * Enables/disables PCI INTx for device dev
2908  */
2909 void
2910 pci_intx(struct pci_dev *pdev, int enable)
2911 {
2912 	u16 pci_command, new;
2913 
2914 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2915 
2916 	if (enable) {
2917 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2918 	} else {
2919 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2920 	}
2921 
2922 	if (new != pci_command) {
2923 		struct pci_devres *dr;
2924 
2925 		pci_write_config_word(pdev, PCI_COMMAND, new);
2926 
2927 		dr = find_pci_dr(pdev);
2928 		if (dr && !dr->restore_intx) {
2929 			dr->restore_intx = 1;
2930 			dr->orig_intx = !enable;
2931 		}
2932 	}
2933 }
2934 
2935 /**
2936  * pci_intx_mask_supported - probe for INTx masking support
2937  * @dev: the PCI device to operate on
2938  *
2939  * Check if the device dev support INTx masking via the config space
2940  * command word.
2941  */
2942 bool pci_intx_mask_supported(struct pci_dev *dev)
2943 {
2944 	bool mask_supported = false;
2945 	u16 orig, new;
2946 
2947 	if (dev->broken_intx_masking)
2948 		return false;
2949 
2950 	pci_cfg_access_lock(dev);
2951 
2952 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2953 	pci_write_config_word(dev, PCI_COMMAND,
2954 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2955 	pci_read_config_word(dev, PCI_COMMAND, &new);
2956 
2957 	/*
2958 	 * There's no way to protect against hardware bugs or detect them
2959 	 * reliably, but as long as we know what the value should be, let's
2960 	 * go ahead and check it.
2961 	 */
2962 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2963 		dev_err(&dev->dev, "Command register changed from "
2964 			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2965 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2966 		mask_supported = true;
2967 		pci_write_config_word(dev, PCI_COMMAND, orig);
2968 	}
2969 
2970 	pci_cfg_access_unlock(dev);
2971 	return mask_supported;
2972 }
2973 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2974 
2975 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2976 {
2977 	struct pci_bus *bus = dev->bus;
2978 	bool mask_updated = true;
2979 	u32 cmd_status_dword;
2980 	u16 origcmd, newcmd;
2981 	unsigned long flags;
2982 	bool irq_pending;
2983 
2984 	/*
2985 	 * We do a single dword read to retrieve both command and status.
2986 	 * Document assumptions that make this possible.
2987 	 */
2988 	BUILD_BUG_ON(PCI_COMMAND % 4);
2989 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2990 
2991 	raw_spin_lock_irqsave(&pci_lock, flags);
2992 
2993 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2994 
2995 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2996 
2997 	/*
2998 	 * Check interrupt status register to see whether our device
2999 	 * triggered the interrupt (when masking) or the next IRQ is
3000 	 * already pending (when unmasking).
3001 	 */
3002 	if (mask != irq_pending) {
3003 		mask_updated = false;
3004 		goto done;
3005 	}
3006 
3007 	origcmd = cmd_status_dword;
3008 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3009 	if (mask)
3010 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3011 	if (newcmd != origcmd)
3012 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3013 
3014 done:
3015 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3016 
3017 	return mask_updated;
3018 }
3019 
3020 /**
3021  * pci_check_and_mask_intx - mask INTx on pending interrupt
3022  * @dev: the PCI device to operate on
3023  *
3024  * Check if the device dev has its INTx line asserted, mask it and
3025  * return true in that case. False is returned if not interrupt was
3026  * pending.
3027  */
3028 bool pci_check_and_mask_intx(struct pci_dev *dev)
3029 {
3030 	return pci_check_and_set_intx_mask(dev, true);
3031 }
3032 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3033 
3034 /**
3035  * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3036  * @dev: the PCI device to operate on
3037  *
3038  * Check if the device dev has its INTx line asserted, unmask it if not
3039  * and return true. False is returned and the mask remains active if
3040  * there was still an interrupt pending.
3041  */
3042 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3043 {
3044 	return pci_check_and_set_intx_mask(dev, false);
3045 }
3046 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3047 
3048 /**
3049  * pci_msi_off - disables any msi or msix capabilities
3050  * @dev: the PCI device to operate on
3051  *
3052  * If you want to use msi see pci_enable_msi and friends.
