1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pci-ats.h> 33 #include <asm/setup.h> 34 #include <asm/dma.h> 35 #include <linux/aer.h> 36 #include "pci.h" 37 38 DEFINE_MUTEX(pci_slot_mutex); 39 40 const char *pci_power_names[] = { 41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 42 }; 43 EXPORT_SYMBOL_GPL(pci_power_names); 44 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 static void pci_dev_d3_sleep(struct pci_dev *dev) 67 { 68 unsigned int delay = dev->d3_delay; 69 70 if (delay < pci_pm_d3_delay) 71 delay = pci_pm_d3_delay; 72 73 if (delay) 74 msleep(delay); 75 } 76 77 #ifdef CONFIG_PCI_DOMAINS 78 int pci_domains_supported = 1; 79 #endif 80 81 #define DEFAULT_CARDBUS_IO_SIZE (256) 82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 86 87 #define DEFAULT_HOTPLUG_IO_SIZE (256) 88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 92 93 #define DEFAULT_HOTPLUG_BUS_SIZE 1 94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 95 96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 97 98 /* 99 * The default CLS is used if arch didn't set CLS explicitly and not 100 * all pci devices agree on the same value. Arch can override either 101 * the dfl or actual value as it sees fit. Don't forget this is 102 * measured in 32-bit words, not bytes. 103 */ 104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 105 u8 pci_cache_line_size; 106 107 /* 108 * If we set up a device for bus mastering, we need to check the latency 109 * timer as certain BIOSes forget to set it properly. 110 */ 111 unsigned int pcibios_max_latency = 255; 112 113 /* If set, the PCIe ARI capability will not be used. */ 114 static bool pcie_ari_disabled; 115 116 /* If set, the PCIe ATS capability will not be used. */ 117 static bool pcie_ats_disabled; 118 119 /* If set, the PCI config space of each device is printed during boot. */ 120 bool pci_early_dump; 121 122 bool pci_ats_disabled(void) 123 { 124 return pcie_ats_disabled; 125 } 126 127 /* Disable bridge_d3 for all PCIe ports */ 128 static bool pci_bridge_d3_disable; 129 /* Force bridge_d3 for all PCIe ports */ 130 static bool pci_bridge_d3_force; 131 132 static int __init pcie_port_pm_setup(char *str) 133 { 134 if (!strcmp(str, "off")) 135 pci_bridge_d3_disable = true; 136 else if (!strcmp(str, "force")) 137 pci_bridge_d3_force = true; 138 return 1; 139 } 140 __setup("pcie_port_pm=", pcie_port_pm_setup); 141 142 /* Time to wait after a reset for device to become responsive */ 143 #define PCIE_RESET_READY_POLL_MS 60000 144 145 /** 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 147 * @bus: pointer to PCI bus structure to search 148 * 149 * Given a PCI bus, returns the highest PCI bus number present in the set 150 * including the given PCI bus and its list of child PCI buses. 151 */ 152 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 153 { 154 struct pci_bus *tmp; 155 unsigned char max, n; 156 157 max = bus->busn_res.end; 158 list_for_each_entry(tmp, &bus->children, node) { 159 n = pci_bus_max_busnr(tmp); 160 if (n > max) 161 max = n; 162 } 163 return max; 164 } 165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 166 167 #ifdef CONFIG_HAS_IOMEM 168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 169 { 170 struct resource *res = &pdev->resource[bar]; 171 172 /* 173 * Make sure the BAR is actually a memory resource, not an IO resource 174 */ 175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 177 return NULL; 178 } 179 return ioremap_nocache(res->start, resource_size(res)); 180 } 181 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 182 183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 184 { 185 /* 186 * Make sure the BAR is actually a memory resource, not an IO resource 187 */ 188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 189 WARN_ON(1); 190 return NULL; 191 } 192 return ioremap_wc(pci_resource_start(pdev, bar), 193 pci_resource_len(pdev, bar)); 194 } 195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 196 #endif 197 198 /** 199 * pci_dev_str_match_path - test if a path string matches a device 200 * @dev: the PCI device to test 201 * @path: string to match the device against 202 * @endptr: pointer to the string after the match 203 * 204 * Test if a string (typically from a kernel parameter) formatted as a 205 * path of device/function addresses matches a PCI device. The string must 206 * be of the form: 207 * 208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 209 * 210 * A path for a device can be obtained using 'lspci -t'. Using a path 211 * is more robust against bus renumbering than using only a single bus, 212 * device and function address. 213 * 214 * Returns 1 if the string matches the device, 0 if it does not and 215 * a negative error code if it fails to parse the string. 216 */ 217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 218 const char **endptr) 219 { 220 int ret; 221 int seg, bus, slot, func; 222 char *wpath, *p; 223 char end; 224 225 *endptr = strchrnul(path, ';'); 226 227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 228 if (!wpath) 229 return -ENOMEM; 230 231 while (1) { 232 p = strrchr(wpath, '/'); 233 if (!p) 234 break; 235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 236 if (ret != 2) { 237 ret = -EINVAL; 238 goto free_and_exit; 239 } 240 241 if (dev->devfn != PCI_DEVFN(slot, func)) { 242 ret = 0; 243 goto free_and_exit; 244 } 245 246 /* 247 * Note: we don't need to get a reference to the upstream 248 * bridge because we hold a reference to the top level 249 * device which should hold a reference to the bridge, 250 * and so on. 251 */ 252 dev = pci_upstream_bridge(dev); 253 if (!dev) { 254 ret = 0; 255 goto free_and_exit; 256 } 257 258 *p = 0; 259 } 260 261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 262 &func, &end); 263 if (ret != 4) { 264 seg = 0; 265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 266 if (ret != 3) { 267 ret = -EINVAL; 268 goto free_and_exit; 269 } 270 } 271 272 ret = (seg == pci_domain_nr(dev->bus) && 273 bus == dev->bus->number && 274 dev->devfn == PCI_DEVFN(slot, func)); 275 276 free_and_exit: 277 kfree(wpath); 278 return ret; 279 } 280 281 /** 282 * pci_dev_str_match - test if a string matches a device 283 * @dev: the PCI device to test 284 * @p: string to match the device against 285 * @endptr: pointer to the string after the match 286 * 287 * Test if a string (typically from a kernel parameter) matches a specified 288 * PCI device. The string may be of one of the following formats: 289 * 290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 292 * 293 * The first format specifies a PCI bus/device/function address which 294 * may change if new hardware is inserted, if motherboard firmware changes, 295 * or due to changes caused in kernel parameters. If the domain is 296 * left unspecified, it is taken to be 0. In order to be robust against 297 * bus renumbering issues, a path of PCI device/function numbers may be used 298 * to address the specific device. The path for a device can be determined 299 * through the use of 'lspci -t'. 300 * 301 * The second format matches devices using IDs in the configuration 302 * space which may match multiple devices in the system. A value of 0 303 * for any field will match all devices. (Note: this differs from 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 305 * legacy reasons and convenience so users don't have to specify 306 * FFFFFFFFs on the command line.) 307 * 308 * Returns 1 if the string matches the device, 0 if it does not and 309 * a negative error code if the string cannot be parsed. 310 */ 311 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 312 const char **endptr) 313 { 314 int ret; 315 int count; 316 unsigned short vendor, device, subsystem_vendor, subsystem_device; 317 318 if (strncmp(p, "pci:", 4) == 0) { 319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 320 p += 4; 321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 322 &subsystem_vendor, &subsystem_device, &count); 323 if (ret != 4) { 324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 325 if (ret != 2) 326 return -EINVAL; 327 328 subsystem_vendor = 0; 329 subsystem_device = 0; 330 } 331 332 p += count; 333 334 if ((!vendor || vendor == dev->vendor) && 335 (!device || device == dev->device) && 336 (!subsystem_vendor || 337 subsystem_vendor == dev->subsystem_vendor) && 338 (!subsystem_device || 339 subsystem_device == dev->subsystem_device)) 340 goto found; 341 } else { 342 /* 343 * PCI Bus, Device, Function IDs are specified 344 * (optionally, may include a path of devfns following it) 345 */ 346 ret = pci_dev_str_match_path(dev, p, &p); 347 if (ret < 0) 348 return ret; 349 else if (ret) 350 goto found; 351 } 352 353 *endptr = p; 354 return 0; 355 356 found: 357 *endptr = p; 358 return 1; 359 } 360 361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 362 u8 pos, int cap, int *ttl) 363 { 364 u8 id; 365 u16 ent; 366 367 pci_bus_read_config_byte(bus, devfn, pos, &pos); 368 369 while ((*ttl)--) { 370 if (pos < 0x40) 371 break; 372 pos &= ~3; 373 pci_bus_read_config_word(bus, devfn, pos, &ent); 374 375 id = ent & 0xff; 376 if (id == 0xff) 377 break; 378 if (id == cap) 379 return pos; 380 pos = (ent >> 8); 381 } 382 return 0; 383 } 384 385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 386 u8 pos, int cap) 387 { 388 int ttl = PCI_FIND_CAP_TTL; 389 390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 391 } 392 393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 394 { 395 return __pci_find_next_cap(dev->bus, dev->devfn, 396 pos + PCI_CAP_LIST_NEXT, cap); 397 } 398 EXPORT_SYMBOL_GPL(pci_find_next_capability); 399 400 static int __pci_bus_find_cap_start(struct pci_bus *bus, 401 unsigned int devfn, u8 hdr_type) 402 { 403 u16 status; 404 405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 406 if (!(status & PCI_STATUS_CAP_LIST)) 407 return 0; 408 409 switch (hdr_type) { 410 case PCI_HEADER_TYPE_NORMAL: 411 case PCI_HEADER_TYPE_BRIDGE: 412 return PCI_CAPABILITY_LIST; 413 case PCI_HEADER_TYPE_CARDBUS: 414 return PCI_CB_CAPABILITY_LIST; 415 } 416 417 return 0; 418 } 419 420 /** 421 * pci_find_capability - query for devices' capabilities 422 * @dev: PCI device to query 423 * @cap: capability code 424 * 425 * Tell if a device supports a given PCI capability. 426 * Returns the address of the requested capability structure within the 427 * device's PCI configuration space or 0 in case the device does not 428 * support it. Possible values for @cap include: 429 * 430 * %PCI_CAP_ID_PM Power Management 431 * %PCI_CAP_ID_AGP Accelerated Graphics Port 432 * %PCI_CAP_ID_VPD Vital Product Data 433 * %PCI_CAP_ID_SLOTID Slot Identification 434 * %PCI_CAP_ID_MSI Message Signalled Interrupts 435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 436 * %PCI_CAP_ID_PCIX PCI-X 437 * %PCI_CAP_ID_EXP PCI Express 438 */ 439 int pci_find_capability(struct pci_dev *dev, int cap) 440 { 441 int pos; 442 443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 444 if (pos) 445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 446 447 return pos; 448 } 449 EXPORT_SYMBOL(pci_find_capability); 450 451 /** 452 * pci_bus_find_capability - query for devices' capabilities 453 * @bus: the PCI bus to query 454 * @devfn: PCI device to query 455 * @cap: capability code 456 * 457 * Like pci_find_capability() but works for PCI devices that do not have a 458 * pci_dev structure set up yet. 459 * 460 * Returns the address of the requested capability structure within the 461 * device's PCI configuration space or 0 in case the device does not 462 * support it. 463 */ 464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 465 { 466 int pos; 467 u8 hdr_type; 468 469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 470 471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 472 if (pos) 473 pos = __pci_find_next_cap(bus, devfn, pos, cap); 474 475 return pos; 476 } 477 EXPORT_SYMBOL(pci_bus_find_capability); 478 479 /** 480 * pci_find_next_ext_capability - Find an extended capability 481 * @dev: PCI device to query 482 * @start: address at which to start looking (0 to start at beginning of list) 483 * @cap: capability code 484 * 485 * Returns the address of the next matching extended capability structure 486 * within the device's PCI configuration space or 0 if the device does 487 * not support it. Some capabilities can occur several times, e.g., the 488 * vendor-specific capability, and this provides a way to find them all. 489 */ 490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 491 { 492 u32 header; 493 int ttl; 494 int pos = PCI_CFG_SPACE_SIZE; 495 496 /* minimum 8 bytes per capability */ 497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 498 499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 500 return 0; 501 502 if (start) 503 pos = start; 504 505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 506 return 0; 507 508 /* 509 * If we have no capabilities, this is indicated by cap ID, 510 * cap version and next pointer all being 0. 511 */ 512 if (header == 0) 513 return 0; 514 515 while (ttl-- > 0) { 516 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 517 return pos; 518 519 pos = PCI_EXT_CAP_NEXT(header); 520 if (pos < PCI_CFG_SPACE_SIZE) 521 break; 522 523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 524 break; 525 } 526 527 return 0; 528 } 529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 530 531 /** 532 * pci_find_ext_capability - Find an extended capability 533 * @dev: PCI device to query 534 * @cap: capability code 535 * 536 * Returns the address of the requested extended capability structure 537 * within the device's PCI configuration space or 0 if the device does 538 * not support it. Possible values for @cap include: 539 * 540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 541 * %PCI_EXT_CAP_ID_VC Virtual Channel 542 * %PCI_EXT_CAP_ID_DSN Device Serial Number 543 * %PCI_EXT_CAP_ID_PWR Power Budgeting 544 */ 545 int pci_find_ext_capability(struct pci_dev *dev, int cap) 546 { 547 return pci_find_next_ext_capability(dev, 0, cap); 548 } 549 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 550 551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 552 { 553 int rc, ttl = PCI_FIND_CAP_TTL; 554 u8 cap, mask; 555 556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 557 mask = HT_3BIT_CAP_MASK; 558 else 559 mask = HT_5BIT_CAP_MASK; 560 561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 562 PCI_CAP_ID_HT, &ttl); 563 while (pos) { 564 rc = pci_read_config_byte(dev, pos + 3, &cap); 565 if (rc != PCIBIOS_SUCCESSFUL) 566 return 0; 567 568 if ((cap & mask) == ht_cap) 569 return pos; 570 571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 572 pos + PCI_CAP_LIST_NEXT, 573 PCI_CAP_ID_HT, &ttl); 574 } 575 576 return 0; 577 } 578 /** 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 580 * @dev: PCI device to query 581 * @pos: Position from which to continue searching 582 * @ht_cap: Hypertransport capability code 583 * 584 * To be used in conjunction with pci_find_ht_capability() to search for 585 * all capabilities matching @ht_cap. @pos should always be a value returned 586 * from pci_find_ht_capability(). 587 * 588 * NB. To be 100% safe against broken PCI devices, the caller should take 589 * steps to avoid an infinite loop. 590 */ 591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 592 { 593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 596 597 /** 598 * pci_find_ht_capability - query a device's Hypertransport capabilities 599 * @dev: PCI device to query 600 * @ht_cap: Hypertransport capability code 601 * 602 * Tell if a device supports a given Hypertransport capability. 603 * Returns an address within the device's PCI configuration space 604 * or 0 in case the device does not support the request capability. 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 606 * which has a Hypertransport capability matching @ht_cap. 607 */ 608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 609 { 610 int pos; 611 612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 613 if (pos) 614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 615 616 return pos; 617 } 618 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 619 620 /** 621 * pci_find_parent_resource - return resource region of parent bus of given 622 * region 623 * @dev: PCI device structure contains resources to be searched 624 * @res: child resource record for which parent is sought 625 * 626 * For given resource region of given device, return the resource region of 627 * parent bus the given region is contained in. 628 */ 629 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 630 struct resource *res) 631 { 632 const struct pci_bus *bus = dev->bus; 633 struct resource *r; 634 int i; 635 636 pci_bus_for_each_resource(bus, r, i) { 637 if (!r) 638 continue; 639 if (resource_contains(r, res)) { 640 641 /* 642 * If the window is prefetchable but the BAR is 643 * not, the allocator made a mistake. 644 */ 645 if (r->flags & IORESOURCE_PREFETCH && 646 !(res->flags & IORESOURCE_PREFETCH)) 647 return NULL; 648 649 /* 650 * If we're below a transparent bridge, there may 651 * be both a positively-decoded aperture and a 652 * subtractively-decoded region that contain the BAR. 653 * We want the positively-decoded one, so this depends 654 * on pci_bus_for_each_resource() giving us those 655 * first. 656 */ 657 return r; 658 } 659 } 660 return NULL; 661 } 662 EXPORT_SYMBOL(pci_find_parent_resource); 663 664 /** 665 * pci_find_resource - Return matching PCI device resource 666 * @dev: PCI device to query 667 * @res: Resource to look for 668 * 669 * Goes over standard PCI resources (BARs) and checks if the given resource 670 * is partially or fully contained in any of them. In that case the 671 * matching resource is returned, %NULL otherwise. 672 */ 673 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 674 { 675 int i; 676 677 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 678 struct resource *r = &dev->resource[i]; 679 680 if (r->start && resource_contains(r, res)) 681 return r; 682 } 683 684 return NULL; 685 } 686 EXPORT_SYMBOL(pci_find_resource); 687 688 /** 689 * pci_find_pcie_root_port - return PCIe Root Port 690 * @dev: PCI device to query 691 * 692 * Traverse up the parent chain and return the PCIe Root Port PCI Device 693 * for a given PCI Device. 694 */ 695 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 696 { 697 struct pci_dev *bridge, *highest_pcie_bridge = dev; 698 699 bridge = pci_upstream_bridge(dev); 700 while (bridge && pci_is_pcie(bridge)) { 701 highest_pcie_bridge = bridge; 702 bridge = pci_upstream_bridge(bridge); 703 } 704 705 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 706 return NULL; 707 708 return highest_pcie_bridge; 709 } 710 EXPORT_SYMBOL(pci_find_pcie_root_port); 711 712 /** 713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 714 * @dev: the PCI device to operate on 715 * @pos: config space offset of status word 716 * @mask: mask of bit(s) to care about in status word 717 * 718 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 719 */ 720 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 721 { 722 int i; 723 724 /* Wait for Transaction Pending bit clean */ 725 for (i = 0; i < 4; i++) { 726 u16 status; 727 if (i) 728 msleep((1 << (i - 1)) * 100); 729 730 pci_read_config_word(dev, pos, &status); 731 if (!(status & mask)) 732 return 1; 733 } 734 735 return 0; 736 } 737 738 /** 739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 740 * @dev: PCI device to have its BARs restored 741 * 742 * Restore the BAR values for a given device, so as to make it 743 * accessible by its driver. 744 */ 745 static void pci_restore_bars(struct pci_dev *dev) 746 { 747 int i; 748 749 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 750 pci_update_resource(dev, i); 751 } 752 753 static const struct pci_platform_pm_ops *pci_platform_pm; 754 755 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 756 { 757 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 758 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 759 return -EINVAL; 760 pci_platform_pm = ops; 761 return 0; 762 } 763 764 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 765 { 766 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 767 } 768 769 static inline int platform_pci_set_power_state(struct pci_dev *dev, 770 pci_power_t t) 771 { 772 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 773 } 774 775 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 776 { 777 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 778 } 779 780 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 781 { 782 return pci_platform_pm ? 783 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 784 } 785 786 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 787 { 788 return pci_platform_pm ? 789 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 790 } 791 792 static inline bool platform_pci_need_resume(struct pci_dev *dev) 793 { 794 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 795 } 796 797 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 798 { 799 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 800 } 801 802 /** 803 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 804 * given PCI device 805 * @dev: PCI device to handle. 806 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 807 * 808 * RETURN VALUE: 809 * -EINVAL if the requested state is invalid. 810 * -EIO if device does not support PCI PM or its PM capabilities register has a 811 * wrong version, or device doesn't support the requested state. 812 * 0 if device already is in the requested state. 813 * 0 if device's power state has been successfully changed. 814 */ 815 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 816 { 817 u16 pmcsr; 818 bool need_restore = false; 819 820 /* Check if we're already there */ 821 if (dev->current_state == state) 822 return 0; 823 824 if (!dev->pm_cap) 825 return -EIO; 826 827 if (state < PCI_D0 || state > PCI_D3hot) 828 return -EINVAL; 829 830 /* 831 * Validate current state: 832 * Can enter D0 from any state, but if we can only go deeper 833 * to sleep if we're already in a low power state 834 */ 835 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 836 && dev->current_state > state) { 837 pci_err(dev, "invalid power transition (from state %d to %d)\n", 838 dev->current_state, state); 839 return -EINVAL; 840 } 841 842 /* Check if this device supports the desired state */ 843 if ((state == PCI_D1 && !dev->d1_support) 844 || (state == PCI_D2 && !dev->d2_support)) 845 return -EIO; 846 847 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 848 849 /* 850 * If we're (effectively) in D3, force entire word to 0. 851 * This doesn't affect PME_Status, disables PME_En, and 852 * sets PowerState to 0. 