xref: /openbmc/linux/drivers/pci/pci.c (revision cbabf03c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3hot_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3hot_delay;
68 
69 	if (delay < pci_pm_d3hot_delay)
70 		delay = pci_pm_d3hot_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 	return dev->reset_methods[0] != 0;
79 }
80 
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84 
85 #define DEFAULT_CARDBUS_IO_SIZE		(256)
86 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90 
91 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99  * pci=hpmemsize=nnM overrides both
100  */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103 
104 #define DEFAULT_HOTPLUG_BUS_SIZE	1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106 
107 
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120 
121 /*
122  * The default CLS is used if arch didn't set CLS explicitly and not
123  * all pci devices agree on the same value.  Arch can override either
124  * the dfl or actual value as it sees fit.  Don't forget this is
125  * measured in 32-bit words, not bytes.
126  */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129 
130 /*
131  * If we set up a device for bus mastering, we need to check the latency
132  * timer as certain BIOSes forget to set it properly.
133  */
134 unsigned int pcibios_max_latency = 255;
135 
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138 
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141 
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144 
145 bool pci_ats_disabled(void)
146 {
147 	return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150 
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155 
156 static int __init pcie_port_pm_setup(char *str)
157 {
158 	if (!strcmp(str, "off"))
159 		pci_bridge_d3_disable = true;
160 	else if (!strcmp(str, "force"))
161 		pci_bridge_d3_force = true;
162 	return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165 
166 /* Time to wait after a reset for device to become responsive */
167 #define PCIE_RESET_READY_POLL_MS 60000
168 
169 /**
170  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
171  * @bus: pointer to PCI bus structure to search
172  *
173  * Given a PCI bus, returns the highest PCI bus number present in the set
174  * including the given PCI bus and its list of child PCI buses.
175  */
176 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
177 {
178 	struct pci_bus *tmp;
179 	unsigned char max, n;
180 
181 	max = bus->busn_res.end;
182 	list_for_each_entry(tmp, &bus->children, node) {
183 		n = pci_bus_max_busnr(tmp);
184 		if (n > max)
185 			max = n;
186 	}
187 	return max;
188 }
189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
190 
191 /**
192  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
193  * @pdev: the PCI device
194  *
195  * Returns error bits set in PCI_STATUS and clears them.
196  */
197 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
198 {
199 	u16 status;
200 	int ret;
201 
202 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
203 	if (ret != PCIBIOS_SUCCESSFUL)
204 		return -EIO;
205 
206 	status &= PCI_STATUS_ERROR_BITS;
207 	if (status)
208 		pci_write_config_word(pdev, PCI_STATUS, status);
209 
210 	return status;
211 }
212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
213 
214 #ifdef CONFIG_HAS_IOMEM
215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
216 					    bool write_combine)
217 {
218 	struct resource *res = &pdev->resource[bar];
219 	resource_size_t start = res->start;
220 	resource_size_t size = resource_size(res);
221 
222 	/*
223 	 * Make sure the BAR is actually a memory resource, not an IO resource
224 	 */
225 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
226 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
227 		return NULL;
228 	}
229 
230 	if (write_combine)
231 		return ioremap_wc(start, size);
232 
233 	return ioremap(start, size);
234 }
235 
236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
237 {
238 	return __pci_ioremap_resource(pdev, bar, false);
239 }
240 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
241 
242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
243 {
244 	return __pci_ioremap_resource(pdev, bar, true);
245 }
246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
247 #endif
248 
249 /**
250  * pci_dev_str_match_path - test if a path string matches a device
251  * @dev: the PCI device to test
252  * @path: string to match the device against
253  * @endptr: pointer to the string after the match
254  *
255  * Test if a string (typically from a kernel parameter) formatted as a
256  * path of device/function addresses matches a PCI device. The string must
257  * be of the form:
258  *
259  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
260  *
261  * A path for a device can be obtained using 'lspci -t'.  Using a path
262  * is more robust against bus renumbering than using only a single bus,
263  * device and function address.
264  *
265  * Returns 1 if the string matches the device, 0 if it does not and
266  * a negative error code if it fails to parse the string.
267  */
268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
269 				  const char **endptr)
270 {
271 	int ret;
272 	unsigned int seg, bus, slot, func;
273 	char *wpath, *p;
274 	char end;
275 
276 	*endptr = strchrnul(path, ';');
277 
278 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
279 	if (!wpath)
280 		return -ENOMEM;
281 
282 	while (1) {
283 		p = strrchr(wpath, '/');
284 		if (!p)
285 			break;
286 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
287 		if (ret != 2) {
288 			ret = -EINVAL;
289 			goto free_and_exit;
290 		}
291 
292 		if (dev->devfn != PCI_DEVFN(slot, func)) {
293 			ret = 0;
294 			goto free_and_exit;
295 		}
296 
297 		/*
298 		 * Note: we don't need to get a reference to the upstream
299 		 * bridge because we hold a reference to the top level
300 		 * device which should hold a reference to the bridge,
301 		 * and so on.
302 		 */
303 		dev = pci_upstream_bridge(dev);
304 		if (!dev) {
305 			ret = 0;
306 			goto free_and_exit;
307 		}
308 
309 		*p = 0;
310 	}
311 
312 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
313 		     &func, &end);
314 	if (ret != 4) {
315 		seg = 0;
316 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
317 		if (ret != 3) {
318 			ret = -EINVAL;
319 			goto free_and_exit;
320 		}
321 	}
322 
323 	ret = (seg == pci_domain_nr(dev->bus) &&
324 	       bus == dev->bus->number &&
325 	       dev->devfn == PCI_DEVFN(slot, func));
326 
327 free_and_exit:
328 	kfree(wpath);
329 	return ret;
330 }
331 
332 /**
333  * pci_dev_str_match - test if a string matches a device
334  * @dev: the PCI device to test
335  * @p: string to match the device against
336  * @endptr: pointer to the string after the match
337  *
338  * Test if a string (typically from a kernel parameter) matches a specified
339  * PCI device. The string may be of one of the following formats:
340  *
341  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
342  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
343  *
344  * The first format specifies a PCI bus/device/function address which
345  * may change if new hardware is inserted, if motherboard firmware changes,
346  * or due to changes caused in kernel parameters. If the domain is
347  * left unspecified, it is taken to be 0.  In order to be robust against
348  * bus renumbering issues, a path of PCI device/function numbers may be used
349  * to address the specific device.  The path for a device can be determined
350  * through the use of 'lspci -t'.
351  *
352  * The second format matches devices using IDs in the configuration
353  * space which may match multiple devices in the system. A value of 0
354  * for any field will match all devices. (Note: this differs from
355  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
356  * legacy reasons and convenience so users don't have to specify
357  * FFFFFFFFs on the command line.)
358  *
359  * Returns 1 if the string matches the device, 0 if it does not and
360  * a negative error code if the string cannot be parsed.
361  */
362 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
363 			     const char **endptr)
364 {
365 	int ret;
366 	int count;
367 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
368 
369 	if (strncmp(p, "pci:", 4) == 0) {
370 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
371 		p += 4;
372 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
373 			     &subsystem_vendor, &subsystem_device, &count);
374 		if (ret != 4) {
375 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
376 			if (ret != 2)
377 				return -EINVAL;
378 
379 			subsystem_vendor = 0;
380 			subsystem_device = 0;
381 		}
382 
383 		p += count;
384 
385 		if ((!vendor || vendor == dev->vendor) &&
386 		    (!device || device == dev->device) &&
387 		    (!subsystem_vendor ||
388 			    subsystem_vendor == dev->subsystem_vendor) &&
389 		    (!subsystem_device ||
390 			    subsystem_device == dev->subsystem_device))
391 			goto found;
392 	} else {
393 		/*
394 		 * PCI Bus, Device, Function IDs are specified
395 		 * (optionally, may include a path of devfns following it)
396 		 */
397 		ret = pci_dev_str_match_path(dev, p, &p);
398 		if (ret < 0)
399 			return ret;
400 		else if (ret)
401 			goto found;
402 	}
403 
404 	*endptr = p;
405 	return 0;
406 
407 found:
408 	*endptr = p;
409 	return 1;
410 }
411 
412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
413 				  u8 pos, int cap, int *ttl)
414 {
415 	u8 id;
416 	u16 ent;
417 
418 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
419 
420 	while ((*ttl)--) {
421 		if (pos < 0x40)
422 			break;
423 		pos &= ~3;
424 		pci_bus_read_config_word(bus, devfn, pos, &ent);
425 
426 		id = ent & 0xff;
427 		if (id == 0xff)
428 			break;
429 		if (id == cap)
430 			return pos;
431 		pos = (ent >> 8);
432 	}
433 	return 0;
434 }
435 
436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
437 			      u8 pos, int cap)
438 {
439 	int ttl = PCI_FIND_CAP_TTL;
440 
441 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
442 }
443 
444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
445 {
446 	return __pci_find_next_cap(dev->bus, dev->devfn,
447 				   pos + PCI_CAP_LIST_NEXT, cap);
448 }
449 EXPORT_SYMBOL_GPL(pci_find_next_capability);
450 
451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
452 				    unsigned int devfn, u8 hdr_type)
453 {
454 	u16 status;
455 
456 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
457 	if (!(status & PCI_STATUS_CAP_LIST))
458 		return 0;
459 
460 	switch (hdr_type) {
461 	case PCI_HEADER_TYPE_NORMAL:
462 	case PCI_HEADER_TYPE_BRIDGE:
463 		return PCI_CAPABILITY_LIST;
464 	case PCI_HEADER_TYPE_CARDBUS:
465 		return PCI_CB_CAPABILITY_LIST;
466 	}
467 
468 	return 0;
469 }
470 
471 /**
472  * pci_find_capability - query for devices' capabilities
473  * @dev: PCI device to query
474  * @cap: capability code
475  *
476  * Tell if a device supports a given PCI capability.
477  * Returns the address of the requested capability structure within the
478  * device's PCI configuration space or 0 in case the device does not
479  * support it.  Possible values for @cap include:
480  *
481  *  %PCI_CAP_ID_PM           Power Management
482  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
483  *  %PCI_CAP_ID_VPD          Vital Product Data
484  *  %PCI_CAP_ID_SLOTID       Slot Identification
485  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
486  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
487  *  %PCI_CAP_ID_PCIX         PCI-X
488  *  %PCI_CAP_ID_EXP          PCI Express
489  */
490 u8 pci_find_capability(struct pci_dev *dev, int cap)
491 {
492 	u8 pos;
493 
494 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
495 	if (pos)
496 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
497 
498 	return pos;
499 }
500 EXPORT_SYMBOL(pci_find_capability);
501 
502 /**
503  * pci_bus_find_capability - query for devices' capabilities
504  * @bus: the PCI bus to query
505  * @devfn: PCI device to query
506  * @cap: capability code
507  *
508  * Like pci_find_capability() but works for PCI devices that do not have a
509  * pci_dev structure set up yet.
510  *
511  * Returns the address of the requested capability structure within the
512  * device's PCI configuration space or 0 in case the device does not
513  * support it.
514  */
515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
516 {
517 	u8 hdr_type, pos;
518 
519 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
520 
521 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
522 	if (pos)
523 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
524 
525 	return pos;
526 }
527 EXPORT_SYMBOL(pci_bus_find_capability);
528 
529 /**
530  * pci_find_next_ext_capability - Find an extended capability
531  * @dev: PCI device to query
532  * @start: address at which to start looking (0 to start at beginning of list)
533  * @cap: capability code
534  *
535  * Returns the address of the next matching extended capability structure
536  * within the device's PCI configuration space or 0 if the device does
537  * not support it.  Some capabilities can occur several times, e.g., the
538  * vendor-specific capability, and this provides a way to find them all.
539  */
540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
541 {
542 	u32 header;
543 	int ttl;
544 	u16 pos = PCI_CFG_SPACE_SIZE;
545 
546 	/* minimum 8 bytes per capability */
547 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
548 
549 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
550 		return 0;
551 
552 	if (start)
553 		pos = start;
554 
555 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 		return 0;
557 
558 	/*
559 	 * If we have no capabilities, this is indicated by cap ID,
560 	 * cap version and next pointer all being 0.
561 	 */
562 	if (header == 0)
563 		return 0;
564 
565 	while (ttl-- > 0) {
566 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
567 			return pos;
568 
569 		pos = PCI_EXT_CAP_NEXT(header);
570 		if (pos < PCI_CFG_SPACE_SIZE)
571 			break;
572 
573 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
574 			break;
575 	}
576 
577 	return 0;
578 }
579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
580 
581 /**
582  * pci_find_ext_capability - Find an extended capability
583  * @dev: PCI device to query
584  * @cap: capability code
585  *
586  * Returns the address of the requested extended capability structure
587  * within the device's PCI configuration space or 0 if the device does
588  * not support it.  Possible values for @cap include:
589  *
590  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
591  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
592  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
593  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
594  */
595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
596 {
597 	return pci_find_next_ext_capability(dev, 0, cap);
598 }
599 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
600 
601 /**
602  * pci_get_dsn - Read and return the 8-byte Device Serial Number
603  * @dev: PCI device to query
604  *
605  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
606  * Number.
607  *
608  * Returns the DSN, or zero if the capability does not exist.
609  */
610 u64 pci_get_dsn(struct pci_dev *dev)
611 {
612 	u32 dword;
613 	u64 dsn;
614 	int pos;
615 
616 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
617 	if (!pos)
618 		return 0;
619 
620 	/*
621 	 * The Device Serial Number is two dwords offset 4 bytes from the
622 	 * capability position. The specification says that the first dword is
623 	 * the lower half, and the second dword is the upper half.
624 	 */
625 	pos += 4;
626 	pci_read_config_dword(dev, pos, &dword);
627 	dsn = (u64)dword;
628 	pci_read_config_dword(dev, pos + 4, &dword);
629 	dsn |= ((u64)dword) << 32;
630 
631 	return dsn;
632 }
633 EXPORT_SYMBOL_GPL(pci_get_dsn);
634 
635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
636 {
637 	int rc, ttl = PCI_FIND_CAP_TTL;
638 	u8 cap, mask;
639 
640 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
641 		mask = HT_3BIT_CAP_MASK;
642 	else
643 		mask = HT_5BIT_CAP_MASK;
644 
645 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
646 				      PCI_CAP_ID_HT, &ttl);
647 	while (pos) {
648 		rc = pci_read_config_byte(dev, pos + 3, &cap);
649 		if (rc != PCIBIOS_SUCCESSFUL)
650 			return 0;
651 
652 		if ((cap & mask) == ht_cap)
653 			return pos;
654 
655 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
656 					      pos + PCI_CAP_LIST_NEXT,
657 					      PCI_CAP_ID_HT, &ttl);
658 	}
659 
660 	return 0;
661 }
662 
663 /**
664  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
665  * @dev: PCI device to query
666  * @pos: Position from which to continue searching
667  * @ht_cap: HyperTransport capability code
668  *
669  * To be used in conjunction with pci_find_ht_capability() to search for
670  * all capabilities matching @ht_cap. @pos should always be a value returned
671  * from pci_find_ht_capability().
672  *
673  * NB. To be 100% safe against broken PCI devices, the caller should take
674  * steps to avoid an infinite loop.
675  */
676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
677 {
678 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
679 }
680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
681 
682 /**
683  * pci_find_ht_capability - query a device's HyperTransport capabilities
684  * @dev: PCI device to query
685  * @ht_cap: HyperTransport capability code
686  *
687  * Tell if a device supports a given HyperTransport capability.
688  * Returns an address within the device's PCI configuration space
689  * or 0 in case the device does not support the request capability.
690  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
691  * which has a HyperTransport capability matching @ht_cap.
692  */
693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
694 {
695 	u8 pos;
696 
697 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
698 	if (pos)
699 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
700 
701 	return pos;
702 }
703 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
704 
705 /**
706  * pci_find_vsec_capability - Find a vendor-specific extended capability
707  * @dev: PCI device to query
708  * @vendor: Vendor ID for which capability is defined
709  * @cap: Vendor-specific capability ID
710  *
711  * If @dev has Vendor ID @vendor, search for a VSEC capability with
712  * VSEC ID @cap. If found, return the capability offset in
713  * config space; otherwise return 0.
714  */
715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
716 {
717 	u16 vsec = 0;
718 	u32 header;
719 
720 	if (vendor != dev->vendor)
721 		return 0;
722 
723 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
724 						     PCI_EXT_CAP_ID_VNDR))) {
725 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
726 					  &header) == PCIBIOS_SUCCESSFUL &&
727 		    PCI_VNDR_HEADER_ID(header) == cap)
728 			return vsec;
729 	}
730 
731 	return 0;
732 }
733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
734 
735 /**
736  * pci_find_dvsec_capability - Find DVSEC for vendor
737  * @dev: PCI device to query
738  * @vendor: Vendor ID to match for the DVSEC
739  * @dvsec: Designated Vendor-specific capability ID
740  *
741  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
742  * offset in config space; otherwise return 0.
743  */
744 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
745 {
746 	int pos;
747 
748 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
749 	if (!pos)
750 		return 0;
751 
752 	while (pos) {
753 		u16 v, id;
754 
755 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
756 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
757 		if (vendor == v && dvsec == id)
758 			return pos;
759 
760 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
761 	}
762 
763 	return 0;
764 }
765 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
766 
767 /**
768  * pci_find_parent_resource - return resource region of parent bus of given
769  *			      region
770  * @dev: PCI device structure contains resources to be searched
771  * @res: child resource record for which parent is sought
772  *
773  * For given resource region of given device, return the resource region of
774  * parent bus the given region is contained in.
775  */
776 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
777 					  struct resource *res)
778 {
779 	const struct pci_bus *bus = dev->bus;
780 	struct resource *r;
781 	int i;
782 
783 	pci_bus_for_each_resource(bus, r, i) {
784 		if (!r)
785 			continue;
786 		if (resource_contains(r, res)) {
787 
788 			/*
789 			 * If the window is prefetchable but the BAR is
790 			 * not, the allocator made a mistake.
791 			 */
792 			if (r->flags & IORESOURCE_PREFETCH &&
793 			    !(res->flags & IORESOURCE_PREFETCH))
794 				return NULL;
795 
796 			/*
797 			 * If we're below a transparent bridge, there may
798 			 * be both a positively-decoded aperture and a
799 			 * subtractively-decoded region that contain the BAR.
800 			 * We want the positively-decoded one, so this depends
801 			 * on pci_bus_for_each_resource() giving us those
802 			 * first.
803 			 */
804 			return r;
805 		}
806 	}
807 	return NULL;
808 }
809 EXPORT_SYMBOL(pci_find_parent_resource);
810 
811 /**
812  * pci_find_resource - Return matching PCI device resource
813  * @dev: PCI device to query
814  * @res: Resource to look for
815  *
816  * Goes over standard PCI resources (BARs) and checks if the given resource
817  * is partially or fully contained in any of them. In that case the
818  * matching resource is returned, %NULL otherwise.
819  */
820 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
821 {
822 	int i;
823 
824 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
825 		struct resource *r = &dev->resource[i];
826 
827 		if (r->start && resource_contains(r, res))
828 			return r;
829 	}
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(pci_find_resource);
834 
835 /**
836  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
837  * @dev: the PCI device to operate on
838  * @pos: config space offset of status word
839  * @mask: mask of bit(s) to care about in status word
840  *
841  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
842  */
843 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
844 {
845 	int i;
846 
847 	/* Wait for Transaction Pending bit clean */
848 	for (i = 0; i < 4; i++) {
849 		u16 status;
850 		if (i)
851 			msleep((1 << (i - 1)) * 100);
852 
853 		pci_read_config_word(dev, pos, &status);
854 		if (!(status & mask))
855 			return 1;
856 	}
857 
858 	return 0;
859 }
860 
861 static int pci_acs_enable;
862 
863 /**
864  * pci_request_acs - ask for ACS to be enabled if supported
865  */
866 void pci_request_acs(void)
867 {
868 	pci_acs_enable = 1;
869 }
870 
871 static const char *disable_acs_redir_param;
872 
873 /**
874  * pci_disable_acs_redir - disable ACS redirect capabilities
875  * @dev: the PCI device
876  *
877  * For only devices specified in the disable_acs_redir parameter.
878  */
879 static void pci_disable_acs_redir(struct pci_dev *dev)
880 {
881 	int ret = 0;
882 	const char *p;
883 	int pos;
884 	u16 ctrl;
885 
886 	if (!disable_acs_redir_param)
887 		return;
888 
889 	p = disable_acs_redir_param;
890 	while (*p) {
891 		ret = pci_dev_str_match(dev, p, &p);
892 		if (ret < 0) {
893 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
894 				     disable_acs_redir_param);
895 
896 			break;
897 		} else if (ret == 1) {
898 			/* Found a match */
899 			break;
900 		}
901 
902 		if (*p != ';' && *p != ',') {
903 			/* End of param or invalid format */
904 			break;
905 		}
906 		p++;
907 	}
908 
909 	if (ret != 1)
910 		return;
911 
912 	if (!pci_dev_specific_disable_acs_redir(dev))
913 		return;
914 
915 	pos = dev->acs_cap;
916 	if (!pos) {
917 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
918 		return;
919 	}
920 
921 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
922 
923 	/* P2P Request & Completion Redirect */
924 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
925 
926 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
927 
928 	pci_info(dev, "disabled ACS redirect\n");
929 }
930 
931 /**
932  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
933  * @dev: the PCI device
934  */
935 static void pci_std_enable_acs(struct pci_dev *dev)
936 {
937 	int pos;
938 	u16 cap;
939 	u16 ctrl;
940 
941 	pos = dev->acs_cap;
942 	if (!pos)
943 		return;
944 
945 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
946 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
947 
948 	/* Source Validation */
949 	ctrl |= (cap & PCI_ACS_SV);
950 
951 	/* P2P Request Redirect */
952 	ctrl |= (cap & PCI_ACS_RR);
953 
954 	/* P2P Completion Redirect */
955 	ctrl |= (cap & PCI_ACS_CR);
956 
957 	/* Upstream Forwarding */
958 	ctrl |= (cap & PCI_ACS_UF);
959 
960 	/* Enable Translation Blocking for external devices and noats */
961 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
962 		ctrl |= (cap & PCI_ACS_TB);
963 
964 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
965 }
966 
967 /**
968  * pci_enable_acs - enable ACS if hardware support it
969  * @dev: the PCI device
970  */
971 static void pci_enable_acs(struct pci_dev *dev)
972 {
973 	if (!pci_acs_enable)
974 		goto disable_acs_redir;
975 
976 	if (!pci_dev_specific_enable_acs(dev))
977 		goto disable_acs_redir;
978 
979 	pci_std_enable_acs(dev);
980 
981 disable_acs_redir:
982 	/*
983 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
984 	 * enabled by the kernel because it may have been enabled by
985 	 * platform firmware.  So if we are told to disable it, we should
986 	 * always disable it after setting the kernel's default
987 	 * preferences.
988 	 */
989 	pci_disable_acs_redir(dev);
990 }
991 
992 /**
993  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
994  * @dev: PCI device to have its BARs restored
995  *
996  * Restore the BAR values for a given device, so as to make it
997  * accessible by its driver.
998  */
999 static void pci_restore_bars(struct pci_dev *dev)
1000 {
1001 	int i;
1002 
1003 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1004 		pci_update_resource(dev, i);
1005 }
1006 
1007 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1008 {
1009 	if (pci_use_mid_pm())
1010 		return true;
1011 
1012 	return acpi_pci_power_manageable(dev);
1013 }
1014 
1015 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1016 					       pci_power_t t)
1017 {
1018 	if (pci_use_mid_pm())
1019 		return mid_pci_set_power_state(dev, t);
1020 
1021 	return acpi_pci_set_power_state(dev, t);
1022 }
1023 
1024 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1025 {
1026 	if (pci_use_mid_pm())
1027 		return mid_pci_get_power_state(dev);
1028 
1029 	return acpi_pci_get_power_state(dev);
1030 }
1031 
1032 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1033 {
1034 	if (!pci_use_mid_pm())
1035 		acpi_pci_refresh_power_state(dev);
1036 }
1037 
1038 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1039 {
1040 	if (pci_use_mid_pm())
1041 		return PCI_POWER_ERROR;
1042 
1043 	return acpi_pci_choose_state(dev);
1044 }
1045 
1046 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1047 {
1048 	if (pci_use_mid_pm())
1049 		return PCI_POWER_ERROR;
1050 
1051 	return acpi_pci_wakeup(dev, enable);
1052 }
1053 
1054 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1055 {
1056 	if (pci_use_mid_pm())
1057 		return false;
1058 
1059 	return acpi_pci_need_resume(dev);
1060 }
1061 
1062 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1063 {
1064 	if (pci_use_mid_pm())
1065 		return false;
1066 
1067 	return acpi_pci_bridge_d3(dev);
1068 }
1069 
1070 /**
1071  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1072  *			     given PCI device
1073  * @dev: PCI device to handle.