3053  * This is a lower level primitive that allows us to disable
3054  * msi operation at the device level.
3055  */
3056 void pci_msi_off(struct pci_dev *dev)
3057 {
3058 	int pos;
3059 	u16 control;
3060 
3061 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3062 	if (pos) {
3063 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3064 		control &= ~PCI_MSI_FLAGS_ENABLE;
3065 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3066 	}
3067 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3068 	if (pos) {
3069 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3070 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3071 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3072 	}
3073 }
3074 EXPORT_SYMBOL_GPL(pci_msi_off);
3075 
3076 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3077 {
3078 	return dma_set_max_seg_size(&dev->dev, size);
3079 }
3080 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3081 
3082 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3083 {
3084 	return dma_set_seg_boundary(&dev->dev, mask);
3085 }
3086 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3087 
3088 static int pcie_flr(struct pci_dev *dev, int probe)
3089 {
3090 	int i;
3091 	u32 cap;
3092 	u16 status;
3093 
3094 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3095 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3096 		return -ENOTTY;
3097 
3098 	if (probe)
3099 		return 0;
3100 
3101 	/* Wait for Transaction Pending bit clean */
3102 	for (i = 0; i < 4; i++) {
3103 		if (i)
3104 			msleep((1 << (i - 1)) * 100);
3105 
3106 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3107 		if (!(status & PCI_EXP_DEVSTA_TRPND))
3108 			goto clear;
3109 	}
3110 
3111 	dev_err(&dev->dev, "transaction is not cleared; "
3112 			"proceeding with reset anyway\n");
3113 
3114 clear:
3115 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3116 
3117 	msleep(100);
3118 
3119 	return 0;
3120 }
3121 
3122 static int pci_af_flr(struct pci_dev *dev, int probe)
3123 {
3124 	int i;
3125 	int pos;
3126 	u8 cap;
3127 	u8 status;
3128 
3129 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3130 	if (!pos)
3131 		return -ENOTTY;
3132 
3133 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3134 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3135 		return -ENOTTY;
3136 
3137 	if (probe)
3138 		return 0;
3139 
3140 	/* Wait for Transaction Pending bit clean */
3141 	for (i = 0; i < 4; i++) {
3142 		if (i)
3143 			msleep((1 << (i - 1)) * 100);
3144 
3145 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3146 		if (!(status & PCI_AF_STATUS_TP))
3147 			goto clear;
3148 	}
3149 
3150 	dev_err(&dev->dev, "transaction is not cleared; "
3151 			"proceeding with reset anyway\n");
3152 
3153 clear:
3154 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3155 	msleep(100);
3156 
3157 	return 0;
3158 }
3159 
3160 /**
3161  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3162  * @dev: Device to reset.
3163  * @probe: If set, only check if the device can be reset this way.
3164  *
3165  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3166  * unset, it will be reinitialized internally when going from PCI_D3hot to
3167  * PCI_D0.  If that's the case and the device is not in a low-power state
3168  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3169  *
3170  * NOTE: This causes the caller to sleep for twice the device power transition
3171  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3172  * by devault (i.e. unless the @dev's d3_delay field has a different value).
3173  * Moreover, only devices in D0 can be reset by this function.