853 */ 854 switch (dev->current_state) { 855 case PCI_D0: 856 case PCI_D1: 857 case PCI_D2: 858 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 859 pmcsr |= state; 860 break; 861 case PCI_D3hot: 862 case PCI_D3cold: 863 case PCI_UNKNOWN: /* Boot-up */ 864 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 865 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 866 need_restore = true; 867 /* Fall-through - force to D0 */ 868 default: 869 pmcsr = 0; 870 break; 871 } 872 873 /* Enter specified state */ 874 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 875 876 /* 877 * Mandatory power management transition delays; see PCI PM 1.1 878 * 5.6.1 table 18 879 */ 880 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 881 pci_dev_d3_sleep(dev); 882 else if (state == PCI_D2 || dev->current_state == PCI_D2) 883 udelay(PCI_PM_D2_DELAY); 884 885 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 886 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 887 if (dev->current_state != state && printk_ratelimit()) 888 pci_info(dev, "Refused to change power state, currently in D%d\n", 889 dev->current_state); 890 891 /* 892 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 893 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 894 * from D3hot to D0 _may_ perform an internal reset, thereby 895 * going to "D0 Uninitialized" rather than "D0 Initialized". 896 * For example, at least some versions of the 3c905B and the 897 * 3c556B exhibit this behaviour. 898 * 899 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 900 * devices in a D3hot state at boot. Consequently, we need to 901 * restore at least the BARs so that the device will be 902 * accessible to its driver. 903 */ 904 if (need_restore) 905 pci_restore_bars(dev); 906 907 if (dev->bus->self) 908 pcie_aspm_pm_state_change(dev->bus->self); 909 910 return 0; 911 } 912 913 /** 914 * pci_update_current_state - Read power state of given device and cache it 915 * @dev: PCI device to handle. 916 * @state: State to cache in case the device doesn't have the PM capability 917 * 918 * The power state is read from the PMCSR register, which however is 919 * inaccessible in D3cold. The platform firmware is therefore queried first 920 * to detect accessibility of the register. In case the platform firmware 921 * reports an incorrect state or the device isn't power manageable by the 922 * platform at all, we try to detect D3cold by testing accessibility of the 923 * vendor ID in config space. 924 */ 925 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 926 { 927 if (platform_pci_get_power_state(dev) == PCI_D3cold || 928 !pci_device_is_present(dev)) { 929 dev->current_state = PCI_D3cold; 930 } else if (dev->pm_cap) { 931 u16 pmcsr; 932 933 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 934 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 935 } else { 936 dev->current_state = state; 937 } 938 } 939 940 /** 941 * pci_power_up - Put the given device into D0 forcibly 942 * @dev: PCI device to power up 943 */ 944 void pci_power_up(struct pci_dev *dev) 945 { 946 if (platform_pci_power_manageable(dev)) 947 platform_pci_set_power_state(dev, PCI_D0); 948 949 pci_raw_set_power_state(dev, PCI_D0); 950 pci_update_current_state(dev, PCI_D0); 951 } 952 953 /** 954 * pci_platform_power_transition - Use platform to change device power state 955 * @dev: PCI device to handle. 956 * @state: State to put the device into. 957 */ 958 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 959 { 960 int error; 961 962 if (platform_pci_power_manageable(dev)) { 963 error = platform_pci_set_power_state(dev, state); 964 if (!error) 965 pci_update_current_state(dev, state); 966 } else 967 error = -ENODEV; 968 969 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 970 dev->current_state = PCI_D0; 971 972 return error; 973 } 974 975 /** 976 * pci_wakeup - Wake up a PCI device 977 * @pci_dev: Device to handle. 978 * @ign: ignored parameter 979 */ 980 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 981 { 982 pci_wakeup_event(pci_dev); 983 pm_request_resume(&pci_dev->dev); 984 return 0; 985 } 986 987 /** 988 * pci_wakeup_bus - Walk given bus and wake up devices on it 989 * @bus: Top bus of the subtree to walk. 990 */ 991 void pci_wakeup_bus(struct pci_bus *bus) 992 { 993 if (bus) 994 pci_walk_bus(bus, pci_wakeup, NULL); 995 } 996 997 /** 998 * __pci_start_power_transition - Start power transition of a PCI device 999 * @dev: PCI device to handle. 1000 * @state: State to put the device into. 1001 */ 1002 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 1003 { 1004 if (state == PCI_D0) { 1005 pci_platform_power_transition(dev, PCI_D0); 1006 /* 1007 * Mandatory power management transition delays, see 1008 * PCI Express Base Specification Revision 2.0 Section 1009 * 6.6.1: Conventional Reset. Do not delay for 1010 * devices powered on/off by corresponding bridge, 1011 * because have already delayed for the bridge. 1012 */ 1013 if (dev->runtime_d3cold) { 1014 if (dev->d3cold_delay && !dev->imm_ready) 1015 msleep(dev->d3cold_delay); 1016 /* 1017 * When powering on a bridge from D3cold, the 1018 * whole hierarchy may be powered on into 1019 * D0uninitialized state, resume them to give 1020 * them a chance to suspend again 1021 */ 1022 pci_wakeup_bus(dev->subordinate); 1023 } 1024 } 1025 } 1026 1027 /** 1028 * __pci_dev_set_current_state - Set current state of a PCI device 1029 * @dev: Device to handle 1030 * @data: pointer to state to be set 1031 */ 1032 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1033 { 1034 pci_power_t state = *(pci_power_t *)data; 1035 1036 dev->current_state = state; 1037 return 0; 1038 } 1039 1040 /** 1041 * pci_bus_set_current_state - Walk given bus and set current state of devices 1042 * @bus: Top bus of the subtree to walk. 1043 * @state: state to be set 1044 */ 1045 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1046 { 1047 if (bus) 1048 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1049 } 1050 1051 /** 1052 * __pci_complete_power_transition - Complete power transition of a PCI device 1053 * @dev: PCI device to handle. 1054 * @state: State to put the device into. 1055 * 1056 * This function should not be called directly by device drivers. 1057 */ 1058 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 1059 { 1060 int ret; 1061 1062 if (state <= PCI_D0) 1063 return -EINVAL; 1064 ret = pci_platform_power_transition(dev, state); 1065 /* Power off the bridge may power off the whole hierarchy */ 1066 if (!ret && state == PCI_D3cold) 1067 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1068 return ret; 1069 } 1070 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 1071 1072 /** 1073 * pci_set_power_state - Set the power state of a PCI device 1074 * @dev: PCI device to handle. 1075 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1076 * 1077 * Transition a device to a new power state, using the platform firmware and/or 1078 * the device's PCI PM registers. 1079 * 1080 * RETURN VALUE: 1081 * -EINVAL if the requested state is invalid. 1082 * -EIO if device does not support PCI PM or its PM capabilities register has a 1083 * wrong version, or device doesn't support the requested state. 1084 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1085 * 0 if device already is in the requested state. 1086 * 0 if the transition is to D3 but D3 is not supported. 1087 * 0 if device's power state has been successfully changed. 1088 */ 1089 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1090 { 1091 int error; 1092 1093 /* Bound the state we're entering */ 1094 if (state > PCI_D3cold) 1095 state = PCI_D3cold; 1096 else if (state < PCI_D0) 1097 state = PCI_D0; 1098 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1099 1100 /* 1101 * If the device or the parent bridge do not support PCI 1102 * PM, ignore the request if we're doing anything other 1103 * than putting it into D0 (which would only happen on 1104 * boot). 1105 */ 1106 return 0; 1107 1108 /* Check if we're already there */ 1109 if (dev->current_state == state) 1110 return 0; 1111 1112 __pci_start_power_transition(dev, state); 1113 1114 /* 1115 * This device is quirked not to be put into D3, so don't put it in 1116 * D3 1117 */ 1118 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1119 return 0; 1120 1121 /* 1122 * To put device in D3cold, we put device into D3hot in native 1123 * way, then put device into D3cold with platform ops 1124 */ 1125 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1126 PCI_D3hot : state); 1127 1128 if (!__pci_complete_power_transition(dev, state)) 1129 error = 0; 1130 1131 return error; 1132 } 1133 EXPORT_SYMBOL(pci_set_power_state); 1134 1135 /** 1136 * pci_choose_state - Choose the power state of a PCI device 1137 * @dev: PCI device to be suspended 1138 * @state: target sleep state for the whole system. This is the value 1139 * that is passed to suspend() function. 1140 * 1141 * Returns PCI power state suitable for given device and given system 1142 * message. 1143 */ 1144 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1145 { 1146 pci_power_t ret; 1147 1148 if (!dev->pm_cap) 1149 return PCI_D0; 1150 1151 ret = platform_pci_choose_state(dev); 1152 if (ret != PCI_POWER_ERROR) 1153 return ret; 1154 1155 switch (state.event) { 1156 case PM_EVENT_ON: 1157 return PCI_D0; 1158 case PM_EVENT_FREEZE: 1159 case PM_EVENT_PRETHAW: 1160 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1161 case PM_EVENT_SUSPEND: 1162 case PM_EVENT_HIBERNATE: 1163 return PCI_D3hot; 1164 default: 1165 pci_info(dev, "unrecognized suspend event %d\n", 1166 state.event); 1167 BUG(); 1168 } 1169 return PCI_D0; 1170 } 1171 EXPORT_SYMBOL(pci_choose_state); 1172 1173 #define PCI_EXP_SAVE_REGS 7 1174 1175 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1176 u16 cap, bool extended) 1177 { 1178 struct pci_cap_saved_state *tmp; 1179 1180 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1181 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1182 return tmp; 1183 } 1184 return NULL; 1185 } 1186 1187 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1188 { 1189 return _pci_find_saved_cap(dev, cap, false); 1190 } 1191 1192 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1193 { 1194 return _pci_find_saved_cap(dev, cap, true); 1195 } 1196 1197 static int pci_save_pcie_state(struct pci_dev *dev) 1198 { 1199 int i = 0; 1200 struct pci_cap_saved_state *save_state; 1201 u16 *cap; 1202 1203 if (!pci_is_pcie(dev)) 1204 return 0; 1205 1206 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1207 if (!save_state) { 1208 pci_err(dev, "buffer not found in %s\n", __func__); 1209 return -ENOMEM; 1210 } 1211 1212 cap = (u16 *)&save_state->cap.data[0]; 1213 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1214 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1215 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1216 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1217 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1218 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1219 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1220 1221 return 0; 1222 } 1223 1224 static void pci_restore_pcie_state(struct pci_dev *dev) 1225 { 1226 int i = 0; 1227 struct pci_cap_saved_state *save_state; 1228 u16 *cap; 1229 1230 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1231 if (!save_state) 1232 return; 1233 1234 cap = (u16 *)&save_state->cap.data[0]; 1235 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1236 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1237 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1238 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1239 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1240 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1241 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1242 } 1243 1244 static int pci_save_pcix_state(struct pci_dev *dev) 1245 { 1246 int pos; 1247 struct pci_cap_saved_state *save_state; 1248 1249 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1250 if (!pos) 1251 return 0; 1252 1253 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1254 if (!save_state) { 1255 pci_err(dev, "buffer not found in %s\n", __func__); 1256 return -ENOMEM; 1257 } 1258 1259 pci_read_config_word(dev, pos + PCI_X_CMD, 1260 (u16 *)save_state->cap.data); 1261 1262 return 0; 1263 } 1264 1265 static void pci_restore_pcix_state(struct pci_dev *dev) 1266 { 1267 int i = 0, pos; 1268 struct pci_cap_saved_state *save_state; 1269 u16 *cap; 1270 1271 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1272 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1273 if (!save_state || !pos) 1274 return; 1275 cap = (u16 *)&save_state->cap.data[0]; 1276 1277 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1278 } 1279 1280 static void pci_save_ltr_state(struct pci_dev *dev) 1281 { 1282 int ltr; 1283 struct pci_cap_saved_state *save_state; 1284 u16 *cap; 1285 1286 if (!pci_is_pcie(dev)) 1287 return; 1288 1289 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1290 if (!ltr) 1291 return; 1292 1293 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1294 if (!save_state) { 1295 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1296 return; 1297 } 1298 1299 cap = (u16 *)&save_state->cap.data[0]; 1300 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1301 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1302 } 1303 1304 static void pci_restore_ltr_state(struct pci_dev *dev) 1305 { 1306 struct pci_cap_saved_state *save_state; 1307 int ltr; 1308 u16 *cap; 1309 1310 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1311 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1312 if (!save_state || !ltr) 1313 return; 1314 1315 cap = (u16 *)&save_state->cap.data[0]; 1316 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1317 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1318 } 1319 1320 /** 1321 * pci_save_state - save the PCI configuration space of a device before 1322 * suspending 1323 * @dev: PCI device that we're dealing with 1324 */ 1325 int pci_save_state(struct pci_dev *dev) 1326 { 1327 int i; 1328 /* XXX: 100% dword access ok here? */ 1329 for (i = 0; i < 16; i++) 1330 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1331 dev->state_saved = true; 1332 1333 i = pci_save_pcie_state(dev); 1334 if (i != 0) 1335 return i; 1336 1337 i = pci_save_pcix_state(dev); 1338 if (i != 0) 1339 return i; 1340 1341 pci_save_ltr_state(dev); 1342 pci_save_dpc_state(dev); 1343 return pci_save_vc_state(dev); 1344 } 1345 EXPORT_SYMBOL(pci_save_state); 1346 1347 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1348 u32 saved_val, int retry, bool force) 1349 { 1350 u32 val; 1351 1352 pci_read_config_dword(pdev, offset, &val); 1353 if (!force && val == saved_val) 1354 return; 1355 1356 for (;;) { 1357 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1358 offset, val, saved_val); 1359 pci_write_config_dword(pdev, offset, saved_val); 1360 if (retry-- <= 0) 1361 return; 1362 1363 pci_read_config_dword(pdev, offset, &val); 1364 if (val == saved_val) 1365 return; 1366 1367 mdelay(1); 1368 } 1369 } 1370 1371 static void pci_restore_config_space_range(struct pci_dev *pdev, 1372 int start, int end, int retry, 1373 bool force) 1374 { 1375 int index; 1376 1377 for (index = end; index >= start; index--) 1378 pci_restore_config_dword(pdev, 4 * index, 1379 pdev->saved_config_space[index], 1380 retry, force); 1381 } 1382 1383 static void pci_restore_config_space(struct pci_dev *pdev) 1384 { 1385 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1386 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1387 /* Restore BARs before the command register. */ 1388 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1389 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1390 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1391 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1392 1393 /* 1394 * Force rewriting of prefetch registers to avoid S3 resume 1395 * issues on Intel PCI bridges that occur when these 1396 * registers are not explicitly written. 1397 */ 1398 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1399 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1400 } else { 1401 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1402 } 1403 } 1404 1405 static void pci_restore_rebar_state(struct pci_dev *pdev) 1406 { 1407 unsigned int pos, nbars, i; 1408 u32 ctrl; 1409 1410 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1411 if (!pos) 1412 return; 1413 1414 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1415 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1416 PCI_REBAR_CTRL_NBAR_SHIFT; 1417 1418 for (i = 0; i < nbars; i++, pos += 8) { 1419 struct resource *res; 1420 int bar_idx, size; 1421 1422 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1423 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1424 res = pdev->resource + bar_idx; 1425 size = order_base_2((resource_size(res) >> 20) | 1) - 1; 1426 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1427 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1428 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1429 } 1430 } 1431 1432 /** 1433 * pci_restore_state - Restore the saved state of a PCI device 1434 * @dev: PCI device that we're dealing with 1435 */ 1436 void pci_restore_state(struct pci_dev *dev) 1437 { 1438 if (!dev->state_saved) 1439 return; 1440 1441 /* 1442 * Restore max latencies (in the LTR capability) before enabling 1443 * LTR itself (in the PCIe capability). 1444 */ 1445 pci_restore_ltr_state(dev); 1446 1447 pci_restore_pcie_state(dev); 1448 pci_restore_pasid_state(dev); 1449 pci_restore_pri_state(dev); 1450 pci_restore_ats_state(dev); 1451 pci_restore_vc_state(dev); 1452 pci_restore_rebar_state(dev); 1453 pci_restore_dpc_state(dev); 1454 1455 pci_cleanup_aer_error_status_regs(dev); 1456 1457 pci_restore_config_space(dev); 1458 1459 pci_restore_pcix_state(dev); 1460 pci_restore_msi_state(dev); 1461 1462 /* Restore ACS and IOV configuration state */ 1463 pci_enable_acs(dev); 1464 pci_restore_iov_state(dev); 1465 1466 dev->state_saved = false; 1467 } 1468 EXPORT_SYMBOL(pci_restore_state); 1469 1470 struct pci_saved_state { 1471 u32 config_space[16]; 1472 struct pci_cap_saved_data cap[0]; 1473 }; 1474 1475 /** 1476 * pci_store_saved_state - Allocate and return an opaque struct containing 1477 * the device saved state. 1478 * @dev: PCI device that we're dealing with 1479 * 1480 * Return NULL if no state or error. 1481 */ 1482 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1483 { 1484 struct pci_saved_state *state; 1485 struct pci_cap_saved_state *tmp; 1486 struct pci_cap_saved_data *cap; 1487 size_t size; 1488 1489 if (!dev->state_saved) 1490 return NULL; 1491 1492 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1493 1494 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1495 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1496 1497 state = kzalloc(size, GFP_KERNEL); 1498 if (!state) 1499 return NULL; 1500 1501 memcpy(state->config_space, dev->saved_config_space, 1502 sizeof(state->config_space)); 1503 1504 cap = state->cap; 1505 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1506 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1507 memcpy(cap, &tmp->cap, len); 1508 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1509 } 1510 /* Empty cap_save terminates list */ 1511 1512 return state; 1513 } 1514 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1515 1516 /** 1517 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1518 * @dev: PCI device that we're dealing with 1519 * @state: Saved state returned from pci_store_saved_state() 1520 */ 1521 int pci_load_saved_state(struct pci_dev *dev, 1522 struct pci_saved_state *state) 1523 { 1524 struct pci_cap_saved_data *cap; 1525 1526 dev->state_saved = false; 1527 1528 if (!state) 1529 return 0; 1530 1531 memcpy(dev->saved_config_space, state->config_space, 1532 sizeof(state->config_space)); 1533 1534 cap = state->cap; 1535 while (cap->size) { 1536 struct pci_cap_saved_state *tmp; 1537 1538 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1539 if (!tmp || tmp->cap.size != cap->size) 1540 return -EINVAL; 1541 1542 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1543 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1544 sizeof(struct pci_cap_saved_data) + cap->size); 1545 } 1546 1547 dev->state_saved = true; 1548 return 0; 1549 } 1550 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1551 1552 /** 1553 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1554 * and free the memory allocated for it. 1555 * @dev: PCI device that we're dealing with 1556 * @state: Pointer to saved state returned from pci_store_saved_state() 1557 */ 1558 int pci_load_and_free_saved_state(struct pci_dev *dev, 1559 struct pci_saved_state **state) 1560 { 1561 int ret = pci_load_saved_state(dev, *state); 1562 kfree(*state); 1563 *state = NULL; 1564 return ret; 1565 } 1566 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1567 1568 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1569 { 1570 return pci_enable_resources(dev, bars); 1571 } 1572 1573 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1574 { 1575 int err; 1576 struct pci_dev *bridge; 1577 u16 cmd; 1578 u8 pin; 1579 1580 err = pci_set_power_state(dev, PCI_D0); 1581 if (err < 0 && err != -EIO) 1582 return err; 1583 1584 bridge = pci_upstream_bridge(dev); 1585 if (bridge) 1586 pcie_aspm_powersave_config_link(bridge); 1587 1588 err = pcibios_enable_device(dev, bars); 1589 if (err < 0) 1590 return err; 1591 pci_fixup_device(pci_fixup_enable, dev); 1592 1593 if (dev->msi_enabled || dev->msix_enabled) 1594 return 0; 1595 1596 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1597 if (pin) { 1598 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1599 if (cmd & PCI_COMMAND_INTX_DISABLE) 1600 pci_write_config_word(dev, PCI_COMMAND, 1601 cmd & ~PCI_COMMAND_INTX_DISABLE); 1602 } 1603 1604 return 0; 1605 } 1606 1607 /** 1608 * pci_reenable_device - Resume abandoned device 1609 * @dev: PCI device to be resumed 1610 * 1611 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1612 * to be called by normal code, write proper resume handler and use it instead. 1613 */ 1614 int pci_reenable_device(struct pci_dev *dev) 1615 { 1616 if (pci_is_enabled(dev)) 1617 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1618 return 0; 1619 } 1620 EXPORT_SYMBOL(pci_reenable_device); 1621 1622 static void pci_enable_bridge(struct pci_dev *dev) 1623 { 1624 struct pci_dev *bridge; 1625 int retval; 1626 1627 bridge = pci_upstream_bridge(dev); 1628 if (bridge) 1629 pci_enable_bridge(bridge); 1630 1631 if (pci_is_enabled(dev)) { 1632 if (!dev->is_busmaster) 1633 pci_set_master(dev); 1634 return; 1635 } 1636 1637 retval = pci_enable_device(dev); 1638 if (retval) 1639 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1640 retval); 1641 pci_set_master(dev); 1642 } 1643 1644 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1645 { 1646 struct pci_dev *bridge; 1647 int err; 1648 int i, bars = 0; 1649 1650 /* 1651 * Power state could be unknown at this point, either due to a fresh 1652 * boot or a device removal call. So get the current power state 1653 * so that things like MSI message writing will behave as expected 1654 * (e.g. if the device really is in D0 at enable time). 