1074  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1075  *
1076  * RETURN VALUE:
1077  * -EINVAL if the requested state is invalid.
1078  * -EIO if device does not support PCI PM or its PM capabilities register has a
1079  * wrong version, or device doesn't support the requested state.
1080  * 0 if device already is in the requested state.
1081  * 0 if device's power state has been successfully changed.
1082  */
1083 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1084 {
1085 	u16 pmcsr;
1086 	bool need_restore = false;
1087 
1088 	/* Check if we're already there */
1089 	if (dev->current_state == state)
1090 		return 0;
1091 
1092 	if (!dev->pm_cap)
1093 		return -EIO;
1094 
1095 	if (state < PCI_D0 || state > PCI_D3hot)
1096 		return -EINVAL;
1097 
1098 	/*
1099 	 * Validate transition: We can enter D0 from any state, but if
1100 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1101 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1102 	 * we'd have to go from D3 to D0, then to D1.
1103 	 */
1104 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1105 	    && dev->current_state > state) {
1106 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1107 			pci_power_name(dev->current_state),
1108 			pci_power_name(state));
1109 		return -EINVAL;
1110 	}
1111 
1112 	/* Check if this device supports the desired state */
1113 	if ((state == PCI_D1 && !dev->d1_support)
1114 	   || (state == PCI_D2 && !dev->d2_support))
1115 		return -EIO;
1116 
1117 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1118 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1119 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1120 			pci_power_name(dev->current_state),
1121 			pci_power_name(state));
1122 		return -EIO;
1123 	}
1124 
1125 	/*
1126 	 * If we're (effectively) in D3, force entire word to 0.
1127 	 * This doesn't affect PME_Status, disables PME_En, and
1128 	 * sets PowerState to 0.
1129 	 */
1130 	switch (dev->current_state) {
1131 	case PCI_D0:
1132 	case PCI_D1:
1133 	case PCI_D2:
1134 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1135 		pmcsr |= state;
1136 		break;
1137 	case PCI_D3hot:
1138 	case PCI_D3cold:
1139 	case PCI_UNKNOWN: /* Boot-up */
1140 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1141 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1142 			need_restore = true;
1143 		fallthrough;	/* force to D0 */
1144 	default:
1145 		pmcsr = 0;
1146 		break;
1147 	}
1148 
1149 	/* Enter specified state */
1150 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1151 
1152 	/*
1153 	 * Mandatory power management transition delays; see PCI PM 1.1
1154 	 * 5.6.1 table 18
1155 	 */
1156 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1157 		pci_dev_d3_sleep(dev);
1158 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1159 		udelay(PCI_PM_D2_DELAY);
1160 
1161 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1162 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1163 	if (dev->current_state != state)
1164 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1165 			 pci_power_name(dev->current_state),
1166 			 pci_power_name(state));
1167 
1168 	/*
1169 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1170 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1171 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1172 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1173 	 * For example, at least some versions of the 3c905B and the
1174 	 * 3c556B exhibit this behaviour.
1175 	 *
1176 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1177 	 * devices in a D3hot state at boot.  Consequently, we need to
1178 	 * restore at least the BARs so that the device will be
1179 	 * accessible to its driver.
1180 	 */
1181 	if (need_restore)
1182 		pci_restore_bars(dev);
1183 
1184 	if (dev->bus->self)
1185 		pcie_aspm_pm_state_change(dev->bus->self);
1186 
1187 	return 0;
1188 }
1189 
1190 /**
1191  * pci_update_current_state - Read power state of given device and cache it
1192  * @dev: PCI device to handle.
1193  * @state: State to cache in case the device doesn't have the PM capability
1194  *
1195  * The power state is read from the PMCSR register, which however is
1196  * inaccessible in D3cold.  The platform firmware is therefore queried first
1197  * to detect accessibility of the register.  In case the platform firmware
1198  * reports an incorrect state or the device isn't power manageable by the
1199  * platform at all, we try to detect D3cold by testing accessibility of the
1200  * vendor ID in config space.
1201  */
1202 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1203 {
1204 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1205 	    !pci_device_is_present(dev)) {
1206 		dev->current_state = PCI_D3cold;
1207 	} else if (dev->pm_cap) {
1208 		u16 pmcsr;
1209 
1210 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1211 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1212 	} else {
1213 		dev->current_state = state;
1214 	}
1215 }
1216 
1217 /**
1218  * pci_refresh_power_state - Refresh the given device's power state data
1219  * @dev: Target PCI device.
1220  *
1221  * Ask the platform to refresh the devices power state information and invoke
1222  * pci_update_current_state() to update its current PCI power state.
1223  */
1224 void pci_refresh_power_state(struct pci_dev *dev)
1225 {
1226 	platform_pci_refresh_power_state(dev);
1227 	pci_update_current_state(dev, dev->current_state);
1228 }
1229 
1230 /**
1231  * pci_platform_power_transition - Use platform to change device power state
1232  * @dev: PCI device to handle.
1233  * @state: State to put the device into.
1234  */
1235 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1236 {
1237 	int error;
1238 
1239 	error = platform_pci_set_power_state(dev, state);
1240 	if (!error)
1241 		pci_update_current_state(dev, state);
1242 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1243 		dev->current_state = PCI_D0;
1244 
1245 	return error;
1246 }
1247 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1248 
1249 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1250 {
1251 	pm_request_resume(&pci_dev->dev);
1252 	return 0;
1253 }
1254 
1255 /**
1256  * pci_resume_bus - Walk given bus and runtime resume devices on it
1257  * @bus: Top bus of the subtree to walk.
1258  */
1259 void pci_resume_bus(struct pci_bus *bus)
1260 {
1261 	if (bus)
1262 		pci_walk_bus(bus, pci_resume_one, NULL);
1263 }
1264 
1265 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1266 {
1267 	int delay = 1;
1268 	u32 id;
1269 
1270 	/*
1271 	 * After reset, the device should not silently discard config
1272 	 * requests, but it may still indicate that it needs more time by
1273 	 * responding to them with CRS completions.  The Root Port will
1274 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1275 	 * the read (except when CRS SV is enabled and the read was for the
1276 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1277 	 *
1278 	 * Wait for the device to return a non-CRS completion.  Read the
1279 	 * Command register instead of Vendor ID so we don't have to
1280 	 * contend with the CRS SV value.
1281 	 */
1282 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1283 	while (PCI_POSSIBLE_ERROR(id)) {
1284 		if (delay > timeout) {
1285 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1286 				 delay - 1, reset_type);
1287 			return -ENOTTY;
1288 		}
1289 
1290 		if (delay > 1000)
1291 			pci_info(dev, "not ready %dms after %s; waiting\n",
1292 				 delay - 1, reset_type);
1293 
1294 		msleep(delay);
1295 		delay *= 2;
1296 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1297 	}
1298 
1299 	if (delay > 1000)
1300 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1301 			 reset_type);
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  * pci_power_up - Put the given device into D0
1308  * @dev: PCI device to power up
1309  */
1310 int pci_power_up(struct pci_dev *dev)
1311 {
1312 	pci_platform_power_transition(dev, PCI_D0);
1313 
1314 	/*
1315 	 * Mandatory power management transition delays are handled in
1316 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1317 	 * corresponding bridge.
1318 	 */
1319 	if (dev->runtime_d3cold) {
1320 		/*
1321 		 * When powering on a bridge from D3cold, the whole hierarchy
1322 		 * may be powered on into D0uninitialized state, resume them to
1323 		 * give them a chance to suspend again
1324 		 */
1325 		pci_resume_bus(dev->subordinate);
1326 	}
1327 
1328 	return pci_raw_set_power_state(dev, PCI_D0);
1329 }
1330 
1331 /**
1332  * __pci_dev_set_current_state - Set current state of a PCI device
1333  * @dev: Device to handle
1334  * @data: pointer to state to be set
1335  */
1336 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1337 {
1338 	pci_power_t state = *(pci_power_t *)data;
1339 
1340 	dev->current_state = state;
1341 	return 0;
1342 }
1343 
1344 /**
1345  * pci_bus_set_current_state - Walk given bus and set current state of devices
1346  * @bus: Top bus of the subtree to walk.
1347  * @state: state to be set
1348  */
1349 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1350 {
1351 	if (bus)
1352 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1353 }
1354 
1355 /**
1356  * pci_set_power_state - Set the power state of a PCI device
1357  * @dev: PCI device to handle.
1358  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1359  *
1360  * Transition a device to a new power state, using the platform firmware and/or
1361  * the device's PCI PM registers.
1362  *
1363  * RETURN VALUE:
1364  * -EINVAL if the requested state is invalid.
1365  * -EIO if device does not support PCI PM or its PM capabilities register has a
1366  * wrong version, or device doesn't support the requested state.
1367  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1368  * 0 if device already is in the requested state.
1369  * 0 if the transition is to D3 but D3 is not supported.
1370  * 0 if device's power state has been successfully changed.
1371  */
1372 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1373 {
1374 	int error;
1375 
1376 	/* Bound the state we're entering */
1377 	if (state > PCI_D3cold)
1378 		state = PCI_D3cold;
1379 	else if (state < PCI_D0)
1380 		state = PCI_D0;
1381 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1382 
1383 		/*
1384 		 * If the device or the parent bridge do not support PCI
1385 		 * PM, ignore the request if we're doing anything other
1386 		 * than putting it into D0 (which would only happen on
1387 		 * boot).
1388 		 */
1389 		return 0;
1390 
1391 	/* Check if we're already there */
1392 	if (dev->current_state == state)
1393 		return 0;
1394 
1395 	if (state == PCI_D0)
1396 		return pci_power_up(dev);
1397 
1398 	/*
1399 	 * This device is quirked not to be put into D3, so don't put it in
1400 	 * D3
1401 	 */
1402 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1403 		return 0;
1404 
1405 	/*
1406 	 * To put device in D3cold, we put device into D3hot in native
1407 	 * way, then put device into D3cold with platform ops
1408 	 */
1409 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1410 					PCI_D3hot : state);
1411 
1412 	if (pci_platform_power_transition(dev, state))
1413 		return error;
1414 
1415 	/* Powering off a bridge may power off the whole hierarchy */
1416 	if (state == PCI_D3cold)
1417 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1418 
1419 	return 0;
1420 }
1421 EXPORT_SYMBOL(pci_set_power_state);
1422 
1423 #define PCI_EXP_SAVE_REGS	7
1424 
1425 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1426 						       u16 cap, bool extended)
1427 {
1428 	struct pci_cap_saved_state *tmp;
1429 
1430 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1431 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1432 			return tmp;
1433 	}
1434 	return NULL;
1435 }
1436 
1437 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1438 {
1439 	return _pci_find_saved_cap(dev, cap, false);
1440 }
1441 
1442 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1443 {
1444 	return _pci_find_saved_cap(dev, cap, true);
1445 }
1446 
1447 static int pci_save_pcie_state(struct pci_dev *dev)
1448 {
1449 	int i = 0;
1450 	struct pci_cap_saved_state *save_state;
1451 	u16 *cap;
1452 
1453 	if (!pci_is_pcie(dev))
1454 		return 0;
1455 
1456 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1457 	if (!save_state) {
1458 		pci_err(dev, "buffer not found in %s\n", __func__);
1459 		return -ENOMEM;
1460 	}
1461 
1462 	cap = (u16 *)&save_state->cap.data[0];
1463 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1464 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1465 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1466 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1467 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1468 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1469 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1470 
1471 	return 0;
1472 }
1473 
1474 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1475 {
1476 #ifdef CONFIG_PCIEASPM
1477 	struct pci_dev *bridge;
1478 	u32 ctl;
1479 
1480 	bridge = pci_upstream_bridge(dev);
1481 	if (bridge && bridge->ltr_path) {
1482 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1483 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1484 			pci_dbg(bridge, "re-enabling LTR\n");
1485 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1486 						 PCI_EXP_DEVCTL2_LTR_EN);
1487 		}
1488 	}
1489 #endif
1490 }
1491 
1492 static void pci_restore_pcie_state(struct pci_dev *dev)
1493 {
1494 	int i = 0;
1495 	struct pci_cap_saved_state *save_state;
1496 	u16 *cap;
1497 
1498 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1499 	if (!save_state)
1500 		return;
1501 
1502 	/*
1503 	 * Downstream ports reset the LTR enable bit when link goes down.
1504 	 * Check and re-configure the bit here before restoring device.
1505 	 * PCIe r5.0, sec 7.5.3.16.
1506 	 */
1507 	pci_bridge_reconfigure_ltr(dev);
1508 
1509 	cap = (u16 *)&save_state->cap.data[0];
1510 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1511 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1512 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1513 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1514 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1515 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1516 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1517 }
1518 
1519 static int pci_save_pcix_state(struct pci_dev *dev)
1520 {
1521 	int pos;
1522 	struct pci_cap_saved_state *save_state;
1523 
1524 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1525 	if (!pos)
1526 		return 0;
1527 
1528 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1529 	if (!save_state) {
1530 		pci_err(dev, "buffer not found in %s\n", __func__);
1531 		return -ENOMEM;
1532 	}
1533 
1534 	pci_read_config_word(dev, pos + PCI_X_CMD,
1535 			     (u16 *)save_state->cap.data);
1536 
1537 	return 0;
1538 }
1539 
1540 static void pci_restore_pcix_state(struct pci_dev *dev)
1541 {
1542 	int i = 0, pos;
1543 	struct pci_cap_saved_state *save_state;
1544 	u16 *cap;
1545 
1546 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1547 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1548 	if (!save_state || !pos)
1549 		return;
1550 	cap = (u16 *)&save_state->cap.data[0];
1551 
1552 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1553 }
1554 
1555 static void pci_save_ltr_state(struct pci_dev *dev)
1556 {
1557 	int ltr;
1558 	struct pci_cap_saved_state *save_state;
1559 	u32 *cap;
1560 
1561 	if (!pci_is_pcie(dev))
1562 		return;
1563 
1564 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1565 	if (!ltr)
1566 		return;
1567 
1568 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1569 	if (!save_state) {
1570 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1571 		return;
1572 	}
1573 
1574 	/* Some broken devices only support dword access to LTR */
1575 	cap = &save_state->cap.data[0];
1576 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1577 }
1578 
1579 static void pci_restore_ltr_state(struct pci_dev *dev)
1580 {
1581 	struct pci_cap_saved_state *save_state;
1582 	int ltr;
1583 	u32 *cap;
1584 
1585 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1586 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1587 	if (!save_state || !ltr)
1588 		return;
1589 
1590 	/* Some broken devices only support dword access to LTR */
1591 	cap = &save_state->cap.data[0];
1592 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1593 }
1594 
1595 /**
1596  * pci_save_state - save the PCI configuration space of a device before
1597  *		    suspending
1598  * @dev: PCI device that we're dealing with
1599  */
1600 int pci_save_state(struct pci_dev *dev)
1601 {
1602 	int i;
1603 	/* XXX: 100% dword access ok here? */
1604 	for (i = 0; i < 16; i++) {
1605 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1606 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1607 			i * 4, dev->saved_config_space[i]);
1608 	}
1609 	dev->state_saved = true;
1610 
1611 	i = pci_save_pcie_state(dev);
1612 	if (i != 0)
1613 		return i;
1614 
1615 	i = pci_save_pcix_state(dev);
1616 	if (i != 0)
1617 		return i;
1618 
1619 	pci_save_ltr_state(dev);
1620 	pci_save_dpc_state(dev);
1621 	pci_save_aer_state(dev);
1622 	pci_save_ptm_state(dev);
1623 	return pci_save_vc_state(dev);
1624 }
1625 EXPORT_SYMBOL(pci_save_state);
1626 
1627 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1628 				     u32 saved_val, int retry, bool force)
1629 {
1630 	u32 val;
1631 
1632 	pci_read_config_dword(pdev, offset, &val);
1633 	if (!force && val == saved_val)
1634 		return;
1635 
1636 	for (;;) {
1637 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1638 			offset, val, saved_val);
1639 		pci_write_config_dword(pdev, offset, saved_val);
1640 		if (retry-- <= 0)
1641 			return;
1642 
1643 		pci_read_config_dword(pdev, offset, &val);
1644 		if (val == saved_val)
1645 			return;
1646 
1647 		mdelay(1);
1648 	}
1649 }
1650 
1651 static void pci_restore_config_space_range(struct pci_dev *pdev,
1652 					   int start, int end, int retry,
1653 					   bool force)
1654 {
1655 	int index;
1656 
1657 	for (index = end; index >= start; index--)
1658 		pci_restore_config_dword(pdev, 4 * index,
1659 					 pdev->saved_config_space[index],
1660 					 retry, force);
1661 }
1662 
1663 static void pci_restore_config_space(struct pci_dev *pdev)
1664 {
1665 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1666 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1667 		/* Restore BARs before the command register. */
1668 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1669 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1670 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1671 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1672 
1673 		/*
1674 		 * Force rewriting of prefetch registers to avoid S3 resume
1675 		 * issues on Intel PCI bridges that occur when these
1676 		 * registers are not explicitly written.
1677 		 */
1678 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1679 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1680 	} else {
1681 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1682 	}
1683 }
1684 
1685 static void pci_restore_rebar_state(struct pci_dev *pdev)
1686 {
1687 	unsigned int pos, nbars, i;
1688 	u32 ctrl;
1689 
1690 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1691 	if (!pos)
1692 		return;
1693 
1694 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1695 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1696 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1697 
1698 	for (i = 0; i < nbars; i++, pos += 8) {
1699 		struct resource *res;
1700 		int bar_idx, size;
1701 
1702 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1703 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1704 		res = pdev->resource + bar_idx;
1705 		size = pci_rebar_bytes_to_size(resource_size(res));
1706 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1707 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1708 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1709 	}
1710 }
1711 
1712 /**
1713  * pci_restore_state - Restore the saved state of a PCI device
1714  * @dev: PCI device that we're dealing with
1715  */
1716 void pci_restore_state(struct pci_dev *dev)
1717 {
1718 	if (!dev->state_saved)
1719 		return;
1720 
1721 	/*
1722 	 * Restore max latencies (in the LTR capability) before enabling
1723 	 * LTR itself (in the PCIe capability).
1724 	 */
1725 	pci_restore_ltr_state(dev);
1726 
1727 	pci_restore_pcie_state(dev);
1728 	pci_restore_pasid_state(dev);
1729 	pci_restore_pri_state(dev);
1730 	pci_restore_ats_state(dev);
1731 	pci_restore_vc_state(dev);
1732 	pci_restore_rebar_state(dev);
1733 	pci_restore_dpc_state(dev);
1734 	pci_restore_ptm_state(dev);
1735 
1736 	pci_aer_clear_status(dev);
1737 	pci_restore_aer_state(dev);
1738 
1739 	pci_restore_config_space(dev);
1740 
1741 	pci_restore_pcix_state(dev);
1742 	pci_restore_msi_state(dev);
1743 
1744 	/* Restore ACS and IOV configuration state */
1745 	pci_enable_acs(dev);
1746 	pci_restore_iov_state(dev);
1747 
1748 	dev->state_saved = false;
1749 }
1750 EXPORT_SYMBOL(pci_restore_state);
1751 
1752 struct pci_saved_state {
1753 	u32 config_space[16];
1754 	struct pci_cap_saved_data cap[];
1755 };
1756 
1757 /**
1758  * pci_store_saved_state - Allocate and return an opaque struct containing
1759  *			   the device saved state.
1760  * @dev: PCI device that we're dealing with
1761  *
1762  * Return NULL if no state or error.
1763  */
1764 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1765 {
1766 	struct pci_saved_state *state;
1767 	struct pci_cap_saved_state *tmp;
1768 	struct pci_cap_saved_data *cap;
1769 	size_t size;
1770 
1771 	if (!dev->state_saved)
1772 		return NULL;
1773 
1774 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1775 
1776 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1777 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1778 
1779 	state = kzalloc(size, GFP_KERNEL);
1780 	if (!state)
1781 		return NULL;
1782 
1783 	memcpy(state->config_space, dev->saved_config_space,
1784 	       sizeof(state->config_space));
1785 
1786 	cap = state->cap;
1787 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1788 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1789 		memcpy(cap, &tmp->cap, len);
1790 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1791 	}
1792 	/* Empty cap_save terminates list */
1793 
1794 	return state;
1795 }
1796 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1797 
1798 /**
1799  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1800  * @dev: PCI device that we're dealing with
1801  * @state: Saved state returned from pci_store_saved_state()
1802  */
1803 int pci_load_saved_state(struct pci_dev *dev,
1804 			 struct pci_saved_state *state)
1805 {
1806 	struct pci_cap_saved_data *cap;
1807 
1808 	dev->state_saved = false;
1809 
1810 	if (!state)
1811 		return 0;
1812 
1813 	memcpy(dev->saved_config_space, state->config_space,
1814 	       sizeof(state->config_space));
1815 
1816 	cap = state->cap;
1817 	while (cap->size) {
1818 		struct pci_cap_saved_state *tmp;
1819 
1820 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1821 		if (!tmp || tmp->cap.size != cap->size)
1822 			return -EINVAL;
1823 
1824 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1825 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1826 		       sizeof(struct pci_cap_saved_data) + cap->size);
1827 	}
1828 
1829 	dev->state_saved = true;
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1833 
1834 /**
1835  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1836  *				   and free the memory allocated for it.
1837  * @dev: PCI device that we're dealing with
1838  * @state: Pointer to saved state returned from pci_store_saved_state()
1839  */
1840 int pci_load_and_free_saved_state(struct pci_dev *dev,
1841 				  struct pci_saved_state **state)
1842 {
1843 	int ret = pci_load_saved_state(dev, *state);
1844 	kfree(*state);
1845 	*state = NULL;
1846 	return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1849 
1850 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1851 {
1852 	return pci_enable_resources(dev, bars);
1853 }
1854 
1855 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1856 {
1857 	int err;
1858 	struct pci_dev *bridge;
1859 	u16 cmd;
1860 	u8 pin;
1861 
1862 	err = pci_set_power_state(dev, PCI_D0);
1863 	if (err < 0 && err != -EIO)
1864 		return err;
1865 
1866 	bridge = pci_upstream_bridge(dev);
1867 	if (bridge)
1868 		pcie_aspm_powersave_config_link(bridge);
1869 
1870 	err = pcibios_enable_device(dev, bars);
1871 	if (err < 0)
1872 		return err;
1873 	pci_fixup_device(pci_fixup_enable, dev);
1874 
1875 	if (dev->msi_enabled || dev->msix_enabled)
1876 		return 0;
1877 
1878 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1879 	if (pin) {
1880 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1881 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1882 			pci_write_config_word(dev, PCI_COMMAND,
1883 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 /**
1890  * pci_reenable_device - Resume abandoned device
1891  * @dev: PCI device to be resumed
1892  *
1893  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1894  * to be called by normal code, write proper resume handler and use it instead.
1895  */
1896 int pci_reenable_device(struct pci_dev *dev)
1897 {
1898 	if (pci_is_enabled(dev))
1899 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1900 	return 0;
1901 }
1902 EXPORT_SYMBOL(pci_reenable_device);
1903 
1904 static void pci_enable_bridge(struct pci_dev *dev)
1905 {
1906 	struct pci_dev *bridge;
1907 	int retval;
1908 
1909 	bridge = pci_upstream_bridge(dev);
1910 	if (bridge)
1911 		pci_enable_bridge(bridge);
1912 
1913 	if (pci_is_enabled(dev)) {
1914 		if (!dev->is_busmaster)
1915 			pci_set_master(dev);
1916 		return;
1917 	}
1918 
1919 	retval = pci_enable_device(dev);
1920 	if (retval)
1921 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1922 			retval);
1923 	pci_set_master(dev);
1924 }
1925 
1926 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1927 {
1928 	struct pci_dev *bridge;
1929 	int err;
1930 	int i, bars = 0;
1931 
1932 	/*
1933 	 * Power state could be unknown at this point, either due to a fresh
1934 	 * boot or a device removal call.  So get the current power state
1935 	 * so that things like MSI message writing will behave as expected
1936 	 * (e.g. if the device really is in D0 at enable time).