3174  */
3175 static int pci_pm_reset(struct pci_dev *dev, int probe)
3176 {
3177 	u16 csr;
3178 
3179 	if (!dev->pm_cap)
3180 		return -ENOTTY;
3181 
3182 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3183 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3184 		return -ENOTTY;
3185 
3186 	if (probe)
3187 		return 0;
3188 
3189 	if (dev->current_state != PCI_D0)
3190 		return -EINVAL;
3191 
3192 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3193 	csr |= PCI_D3hot;
3194 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3195 	pci_dev_d3_sleep(dev);
3196 
3197 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3198 	csr |= PCI_D0;
3199 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3200 	pci_dev_d3_sleep(dev);
3201 
3202 	return 0;
3203 }
3204 
3205 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3206 {
3207 	u16 ctrl;
3208 	struct pci_dev *pdev;
3209 
3210 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3211 		return -ENOTTY;
3212 
3213 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3214 		if (pdev != dev)
3215 			return -ENOTTY;
3216 
3217 	if (probe)
3218 		return 0;
3219 
3220 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3221 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3222 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3223 	msleep(100);
3224 
3225 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3226 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3227 	msleep(100);
3228 
3229 	return 0;
3230 }
3231 
3232 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3233 {
3234 	int rc;
3235 
3236 	might_sleep();
3237 
3238 	rc = pci_dev_specific_reset(dev, probe);
3239 	if (rc != -ENOTTY)
3240 		goto done;
3241 
3242 	rc = pcie_flr(dev, probe);
3243 	if (rc != -ENOTTY)
3244 		goto done;
3245 
3246 	rc = pci_af_flr(dev, probe);
3247 	if (rc != -ENOTTY)
3248 		goto done;
3249 
3250 	rc = pci_pm_reset(dev, probe);
3251 	if (rc != -ENOTTY)
3252 		goto done;
3253 
3254 	rc = pci_parent_bus_reset(dev, probe);
3255 done:
3256 	return rc;
3257 }
3258 
3259 static int pci_dev_reset(struct pci_dev *dev, int probe)
3260 {
3261 	int rc;
3262 
3263 	if (!probe) {
3264 		pci_cfg_access_lock(dev);
3265 		/* block PM suspend, driver probe, etc. */
3266 		device_lock(&dev->dev);
3267 	}
3268 
3269 	rc = __pci_dev_reset(dev, probe);
3270 
3271 	if (!probe) {
3272 		device_unlock(&dev->dev);
3273 		pci_cfg_access_unlock(dev);
3274 	}
3275 	return rc;
3276 }
3277 /**
3278  * __pci_reset_function - reset a PCI device function
3279  * @dev: PCI device to reset
3280  *
3281  * Some devices allow an individual function to be reset without affecting
3282  * other functions in the same device.  The PCI device must be responsive
3283  * to PCI config space in order to use this function.
3284  *
3285  * The device function is presumed to be unused when this function is called.
3286  * Resetting the device will make the contents of PCI configuration space
3287  * random, so any caller of this must be prepared to reinitialise the
3288  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3289  * etc.
3290  *
3291  * Returns 0 if the device function was successfully reset or negative if the
3292  * device doesn't support resetting a single function.
3293  */
3294 int __pci_reset_function(struct pci_dev *dev)
3295 {
3296 	return pci_dev_reset(dev, 0);
3297 }
3298 EXPORT_SYMBOL_GPL(__pci_reset_function);
3299 
3300 /**
3301  * __pci_reset_function_locked - reset a PCI device function while holding
3302  * the @dev mutex lock.
3303  * @dev: PCI device to reset
3304  *
3305  * Some devices allow an individual function to be reset without affecting
3306  * other functions in the same device.  The PCI device must be responsive
3307  * to PCI config space in order to use this function.
3308  *
3309  * The device function is presumed to be unused and the caller is holding
3310  * the device mutex lock when this function is called.
3311  * Resetting the device will make the contents of PCI configuration space
3312  * random, so any caller of this must be prepared to reinitialise the
3313  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3314  * etc.
3315  *
3316  * Returns 0 if the device function was successfully reset or negative if the
3317  * device doesn't support resetting a single function.
3318  */
3319 int __pci_reset_function_locked(struct pci_dev *dev)
3320 {
3321 	return __pci_dev_reset(dev, 0);
3322 }
3323 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3324 
3325 /**
3326  * pci_probe_reset_function - check whether the device can be safely reset
3327  * @dev: PCI device to reset
3328  *
3329  * Some devices allow an individual function to be reset without affecting
3330  * other functions in the same device.  The PCI device must be responsive
3331  * to PCI config space in order to use this function.
3332  *
3333  * Returns 0 if the device function can be reset or negative if the
3334  * device doesn't support resetting a single function.