1655 */ 1656 if (dev->pm_cap) { 1657 u16 pmcsr; 1658 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1659 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1660 } 1661 1662 if (atomic_inc_return(&dev->enable_cnt) > 1) 1663 return 0; /* already enabled */ 1664 1665 bridge = pci_upstream_bridge(dev); 1666 if (bridge) 1667 pci_enable_bridge(bridge); 1668 1669 /* only skip sriov related */ 1670 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1671 if (dev->resource[i].flags & flags) 1672 bars |= (1 << i); 1673 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1674 if (dev->resource[i].flags & flags) 1675 bars |= (1 << i); 1676 1677 err = do_pci_enable_device(dev, bars); 1678 if (err < 0) 1679 atomic_dec(&dev->enable_cnt); 1680 return err; 1681 } 1682 1683 /** 1684 * pci_enable_device_io - Initialize a device for use with IO space 1685 * @dev: PCI device to be initialized 1686 * 1687 * Initialize device before it's used by a driver. Ask low-level code 1688 * to enable I/O resources. Wake up the device if it was suspended. 1689 * Beware, this function can fail. 1690 */ 1691 int pci_enable_device_io(struct pci_dev *dev) 1692 { 1693 return pci_enable_device_flags(dev, IORESOURCE_IO); 1694 } 1695 EXPORT_SYMBOL(pci_enable_device_io); 1696 1697 /** 1698 * pci_enable_device_mem - Initialize a device for use with Memory space 1699 * @dev: PCI device to be initialized 1700 * 1701 * Initialize device before it's used by a driver. Ask low-level code 1702 * to enable Memory resources. Wake up the device if it was suspended. 1703 * Beware, this function can fail. 1704 */ 1705 int pci_enable_device_mem(struct pci_dev *dev) 1706 { 1707 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1708 } 1709 EXPORT_SYMBOL(pci_enable_device_mem); 1710 1711 /** 1712 * pci_enable_device - Initialize device before it's used by a driver. 1713 * @dev: PCI device to be initialized 1714 * 1715 * Initialize device before it's used by a driver. Ask low-level code 1716 * to enable I/O and memory. Wake up the device if it was suspended. 1717 * Beware, this function can fail. 1718 * 1719 * Note we don't actually enable the device many times if we call 1720 * this function repeatedly (we just increment the count). 1721 */ 1722 int pci_enable_device(struct pci_dev *dev) 1723 { 1724 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1725 } 1726 EXPORT_SYMBOL(pci_enable_device); 1727 1728 /* 1729 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1730 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1731 * there's no need to track it separately. pci_devres is initialized 1732 * when a device is enabled using managed PCI device enable interface. 1733 */ 1734 struct pci_devres { 1735 unsigned int enabled:1; 1736 unsigned int pinned:1; 1737 unsigned int orig_intx:1; 1738 unsigned int restore_intx:1; 1739 unsigned int mwi:1; 1740 u32 region_mask; 1741 }; 1742 1743 static void pcim_release(struct device *gendev, void *res) 1744 { 1745 struct pci_dev *dev = to_pci_dev(gendev); 1746 struct pci_devres *this = res; 1747 int i; 1748 1749 if (dev->msi_enabled) 1750 pci_disable_msi(dev); 1751 if (dev->msix_enabled) 1752 pci_disable_msix(dev); 1753 1754 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1755 if (this->region_mask & (1 << i)) 1756 pci_release_region(dev, i); 1757 1758 if (this->mwi) 1759 pci_clear_mwi(dev); 1760 1761 if (this->restore_intx) 1762 pci_intx(dev, this->orig_intx); 1763 1764 if (this->enabled && !this->pinned) 1765 pci_disable_device(dev); 1766 } 1767 1768 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1769 { 1770 struct pci_devres *dr, *new_dr; 1771 1772 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1773 if (dr) 1774 return dr; 1775 1776 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1777 if (!new_dr) 1778 return NULL; 1779 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1780 } 1781 1782 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1783 { 1784 if (pci_is_managed(pdev)) 1785 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1786 return NULL; 1787 } 1788 1789 /** 1790 * pcim_enable_device - Managed pci_enable_device() 1791 * @pdev: PCI device to be initialized 1792 * 1793 * Managed pci_enable_device(). 1794 */ 1795 int pcim_enable_device(struct pci_dev *pdev) 1796 { 1797 struct pci_devres *dr; 1798 int rc; 1799 1800 dr = get_pci_dr(pdev); 1801 if (unlikely(!dr)) 1802 return -ENOMEM; 1803 if (dr->enabled) 1804 return 0; 1805 1806 rc = pci_enable_device(pdev); 1807 if (!rc) { 1808 pdev->is_managed = 1; 1809 dr->enabled = 1; 1810 } 1811 return rc; 1812 } 1813 EXPORT_SYMBOL(pcim_enable_device); 1814 1815 /** 1816 * pcim_pin_device - Pin managed PCI device 1817 * @pdev: PCI device to pin 1818 * 1819 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1820 * driver detach. @pdev must have been enabled with 1821 * pcim_enable_device(). 1822 */ 1823 void pcim_pin_device(struct pci_dev *pdev) 1824 { 1825 struct pci_devres *dr; 1826 1827 dr = find_pci_dr(pdev); 1828 WARN_ON(!dr || !dr->enabled); 1829 if (dr) 1830 dr->pinned = 1; 1831 } 1832 EXPORT_SYMBOL(pcim_pin_device); 1833 1834 /* 1835 * pcibios_add_device - provide arch specific hooks when adding device dev 1836 * @dev: the PCI device being added 1837 * 1838 * Permits the platform to provide architecture specific functionality when 1839 * devices are added. This is the default implementation. Architecture 1840 * implementations can override this. 1841 */ 1842 int __weak pcibios_add_device(struct pci_dev *dev) 1843 { 1844 return 0; 1845 } 1846 1847 /** 1848 * pcibios_release_device - provide arch specific hooks when releasing 1849 * device dev 1850 * @dev: the PCI device being released 1851 * 1852 * Permits the platform to provide architecture specific functionality when 1853 * devices are released. This is the default implementation. Architecture 1854 * implementations can override this. 1855 */ 1856 void __weak pcibios_release_device(struct pci_dev *dev) {} 1857 1858 /** 1859 * pcibios_disable_device - disable arch specific PCI resources for device dev 1860 * @dev: the PCI device to disable 1861 * 1862 * Disables architecture specific PCI resources for the device. This 1863 * is the default implementation. Architecture implementations can 1864 * override this. 1865 */ 1866 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1867 1868 /** 1869 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1870 * @irq: ISA IRQ to penalize 1871 * @active: IRQ active or not 1872 * 1873 * Permits the platform to provide architecture-specific functionality when 1874 * penalizing ISA IRQs. This is the default implementation. Architecture 1875 * implementations can override this. 1876 */ 1877 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1878 1879 static void do_pci_disable_device(struct pci_dev *dev) 1880 { 1881 u16 pci_command; 1882 1883 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1884 if (pci_command & PCI_COMMAND_MASTER) { 1885 pci_command &= ~PCI_COMMAND_MASTER; 1886 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1887 } 1888 1889 pcibios_disable_device(dev); 1890 } 1891 1892 /** 1893 * pci_disable_enabled_device - Disable device without updating enable_cnt 1894 * @dev: PCI device to disable 1895 * 1896 * NOTE: This function is a backend of PCI power management routines and is 1897 * not supposed to be called drivers. 1898 */ 1899 void pci_disable_enabled_device(struct pci_dev *dev) 1900 { 1901 if (pci_is_enabled(dev)) 1902 do_pci_disable_device(dev); 1903 } 1904 1905 /** 1906 * pci_disable_device - Disable PCI device after use 1907 * @dev: PCI device to be disabled 1908 * 1909 * Signal to the system that the PCI device is not in use by the system 1910 * anymore. This only involves disabling PCI bus-mastering, if active. 1911 * 1912 * Note we don't actually disable the device until all callers of 1913 * pci_enable_device() have called pci_disable_device(). 1914 */ 1915 void pci_disable_device(struct pci_dev *dev) 1916 { 1917 struct pci_devres *dr; 1918 1919 dr = find_pci_dr(dev); 1920 if (dr) 1921 dr->enabled = 0; 1922 1923 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1924 "disabling already-disabled device"); 1925 1926 if (atomic_dec_return(&dev->enable_cnt) != 0) 1927 return; 1928 1929 do_pci_disable_device(dev); 1930 1931 dev->is_busmaster = 0; 1932 } 1933 EXPORT_SYMBOL(pci_disable_device); 1934 1935 /** 1936 * pcibios_set_pcie_reset_state - set reset state for device dev 1937 * @dev: the PCIe device reset 1938 * @state: Reset state to enter into 1939 * 1940 * Set the PCIe reset state for the device. This is the default 1941 * implementation. Architecture implementations can override this. 1942 */ 1943 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1944 enum pcie_reset_state state) 1945 { 1946 return -EINVAL; 1947 } 1948 1949 /** 1950 * pci_set_pcie_reset_state - set reset state for device dev 1951 * @dev: the PCIe device reset 1952 * @state: Reset state to enter into 1953 * 1954 * Sets the PCI reset state for the device. 1955 */ 1956 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1957 { 1958 return pcibios_set_pcie_reset_state(dev, state); 1959 } 1960 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1961 1962 /** 1963 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1964 * @dev: PCIe root port or event collector. 1965 */ 1966 void pcie_clear_root_pme_status(struct pci_dev *dev) 1967 { 1968 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1969 } 1970 1971 /** 1972 * pci_check_pme_status - Check if given device has generated PME. 1973 * @dev: Device to check. 1974 * 1975 * Check the PME status of the device and if set, clear it and clear PME enable 1976 * (if set). Return 'true' if PME status and PME enable were both set or 1977 * 'false' otherwise. 1978 */ 1979 bool pci_check_pme_status(struct pci_dev *dev) 1980 { 1981 int pmcsr_pos; 1982 u16 pmcsr; 1983 bool ret = false; 1984 1985 if (!dev->pm_cap) 1986 return false; 1987 1988 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1989 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1990 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1991 return false; 1992 1993 /* Clear PME status. */ 1994 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1995 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1996 /* Disable PME to avoid interrupt flood. */ 1997 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1998 ret = true; 1999 } 2000 2001 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2002 2003 return ret; 2004 } 2005 2006 /** 2007 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2008 * @dev: Device to handle. 2009 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2010 * 2011 * Check if @dev has generated PME and queue a resume request for it in that 2012 * case. 2013 */ 2014 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2015 { 2016 if (pme_poll_reset && dev->pme_poll) 2017 dev->pme_poll = false; 2018 2019 if (pci_check_pme_status(dev)) { 2020 pci_wakeup_event(dev); 2021 pm_request_resume(&dev->dev); 2022 } 2023 return 0; 2024 } 2025 2026 /** 2027 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2028 * @bus: Top bus of the subtree to walk. 2029 */ 2030 void pci_pme_wakeup_bus(struct pci_bus *bus) 2031 { 2032 if (bus) 2033 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2034 } 2035 2036 2037 /** 2038 * pci_pme_capable - check the capability of PCI device to generate PME# 2039 * @dev: PCI device to handle. 2040 * @state: PCI state from which device will issue PME#. 2041 */ 2042 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2043 { 2044 if (!dev->pm_cap) 2045 return false; 2046 2047 return !!(dev->pme_support & (1 << state)); 2048 } 2049 EXPORT_SYMBOL(pci_pme_capable); 2050 2051 static void pci_pme_list_scan(struct work_struct *work) 2052 { 2053 struct pci_pme_device *pme_dev, *n; 2054 2055 mutex_lock(&pci_pme_list_mutex); 2056 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2057 if (pme_dev->dev->pme_poll) { 2058 struct pci_dev *bridge; 2059 2060 bridge = pme_dev->dev->bus->self; 2061 /* 2062 * If bridge is in low power state, the 2063 * configuration space of subordinate devices 2064 * may be not accessible 2065 */ 2066 if (bridge && bridge->current_state != PCI_D0) 2067 continue; 2068 pci_pme_wakeup(pme_dev->dev, NULL); 2069 } else { 2070 list_del(&pme_dev->list); 2071 kfree(pme_dev); 2072 } 2073 } 2074 if (!list_empty(&pci_pme_list)) 2075 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2076 msecs_to_jiffies(PME_TIMEOUT)); 2077 mutex_unlock(&pci_pme_list_mutex); 2078 } 2079 2080 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2081 { 2082 u16 pmcsr; 2083 2084 if (!dev->pme_support) 2085 return; 2086 2087 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2088 /* Clear PME_Status by writing 1 to it and enable PME# */ 2089 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2090 if (!enable) 2091 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2092 2093 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2094 } 2095 2096 /** 2097 * pci_pme_restore - Restore PME configuration after config space restore. 2098 * @dev: PCI device to update. 2099 */ 2100 void pci_pme_restore(struct pci_dev *dev) 2101 { 2102 u16 pmcsr; 2103 2104 if (!dev->pme_support) 2105 return; 2106 2107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2108 if (dev->wakeup_prepared) { 2109 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2110 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2111 } else { 2112 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2113 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2114 } 2115 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2116 } 2117 2118 /** 2119 * pci_pme_active - enable or disable PCI device's PME# function 2120 * @dev: PCI device to handle. 2121 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2122 * 2123 * The caller must verify that the device is capable of generating PME# before 2124 * calling this function with @enable equal to 'true'. 2125 */ 2126 void pci_pme_active(struct pci_dev *dev, bool enable) 2127 { 2128 __pci_pme_active(dev, enable); 2129 2130 /* 2131 * PCI (as opposed to PCIe) PME requires that the device have 2132 * its PME# line hooked up correctly. Not all hardware vendors 2133 * do this, so the PME never gets delivered and the device 2134 * remains asleep. The easiest way around this is to 2135 * periodically walk the list of suspended devices and check 2136 * whether any have their PME flag set. The assumption is that 2137 * we'll wake up often enough anyway that this won't be a huge 2138 * hit, and the power savings from the devices will still be a 2139 * win. 2140 * 2141 * Although PCIe uses in-band PME message instead of PME# line 2142 * to report PME, PME does not work for some PCIe devices in 2143 * reality. For example, there are devices that set their PME 2144 * status bits, but don't really bother to send a PME message; 2145 * there are PCI Express Root Ports that don't bother to 2146 * trigger interrupts when they receive PME messages from the 2147 * devices below. So PME poll is used for PCIe devices too. 2148 */ 2149 2150 if (dev->pme_poll) { 2151 struct pci_pme_device *pme_dev; 2152 if (enable) { 2153 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2154 GFP_KERNEL); 2155 if (!pme_dev) { 2156 pci_warn(dev, "can't enable PME#\n"); 2157 return; 2158 } 2159 pme_dev->dev = dev; 2160 mutex_lock(&pci_pme_list_mutex); 2161 list_add(&pme_dev->list, &pci_pme_list); 2162 if (list_is_singular(&pci_pme_list)) 2163 queue_delayed_work(system_freezable_wq, 2164 &pci_pme_work, 2165 msecs_to_jiffies(PME_TIMEOUT)); 2166 mutex_unlock(&pci_pme_list_mutex); 2167 } else { 2168 mutex_lock(&pci_pme_list_mutex); 2169 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2170 if (pme_dev->dev == dev) { 2171 list_del(&pme_dev->list); 2172 kfree(pme_dev); 2173 break; 2174 } 2175 } 2176 mutex_unlock(&pci_pme_list_mutex); 2177 } 2178 } 2179 2180 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2181 } 2182 EXPORT_SYMBOL(pci_pme_active); 2183 2184 /** 2185 * __pci_enable_wake - enable PCI device as wakeup event source 2186 * @dev: PCI device affected 2187 * @state: PCI state from which device will issue wakeup events 2188 * @enable: True to enable event generation; false to disable 2189 * 2190 * This enables the device as a wakeup event source, or disables it. 2191 * When such events involves platform-specific hooks, those hooks are 2192 * called automatically by this routine. 2193 * 2194 * Devices with legacy power management (no standard PCI PM capabilities) 2195 * always require such platform hooks. 2196 * 2197 * RETURN VALUE: 2198 * 0 is returned on success 2199 * -EINVAL is returned if device is not supposed to wake up the system 2200 * Error code depending on the platform is returned if both the platform and 2201 * the native mechanism fail to enable the generation of wake-up events 2202 */ 2203 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2204 { 2205 int ret = 0; 2206 2207 /* 2208 * Bridges that are not power-manageable directly only signal 2209 * wakeup on behalf of subordinate devices which is set up 2210 * elsewhere, so skip them. However, bridges that are 2211 * power-manageable may signal wakeup for themselves (for example, 2212 * on a hotplug event) and they need to be covered here. 2213 */ 2214 if (!pci_power_manageable(dev)) 2215 return 0; 2216 2217 /* Don't do the same thing twice in a row for one device. */ 2218 if (!!enable == !!dev->wakeup_prepared) 2219 return 0; 2220 2221 /* 2222 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2223 * Anderson we should be doing PME# wake enable followed by ACPI wake 2224 * enable. To disable wake-up we call the platform first, for symmetry. 2225 */ 2226 2227 if (enable) { 2228 int error; 2229 2230 if (pci_pme_capable(dev, state)) 2231 pci_pme_active(dev, true); 2232 else 2233 ret = 1; 2234 error = platform_pci_set_wakeup(dev, true); 2235 if (ret) 2236 ret = error; 2237 if (!ret) 2238 dev->wakeup_prepared = true; 2239 } else { 2240 platform_pci_set_wakeup(dev, false); 2241 pci_pme_active(dev, false); 2242 dev->wakeup_prepared = false; 2243 } 2244 2245 return ret; 2246 } 2247 2248 /** 2249 * pci_enable_wake - change wakeup settings for a PCI device 2250 * @pci_dev: Target device 2251 * @state: PCI state from which device will issue wakeup events 2252 * @enable: Whether or not to enable event generation 2253 * 2254 * If @enable is set, check device_may_wakeup() for the device before calling 2255 * __pci_enable_wake() for it. 2256 */ 2257 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2258 { 2259 if (enable && !device_may_wakeup(&pci_dev->dev)) 2260 return -EINVAL; 2261 2262 return __pci_enable_wake(pci_dev, state, enable); 2263 } 2264 EXPORT_SYMBOL(pci_enable_wake); 2265 2266 /** 2267 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2268 * @dev: PCI device to prepare 2269 * @enable: True to enable wake-up event generation; false to disable 2270 * 2271 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2272 * and this function allows them to set that up cleanly - pci_enable_wake() 2273 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2274 * ordering constraints. 2275 * 2276 * This function only returns error code if the device is not allowed to wake 2277 * up the system from sleep or it is not capable of generating PME# from both 2278 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2279 */ 2280 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2281 { 2282 return pci_pme_capable(dev, PCI_D3cold) ? 2283 pci_enable_wake(dev, PCI_D3cold, enable) : 2284 pci_enable_wake(dev, PCI_D3hot, enable); 2285 } 2286 EXPORT_SYMBOL(pci_wake_from_d3); 2287 2288 /** 2289 * pci_target_state - find an appropriate low power state for a given PCI dev 2290 * @dev: PCI device 2291 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2292 * 2293 * Use underlying platform code to find a supported low power state for @dev. 2294 * If the platform can't manage @dev, return the deepest state from which it 2295 * can generate wake events, based on any available PME info. 2296 */ 2297 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2298 { 2299 pci_power_t target_state = PCI_D3hot; 2300 2301 if (platform_pci_power_manageable(dev)) { 2302 /* 2303 * Call the platform to find the target state for the device. 2304 */ 2305 pci_power_t state = platform_pci_choose_state(dev); 2306 2307 switch (state) { 2308 case PCI_POWER_ERROR: 2309 case PCI_UNKNOWN: 2310 break; 2311 case PCI_D1: 2312 case PCI_D2: 2313 if (pci_no_d1d2(dev)) 2314 break; 2315 /* else, fall through */ 2316 default: 2317 target_state = state; 2318 } 2319 2320 return target_state; 2321 } 2322 2323 if (!dev->pm_cap) 2324 target_state = PCI_D0; 2325 2326 /* 2327 * If the device is in D3cold even though it's not power-manageable by 2328 * the platform, it may have been powered down by non-standard means. 2329 * Best to let it slumber. 2330 */ 2331 if (dev->current_state == PCI_D3cold) 2332 target_state = PCI_D3cold; 2333 2334 if (wakeup) { 2335 /* 2336 * Find the deepest state from which the device can generate 2337 * PME#. 2338 */ 2339 if (dev->pme_support) { 2340 while (target_state 2341 && !(dev->pme_support & (1 << target_state))) 2342 target_state--; 2343 } 2344 } 2345 2346 return target_state; 2347 } 2348 2349 /** 2350 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2351 * into a sleep state 2352 * @dev: Device to handle. 2353 * 2354 * Choose the power state appropriate for the device depending on whether 2355 * it can wake up the system and/or is power manageable by the platform 2356 * (PCI_D3hot is the default) and put the device into that state. 2357 */ 2358 int pci_prepare_to_sleep(struct pci_dev *dev) 2359 { 2360 bool wakeup = device_may_wakeup(&dev->dev); 2361 pci_power_t target_state = pci_target_state(dev, wakeup); 2362 int error; 2363 2364 if (target_state == PCI_POWER_ERROR) 2365 return -EIO; 2366 2367 pci_enable_wake(dev, target_state, wakeup); 2368 2369 error = pci_set_power_state(dev, target_state); 2370 2371 if (error) 2372 pci_enable_wake(dev, target_state, false); 2373 2374 return error; 2375 } 2376 EXPORT_SYMBOL(pci_prepare_to_sleep); 2377 2378 /** 2379 * pci_back_from_sleep - turn PCI device on during system-wide transition 2380 * into working state 2381 * @dev: Device to handle. 2382 * 2383 * Disable device's system wake-up capability and put it into D0. 2384 */ 2385 int pci_back_from_sleep(struct pci_dev *dev) 2386 { 2387 pci_enable_wake(dev, PCI_D0, false); 2388 return pci_set_power_state(dev, PCI_D0); 2389 } 2390 EXPORT_SYMBOL(pci_back_from_sleep); 2391 2392 /** 2393 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2394 * @dev: PCI device being suspended. 