1937 	 */
1938 	pci_update_current_state(dev, dev->current_state);
1939 
1940 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1941 		return 0;		/* already enabled */
1942 
1943 	bridge = pci_upstream_bridge(dev);
1944 	if (bridge)
1945 		pci_enable_bridge(bridge);
1946 
1947 	/* only skip sriov related */
1948 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1949 		if (dev->resource[i].flags & flags)
1950 			bars |= (1 << i);
1951 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1952 		if (dev->resource[i].flags & flags)
1953 			bars |= (1 << i);
1954 
1955 	err = do_pci_enable_device(dev, bars);
1956 	if (err < 0)
1957 		atomic_dec(&dev->enable_cnt);
1958 	return err;
1959 }
1960 
1961 /**
1962  * pci_enable_device_io - Initialize a device for use with IO space
1963  * @dev: PCI device to be initialized
1964  *
1965  * Initialize device before it's used by a driver. Ask low-level code
1966  * to enable I/O resources. Wake up the device if it was suspended.
1967  * Beware, this function can fail.
1968  */
1969 int pci_enable_device_io(struct pci_dev *dev)
1970 {
1971 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1972 }
1973 EXPORT_SYMBOL(pci_enable_device_io);
1974 
1975 /**
1976  * pci_enable_device_mem - Initialize a device for use with Memory space
1977  * @dev: PCI device to be initialized
1978  *
1979  * Initialize device before it's used by a driver. Ask low-level code
1980  * to enable Memory resources. Wake up the device if it was suspended.
1981  * Beware, this function can fail.
1982  */
1983 int pci_enable_device_mem(struct pci_dev *dev)
1984 {
1985 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1986 }
1987 EXPORT_SYMBOL(pci_enable_device_mem);
1988 
1989 /**
1990  * pci_enable_device - Initialize device before it's used by a driver.
1991  * @dev: PCI device to be initialized
1992  *
1993  * Initialize device before it's used by a driver. Ask low-level code
1994  * to enable I/O and memory. Wake up the device if it was suspended.
1995  * Beware, this function can fail.
1996  *
1997  * Note we don't actually enable the device many times if we call
1998  * this function repeatedly (we just increment the count).
1999  */
2000 int pci_enable_device(struct pci_dev *dev)
2001 {
2002 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2003 }
2004 EXPORT_SYMBOL(pci_enable_device);
2005 
2006 /*
2007  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2008  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2009  * there's no need to track it separately.  pci_devres is initialized
2010  * when a device is enabled using managed PCI device enable interface.
2011  */
2012 struct pci_devres {
2013 	unsigned int enabled:1;
2014 	unsigned int pinned:1;
2015 	unsigned int orig_intx:1;
2016 	unsigned int restore_intx:1;
2017 	unsigned int mwi:1;
2018 	u32 region_mask;
2019 };
2020 
2021 static void pcim_release(struct device *gendev, void *res)
2022 {
2023 	struct pci_dev *dev = to_pci_dev(gendev);
2024 	struct pci_devres *this = res;
2025 	int i;
2026 
2027 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2028 		if (this->region_mask & (1 << i))
2029 			pci_release_region(dev, i);
2030 
2031 	if (this->mwi)
2032 		pci_clear_mwi(dev);
2033 
2034 	if (this->restore_intx)
2035 		pci_intx(dev, this->orig_intx);
2036 
2037 	if (this->enabled && !this->pinned)
2038 		pci_disable_device(dev);
2039 }
2040 
2041 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2042 {
2043 	struct pci_devres *dr, *new_dr;
2044 
2045 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2046 	if (dr)
2047 		return dr;
2048 
2049 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2050 	if (!new_dr)
2051 		return NULL;
2052 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2053 }
2054 
2055 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2056 {
2057 	if (pci_is_managed(pdev))
2058 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2059 	return NULL;
2060 }
2061 
2062 /**
2063  * pcim_enable_device - Managed pci_enable_device()
2064  * @pdev: PCI device to be initialized
2065  *
2066  * Managed pci_enable_device().
2067  */
2068 int pcim_enable_device(struct pci_dev *pdev)
2069 {
2070 	struct pci_devres *dr;
2071 	int rc;
2072 
2073 	dr = get_pci_dr(pdev);
2074 	if (unlikely(!dr))
2075 		return -ENOMEM;
2076 	if (dr->enabled)
2077 		return 0;
2078 
2079 	rc = pci_enable_device(pdev);
2080 	if (!rc) {
2081 		pdev->is_managed = 1;
2082 		dr->enabled = 1;
2083 	}
2084 	return rc;
2085 }
2086 EXPORT_SYMBOL(pcim_enable_device);
2087 
2088 /**
2089  * pcim_pin_device - Pin managed PCI device
2090  * @pdev: PCI device to pin
2091  *
2092  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2093  * driver detach.  @pdev must have been enabled with
2094  * pcim_enable_device().
2095  */
2096 void pcim_pin_device(struct pci_dev *pdev)
2097 {
2098 	struct pci_devres *dr;
2099 
2100 	dr = find_pci_dr(pdev);
2101 	WARN_ON(!dr || !dr->enabled);
2102 	if (dr)
2103 		dr->pinned = 1;
2104 }
2105 EXPORT_SYMBOL(pcim_pin_device);
2106 
2107 /*
2108  * pcibios_device_add - provide arch specific hooks when adding device dev
2109  * @dev: the PCI device being added
2110  *
2111  * Permits the platform to provide architecture specific functionality when
2112  * devices are added. This is the default implementation. Architecture
2113  * implementations can override this.
2114  */
2115 int __weak pcibios_device_add(struct pci_dev *dev)
2116 {
2117 	return 0;
2118 }
2119 
2120 /**
2121  * pcibios_release_device - provide arch specific hooks when releasing
2122  *			    device dev
2123  * @dev: the PCI device being released
2124  *
2125  * Permits the platform to provide architecture specific functionality when
2126  * devices are released. This is the default implementation. Architecture
2127  * implementations can override this.
2128  */
2129 void __weak pcibios_release_device(struct pci_dev *dev) {}
2130 
2131 /**
2132  * pcibios_disable_device - disable arch specific PCI resources for device dev
2133  * @dev: the PCI device to disable
2134  *
2135  * Disables architecture specific PCI resources for the device. This
2136  * is the default implementation. Architecture implementations can
2137  * override this.
2138  */
2139 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2140 
2141 /**
2142  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2143  * @irq: ISA IRQ to penalize
2144  * @active: IRQ active or not
2145  *
2146  * Permits the platform to provide architecture-specific functionality when
2147  * penalizing ISA IRQs. This is the default implementation. Architecture
2148  * implementations can override this.
2149  */
2150 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2151 
2152 static void do_pci_disable_device(struct pci_dev *dev)
2153 {
2154 	u16 pci_command;
2155 
2156 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2157 	if (pci_command & PCI_COMMAND_MASTER) {
2158 		pci_command &= ~PCI_COMMAND_MASTER;
2159 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2160 	}
2161 
2162 	pcibios_disable_device(dev);
2163 }
2164 
2165 /**
2166  * pci_disable_enabled_device - Disable device without updating enable_cnt
2167  * @dev: PCI device to disable
2168  *
2169  * NOTE: This function is a backend of PCI power management routines and is
2170  * not supposed to be called drivers.
2171  */
2172 void pci_disable_enabled_device(struct pci_dev *dev)
2173 {
2174 	if (pci_is_enabled(dev))
2175 		do_pci_disable_device(dev);
2176 }
2177 
2178 /**
2179  * pci_disable_device - Disable PCI device after use
2180  * @dev: PCI device to be disabled
2181  *
2182  * Signal to the system that the PCI device is not in use by the system
2183  * anymore.  This only involves disabling PCI bus-mastering, if active.
2184  *
2185  * Note we don't actually disable the device until all callers of
2186  * pci_enable_device() have called pci_disable_device().
2187  */
2188 void pci_disable_device(struct pci_dev *dev)
2189 {
2190 	struct pci_devres *dr;
2191 
2192 	dr = find_pci_dr(dev);
2193 	if (dr)
2194 		dr->enabled = 0;
2195 
2196 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2197 		      "disabling already-disabled device");
2198 
2199 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2200 		return;
2201 
2202 	do_pci_disable_device(dev);
2203 
2204 	dev->is_busmaster = 0;
2205 }
2206 EXPORT_SYMBOL(pci_disable_device);
2207 
2208 /**
2209  * pcibios_set_pcie_reset_state - set reset state for device dev
2210  * @dev: the PCIe device reset
2211  * @state: Reset state to enter into
2212  *
2213  * Set the PCIe reset state for the device. This is the default
2214  * implementation. Architecture implementations can override this.
2215  */
2216 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2217 					enum pcie_reset_state state)
2218 {
2219 	return -EINVAL;
2220 }
2221 
2222 /**
2223  * pci_set_pcie_reset_state - set reset state for device dev
2224  * @dev: the PCIe device reset
2225  * @state: Reset state to enter into
2226  *
2227  * Sets the PCI reset state for the device.
2228  */
2229 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2230 {
2231 	return pcibios_set_pcie_reset_state(dev, state);
2232 }
2233 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2234 
2235 #ifdef CONFIG_PCIEAER
2236 void pcie_clear_device_status(struct pci_dev *dev)
2237 {
2238 	u16 sta;
2239 
2240 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2241 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2242 }
2243 #endif
2244 
2245 /**
2246  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2247  * @dev: PCIe root port or event collector.
2248  */
2249 void pcie_clear_root_pme_status(struct pci_dev *dev)
2250 {
2251 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2252 }
2253 
2254 /**
2255  * pci_check_pme_status - Check if given device has generated PME.
2256  * @dev: Device to check.
2257  *
2258  * Check the PME status of the device and if set, clear it and clear PME enable
2259  * (if set).  Return 'true' if PME status and PME enable were both set or
2260  * 'false' otherwise.
2261  */
2262 bool pci_check_pme_status(struct pci_dev *dev)
2263 {
2264 	int pmcsr_pos;
2265 	u16 pmcsr;
2266 	bool ret = false;
2267 
2268 	if (!dev->pm_cap)
2269 		return false;
2270 
2271 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2272 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2273 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2274 		return false;
2275 
2276 	/* Clear PME status. */
2277 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2278 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2279 		/* Disable PME to avoid interrupt flood. */
2280 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2281 		ret = true;
2282 	}
2283 
2284 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2285 
2286 	return ret;
2287 }
2288 
2289 /**
2290  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2291  * @dev: Device to handle.
2292  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2293  *
2294  * Check if @dev has generated PME and queue a resume request for it in that
2295  * case.
2296  */
2297 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2298 {
2299 	if (pme_poll_reset && dev->pme_poll)
2300 		dev->pme_poll = false;
2301 
2302 	if (pci_check_pme_status(dev)) {
2303 		pci_wakeup_event(dev);
2304 		pm_request_resume(&dev->dev);
2305 	}
2306 	return 0;
2307 }
2308 
2309 /**
2310  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2311  * @bus: Top bus of the subtree to walk.
2312  */
2313 void pci_pme_wakeup_bus(struct pci_bus *bus)
2314 {
2315 	if (bus)
2316 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2317 }
2318 
2319 
2320 /**
2321  * pci_pme_capable - check the capability of PCI device to generate PME#
2322  * @dev: PCI device to handle.
2323  * @state: PCI state from which device will issue PME#.
2324  */
2325 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2326 {
2327 	if (!dev->pm_cap)
2328 		return false;
2329 
2330 	return !!(dev->pme_support & (1 << state));
2331 }
2332 EXPORT_SYMBOL(pci_pme_capable);
2333 
2334 static void pci_pme_list_scan(struct work_struct *work)
2335 {
2336 	struct pci_pme_device *pme_dev, *n;
2337 
2338 	mutex_lock(&pci_pme_list_mutex);
2339 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2340 		if (pme_dev->dev->pme_poll) {
2341 			struct pci_dev *bridge;
2342 
2343 			bridge = pme_dev->dev->bus->self;
2344 			/*
2345 			 * If bridge is in low power state, the
2346 			 * configuration space of subordinate devices
2347 			 * may be not accessible
2348 			 */
2349 			if (bridge && bridge->current_state != PCI_D0)
2350 				continue;
2351 			/*
2352 			 * If the device is in D3cold it should not be
2353 			 * polled either.
2354 			 */
2355 			if (pme_dev->dev->current_state == PCI_D3cold)
2356 				continue;
2357 
2358 			pci_pme_wakeup(pme_dev->dev, NULL);
2359 		} else {
2360 			list_del(&pme_dev->list);
2361 			kfree(pme_dev);
2362 		}
2363 	}
2364 	if (!list_empty(&pci_pme_list))
2365 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2366 				   msecs_to_jiffies(PME_TIMEOUT));
2367 	mutex_unlock(&pci_pme_list_mutex);
2368 }
2369 
2370 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2371 {
2372 	u16 pmcsr;
2373 
2374 	if (!dev->pme_support)
2375 		return;
2376 
2377 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2378 	/* Clear PME_Status by writing 1 to it and enable PME# */
2379 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2380 	if (!enable)
2381 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2382 
2383 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2384 }
2385 
2386 /**
2387  * pci_pme_restore - Restore PME configuration after config space restore.
2388  * @dev: PCI device to update.
2389  */
2390 void pci_pme_restore(struct pci_dev *dev)
2391 {
2392 	u16 pmcsr;
2393 
2394 	if (!dev->pme_support)
2395 		return;
2396 
2397 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2398 	if (dev->wakeup_prepared) {
2399 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2400 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2401 	} else {
2402 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2403 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2404 	}
2405 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2406 }
2407 
2408 /**
2409  * pci_pme_active - enable or disable PCI device's PME# function
2410  * @dev: PCI device to handle.
2411  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2412  *
2413  * The caller must verify that the device is capable of generating PME# before
2414  * calling this function with @enable equal to 'true'.
2415  */
2416 void pci_pme_active(struct pci_dev *dev, bool enable)
2417 {
2418 	__pci_pme_active(dev, enable);
2419 
2420 	/*
2421 	 * PCI (as opposed to PCIe) PME requires that the device have
2422 	 * its PME# line hooked up correctly. Not all hardware vendors
2423 	 * do this, so the PME never gets delivered and the device
2424 	 * remains asleep. The easiest way around this is to
2425 	 * periodically walk the list of suspended devices and check
2426 	 * whether any have their PME flag set. The assumption is that
2427 	 * we'll wake up often enough anyway that this won't be a huge
2428 	 * hit, and the power savings from the devices will still be a
2429 	 * win.
2430 	 *
2431 	 * Although PCIe uses in-band PME message instead of PME# line
2432 	 * to report PME, PME does not work for some PCIe devices in
2433 	 * reality.  For example, there are devices that set their PME
2434 	 * status bits, but don't really bother to send a PME message;
2435 	 * there are PCI Express Root Ports that don't bother to
2436 	 * trigger interrupts when they receive PME messages from the
2437 	 * devices below.  So PME poll is used for PCIe devices too.
2438 	 */
2439 
2440 	if (dev->pme_poll) {
2441 		struct pci_pme_device *pme_dev;
2442 		if (enable) {
2443 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2444 					  GFP_KERNEL);
2445 			if (!pme_dev) {
2446 				pci_warn(dev, "can't enable PME#\n");
2447 				return;
2448 			}
2449 			pme_dev->dev = dev;
2450 			mutex_lock(&pci_pme_list_mutex);
2451 			list_add(&pme_dev->list, &pci_pme_list);
2452 			if (list_is_singular(&pci_pme_list))
2453 				queue_delayed_work(system_freezable_wq,
2454 						   &pci_pme_work,
2455 						   msecs_to_jiffies(PME_TIMEOUT));
2456 			mutex_unlock(&pci_pme_list_mutex);
2457 		} else {
2458 			mutex_lock(&pci_pme_list_mutex);
2459 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2460 				if (pme_dev->dev == dev) {
2461 					list_del(&pme_dev->list);
2462 					kfree(pme_dev);
2463 					break;
2464 				}
2465 			}
2466 			mutex_unlock(&pci_pme_list_mutex);
2467 		}
2468 	}
2469 
2470 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2471 }
2472 EXPORT_SYMBOL(pci_pme_active);
2473 
2474 /**
2475  * __pci_enable_wake - enable PCI device as wakeup event source
2476  * @dev: PCI device affected
2477  * @state: PCI state from which device will issue wakeup events
2478  * @enable: True to enable event generation; false to disable
2479  *
2480  * This enables the device as a wakeup event source, or disables it.
2481  * When such events involves platform-specific hooks, those hooks are
2482  * called automatically by this routine.
2483  *
2484  * Devices with legacy power management (no standard PCI PM capabilities)
2485  * always require such platform hooks.
2486  *
2487  * RETURN VALUE:
2488  * 0 is returned on success
2489  * -EINVAL is returned if device is not supposed to wake up the system
2490  * Error code depending on the platform is returned if both the platform and
2491  * the native mechanism fail to enable the generation of wake-up events
2492  */
2493 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2494 {
2495 	int ret = 0;
2496 
2497 	/*
2498 	 * Bridges that are not power-manageable directly only signal
2499 	 * wakeup on behalf of subordinate devices which is set up
2500 	 * elsewhere, so skip them. However, bridges that are
2501 	 * power-manageable may signal wakeup for themselves (for example,
2502 	 * on a hotplug event) and they need to be covered here.
2503 	 */
2504 	if (!pci_power_manageable(dev))
2505 		return 0;
2506 
2507 	/* Don't do the same thing twice in a row for one device. */
2508 	if (!!enable == !!dev->wakeup_prepared)
2509 		return 0;
2510 
2511 	/*
2512 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2513 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2514 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2515 	 */
2516 
2517 	if (enable) {
2518 		int error;
2519 
2520 		/*
2521 		 * Enable PME signaling if the device can signal PME from
2522 		 * D3cold regardless of whether or not it can signal PME from
2523 		 * the current target state, because that will allow it to
2524 		 * signal PME when the hierarchy above it goes into D3cold and
2525 		 * the device itself ends up in D3cold as a result of that.
2526 		 */
2527 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2528 			pci_pme_active(dev, true);
2529 		else
2530 			ret = 1;
2531 		error = platform_pci_set_wakeup(dev, true);
2532 		if (ret)
2533 			ret = error;
2534 		if (!ret)
2535 			dev->wakeup_prepared = true;
2536 	} else {
2537 		platform_pci_set_wakeup(dev, false);
2538 		pci_pme_active(dev, false);
2539 		dev->wakeup_prepared = false;
2540 	}
2541 
2542 	return ret;
2543 }
2544 
2545 /**
2546  * pci_enable_wake - change wakeup settings for a PCI device
2547  * @pci_dev: Target device
2548  * @state: PCI state from which device will issue wakeup events
2549  * @enable: Whether or not to enable event generation
2550  *
2551  * If @enable is set, check device_may_wakeup() for the device before calling
2552  * __pci_enable_wake() for it.
2553  */
2554 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2555 {
2556 	if (enable && !device_may_wakeup(&pci_dev->dev))
2557 		return -EINVAL;
2558 
2559 	return __pci_enable_wake(pci_dev, state, enable);
2560 }
2561 EXPORT_SYMBOL(pci_enable_wake);
2562 
2563 /**
2564  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2565  * @dev: PCI device to prepare
2566  * @enable: True to enable wake-up event generation; false to disable
2567  *
2568  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2569  * and this function allows them to set that up cleanly - pci_enable_wake()
2570  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2571  * ordering constraints.
2572  *
2573  * This function only returns error code if the device is not allowed to wake
2574  * up the system from sleep or it is not capable of generating PME# from both
2575  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2576  */
2577 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2578 {
2579 	return pci_pme_capable(dev, PCI_D3cold) ?
2580 			pci_enable_wake(dev, PCI_D3cold, enable) :
2581 			pci_enable_wake(dev, PCI_D3hot, enable);
2582 }
2583 EXPORT_SYMBOL(pci_wake_from_d3);
2584 
2585 /**
2586  * pci_target_state - find an appropriate low power state for a given PCI dev
2587  * @dev: PCI device
2588  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2589  *
2590  * Use underlying platform code to find a supported low power state for @dev.
2591  * If the platform can't manage @dev, return the deepest state from which it
2592  * can generate wake events, based on any available PME info.
2593  */
2594 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2595 {
2596 	if (platform_pci_power_manageable(dev)) {
2597 		/*
2598 		 * Call the platform to find the target state for the device.
2599 		 */
2600 		pci_power_t state = platform_pci_choose_state(dev);
2601 
2602 		switch (state) {
2603 		case PCI_POWER_ERROR:
2604 		case PCI_UNKNOWN:
2605 			return PCI_D3hot;
2606 
2607 		case PCI_D1:
2608 		case PCI_D2:
2609 			if (pci_no_d1d2(dev))
2610 				return PCI_D3hot;
2611 		}
2612 
2613 		return state;
2614 	}
2615 
2616 	/*
2617 	 * If the device is in D3cold even though it's not power-manageable by
2618 	 * the platform, it may have been powered down by non-standard means.
2619 	 * Best to let it slumber.
2620 	 */
2621 	if (dev->current_state == PCI_D3cold)
2622 		return PCI_D3cold;
2623 	else if (!dev->pm_cap)
2624 		return PCI_D0;
2625 
2626 	if (wakeup && dev->pme_support) {
2627 		pci_power_t state = PCI_D3hot;
2628 
2629 		/*
2630 		 * Find the deepest state from which the device can generate
2631 		 * PME#.
2632 		 */
2633 		while (state && !(dev->pme_support & (1 << state)))
2634 			state--;
2635 
2636 		if (state)
2637 			return state;
2638 		else if (dev->pme_support & 1)
2639 			return PCI_D0;
2640 	}
2641 
2642 	return PCI_D3hot;
2643 }
2644 
2645 /**
2646  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2647  *			  into a sleep state
2648  * @dev: Device to handle.
2649  *
2650  * Choose the power state appropriate for the device depending on whether
2651  * it can wake up the system and/or is power manageable by the platform
2652  * (PCI_D3hot is the default) and put the device into that state.
2653  */
2654 int pci_prepare_to_sleep(struct pci_dev *dev)
2655 {
2656 	bool wakeup = device_may_wakeup(&dev->dev);
2657 	pci_power_t target_state = pci_target_state(dev, wakeup);
2658 	int error;
2659 
2660 	if (target_state == PCI_POWER_ERROR)
2661 		return -EIO;
2662 
2663 	/*
2664 	 * There are systems (for example, Intel mobile chips since Coffee
2665 	 * Lake) where the power drawn while suspended can be significantly
2666 	 * reduced by disabling PTM on PCIe root ports as this allows the
2667 	 * port to enter a lower-power PM state and the SoC to reach a
2668 	 * lower-power idle state as a whole.
2669 	 */
2670 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2671 		pci_disable_ptm(dev);
2672 
2673 	pci_enable_wake(dev, target_state, wakeup);
2674 
2675 	error = pci_set_power_state(dev, target_state);
2676 
2677 	if (error) {
2678 		pci_enable_wake(dev, target_state, false);
2679 		pci_restore_ptm_state(dev);
2680 	}
2681 
2682 	return error;
2683 }
2684 EXPORT_SYMBOL(pci_prepare_to_sleep);
2685 
2686 /**
2687  * pci_back_from_sleep - turn PCI device on during system-wide transition
2688  *			 into working state
2689  * @dev: Device to handle.
2690  *
2691  * Disable device's system wake-up capability and put it into D0.
2692  */
2693 int pci_back_from_sleep(struct pci_dev *dev)
2694 {
2695 	int ret = pci_set_power_state(dev, PCI_D0);
2696 
2697 	if (ret)
2698 		return ret;
2699 
2700 	pci_enable_wake(dev, PCI_D0, false);
2701 	return 0;
2702 }
2703 EXPORT_SYMBOL(pci_back_from_sleep);
2704 
2705 /**
2706  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2707  * @dev: PCI device being suspended.
2708  *
2709  * Prepare @dev to generate wake-up events at run time and put it into a low
2710  * power state.