3335  */
3336 int pci_probe_reset_function(struct pci_dev *dev)
3337 {
3338 	return pci_dev_reset(dev, 1);
3339 }
3340 
3341 /**
3342  * pci_reset_function - quiesce and reset a PCI device function
3343  * @dev: PCI device to reset
3344  *
3345  * Some devices allow an individual function to be reset without affecting
3346  * other functions in the same device.  The PCI device must be responsive
3347  * to PCI config space in order to use this function.
3348  *
3349  * This function does not just reset the PCI portion of a device, but
3350  * clears all the state associated with the device.  This function differs
3351  * from __pci_reset_function in that it saves and restores device state
3352  * over the reset.
3353  *
3354  * Returns 0 if the device function was successfully reset or negative if the
3355  * device doesn't support resetting a single function.
3356  */
3357 int pci_reset_function(struct pci_dev *dev)
3358 {
3359 	int rc;
3360 
3361 	rc = pci_dev_reset(dev, 1);
3362 	if (rc)
3363 		return rc;
3364 
3365 	pci_save_state(dev);
3366 
3367 	/*
3368 	 * both INTx and MSI are disabled after the Interrupt Disable bit
3369 	 * is set and the Bus Master bit is cleared.
3370 	 */
3371 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3372 
3373 	rc = pci_dev_reset(dev, 0);
3374 
3375 	pci_restore_state(dev);
3376 
3377 	return rc;
3378 }
3379 EXPORT_SYMBOL_GPL(pci_reset_function);
3380 
3381 /**
3382  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3383  * @dev: PCI device to query
3384  *
3385  * Returns mmrbc: maximum designed memory read count in bytes
3386  *    or appropriate error value.
3387  */
3388 int pcix_get_max_mmrbc(struct pci_dev *dev)
3389 {
3390 	int cap;
3391 	u32 stat;
3392 
3393 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3394 	if (!cap)
3395 		return -EINVAL;
3396 
3397 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3398 		return -EINVAL;
3399 
3400 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3401 }
3402 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3403 
3404 /**
3405  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3406  * @dev: PCI device to query
3407  *
3408  * Returns mmrbc: maximum memory read count in bytes
3409  *    or appropriate error value.
3410  */
3411 int pcix_get_mmrbc(struct pci_dev *dev)
3412 {
3413 	int cap;
3414 	u16 cmd;
3415 
3416 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3417 	if (!cap)
3418 		return -EINVAL;
3419 
3420 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3421 		return -EINVAL;
3422 
3423 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3424 }
3425 EXPORT_SYMBOL(pcix_get_mmrbc);
3426 
3427 /**
3428  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3429  * @dev: PCI device to query
3430  * @mmrbc: maximum memory read count in bytes
3431  *    valid values are 512, 1024, 2048, 4096
3432  *
3433  * If possible sets maximum memory read byte count, some bridges have erratas
3434  * that prevent this.
3435  */
3436 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3437 {
3438 	int cap;
3439 	u32 stat, v, o;
3440 	u16 cmd;
3441 
3442 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3443 		return -EINVAL;
3444 
3445 	v = ffs(mmrbc) - 10;
3446 
3447 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3448 	if (!cap)
3449 		return -EINVAL;
3450 
3451 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3452 		return -EINVAL;
3453 
3454 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3455 		return -E2BIG;
3456 
3457 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3458 		return -EINVAL;
3459 
3460 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3461 	if (o != v) {
3462 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3463 			return -EIO;
3464 
3465 		cmd &= ~PCI_X_CMD_MAX_READ;
3466 		cmd |= v << 2;
3467 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3468 			return -EIO;
3469 	}
3470 	return 0;
3471 }
3472 EXPORT_SYMBOL(pcix_set_mmrbc);
3473 
3474 /**
3475  * pcie_get_readrq - get PCI Express read request size
3476  * @dev: PCI device to query
3477  *
3478  * Returns maximum memory read request in bytes
3479  *    or appropriate error value.