2395 * 2396 * Prepare @dev to generate wake-up events at run time and put it into a low 2397 * power state. 2398 */ 2399 int pci_finish_runtime_suspend(struct pci_dev *dev) 2400 { 2401 pci_power_t target_state; 2402 int error; 2403 2404 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2405 if (target_state == PCI_POWER_ERROR) 2406 return -EIO; 2407 2408 dev->runtime_d3cold = target_state == PCI_D3cold; 2409 2410 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2411 2412 error = pci_set_power_state(dev, target_state); 2413 2414 if (error) { 2415 pci_enable_wake(dev, target_state, false); 2416 dev->runtime_d3cold = false; 2417 } 2418 2419 return error; 2420 } 2421 2422 /** 2423 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2424 * @dev: Device to check. 2425 * 2426 * Return true if the device itself is capable of generating wake-up events 2427 * (through the platform or using the native PCIe PME) or if the device supports 2428 * PME and one of its upstream bridges can generate wake-up events. 2429 */ 2430 bool pci_dev_run_wake(struct pci_dev *dev) 2431 { 2432 struct pci_bus *bus = dev->bus; 2433 2434 if (!dev->pme_support) 2435 return false; 2436 2437 /* PME-capable in principle, but not from the target power state */ 2438 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2439 return false; 2440 2441 if (device_can_wakeup(&dev->dev)) 2442 return true; 2443 2444 while (bus->parent) { 2445 struct pci_dev *bridge = bus->self; 2446 2447 if (device_can_wakeup(&bridge->dev)) 2448 return true; 2449 2450 bus = bus->parent; 2451 } 2452 2453 /* We have reached the root bus. */ 2454 if (bus->bridge) 2455 return device_can_wakeup(bus->bridge); 2456 2457 return false; 2458 } 2459 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2460 2461 /** 2462 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2463 * @pci_dev: Device to check. 2464 * 2465 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2466 * reconfigured due to wakeup settings difference between system and runtime 2467 * suspend and the current power state of it is suitable for the upcoming 2468 * (system) transition. 2469 * 2470 * If the device is not configured for system wakeup, disable PME for it before 2471 * returning 'true' to prevent it from waking up the system unnecessarily. 2472 */ 2473 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2474 { 2475 struct device *dev = &pci_dev->dev; 2476 bool wakeup = device_may_wakeup(dev); 2477 2478 if (!pm_runtime_suspended(dev) 2479 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2480 || platform_pci_need_resume(pci_dev)) 2481 return false; 2482 2483 /* 2484 * At this point the device is good to go unless it's been configured 2485 * to generate PME at the runtime suspend time, but it is not supposed 2486 * to wake up the system. In that case, simply disable PME for it 2487 * (it will have to be re-enabled on exit from system resume). 2488 * 2489 * If the device's power state is D3cold and the platform check above 2490 * hasn't triggered, the device's configuration is suitable and we don't 2491 * need to manipulate it at all. 2492 */ 2493 spin_lock_irq(&dev->power.lock); 2494 2495 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2496 !wakeup) 2497 __pci_pme_active(pci_dev, false); 2498 2499 spin_unlock_irq(&dev->power.lock); 2500 return true; 2501 } 2502 2503 /** 2504 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2505 * @pci_dev: Device to handle. 2506 * 2507 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2508 * it might have been disabled during the prepare phase of system suspend if 2509 * the device was not configured for system wakeup. 2510 */ 2511 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2512 { 2513 struct device *dev = &pci_dev->dev; 2514 2515 if (!pci_dev_run_wake(pci_dev)) 2516 return; 2517 2518 spin_lock_irq(&dev->power.lock); 2519 2520 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2521 __pci_pme_active(pci_dev, true); 2522 2523 spin_unlock_irq(&dev->power.lock); 2524 } 2525 2526 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2527 { 2528 struct device *dev = &pdev->dev; 2529 struct device *parent = dev->parent; 2530 2531 if (parent) 2532 pm_runtime_get_sync(parent); 2533 pm_runtime_get_noresume(dev); 2534 /* 2535 * pdev->current_state is set to PCI_D3cold during suspending, 2536 * so wait until suspending completes 2537 */ 2538 pm_runtime_barrier(dev); 2539 /* 2540 * Only need to resume devices in D3cold, because config 2541 * registers are still accessible for devices suspended but 2542 * not in D3cold. 2543 */ 2544 if (pdev->current_state == PCI_D3cold) 2545 pm_runtime_resume(dev); 2546 } 2547 2548 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2549 { 2550 struct device *dev = &pdev->dev; 2551 struct device *parent = dev->parent; 2552 2553 pm_runtime_put(dev); 2554 if (parent) 2555 pm_runtime_put_sync(parent); 2556 } 2557 2558 static const struct dmi_system_id bridge_d3_blacklist[] = { 2559 #ifdef CONFIG_X86 2560 { 2561 /* 2562 * Gigabyte X299 root port is not marked as hotplug capable 2563 * which allows Linux to power manage it. However, this 2564 * confuses the BIOS SMI handler so don't power manage root 2565 * ports on that system. 2566 */ 2567 .ident = "X299 DESIGNARE EX-CF", 2568 .matches = { 2569 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2570 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2571 }, 2572 }, 2573 #endif 2574 { } 2575 }; 2576 2577 /** 2578 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2579 * @bridge: Bridge to check 2580 * 2581 * This function checks if it is possible to move the bridge to D3. 2582 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2583 */ 2584 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2585 { 2586 if (!pci_is_pcie(bridge)) 2587 return false; 2588 2589 switch (pci_pcie_type(bridge)) { 2590 case PCI_EXP_TYPE_ROOT_PORT: 2591 case PCI_EXP_TYPE_UPSTREAM: 2592 case PCI_EXP_TYPE_DOWNSTREAM: 2593 if (pci_bridge_d3_disable) 2594 return false; 2595 2596 /* 2597 * Hotplug ports handled by firmware in System Management Mode 2598 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2599 */ 2600 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2601 return false; 2602 2603 if (pci_bridge_d3_force) 2604 return true; 2605 2606 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2607 if (bridge->is_thunderbolt) 2608 return true; 2609 2610 /* Platform might know better if the bridge supports D3 */ 2611 if (platform_pci_bridge_d3(bridge)) 2612 return true; 2613 2614 /* 2615 * Hotplug ports handled natively by the OS were not validated 2616 * by vendors for runtime D3 at least until 2018 because there 2617 * was no OS support. 2618 */ 2619 if (bridge->is_hotplug_bridge) 2620 return false; 2621 2622 if (dmi_check_system(bridge_d3_blacklist)) 2623 return false; 2624 2625 /* 2626 * It should be safe to put PCIe ports from 2015 or newer 2627 * to D3. 2628 */ 2629 if (dmi_get_bios_year() >= 2015) 2630 return true; 2631 break; 2632 } 2633 2634 return false; 2635 } 2636 2637 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2638 { 2639 bool *d3cold_ok = data; 2640 2641 if (/* The device needs to be allowed to go D3cold ... */ 2642 dev->no_d3cold || !dev->d3cold_allowed || 2643 2644 /* ... and if it is wakeup capable to do so from D3cold. */ 2645 (device_may_wakeup(&dev->dev) && 2646 !pci_pme_capable(dev, PCI_D3cold)) || 2647 2648 /* If it is a bridge it must be allowed to go to D3. */ 2649 !pci_power_manageable(dev)) 2650 2651 *d3cold_ok = false; 2652 2653 return !*d3cold_ok; 2654 } 2655 2656 /* 2657 * pci_bridge_d3_update - Update bridge D3 capabilities 2658 * @dev: PCI device which is changed 2659 * 2660 * Update upstream bridge PM capabilities accordingly depending on if the 2661 * device PM configuration was changed or the device is being removed. The 2662 * change is also propagated upstream. 2663 */ 2664 void pci_bridge_d3_update(struct pci_dev *dev) 2665 { 2666 bool remove = !device_is_registered(&dev->dev); 2667 struct pci_dev *bridge; 2668 bool d3cold_ok = true; 2669 2670 bridge = pci_upstream_bridge(dev); 2671 if (!bridge || !pci_bridge_d3_possible(bridge)) 2672 return; 2673 2674 /* 2675 * If D3 is currently allowed for the bridge, removing one of its 2676 * children won't change that. 2677 */ 2678 if (remove && bridge->bridge_d3) 2679 return; 2680 2681 /* 2682 * If D3 is currently allowed for the bridge and a child is added or 2683 * changed, disallowance of D3 can only be caused by that child, so 2684 * we only need to check that single device, not any of its siblings. 2685 * 2686 * If D3 is currently not allowed for the bridge, checking the device 2687 * first may allow us to skip checking its siblings. 2688 */ 2689 if (!remove) 2690 pci_dev_check_d3cold(dev, &d3cold_ok); 2691 2692 /* 2693 * If D3 is currently not allowed for the bridge, this may be caused 2694 * either by the device being changed/removed or any of its siblings, 2695 * so we need to go through all children to find out if one of them 2696 * continues to block D3. 2697 */ 2698 if (d3cold_ok && !bridge->bridge_d3) 2699 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2700 &d3cold_ok); 2701 2702 if (bridge->bridge_d3 != d3cold_ok) { 2703 bridge->bridge_d3 = d3cold_ok; 2704 /* Propagate change to upstream bridges */ 2705 pci_bridge_d3_update(bridge); 2706 } 2707 } 2708 2709 /** 2710 * pci_d3cold_enable - Enable D3cold for device 2711 * @dev: PCI device to handle 2712 * 2713 * This function can be used in drivers to enable D3cold from the device 2714 * they handle. It also updates upstream PCI bridge PM capabilities 2715 * accordingly. 2716 */ 2717 void pci_d3cold_enable(struct pci_dev *dev) 2718 { 2719 if (dev->no_d3cold) { 2720 dev->no_d3cold = false; 2721 pci_bridge_d3_update(dev); 2722 } 2723 } 2724 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2725 2726 /** 2727 * pci_d3cold_disable - Disable D3cold for device 2728 * @dev: PCI device to handle 2729 * 2730 * This function can be used in drivers to disable D3cold from the device 2731 * they handle. It also updates upstream PCI bridge PM capabilities 2732 * accordingly. 2733 */ 2734 void pci_d3cold_disable(struct pci_dev *dev) 2735 { 2736 if (!dev->no_d3cold) { 2737 dev->no_d3cold = true; 2738 pci_bridge_d3_update(dev); 2739 } 2740 } 2741 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2742 2743 /** 2744 * pci_pm_init - Initialize PM functions of given PCI device 2745 * @dev: PCI device to handle. 2746 */ 2747 void pci_pm_init(struct pci_dev *dev) 2748 { 2749 int pm; 2750 u16 status; 2751 u16 pmc; 2752 2753 pm_runtime_forbid(&dev->dev); 2754 pm_runtime_set_active(&dev->dev); 2755 pm_runtime_enable(&dev->dev); 2756 device_enable_async_suspend(&dev->dev); 2757 dev->wakeup_prepared = false; 2758 2759 dev->pm_cap = 0; 2760 dev->pme_support = 0; 2761 2762 /* find PCI PM capability in list */ 2763 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2764 if (!pm) 2765 return; 2766 /* Check device's ability to generate PME# */ 2767 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2768 2769 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2770 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2771 pmc & PCI_PM_CAP_VER_MASK); 2772 return; 2773 } 2774 2775 dev->pm_cap = pm; 2776 dev->d3_delay = PCI_PM_D3_WAIT; 2777 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2778 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2779 dev->d3cold_allowed = true; 2780 2781 dev->d1_support = false; 2782 dev->d2_support = false; 2783 if (!pci_no_d1d2(dev)) { 2784 if (pmc & PCI_PM_CAP_D1) 2785 dev->d1_support = true; 2786 if (pmc & PCI_PM_CAP_D2) 2787 dev->d2_support = true; 2788 2789 if (dev->d1_support || dev->d2_support) 2790 pci_info(dev, "supports%s%s\n", 2791 dev->d1_support ? " D1" : "", 2792 dev->d2_support ? " D2" : ""); 2793 } 2794 2795 pmc &= PCI_PM_CAP_PME_MASK; 2796 if (pmc) { 2797 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 2798 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2799 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2800 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2801 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2802 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2803 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2804 dev->pme_poll = true; 2805 /* 2806 * Make device's PM flags reflect the wake-up capability, but 2807 * let the user space enable it to wake up the system as needed. 2808 */ 2809 device_set_wakeup_capable(&dev->dev, true); 2810 /* Disable the PME# generation functionality */ 2811 pci_pme_active(dev, false); 2812 } 2813 2814 pci_read_config_word(dev, PCI_STATUS, &status); 2815 if (status & PCI_STATUS_IMM_READY) 2816 dev->imm_ready = 1; 2817 } 2818 2819 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2820 { 2821 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2822 2823 switch (prop) { 2824 case PCI_EA_P_MEM: 2825 case PCI_EA_P_VF_MEM: 2826 flags |= IORESOURCE_MEM; 2827 break; 2828 case PCI_EA_P_MEM_PREFETCH: 2829 case PCI_EA_P_VF_MEM_PREFETCH: 2830 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2831 break; 2832 case PCI_EA_P_IO: 2833 flags |= IORESOURCE_IO; 2834 break; 2835 default: 2836 return 0; 2837 } 2838 2839 return flags; 2840 } 2841 2842 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2843 u8 prop) 2844 { 2845 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2846 return &dev->resource[bei]; 2847 #ifdef CONFIG_PCI_IOV 2848 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2849 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2850 return &dev->resource[PCI_IOV_RESOURCES + 2851 bei - PCI_EA_BEI_VF_BAR0]; 2852 #endif 2853 else if (bei == PCI_EA_BEI_ROM) 2854 return &dev->resource[PCI_ROM_RESOURCE]; 2855 else 2856 return NULL; 2857 } 2858 2859 /* Read an Enhanced Allocation (EA) entry */ 2860 static int pci_ea_read(struct pci_dev *dev, int offset) 2861 { 2862 struct resource *res; 2863 int ent_size, ent_offset = offset; 2864 resource_size_t start, end; 2865 unsigned long flags; 2866 u32 dw0, bei, base, max_offset; 2867 u8 prop; 2868 bool support_64 = (sizeof(resource_size_t) >= 8); 2869 2870 pci_read_config_dword(dev, ent_offset, &dw0); 2871 ent_offset += 4; 2872 2873 /* Entry size field indicates DWORDs after 1st */ 2874 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2875 2876 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2877 goto out; 2878 2879 bei = (dw0 & PCI_EA_BEI) >> 4; 2880 prop = (dw0 & PCI_EA_PP) >> 8; 2881 2882 /* 2883 * If the Property is in the reserved range, try the Secondary 2884 * Property instead. 2885 */ 2886 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2887 prop = (dw0 & PCI_EA_SP) >> 16; 2888 if (prop > PCI_EA_P_BRIDGE_IO) 2889 goto out; 2890 2891 res = pci_ea_get_resource(dev, bei, prop); 2892 if (!res) { 2893 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2894 goto out; 2895 } 2896 2897 flags = pci_ea_flags(dev, prop); 2898 if (!flags) { 2899 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2900 goto out; 2901 } 2902 2903 /* Read Base */ 2904 pci_read_config_dword(dev, ent_offset, &base); 2905 start = (base & PCI_EA_FIELD_MASK); 2906 ent_offset += 4; 2907 2908 /* Read MaxOffset */ 2909 pci_read_config_dword(dev, ent_offset, &max_offset); 2910 ent_offset += 4; 2911 2912 /* Read Base MSBs (if 64-bit entry) */ 2913 if (base & PCI_EA_IS_64) { 2914 u32 base_upper; 2915 2916 pci_read_config_dword(dev, ent_offset, &base_upper); 2917 ent_offset += 4; 2918 2919 flags |= IORESOURCE_MEM_64; 2920 2921 /* entry starts above 32-bit boundary, can't use */ 2922 if (!support_64 && base_upper) 2923 goto out; 2924 2925 if (support_64) 2926 start |= ((u64)base_upper << 32); 2927 } 2928 2929 end = start + (max_offset | 0x03); 2930 2931 /* Read MaxOffset MSBs (if 64-bit entry) */ 2932 if (max_offset & PCI_EA_IS_64) { 2933 u32 max_offset_upper; 2934 2935 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2936 ent_offset += 4; 2937 2938 flags |= IORESOURCE_MEM_64; 2939 2940 /* entry too big, can't use */ 2941 if (!support_64 && max_offset_upper) 2942 goto out; 2943 2944 if (support_64) 2945 end += ((u64)max_offset_upper << 32); 2946 } 2947 2948 if (end < start) { 2949 pci_err(dev, "EA Entry crosses address boundary\n"); 2950 goto out; 2951 } 2952 2953 if (ent_size != ent_offset - offset) { 2954 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2955 ent_size, ent_offset - offset); 2956 goto out; 2957 } 2958 2959 res->name = pci_name(dev); 2960 res->start = start; 2961 res->end = end; 2962 res->flags = flags; 2963 2964 if (bei <= PCI_EA_BEI_BAR5) 2965 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2966 bei, res, prop); 2967 else if (bei == PCI_EA_BEI_ROM) 2968 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2969 res, prop); 2970 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2971 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2972 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2973 else 2974 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2975 bei, res, prop); 2976 2977 out: 2978 return offset + ent_size; 2979 } 2980 2981 /* Enhanced Allocation Initialization */ 2982 void pci_ea_init(struct pci_dev *dev) 2983 { 2984 int ea; 2985 u8 num_ent; 2986 int offset; 2987 int i; 2988 2989 /* find PCI EA capability in list */ 2990 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2991 if (!ea) 2992 return; 2993 2994 /* determine the number of entries */ 2995 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2996 &num_ent); 2997 num_ent &= PCI_EA_NUM_ENT_MASK; 2998 2999 offset = ea + PCI_EA_FIRST_ENT; 3000 3001 /* Skip DWORD 2 for type 1 functions */ 3002 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3003 offset += 4; 3004 3005 /* parse each EA entry */ 3006 for (i = 0; i < num_ent; ++i) 3007 offset = pci_ea_read(dev, offset); 3008 } 3009 3010 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3011 struct pci_cap_saved_state *new_cap) 3012 { 3013 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3014 } 3015 3016 /** 3017 * _pci_add_cap_save_buffer - allocate buffer for saving given 3018 * capability registers 3019 * @dev: the PCI device 3020 * @cap: the capability to allocate the buffer for 3021 * @extended: Standard or Extended capability ID 3022 * @size: requested size of the buffer 3023 */ 3024 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3025 bool extended, unsigned int size) 3026 { 3027 int pos; 3028 struct pci_cap_saved_state *save_state; 3029 3030 if (extended) 3031 pos = pci_find_ext_capability(dev, cap); 3032 else 3033 pos = pci_find_capability(dev, cap); 3034 3035 if (!pos) 3036 return 0; 3037 3038 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3039 if (!save_state) 3040 return -ENOMEM; 3041 3042 save_state->cap.cap_nr = cap; 3043 save_state->cap.cap_extended = extended; 3044 save_state->cap.size = size; 3045 pci_add_saved_cap(dev, save_state); 3046 3047 return 0; 3048 } 3049 3050 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3051 { 3052 return _pci_add_cap_save_buffer(dev, cap, false, size); 3053 } 3054 3055 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3056 { 3057 return _pci_add_cap_save_buffer(dev, cap, true, size); 3058 } 3059 3060 /** 3061 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3062 * @dev: the PCI device 3063 */ 3064 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3065 { 3066 int error; 3067 3068 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3069 PCI_EXP_SAVE_REGS * sizeof(u16)); 3070 if (error) 3071 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3072 3073 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3074 if (error) 3075 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3076 3077 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3078 2 * sizeof(u16)); 3079 if (error) 3080 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3081 3082 pci_allocate_vc_save_buffers(dev); 3083 } 3084 3085 void pci_free_cap_save_buffers(struct pci_dev *dev) 3086 { 3087 struct pci_cap_saved_state *tmp; 3088 struct hlist_node *n; 3089 3090 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3091 kfree(tmp); 3092 } 3093 3094 /** 3095 * pci_configure_ari - enable or disable ARI forwarding 3096 * @dev: the PCI device 3097 * 3098 * If @dev and its upstream bridge both support ARI, enable ARI in the 3099 * bridge. Otherwise, disable ARI in the bridge. 3100 */ 3101 void pci_configure_ari(struct pci_dev *dev) 3102 { 3103 u32 cap; 3104 struct pci_dev *bridge; 3105 3106 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3107 return; 3108 3109 bridge = dev->bus->self; 3110 if (!bridge) 3111 return; 3112 3113 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3114 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3115 return; 3116 3117 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3118 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3119 PCI_EXP_DEVCTL2_ARI); 3120 bridge->ari_enabled = 1; 3121 } else { 3122 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3123 PCI_EXP_DEVCTL2_ARI); 3124 bridge->ari_enabled = 0; 3125 } 3126 } 3127 3128 static int pci_acs_enable; 3129 3130 /** 3131 * pci_request_acs - ask for ACS to be enabled if supported 3132 */ 3133 void pci_request_acs(void) 3134 { 3135 pci_acs_enable = 1; 3136 } 3137 3138 static const char *disable_acs_redir_param; 3139 3140 /** 3141 * pci_disable_acs_redir - disable ACS redirect capabilities 3142 * @dev: the PCI device 3143 * 3144 * For only devices specified in the disable_acs_redir parameter. 