2711  */
2712 int pci_finish_runtime_suspend(struct pci_dev *dev)
2713 {
2714 	pci_power_t target_state;
2715 	int error;
2716 
2717 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2718 	if (target_state == PCI_POWER_ERROR)
2719 		return -EIO;
2720 
2721 	dev->runtime_d3cold = target_state == PCI_D3cold;
2722 
2723 	/*
2724 	 * There are systems (for example, Intel mobile chips since Coffee
2725 	 * Lake) where the power drawn while suspended can be significantly
2726 	 * reduced by disabling PTM on PCIe root ports as this allows the
2727 	 * port to enter a lower-power PM state and the SoC to reach a
2728 	 * lower-power idle state as a whole.
2729 	 */
2730 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2731 		pci_disable_ptm(dev);
2732 
2733 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2734 
2735 	error = pci_set_power_state(dev, target_state);
2736 
2737 	if (error) {
2738 		pci_enable_wake(dev, target_state, false);
2739 		pci_restore_ptm_state(dev);
2740 		dev->runtime_d3cold = false;
2741 	}
2742 
2743 	return error;
2744 }
2745 
2746 /**
2747  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2748  * @dev: Device to check.
2749  *
2750  * Return true if the device itself is capable of generating wake-up events
2751  * (through the platform or using the native PCIe PME) or if the device supports
2752  * PME and one of its upstream bridges can generate wake-up events.
2753  */
2754 bool pci_dev_run_wake(struct pci_dev *dev)
2755 {
2756 	struct pci_bus *bus = dev->bus;
2757 
2758 	if (!dev->pme_support)
2759 		return false;
2760 
2761 	/* PME-capable in principle, but not from the target power state */
2762 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2763 		return false;
2764 
2765 	if (device_can_wakeup(&dev->dev))
2766 		return true;
2767 
2768 	while (bus->parent) {
2769 		struct pci_dev *bridge = bus->self;
2770 
2771 		if (device_can_wakeup(&bridge->dev))
2772 			return true;
2773 
2774 		bus = bus->parent;
2775 	}
2776 
2777 	/* We have reached the root bus. */
2778 	if (bus->bridge)
2779 		return device_can_wakeup(bus->bridge);
2780 
2781 	return false;
2782 }
2783 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2784 
2785 /**
2786  * pci_dev_need_resume - Check if it is necessary to resume the device.
2787  * @pci_dev: Device to check.
2788  *
2789  * Return 'true' if the device is not runtime-suspended or it has to be
2790  * reconfigured due to wakeup settings difference between system and runtime
2791  * suspend, or the current power state of it is not suitable for the upcoming
2792  * (system-wide) transition.
2793  */
2794 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2795 {
2796 	struct device *dev = &pci_dev->dev;
2797 	pci_power_t target_state;
2798 
2799 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2800 		return true;
2801 
2802 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2803 
2804 	/*
2805 	 * If the earlier platform check has not triggered, D3cold is just power
2806 	 * removal on top of D3hot, so no need to resume the device in that
2807 	 * case.
2808 	 */
2809 	return target_state != pci_dev->current_state &&
2810 		target_state != PCI_D3cold &&
2811 		pci_dev->current_state != PCI_D3hot;
2812 }
2813 
2814 /**
2815  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2816  * @pci_dev: Device to check.
2817  *
2818  * If the device is suspended and it is not configured for system wakeup,
2819  * disable PME for it to prevent it from waking up the system unnecessarily.
2820  *
2821  * Note that if the device's power state is D3cold and the platform check in
2822  * pci_dev_need_resume() has not triggered, the device's configuration need not
2823  * be changed.
2824  */
2825 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2826 {
2827 	struct device *dev = &pci_dev->dev;
2828 
2829 	spin_lock_irq(&dev->power.lock);
2830 
2831 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2832 	    pci_dev->current_state < PCI_D3cold)
2833 		__pci_pme_active(pci_dev, false);
2834 
2835 	spin_unlock_irq(&dev->power.lock);
2836 }
2837 
2838 /**
2839  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2840  * @pci_dev: Device to handle.
2841  *
2842  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2843  * it might have been disabled during the prepare phase of system suspend if
2844  * the device was not configured for system wakeup.
2845  */
2846 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2847 {
2848 	struct device *dev = &pci_dev->dev;
2849 
2850 	if (!pci_dev_run_wake(pci_dev))
2851 		return;
2852 
2853 	spin_lock_irq(&dev->power.lock);
2854 
2855 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2856 		__pci_pme_active(pci_dev, true);
2857 
2858 	spin_unlock_irq(&dev->power.lock);
2859 }
2860 
2861 /**
2862  * pci_choose_state - Choose the power state of a PCI device.
2863  * @dev: Target PCI device.
2864  * @state: Target state for the whole system.
2865  *
2866  * Returns PCI power state suitable for @dev and @state.
2867  */
2868 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2869 {
2870 	if (state.event == PM_EVENT_ON)
2871 		return PCI_D0;
2872 
2873 	return pci_target_state(dev, false);
2874 }
2875 EXPORT_SYMBOL(pci_choose_state);
2876 
2877 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2878 {
2879 	struct device *dev = &pdev->dev;
2880 	struct device *parent = dev->parent;
2881 
2882 	if (parent)
2883 		pm_runtime_get_sync(parent);
2884 	pm_runtime_get_noresume(dev);
2885 	/*
2886 	 * pdev->current_state is set to PCI_D3cold during suspending,
2887 	 * so wait until suspending completes
2888 	 */
2889 	pm_runtime_barrier(dev);
2890 	/*
2891 	 * Only need to resume devices in D3cold, because config
2892 	 * registers are still accessible for devices suspended but
2893 	 * not in D3cold.
2894 	 */
2895 	if (pdev->current_state == PCI_D3cold)
2896 		pm_runtime_resume(dev);
2897 }
2898 
2899 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2900 {
2901 	struct device *dev = &pdev->dev;
2902 	struct device *parent = dev->parent;
2903 
2904 	pm_runtime_put(dev);
2905 	if (parent)
2906 		pm_runtime_put_sync(parent);
2907 }
2908 
2909 static const struct dmi_system_id bridge_d3_blacklist[] = {
2910 #ifdef CONFIG_X86
2911 	{
2912 		/*
2913 		 * Gigabyte X299 root port is not marked as hotplug capable
2914 		 * which allows Linux to power manage it.  However, this
2915 		 * confuses the BIOS SMI handler so don't power manage root
2916 		 * ports on that system.
2917 		 */
2918 		.ident = "X299 DESIGNARE EX-CF",
2919 		.matches = {
2920 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2921 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2922 		},
2923 	},
2924 #endif
2925 	{ }
2926 };
2927 
2928 /**
2929  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2930  * @bridge: Bridge to check
2931  *
2932  * This function checks if it is possible to move the bridge to D3.
2933  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2934  */
2935 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2936 {
2937 	if (!pci_is_pcie(bridge))
2938 		return false;
2939 
2940 	switch (pci_pcie_type(bridge)) {
2941 	case PCI_EXP_TYPE_ROOT_PORT:
2942 	case PCI_EXP_TYPE_UPSTREAM:
2943 	case PCI_EXP_TYPE_DOWNSTREAM:
2944 		if (pci_bridge_d3_disable)
2945 			return false;
2946 
2947 		/*
2948 		 * Hotplug ports handled by firmware in System Management Mode
2949 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2950 		 */
2951 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2952 			return false;
2953 
2954 		if (pci_bridge_d3_force)
2955 			return true;
2956 
2957 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2958 		if (bridge->is_thunderbolt)
2959 			return true;
2960 
2961 		/* Platform might know better if the bridge supports D3 */
2962 		if (platform_pci_bridge_d3(bridge))
2963 			return true;
2964 
2965 		/*
2966 		 * Hotplug ports handled natively by the OS were not validated
2967 		 * by vendors for runtime D3 at least until 2018 because there
2968 		 * was no OS support.
2969 		 */
2970 		if (bridge->is_hotplug_bridge)
2971 			return false;
2972 
2973 		if (dmi_check_system(bridge_d3_blacklist))
2974 			return false;
2975 
2976 		/*
2977 		 * It should be safe to put PCIe ports from 2015 or newer
2978 		 * to D3.
2979 		 */
2980 		if (dmi_get_bios_year() >= 2015)
2981 			return true;
2982 		break;
2983 	}
2984 
2985 	return false;
2986 }
2987 
2988 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2989 {
2990 	bool *d3cold_ok = data;
2991 
2992 	if (/* The device needs to be allowed to go D3cold ... */
2993 	    dev->no_d3cold || !dev->d3cold_allowed ||
2994 
2995 	    /* ... and if it is wakeup capable to do so from D3cold. */
2996 	    (device_may_wakeup(&dev->dev) &&
2997 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2998 
2999 	    /* If it is a bridge it must be allowed to go to D3. */
3000 	    !pci_power_manageable(dev))
3001 
3002 		*d3cold_ok = false;
3003 
3004 	return !*d3cold_ok;
3005 }
3006 
3007 /*
3008  * pci_bridge_d3_update - Update bridge D3 capabilities
3009  * @dev: PCI device which is changed
3010  *
3011  * Update upstream bridge PM capabilities accordingly depending on if the
3012  * device PM configuration was changed or the device is being removed.  The
3013  * change is also propagated upstream.
3014  */
3015 void pci_bridge_d3_update(struct pci_dev *dev)
3016 {
3017 	bool remove = !device_is_registered(&dev->dev);
3018 	struct pci_dev *bridge;
3019 	bool d3cold_ok = true;
3020 
3021 	bridge = pci_upstream_bridge(dev);
3022 	if (!bridge || !pci_bridge_d3_possible(bridge))
3023 		return;
3024 
3025 	/*
3026 	 * If D3 is currently allowed for the bridge, removing one of its
3027 	 * children won't change that.
3028 	 */
3029 	if (remove && bridge->bridge_d3)
3030 		return;
3031 
3032 	/*
3033 	 * If D3 is currently allowed for the bridge and a child is added or
3034 	 * changed, disallowance of D3 can only be caused by that child, so
3035 	 * we only need to check that single device, not any of its siblings.
3036 	 *
3037 	 * If D3 is currently not allowed for the bridge, checking the device
3038 	 * first may allow us to skip checking its siblings.
3039 	 */
3040 	if (!remove)
3041 		pci_dev_check_d3cold(dev, &d3cold_ok);
3042 
3043 	/*
3044 	 * If D3 is currently not allowed for the bridge, this may be caused
3045 	 * either by the device being changed/removed or any of its siblings,
3046 	 * so we need to go through all children to find out if one of them
3047 	 * continues to block D3.
3048 	 */
3049 	if (d3cold_ok && !bridge->bridge_d3)
3050 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3051 			     &d3cold_ok);
3052 
3053 	if (bridge->bridge_d3 != d3cold_ok) {
3054 		bridge->bridge_d3 = d3cold_ok;
3055 		/* Propagate change to upstream bridges */
3056 		pci_bridge_d3_update(bridge);
3057 	}
3058 }
3059 
3060 /**
3061  * pci_d3cold_enable - Enable D3cold for device
3062  * @dev: PCI device to handle
3063  *
3064  * This function can be used in drivers to enable D3cold from the device
3065  * they handle.  It also updates upstream PCI bridge PM capabilities
3066  * accordingly.
3067  */
3068 void pci_d3cold_enable(struct pci_dev *dev)
3069 {
3070 	if (dev->no_d3cold) {
3071 		dev->no_d3cold = false;
3072 		pci_bridge_d3_update(dev);
3073 	}
3074 }
3075 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3076 
3077 /**
3078  * pci_d3cold_disable - Disable D3cold for device
3079  * @dev: PCI device to handle
3080  *
3081  * This function can be used in drivers to disable D3cold from the device
3082  * they handle.  It also updates upstream PCI bridge PM capabilities
3083  * accordingly.
3084  */
3085 void pci_d3cold_disable(struct pci_dev *dev)
3086 {
3087 	if (!dev->no_d3cold) {
3088 		dev->no_d3cold = true;
3089 		pci_bridge_d3_update(dev);
3090 	}
3091 }
3092 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3093 
3094 /**
3095  * pci_pm_init - Initialize PM functions of given PCI device
3096  * @dev: PCI device to handle.
3097  */
3098 void pci_pm_init(struct pci_dev *dev)
3099 {
3100 	int pm;
3101 	u16 status;
3102 	u16 pmc;
3103 
3104 	pm_runtime_forbid(&dev->dev);
3105 	pm_runtime_set_active(&dev->dev);
3106 	pm_runtime_enable(&dev->dev);
3107 	device_enable_async_suspend(&dev->dev);
3108 	dev->wakeup_prepared = false;
3109 
3110 	dev->pm_cap = 0;
3111 	dev->pme_support = 0;
3112 
3113 	/* find PCI PM capability in list */
3114 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3115 	if (!pm)
3116 		return;
3117 	/* Check device's ability to generate PME# */
3118 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3119 
3120 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3121 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3122 			pmc & PCI_PM_CAP_VER_MASK);
3123 		return;
3124 	}
3125 
3126 	dev->pm_cap = pm;
3127 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3128 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3129 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3130 	dev->d3cold_allowed = true;
3131 
3132 	dev->d1_support = false;
3133 	dev->d2_support = false;
3134 	if (!pci_no_d1d2(dev)) {
3135 		if (pmc & PCI_PM_CAP_D1)
3136 			dev->d1_support = true;
3137 		if (pmc & PCI_PM_CAP_D2)
3138 			dev->d2_support = true;
3139 
3140 		if (dev->d1_support || dev->d2_support)
3141 			pci_info(dev, "supports%s%s\n",
3142 				   dev->d1_support ? " D1" : "",
3143 				   dev->d2_support ? " D2" : "");
3144 	}
3145 
3146 	pmc &= PCI_PM_CAP_PME_MASK;
3147 	if (pmc) {
3148 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3149 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3150 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3151 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3152 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3153 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3154 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3155 		dev->pme_poll = true;
3156 		/*
3157 		 * Make device's PM flags reflect the wake-up capability, but
3158 		 * let the user space enable it to wake up the system as needed.
3159 		 */
3160 		device_set_wakeup_capable(&dev->dev, true);
3161 		/* Disable the PME# generation functionality */
3162 		pci_pme_active(dev, false);
3163 	}
3164 
3165 	pci_read_config_word(dev, PCI_STATUS, &status);
3166 	if (status & PCI_STATUS_IMM_READY)
3167 		dev->imm_ready = 1;
3168 }
3169 
3170 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3171 {
3172 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3173 
3174 	switch (prop) {
3175 	case PCI_EA_P_MEM:
3176 	case PCI_EA_P_VF_MEM:
3177 		flags |= IORESOURCE_MEM;
3178 		break;
3179 	case PCI_EA_P_MEM_PREFETCH:
3180 	case PCI_EA_P_VF_MEM_PREFETCH:
3181 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3182 		break;
3183 	case PCI_EA_P_IO:
3184 		flags |= IORESOURCE_IO;
3185 		break;
3186 	default:
3187 		return 0;
3188 	}
3189 
3190 	return flags;
3191 }
3192 
3193 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3194 					    u8 prop)
3195 {
3196 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3197 		return &dev->resource[bei];
3198 #ifdef CONFIG_PCI_IOV
3199 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3200 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3201 		return &dev->resource[PCI_IOV_RESOURCES +
3202 				      bei - PCI_EA_BEI_VF_BAR0];
3203 #endif
3204 	else if (bei == PCI_EA_BEI_ROM)
3205 		return &dev->resource[PCI_ROM_RESOURCE];
3206 	else
3207 		return NULL;
3208 }
3209 
3210 /* Read an Enhanced Allocation (EA) entry */
3211 static int pci_ea_read(struct pci_dev *dev, int offset)
3212 {
3213 	struct resource *res;
3214 	int ent_size, ent_offset = offset;
3215 	resource_size_t start, end;
3216 	unsigned long flags;
3217 	u32 dw0, bei, base, max_offset;
3218 	u8 prop;
3219 	bool support_64 = (sizeof(resource_size_t) >= 8);
3220 
3221 	pci_read_config_dword(dev, ent_offset, &dw0);
3222 	ent_offset += 4;
3223 
3224 	/* Entry size field indicates DWORDs after 1st */
3225 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3226 
3227 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3228 		goto out;
3229 
3230 	bei = (dw0 & PCI_EA_BEI) >> 4;
3231 	prop = (dw0 & PCI_EA_PP) >> 8;
3232 
3233 	/*
3234 	 * If the Property is in the reserved range, try the Secondary
3235 	 * Property instead.
3236 	 */
3237 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3238 		prop = (dw0 & PCI_EA_SP) >> 16;
3239 	if (prop > PCI_EA_P_BRIDGE_IO)
3240 		goto out;
3241 
3242 	res = pci_ea_get_resource(dev, bei, prop);
3243 	if (!res) {
3244 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3245 		goto out;
3246 	}
3247 
3248 	flags = pci_ea_flags(dev, prop);
3249 	if (!flags) {
3250 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3251 		goto out;
3252 	}
3253 
3254 	/* Read Base */
3255 	pci_read_config_dword(dev, ent_offset, &base);
3256 	start = (base & PCI_EA_FIELD_MASK);
3257 	ent_offset += 4;
3258 
3259 	/* Read MaxOffset */
3260 	pci_read_config_dword(dev, ent_offset, &max_offset);
3261 	ent_offset += 4;
3262 
3263 	/* Read Base MSBs (if 64-bit entry) */
3264 	if (base & PCI_EA_IS_64) {
3265 		u32 base_upper;
3266 
3267 		pci_read_config_dword(dev, ent_offset, &base_upper);
3268 		ent_offset += 4;
3269 
3270 		flags |= IORESOURCE_MEM_64;
3271 
3272 		/* entry starts above 32-bit boundary, can't use */
3273 		if (!support_64 && base_upper)
3274 			goto out;
3275 
3276 		if (support_64)
3277 			start |= ((u64)base_upper << 32);
3278 	}
3279 
3280 	end = start + (max_offset | 0x03);
3281 
3282 	/* Read MaxOffset MSBs (if 64-bit entry) */
3283 	if (max_offset & PCI_EA_IS_64) {
3284 		u32 max_offset_upper;
3285 
3286 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3287 		ent_offset += 4;
3288 
3289 		flags |= IORESOURCE_MEM_64;
3290 
3291 		/* entry too big, can't use */
3292 		if (!support_64 && max_offset_upper)
3293 			goto out;
3294 
3295 		if (support_64)
3296 			end += ((u64)max_offset_upper << 32);
3297 	}
3298 
3299 	if (end < start) {
3300 		pci_err(dev, "EA Entry crosses address boundary\n");
3301 		goto out;
3302 	}
3303 
3304 	if (ent_size != ent_offset - offset) {
3305 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3306 			ent_size, ent_offset - offset);
3307 		goto out;
3308 	}
3309 
3310 	res->name = pci_name(dev);
3311 	res->start = start;
3312 	res->end = end;
3313 	res->flags = flags;
3314 
3315 	if (bei <= PCI_EA_BEI_BAR5)
3316 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3317 			   bei, res, prop);
3318 	else if (bei == PCI_EA_BEI_ROM)
3319 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3320 			   res, prop);
3321 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3322 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3323 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3324 	else
3325 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3326 			   bei, res, prop);
3327 
3328 out:
3329 	return offset + ent_size;
3330 }
3331 
3332 /* Enhanced Allocation Initialization */
3333 void pci_ea_init(struct pci_dev *dev)
3334 {
3335 	int ea;
3336 	u8 num_ent;
3337 	int offset;
3338 	int i;
3339 
3340 	/* find PCI EA capability in list */
3341 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3342 	if (!ea)
3343 		return;
3344 
3345 	/* determine the number of entries */
3346 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3347 					&num_ent);
3348 	num_ent &= PCI_EA_NUM_ENT_MASK;
3349 
3350 	offset = ea + PCI_EA_FIRST_ENT;
3351 
3352 	/* Skip DWORD 2 for type 1 functions */
3353 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3354 		offset += 4;
3355 
3356 	/* parse each EA entry */
3357 	for (i = 0; i < num_ent; ++i)
3358 		offset = pci_ea_read(dev, offset);
3359 }
3360 
3361 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3362 	struct pci_cap_saved_state *new_cap)
3363 {
3364 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3365 }
3366 
3367 /**
3368  * _pci_add_cap_save_buffer - allocate buffer for saving given
3369  *			      capability registers
3370  * @dev: the PCI device
3371  * @cap: the capability to allocate the buffer for
3372  * @extended: Standard or Extended capability ID
3373  * @size: requested size of the buffer
3374  */
3375 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3376 				    bool extended, unsigned int size)
3377 {
3378 	int pos;
3379 	struct pci_cap_saved_state *save_state;
3380 
3381 	if (extended)
3382 		pos = pci_find_ext_capability(dev, cap);
3383 	else
3384 		pos = pci_find_capability(dev, cap);
3385 
3386 	if (!pos)
3387 		return 0;
3388 
3389 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3390 	if (!save_state)
3391 		return -ENOMEM;
3392 
3393 	save_state->cap.cap_nr = cap;
3394 	save_state->cap.cap_extended = extended;
3395 	save_state->cap.size = size;
3396 	pci_add_saved_cap(dev, save_state);
3397 
3398 	return 0;
3399 }
3400 
3401 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3402 {
3403 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3404 }
3405 
3406 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3407 {
3408 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3409 }
3410 
3411 /**
3412  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3413  * @dev: the PCI device
3414  */
3415 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3416 {
3417 	int error;
3418 
3419 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3420 					PCI_EXP_SAVE_REGS * sizeof(u16));
3421 	if (error)
3422 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3423 
3424 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3425 	if (error)
3426 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3427 
3428 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3429 					    2 * sizeof(u16));
3430 	if (error)
3431 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3432 
3433 	pci_allocate_vc_save_buffers(dev);
3434 }
3435 
3436 void pci_free_cap_save_buffers(struct pci_dev *dev)
3437 {
3438 	struct pci_cap_saved_state *tmp;
3439 	struct hlist_node *n;
3440 
3441 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3442 		kfree(tmp);
3443 }
3444 
3445 /**
3446  * pci_configure_ari - enable or disable ARI forwarding
3447  * @dev: the PCI device
3448  *
3449  * If @dev and its upstream bridge both support ARI, enable ARI in the
3450  * bridge.  Otherwise, disable ARI in the bridge.
3451  */
3452 void pci_configure_ari(struct pci_dev *dev)
3453 {
3454 	u32 cap;
3455 	struct pci_dev *bridge;
3456 
3457 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3458 		return;
3459 
3460 	bridge = dev->bus->self;
3461 	if (!bridge)
3462 		return;
3463 
3464 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3465 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3466 		return;
3467 
3468 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3469 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3470 					 PCI_EXP_DEVCTL2_ARI);
3471 		bridge->ari_enabled = 1;
3472 	} else {
3473 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3474 					   PCI_EXP_DEVCTL2_ARI);
3475 		bridge->ari_enabled = 0;
3476 	}
3477 }
3478 
3479 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3480 {
3481 	int pos;
3482 	u16 cap, ctrl;
3483 
3484 	pos = pdev->acs_cap;
3485 	if (!pos)
3486 		return false;
3487 
3488 	/*
3489 	 * Except for egress control, capabilities are either required
3490 	 * or only required if controllable.  Features missing from the
3491 	 * capability field can therefore be assumed as hard-wired enabled.
3492 	 */
3493 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3494 	acs_flags &= (cap | PCI_ACS_EC);
3495 
3496 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3497 	return (ctrl & acs_flags) == acs_flags;
3498 }
3499 
3500 /**
3501  * pci_acs_enabled - test ACS against required flags for a given device
3502  * @pdev: device to test
3503  * @acs_flags: required PCI ACS flags
3504  *
3505  * Return true if the device supports the provided flags.  Automatically
3506  * filters out flags that are not implemented on multifunction devices.
3507  *
3508  * Note that this interface checks the effective ACS capabilities of the
3509  * device rather than the actual capabilities.  For instance, most single
3510  * function endpoints are not required to support ACS because they have no
3511  * opportunity for peer-to-peer access.  We therefore return 'true'
3512  * regardless of whether the device exposes an ACS capability.  This makes
3513  * it much easier for callers of this function to ignore the actual type
3514  * or topology of the device when testing ACS support.