3480  */
3481 int pcie_get_readrq(struct pci_dev *dev)
3482 {
3483 	u16 ctl;
3484 
3485 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3486 
3487 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3488 }
3489 EXPORT_SYMBOL(pcie_get_readrq);
3490 
3491 /**
3492  * pcie_set_readrq - set PCI Express maximum memory read request
3493  * @dev: PCI device to query
3494  * @rq: maximum memory read count in bytes
3495  *    valid values are 128, 256, 512, 1024, 2048, 4096
3496  *
3497  * If possible sets maximum memory read request in bytes
3498  */
3499 int pcie_set_readrq(struct pci_dev *dev, int rq)
3500 {
3501 	u16 v;
3502 
3503 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3504 		return -EINVAL;
3505 
3506 	/*
3507 	 * If using the "performance" PCIe config, we clamp the
3508 	 * read rq size to the max packet size to prevent the
3509 	 * host bridge generating requests larger than we can
3510 	 * cope with
3511 	 */
3512 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3513 		int mps = pcie_get_mps(dev);
3514 
3515 		if (mps < 0)
3516 			return mps;
3517 		if (mps < rq)
3518 			rq = mps;
3519 	}
3520 
3521 	v = (ffs(rq) - 8) << 12;
3522 
3523 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3524 						  PCI_EXP_DEVCTL_READRQ, v);
3525 }
3526 EXPORT_SYMBOL(pcie_set_readrq);
3527 
3528 /**
3529  * pcie_get_mps - get PCI Express maximum payload size
3530  * @dev: PCI device to query
3531  *
3532  * Returns maximum payload size in bytes
3533  *    or appropriate error value.
3534  */
3535 int pcie_get_mps(struct pci_dev *dev)
3536 {
3537 	u16 ctl;
3538 
3539 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3540 
3541 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3542 }
3543 
3544 /**
3545  * pcie_set_mps - set PCI Express maximum payload size
3546  * @dev: PCI device to query
3547  * @mps: maximum payload size in bytes
3548  *    valid values are 128, 256, 512, 1024, 2048, 4096
3549  *
3550  * If possible sets maximum payload size
3551  */
3552 int pcie_set_mps(struct pci_dev *dev, int mps)
3553 {
3554 	u16 v;
3555 
3556 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3557 		return -EINVAL;
3558 
3559 	v = ffs(mps) - 8;
3560 	if (v > dev->pcie_mpss)
3561 		return -EINVAL;
3562 	v <<= 5;
3563 
3564 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3565 						  PCI_EXP_DEVCTL_PAYLOAD, v);
3566 }
3567 
3568 /**
3569  * pci_select_bars - Make BAR mask from the type of resource
3570  * @dev: the PCI device for which BAR mask is made
3571  * @flags: resource type mask to be selected
3572  *
3573  * This helper routine makes bar mask from the type of resource.
3574  */
3575 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3576 {
3577 	int i, bars = 0;
3578 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3579 		if (pci_resource_flags(dev, i) & flags)
3580 			bars |= (1 << i);
3581 	return bars;
3582 }
3583 
3584 /**
3585  * pci_resource_bar - get position of the BAR associated with a resource
3586  * @dev: the PCI device
3587  * @resno: the resource number
3588  * @type: the BAR type to be filled in
3589  *
3590  * Returns BAR position in config space, or 0 if the BAR is invalid.