3145 */ 3146 static void pci_disable_acs_redir(struct pci_dev *dev) 3147 { 3148 int ret = 0; 3149 const char *p; 3150 int pos; 3151 u16 ctrl; 3152 3153 if (!disable_acs_redir_param) 3154 return; 3155 3156 p = disable_acs_redir_param; 3157 while (*p) { 3158 ret = pci_dev_str_match(dev, p, &p); 3159 if (ret < 0) { 3160 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3161 disable_acs_redir_param); 3162 3163 break; 3164 } else if (ret == 1) { 3165 /* Found a match */ 3166 break; 3167 } 3168 3169 if (*p != ';' && *p != ',') { 3170 /* End of param or invalid format */ 3171 break; 3172 } 3173 p++; 3174 } 3175 3176 if (ret != 1) 3177 return; 3178 3179 if (!pci_dev_specific_disable_acs_redir(dev)) 3180 return; 3181 3182 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3183 if (!pos) { 3184 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3185 return; 3186 } 3187 3188 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3189 3190 /* P2P Request & Completion Redirect */ 3191 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3192 3193 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3194 3195 pci_info(dev, "disabled ACS redirect\n"); 3196 } 3197 3198 /** 3199 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 3200 * @dev: the PCI device 3201 */ 3202 static void pci_std_enable_acs(struct pci_dev *dev) 3203 { 3204 int pos; 3205 u16 cap; 3206 u16 ctrl; 3207 3208 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3209 if (!pos) 3210 return; 3211 3212 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3213 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3214 3215 /* Source Validation */ 3216 ctrl |= (cap & PCI_ACS_SV); 3217 3218 /* P2P Request Redirect */ 3219 ctrl |= (cap & PCI_ACS_RR); 3220 3221 /* P2P Completion Redirect */ 3222 ctrl |= (cap & PCI_ACS_CR); 3223 3224 /* Upstream Forwarding */ 3225 ctrl |= (cap & PCI_ACS_UF); 3226 3227 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3228 } 3229 3230 /** 3231 * pci_enable_acs - enable ACS if hardware support it 3232 * @dev: the PCI device 3233 */ 3234 void pci_enable_acs(struct pci_dev *dev) 3235 { 3236 if (!pci_acs_enable) 3237 goto disable_acs_redir; 3238 3239 if (!pci_dev_specific_enable_acs(dev)) 3240 goto disable_acs_redir; 3241 3242 pci_std_enable_acs(dev); 3243 3244 disable_acs_redir: 3245 /* 3246 * Note: pci_disable_acs_redir() must be called even if ACS was not 3247 * enabled by the kernel because it may have been enabled by 3248 * platform firmware. So if we are told to disable it, we should 3249 * always disable it after setting the kernel's default 3250 * preferences. 3251 */ 3252 pci_disable_acs_redir(dev); 3253 } 3254 3255 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3256 { 3257 int pos; 3258 u16 cap, ctrl; 3259 3260 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3261 if (!pos) 3262 return false; 3263 3264 /* 3265 * Except for egress control, capabilities are either required 3266 * or only required if controllable. Features missing from the 3267 * capability field can therefore be assumed as hard-wired enabled. 3268 */ 3269 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3270 acs_flags &= (cap | PCI_ACS_EC); 3271 3272 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3273 return (ctrl & acs_flags) == acs_flags; 3274 } 3275 3276 /** 3277 * pci_acs_enabled - test ACS against required flags for a given device 3278 * @pdev: device to test 3279 * @acs_flags: required PCI ACS flags 3280 * 3281 * Return true if the device supports the provided flags. Automatically 3282 * filters out flags that are not implemented on multifunction devices. 3283 * 3284 * Note that this interface checks the effective ACS capabilities of the 3285 * device rather than the actual capabilities. For instance, most single 3286 * function endpoints are not required to support ACS because they have no 3287 * opportunity for peer-to-peer access. We therefore return 'true' 3288 * regardless of whether the device exposes an ACS capability. This makes 3289 * it much easier for callers of this function to ignore the actual type 3290 * or topology of the device when testing ACS support. 3291 */ 3292 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3293 { 3294 int ret; 3295 3296 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3297 if (ret >= 0) 3298 return ret > 0; 3299 3300 /* 3301 * Conventional PCI and PCI-X devices never support ACS, either 3302 * effectively or actually. The shared bus topology implies that 3303 * any device on the bus can receive or snoop DMA. 3304 */ 3305 if (!pci_is_pcie(pdev)) 3306 return false; 3307 3308 switch (pci_pcie_type(pdev)) { 3309 /* 3310 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3311 * but since their primary interface is PCI/X, we conservatively 3312 * handle them as we would a non-PCIe device. 3313 */ 3314 case PCI_EXP_TYPE_PCIE_BRIDGE: 3315 /* 3316 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3317 * applicable... must never implement an ACS Extended Capability...". 3318 * This seems arbitrary, but we take a conservative interpretation 3319 * of this statement. 3320 */ 3321 case PCI_EXP_TYPE_PCI_BRIDGE: 3322 case PCI_EXP_TYPE_RC_EC: 3323 return false; 3324 /* 3325 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3326 * implement ACS in order to indicate their peer-to-peer capabilities, 3327 * regardless of whether they are single- or multi-function devices. 3328 */ 3329 case PCI_EXP_TYPE_DOWNSTREAM: 3330 case PCI_EXP_TYPE_ROOT_PORT: 3331 return pci_acs_flags_enabled(pdev, acs_flags); 3332 /* 3333 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3334 * implemented by the remaining PCIe types to indicate peer-to-peer 3335 * capabilities, but only when they are part of a multifunction 3336 * device. The footnote for section 6.12 indicates the specific 3337 * PCIe types included here. 3338 */ 3339 case PCI_EXP_TYPE_ENDPOINT: 3340 case PCI_EXP_TYPE_UPSTREAM: 3341 case PCI_EXP_TYPE_LEG_END: 3342 case PCI_EXP_TYPE_RC_END: 3343 if (!pdev->multifunction) 3344 break; 3345 3346 return pci_acs_flags_enabled(pdev, acs_flags); 3347 } 3348 3349 /* 3350 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3351 * to single function devices with the exception of downstream ports. 3352 */ 3353 return true; 3354 } 3355 3356 /** 3357 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3358 * @start: starting downstream device 3359 * @end: ending upstream device or NULL to search to the root bus 3360 * @acs_flags: required flags 3361 * 3362 * Walk up a device tree from start to end testing PCI ACS support. If 3363 * any step along the way does not support the required flags, return false. 3364 */ 3365 bool pci_acs_path_enabled(struct pci_dev *start, 3366 struct pci_dev *end, u16 acs_flags) 3367 { 3368 struct pci_dev *pdev, *parent = start; 3369 3370 do { 3371 pdev = parent; 3372 3373 if (!pci_acs_enabled(pdev, acs_flags)) 3374 return false; 3375 3376 if (pci_is_root_bus(pdev->bus)) 3377 return (end == NULL); 3378 3379 parent = pdev->bus->self; 3380 } while (pdev != end); 3381 3382 return true; 3383 } 3384 3385 /** 3386 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3387 * @pdev: PCI device 3388 * @bar: BAR to find 3389 * 3390 * Helper to find the position of the ctrl register for a BAR. 3391 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3392 * Returns -ENOENT if no ctrl register for the BAR could be found. 3393 */ 3394 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3395 { 3396 unsigned int pos, nbars, i; 3397 u32 ctrl; 3398 3399 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3400 if (!pos) 3401 return -ENOTSUPP; 3402 3403 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3404 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3405 PCI_REBAR_CTRL_NBAR_SHIFT; 3406 3407 for (i = 0; i < nbars; i++, pos += 8) { 3408 int bar_idx; 3409 3410 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3411 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3412 if (bar_idx == bar) 3413 return pos; 3414 } 3415 3416 return -ENOENT; 3417 } 3418 3419 /** 3420 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3421 * @pdev: PCI device 3422 * @bar: BAR to query 3423 * 3424 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3425 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3426 */ 3427 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3428 { 3429 int pos; 3430 u32 cap; 3431 3432 pos = pci_rebar_find_pos(pdev, bar); 3433 if (pos < 0) 3434 return 0; 3435 3436 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3437 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3438 } 3439 3440 /** 3441 * pci_rebar_get_current_size - get the current size of a BAR 3442 * @pdev: PCI device 3443 * @bar: BAR to set size to 3444 * 3445 * Read the size of a BAR from the resizable BAR config. 3446 * Returns size if found or negative error code. 3447 */ 3448 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3449 { 3450 int pos; 3451 u32 ctrl; 3452 3453 pos = pci_rebar_find_pos(pdev, bar); 3454 if (pos < 0) 3455 return pos; 3456 3457 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3458 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3459 } 3460 3461 /** 3462 * pci_rebar_set_size - set a new size for a BAR 3463 * @pdev: PCI device 3464 * @bar: BAR to set size to 3465 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3466 * 3467 * Set the new size of a BAR as defined in the spec. 3468 * Returns zero if resizing was successful, error code otherwise. 3469 */ 3470 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3471 { 3472 int pos; 3473 u32 ctrl; 3474 3475 pos = pci_rebar_find_pos(pdev, bar); 3476 if (pos < 0) 3477 return pos; 3478 3479 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3480 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3481 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3482 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3483 return 0; 3484 } 3485 3486 /** 3487 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3488 * @dev: the PCI device 3489 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3490 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3491 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3492 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3493 * 3494 * Return 0 if all upstream bridges support AtomicOp routing, egress 3495 * blocking is disabled on all upstream ports, and the root port supports 3496 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3497 * AtomicOp completion), or negative otherwise. 3498 */ 3499 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3500 { 3501 struct pci_bus *bus = dev->bus; 3502 struct pci_dev *bridge; 3503 u32 cap, ctl2; 3504 3505 if (!pci_is_pcie(dev)) 3506 return -EINVAL; 3507 3508 /* 3509 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3510 * AtomicOp requesters. For now, we only support endpoints as 3511 * requesters and root ports as completers. No endpoints as 3512 * completers, and no peer-to-peer. 3513 */ 3514 3515 switch (pci_pcie_type(dev)) { 3516 case PCI_EXP_TYPE_ENDPOINT: 3517 case PCI_EXP_TYPE_LEG_END: 3518 case PCI_EXP_TYPE_RC_END: 3519 break; 3520 default: 3521 return -EINVAL; 3522 } 3523 3524 while (bus->parent) { 3525 bridge = bus->self; 3526 3527 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3528 3529 switch (pci_pcie_type(bridge)) { 3530 /* Ensure switch ports support AtomicOp routing */ 3531 case PCI_EXP_TYPE_UPSTREAM: 3532 case PCI_EXP_TYPE_DOWNSTREAM: 3533 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3534 return -EINVAL; 3535 break; 3536 3537 /* Ensure root port supports all the sizes we care about */ 3538 case PCI_EXP_TYPE_ROOT_PORT: 3539 if ((cap & cap_mask) != cap_mask) 3540 return -EINVAL; 3541 break; 3542 } 3543 3544 /* Ensure upstream ports don't block AtomicOps on egress */ 3545 if (!bridge->has_secondary_link) { 3546 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3547 &ctl2); 3548 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3549 return -EINVAL; 3550 } 3551 3552 bus = bus->parent; 3553 } 3554 3555 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3556 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3557 return 0; 3558 } 3559 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3560 3561 /** 3562 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3563 * @dev: the PCI device 3564 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3565 * 3566 * Perform INTx swizzling for a device behind one level of bridge. This is 3567 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3568 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3569 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3570 * the PCI Express Base Specification, Revision 2.1) 3571 */ 3572 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3573 { 3574 int slot; 3575 3576 if (pci_ari_enabled(dev->bus)) 3577 slot = 0; 3578 else 3579 slot = PCI_SLOT(dev->devfn); 3580 3581 return (((pin - 1) + slot) % 4) + 1; 3582 } 3583 3584 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3585 { 3586 u8 pin; 3587 3588 pin = dev->pin; 3589 if (!pin) 3590 return -1; 3591 3592 while (!pci_is_root_bus(dev->bus)) { 3593 pin = pci_swizzle_interrupt_pin(dev, pin); 3594 dev = dev->bus->self; 3595 } 3596 *bridge = dev; 3597 return pin; 3598 } 3599 3600 /** 3601 * pci_common_swizzle - swizzle INTx all the way to root bridge 3602 * @dev: the PCI device 3603 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3604 * 3605 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3606 * bridges all the way up to a PCI root bus. 3607 */ 3608 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3609 { 3610 u8 pin = *pinp; 3611 3612 while (!pci_is_root_bus(dev->bus)) { 3613 pin = pci_swizzle_interrupt_pin(dev, pin); 3614 dev = dev->bus->self; 3615 } 3616 *pinp = pin; 3617 return PCI_SLOT(dev->devfn); 3618 } 3619 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3620 3621 /** 3622 * pci_release_region - Release a PCI bar 3623 * @pdev: PCI device whose resources were previously reserved by 3624 * pci_request_region() 3625 * @bar: BAR to release 3626 * 3627 * Releases the PCI I/O and memory resources previously reserved by a 3628 * successful call to pci_request_region(). Call this function only 3629 * after all use of the PCI regions has ceased. 3630 */ 3631 void pci_release_region(struct pci_dev *pdev, int bar) 3632 { 3633 struct pci_devres *dr; 3634 3635 if (pci_resource_len(pdev, bar) == 0) 3636 return; 3637 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3638 release_region(pci_resource_start(pdev, bar), 3639 pci_resource_len(pdev, bar)); 3640 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3641 release_mem_region(pci_resource_start(pdev, bar), 3642 pci_resource_len(pdev, bar)); 3643 3644 dr = find_pci_dr(pdev); 3645 if (dr) 3646 dr->region_mask &= ~(1 << bar); 3647 } 3648 EXPORT_SYMBOL(pci_release_region); 3649 3650 /** 3651 * __pci_request_region - Reserved PCI I/O and memory resource 3652 * @pdev: PCI device whose resources are to be reserved 3653 * @bar: BAR to be reserved 3654 * @res_name: Name to be associated with resource. 3655 * @exclusive: whether the region access is exclusive or not 3656 * 3657 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3658 * being reserved by owner @res_name. Do not access any 3659 * address inside the PCI regions unless this call returns 3660 * successfully. 3661 * 3662 * If @exclusive is set, then the region is marked so that userspace 3663 * is explicitly not allowed to map the resource via /dev/mem or 3664 * sysfs MMIO access. 3665 * 3666 * Returns 0 on success, or %EBUSY on error. A warning 3667 * message is also printed on failure. 3668 */ 3669 static int __pci_request_region(struct pci_dev *pdev, int bar, 3670 const char *res_name, int exclusive) 3671 { 3672 struct pci_devres *dr; 3673 3674 if (pci_resource_len(pdev, bar) == 0) 3675 return 0; 3676 3677 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3678 if (!request_region(pci_resource_start(pdev, bar), 3679 pci_resource_len(pdev, bar), res_name)) 3680 goto err_out; 3681 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3682 if (!__request_mem_region(pci_resource_start(pdev, bar), 3683 pci_resource_len(pdev, bar), res_name, 3684 exclusive)) 3685 goto err_out; 3686 } 3687 3688 dr = find_pci_dr(pdev); 3689 if (dr) 3690 dr->region_mask |= 1 << bar; 3691 3692 return 0; 3693 3694 err_out: 3695 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3696 &pdev->resource[bar]); 3697 return -EBUSY; 3698 } 3699 3700 /** 3701 * pci_request_region - Reserve PCI I/O and memory resource 3702 * @pdev: PCI device whose resources are to be reserved 3703 * @bar: BAR to be reserved 3704 * @res_name: Name to be associated with resource 3705 * 3706 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3707 * being reserved by owner @res_name. Do not access any 3708 * address inside the PCI regions unless this call returns 3709 * successfully. 3710 * 3711 * Returns 0 on success, or %EBUSY on error. A warning 3712 * message is also printed on failure. 3713 */ 3714 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3715 { 3716 return __pci_request_region(pdev, bar, res_name, 0); 3717 } 3718 EXPORT_SYMBOL(pci_request_region); 3719 3720 /** 3721 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3722 * @pdev: PCI device whose resources were previously reserved 3723 * @bars: Bitmask of BARs to be released 3724 * 3725 * Release selected PCI I/O and memory resources previously reserved. 3726 * Call this function only after all use of the PCI regions has ceased. 3727 */ 3728 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3729 { 3730 int i; 3731 3732 for (i = 0; i < 6; i++) 3733 if (bars & (1 << i)) 3734 pci_release_region(pdev, i); 3735 } 3736 EXPORT_SYMBOL(pci_release_selected_regions); 3737 3738 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3739 const char *res_name, int excl) 3740 { 3741 int i; 3742 3743 for (i = 0; i < 6; i++) 3744 if (bars & (1 << i)) 3745 if (__pci_request_region(pdev, i, res_name, excl)) 3746 goto err_out; 3747 return 0; 3748 3749 err_out: 3750 while (--i >= 0) 3751 if (bars & (1 << i)) 3752 pci_release_region(pdev, i); 3753 3754 return -EBUSY; 3755 } 3756 3757 3758 /** 3759 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3760 * @pdev: PCI device whose resources are to be reserved 3761 * @bars: Bitmask of BARs to be requested 3762 * @res_name: Name to be associated with resource 3763 */ 3764 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3765 const char *res_name) 3766 { 3767 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3768 } 3769 EXPORT_SYMBOL(pci_request_selected_regions); 3770 3771 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3772 const char *res_name) 3773 { 3774 return __pci_request_selected_regions(pdev, bars, res_name, 3775 IORESOURCE_EXCLUSIVE); 3776 } 3777 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3778 3779 /** 3780 * pci_release_regions - Release reserved PCI I/O and memory resources 3781 * @pdev: PCI device whose resources were previously reserved by 3782 * pci_request_regions() 3783 * 3784 * Releases all PCI I/O and memory resources previously reserved by a 3785 * successful call to pci_request_regions(). Call this function only 3786 * after all use of the PCI regions has ceased. 3787 */ 3788 3789 void pci_release_regions(struct pci_dev *pdev) 3790 { 3791 pci_release_selected_regions(pdev, (1 << 6) - 1); 3792 } 3793 EXPORT_SYMBOL(pci_release_regions); 3794 3795 /** 3796 * pci_request_regions - Reserve PCI I/O and memory resources 3797 * @pdev: PCI device whose resources are to be reserved 3798 * @res_name: Name to be associated with resource. 3799 * 3800 * Mark all PCI regions associated with PCI device @pdev as 3801 * being reserved by owner @res_name. Do not access any 3802 * address inside the PCI regions unless this call returns 3803 * successfully. 3804 * 3805 * Returns 0 on success, or %EBUSY on error. A warning 3806 * message is also printed on failure. 3807 */ 3808 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3809 { 3810 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3811 } 3812 EXPORT_SYMBOL(pci_request_regions); 3813 3814 /** 3815 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3816 * @pdev: PCI device whose resources are to be reserved 3817 * @res_name: Name to be associated with resource. 3818 * 3819 * Mark all PCI regions associated with PCI device @pdev as being reserved 3820 * by owner @res_name. Do not access any address inside the PCI regions 3821 * unless this call returns successfully. 3822 * 3823 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3824 * and the sysfs MMIO access will not be allowed. 3825 * 3826 * Returns 0 on success, or %EBUSY on error. A warning message is also 3827 * printed on failure. 3828 */ 3829 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3830 { 3831 return pci_request_selected_regions_exclusive(pdev, 3832 ((1 << 6) - 1), res_name); 3833 } 3834 EXPORT_SYMBOL(pci_request_regions_exclusive); 3835 3836 /* 3837 * Record the PCI IO range (expressed as CPU physical address + size). 3838 * Return a negative value if an error has occurred, zero otherwise 3839 */ 3840 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3841 resource_size_t size) 3842 { 3843 int ret = 0; 3844 #ifdef PCI_IOBASE 3845 struct logic_pio_hwaddr *range; 3846 3847 if (!size || addr + size < addr) 3848 return -EINVAL; 3849 3850 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3851 if (!range) 3852 return -ENOMEM; 3853 3854 range->fwnode = fwnode; 3855 range->size = size; 3856 range->hw_start = addr; 3857 range->flags = LOGIC_PIO_CPU_MMIO; 3858 3859 ret = logic_pio_register_range(range); 3860 if (ret) 3861 kfree(range); 3862 #endif 3863 3864 return ret; 3865 } 3866 3867 phys_addr_t pci_pio_to_address(unsigned long pio) 3868 { 3869 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3870 3871 #ifdef PCI_IOBASE 3872 if (pio >= MMIO_UPPER_LIMIT) 3873 return address; 3874 3875 address = logic_pio_to_hwaddr(pio); 3876 #endif 3877 3878 return address; 3879 } 3880 3881 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3882 { 3883 #ifdef PCI_IOBASE 3884 return logic_pio_trans_cpuaddr(address); 3885 #else 3886 if (address > IO_SPACE_LIMIT) 3887 return (unsigned long)-1; 3888 3889 return (unsigned long) address; 3890 #endif 3891 } 3892 3893 /** 3894 * pci_remap_iospace - Remap the memory mapped I/O space 3895 * @res: Resource describing the I/O space 3896 * @phys_addr: physical address of range to be mapped 3897 * 3898 * Remap the memory mapped I/O space described by the @res and the CPU 3899 * physical address @phys_addr into virtual address space. Only 3900 * architectures that have memory mapped IO functions defined (and the 3901 * PCI_IOBASE value defined) should call this function. 3902 */ 3903 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3904 { 3905 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3906 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3907 3908 if (!(res->flags & IORESOURCE_IO)) 3909 return -EINVAL; 3910 3911 if (res->end > IO_SPACE_LIMIT) 3912 return -EINVAL; 3913 3914 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3915 pgprot_device(PAGE_KERNEL)); 3916 #else 3917 /* 3918 * This architecture does not have memory mapped I/O space, 3919 * so this function should never be called 3920 */ 3921 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3922 return -ENODEV; 3923 #endif 3924 } 3925 EXPORT_SYMBOL(pci_remap_iospace); 3926 3927 /** 3928 * pci_unmap_iospace - Unmap the memory mapped I/O space 3929 * @res: resource to be unmapped 3930 * 3931 * Unmap the CPU virtual address @res from virtual address space. Only 3932 * architectures that have memory mapped IO functions defined (and the 3933 * PCI_IOBASE value defined) should call this function. 3934 */ 3935 void pci_unmap_iospace(struct resource *res) 3936 { 3937 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3938 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3939 3940 unmap_kernel_range(vaddr, resource_size(res)); 3941 #endif 3942 } 3943 EXPORT_SYMBOL(pci_unmap_iospace); 3944 3945 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 3946 { 3947 struct resource **res = ptr; 3948 3949 pci_unmap_iospace(*res); 3950 } 3951 3952 /** 3953 * devm_pci_remap_iospace - Managed pci_remap_iospace() 3954 * @dev: Generic device to remap IO address for 3955 * @res: Resource describing the I/O space 3956 * @phys_addr: physical address of range to be mapped 3957 * 3958 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 3959 * detach. 