3515  */
3516 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3517 {
3518 	int ret;
3519 
3520 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3521 	if (ret >= 0)
3522 		return ret > 0;
3523 
3524 	/*
3525 	 * Conventional PCI and PCI-X devices never support ACS, either
3526 	 * effectively or actually.  The shared bus topology implies that
3527 	 * any device on the bus can receive or snoop DMA.
3528 	 */
3529 	if (!pci_is_pcie(pdev))
3530 		return false;
3531 
3532 	switch (pci_pcie_type(pdev)) {
3533 	/*
3534 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3535 	 * but since their primary interface is PCI/X, we conservatively
3536 	 * handle them as we would a non-PCIe device.
3537 	 */
3538 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3539 	/*
3540 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3541 	 * applicable... must never implement an ACS Extended Capability...".
3542 	 * This seems arbitrary, but we take a conservative interpretation
3543 	 * of this statement.
3544 	 */
3545 	case PCI_EXP_TYPE_PCI_BRIDGE:
3546 	case PCI_EXP_TYPE_RC_EC:
3547 		return false;
3548 	/*
3549 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3550 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3551 	 * regardless of whether they are single- or multi-function devices.
3552 	 */
3553 	case PCI_EXP_TYPE_DOWNSTREAM:
3554 	case PCI_EXP_TYPE_ROOT_PORT:
3555 		return pci_acs_flags_enabled(pdev, acs_flags);
3556 	/*
3557 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3558 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3559 	 * capabilities, but only when they are part of a multifunction
3560 	 * device.  The footnote for section 6.12 indicates the specific
3561 	 * PCIe types included here.
3562 	 */
3563 	case PCI_EXP_TYPE_ENDPOINT:
3564 	case PCI_EXP_TYPE_UPSTREAM:
3565 	case PCI_EXP_TYPE_LEG_END:
3566 	case PCI_EXP_TYPE_RC_END:
3567 		if (!pdev->multifunction)
3568 			break;
3569 
3570 		return pci_acs_flags_enabled(pdev, acs_flags);
3571 	}
3572 
3573 	/*
3574 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3575 	 * to single function devices with the exception of downstream ports.
3576 	 */
3577 	return true;
3578 }
3579 
3580 /**
3581  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3582  * @start: starting downstream device
3583  * @end: ending upstream device or NULL to search to the root bus
3584  * @acs_flags: required flags
3585  *
3586  * Walk up a device tree from start to end testing PCI ACS support.  If
3587  * any step along the way does not support the required flags, return false.
3588  */
3589 bool pci_acs_path_enabled(struct pci_dev *start,
3590 			  struct pci_dev *end, u16 acs_flags)
3591 {
3592 	struct pci_dev *pdev, *parent = start;
3593 
3594 	do {
3595 		pdev = parent;
3596 
3597 		if (!pci_acs_enabled(pdev, acs_flags))
3598 			return false;
3599 
3600 		if (pci_is_root_bus(pdev->bus))
3601 			return (end == NULL);
3602 
3603 		parent = pdev->bus->self;
3604 	} while (pdev != end);
3605 
3606 	return true;
3607 }
3608 
3609 /**
3610  * pci_acs_init - Initialize ACS if hardware supports it
3611  * @dev: the PCI device
3612  */
3613 void pci_acs_init(struct pci_dev *dev)
3614 {
3615 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3616 
3617 	/*
3618 	 * Attempt to enable ACS regardless of capability because some Root
3619 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3620 	 * the standard ACS capability but still support ACS via those
3621 	 * quirks.
3622 	 */
3623 	pci_enable_acs(dev);
3624 }
3625 
3626 /**
3627  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3628  * @pdev: PCI device
3629  * @bar: BAR to find
3630  *
3631  * Helper to find the position of the ctrl register for a BAR.
3632  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3633  * Returns -ENOENT if no ctrl register for the BAR could be found.
3634  */
3635 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3636 {
3637 	unsigned int pos, nbars, i;
3638 	u32 ctrl;
3639 
3640 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3641 	if (!pos)
3642 		return -ENOTSUPP;
3643 
3644 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3645 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3646 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3647 
3648 	for (i = 0; i < nbars; i++, pos += 8) {
3649 		int bar_idx;
3650 
3651 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3652 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3653 		if (bar_idx == bar)
3654 			return pos;
3655 	}
3656 
3657 	return -ENOENT;
3658 }
3659 
3660 /**
3661  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3662  * @pdev: PCI device
3663  * @bar: BAR to query
3664  *
3665  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3666  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3667  */
3668 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3669 {
3670 	int pos;
3671 	u32 cap;
3672 
3673 	pos = pci_rebar_find_pos(pdev, bar);
3674 	if (pos < 0)
3675 		return 0;
3676 
3677 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3678 	cap &= PCI_REBAR_CAP_SIZES;
3679 
3680 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3681 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3682 	    bar == 0 && cap == 0x7000)
3683 		cap = 0x3f000;
3684 
3685 	return cap >> 4;
3686 }
3687 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3688 
3689 /**
3690  * pci_rebar_get_current_size - get the current size of a BAR
3691  * @pdev: PCI device
3692  * @bar: BAR to set size to
3693  *
3694  * Read the size of a BAR from the resizable BAR config.
3695  * Returns size if found or negative error code.
3696  */
3697 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3698 {
3699 	int pos;
3700 	u32 ctrl;
3701 
3702 	pos = pci_rebar_find_pos(pdev, bar);
3703 	if (pos < 0)
3704 		return pos;
3705 
3706 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3707 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3708 }
3709 
3710 /**
3711  * pci_rebar_set_size - set a new size for a BAR
3712  * @pdev: PCI device
3713  * @bar: BAR to set size to
3714  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3715  *
3716  * Set the new size of a BAR as defined in the spec.
3717  * Returns zero if resizing was successful, error code otherwise.
3718  */
3719 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3720 {
3721 	int pos;
3722 	u32 ctrl;
3723 
3724 	pos = pci_rebar_find_pos(pdev, bar);
3725 	if (pos < 0)
3726 		return pos;
3727 
3728 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3729 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3730 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3731 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3732 	return 0;
3733 }
3734 
3735 /**
3736  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3737  * @dev: the PCI device
3738  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3739  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3740  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3741  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3742  *
3743  * Return 0 if all upstream bridges support AtomicOp routing, egress
3744  * blocking is disabled on all upstream ports, and the root port supports
3745  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3746  * AtomicOp completion), or negative otherwise.
3747  */
3748 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3749 {
3750 	struct pci_bus *bus = dev->bus;
3751 	struct pci_dev *bridge;
3752 	u32 cap, ctl2;
3753 
3754 	/*
3755 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3756 	 * in Device Control 2 is reserved in VFs and the PF value applies
3757 	 * to all associated VFs.
3758 	 */
3759 	if (dev->is_virtfn)
3760 		return -EINVAL;
3761 
3762 	if (!pci_is_pcie(dev))
3763 		return -EINVAL;
3764 
3765 	/*
3766 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3767 	 * AtomicOp requesters.  For now, we only support endpoints as
3768 	 * requesters and root ports as completers.  No endpoints as
3769 	 * completers, and no peer-to-peer.
3770 	 */
3771 
3772 	switch (pci_pcie_type(dev)) {
3773 	case PCI_EXP_TYPE_ENDPOINT:
3774 	case PCI_EXP_TYPE_LEG_END:
3775 	case PCI_EXP_TYPE_RC_END:
3776 		break;
3777 	default:
3778 		return -EINVAL;
3779 	}
3780 
3781 	while (bus->parent) {
3782 		bridge = bus->self;
3783 
3784 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3785 
3786 		switch (pci_pcie_type(bridge)) {
3787 		/* Ensure switch ports support AtomicOp routing */
3788 		case PCI_EXP_TYPE_UPSTREAM:
3789 		case PCI_EXP_TYPE_DOWNSTREAM:
3790 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3791 				return -EINVAL;
3792 			break;
3793 
3794 		/* Ensure root port supports all the sizes we care about */
3795 		case PCI_EXP_TYPE_ROOT_PORT:
3796 			if ((cap & cap_mask) != cap_mask)
3797 				return -EINVAL;
3798 			break;
3799 		}
3800 
3801 		/* Ensure upstream ports don't block AtomicOps on egress */
3802 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3803 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3804 						   &ctl2);
3805 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3806 				return -EINVAL;
3807 		}
3808 
3809 		bus = bus->parent;
3810 	}
3811 
3812 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3813 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3814 	return 0;
3815 }
3816 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3817 
3818 /**
3819  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3820  * @dev: the PCI device
3821  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3822  *
3823  * Perform INTx swizzling for a device behind one level of bridge.  This is
3824  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3825  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3826  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3827  * the PCI Express Base Specification, Revision 2.1)
3828  */
3829 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3830 {
3831 	int slot;
3832 
3833 	if (pci_ari_enabled(dev->bus))
3834 		slot = 0;
3835 	else
3836 		slot = PCI_SLOT(dev->devfn);
3837 
3838 	return (((pin - 1) + slot) % 4) + 1;
3839 }
3840 
3841 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3842 {
3843 	u8 pin;
3844 
3845 	pin = dev->pin;
3846 	if (!pin)
3847 		return -1;
3848 
3849 	while (!pci_is_root_bus(dev->bus)) {
3850 		pin = pci_swizzle_interrupt_pin(dev, pin);
3851 		dev = dev->bus->self;
3852 	}
3853 	*bridge = dev;
3854 	return pin;
3855 }
3856 
3857 /**
3858  * pci_common_swizzle - swizzle INTx all the way to root bridge
3859  * @dev: the PCI device
3860  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3861  *
3862  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3863  * bridges all the way up to a PCI root bus.
3864  */
3865 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3866 {
3867 	u8 pin = *pinp;
3868 
3869 	while (!pci_is_root_bus(dev->bus)) {
3870 		pin = pci_swizzle_interrupt_pin(dev, pin);
3871 		dev = dev->bus->self;
3872 	}
3873 	*pinp = pin;
3874 	return PCI_SLOT(dev->devfn);
3875 }
3876 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3877 
3878 /**
3879  * pci_release_region - Release a PCI bar
3880  * @pdev: PCI device whose resources were previously reserved by
3881  *	  pci_request_region()
3882  * @bar: BAR to release
3883  *
3884  * Releases the PCI I/O and memory resources previously reserved by a
3885  * successful call to pci_request_region().  Call this function only
3886  * after all use of the PCI regions has ceased.
3887  */
3888 void pci_release_region(struct pci_dev *pdev, int bar)
3889 {
3890 	struct pci_devres *dr;
3891 
3892 	if (pci_resource_len(pdev, bar) == 0)
3893 		return;
3894 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3895 		release_region(pci_resource_start(pdev, bar),
3896 				pci_resource_len(pdev, bar));
3897 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3898 		release_mem_region(pci_resource_start(pdev, bar),
3899 				pci_resource_len(pdev, bar));
3900 
3901 	dr = find_pci_dr(pdev);
3902 	if (dr)
3903 		dr->region_mask &= ~(1 << bar);
3904 }
3905 EXPORT_SYMBOL(pci_release_region);
3906 
3907 /**
3908  * __pci_request_region - Reserved PCI I/O and memory resource
3909  * @pdev: PCI device whose resources are to be reserved
3910  * @bar: BAR to be reserved
3911  * @res_name: Name to be associated with resource.
3912  * @exclusive: whether the region access is exclusive or not
3913  *
3914  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3915  * being reserved by owner @res_name.  Do not access any
3916  * address inside the PCI regions unless this call returns
3917  * successfully.
3918  *
3919  * If @exclusive is set, then the region is marked so that userspace
3920  * is explicitly not allowed to map the resource via /dev/mem or
3921  * sysfs MMIO access.
3922  *
3923  * Returns 0 on success, or %EBUSY on error.  A warning
3924  * message is also printed on failure.
3925  */
3926 static int __pci_request_region(struct pci_dev *pdev, int bar,
3927 				const char *res_name, int exclusive)
3928 {
3929 	struct pci_devres *dr;
3930 
3931 	if (pci_resource_len(pdev, bar) == 0)
3932 		return 0;
3933 
3934 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3935 		if (!request_region(pci_resource_start(pdev, bar),
3936 			    pci_resource_len(pdev, bar), res_name))
3937 			goto err_out;
3938 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3939 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3940 					pci_resource_len(pdev, bar), res_name,
3941 					exclusive))
3942 			goto err_out;
3943 	}
3944 
3945 	dr = find_pci_dr(pdev);
3946 	if (dr)
3947 		dr->region_mask |= 1 << bar;
3948 
3949 	return 0;
3950 
3951 err_out:
3952 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3953 		 &pdev->resource[bar]);
3954 	return -EBUSY;
3955 }
3956 
3957 /**
3958  * pci_request_region - Reserve PCI I/O and memory resource
3959  * @pdev: PCI device whose resources are to be reserved
3960  * @bar: BAR to be reserved
3961  * @res_name: Name to be associated with resource
3962  *
3963  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3964  * being reserved by owner @res_name.  Do not access any
3965  * address inside the PCI regions unless this call returns
3966  * successfully.
3967  *
3968  * Returns 0 on success, or %EBUSY on error.  A warning
3969  * message is also printed on failure.
3970  */
3971 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3972 {
3973 	return __pci_request_region(pdev, bar, res_name, 0);
3974 }
3975 EXPORT_SYMBOL(pci_request_region);
3976 
3977 /**
3978  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3979  * @pdev: PCI device whose resources were previously reserved
3980  * @bars: Bitmask of BARs to be released
3981  *
3982  * Release selected PCI I/O and memory resources previously reserved.
3983  * Call this function only after all use of the PCI regions has ceased.
3984  */
3985 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3986 {
3987 	int i;
3988 
3989 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3990 		if (bars & (1 << i))
3991 			pci_release_region(pdev, i);
3992 }
3993 EXPORT_SYMBOL(pci_release_selected_regions);
3994 
3995 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3996 					  const char *res_name, int excl)
3997 {
3998 	int i;
3999 
4000 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4001 		if (bars & (1 << i))
4002 			if (__pci_request_region(pdev, i, res_name, excl))
4003 				goto err_out;
4004 	return 0;
4005 
4006 err_out:
4007 	while (--i >= 0)
4008 		if (bars & (1 << i))
4009 			pci_release_region(pdev, i);
4010 
4011 	return -EBUSY;
4012 }
4013 
4014 
4015 /**
4016  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4017  * @pdev: PCI device whose resources are to be reserved
4018  * @bars: Bitmask of BARs to be requested
4019  * @res_name: Name to be associated with resource
4020  */
4021 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4022 				 const char *res_name)
4023 {
4024 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4025 }
4026 EXPORT_SYMBOL(pci_request_selected_regions);
4027 
4028 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4029 					   const char *res_name)
4030 {
4031 	return __pci_request_selected_regions(pdev, bars, res_name,
4032 			IORESOURCE_EXCLUSIVE);
4033 }
4034 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4035 
4036 /**
4037  * pci_release_regions - Release reserved PCI I/O and memory resources
4038  * @pdev: PCI device whose resources were previously reserved by
4039  *	  pci_request_regions()
4040  *
4041  * Releases all PCI I/O and memory resources previously reserved by a
4042  * successful call to pci_request_regions().  Call this function only
4043  * after all use of the PCI regions has ceased.
4044  */
4045 
4046 void pci_release_regions(struct pci_dev *pdev)
4047 {
4048 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4049 }
4050 EXPORT_SYMBOL(pci_release_regions);
4051 
4052 /**
4053  * pci_request_regions - Reserve PCI I/O and memory resources
4054  * @pdev: PCI device whose resources are to be reserved
4055  * @res_name: Name to be associated with resource.
4056  *
4057  * Mark all PCI regions associated with PCI device @pdev as
4058  * being reserved by owner @res_name.  Do not access any
4059  * address inside the PCI regions unless this call returns
4060  * successfully.
4061  *
4062  * Returns 0 on success, or %EBUSY on error.  A warning
4063  * message is also printed on failure.
4064  */
4065 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4066 {
4067 	return pci_request_selected_regions(pdev,
4068 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4069 }
4070 EXPORT_SYMBOL(pci_request_regions);
4071 
4072 /**
4073  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4074  * @pdev: PCI device whose resources are to be reserved
4075  * @res_name: Name to be associated with resource.
4076  *
4077  * Mark all PCI regions associated with PCI device @pdev as being reserved
4078  * by owner @res_name.  Do not access any address inside the PCI regions
4079  * unless this call returns successfully.
4080  *
4081  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4082  * and the sysfs MMIO access will not be allowed.
4083  *
4084  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4085  * printed on failure.
4086  */
4087 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4088 {
4089 	return pci_request_selected_regions_exclusive(pdev,
4090 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4091 }
4092 EXPORT_SYMBOL(pci_request_regions_exclusive);
4093 
4094 /*
4095  * Record the PCI IO range (expressed as CPU physical address + size).
4096  * Return a negative value if an error has occurred, zero otherwise
4097  */
4098 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4099 			resource_size_t	size)
4100 {
4101 	int ret = 0;
4102 #ifdef PCI_IOBASE
4103 	struct logic_pio_hwaddr *range;
4104 
4105 	if (!size || addr + size < addr)
4106 		return -EINVAL;
4107 
4108 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4109 	if (!range)
4110 		return -ENOMEM;
4111 
4112 	range->fwnode = fwnode;
4113 	range->size = size;
4114 	range->hw_start = addr;
4115 	range->flags = LOGIC_PIO_CPU_MMIO;
4116 
4117 	ret = logic_pio_register_range(range);
4118 	if (ret)
4119 		kfree(range);
4120 
4121 	/* Ignore duplicates due to deferred probing */
4122 	if (ret == -EEXIST)
4123 		ret = 0;
4124 #endif
4125 
4126 	return ret;
4127 }
4128 
4129 phys_addr_t pci_pio_to_address(unsigned long pio)
4130 {
4131 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4132 
4133 #ifdef PCI_IOBASE
4134 	if (pio >= MMIO_UPPER_LIMIT)
4135 		return address;
4136 
4137 	address = logic_pio_to_hwaddr(pio);
4138 #endif
4139 
4140 	return address;
4141 }
4142 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4143 
4144 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4145 {
4146 #ifdef PCI_IOBASE
4147 	return logic_pio_trans_cpuaddr(address);
4148 #else
4149 	if (address > IO_SPACE_LIMIT)
4150 		return (unsigned long)-1;
4151 
4152 	return (unsigned long) address;
4153 #endif
4154 }
4155 
4156 /**
4157  * pci_remap_iospace - Remap the memory mapped I/O space
4158  * @res: Resource describing the I/O space
4159  * @phys_addr: physical address of range to be mapped
4160  *
4161  * Remap the memory mapped I/O space described by the @res and the CPU
4162  * physical address @phys_addr into virtual address space.  Only
4163  * architectures that have memory mapped IO functions defined (and the
4164  * PCI_IOBASE value defined) should call this function.
4165  */
4166 #ifndef pci_remap_iospace
4167 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4168 {
4169 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4170 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4171 
4172 	if (!(res->flags & IORESOURCE_IO))
4173 		return -EINVAL;
4174 
4175 	if (res->end > IO_SPACE_LIMIT)
4176 		return -EINVAL;
4177 
4178 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4179 				  pgprot_device(PAGE_KERNEL));
4180 #else
4181 	/*
4182 	 * This architecture does not have memory mapped I/O space,
4183 	 * so this function should never be called
4184 	 */
4185 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4186 	return -ENODEV;
4187 #endif
4188 }
4189 EXPORT_SYMBOL(pci_remap_iospace);
4190 #endif
4191 
4192 /**
4193  * pci_unmap_iospace - Unmap the memory mapped I/O space
4194  * @res: resource to be unmapped
4195  *
4196  * Unmap the CPU virtual address @res from virtual address space.  Only
4197  * architectures that have memory mapped IO functions defined (and the
4198  * PCI_IOBASE value defined) should call this function.
4199  */
4200 void pci_unmap_iospace(struct resource *res)
4201 {
4202 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204 
4205 	vunmap_range(vaddr, vaddr + resource_size(res));
4206 #endif
4207 }
4208 EXPORT_SYMBOL(pci_unmap_iospace);
4209 
4210 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4211 {
4212 	struct resource **res = ptr;
4213 
4214 	pci_unmap_iospace(*res);
4215 }
4216 
4217 /**
4218  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4219  * @dev: Generic device to remap IO address for
4220  * @res: Resource describing the I/O space
4221  * @phys_addr: physical address of range to be mapped
4222  *
4223  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4224  * detach.
4225  */
4226 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4227 			   phys_addr_t phys_addr)
4228 {
4229 	const struct resource **ptr;
4230 	int error;
4231 
4232 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4233 	if (!ptr)
4234 		return -ENOMEM;
4235 
4236 	error = pci_remap_iospace(res, phys_addr);
4237 	if (error) {
4238 		devres_free(ptr);
4239 	} else	{
4240 		*ptr = res;
4241 		devres_add(dev, ptr);
4242 	}
4243 
4244 	return error;
4245 }
4246 EXPORT_SYMBOL(devm_pci_remap_iospace);
4247 
4248 /**
4249  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4250  * @dev: Generic device to remap IO address for
4251  * @offset: Resource address to map
4252  * @size: Size of map
4253  *
4254  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4255  * detach.
4256  */
4257 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4258 				      resource_size_t offset,
4259 				      resource_size_t size)
4260 {
4261 	void __iomem **ptr, *addr;
4262 
4263 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4264 	if (!ptr)
4265 		return NULL;
4266 
4267 	addr = pci_remap_cfgspace(offset, size);
4268 	if (addr) {
4269 		*ptr = addr;
4270 		devres_add(dev, ptr);
4271 	} else
4272 		devres_free(ptr);
4273 
4274 	return addr;
4275 }
4276 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4277 
4278 /**
4279  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4280  * @dev: generic device to handle the resource for
4281  * @res: configuration space resource to be handled
4282  *
4283  * Checks that a resource is a valid memory region, requests the memory
4284  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4285  * proper PCI configuration space memory attributes are guaranteed.
4286  *
4287  * All operations are managed and will be undone on driver detach.
4288  *
4289  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4290  * on failure. Usage example::
4291  *
4292  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4293  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4294  *	if (IS_ERR(base))
4295  *		return PTR_ERR(base);
4296  */
4297 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4298 					  struct resource *res)
4299 {
4300 	resource_size_t size;
4301 	const char *name;
4302 	void __iomem *dest_ptr;
4303 
4304 	BUG_ON(!dev);
4305 
4306 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4307 		dev_err(dev, "invalid resource\n");
4308 		return IOMEM_ERR_PTR(-EINVAL);
4309 	}
4310 
4311 	size = resource_size(res);
4312 
4313 	if (res->name)
4314 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4315 				      res->name);
4316 	else
4317 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4318 	if (!name)
4319 		return IOMEM_ERR_PTR(-ENOMEM);
4320 
4321 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4322 		dev_err(dev, "can't request region for resource %pR\n", res);
4323 		return IOMEM_ERR_PTR(-EBUSY);
4324 	}
4325 
4326 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4327 	if (!dest_ptr) {
4328 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4329 		devm_release_mem_region(dev, res->start, size);
4330 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4331 	}
4332 
4333 	return dest_ptr;
4334 }
4335 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4336 
4337 static void __pci_set_master(struct pci_dev *dev, bool enable)
4338 {
4339 	u16 old_cmd, cmd;
4340 
4341 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4342 	if (enable)
4343 		cmd = old_cmd | PCI_COMMAND_MASTER;
4344 	else
4345 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4346 	if (cmd != old_cmd) {
4347 		pci_dbg(dev, "%s bus mastering\n",
4348 			enable ? "enabling" : "disabling");
4349 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4350 	}
4351 	dev->is_busmaster = enable;
4352 }
4353 
4354 /**
4355  * pcibios_setup - process "pci=" kernel boot arguments
4356  * @str: string used to pass in "pci=" kernel boot arguments
4357  *
4358  * Process kernel boot arguments.  This is the default implementation.
4359  * Architecture specific implementations can override this as necessary.
4360  */
4361 char * __weak __init pcibios_setup(char *str)
4362 {
4363 	return str;
4364 }
4365 
4366 /**
4367  * pcibios_set_master - enable PCI bus-mastering for device dev
4368  * @dev: the PCI device to enable
4369  *
4370  * Enables PCI bus-mastering for the device.  This is the default
4371  * implementation.  Architecture specific implementations can override
4372  * this if necessary.