3591  */
3592 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3593 {
3594 	int reg;
3595 
3596 	if (resno < PCI_ROM_RESOURCE) {
3597 		*type = pci_bar_unknown;
3598 		return PCI_BASE_ADDRESS_0 + 4 * resno;
3599 	} else if (resno == PCI_ROM_RESOURCE) {
3600 		*type = pci_bar_mem32;
3601 		return dev->rom_base_reg;
3602 	} else if (resno < PCI_BRIDGE_RESOURCES) {
3603 		/* device specific resource */
3604 		reg = pci_iov_resource_bar(dev, resno, type);
3605 		if (reg)
3606 			return reg;
3607 	}
3608 
3609 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3610 	return 0;
3611 }
3612 
3613 /* Some architectures require additional programming to enable VGA */
3614 static arch_set_vga_state_t arch_set_vga_state;
3615 
3616 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3617 {
3618 	arch_set_vga_state = func;	/* NULL disables */
3619 }
3620 
3621 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3622 		      unsigned int command_bits, u32 flags)
3623 {
3624 	if (arch_set_vga_state)
3625 		return arch_set_vga_state(dev, decode, command_bits,
3626 						flags);
3627 	return 0;
3628 }
3629 
3630 /**
3631  * pci_set_vga_state - set VGA decode state on device and parents if requested
3632  * @dev: the PCI device
3633  * @decode: true = enable decoding, false = disable decoding
3634  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3635  * @flags: traverse ancestors and change bridges
3636  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3637  */
3638 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3639 		      unsigned int command_bits, u32 flags)
3640 {
3641 	struct pci_bus *bus;
3642 	struct pci_dev *bridge;
3643 	u16 cmd;
3644 	int rc;
3645 
3646 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3647 
3648 	/* ARCH specific VGA enables */
3649 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3650 	if (rc)
3651 		return rc;
3652 
3653 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3654 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3655 		if (decode == true)
3656 			cmd |= command_bits;
3657 		else
3658 			cmd &= ~command_bits;
3659 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3660 	}
3661 
3662 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3663 		return 0;
3664 
3665 	bus = dev->bus;
3666 	while (bus) {
3667 		bridge = bus->self;
3668 		if (bridge) {
3669 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3670 					     &cmd);
3671 			if (decode == true)
3672 				cmd |= PCI_BRIDGE_CTL_VGA;
3673 			else
3674 				cmd &= ~PCI_BRIDGE_CTL_VGA;
3675 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3676 					      cmd);
3677 		}
3678 		bus = bus->parent;
3679 	}
3680 	return 0;
3681 }
3682 
3683 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3684 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3685 static DEFINE_SPINLOCK(resource_alignment_lock);
3686 
3687 /**
3688  * pci_specified_resource_alignment - get resource alignment specified by user.
3689  * @dev: the PCI device to get
3690  *
3691  * RETURNS: Resource alignment if it is specified.
3692  *          Zero if it is not specified.
3693  */
3694 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3695 {
3696 	int seg, bus, slot, func, align_order, count;
3697 	resource_size_t align = 0;
3698 	char *p;
3699 
3700 	spin_lock(&resource_alignment_lock);
3701 	p = resource_alignment_param;
3702 	while (*p) {
3703 		count = 0;
3704 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3705 							p[count] == '@') {
3706 			p += count + 1;
3707 		} else {
3708 			align_order = -1;
3709 		}
3710 		if (sscanf(p, "%x:%x:%x.%x%n",
3711 			&seg, &bus, &slot, &func, &count) != 4) {
3712 			seg = 0;
3713 			if (sscanf(p, "%x:%x.%x%n",
3714 					&bus, &slot, &func, &count) != 3) {
3715 				/* Invalid format */
3716 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3717 					p);
3718 				break;
3719 			}
3720 		}
3721 		p += count;
3722 		if (seg == pci_domain_nr(dev->bus) &&
3723 			bus == dev->bus->number &&
3724 			slot == PCI_SLOT(dev->devfn) &&
3725 			func == PCI_FUNC(dev->devfn)) {
3726 			if (align_order == -1) {
3727 				align = PAGE_SIZE;
3728 			} else {
3729 				align = 1 << align_order;
3730 			}
3731 			/* Found */
3732 			break;
3733 		}
3734 		if (*p != ';' && *p != ',') {
3735 			/* End of param or invalid format */
3736 			break;
3737 		}
3738 		p++;
3739 	}
3740 	spin_unlock(&resource_alignment_lock);
3741 	return align;
3742 }
3743 
3744 /**
3745  * pci_is_reassigndev - check if specified PCI is target device to reassign
3746  * @dev: the PCI device to check
3747  *
3748  * RETURNS: non-zero for PCI device is a target device to reassign,
3749  *          or zero is not.
3750  */
3751 int pci_is_reassigndev(struct pci_dev *dev)
3752 {
3753 	return (pci_specified_resource_alignment(dev) != 0);
3754 }
3755 
3756 /*
3757  * This function disables memory decoding and releases memory resources
3758  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3759  * It also rounds up size to specified alignment.