3960 */ 3961 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 3962 phys_addr_t phys_addr) 3963 { 3964 const struct resource **ptr; 3965 int error; 3966 3967 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 3968 if (!ptr) 3969 return -ENOMEM; 3970 3971 error = pci_remap_iospace(res, phys_addr); 3972 if (error) { 3973 devres_free(ptr); 3974 } else { 3975 *ptr = res; 3976 devres_add(dev, ptr); 3977 } 3978 3979 return error; 3980 } 3981 EXPORT_SYMBOL(devm_pci_remap_iospace); 3982 3983 /** 3984 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3985 * @dev: Generic device to remap IO address for 3986 * @offset: Resource address to map 3987 * @size: Size of map 3988 * 3989 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3990 * detach. 3991 */ 3992 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3993 resource_size_t offset, 3994 resource_size_t size) 3995 { 3996 void __iomem **ptr, *addr; 3997 3998 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3999 if (!ptr) 4000 return NULL; 4001 4002 addr = pci_remap_cfgspace(offset, size); 4003 if (addr) { 4004 *ptr = addr; 4005 devres_add(dev, ptr); 4006 } else 4007 devres_free(ptr); 4008 4009 return addr; 4010 } 4011 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4012 4013 /** 4014 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4015 * @dev: generic device to handle the resource for 4016 * @res: configuration space resource to be handled 4017 * 4018 * Checks that a resource is a valid memory region, requests the memory 4019 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4020 * proper PCI configuration space memory attributes are guaranteed. 4021 * 4022 * All operations are managed and will be undone on driver detach. 4023 * 4024 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4025 * on failure. Usage example:: 4026 * 4027 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4028 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4029 * if (IS_ERR(base)) 4030 * return PTR_ERR(base); 4031 */ 4032 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4033 struct resource *res) 4034 { 4035 resource_size_t size; 4036 const char *name; 4037 void __iomem *dest_ptr; 4038 4039 BUG_ON(!dev); 4040 4041 if (!res || resource_type(res) != IORESOURCE_MEM) { 4042 dev_err(dev, "invalid resource\n"); 4043 return IOMEM_ERR_PTR(-EINVAL); 4044 } 4045 4046 size = resource_size(res); 4047 name = res->name ?: dev_name(dev); 4048 4049 if (!devm_request_mem_region(dev, res->start, size, name)) { 4050 dev_err(dev, "can't request region for resource %pR\n", res); 4051 return IOMEM_ERR_PTR(-EBUSY); 4052 } 4053 4054 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4055 if (!dest_ptr) { 4056 dev_err(dev, "ioremap failed for resource %pR\n", res); 4057 devm_release_mem_region(dev, res->start, size); 4058 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4059 } 4060 4061 return dest_ptr; 4062 } 4063 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4064 4065 static void __pci_set_master(struct pci_dev *dev, bool enable) 4066 { 4067 u16 old_cmd, cmd; 4068 4069 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4070 if (enable) 4071 cmd = old_cmd | PCI_COMMAND_MASTER; 4072 else 4073 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4074 if (cmd != old_cmd) { 4075 pci_dbg(dev, "%s bus mastering\n", 4076 enable ? "enabling" : "disabling"); 4077 pci_write_config_word(dev, PCI_COMMAND, cmd); 4078 } 4079 dev->is_busmaster = enable; 4080 } 4081 4082 /** 4083 * pcibios_setup - process "pci=" kernel boot arguments 4084 * @str: string used to pass in "pci=" kernel boot arguments 4085 * 4086 * Process kernel boot arguments. This is the default implementation. 4087 * Architecture specific implementations can override this as necessary. 4088 */ 4089 char * __weak __init pcibios_setup(char *str) 4090 { 4091 return str; 4092 } 4093 4094 /** 4095 * pcibios_set_master - enable PCI bus-mastering for device dev 4096 * @dev: the PCI device to enable 4097 * 4098 * Enables PCI bus-mastering for the device. This is the default 4099 * implementation. Architecture specific implementations can override 4100 * this if necessary. 4101 */ 4102 void __weak pcibios_set_master(struct pci_dev *dev) 4103 { 4104 u8 lat; 4105 4106 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4107 if (pci_is_pcie(dev)) 4108 return; 4109 4110 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4111 if (lat < 16) 4112 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4113 else if (lat > pcibios_max_latency) 4114 lat = pcibios_max_latency; 4115 else 4116 return; 4117 4118 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4119 } 4120 4121 /** 4122 * pci_set_master - enables bus-mastering for device dev 4123 * @dev: the PCI device to enable 4124 * 4125 * Enables bus-mastering on the device and calls pcibios_set_master() 4126 * to do the needed arch specific settings. 4127 */ 4128 void pci_set_master(struct pci_dev *dev) 4129 { 4130 __pci_set_master(dev, true); 4131 pcibios_set_master(dev); 4132 } 4133 EXPORT_SYMBOL(pci_set_master); 4134 4135 /** 4136 * pci_clear_master - disables bus-mastering for device dev 4137 * @dev: the PCI device to disable 4138 */ 4139 void pci_clear_master(struct pci_dev *dev) 4140 { 4141 __pci_set_master(dev, false); 4142 } 4143 EXPORT_SYMBOL(pci_clear_master); 4144 4145 /** 4146 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4147 * @dev: the PCI device for which MWI is to be enabled 4148 * 4149 * Helper function for pci_set_mwi. 4150 * Originally copied from drivers/net/acenic.c. 4151 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4152 * 4153 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4154 */ 4155 int pci_set_cacheline_size(struct pci_dev *dev) 4156 { 4157 u8 cacheline_size; 4158 4159 if (!pci_cache_line_size) 4160 return -EINVAL; 4161 4162 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4163 equal to or multiple of the right value. */ 4164 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4165 if (cacheline_size >= pci_cache_line_size && 4166 (cacheline_size % pci_cache_line_size) == 0) 4167 return 0; 4168 4169 /* Write the correct value. */ 4170 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4171 /* Read it back. */ 4172 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4173 if (cacheline_size == pci_cache_line_size) 4174 return 0; 4175 4176 pci_info(dev, "cache line size of %d is not supported\n", 4177 pci_cache_line_size << 2); 4178 4179 return -EINVAL; 4180 } 4181 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4182 4183 /** 4184 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4185 * @dev: the PCI device for which MWI is enabled 4186 * 4187 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4188 * 4189 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4190 */ 4191 int pci_set_mwi(struct pci_dev *dev) 4192 { 4193 #ifdef PCI_DISABLE_MWI 4194 return 0; 4195 #else 4196 int rc; 4197 u16 cmd; 4198 4199 rc = pci_set_cacheline_size(dev); 4200 if (rc) 4201 return rc; 4202 4203 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4204 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4205 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4206 cmd |= PCI_COMMAND_INVALIDATE; 4207 pci_write_config_word(dev, PCI_COMMAND, cmd); 4208 } 4209 return 0; 4210 #endif 4211 } 4212 EXPORT_SYMBOL(pci_set_mwi); 4213 4214 /** 4215 * pcim_set_mwi - a device-managed pci_set_mwi() 4216 * @dev: the PCI device for which MWI is enabled 4217 * 4218 * Managed pci_set_mwi(). 4219 * 4220 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4221 */ 4222 int pcim_set_mwi(struct pci_dev *dev) 4223 { 4224 struct pci_devres *dr; 4225 4226 dr = find_pci_dr(dev); 4227 if (!dr) 4228 return -ENOMEM; 4229 4230 dr->mwi = 1; 4231 return pci_set_mwi(dev); 4232 } 4233 EXPORT_SYMBOL(pcim_set_mwi); 4234 4235 /** 4236 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4237 * @dev: the PCI device for which MWI is enabled 4238 * 4239 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4240 * Callers are not required to check the return value. 4241 * 4242 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4243 */ 4244 int pci_try_set_mwi(struct pci_dev *dev) 4245 { 4246 #ifdef PCI_DISABLE_MWI 4247 return 0; 4248 #else 4249 return pci_set_mwi(dev); 4250 #endif 4251 } 4252 EXPORT_SYMBOL(pci_try_set_mwi); 4253 4254 /** 4255 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4256 * @dev: the PCI device to disable 4257 * 4258 * Disables PCI Memory-Write-Invalidate transaction on the device 4259 */ 4260 void pci_clear_mwi(struct pci_dev *dev) 4261 { 4262 #ifndef PCI_DISABLE_MWI 4263 u16 cmd; 4264 4265 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4266 if (cmd & PCI_COMMAND_INVALIDATE) { 4267 cmd &= ~PCI_COMMAND_INVALIDATE; 4268 pci_write_config_word(dev, PCI_COMMAND, cmd); 4269 } 4270 #endif 4271 } 4272 EXPORT_SYMBOL(pci_clear_mwi); 4273 4274 /** 4275 * pci_intx - enables/disables PCI INTx for device dev 4276 * @pdev: the PCI device to operate on 4277 * @enable: boolean: whether to enable or disable PCI INTx 4278 * 4279 * Enables/disables PCI INTx for device @pdev 4280 */ 4281 void pci_intx(struct pci_dev *pdev, int enable) 4282 { 4283 u16 pci_command, new; 4284 4285 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4286 4287 if (enable) 4288 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4289 else 4290 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4291 4292 if (new != pci_command) { 4293 struct pci_devres *dr; 4294 4295 pci_write_config_word(pdev, PCI_COMMAND, new); 4296 4297 dr = find_pci_dr(pdev); 4298 if (dr && !dr->restore_intx) { 4299 dr->restore_intx = 1; 4300 dr->orig_intx = !enable; 4301 } 4302 } 4303 } 4304 EXPORT_SYMBOL_GPL(pci_intx); 4305 4306 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4307 { 4308 struct pci_bus *bus = dev->bus; 4309 bool mask_updated = true; 4310 u32 cmd_status_dword; 4311 u16 origcmd, newcmd; 4312 unsigned long flags; 4313 bool irq_pending; 4314 4315 /* 4316 * We do a single dword read to retrieve both command and status. 4317 * Document assumptions that make this possible. 4318 */ 4319 BUILD_BUG_ON(PCI_COMMAND % 4); 4320 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4321 4322 raw_spin_lock_irqsave(&pci_lock, flags); 4323 4324 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4325 4326 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4327 4328 /* 4329 * Check interrupt status register to see whether our device 4330 * triggered the interrupt (when masking) or the next IRQ is 4331 * already pending (when unmasking). 4332 */ 4333 if (mask != irq_pending) { 4334 mask_updated = false; 4335 goto done; 4336 } 4337 4338 origcmd = cmd_status_dword; 4339 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4340 if (mask) 4341 newcmd |= PCI_COMMAND_INTX_DISABLE; 4342 if (newcmd != origcmd) 4343 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4344 4345 done: 4346 raw_spin_unlock_irqrestore(&pci_lock, flags); 4347 4348 return mask_updated; 4349 } 4350 4351 /** 4352 * pci_check_and_mask_intx - mask INTx on pending interrupt 4353 * @dev: the PCI device to operate on 4354 * 4355 * Check if the device dev has its INTx line asserted, mask it and return 4356 * true in that case. False is returned if no interrupt was pending. 4357 */ 4358 bool pci_check_and_mask_intx(struct pci_dev *dev) 4359 { 4360 return pci_check_and_set_intx_mask(dev, true); 4361 } 4362 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4363 4364 /** 4365 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4366 * @dev: the PCI device to operate on 4367 * 4368 * Check if the device dev has its INTx line asserted, unmask it if not and 4369 * return true. False is returned and the mask remains active if there was 4370 * still an interrupt pending. 4371 */ 4372 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4373 { 4374 return pci_check_and_set_intx_mask(dev, false); 4375 } 4376 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4377 4378 /** 4379 * pci_wait_for_pending_transaction - wait for pending transaction 4380 * @dev: the PCI device to operate on 4381 * 4382 * Return 0 if transaction is pending 1 otherwise. 4383 */ 4384 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4385 { 4386 if (!pci_is_pcie(dev)) 4387 return 1; 4388 4389 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4390 PCI_EXP_DEVSTA_TRPND); 4391 } 4392 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4393 4394 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 4395 { 4396 int delay = 1; 4397 u32 id; 4398 4399 /* 4400 * After reset, the device should not silently discard config 4401 * requests, but it may still indicate that it needs more time by 4402 * responding to them with CRS completions. The Root Port will 4403 * generally synthesize ~0 data to complete the read (except when 4404 * CRS SV is enabled and the read was for the Vendor ID; in that 4405 * case it synthesizes 0x0001 data). 4406 * 4407 * Wait for the device to return a non-CRS completion. Read the 4408 * Command register instead of Vendor ID so we don't have to 4409 * contend with the CRS SV value. 4410 */ 4411 pci_read_config_dword(dev, PCI_COMMAND, &id); 4412 while (id == ~0) { 4413 if (delay > timeout) { 4414 pci_warn(dev, "not ready %dms after %s; giving up\n", 4415 delay - 1, reset_type); 4416 return -ENOTTY; 4417 } 4418 4419 if (delay > 1000) 4420 pci_info(dev, "not ready %dms after %s; waiting\n", 4421 delay - 1, reset_type); 4422 4423 msleep(delay); 4424 delay *= 2; 4425 pci_read_config_dword(dev, PCI_COMMAND, &id); 4426 } 4427 4428 if (delay > 1000) 4429 pci_info(dev, "ready %dms after %s\n", delay - 1, 4430 reset_type); 4431 4432 return 0; 4433 } 4434 4435 /** 4436 * pcie_has_flr - check if a device supports function level resets 4437 * @dev: device to check 4438 * 4439 * Returns true if the device advertises support for PCIe function level 4440 * resets. 4441 */ 4442 bool pcie_has_flr(struct pci_dev *dev) 4443 { 4444 u32 cap; 4445 4446 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4447 return false; 4448 4449 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4450 return cap & PCI_EXP_DEVCAP_FLR; 4451 } 4452 EXPORT_SYMBOL_GPL(pcie_has_flr); 4453 4454 /** 4455 * pcie_flr - initiate a PCIe function level reset 4456 * @dev: device to reset 4457 * 4458 * Initiate a function level reset on @dev. The caller should ensure the 4459 * device supports FLR before calling this function, e.g. by using the 4460 * pcie_has_flr() helper. 4461 */ 4462 int pcie_flr(struct pci_dev *dev) 4463 { 4464 if (!pci_wait_for_pending_transaction(dev)) 4465 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4466 4467 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4468 4469 if (dev->imm_ready) 4470 return 0; 4471 4472 /* 4473 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4474 * 100ms, but may silently discard requests while the FLR is in 4475 * progress. Wait 100ms before trying to access the device. 4476 */ 4477 msleep(100); 4478 4479 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4480 } 4481 EXPORT_SYMBOL_GPL(pcie_flr); 4482 4483 static int pci_af_flr(struct pci_dev *dev, int probe) 4484 { 4485 int pos; 4486 u8 cap; 4487 4488 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4489 if (!pos) 4490 return -ENOTTY; 4491 4492 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4493 return -ENOTTY; 4494 4495 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4496 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4497 return -ENOTTY; 4498 4499 if (probe) 4500 return 0; 4501 4502 /* 4503 * Wait for Transaction Pending bit to clear. A word-aligned test 4504 * is used, so we use the conrol offset rather than status and shift 4505 * the test bit to match. 4506 */ 4507 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4508 PCI_AF_STATUS_TP << 8)) 4509 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4510 4511 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4512 4513 if (dev->imm_ready) 4514 return 0; 4515 4516 /* 4517 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4518 * updated 27 July 2006; a device must complete an FLR within 4519 * 100ms, but may silently discard requests while the FLR is in 4520 * progress. Wait 100ms before trying to access the device. 4521 */ 4522 msleep(100); 4523 4524 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4525 } 4526 4527 /** 4528 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4529 * @dev: Device to reset. 4530 * @probe: If set, only check if the device can be reset this way. 4531 * 4532 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4533 * unset, it will be reinitialized internally when going from PCI_D3hot to 4534 * PCI_D0. If that's the case and the device is not in a low-power state 4535 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4536 * 4537 * NOTE: This causes the caller to sleep for twice the device power transition 4538 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4539 * by default (i.e. unless the @dev's d3_delay field has a different value). 4540 * Moreover, only devices in D0 can be reset by this function. 4541 */ 4542 static int pci_pm_reset(struct pci_dev *dev, int probe) 4543 { 4544 u16 csr; 4545 4546 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4547 return -ENOTTY; 4548 4549 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4550 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4551 return -ENOTTY; 4552 4553 if (probe) 4554 return 0; 4555 4556 if (dev->current_state != PCI_D0) 4557 return -EINVAL; 4558 4559 csr &= ~PCI_PM_CTRL_STATE_MASK; 4560 csr |= PCI_D3hot; 4561 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4562 pci_dev_d3_sleep(dev); 4563 4564 csr &= ~PCI_PM_CTRL_STATE_MASK; 4565 csr |= PCI_D0; 4566 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4567 pci_dev_d3_sleep(dev); 4568 4569 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4570 } 4571 /** 4572 * pcie_wait_for_link - Wait until link is active or inactive 4573 * @pdev: Bridge device 4574 * @active: waiting for active or inactive? 4575 * 4576 * Use this to wait till link becomes active or inactive. 4577 */ 4578 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4579 { 4580 int timeout = 1000; 4581 bool ret; 4582 u16 lnk_status; 4583 4584 /* 4585 * Some controllers might not implement link active reporting. In this 4586 * case, we wait for 1000 + 100 ms. 4587 */ 4588 if (!pdev->link_active_reporting) { 4589 msleep(1100); 4590 return true; 4591 } 4592 4593 /* 4594 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4595 * after which we should expect an link active if the reset was 4596 * successful. If so, software must wait a minimum 100ms before sending 4597 * configuration requests to devices downstream this port. 4598 * 4599 * If the link fails to activate, either the device was physically 4600 * removed or the link is permanently failed. 4601 */ 4602 if (active) 4603 msleep(20); 4604 for (;;) { 4605 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4606 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4607 if (ret == active) 4608 break; 4609 if (timeout <= 0) 4610 break; 4611 msleep(10); 4612 timeout -= 10; 4613 } 4614 if (active && ret) 4615 msleep(100); 4616 else if (ret != active) 4617 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4618 active ? "set" : "cleared"); 4619 return ret == active; 4620 } 4621 4622 void pci_reset_secondary_bus(struct pci_dev *dev) 4623 { 4624 u16 ctrl; 4625 4626 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4627 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4628 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4629 4630 /* 4631 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4632 * this to 2ms to ensure that we meet the minimum requirement. 4633 */ 4634 msleep(2); 4635 4636 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4637 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4638 4639 /* 4640 * Trhfa for conventional PCI is 2^25 clock cycles. 4641 * Assuming a minimum 33MHz clock this results in a 1s 4642 * delay before we can consider subordinate devices to 4643 * be re-initialized. PCIe has some ways to shorten this, 4644 * but we don't make use of them yet. 4645 */ 4646 ssleep(1); 4647 } 4648 4649 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4650 { 4651 pci_reset_secondary_bus(dev); 4652 } 4653 4654 /** 4655 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4656 * @dev: Bridge device 4657 * 4658 * Use the bridge control register to assert reset on the secondary bus. 4659 * Devices on the secondary bus are left in power-on state. 4660 */ 4661 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4662 { 4663 pcibios_reset_secondary_bus(dev); 4664 4665 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4666 } 4667 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4668 4669 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4670 { 4671 struct pci_dev *pdev; 4672 4673 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4674 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4675 return -ENOTTY; 4676 4677 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4678 if (pdev != dev) 4679 return -ENOTTY; 4680 4681 if (probe) 4682 return 0; 4683 4684 return pci_bridge_secondary_bus_reset(dev->bus->self); 4685 } 4686 4687 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4688 { 4689 int rc = -ENOTTY; 4690 4691 if (!hotplug || !try_module_get(hotplug->owner)) 4692 return rc; 4693 4694 if (hotplug->ops->reset_slot) 4695 rc = hotplug->ops->reset_slot(hotplug, probe); 4696 4697 module_put(hotplug->owner); 4698 4699 return rc; 4700 } 4701 4702 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4703 { 4704 struct pci_dev *pdev; 4705 4706 if (dev->subordinate || !dev->slot || 4707 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4708 return -ENOTTY; 4709 4710 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4711 if (pdev != dev && pdev->slot == dev->slot) 4712 return -ENOTTY; 4713 4714 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4715 } 4716 4717 static void pci_dev_lock(struct pci_dev *dev) 4718 { 4719 pci_cfg_access_lock(dev); 4720 /* block PM suspend, driver probe, etc. */ 4721 device_lock(&dev->dev); 4722 } 4723 4724 /* Return 1 on successful lock, 0 on contention */ 4725 static int pci_dev_trylock(struct pci_dev *dev) 4726 { 4727 if (pci_cfg_access_trylock(dev)) { 4728 if (device_trylock(&dev->dev)) 4729 return 1; 4730 pci_cfg_access_unlock(dev); 4731 } 4732 4733 return 0; 4734 } 4735 4736 static void pci_dev_unlock(struct pci_dev *dev) 4737 { 4738 device_unlock(&dev->dev); 4739 pci_cfg_access_unlock(dev); 4740 } 4741 4742 static void pci_dev_save_and_disable(struct pci_dev *dev) 4743 { 4744 const struct pci_error_handlers *err_handler = 4745 dev->driver ? dev->driver->err_handler : NULL; 4746 4747 /* 4748 * dev->driver->err_handler->reset_prepare() is protected against 4749 * races with ->remove() by the device lock, which must be held by 4750 * the caller. 