4373  */
4374 void __weak pcibios_set_master(struct pci_dev *dev)
4375 {
4376 	u8 lat;
4377 
4378 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4379 	if (pci_is_pcie(dev))
4380 		return;
4381 
4382 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4383 	if (lat < 16)
4384 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4385 	else if (lat > pcibios_max_latency)
4386 		lat = pcibios_max_latency;
4387 	else
4388 		return;
4389 
4390 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4391 }
4392 
4393 /**
4394  * pci_set_master - enables bus-mastering for device dev
4395  * @dev: the PCI device to enable
4396  *
4397  * Enables bus-mastering on the device and calls pcibios_set_master()
4398  * to do the needed arch specific settings.
4399  */
4400 void pci_set_master(struct pci_dev *dev)
4401 {
4402 	__pci_set_master(dev, true);
4403 	pcibios_set_master(dev);
4404 }
4405 EXPORT_SYMBOL(pci_set_master);
4406 
4407 /**
4408  * pci_clear_master - disables bus-mastering for device dev
4409  * @dev: the PCI device to disable
4410  */
4411 void pci_clear_master(struct pci_dev *dev)
4412 {
4413 	__pci_set_master(dev, false);
4414 }
4415 EXPORT_SYMBOL(pci_clear_master);
4416 
4417 /**
4418  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4419  * @dev: the PCI device for which MWI is to be enabled
4420  *
4421  * Helper function for pci_set_mwi.
4422  * Originally copied from drivers/net/acenic.c.
4423  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4424  *
4425  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4426  */
4427 int pci_set_cacheline_size(struct pci_dev *dev)
4428 {
4429 	u8 cacheline_size;
4430 
4431 	if (!pci_cache_line_size)
4432 		return -EINVAL;
4433 
4434 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4435 	   equal to or multiple of the right value. */
4436 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4437 	if (cacheline_size >= pci_cache_line_size &&
4438 	    (cacheline_size % pci_cache_line_size) == 0)
4439 		return 0;
4440 
4441 	/* Write the correct value. */
4442 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4443 	/* Read it back. */
4444 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4445 	if (cacheline_size == pci_cache_line_size)
4446 		return 0;
4447 
4448 	pci_dbg(dev, "cache line size of %d is not supported\n",
4449 		   pci_cache_line_size << 2);
4450 
4451 	return -EINVAL;
4452 }
4453 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4454 
4455 /**
4456  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4457  * @dev: the PCI device for which MWI is enabled
4458  *
4459  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4460  *
4461  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4462  */
4463 int pci_set_mwi(struct pci_dev *dev)
4464 {
4465 #ifdef PCI_DISABLE_MWI
4466 	return 0;
4467 #else
4468 	int rc;
4469 	u16 cmd;
4470 
4471 	rc = pci_set_cacheline_size(dev);
4472 	if (rc)
4473 		return rc;
4474 
4475 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4476 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4477 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4478 		cmd |= PCI_COMMAND_INVALIDATE;
4479 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4480 	}
4481 	return 0;
4482 #endif
4483 }
4484 EXPORT_SYMBOL(pci_set_mwi);
4485 
4486 /**
4487  * pcim_set_mwi - a device-managed pci_set_mwi()
4488  * @dev: the PCI device for which MWI is enabled
4489  *
4490  * Managed pci_set_mwi().
4491  *
4492  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4493  */
4494 int pcim_set_mwi(struct pci_dev *dev)
4495 {
4496 	struct pci_devres *dr;
4497 
4498 	dr = find_pci_dr(dev);
4499 	if (!dr)
4500 		return -ENOMEM;
4501 
4502 	dr->mwi = 1;
4503 	return pci_set_mwi(dev);
4504 }
4505 EXPORT_SYMBOL(pcim_set_mwi);
4506 
4507 /**
4508  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4509  * @dev: the PCI device for which MWI is enabled
4510  *
4511  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4512  * Callers are not required to check the return value.
4513  *
4514  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4515  */
4516 int pci_try_set_mwi(struct pci_dev *dev)
4517 {
4518 #ifdef PCI_DISABLE_MWI
4519 	return 0;
4520 #else
4521 	return pci_set_mwi(dev);
4522 #endif
4523 }
4524 EXPORT_SYMBOL(pci_try_set_mwi);
4525 
4526 /**
4527  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4528  * @dev: the PCI device to disable
4529  *
4530  * Disables PCI Memory-Write-Invalidate transaction on the device
4531  */
4532 void pci_clear_mwi(struct pci_dev *dev)
4533 {
4534 #ifndef PCI_DISABLE_MWI
4535 	u16 cmd;
4536 
4537 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4538 	if (cmd & PCI_COMMAND_INVALIDATE) {
4539 		cmd &= ~PCI_COMMAND_INVALIDATE;
4540 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4541 	}
4542 #endif
4543 }
4544 EXPORT_SYMBOL(pci_clear_mwi);
4545 
4546 /**
4547  * pci_disable_parity - disable parity checking for device
4548  * @dev: the PCI device to operate on
4549  *
4550  * Disable parity checking for device @dev
4551  */
4552 void pci_disable_parity(struct pci_dev *dev)
4553 {
4554 	u16 cmd;
4555 
4556 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4557 	if (cmd & PCI_COMMAND_PARITY) {
4558 		cmd &= ~PCI_COMMAND_PARITY;
4559 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4560 	}
4561 }
4562 
4563 /**
4564  * pci_intx - enables/disables PCI INTx for device dev
4565  * @pdev: the PCI device to operate on
4566  * @enable: boolean: whether to enable or disable PCI INTx
4567  *
4568  * Enables/disables PCI INTx for device @pdev
4569  */
4570 void pci_intx(struct pci_dev *pdev, int enable)
4571 {
4572 	u16 pci_command, new;
4573 
4574 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4575 
4576 	if (enable)
4577 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4578 	else
4579 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4580 
4581 	if (new != pci_command) {
4582 		struct pci_devres *dr;
4583 
4584 		pci_write_config_word(pdev, PCI_COMMAND, new);
4585 
4586 		dr = find_pci_dr(pdev);
4587 		if (dr && !dr->restore_intx) {
4588 			dr->restore_intx = 1;
4589 			dr->orig_intx = !enable;
4590 		}
4591 	}
4592 }
4593 EXPORT_SYMBOL_GPL(pci_intx);
4594 
4595 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4596 {
4597 	struct pci_bus *bus = dev->bus;
4598 	bool mask_updated = true;
4599 	u32 cmd_status_dword;
4600 	u16 origcmd, newcmd;
4601 	unsigned long flags;
4602 	bool irq_pending;
4603 
4604 	/*
4605 	 * We do a single dword read to retrieve both command and status.
4606 	 * Document assumptions that make this possible.
4607 	 */
4608 	BUILD_BUG_ON(PCI_COMMAND % 4);
4609 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4610 
4611 	raw_spin_lock_irqsave(&pci_lock, flags);
4612 
4613 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4614 
4615 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4616 
4617 	/*
4618 	 * Check interrupt status register to see whether our device
4619 	 * triggered the interrupt (when masking) or the next IRQ is
4620 	 * already pending (when unmasking).
4621 	 */
4622 	if (mask != irq_pending) {
4623 		mask_updated = false;
4624 		goto done;
4625 	}
4626 
4627 	origcmd = cmd_status_dword;
4628 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4629 	if (mask)
4630 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4631 	if (newcmd != origcmd)
4632 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4633 
4634 done:
4635 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4636 
4637 	return mask_updated;
4638 }
4639 
4640 /**
4641  * pci_check_and_mask_intx - mask INTx on pending interrupt
4642  * @dev: the PCI device to operate on
4643  *
4644  * Check if the device dev has its INTx line asserted, mask it and return
4645  * true in that case. False is returned if no interrupt was pending.
4646  */
4647 bool pci_check_and_mask_intx(struct pci_dev *dev)
4648 {
4649 	return pci_check_and_set_intx_mask(dev, true);
4650 }
4651 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4652 
4653 /**
4654  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4655  * @dev: the PCI device to operate on
4656  *
4657  * Check if the device dev has its INTx line asserted, unmask it if not and
4658  * return true. False is returned and the mask remains active if there was
4659  * still an interrupt pending.
4660  */
4661 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4662 {
4663 	return pci_check_and_set_intx_mask(dev, false);
4664 }
4665 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4666 
4667 /**
4668  * pci_wait_for_pending_transaction - wait for pending transaction
4669  * @dev: the PCI device to operate on
4670  *
4671  * Return 0 if transaction is pending 1 otherwise.
4672  */
4673 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4674 {
4675 	if (!pci_is_pcie(dev))
4676 		return 1;
4677 
4678 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4679 				    PCI_EXP_DEVSTA_TRPND);
4680 }
4681 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4682 
4683 /**
4684  * pcie_flr - initiate a PCIe function level reset
4685  * @dev: device to reset
4686  *
4687  * Initiate a function level reset unconditionally on @dev without
4688  * checking any flags and DEVCAP
4689  */
4690 int pcie_flr(struct pci_dev *dev)
4691 {
4692 	if (!pci_wait_for_pending_transaction(dev))
4693 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4694 
4695 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4696 
4697 	if (dev->imm_ready)
4698 		return 0;
4699 
4700 	/*
4701 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4702 	 * 100ms, but may silently discard requests while the FLR is in
4703 	 * progress.  Wait 100ms before trying to access the device.
4704 	 */
4705 	msleep(100);
4706 
4707 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4708 }
4709 EXPORT_SYMBOL_GPL(pcie_flr);
4710 
4711 /**
4712  * pcie_reset_flr - initiate a PCIe function level reset
4713  * @dev: device to reset
4714  * @probe: if true, return 0 if device can be reset this way
4715  *
4716  * Initiate a function level reset on @dev.
4717  */
4718 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4719 {
4720 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4721 		return -ENOTTY;
4722 
4723 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4724 		return -ENOTTY;
4725 
4726 	if (probe)
4727 		return 0;
4728 
4729 	return pcie_flr(dev);
4730 }
4731 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4732 
4733 static int pci_af_flr(struct pci_dev *dev, bool probe)
4734 {
4735 	int pos;
4736 	u8 cap;
4737 
4738 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4739 	if (!pos)
4740 		return -ENOTTY;
4741 
4742 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4743 		return -ENOTTY;
4744 
4745 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4746 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4747 		return -ENOTTY;
4748 
4749 	if (probe)
4750 		return 0;
4751 
4752 	/*
4753 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4754 	 * is used, so we use the control offset rather than status and shift
4755 	 * the test bit to match.
4756 	 */
4757 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4758 				 PCI_AF_STATUS_TP << 8))
4759 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4760 
4761 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4762 
4763 	if (dev->imm_ready)
4764 		return 0;
4765 
4766 	/*
4767 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4768 	 * updated 27 July 2006; a device must complete an FLR within
4769 	 * 100ms, but may silently discard requests while the FLR is in
4770 	 * progress.  Wait 100ms before trying to access the device.
4771 	 */
4772 	msleep(100);
4773 
4774 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4775 }
4776 
4777 /**
4778  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4779  * @dev: Device to reset.
4780  * @probe: if true, return 0 if the device can be reset this way.
4781  *
4782  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4783  * unset, it will be reinitialized internally when going from PCI_D3hot to
4784  * PCI_D0.  If that's the case and the device is not in a low-power state
4785  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4786  *
4787  * NOTE: This causes the caller to sleep for twice the device power transition
4788  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4789  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4790  * Moreover, only devices in D0 can be reset by this function.
4791  */
4792 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4793 {
4794 	u16 csr;
4795 
4796 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4797 		return -ENOTTY;
4798 
4799 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4800 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4801 		return -ENOTTY;
4802 
4803 	if (probe)
4804 		return 0;
4805 
4806 	if (dev->current_state != PCI_D0)
4807 		return -EINVAL;
4808 
4809 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4810 	csr |= PCI_D3hot;
4811 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4812 	pci_dev_d3_sleep(dev);
4813 
4814 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4815 	csr |= PCI_D0;
4816 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4817 	pci_dev_d3_sleep(dev);
4818 
4819 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4820 }
4821 
4822 /**
4823  * pcie_wait_for_link_delay - Wait until link is active or inactive
4824  * @pdev: Bridge device
4825  * @active: waiting for active or inactive?
4826  * @delay: Delay to wait after link has become active (in ms)
4827  *
4828  * Use this to wait till link becomes active or inactive.
4829  */
4830 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4831 				     int delay)
4832 {
4833 	int timeout = 1000;
4834 	bool ret;
4835 	u16 lnk_status;
4836 
4837 	/*
4838 	 * Some controllers might not implement link active reporting. In this
4839 	 * case, we wait for 1000 ms + any delay requested by the caller.
4840 	 */
4841 	if (!pdev->link_active_reporting) {
4842 		msleep(timeout + delay);
4843 		return true;
4844 	}
4845 
4846 	/*
4847 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4848 	 * after which we should expect an link active if the reset was
4849 	 * successful. If so, software must wait a minimum 100ms before sending
4850 	 * configuration requests to devices downstream this port.
4851 	 *
4852 	 * If the link fails to activate, either the device was physically
4853 	 * removed or the link is permanently failed.
4854 	 */
4855 	if (active)
4856 		msleep(20);
4857 	for (;;) {
4858 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4859 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4860 		if (ret == active)
4861 			break;
4862 		if (timeout <= 0)
4863 			break;
4864 		msleep(10);
4865 		timeout -= 10;
4866 	}
4867 	if (active && ret)
4868 		msleep(delay);
4869 
4870 	return ret == active;
4871 }
4872 
4873 /**
4874  * pcie_wait_for_link - Wait until link is active or inactive
4875  * @pdev: Bridge device
4876  * @active: waiting for active or inactive?
4877  *
4878  * Use this to wait till link becomes active or inactive.
4879  */
4880 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4881 {
4882 	return pcie_wait_for_link_delay(pdev, active, 100);
4883 }
4884 
4885 /*
4886  * Find maximum D3cold delay required by all the devices on the bus.  The
4887  * spec says 100 ms, but firmware can lower it and we allow drivers to
4888  * increase it as well.
4889  *
4890  * Called with @pci_bus_sem locked for reading.
4891  */
4892 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4893 {
4894 	const struct pci_dev *pdev;
4895 	int min_delay = 100;
4896 	int max_delay = 0;
4897 
4898 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4899 		if (pdev->d3cold_delay < min_delay)
4900 			min_delay = pdev->d3cold_delay;
4901 		if (pdev->d3cold_delay > max_delay)
4902 			max_delay = pdev->d3cold_delay;
4903 	}
4904 
4905 	return max(min_delay, max_delay);
4906 }
4907 
4908 /**
4909  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4910  * @dev: PCI bridge
4911  *
4912  * Handle necessary delays before access to the devices on the secondary
4913  * side of the bridge are permitted after D3cold to D0 transition.
4914  *
4915  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4916  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4917  * 4.3.2.
4918  */
4919 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4920 {
4921 	struct pci_dev *child;
4922 	int delay;
4923 
4924 	if (pci_dev_is_disconnected(dev))
4925 		return;
4926 
4927 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4928 		return;
4929 
4930 	down_read(&pci_bus_sem);
4931 
4932 	/*
4933 	 * We only deal with devices that are present currently on the bus.
4934 	 * For any hot-added devices the access delay is handled in pciehp
4935 	 * board_added(). In case of ACPI hotplug the firmware is expected
4936 	 * to configure the devices before OS is notified.
4937 	 */
4938 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4939 		up_read(&pci_bus_sem);
4940 		return;
4941 	}
4942 
4943 	/* Take d3cold_delay requirements into account */
4944 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4945 	if (!delay) {
4946 		up_read(&pci_bus_sem);
4947 		return;
4948 	}
4949 
4950 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4951 				 bus_list);
4952 	up_read(&pci_bus_sem);
4953 
4954 	/*
4955 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4956 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4957 	 * practice this should not be needed because we don't do power
4958 	 * management for them (see pci_bridge_d3_possible()).
4959 	 */
4960 	if (!pci_is_pcie(dev)) {
4961 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4962 		msleep(1000 + delay);
4963 		return;
4964 	}
4965 
4966 	/*
4967 	 * For PCIe downstream and root ports that do not support speeds
4968 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4969 	 * speeds (gen3) we need to wait first for the data link layer to
4970 	 * become active.
4971 	 *
4972 	 * However, 100 ms is the minimum and the PCIe spec says the
4973 	 * software must allow at least 1s before it can determine that the
4974 	 * device that did not respond is a broken device. There is
4975 	 * evidence that 100 ms is not always enough, for example certain
4976 	 * Titan Ridge xHCI controller does not always respond to
4977 	 * configuration requests if we only wait for 100 ms (see
4978 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4979 	 *
4980 	 * Therefore we wait for 100 ms and check for the device presence.
4981 	 * If it is still not present give it an additional 100 ms.
4982 	 */
4983 	if (!pcie_downstream_port(dev))
4984 		return;
4985 
4986 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4987 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4988 		msleep(delay);
4989 	} else {
4990 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4991 			delay);
4992 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4993 			/* Did not train, no need to wait any further */
4994 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4995 			return;
4996 		}
4997 	}
4998 
4999 	if (!pci_device_is_present(child)) {
5000 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5001 		msleep(delay);
5002 	}
5003 }
5004 
5005 void pci_reset_secondary_bus(struct pci_dev *dev)
5006 {
5007 	u16 ctrl;
5008 
5009 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5010 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5011 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5012 
5013 	/*
5014 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5015 	 * this to 2ms to ensure that we meet the minimum requirement.
5016 	 */
5017 	msleep(2);
5018 
5019 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5020 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5021 
5022 	/*
5023 	 * Trhfa for conventional PCI is 2^25 clock cycles.
5024 	 * Assuming a minimum 33MHz clock this results in a 1s
5025 	 * delay before we can consider subordinate devices to
5026 	 * be re-initialized.  PCIe has some ways to shorten this,
5027 	 * but we don't make use of them yet.
5028 	 */
5029 	ssleep(1);
5030 }
5031 
5032 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5033 {
5034 	pci_reset_secondary_bus(dev);
5035 }
5036 
5037 /**
5038  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5039  * @dev: Bridge device
5040  *
5041  * Use the bridge control register to assert reset on the secondary bus.
5042  * Devices on the secondary bus are left in power-on state.
5043  */
5044 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5045 {
5046 	pcibios_reset_secondary_bus(dev);
5047 
5048 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5049 }
5050 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5051 
5052 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5053 {
5054 	struct pci_dev *pdev;
5055 
5056 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5057 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5058 		return -ENOTTY;
5059 
5060 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5061 		if (pdev != dev)
5062 			return -ENOTTY;
5063 
5064 	if (probe)
5065 		return 0;
5066 
5067 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5068 }
5069 
5070 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5071 {
5072 	int rc = -ENOTTY;
5073 
5074 	if (!hotplug || !try_module_get(hotplug->owner))
5075 		return rc;
5076 
5077 	if (hotplug->ops->reset_slot)
5078 		rc = hotplug->ops->reset_slot(hotplug, probe);
5079 
5080 	module_put(hotplug->owner);
5081 
5082 	return rc;
5083 }
5084 
5085 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5086 {
5087 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5088 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5089 		return -ENOTTY;
5090 
5091 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5092 }
5093 
5094 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5095 {
5096 	int rc;
5097 
5098 	rc = pci_dev_reset_slot_function(dev, probe);
5099 	if (rc != -ENOTTY)
5100 		return rc;
5101 	return pci_parent_bus_reset(dev, probe);
5102 }
5103 
5104 void pci_dev_lock(struct pci_dev *dev)
5105 {
5106 	pci_cfg_access_lock(dev);
5107 	/* block PM suspend, driver probe, etc. */
5108 	device_lock(&dev->dev);
5109 }
5110 EXPORT_SYMBOL_GPL(pci_dev_lock);
5111 
5112 /* Return 1 on successful lock, 0 on contention */
5113 int pci_dev_trylock(struct pci_dev *dev)
5114 {
5115 	if (pci_cfg_access_trylock(dev)) {
5116 		if (device_trylock(&dev->dev))
5117 			return 1;
5118 		pci_cfg_access_unlock(dev);
5119 	}
5120 
5121 	return 0;
5122 }
5123 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5124 
5125 void pci_dev_unlock(struct pci_dev *dev)
5126 {
5127 	device_unlock(&dev->dev);
5128 	pci_cfg_access_unlock(dev);
5129 }
5130 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5131 
5132 static void pci_dev_save_and_disable(struct pci_dev *dev)
5133 {
5134 	const struct pci_error_handlers *err_handler =
5135 			dev->driver ? dev->driver->err_handler : NULL;
5136 
5137 	/*
5138 	 * dev->driver->err_handler->reset_prepare() is protected against
5139 	 * races with ->remove() by the device lock, which must be held by
5140 	 * the caller.
5141 	 */
5142 	if (err_handler && err_handler->reset_prepare)
5143 		err_handler->reset_prepare(dev);
5144 
5145 	/*
5146 	 * Wake-up device prior to save.  PM registers default to D0 after
5147 	 * reset and a simple register restore doesn't reliably return
5148 	 * to a non-D0 state anyway.
5149 	 */
5150 	pci_set_power_state(dev, PCI_D0);
5151 
5152 	pci_save_state(dev);
5153 	/*
5154 	 * Disable the device by clearing the Command register, except for
5155 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5156 	 * BARs, but also prevents the device from being Bus Master, preventing
5157 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5158 	 * compliant devices, INTx-disable prevents legacy interrupts.
5159 	 */
5160 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5161 }
5162 
5163 static void pci_dev_restore(struct pci_dev *dev)
5164 {
5165 	const struct pci_error_handlers *err_handler =
5166 			dev->driver ? dev->driver->err_handler : NULL;
5167 
5168 	pci_restore_state(dev);
5169 
5170 	/*
5171 	 * dev->driver->err_handler->reset_done() is protected against
5172 	 * races with ->remove() by the device lock, which must be held by
5173 	 * the caller.
5174 	 */
5175 	if (err_handler && err_handler->reset_done)
5176 		err_handler->reset_done(dev);
5177 }
5178 
5179 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5180 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5181 	{ },
5182 	{ pci_dev_specific_reset, .name = "device_specific" },
5183 	{ pci_dev_acpi_reset, .name = "acpi" },
5184 	{ pcie_reset_flr, .name = "flr" },
5185 	{ pci_af_flr, .name = "af_flr" },
5186 	{ pci_pm_reset, .name = "pm" },
5187 	{ pci_reset_bus_function, .name = "bus" },
5188 };
5189 
5190 static ssize_t reset_method_show(struct device *dev,
5191 				 struct device_attribute *attr, char *buf)
5192 {
5193 	struct pci_dev *pdev = to_pci_dev(dev);
5194 	ssize_t len = 0;
5195 	int i, m;
5196 
5197 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5198 		m = pdev->reset_methods[i];
5199 		if (!m)
5200 			break;
5201 
5202 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5203 				     pci_reset_fn_methods[m].name);
5204 	}
5205 
5206 	if (len)
5207 		len += sysfs_emit_at(buf, len, "\n");
5208 
5209 	return len;
5210 }
5211 
5212 static int reset_method_lookup(const char *name)
5213 {
5214 	int m;
5215 
5216 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5217 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5218 			return m;
5219 	}
5220 
5221 	return 0;	/* not found */
5222 }
5223 
5224 static ssize_t reset_method_store(struct device *dev,
5225 				  struct device_attribute *attr,
5226 				  const char *buf, size_t count)
5227 {
5228 	struct pci_dev *pdev = to_pci_dev(dev);
5229 	char *options, *name;
5230 	int m, n;
5231 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5232 
5233 	if (sysfs_streq(buf, "")) {
5234 		pdev->reset_methods[0] = 0;
5235 		pci_warn(pdev, "All device reset methods disabled by user");
5236 		return count;
5237 	}
5238 
5239 	if (sysfs_streq(buf, "default")) {
5240 		pci_init_reset_methods(pdev);
5241 		return count;
5242 	}
5243 
5244 	options = kstrndup(buf, count, GFP_KERNEL);
5245 	if (!options)
5246 		return -ENOMEM;
5247 
5248 	n = 0;
5249 	while ((name = strsep(&options, " ")) != NULL) {
5250 		if (sysfs_streq(name, ""))
5251 			continue;
5252 
5253 		name = strim(name);
5254 
5255 		m = reset_method_lookup(name);
5256 		if (!m) {
5257 			pci_err(pdev, "Invalid reset method '%s'", name);
5258 			goto error;
5259 		}
5260 
5261 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5262 			pci_err(pdev, "Unsupported reset method '%s'", name);
5263 			goto error;
5264 		}
5265 
5266 		if (n == PCI_NUM_RESET_METHODS - 1) {
5267 			pci_err(pdev, "Too many reset methods\n");
5268 			goto error;
5269 		}
5270 
5271 		reset_methods[n++] = m;
5272 	}
5273 
5274 	reset_methods[n] = 0;
5275 
5276 	/* Warn if dev-specific supported but not highest priority */
5277 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5278 	    reset_methods[0] != 1)
5279 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5280 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5281 	kfree(options);
5282 	return count;
5283 
5284 error:
5285 	/* Leave previous methods unchanged */
5286 	kfree(options);
5287 	return -EINVAL;
5288 }
5289 static DEVICE_ATTR_RW(reset_method);
5290 
5291 static struct attribute *pci_dev_reset_method_attrs[] = {
5292 	&dev_attr_reset_method.attr,
5293 	NULL,
5294 };
5295 
5296 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5297 						    struct attribute *a, int n)
5298 {
5299 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5300 
5301 	if (!pci_reset_supported(pdev))
5302 		return 0;
5303 
5304 	return a->mode;
5305 }
5306 
5307 const struct attribute_group pci_dev_reset_method_attr_group = {
5308 	.attrs = pci_dev_reset_method_attrs,
5309 	.is_visible = pci_dev_reset_method_attr_is_visible,
5310 };
5311 
5312 /**
5313  * __pci_reset_function_locked - reset a PCI device function while holding
5314  * the @dev mutex lock.