3760  * Later on, the kernel will assign page-aligned memory resource back
3761  * to the device.
3762  */
3763 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3764 {
3765 	int i;
3766 	struct resource *r;
3767 	resource_size_t align, size;
3768 	u16 command;
3769 
3770 	if (!pci_is_reassigndev(dev))
3771 		return;
3772 
3773 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3774 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3775 		dev_warn(&dev->dev,
3776 			"Can't reassign resources to host bridge.\n");
3777 		return;
3778 	}
3779 
3780 	dev_info(&dev->dev,
3781 		"Disabling memory decoding and releasing memory resources.\n");
3782 	pci_read_config_word(dev, PCI_COMMAND, &command);
3783 	command &= ~PCI_COMMAND_MEMORY;
3784 	pci_write_config_word(dev, PCI_COMMAND, command);
3785 
3786 	align = pci_specified_resource_alignment(dev);
3787 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3788 		r = &dev->resource[i];
3789 		if (!(r->flags & IORESOURCE_MEM))
3790 			continue;
3791 		size = resource_size(r);
3792 		if (size < align) {
3793 			size = align;
3794 			dev_info(&dev->dev,
3795 				"Rounding up size of resource #%d to %#llx.\n",
3796 				i, (unsigned long long)size);
3797 		}
3798 		r->end = size - 1;
3799 		r->start = 0;
3800 	}
3801 	/* Need to disable bridge's resource window,
3802 	 * to enable the kernel to reassign new resource
3803 	 * window later on.
3804 	 */
3805 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3806 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3807 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3808 			r = &dev->resource[i];
3809 			if (!(r->flags & IORESOURCE_MEM))
3810 				continue;
3811 			r->end = resource_size(r) - 1;
3812 			r->start = 0;
3813 		}
3814 		pci_disable_bridge_window(dev);
3815 	}
3816 }
3817 
3818 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3819 {
3820 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3821 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3822 	spin_lock(&resource_alignment_lock);
3823 	strncpy(resource_alignment_param, buf, count);
3824 	resource_alignment_param[count] = '\0';
3825 	spin_unlock(&resource_alignment_lock);
3826 	return count;
3827 }
3828 
3829 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3830 {
3831 	size_t count;
3832 	spin_lock(&resource_alignment_lock);
3833 	count = snprintf(buf, size, "%s", resource_alignment_param);
3834 	spin_unlock(&resource_alignment_lock);
3835 	return count;
3836 }
3837 
3838 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3839 {
3840 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3841 }
3842 
3843 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3844 					const char *buf, size_t count)
3845 {
3846 	return pci_set_resource_alignment_param(buf, count);
3847 }
3848 
3849 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3850 					pci_resource_alignment_store);
3851 
3852 static int __init pci_resource_alignment_sysfs_init(void)
3853 {
3854 	return bus_create_file(&pci_bus_type,
3855 					&bus_attr_resource_alignment);
3856 }
3857 
3858 late_initcall(pci_resource_alignment_sysfs_init);
3859 
3860 static void __devinit pci_no_domains(void)
3861 {
3862 #ifdef CONFIG_PCI_DOMAINS
3863 	pci_domains_supported = 0;
3864 #endif
3865 }
3866 
3867 /**
3868  * pci_ext_cfg_enabled - can we access extended PCI config space?
3869  * @dev: The PCI device of the root bridge.
3870  *
3871  * Returns 1 if we can access PCI extended config space (offsets
3872  * greater than 0xff). This is the default implementation. Architecture
3873  * implementations can override this.