4751 */ 4752 if (err_handler && err_handler->reset_prepare) 4753 err_handler->reset_prepare(dev); 4754 4755 /* 4756 * Wake-up device prior to save. PM registers default to D0 after 4757 * reset and a simple register restore doesn't reliably return 4758 * to a non-D0 state anyway. 4759 */ 4760 pci_set_power_state(dev, PCI_D0); 4761 4762 pci_save_state(dev); 4763 /* 4764 * Disable the device by clearing the Command register, except for 4765 * INTx-disable which is set. This not only disables MMIO and I/O port 4766 * BARs, but also prevents the device from being Bus Master, preventing 4767 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4768 * compliant devices, INTx-disable prevents legacy interrupts. 4769 */ 4770 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4771 } 4772 4773 static void pci_dev_restore(struct pci_dev *dev) 4774 { 4775 const struct pci_error_handlers *err_handler = 4776 dev->driver ? dev->driver->err_handler : NULL; 4777 4778 pci_restore_state(dev); 4779 4780 /* 4781 * dev->driver->err_handler->reset_done() is protected against 4782 * races with ->remove() by the device lock, which must be held by 4783 * the caller. 4784 */ 4785 if (err_handler && err_handler->reset_done) 4786 err_handler->reset_done(dev); 4787 } 4788 4789 /** 4790 * __pci_reset_function_locked - reset a PCI device function while holding 4791 * the @dev mutex lock. 4792 * @dev: PCI device to reset 4793 * 4794 * Some devices allow an individual function to be reset without affecting 4795 * other functions in the same device. The PCI device must be responsive 4796 * to PCI config space in order to use this function. 4797 * 4798 * The device function is presumed to be unused and the caller is holding 4799 * the device mutex lock when this function is called. 4800 * 4801 * Resetting the device will make the contents of PCI configuration space 4802 * random, so any caller of this must be prepared to reinitialise the 4803 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4804 * etc. 4805 * 4806 * Returns 0 if the device function was successfully reset or negative if the 4807 * device doesn't support resetting a single function. 4808 */ 4809 int __pci_reset_function_locked(struct pci_dev *dev) 4810 { 4811 int rc; 4812 4813 might_sleep(); 4814 4815 /* 4816 * A reset method returns -ENOTTY if it doesn't support this device 4817 * and we should try the next method. 4818 * 4819 * If it returns 0 (success), we're finished. If it returns any 4820 * other error, we're also finished: this indicates that further 4821 * reset mechanisms might be broken on the device. 4822 */ 4823 rc = pci_dev_specific_reset(dev, 0); 4824 if (rc != -ENOTTY) 4825 return rc; 4826 if (pcie_has_flr(dev)) { 4827 rc = pcie_flr(dev); 4828 if (rc != -ENOTTY) 4829 return rc; 4830 } 4831 rc = pci_af_flr(dev, 0); 4832 if (rc != -ENOTTY) 4833 return rc; 4834 rc = pci_pm_reset(dev, 0); 4835 if (rc != -ENOTTY) 4836 return rc; 4837 rc = pci_dev_reset_slot_function(dev, 0); 4838 if (rc != -ENOTTY) 4839 return rc; 4840 return pci_parent_bus_reset(dev, 0); 4841 } 4842 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4843 4844 /** 4845 * pci_probe_reset_function - check whether the device can be safely reset 4846 * @dev: PCI device to reset 4847 * 4848 * Some devices allow an individual function to be reset without affecting 4849 * other functions in the same device. The PCI device must be responsive 4850 * to PCI config space in order to use this function. 4851 * 4852 * Returns 0 if the device function can be reset or negative if the 4853 * device doesn't support resetting a single function. 4854 */ 4855 int pci_probe_reset_function(struct pci_dev *dev) 4856 { 4857 int rc; 4858 4859 might_sleep(); 4860 4861 rc = pci_dev_specific_reset(dev, 1); 4862 if (rc != -ENOTTY) 4863 return rc; 4864 if (pcie_has_flr(dev)) 4865 return 0; 4866 rc = pci_af_flr(dev, 1); 4867 if (rc != -ENOTTY) 4868 return rc; 4869 rc = pci_pm_reset(dev, 1); 4870 if (rc != -ENOTTY) 4871 return rc; 4872 rc = pci_dev_reset_slot_function(dev, 1); 4873 if (rc != -ENOTTY) 4874 return rc; 4875 4876 return pci_parent_bus_reset(dev, 1); 4877 } 4878 4879 /** 4880 * pci_reset_function - quiesce and reset a PCI device function 4881 * @dev: PCI device to reset 4882 * 4883 * Some devices allow an individual function to be reset without affecting 4884 * other functions in the same device. The PCI device must be responsive 4885 * to PCI config space in order to use this function. 4886 * 4887 * This function does not just reset the PCI portion of a device, but 4888 * clears all the state associated with the device. This function differs 4889 * from __pci_reset_function_locked() in that it saves and restores device state 4890 * over the reset and takes the PCI device lock. 4891 * 4892 * Returns 0 if the device function was successfully reset or negative if the 4893 * device doesn't support resetting a single function. 4894 */ 4895 int pci_reset_function(struct pci_dev *dev) 4896 { 4897 int rc; 4898 4899 if (!dev->reset_fn) 4900 return -ENOTTY; 4901 4902 pci_dev_lock(dev); 4903 pci_dev_save_and_disable(dev); 4904 4905 rc = __pci_reset_function_locked(dev); 4906 4907 pci_dev_restore(dev); 4908 pci_dev_unlock(dev); 4909 4910 return rc; 4911 } 4912 EXPORT_SYMBOL_GPL(pci_reset_function); 4913 4914 /** 4915 * pci_reset_function_locked - quiesce and reset a PCI device function 4916 * @dev: PCI device to reset 4917 * 4918 * Some devices allow an individual function to be reset without affecting 4919 * other functions in the same device. The PCI device must be responsive 4920 * to PCI config space in order to use this function. 4921 * 4922 * This function does not just reset the PCI portion of a device, but 4923 * clears all the state associated with the device. This function differs 4924 * from __pci_reset_function_locked() in that it saves and restores device state 4925 * over the reset. It also differs from pci_reset_function() in that it 4926 * requires the PCI device lock to be held. 4927 * 4928 * Returns 0 if the device function was successfully reset or negative if the 4929 * device doesn't support resetting a single function. 4930 */ 4931 int pci_reset_function_locked(struct pci_dev *dev) 4932 { 4933 int rc; 4934 4935 if (!dev->reset_fn) 4936 return -ENOTTY; 4937 4938 pci_dev_save_and_disable(dev); 4939 4940 rc = __pci_reset_function_locked(dev); 4941 4942 pci_dev_restore(dev); 4943 4944 return rc; 4945 } 4946 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4947 4948 /** 4949 * pci_try_reset_function - quiesce and reset a PCI device function 4950 * @dev: PCI device to reset 4951 * 4952 * Same as above, except return -EAGAIN if unable to lock device. 4953 */ 4954 int pci_try_reset_function(struct pci_dev *dev) 4955 { 4956 int rc; 4957 4958 if (!dev->reset_fn) 4959 return -ENOTTY; 4960 4961 if (!pci_dev_trylock(dev)) 4962 return -EAGAIN; 4963 4964 pci_dev_save_and_disable(dev); 4965 rc = __pci_reset_function_locked(dev); 4966 pci_dev_restore(dev); 4967 pci_dev_unlock(dev); 4968 4969 return rc; 4970 } 4971 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4972 4973 /* Do any devices on or below this bus prevent a bus reset? */ 4974 static bool pci_bus_resetable(struct pci_bus *bus) 4975 { 4976 struct pci_dev *dev; 4977 4978 4979 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4980 return false; 4981 4982 list_for_each_entry(dev, &bus->devices, bus_list) { 4983 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4984 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4985 return false; 4986 } 4987 4988 return true; 4989 } 4990 4991 /* Lock devices from the top of the tree down */ 4992 static void pci_bus_lock(struct pci_bus *bus) 4993 { 4994 struct pci_dev *dev; 4995 4996 list_for_each_entry(dev, &bus->devices, bus_list) { 4997 pci_dev_lock(dev); 4998 if (dev->subordinate) 4999 pci_bus_lock(dev->subordinate); 5000 } 5001 } 5002 5003 /* Unlock devices from the bottom of the tree up */ 5004 static void pci_bus_unlock(struct pci_bus *bus) 5005 { 5006 struct pci_dev *dev; 5007 5008 list_for_each_entry(dev, &bus->devices, bus_list) { 5009 if (dev->subordinate) 5010 pci_bus_unlock(dev->subordinate); 5011 pci_dev_unlock(dev); 5012 } 5013 } 5014 5015 /* Return 1 on successful lock, 0 on contention */ 5016 static int pci_bus_trylock(struct pci_bus *bus) 5017 { 5018 struct pci_dev *dev; 5019 5020 list_for_each_entry(dev, &bus->devices, bus_list) { 5021 if (!pci_dev_trylock(dev)) 5022 goto unlock; 5023 if (dev->subordinate) { 5024 if (!pci_bus_trylock(dev->subordinate)) { 5025 pci_dev_unlock(dev); 5026 goto unlock; 5027 } 5028 } 5029 } 5030 return 1; 5031 5032 unlock: 5033 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5034 if (dev->subordinate) 5035 pci_bus_unlock(dev->subordinate); 5036 pci_dev_unlock(dev); 5037 } 5038 return 0; 5039 } 5040 5041 /* Do any devices on or below this slot prevent a bus reset? */ 5042 static bool pci_slot_resetable(struct pci_slot *slot) 5043 { 5044 struct pci_dev *dev; 5045 5046 if (slot->bus->self && 5047 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5048 return false; 5049 5050 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5051 if (!dev->slot || dev->slot != slot) 5052 continue; 5053 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5054 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5055 return false; 5056 } 5057 5058 return true; 5059 } 5060 5061 /* Lock devices from the top of the tree down */ 5062 static void pci_slot_lock(struct pci_slot *slot) 5063 { 5064 struct pci_dev *dev; 5065 5066 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5067 if (!dev->slot || dev->slot != slot) 5068 continue; 5069 pci_dev_lock(dev); 5070 if (dev->subordinate) 5071 pci_bus_lock(dev->subordinate); 5072 } 5073 } 5074 5075 /* Unlock devices from the bottom of the tree up */ 5076 static void pci_slot_unlock(struct pci_slot *slot) 5077 { 5078 struct pci_dev *dev; 5079 5080 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5081 if (!dev->slot || dev->slot != slot) 5082 continue; 5083 if (dev->subordinate) 5084 pci_bus_unlock(dev->subordinate); 5085 pci_dev_unlock(dev); 5086 } 5087 } 5088 5089 /* Return 1 on successful lock, 0 on contention */ 5090 static int pci_slot_trylock(struct pci_slot *slot) 5091 { 5092 struct pci_dev *dev; 5093 5094 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5095 if (!dev->slot || dev->slot != slot) 5096 continue; 5097 if (!pci_dev_trylock(dev)) 5098 goto unlock; 5099 if (dev->subordinate) { 5100 if (!pci_bus_trylock(dev->subordinate)) { 5101 pci_dev_unlock(dev); 5102 goto unlock; 5103 } 5104 } 5105 } 5106 return 1; 5107 5108 unlock: 5109 list_for_each_entry_continue_reverse(dev, 5110 &slot->bus->devices, bus_list) { 5111 if (!dev->slot || dev->slot != slot) 5112 continue; 5113 if (dev->subordinate) 5114 pci_bus_unlock(dev->subordinate); 5115 pci_dev_unlock(dev); 5116 } 5117 return 0; 5118 } 5119 5120 /* 5121 * Save and disable devices from the top of the tree down while holding 5122 * the @dev mutex lock for the entire tree. 5123 */ 5124 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5125 { 5126 struct pci_dev *dev; 5127 5128 list_for_each_entry(dev, &bus->devices, bus_list) { 5129 pci_dev_save_and_disable(dev); 5130 if (dev->subordinate) 5131 pci_bus_save_and_disable_locked(dev->subordinate); 5132 } 5133 } 5134 5135 /* 5136 * Restore devices from top of the tree down while holding @dev mutex lock 5137 * for the entire tree. Parent bridges need to be restored before we can 5138 * get to subordinate devices. 5139 */ 5140 static void pci_bus_restore_locked(struct pci_bus *bus) 5141 { 5142 struct pci_dev *dev; 5143 5144 list_for_each_entry(dev, &bus->devices, bus_list) { 5145 pci_dev_restore(dev); 5146 if (dev->subordinate) 5147 pci_bus_restore_locked(dev->subordinate); 5148 } 5149 } 5150 5151 /* 5152 * Save and disable devices from the top of the tree down while holding 5153 * the @dev mutex lock for the entire tree. 5154 */ 5155 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5156 { 5157 struct pci_dev *dev; 5158 5159 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5160 if (!dev->slot || dev->slot != slot) 5161 continue; 5162 pci_dev_save_and_disable(dev); 5163 if (dev->subordinate) 5164 pci_bus_save_and_disable_locked(dev->subordinate); 5165 } 5166 } 5167 5168 /* 5169 * Restore devices from top of the tree down while holding @dev mutex lock 5170 * for the entire tree. Parent bridges need to be restored before we can 5171 * get to subordinate devices. 5172 */ 5173 static void pci_slot_restore_locked(struct pci_slot *slot) 5174 { 5175 struct pci_dev *dev; 5176 5177 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5178 if (!dev->slot || dev->slot != slot) 5179 continue; 5180 pci_dev_restore(dev); 5181 if (dev->subordinate) 5182 pci_bus_restore_locked(dev->subordinate); 5183 } 5184 } 5185 5186 static int pci_slot_reset(struct pci_slot *slot, int probe) 5187 { 5188 int rc; 5189 5190 if (!slot || !pci_slot_resetable(slot)) 5191 return -ENOTTY; 5192 5193 if (!probe) 5194 pci_slot_lock(slot); 5195 5196 might_sleep(); 5197 5198 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5199 5200 if (!probe) 5201 pci_slot_unlock(slot); 5202 5203 return rc; 5204 } 5205 5206 /** 5207 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5208 * @slot: PCI slot to probe 5209 * 5210 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5211 */ 5212 int pci_probe_reset_slot(struct pci_slot *slot) 5213 { 5214 return pci_slot_reset(slot, 1); 5215 } 5216 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5217 5218 /** 5219 * __pci_reset_slot - Try to reset a PCI slot 5220 * @slot: PCI slot to reset 5221 * 5222 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5223 * independent of other slots. For instance, some slots may support slot power 5224 * control. In the case of a 1:1 bus to slot architecture, this function may 5225 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5226 * Generally a slot reset should be attempted before a bus reset. All of the 5227 * function of the slot and any subordinate buses behind the slot are reset 5228 * through this function. PCI config space of all devices in the slot and 5229 * behind the slot is saved before and restored after reset. 5230 * 5231 * Same as above except return -EAGAIN if the slot cannot be locked 5232 */ 5233 static int __pci_reset_slot(struct pci_slot *slot) 5234 { 5235 int rc; 5236 5237 rc = pci_slot_reset(slot, 1); 5238 if (rc) 5239 return rc; 5240 5241 if (pci_slot_trylock(slot)) { 5242 pci_slot_save_and_disable_locked(slot); 5243 might_sleep(); 5244 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5245 pci_slot_restore_locked(slot); 5246 pci_slot_unlock(slot); 5247 } else 5248 rc = -EAGAIN; 5249 5250 return rc; 5251 } 5252 5253 static int pci_bus_reset(struct pci_bus *bus, int probe) 5254 { 5255 int ret; 5256 5257 if (!bus->self || !pci_bus_resetable(bus)) 5258 return -ENOTTY; 5259 5260 if (probe) 5261 return 0; 5262 5263 pci_bus_lock(bus); 5264 5265 might_sleep(); 5266 5267 ret = pci_bridge_secondary_bus_reset(bus->self); 5268 5269 pci_bus_unlock(bus); 5270 5271 return ret; 5272 } 5273 5274 /** 5275 * pci_bus_error_reset - reset the bridge's subordinate bus 5276 * @bridge: The parent device that connects to the bus to reset 5277 * 5278 * This function will first try to reset the slots on this bus if the method is 5279 * available. If slot reset fails or is not available, this will fall back to a 5280 * secondary bus reset. 5281 */ 5282 int pci_bus_error_reset(struct pci_dev *bridge) 5283 { 5284 struct pci_bus *bus = bridge->subordinate; 5285 struct pci_slot *slot; 5286 5287 if (!bus) 5288 return -ENOTTY; 5289 5290 mutex_lock(&pci_slot_mutex); 5291 if (list_empty(&bus->slots)) 5292 goto bus_reset; 5293 5294 list_for_each_entry(slot, &bus->slots, list) 5295 if (pci_probe_reset_slot(slot)) 5296 goto bus_reset; 5297 5298 list_for_each_entry(slot, &bus->slots, list) 5299 if (pci_slot_reset(slot, 0)) 5300 goto bus_reset; 5301 5302 mutex_unlock(&pci_slot_mutex); 5303 return 0; 5304 bus_reset: 5305 mutex_unlock(&pci_slot_mutex); 5306 return pci_bus_reset(bridge->subordinate, 0); 5307 } 5308 5309 /** 5310 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5311 * @bus: PCI bus to probe 5312 * 5313 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5314 */ 5315 int pci_probe_reset_bus(struct pci_bus *bus) 5316 { 5317 return pci_bus_reset(bus, 1); 5318 } 5319 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5320 5321 /** 5322 * __pci_reset_bus - Try to reset a PCI bus 5323 * @bus: top level PCI bus to reset 5324 * 5325 * Same as above except return -EAGAIN if the bus cannot be locked 5326 */ 5327 static int __pci_reset_bus(struct pci_bus *bus) 5328 { 5329 int rc; 5330 5331 rc = pci_bus_reset(bus, 1); 5332 if (rc) 5333 return rc; 5334 5335 if (pci_bus_trylock(bus)) { 5336 pci_bus_save_and_disable_locked(bus); 5337 might_sleep(); 5338 rc = pci_bridge_secondary_bus_reset(bus->self); 5339 pci_bus_restore_locked(bus); 5340 pci_bus_unlock(bus); 5341 } else 5342 rc = -EAGAIN; 5343 5344 return rc; 5345 } 5346 5347 /** 5348 * pci_reset_bus - Try to reset a PCI bus 5349 * @pdev: top level PCI device to reset via slot/bus 5350 * 5351 * Same as above except return -EAGAIN if the bus cannot be locked 5352 */ 5353 int pci_reset_bus(struct pci_dev *pdev) 5354 { 5355 return (!pci_probe_reset_slot(pdev->slot)) ? 5356 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5357 } 5358 EXPORT_SYMBOL_GPL(pci_reset_bus); 5359 5360 /** 5361 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5362 * @dev: PCI device to query 5363 * 5364 * Returns mmrbc: maximum designed memory read count in bytes or 5365 * appropriate error value. 5366 */ 5367 int pcix_get_max_mmrbc(struct pci_dev *dev) 5368 { 5369 int cap; 5370 u32 stat; 5371 5372 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5373 if (!cap) 5374 return -EINVAL; 5375 5376 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5377 return -EINVAL; 5378 5379 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5380 } 5381 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5382 5383 /** 5384 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5385 * @dev: PCI device to query 5386 * 5387 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5388 * value. 5389 */ 5390 int pcix_get_mmrbc(struct pci_dev *dev) 5391 { 5392 int cap; 5393 u16 cmd; 5394 5395 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5396 if (!cap) 5397 return -EINVAL; 5398 5399 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5400 return -EINVAL; 5401 5402 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5403 } 5404 EXPORT_SYMBOL(pcix_get_mmrbc); 5405 5406 /** 5407 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5408 * @dev: PCI device to query 5409 * @mmrbc: maximum memory read count in bytes 5410 * valid values are 512, 1024, 2048, 4096 5411 * 5412 * If possible sets maximum memory read byte count, some bridges have errata 5413 * that prevent this. 5414 */ 5415 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5416 { 5417 int cap; 5418 u32 stat, v, o; 5419 u16 cmd; 5420 5421 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5422 return -EINVAL; 5423 5424 v = ffs(mmrbc) - 10; 5425 5426 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5427 if (!cap) 5428 return -EINVAL; 5429 5430 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5431 return -EINVAL; 5432 5433 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5434 return -E2BIG; 5435 5436 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5437 return -EINVAL; 5438 5439 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5440 if (o != v) { 5441 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5442 return -EIO; 5443 5444 cmd &= ~PCI_X_CMD_MAX_READ; 5445 cmd |= v << 2; 5446 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5447 return -EIO; 5448 } 5449 return 0; 5450 } 5451 EXPORT_SYMBOL(pcix_set_mmrbc); 5452 5453 /** 5454 * pcie_get_readrq - get PCI Express read request size 5455 * @dev: PCI device to query 5456 * 5457 * Returns maximum memory read request in bytes or appropriate error value. 5458 */ 5459 int pcie_get_readrq(struct pci_dev *dev) 5460 { 5461 u16 ctl; 5462 5463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5464 5465 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5466 } 5467 EXPORT_SYMBOL(pcie_get_readrq); 5468 5469 /** 5470 * pcie_set_readrq - set PCI Express maximum memory read request 5471 * @dev: PCI device to query 5472 * @rq: maximum memory read count in bytes 5473 * valid values are 128, 256, 512, 1024, 2048, 4096 5474 * 5475 * If possible sets maximum memory read request in bytes 5476 */ 5477 int pcie_set_readrq(struct pci_dev *dev, int rq) 5478 { 5479 u16 v; 5480 5481 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5482 return -EINVAL; 5483 5484 /* 5485 * If using the "performance" PCIe config, we clamp the read rq 5486 * size to the max packet size to keep the host bridge from 5487 * generating requests larger than we can cope with. 5488 */ 5489 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5490 int mps = pcie_get_mps(dev); 5491 5492 if (mps < rq) 5493 rq = mps; 5494 } 5495 5496 v = (ffs(rq) - 8) << 12; 5497 5498 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5499 PCI_EXP_DEVCTL_READRQ, v); 5500 } 5501 EXPORT_SYMBOL(pcie_set_readrq); 5502 5503 /** 5504 * pcie_get_mps - get PCI Express maximum payload size 5505 * @dev: PCI device to query 5506 * 5507 * Returns maximum payload size in bytes 5508 */ 5509 int pcie_get_mps(struct pci_dev *dev) 5510 { 5511 u16 ctl; 5512 5513 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5514 5515 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5516 } 5517 EXPORT_SYMBOL(pcie_get_mps); 5518 5519 /** 5520 * pcie_set_mps - set PCI Express maximum payload size 5521 * @dev: PCI device to query 5522 * @mps: maximum payload size in bytes 5523 * valid values are 128, 256, 512, 1024, 2048, 4096 5524 * 5525 * If possible sets maximum payload size 5526 */ 5527 int pcie_set_mps(struct pci_dev *dev, int mps) 5528 { 5529 u16 v; 5530 5531 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5532 return -EINVAL; 5533 5534 v = ffs(mps) - 8; 5535 if (v > dev->pcie_mpss) 5536 return -EINVAL; 5537 v <<= 5; 5538 5539 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5540 PCI_EXP_DEVCTL_PAYLOAD, v); 5541 } 5542 EXPORT_SYMBOL(pcie_set_mps); 5543 5544 /** 5545 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5546 * device and its bandwidth limitation 5547 * @dev: PCI device to query 5548 * @limiting_dev: storage for device causing the bandwidth limitation 5549 * @speed: storage for speed of limiting device 5550 * @width: storage for width of limiting device 5551 * 5552 * Walk up the PCI device chain and find the point where the minimum 5553 * bandwidth is available. Return the bandwidth available there and (if 5554 * limiting_dev, speed, and width pointers are supplied) information about 5555 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5556 * raw bandwidth. 