5315  * @dev: PCI device to reset
5316  *
5317  * Some devices allow an individual function to be reset without affecting
5318  * other functions in the same device.  The PCI device must be responsive
5319  * to PCI config space in order to use this function.
5320  *
5321  * The device function is presumed to be unused and the caller is holding
5322  * the device mutex lock when this function is called.
5323  *
5324  * Resetting the device will make the contents of PCI configuration space
5325  * random, so any caller of this must be prepared to reinitialise the
5326  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5327  * etc.
5328  *
5329  * Returns 0 if the device function was successfully reset or negative if the
5330  * device doesn't support resetting a single function.
5331  */
5332 int __pci_reset_function_locked(struct pci_dev *dev)
5333 {
5334 	int i, m, rc;
5335 
5336 	might_sleep();
5337 
5338 	/*
5339 	 * A reset method returns -ENOTTY if it doesn't support this device and
5340 	 * we should try the next method.
5341 	 *
5342 	 * If it returns 0 (success), we're finished.  If it returns any other
5343 	 * error, we're also finished: this indicates that further reset
5344 	 * mechanisms might be broken on the device.
5345 	 */
5346 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5347 		m = dev->reset_methods[i];
5348 		if (!m)
5349 			return -ENOTTY;
5350 
5351 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5352 		if (!rc)
5353 			return 0;
5354 		if (rc != -ENOTTY)
5355 			return rc;
5356 	}
5357 
5358 	return -ENOTTY;
5359 }
5360 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5361 
5362 /**
5363  * pci_init_reset_methods - check whether device can be safely reset
5364  * and store supported reset mechanisms.
5365  * @dev: PCI device to check for reset mechanisms
5366  *
5367  * Some devices allow an individual function to be reset without affecting
5368  * other functions in the same device.  The PCI device must be in D0-D3hot
5369  * state.
5370  *
5371  * Stores reset mechanisms supported by device in reset_methods byte array
5372  * which is a member of struct pci_dev.
5373  */
5374 void pci_init_reset_methods(struct pci_dev *dev)
5375 {
5376 	int m, i, rc;
5377 
5378 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5379 
5380 	might_sleep();
5381 
5382 	i = 0;
5383 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5384 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5385 		if (!rc)
5386 			dev->reset_methods[i++] = m;
5387 		else if (rc != -ENOTTY)
5388 			break;
5389 	}
5390 
5391 	dev->reset_methods[i] = 0;
5392 }
5393 
5394 /**
5395  * pci_reset_function - quiesce and reset a PCI device function
5396  * @dev: PCI device to reset
5397  *
5398  * Some devices allow an individual function to be reset without affecting
5399  * other functions in the same device.  The PCI device must be responsive
5400  * to PCI config space in order to use this function.
5401  *
5402  * This function does not just reset the PCI portion of a device, but
5403  * clears all the state associated with the device.  This function differs
5404  * from __pci_reset_function_locked() in that it saves and restores device state
5405  * over the reset and takes the PCI device lock.
5406  *
5407  * Returns 0 if the device function was successfully reset or negative if the
5408  * device doesn't support resetting a single function.
5409  */
5410 int pci_reset_function(struct pci_dev *dev)
5411 {
5412 	int rc;
5413 
5414 	if (!pci_reset_supported(dev))
5415 		return -ENOTTY;
5416 
5417 	pci_dev_lock(dev);
5418 	pci_dev_save_and_disable(dev);
5419 
5420 	rc = __pci_reset_function_locked(dev);
5421 
5422 	pci_dev_restore(dev);
5423 	pci_dev_unlock(dev);
5424 
5425 	return rc;
5426 }
5427 EXPORT_SYMBOL_GPL(pci_reset_function);
5428 
5429 /**
5430  * pci_reset_function_locked - quiesce and reset a PCI device function
5431  * @dev: PCI device to reset
5432  *
5433  * Some devices allow an individual function to be reset without affecting
5434  * other functions in the same device.  The PCI device must be responsive
5435  * to PCI config space in order to use this function.
5436  *
5437  * This function does not just reset the PCI portion of a device, but
5438  * clears all the state associated with the device.  This function differs
5439  * from __pci_reset_function_locked() in that it saves and restores device state
5440  * over the reset.  It also differs from pci_reset_function() in that it
5441  * requires the PCI device lock to be held.
5442  *
5443  * Returns 0 if the device function was successfully reset or negative if the
5444  * device doesn't support resetting a single function.
5445  */
5446 int pci_reset_function_locked(struct pci_dev *dev)
5447 {
5448 	int rc;
5449 
5450 	if (!pci_reset_supported(dev))
5451 		return -ENOTTY;
5452 
5453 	pci_dev_save_and_disable(dev);
5454 
5455 	rc = __pci_reset_function_locked(dev);
5456 
5457 	pci_dev_restore(dev);
5458 
5459 	return rc;
5460 }
5461 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5462 
5463 /**
5464  * pci_try_reset_function - quiesce and reset a PCI device function
5465  * @dev: PCI device to reset
5466  *
5467  * Same as above, except return -EAGAIN if unable to lock device.
5468  */
5469 int pci_try_reset_function(struct pci_dev *dev)
5470 {
5471 	int rc;
5472 
5473 	if (!pci_reset_supported(dev))
5474 		return -ENOTTY;
5475 
5476 	if (!pci_dev_trylock(dev))
5477 		return -EAGAIN;
5478 
5479 	pci_dev_save_and_disable(dev);
5480 	rc = __pci_reset_function_locked(dev);
5481 	pci_dev_restore(dev);
5482 	pci_dev_unlock(dev);
5483 
5484 	return rc;
5485 }
5486 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5487 
5488 /* Do any devices on or below this bus prevent a bus reset? */
5489 static bool pci_bus_resetable(struct pci_bus *bus)
5490 {
5491 	struct pci_dev *dev;
5492 
5493 
5494 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5495 		return false;
5496 
5497 	list_for_each_entry(dev, &bus->devices, bus_list) {
5498 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5499 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5500 			return false;
5501 	}
5502 
5503 	return true;
5504 }
5505 
5506 /* Lock devices from the top of the tree down */
5507 static void pci_bus_lock(struct pci_bus *bus)
5508 {
5509 	struct pci_dev *dev;
5510 
5511 	list_for_each_entry(dev, &bus->devices, bus_list) {
5512 		pci_dev_lock(dev);
5513 		if (dev->subordinate)
5514 			pci_bus_lock(dev->subordinate);
5515 	}
5516 }
5517 
5518 /* Unlock devices from the bottom of the tree up */
5519 static void pci_bus_unlock(struct pci_bus *bus)
5520 {
5521 	struct pci_dev *dev;
5522 
5523 	list_for_each_entry(dev, &bus->devices, bus_list) {
5524 		if (dev->subordinate)
5525 			pci_bus_unlock(dev->subordinate);
5526 		pci_dev_unlock(dev);
5527 	}
5528 }
5529 
5530 /* Return 1 on successful lock, 0 on contention */
5531 static int pci_bus_trylock(struct pci_bus *bus)
5532 {
5533 	struct pci_dev *dev;
5534 
5535 	list_for_each_entry(dev, &bus->devices, bus_list) {
5536 		if (!pci_dev_trylock(dev))
5537 			goto unlock;
5538 		if (dev->subordinate) {
5539 			if (!pci_bus_trylock(dev->subordinate)) {
5540 				pci_dev_unlock(dev);
5541 				goto unlock;
5542 			}
5543 		}
5544 	}
5545 	return 1;
5546 
5547 unlock:
5548 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5549 		if (dev->subordinate)
5550 			pci_bus_unlock(dev->subordinate);
5551 		pci_dev_unlock(dev);
5552 	}
5553 	return 0;
5554 }
5555 
5556 /* Do any devices on or below this slot prevent a bus reset? */
5557 static bool pci_slot_resetable(struct pci_slot *slot)
5558 {
5559 	struct pci_dev *dev;
5560 
5561 	if (slot->bus->self &&
5562 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5563 		return false;
5564 
5565 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5566 		if (!dev->slot || dev->slot != slot)
5567 			continue;
5568 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5569 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5570 			return false;
5571 	}
5572 
5573 	return true;
5574 }
5575 
5576 /* Lock devices from the top of the tree down */
5577 static void pci_slot_lock(struct pci_slot *slot)
5578 {
5579 	struct pci_dev *dev;
5580 
5581 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5582 		if (!dev->slot || dev->slot != slot)
5583 			continue;
5584 		pci_dev_lock(dev);
5585 		if (dev->subordinate)
5586 			pci_bus_lock(dev->subordinate);
5587 	}
5588 }
5589 
5590 /* Unlock devices from the bottom of the tree up */
5591 static void pci_slot_unlock(struct pci_slot *slot)
5592 {
5593 	struct pci_dev *dev;
5594 
5595 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5596 		if (!dev->slot || dev->slot != slot)
5597 			continue;
5598 		if (dev->subordinate)
5599 			pci_bus_unlock(dev->subordinate);
5600 		pci_dev_unlock(dev);
5601 	}
5602 }
5603 
5604 /* Return 1 on successful lock, 0 on contention */
5605 static int pci_slot_trylock(struct pci_slot *slot)
5606 {
5607 	struct pci_dev *dev;
5608 
5609 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5610 		if (!dev->slot || dev->slot != slot)
5611 			continue;
5612 		if (!pci_dev_trylock(dev))
5613 			goto unlock;
5614 		if (dev->subordinate) {
5615 			if (!pci_bus_trylock(dev->subordinate)) {
5616 				pci_dev_unlock(dev);
5617 				goto unlock;
5618 			}
5619 		}
5620 	}
5621 	return 1;
5622 
5623 unlock:
5624 	list_for_each_entry_continue_reverse(dev,
5625 					     &slot->bus->devices, bus_list) {
5626 		if (!dev->slot || dev->slot != slot)
5627 			continue;
5628 		if (dev->subordinate)
5629 			pci_bus_unlock(dev->subordinate);
5630 		pci_dev_unlock(dev);
5631 	}
5632 	return 0;
5633 }
5634 
5635 /*
5636  * Save and disable devices from the top of the tree down while holding
5637  * the @dev mutex lock for the entire tree.
5638  */
5639 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5640 {
5641 	struct pci_dev *dev;
5642 
5643 	list_for_each_entry(dev, &bus->devices, bus_list) {
5644 		pci_dev_save_and_disable(dev);
5645 		if (dev->subordinate)
5646 			pci_bus_save_and_disable_locked(dev->subordinate);
5647 	}
5648 }
5649 
5650 /*
5651  * Restore devices from top of the tree down while holding @dev mutex lock
5652  * for the entire tree.  Parent bridges need to be restored before we can
5653  * get to subordinate devices.
5654  */
5655 static void pci_bus_restore_locked(struct pci_bus *bus)
5656 {
5657 	struct pci_dev *dev;
5658 
5659 	list_for_each_entry(dev, &bus->devices, bus_list) {
5660 		pci_dev_restore(dev);
5661 		if (dev->subordinate)
5662 			pci_bus_restore_locked(dev->subordinate);
5663 	}
5664 }
5665 
5666 /*
5667  * Save and disable devices from the top of the tree down while holding
5668  * the @dev mutex lock for the entire tree.
5669  */
5670 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5671 {
5672 	struct pci_dev *dev;
5673 
5674 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5675 		if (!dev->slot || dev->slot != slot)
5676 			continue;
5677 		pci_dev_save_and_disable(dev);
5678 		if (dev->subordinate)
5679 			pci_bus_save_and_disable_locked(dev->subordinate);
5680 	}
5681 }
5682 
5683 /*
5684  * Restore devices from top of the tree down while holding @dev mutex lock
5685  * for the entire tree.  Parent bridges need to be restored before we can
5686  * get to subordinate devices.
5687  */
5688 static void pci_slot_restore_locked(struct pci_slot *slot)
5689 {
5690 	struct pci_dev *dev;
5691 
5692 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5693 		if (!dev->slot || dev->slot != slot)
5694 			continue;
5695 		pci_dev_restore(dev);
5696 		if (dev->subordinate)
5697 			pci_bus_restore_locked(dev->subordinate);
5698 	}
5699 }
5700 
5701 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5702 {
5703 	int rc;
5704 
5705 	if (!slot || !pci_slot_resetable(slot))
5706 		return -ENOTTY;
5707 
5708 	if (!probe)
5709 		pci_slot_lock(slot);
5710 
5711 	might_sleep();
5712 
5713 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5714 
5715 	if (!probe)
5716 		pci_slot_unlock(slot);
5717 
5718 	return rc;
5719 }
5720 
5721 /**
5722  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5723  * @slot: PCI slot to probe
5724  *
5725  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5726  */
5727 int pci_probe_reset_slot(struct pci_slot *slot)
5728 {
5729 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5730 }
5731 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5732 
5733 /**
5734  * __pci_reset_slot - Try to reset a PCI slot
5735  * @slot: PCI slot to reset
5736  *
5737  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5738  * independent of other slots.  For instance, some slots may support slot power
5739  * control.  In the case of a 1:1 bus to slot architecture, this function may
5740  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5741  * Generally a slot reset should be attempted before a bus reset.  All of the
5742  * function of the slot and any subordinate buses behind the slot are reset
5743  * through this function.  PCI config space of all devices in the slot and
5744  * behind the slot is saved before and restored after reset.
5745  *
5746  * Same as above except return -EAGAIN if the slot cannot be locked
5747  */
5748 static int __pci_reset_slot(struct pci_slot *slot)
5749 {
5750 	int rc;
5751 
5752 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5753 	if (rc)
5754 		return rc;
5755 
5756 	if (pci_slot_trylock(slot)) {
5757 		pci_slot_save_and_disable_locked(slot);
5758 		might_sleep();
5759 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5760 		pci_slot_restore_locked(slot);
5761 		pci_slot_unlock(slot);
5762 	} else
5763 		rc = -EAGAIN;
5764 
5765 	return rc;
5766 }
5767 
5768 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5769 {
5770 	int ret;
5771 
5772 	if (!bus->self || !pci_bus_resetable(bus))
5773 		return -ENOTTY;
5774 
5775 	if (probe)
5776 		return 0;
5777 
5778 	pci_bus_lock(bus);
5779 
5780 	might_sleep();
5781 
5782 	ret = pci_bridge_secondary_bus_reset(bus->self);
5783 
5784 	pci_bus_unlock(bus);
5785 
5786 	return ret;
5787 }
5788 
5789 /**
5790  * pci_bus_error_reset - reset the bridge's subordinate bus
5791  * @bridge: The parent device that connects to the bus to reset
5792  *
5793  * This function will first try to reset the slots on this bus if the method is
5794  * available. If slot reset fails or is not available, this will fall back to a
5795  * secondary bus reset.
5796  */
5797 int pci_bus_error_reset(struct pci_dev *bridge)
5798 {
5799 	struct pci_bus *bus = bridge->subordinate;
5800 	struct pci_slot *slot;
5801 
5802 	if (!bus)
5803 		return -ENOTTY;
5804 
5805 	mutex_lock(&pci_slot_mutex);
5806 	if (list_empty(&bus->slots))
5807 		goto bus_reset;
5808 
5809 	list_for_each_entry(slot, &bus->slots, list)
5810 		if (pci_probe_reset_slot(slot))
5811 			goto bus_reset;
5812 
5813 	list_for_each_entry(slot, &bus->slots, list)
5814 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5815 			goto bus_reset;
5816 
5817 	mutex_unlock(&pci_slot_mutex);
5818 	return 0;
5819 bus_reset:
5820 	mutex_unlock(&pci_slot_mutex);
5821 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5822 }
5823 
5824 /**
5825  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5826  * @bus: PCI bus to probe
5827  *
5828  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5829  */
5830 int pci_probe_reset_bus(struct pci_bus *bus)
5831 {
5832 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5833 }
5834 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5835 
5836 /**
5837  * __pci_reset_bus - Try to reset a PCI bus
5838  * @bus: top level PCI bus to reset
5839  *
5840  * Same as above except return -EAGAIN if the bus cannot be locked
5841  */
5842 static int __pci_reset_bus(struct pci_bus *bus)
5843 {
5844 	int rc;
5845 
5846 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5847 	if (rc)
5848 		return rc;
5849 
5850 	if (pci_bus_trylock(bus)) {
5851 		pci_bus_save_and_disable_locked(bus);
5852 		might_sleep();
5853 		rc = pci_bridge_secondary_bus_reset(bus->self);
5854 		pci_bus_restore_locked(bus);
5855 		pci_bus_unlock(bus);
5856 	} else
5857 		rc = -EAGAIN;
5858 
5859 	return rc;
5860 }
5861 
5862 /**
5863  * pci_reset_bus - Try to reset a PCI bus
5864  * @pdev: top level PCI device to reset via slot/bus
5865  *
5866  * Same as above except return -EAGAIN if the bus cannot be locked
5867  */
5868 int pci_reset_bus(struct pci_dev *pdev)
5869 {
5870 	return (!pci_probe_reset_slot(pdev->slot)) ?
5871 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5872 }
5873 EXPORT_SYMBOL_GPL(pci_reset_bus);
5874 
5875 /**
5876  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5877  * @dev: PCI device to query
5878  *
5879  * Returns mmrbc: maximum designed memory read count in bytes or
5880  * appropriate error value.
5881  */
5882 int pcix_get_max_mmrbc(struct pci_dev *dev)
5883 {
5884 	int cap;
5885 	u32 stat;
5886 
5887 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5888 	if (!cap)
5889 		return -EINVAL;
5890 
5891 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5892 		return -EINVAL;
5893 
5894 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5895 }
5896 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5897 
5898 /**
5899  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5900  * @dev: PCI device to query
5901  *
5902  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5903  * value.
5904  */
5905 int pcix_get_mmrbc(struct pci_dev *dev)
5906 {
5907 	int cap;
5908 	u16 cmd;
5909 
5910 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5911 	if (!cap)
5912 		return -EINVAL;
5913 
5914 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5915 		return -EINVAL;
5916 
5917 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5918 }
5919 EXPORT_SYMBOL(pcix_get_mmrbc);
5920 
5921 /**
5922  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5923  * @dev: PCI device to query
5924  * @mmrbc: maximum memory read count in bytes
5925  *    valid values are 512, 1024, 2048, 4096
5926  *
5927  * If possible sets maximum memory read byte count, some bridges have errata
5928  * that prevent this.
5929  */
5930 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5931 {
5932 	int cap;
5933 	u32 stat, v, o;
5934 	u16 cmd;
5935 
5936 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5937 		return -EINVAL;
5938 
5939 	v = ffs(mmrbc) - 10;
5940 
5941 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5942 	if (!cap)
5943 		return -EINVAL;
5944 
5945 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5946 		return -EINVAL;
5947 
5948 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5949 		return -E2BIG;
5950 
5951 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5952 		return -EINVAL;
5953 
5954 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5955 	if (o != v) {
5956 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5957 			return -EIO;
5958 
5959 		cmd &= ~PCI_X_CMD_MAX_READ;
5960 		cmd |= v << 2;
5961 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5962 			return -EIO;
5963 	}
5964 	return 0;
5965 }
5966 EXPORT_SYMBOL(pcix_set_mmrbc);
5967 
5968 /**
5969  * pcie_get_readrq - get PCI Express read request size
5970  * @dev: PCI device to query
5971  *
5972  * Returns maximum memory read request in bytes or appropriate error value.
5973  */
5974 int pcie_get_readrq(struct pci_dev *dev)
5975 {
5976 	u16 ctl;
5977 
5978 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5979 
5980 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5981 }
5982 EXPORT_SYMBOL(pcie_get_readrq);
5983 
5984 /**
5985  * pcie_set_readrq - set PCI Express maximum memory read request
5986  * @dev: PCI device to query
5987  * @rq: maximum memory read count in bytes
5988  *    valid values are 128, 256, 512, 1024, 2048, 4096
5989  *
5990  * If possible sets maximum memory read request in bytes
5991  */
5992 int pcie_set_readrq(struct pci_dev *dev, int rq)
5993 {
5994 	u16 v;
5995 	int ret;
5996 
5997 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5998 		return -EINVAL;
5999 
6000 	/*
6001 	 * If using the "performance" PCIe config, we clamp the read rq
6002 	 * size to the max packet size to keep the host bridge from
6003 	 * generating requests larger than we can cope with.
6004 	 */
6005 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6006 		int mps = pcie_get_mps(dev);
6007 
6008 		if (mps < rq)
6009 			rq = mps;
6010 	}
6011 
6012 	v = (ffs(rq) - 8) << 12;
6013 
6014 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6015 						  PCI_EXP_DEVCTL_READRQ, v);
6016 
6017 	return pcibios_err_to_errno(ret);
6018 }
6019 EXPORT_SYMBOL(pcie_set_readrq);
6020 
6021 /**
6022  * pcie_get_mps - get PCI Express maximum payload size
6023  * @dev: PCI device to query
6024  *
6025  * Returns maximum payload size in bytes
6026  */
6027 int pcie_get_mps(struct pci_dev *dev)
6028 {
6029 	u16 ctl;
6030 
6031 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6032 
6033 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6034 }
6035 EXPORT_SYMBOL(pcie_get_mps);
6036 
6037 /**
6038  * pcie_set_mps - set PCI Express maximum payload size
6039  * @dev: PCI device to query
6040  * @mps: maximum payload size in bytes
6041  *    valid values are 128, 256, 512, 1024, 2048, 4096
6042  *
6043  * If possible sets maximum payload size
6044  */
6045 int pcie_set_mps(struct pci_dev *dev, int mps)
6046 {
6047 	u16 v;
6048 	int ret;
6049 
6050 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6051 		return -EINVAL;
6052 
6053 	v = ffs(mps) - 8;
6054 	if (v > dev->pcie_mpss)
6055 		return -EINVAL;
6056 	v <<= 5;
6057 
6058 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6059 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6060 
6061 	return pcibios_err_to_errno(ret);
6062 }
6063 EXPORT_SYMBOL(pcie_set_mps);
6064 
6065 /**
6066  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6067  *			      device and its bandwidth limitation
6068  * @dev: PCI device to query
6069  * @limiting_dev: storage for device causing the bandwidth limitation
6070  * @speed: storage for speed of limiting device
6071  * @width: storage for width of limiting device
6072  *
6073  * Walk up the PCI device chain and find the point where the minimum
6074  * bandwidth is available.  Return the bandwidth available there and (if
6075  * limiting_dev, speed, and width pointers are supplied) information about
6076  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6077  * raw bandwidth.