3874  */
3875 int __weak pci_ext_cfg_avail(struct pci_dev *dev)
3876 {
3877 	return 1;
3878 }
3879 
3880 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3881 {
3882 }
3883 EXPORT_SYMBOL(pci_fixup_cardbus);
3884 
3885 static int __init pci_setup(char *str)
3886 {
3887 	while (str) {
3888 		char *k = strchr(str, ',');
3889 		if (k)
3890 			*k++ = 0;
3891 		if (*str && (str = pcibios_setup(str)) && *str) {
3892 			if (!strcmp(str, "nomsi")) {
3893 				pci_no_msi();
3894 			} else if (!strcmp(str, "noaer")) {
3895 				pci_no_aer();
3896 			} else if (!strncmp(str, "realloc=", 8)) {
3897 				pci_realloc_get_opt(str + 8);
3898 			} else if (!strncmp(str, "realloc", 7)) {
3899 				pci_realloc_get_opt("on");
3900 			} else if (!strcmp(str, "nodomains")) {
3901 				pci_no_domains();
3902 			} else if (!strncmp(str, "noari", 5)) {
3903 				pcie_ari_disabled = true;
3904 			} else if (!strncmp(str, "cbiosize=", 9)) {
3905 				pci_cardbus_io_size = memparse(str + 9, &str);
3906 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3907 				pci_cardbus_mem_size = memparse(str + 10, &str);
3908 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3909 				pci_set_resource_alignment_param(str + 19,
3910 							strlen(str + 19));
3911 			} else if (!strncmp(str, "ecrc=", 5)) {
3912 				pcie_ecrc_get_policy(str + 5);
3913 			} else if (!strncmp(str, "hpiosize=", 9)) {
3914 				pci_hotplug_io_size = memparse(str + 9, &str);
3915 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3916 				pci_hotplug_mem_size = memparse(str + 10, &str);
3917 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3918 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
3919 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3920 				pcie_bus_config = PCIE_BUS_SAFE;
3921 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3922 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3923 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3924 				pcie_bus_config = PCIE_BUS_PEER2PEER;
3925 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
3926 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3927 			} else {
3928 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3929 						str);
3930 			}
3931 		}
3932 		str = k;
3933 	}
3934 	return 0;
3935 }
3936 early_param("pci", pci_setup);
3937 
3938 EXPORT_SYMBOL(pci_reenable_device);
3939 EXPORT_SYMBOL(pci_enable_device_io);
3940 EXPORT_SYMBOL(pci_enable_device_mem);
3941 EXPORT_SYMBOL(pci_enable_device);
3942 EXPORT_SYMBOL(pcim_enable_device);
3943 EXPORT_SYMBOL(pcim_pin_device);
3944 EXPORT_SYMBOL(pci_disable_device);
3945 EXPORT_SYMBOL(pci_find_capability);
3946 EXPORT_SYMBOL(pci_bus_find_capability);
3947 EXPORT_SYMBOL(pci_release_regions);
3948 EXPORT_SYMBOL(pci_request_regions);
3949 EXPORT_SYMBOL(pci_request_regions_exclusive);
3950 EXPORT_SYMBOL(pci_release_region);
3951 EXPORT_SYMBOL(pci_request_region);
3952 EXPORT_SYMBOL(pci_request_region_exclusive);
3953 EXPORT_SYMBOL(pci_release_selected_regions);
3954 EXPORT_SYMBOL(pci_request_selected_regions);
3955 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3956 EXPORT_SYMBOL(pci_set_master);
3957 EXPORT_SYMBOL(pci_clear_master);
3958 EXPORT_SYMBOL(pci_set_mwi);
3959 EXPORT_SYMBOL(pci_try_set_mwi);
3960 EXPORT_SYMBOL(pci_clear_mwi);
3961 EXPORT_SYMBOL_GPL(pci_intx);
3962 EXPORT_SYMBOL(pci_assign_resource);
3963 EXPORT_SYMBOL(pci_find_parent_resource);
3964 EXPORT_SYMBOL(pci_select_bars);
3965 
3966 EXPORT_SYMBOL(pci_set_power_state);
3967 EXPORT_SYMBOL(pci_save_state);
3968 EXPORT_SYMBOL(pci_restore_state);
3969 EXPORT_SYMBOL(pci_pme_capable);
3970 EXPORT_SYMBOL(pci_pme_active);
3971 EXPORT_SYMBOL(pci_wake_from_d3);
3972 EXPORT_SYMBOL(pci_target_state);
3973 EXPORT_SYMBOL(pci_prepare_to_sleep);
3974 EXPORT_SYMBOL(pci_back_from_sleep);
3975 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3976