6078  */
6079 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6080 			     enum pci_bus_speed *speed,
6081 			     enum pcie_link_width *width)
6082 {
6083 	u16 lnksta;
6084 	enum pci_bus_speed next_speed;
6085 	enum pcie_link_width next_width;
6086 	u32 bw, next_bw;
6087 
6088 	if (speed)
6089 		*speed = PCI_SPEED_UNKNOWN;
6090 	if (width)
6091 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6092 
6093 	bw = 0;
6094 
6095 	while (dev) {
6096 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6097 
6098 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6099 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6100 			PCI_EXP_LNKSTA_NLW_SHIFT;
6101 
6102 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6103 
6104 		/* Check if current device limits the total bandwidth */
6105 		if (!bw || next_bw <= bw) {
6106 			bw = next_bw;
6107 
6108 			if (limiting_dev)
6109 				*limiting_dev = dev;
6110 			if (speed)
6111 				*speed = next_speed;
6112 			if (width)
6113 				*width = next_width;
6114 		}
6115 
6116 		dev = pci_upstream_bridge(dev);
6117 	}
6118 
6119 	return bw;
6120 }
6121 EXPORT_SYMBOL(pcie_bandwidth_available);
6122 
6123 /**
6124  * pcie_get_speed_cap - query for the PCI device's link speed capability
6125  * @dev: PCI device to query
6126  *
6127  * Query the PCI device speed capability.  Return the maximum link speed
6128  * supported by the device.
6129  */
6130 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6131 {
6132 	u32 lnkcap2, lnkcap;
6133 
6134 	/*
6135 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6136 	 * implementation note there recommends using the Supported Link
6137 	 * Speeds Vector in Link Capabilities 2 when supported.
6138 	 *
6139 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6140 	 * should use the Supported Link Speeds field in Link Capabilities,
6141 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6142 	 */
6143 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6144 
6145 	/* PCIe r3.0-compliant */
6146 	if (lnkcap2)
6147 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6148 
6149 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6150 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6151 		return PCIE_SPEED_5_0GT;
6152 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6153 		return PCIE_SPEED_2_5GT;
6154 
6155 	return PCI_SPEED_UNKNOWN;
6156 }
6157 EXPORT_SYMBOL(pcie_get_speed_cap);
6158 
6159 /**
6160  * pcie_get_width_cap - query for the PCI device's link width capability
6161  * @dev: PCI device to query
6162  *
6163  * Query the PCI device width capability.  Return the maximum link width
6164  * supported by the device.
6165  */
6166 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6167 {
6168 	u32 lnkcap;
6169 
6170 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6171 	if (lnkcap)
6172 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6173 
6174 	return PCIE_LNK_WIDTH_UNKNOWN;
6175 }
6176 EXPORT_SYMBOL(pcie_get_width_cap);
6177 
6178 /**
6179  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6180  * @dev: PCI device
6181  * @speed: storage for link speed
6182  * @width: storage for link width
6183  *
6184  * Calculate a PCI device's link bandwidth by querying for its link speed
6185  * and width, multiplying them, and applying encoding overhead.  The result
6186  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6187  */
6188 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6189 			   enum pcie_link_width *width)
6190 {
6191 	*speed = pcie_get_speed_cap(dev);
6192 	*width = pcie_get_width_cap(dev);
6193 
6194 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6195 		return 0;
6196 
6197 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6198 }
6199 
6200 /**
6201  * __pcie_print_link_status - Report the PCI device's link speed and width
6202  * @dev: PCI device to query
6203  * @verbose: Print info even when enough bandwidth is available
6204  *
6205  * If the available bandwidth at the device is less than the device is
6206  * capable of, report the device's maximum possible bandwidth and the
6207  * upstream link that limits its performance.  If @verbose, always print
6208  * the available bandwidth, even if the device isn't constrained.
6209  */
6210 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6211 {
6212 	enum pcie_link_width width, width_cap;
6213 	enum pci_bus_speed speed, speed_cap;
6214 	struct pci_dev *limiting_dev = NULL;
6215 	u32 bw_avail, bw_cap;
6216 
6217 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6218 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6219 
6220 	if (bw_avail >= bw_cap && verbose)
6221 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6222 			 bw_cap / 1000, bw_cap % 1000,
6223 			 pci_speed_string(speed_cap), width_cap);
6224 	else if (bw_avail < bw_cap)
6225 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6226 			 bw_avail / 1000, bw_avail % 1000,
6227 			 pci_speed_string(speed), width,
6228 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6229 			 bw_cap / 1000, bw_cap % 1000,
6230 			 pci_speed_string(speed_cap), width_cap);
6231 }
6232 
6233 /**
6234  * pcie_print_link_status - Report the PCI device's link speed and width
6235  * @dev: PCI device to query
6236  *
6237  * Report the available bandwidth at the device.
6238  */
6239 void pcie_print_link_status(struct pci_dev *dev)
6240 {
6241 	__pcie_print_link_status(dev, true);
6242 }
6243 EXPORT_SYMBOL(pcie_print_link_status);
6244 
6245 /**
6246  * pci_select_bars - Make BAR mask from the type of resource
6247  * @dev: the PCI device for which BAR mask is made
6248  * @flags: resource type mask to be selected
6249  *
6250  * This helper routine makes bar mask from the type of resource.
6251  */
6252 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6253 {
6254 	int i, bars = 0;
6255 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6256 		if (pci_resource_flags(dev, i) & flags)
6257 			bars |= (1 << i);
6258 	return bars;
6259 }
6260 EXPORT_SYMBOL(pci_select_bars);
6261 
6262 /* Some architectures require additional programming to enable VGA */
6263 static arch_set_vga_state_t arch_set_vga_state;
6264 
6265 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6266 {
6267 	arch_set_vga_state = func;	/* NULL disables */
6268 }
6269 
6270 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6271 				  unsigned int command_bits, u32 flags)
6272 {
6273 	if (arch_set_vga_state)
6274 		return arch_set_vga_state(dev, decode, command_bits,
6275 						flags);
6276 	return 0;
6277 }
6278 
6279 /**
6280  * pci_set_vga_state - set VGA decode state on device and parents if requested
6281  * @dev: the PCI device
6282  * @decode: true = enable decoding, false = disable decoding
6283  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6284  * @flags: traverse ancestors and change bridges
6285  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6286  */
6287 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6288 		      unsigned int command_bits, u32 flags)
6289 {
6290 	struct pci_bus *bus;
6291 	struct pci_dev *bridge;
6292 	u16 cmd;
6293 	int rc;
6294 
6295 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6296 
6297 	/* ARCH specific VGA enables */
6298 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6299 	if (rc)
6300 		return rc;
6301 
6302 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6303 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6304 		if (decode)
6305 			cmd |= command_bits;
6306 		else
6307 			cmd &= ~command_bits;
6308 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6309 	}
6310 
6311 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6312 		return 0;
6313 
6314 	bus = dev->bus;
6315 	while (bus) {
6316 		bridge = bus->self;
6317 		if (bridge) {
6318 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6319 					     &cmd);
6320 			if (decode)
6321 				cmd |= PCI_BRIDGE_CTL_VGA;
6322 			else
6323 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6324 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6325 					      cmd);
6326 		}
6327 		bus = bus->parent;
6328 	}
6329 	return 0;
6330 }
6331 
6332 #ifdef CONFIG_ACPI
6333 bool pci_pr3_present(struct pci_dev *pdev)
6334 {
6335 	struct acpi_device *adev;
6336 
6337 	if (acpi_disabled)
6338 		return false;
6339 
6340 	adev = ACPI_COMPANION(&pdev->dev);
6341 	if (!adev)
6342 		return false;
6343 
6344 	return adev->power.flags.power_resources &&
6345 		acpi_has_method(adev->handle, "_PR3");
6346 }
6347 EXPORT_SYMBOL_GPL(pci_pr3_present);
6348 #endif
6349 
6350 /**
6351  * pci_add_dma_alias - Add a DMA devfn alias for a device
6352  * @dev: the PCI device for which alias is added
6353  * @devfn_from: alias slot and function
6354  * @nr_devfns: number of subsequent devfns to alias
6355  *
6356  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6357  * which is used to program permissible bus-devfn source addresses for DMA
6358  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6359  * and are useful for devices generating DMA requests beyond or different
6360  * from their logical bus-devfn.  Examples include device quirks where the
6361  * device simply uses the wrong devfn, as well as non-transparent bridges
6362  * where the alias may be a proxy for devices in another domain.
6363  *
6364  * IOMMU group creation is performed during device discovery or addition,
6365  * prior to any potential DMA mapping and therefore prior to driver probing
6366  * (especially for userspace assigned devices where IOMMU group definition
6367  * cannot be left as a userspace activity).  DMA aliases should therefore
6368  * be configured via quirks, such as the PCI fixup header quirk.
6369  */
6370 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6371 		       unsigned int nr_devfns)
6372 {
6373 	int devfn_to;
6374 
6375 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6376 	devfn_to = devfn_from + nr_devfns - 1;
6377 
6378 	if (!dev->dma_alias_mask)
6379 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6380 	if (!dev->dma_alias_mask) {
6381 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6382 		return;
6383 	}
6384 
6385 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6386 
6387 	if (nr_devfns == 1)
6388 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6389 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6390 	else if (nr_devfns > 1)
6391 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6392 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6393 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6394 }
6395 
6396 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6397 {
6398 	return (dev1->dma_alias_mask &&
6399 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6400 	       (dev2->dma_alias_mask &&
6401 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6402 	       pci_real_dma_dev(dev1) == dev2 ||
6403 	       pci_real_dma_dev(dev2) == dev1;
6404 }
6405 
6406 bool pci_device_is_present(struct pci_dev *pdev)
6407 {
6408 	u32 v;
6409 
6410 	if (pci_dev_is_disconnected(pdev))
6411 		return false;
6412 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6413 }
6414 EXPORT_SYMBOL_GPL(pci_device_is_present);
6415 
6416 void pci_ignore_hotplug(struct pci_dev *dev)
6417 {
6418 	struct pci_dev *bridge = dev->bus->self;
6419 
6420 	dev->ignore_hotplug = 1;
6421 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6422 	if (bridge)
6423 		bridge->ignore_hotplug = 1;
6424 }
6425 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6426 
6427 /**
6428  * pci_real_dma_dev - Get PCI DMA device for PCI device
6429  * @dev: the PCI device that may have a PCI DMA alias
6430  *
6431  * Permits the platform to provide architecture-specific functionality to
6432  * devices needing to alias DMA to another PCI device on another PCI bus. If
6433  * the PCI device is on the same bus, it is recommended to use
6434  * pci_add_dma_alias(). This is the default implementation. Architecture
6435  * implementations can override this.
6436  */
6437 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6438 {
6439 	return dev;
6440 }
6441 
6442 resource_size_t __weak pcibios_default_alignment(void)
6443 {
6444 	return 0;
6445 }
6446 
6447 /*
6448  * Arches that don't want to expose struct resource to userland as-is in
6449  * sysfs and /proc can implement their own pci_resource_to_user().
6450  */
6451 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6452 				 const struct resource *rsrc,
6453 				 resource_size_t *start, resource_size_t *end)
6454 {
6455 	*start = rsrc->start;
6456 	*end = rsrc->end;
6457 }
6458 
6459 static char *resource_alignment_param;
6460 static DEFINE_SPINLOCK(resource_alignment_lock);
6461 
6462 /**
6463  * pci_specified_resource_alignment - get resource alignment specified by user.
6464  * @dev: the PCI device to get
6465  * @resize: whether or not to change resources' size when reassigning alignment
6466  *
6467  * RETURNS: Resource alignment if it is specified.
6468  *          Zero if it is not specified.
6469  */
6470 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6471 							bool *resize)
6472 {
6473 	int align_order, count;
6474 	resource_size_t align = pcibios_default_alignment();
6475 	const char *p;
6476 	int ret;
6477 
6478 	spin_lock(&resource_alignment_lock);
6479 	p = resource_alignment_param;
6480 	if (!p || !*p)
6481 		goto out;
6482 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6483 		align = 0;
6484 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6485 		goto out;
6486 	}
6487 
6488 	while (*p) {
6489 		count = 0;
6490 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6491 		    p[count] == '@') {
6492 			p += count + 1;
6493 			if (align_order > 63) {
6494 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6495 				       align_order);
6496 				align_order = PAGE_SHIFT;
6497 			}
6498 		} else {
6499 			align_order = PAGE_SHIFT;
6500 		}
6501 
6502 		ret = pci_dev_str_match(dev, p, &p);
6503 		if (ret == 1) {
6504 			*resize = true;
6505 			align = 1ULL << align_order;
6506 			break;
6507 		} else if (ret < 0) {
6508 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6509 			       p);
6510 			break;
6511 		}
6512 
6513 		if (*p != ';' && *p != ',') {
6514 			/* End of param or invalid format */
6515 			break;
6516 		}
6517 		p++;
6518 	}
6519 out:
6520 	spin_unlock(&resource_alignment_lock);
6521 	return align;
6522 }
6523 
6524 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6525 					   resource_size_t align, bool resize)
6526 {
6527 	struct resource *r = &dev->resource[bar];
6528 	resource_size_t size;
6529 
6530 	if (!(r->flags & IORESOURCE_MEM))
6531 		return;
6532 
6533 	if (r->flags & IORESOURCE_PCI_FIXED) {
6534 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6535 			 bar, r, (unsigned long long)align);
6536 		return;
6537 	}
6538 
6539 	size = resource_size(r);
6540 	if (size >= align)
6541 		return;
6542 
6543 	/*
6544 	 * Increase the alignment of the resource.  There are two ways we
6545 	 * can do this:
6546 	 *
6547 	 * 1) Increase the size of the resource.  BARs are aligned on their
6548 	 *    size, so when we reallocate space for this resource, we'll
6549 	 *    allocate it with the larger alignment.  This also prevents
6550 	 *    assignment of any other BARs inside the alignment region, so
6551 	 *    if we're requesting page alignment, this means no other BARs
6552 	 *    will share the page.
6553 	 *
6554 	 *    The disadvantage is that this makes the resource larger than
6555 	 *    the hardware BAR, which may break drivers that compute things
6556 	 *    based on the resource size, e.g., to find registers at a
6557 	 *    fixed offset before the end of the BAR.
6558 	 *
6559 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6560 	 *    set r->start to the desired alignment.  By itself this
6561 	 *    doesn't prevent other BARs being put inside the alignment
6562 	 *    region, but if we realign *every* resource of every device in
6563 	 *    the system, none of them will share an alignment region.
6564 	 *
6565 	 * When the user has requested alignment for only some devices via
6566 	 * the "pci=resource_alignment" argument, "resize" is true and we
6567 	 * use the first method.  Otherwise we assume we're aligning all
6568 	 * devices and we use the second.
6569 	 */
6570 
6571 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6572 		 bar, r, (unsigned long long)align);
6573 
6574 	if (resize) {
6575 		r->start = 0;
6576 		r->end = align - 1;
6577 	} else {
6578 		r->flags &= ~IORESOURCE_SIZEALIGN;
6579 		r->flags |= IORESOURCE_STARTALIGN;
6580 		r->start = align;
6581 		r->end = r->start + size - 1;
6582 	}
6583 	r->flags |= IORESOURCE_UNSET;
6584 }
6585 
6586 /*
6587  * This function disables memory decoding and releases memory resources
6588  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6589  * It also rounds up size to specified alignment.
6590  * Later on, the kernel will assign page-aligned memory resource back
6591  * to the device.
6592  */
6593 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6594 {
6595 	int i;
6596 	struct resource *r;
6597 	resource_size_t align;
6598 	u16 command;
6599 	bool resize = false;
6600 
6601 	/*
6602 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6603 	 * 3.4.1.11.  Their resources are allocated from the space
6604 	 * described by the VF BARx register in the PF's SR-IOV capability.
6605 	 * We can't influence their alignment here.
6606 	 */
6607 	if (dev->is_virtfn)
6608 		return;
6609 
6610 	/* check if specified PCI is target device to reassign */
6611 	align = pci_specified_resource_alignment(dev, &resize);
6612 	if (!align)
6613 		return;
6614 
6615 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6616 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6617 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6618 		return;
6619 	}
6620 
6621 	pci_read_config_word(dev, PCI_COMMAND, &command);
6622 	command &= ~PCI_COMMAND_MEMORY;
6623 	pci_write_config_word(dev, PCI_COMMAND, command);
6624 
6625 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6626 		pci_request_resource_alignment(dev, i, align, resize);
6627 
6628 	/*
6629 	 * Need to disable bridge's resource window,
6630 	 * to enable the kernel to reassign new resource
6631 	 * window later on.
6632 	 */
6633 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6634 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6635 			r = &dev->resource[i];
6636 			if (!(r->flags & IORESOURCE_MEM))
6637 				continue;
6638 			r->flags |= IORESOURCE_UNSET;
6639 			r->end = resource_size(r) - 1;
6640 			r->start = 0;
6641 		}
6642 		pci_disable_bridge_window(dev);
6643 	}
6644 }
6645 
6646 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6647 {
6648 	size_t count = 0;
6649 
6650 	spin_lock(&resource_alignment_lock);
6651 	if (resource_alignment_param)
6652 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6653 	spin_unlock(&resource_alignment_lock);
6654 
6655 	return count;
6656 }
6657 
6658 static ssize_t resource_alignment_store(struct bus_type *bus,
6659 					const char *buf, size_t count)
6660 {
6661 	char *param, *old, *end;
6662 
6663 	if (count >= (PAGE_SIZE - 1))
6664 		return -EINVAL;
6665 
6666 	param = kstrndup(buf, count, GFP_KERNEL);
6667 	if (!param)
6668 		return -ENOMEM;
6669 
6670 	end = strchr(param, '\n');
6671 	if (end)
6672 		*end = '\0';
6673 
6674 	spin_lock(&resource_alignment_lock);
6675 	old = resource_alignment_param;
6676 	if (strlen(param)) {
6677 		resource_alignment_param = param;
6678 	} else {
6679 		kfree(param);
6680 		resource_alignment_param = NULL;
6681 	}
6682 	spin_unlock(&resource_alignment_lock);
6683 
6684 	kfree(old);
6685 
6686 	return count;
6687 }
6688 
6689 static BUS_ATTR_RW(resource_alignment);
6690 
6691 static int __init pci_resource_alignment_sysfs_init(void)
6692 {
6693 	return bus_create_file(&pci_bus_type,
6694 					&bus_attr_resource_alignment);
6695 }
6696 late_initcall(pci_resource_alignment_sysfs_init);
6697 
6698 static void pci_no_domains(void)
6699 {
6700 #ifdef CONFIG_PCI_DOMAINS
6701 	pci_domains_supported = 0;
6702 #endif
6703 }
6704 
6705 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6706 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6707 
6708 static int pci_get_new_domain_nr(void)
6709 {
6710 	return atomic_inc_return(&__domain_nr);
6711 }
6712 
6713 static int of_pci_bus_find_domain_nr(struct device *parent)
6714 {
6715 	static int use_dt_domains = -1;
6716 	int domain = -1;
6717 
6718 	if (parent)
6719 		domain = of_get_pci_domain_nr(parent->of_node);
6720 
6721 	/*
6722 	 * Check DT domain and use_dt_domains values.
6723 	 *
6724 	 * If DT domain property is valid (domain >= 0) and
6725 	 * use_dt_domains != 0, the DT assignment is valid since this means
6726 	 * we have not previously allocated a domain number by using
6727 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6728 	 * 1, to indicate that we have just assigned a domain number from
6729 	 * DT.
6730 	 *
6731 	 * If DT domain property value is not valid (ie domain < 0), and we
6732 	 * have not previously assigned a domain number from DT
6733 	 * (use_dt_domains != 1) we should assign a domain number by
6734 	 * using the:
6735 	 *
6736 	 * pci_get_new_domain_nr()
6737 	 *
6738 	 * API and update the use_dt_domains value to keep track of method we
6739 	 * are using to assign domain numbers (use_dt_domains = 0).
6740 	 *
6741 	 * All other combinations imply we have a platform that is trying
6742 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6743 	 * which is a recipe for domain mishandling and it is prevented by
6744 	 * invalidating the domain value (domain = -1) and printing a
6745 	 * corresponding error.
6746 	 */
6747 	if (domain >= 0 && use_dt_domains) {
6748 		use_dt_domains = 1;
6749 	} else if (domain < 0 && use_dt_domains != 1) {
6750 		use_dt_domains = 0;
6751 		domain = pci_get_new_domain_nr();
6752 	} else {
6753 		if (parent)
6754 			pr_err("Node %pOF has ", parent->of_node);
6755 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6756 		domain = -1;
6757 	}
6758 
6759 	return domain;
6760 }
6761 
6762 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6763 {
6764 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6765 			       acpi_pci_bus_find_domain_nr(bus);
6766 }
6767 #endif
6768 
6769 /**
6770  * pci_ext_cfg_avail - can we access extended PCI config space?
6771  *
6772  * Returns 1 if we can access PCI extended config space (offsets
6773  * greater than 0xff). This is the default implementation. Architecture
6774  * implementations can override this.
6775  */
6776 int __weak pci_ext_cfg_avail(void)
6777 {
6778 	return 1;
6779 }
6780 
6781 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6782 {
6783 }
6784 EXPORT_SYMBOL(pci_fixup_cardbus);
6785 
6786 static int __init pci_setup(char *str)
6787 {
6788 	while (str) {
6789 		char *k = strchr(str, ',');
6790 		if (k)
6791 			*k++ = 0;
6792 		if (*str && (str = pcibios_setup(str)) && *str) {
6793 			if (!strcmp(str, "nomsi")) {
6794 				pci_no_msi();
6795 			} else if (!strncmp(str, "noats", 5)) {
6796 				pr_info("PCIe: ATS is disabled\n");
6797 				pcie_ats_disabled = true;
6798 			} else if (!strcmp(str, "noaer")) {
6799 				pci_no_aer();
6800 			} else if (!strcmp(str, "earlydump")) {
6801 				pci_early_dump = true;
6802 			} else if (!strncmp(str, "realloc=", 8)) {
6803 				pci_realloc_get_opt(str + 8);
6804 			} else if (!strncmp(str, "realloc", 7)) {
6805 				pci_realloc_get_opt("on");
6806 			} else if (!strcmp(str, "nodomains")) {
6807 				pci_no_domains();
6808 			} else if (!strncmp(str, "noari", 5)) {
6809 				pcie_ari_disabled = true;
6810 			} else if (!strncmp(str, "cbiosize=", 9)) {
6811 				pci_cardbus_io_size = memparse(str + 9, &str);
6812 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6813 				pci_cardbus_mem_size = memparse(str + 10, &str);
6814 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6815 				resource_alignment_param = str + 19;
6816 			} else if (!strncmp(str, "ecrc=", 5)) {
6817 				pcie_ecrc_get_policy(str + 5);
6818 			} else if (!strncmp(str, "hpiosize=", 9)) {
6819 				pci_hotplug_io_size = memparse(str + 9, &str);
6820 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6821 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6822 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6823 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6824 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6825 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6826 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6827 			} else if (!strncmp(str, "hpbussize=", 10)) {
6828 				pci_hotplug_bus_size =
6829 					simple_strtoul(str + 10, &str, 0);
6830 				if (pci_hotplug_bus_size > 0xff)
6831 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6832 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6833 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6834 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6835 				pcie_bus_config = PCIE_BUS_SAFE;
6836 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6837 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6838 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6839 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6840 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6841 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6842 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6843 				disable_acs_redir_param = str + 18;
6844 			} else {
6845 				pr_err("PCI: Unknown option `%s'\n", str);
6846 			}
6847 		}
6848 		str = k;
6849 	}
6850 	return 0;
6851 }
6852 early_param("pci", pci_setup);
6853 
6854 /*
6855  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6856  * in pci_setup(), above, to point to data in the __initdata section which
6857  * will be freed after the init sequence is complete. We can't allocate memory
6858  * in pci_setup() because some architectures do not have any memory allocation
6859  * service available during an early_param() call. So we allocate memory and
6860  * copy the variable here before the init section is freed.
6861  *
6862  */
6863 static int __init pci_realloc_setup_params(void)
6864 {
6865 	resource_alignment_param = kstrdup(resource_alignment_param,
6866 					   GFP_KERNEL);
6867 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6868 
6869 	return 0;
6870 }
6871 pure_initcall(pci_realloc_setup_params);
6872