5557 */ 5558 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5559 enum pci_bus_speed *speed, 5560 enum pcie_link_width *width) 5561 { 5562 u16 lnksta; 5563 enum pci_bus_speed next_speed; 5564 enum pcie_link_width next_width; 5565 u32 bw, next_bw; 5566 5567 if (speed) 5568 *speed = PCI_SPEED_UNKNOWN; 5569 if (width) 5570 *width = PCIE_LNK_WIDTH_UNKNOWN; 5571 5572 bw = 0; 5573 5574 while (dev) { 5575 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5576 5577 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5578 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5579 PCI_EXP_LNKSTA_NLW_SHIFT; 5580 5581 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5582 5583 /* Check if current device limits the total bandwidth */ 5584 if (!bw || next_bw <= bw) { 5585 bw = next_bw; 5586 5587 if (limiting_dev) 5588 *limiting_dev = dev; 5589 if (speed) 5590 *speed = next_speed; 5591 if (width) 5592 *width = next_width; 5593 } 5594 5595 dev = pci_upstream_bridge(dev); 5596 } 5597 5598 return bw; 5599 } 5600 EXPORT_SYMBOL(pcie_bandwidth_available); 5601 5602 /** 5603 * pcie_get_speed_cap - query for the PCI device's link speed capability 5604 * @dev: PCI device to query 5605 * 5606 * Query the PCI device speed capability. Return the maximum link speed 5607 * supported by the device. 5608 */ 5609 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5610 { 5611 u32 lnkcap2, lnkcap; 5612 5613 /* 5614 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5615 * implementation note there recommends using the Supported Link 5616 * Speeds Vector in Link Capabilities 2 when supported. 5617 * 5618 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5619 * should use the Supported Link Speeds field in Link Capabilities, 5620 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5621 */ 5622 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5623 if (lnkcap2) { /* PCIe r3.0-compliant */ 5624 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5625 return PCIE_SPEED_16_0GT; 5626 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5627 return PCIE_SPEED_8_0GT; 5628 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5629 return PCIE_SPEED_5_0GT; 5630 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5631 return PCIE_SPEED_2_5GT; 5632 return PCI_SPEED_UNKNOWN; 5633 } 5634 5635 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5636 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5637 return PCIE_SPEED_5_0GT; 5638 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5639 return PCIE_SPEED_2_5GT; 5640 5641 return PCI_SPEED_UNKNOWN; 5642 } 5643 EXPORT_SYMBOL(pcie_get_speed_cap); 5644 5645 /** 5646 * pcie_get_width_cap - query for the PCI device's link width capability 5647 * @dev: PCI device to query 5648 * 5649 * Query the PCI device width capability. Return the maximum link width 5650 * supported by the device. 5651 */ 5652 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5653 { 5654 u32 lnkcap; 5655 5656 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5657 if (lnkcap) 5658 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5659 5660 return PCIE_LNK_WIDTH_UNKNOWN; 5661 } 5662 EXPORT_SYMBOL(pcie_get_width_cap); 5663 5664 /** 5665 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5666 * @dev: PCI device 5667 * @speed: storage for link speed 5668 * @width: storage for link width 5669 * 5670 * Calculate a PCI device's link bandwidth by querying for its link speed 5671 * and width, multiplying them, and applying encoding overhead. The result 5672 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5673 */ 5674 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5675 enum pcie_link_width *width) 5676 { 5677 *speed = pcie_get_speed_cap(dev); 5678 *width = pcie_get_width_cap(dev); 5679 5680 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5681 return 0; 5682 5683 return *width * PCIE_SPEED2MBS_ENC(*speed); 5684 } 5685 5686 /** 5687 * __pcie_print_link_status - Report the PCI device's link speed and width 5688 * @dev: PCI device to query 5689 * @verbose: Print info even when enough bandwidth is available 5690 * 5691 * If the available bandwidth at the device is less than the device is 5692 * capable of, report the device's maximum possible bandwidth and the 5693 * upstream link that limits its performance. If @verbose, always print 5694 * the available bandwidth, even if the device isn't constrained. 5695 */ 5696 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5697 { 5698 enum pcie_link_width width, width_cap; 5699 enum pci_bus_speed speed, speed_cap; 5700 struct pci_dev *limiting_dev = NULL; 5701 u32 bw_avail, bw_cap; 5702 5703 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5704 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5705 5706 if (bw_avail >= bw_cap && verbose) 5707 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5708 bw_cap / 1000, bw_cap % 1000, 5709 PCIE_SPEED2STR(speed_cap), width_cap); 5710 else if (bw_avail < bw_cap) 5711 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5712 bw_avail / 1000, bw_avail % 1000, 5713 PCIE_SPEED2STR(speed), width, 5714 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5715 bw_cap / 1000, bw_cap % 1000, 5716 PCIE_SPEED2STR(speed_cap), width_cap); 5717 } 5718 5719 /** 5720 * pcie_print_link_status - Report the PCI device's link speed and width 5721 * @dev: PCI device to query 5722 * 5723 * Report the available bandwidth at the device. 5724 */ 5725 void pcie_print_link_status(struct pci_dev *dev) 5726 { 5727 __pcie_print_link_status(dev, true); 5728 } 5729 EXPORT_SYMBOL(pcie_print_link_status); 5730 5731 /** 5732 * pci_select_bars - Make BAR mask from the type of resource 5733 * @dev: the PCI device for which BAR mask is made 5734 * @flags: resource type mask to be selected 5735 * 5736 * This helper routine makes bar mask from the type of resource. 5737 */ 5738 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5739 { 5740 int i, bars = 0; 5741 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5742 if (pci_resource_flags(dev, i) & flags) 5743 bars |= (1 << i); 5744 return bars; 5745 } 5746 EXPORT_SYMBOL(pci_select_bars); 5747 5748 /* Some architectures require additional programming to enable VGA */ 5749 static arch_set_vga_state_t arch_set_vga_state; 5750 5751 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5752 { 5753 arch_set_vga_state = func; /* NULL disables */ 5754 } 5755 5756 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5757 unsigned int command_bits, u32 flags) 5758 { 5759 if (arch_set_vga_state) 5760 return arch_set_vga_state(dev, decode, command_bits, 5761 flags); 5762 return 0; 5763 } 5764 5765 /** 5766 * pci_set_vga_state - set VGA decode state on device and parents if requested 5767 * @dev: the PCI device 5768 * @decode: true = enable decoding, false = disable decoding 5769 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5770 * @flags: traverse ancestors and change bridges 5771 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5772 */ 5773 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5774 unsigned int command_bits, u32 flags) 5775 { 5776 struct pci_bus *bus; 5777 struct pci_dev *bridge; 5778 u16 cmd; 5779 int rc; 5780 5781 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5782 5783 /* ARCH specific VGA enables */ 5784 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5785 if (rc) 5786 return rc; 5787 5788 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5789 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5790 if (decode == true) 5791 cmd |= command_bits; 5792 else 5793 cmd &= ~command_bits; 5794 pci_write_config_word(dev, PCI_COMMAND, cmd); 5795 } 5796 5797 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5798 return 0; 5799 5800 bus = dev->bus; 5801 while (bus) { 5802 bridge = bus->self; 5803 if (bridge) { 5804 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5805 &cmd); 5806 if (decode == true) 5807 cmd |= PCI_BRIDGE_CTL_VGA; 5808 else 5809 cmd &= ~PCI_BRIDGE_CTL_VGA; 5810 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5811 cmd); 5812 } 5813 bus = bus->parent; 5814 } 5815 return 0; 5816 } 5817 5818 /** 5819 * pci_add_dma_alias - Add a DMA devfn alias for a device 5820 * @dev: the PCI device for which alias is added 5821 * @devfn: alias slot and function 5822 * 5823 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 5824 * which is used to program permissible bus-devfn source addresses for DMA 5825 * requests in an IOMMU. These aliases factor into IOMMU group creation 5826 * and are useful for devices generating DMA requests beyond or different 5827 * from their logical bus-devfn. Examples include device quirks where the 5828 * device simply uses the wrong devfn, as well as non-transparent bridges 5829 * where the alias may be a proxy for devices in another domain. 5830 * 5831 * IOMMU group creation is performed during device discovery or addition, 5832 * prior to any potential DMA mapping and therefore prior to driver probing 5833 * (especially for userspace assigned devices where IOMMU group definition 5834 * cannot be left as a userspace activity). DMA aliases should therefore 5835 * be configured via quirks, such as the PCI fixup header quirk. 5836 */ 5837 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5838 { 5839 if (!dev->dma_alias_mask) 5840 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL); 5841 if (!dev->dma_alias_mask) { 5842 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5843 return; 5844 } 5845 5846 set_bit(devfn, dev->dma_alias_mask); 5847 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5848 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5849 } 5850 5851 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5852 { 5853 return (dev1->dma_alias_mask && 5854 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5855 (dev2->dma_alias_mask && 5856 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5857 } 5858 5859 bool pci_device_is_present(struct pci_dev *pdev) 5860 { 5861 u32 v; 5862 5863 if (pci_dev_is_disconnected(pdev)) 5864 return false; 5865 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5866 } 5867 EXPORT_SYMBOL_GPL(pci_device_is_present); 5868 5869 void pci_ignore_hotplug(struct pci_dev *dev) 5870 { 5871 struct pci_dev *bridge = dev->bus->self; 5872 5873 dev->ignore_hotplug = 1; 5874 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5875 if (bridge) 5876 bridge->ignore_hotplug = 1; 5877 } 5878 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5879 5880 resource_size_t __weak pcibios_default_alignment(void) 5881 { 5882 return 0; 5883 } 5884 5885 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5886 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5887 static DEFINE_SPINLOCK(resource_alignment_lock); 5888 5889 /** 5890 * pci_specified_resource_alignment - get resource alignment specified by user. 5891 * @dev: the PCI device to get 5892 * @resize: whether or not to change resources' size when reassigning alignment 5893 * 5894 * RETURNS: Resource alignment if it is specified. 5895 * Zero if it is not specified. 5896 */ 5897 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5898 bool *resize) 5899 { 5900 int align_order, count; 5901 resource_size_t align = pcibios_default_alignment(); 5902 const char *p; 5903 int ret; 5904 5905 spin_lock(&resource_alignment_lock); 5906 p = resource_alignment_param; 5907 if (!*p && !align) 5908 goto out; 5909 if (pci_has_flag(PCI_PROBE_ONLY)) { 5910 align = 0; 5911 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5912 goto out; 5913 } 5914 5915 while (*p) { 5916 count = 0; 5917 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5918 p[count] == '@') { 5919 p += count + 1; 5920 } else { 5921 align_order = -1; 5922 } 5923 5924 ret = pci_dev_str_match(dev, p, &p); 5925 if (ret == 1) { 5926 *resize = true; 5927 if (align_order == -1) 5928 align = PAGE_SIZE; 5929 else 5930 align = 1 << align_order; 5931 break; 5932 } else if (ret < 0) { 5933 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 5934 p); 5935 break; 5936 } 5937 5938 if (*p != ';' && *p != ',') { 5939 /* End of param or invalid format */ 5940 break; 5941 } 5942 p++; 5943 } 5944 out: 5945 spin_unlock(&resource_alignment_lock); 5946 return align; 5947 } 5948 5949 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5950 resource_size_t align, bool resize) 5951 { 5952 struct resource *r = &dev->resource[bar]; 5953 resource_size_t size; 5954 5955 if (!(r->flags & IORESOURCE_MEM)) 5956 return; 5957 5958 if (r->flags & IORESOURCE_PCI_FIXED) { 5959 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5960 bar, r, (unsigned long long)align); 5961 return; 5962 } 5963 5964 size = resource_size(r); 5965 if (size >= align) 5966 return; 5967 5968 /* 5969 * Increase the alignment of the resource. There are two ways we 5970 * can do this: 5971 * 5972 * 1) Increase the size of the resource. BARs are aligned on their 5973 * size, so when we reallocate space for this resource, we'll 5974 * allocate it with the larger alignment. This also prevents 5975 * assignment of any other BARs inside the alignment region, so 5976 * if we're requesting page alignment, this means no other BARs 5977 * will share the page. 5978 * 5979 * The disadvantage is that this makes the resource larger than 5980 * the hardware BAR, which may break drivers that compute things 5981 * based on the resource size, e.g., to find registers at a 5982 * fixed offset before the end of the BAR. 5983 * 5984 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5985 * set r->start to the desired alignment. By itself this 5986 * doesn't prevent other BARs being put inside the alignment 5987 * region, but if we realign *every* resource of every device in 5988 * the system, none of them will share an alignment region. 5989 * 5990 * When the user has requested alignment for only some devices via 5991 * the "pci=resource_alignment" argument, "resize" is true and we 5992 * use the first method. Otherwise we assume we're aligning all 5993 * devices and we use the second. 5994 */ 5995 5996 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 5997 bar, r, (unsigned long long)align); 5998 5999 if (resize) { 6000 r->start = 0; 6001 r->end = align - 1; 6002 } else { 6003 r->flags &= ~IORESOURCE_SIZEALIGN; 6004 r->flags |= IORESOURCE_STARTALIGN; 6005 r->start = align; 6006 r->end = r->start + size - 1; 6007 } 6008 r->flags |= IORESOURCE_UNSET; 6009 } 6010 6011 /* 6012 * This function disables memory decoding and releases memory resources 6013 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6014 * It also rounds up size to specified alignment. 6015 * Later on, the kernel will assign page-aligned memory resource back 6016 * to the device. 6017 */ 6018 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6019 { 6020 int i; 6021 struct resource *r; 6022 resource_size_t align; 6023 u16 command; 6024 bool resize = false; 6025 6026 /* 6027 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6028 * 3.4.1.11. Their resources are allocated from the space 6029 * described by the VF BARx register in the PF's SR-IOV capability. 6030 * We can't influence their alignment here. 6031 */ 6032 if (dev->is_virtfn) 6033 return; 6034 6035 /* check if specified PCI is target device to reassign */ 6036 align = pci_specified_resource_alignment(dev, &resize); 6037 if (!align) 6038 return; 6039 6040 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6041 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6042 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6043 return; 6044 } 6045 6046 pci_read_config_word(dev, PCI_COMMAND, &command); 6047 command &= ~PCI_COMMAND_MEMORY; 6048 pci_write_config_word(dev, PCI_COMMAND, command); 6049 6050 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6051 pci_request_resource_alignment(dev, i, align, resize); 6052 6053 /* 6054 * Need to disable bridge's resource window, 6055 * to enable the kernel to reassign new resource 6056 * window later on. 6057 */ 6058 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6059 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6060 r = &dev->resource[i]; 6061 if (!(r->flags & IORESOURCE_MEM)) 6062 continue; 6063 r->flags |= IORESOURCE_UNSET; 6064 r->end = resource_size(r) - 1; 6065 r->start = 0; 6066 } 6067 pci_disable_bridge_window(dev); 6068 } 6069 } 6070 6071 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 6072 { 6073 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 6074 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 6075 spin_lock(&resource_alignment_lock); 6076 strncpy(resource_alignment_param, buf, count); 6077 resource_alignment_param[count] = '\0'; 6078 spin_unlock(&resource_alignment_lock); 6079 return count; 6080 } 6081 6082 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 6083 { 6084 size_t count; 6085 spin_lock(&resource_alignment_lock); 6086 count = snprintf(buf, size, "%s", resource_alignment_param); 6087 spin_unlock(&resource_alignment_lock); 6088 return count; 6089 } 6090 6091 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6092 { 6093 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 6094 } 6095 6096 static ssize_t resource_alignment_store(struct bus_type *bus, 6097 const char *buf, size_t count) 6098 { 6099 return pci_set_resource_alignment_param(buf, count); 6100 } 6101 6102 static BUS_ATTR_RW(resource_alignment); 6103 6104 static int __init pci_resource_alignment_sysfs_init(void) 6105 { 6106 return bus_create_file(&pci_bus_type, 6107 &bus_attr_resource_alignment); 6108 } 6109 late_initcall(pci_resource_alignment_sysfs_init); 6110 6111 static void pci_no_domains(void) 6112 { 6113 #ifdef CONFIG_PCI_DOMAINS 6114 pci_domains_supported = 0; 6115 #endif 6116 } 6117 6118 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6119 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6120 6121 static int pci_get_new_domain_nr(void) 6122 { 6123 return atomic_inc_return(&__domain_nr); 6124 } 6125 6126 static int of_pci_bus_find_domain_nr(struct device *parent) 6127 { 6128 static int use_dt_domains = -1; 6129 int domain = -1; 6130 6131 if (parent) 6132 domain = of_get_pci_domain_nr(parent->of_node); 6133 6134 /* 6135 * Check DT domain and use_dt_domains values. 6136 * 6137 * If DT domain property is valid (domain >= 0) and 6138 * use_dt_domains != 0, the DT assignment is valid since this means 6139 * we have not previously allocated a domain number by using 6140 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6141 * 1, to indicate that we have just assigned a domain number from 6142 * DT. 6143 * 6144 * If DT domain property value is not valid (ie domain < 0), and we 6145 * have not previously assigned a domain number from DT 6146 * (use_dt_domains != 1) we should assign a domain number by 6147 * using the: 6148 * 6149 * pci_get_new_domain_nr() 6150 * 6151 * API and update the use_dt_domains value to keep track of method we 6152 * are using to assign domain numbers (use_dt_domains = 0). 6153 * 6154 * All other combinations imply we have a platform that is trying 6155 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6156 * which is a recipe for domain mishandling and it is prevented by 6157 * invalidating the domain value (domain = -1) and printing a 6158 * corresponding error. 6159 */ 6160 if (domain >= 0 && use_dt_domains) { 6161 use_dt_domains = 1; 6162 } else if (domain < 0 && use_dt_domains != 1) { 6163 use_dt_domains = 0; 6164 domain = pci_get_new_domain_nr(); 6165 } else { 6166 if (parent) 6167 pr_err("Node %pOF has ", parent->of_node); 6168 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6169 domain = -1; 6170 } 6171 6172 return domain; 6173 } 6174 6175 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6176 { 6177 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6178 acpi_pci_bus_find_domain_nr(bus); 6179 } 6180 #endif 6181 6182 /** 6183 * pci_ext_cfg_avail - can we access extended PCI config space? 6184 * 6185 * Returns 1 if we can access PCI extended config space (offsets 6186 * greater than 0xff). This is the default implementation. Architecture 6187 * implementations can override this. 6188 */ 6189 int __weak pci_ext_cfg_avail(void) 6190 { 6191 return 1; 6192 } 6193 6194 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6195 { 6196 } 6197 EXPORT_SYMBOL(pci_fixup_cardbus); 6198 6199 static int __init pci_setup(char *str) 6200 { 6201 while (str) { 6202 char *k = strchr(str, ','); 6203 if (k) 6204 *k++ = 0; 6205 if (*str && (str = pcibios_setup(str)) && *str) { 6206 if (!strcmp(str, "nomsi")) { 6207 pci_no_msi(); 6208 } else if (!strncmp(str, "noats", 5)) { 6209 pr_info("PCIe: ATS is disabled\n"); 6210 pcie_ats_disabled = true; 6211 } else if (!strcmp(str, "noaer")) { 6212 pci_no_aer(); 6213 } else if (!strcmp(str, "earlydump")) { 6214 pci_early_dump = true; 6215 } else if (!strncmp(str, "realloc=", 8)) { 6216 pci_realloc_get_opt(str + 8); 6217 } else if (!strncmp(str, "realloc", 7)) { 6218 pci_realloc_get_opt("on"); 6219 } else if (!strcmp(str, "nodomains")) { 6220 pci_no_domains(); 6221 } else if (!strncmp(str, "noari", 5)) { 6222 pcie_ari_disabled = true; 6223 } else if (!strncmp(str, "cbiosize=", 9)) { 6224 pci_cardbus_io_size = memparse(str + 9, &str); 6225 } else if (!strncmp(str, "cbmemsize=", 10)) { 6226 pci_cardbus_mem_size = memparse(str + 10, &str); 6227 } else if (!strncmp(str, "resource_alignment=", 19)) { 6228 pci_set_resource_alignment_param(str + 19, 6229 strlen(str + 19)); 6230 } else if (!strncmp(str, "ecrc=", 5)) { 6231 pcie_ecrc_get_policy(str + 5); 6232 } else if (!strncmp(str, "hpiosize=", 9)) { 6233 pci_hotplug_io_size = memparse(str + 9, &str); 6234 } else if (!strncmp(str, "hpmemsize=", 10)) { 6235 pci_hotplug_mem_size = memparse(str + 10, &str); 6236 } else if (!strncmp(str, "hpbussize=", 10)) { 6237 pci_hotplug_bus_size = 6238 simple_strtoul(str + 10, &str, 0); 6239 if (pci_hotplug_bus_size > 0xff) 6240 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6241 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6242 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6243 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6244 pcie_bus_config = PCIE_BUS_SAFE; 6245 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6246 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6247 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6248 pcie_bus_config = PCIE_BUS_PEER2PEER; 6249 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6250 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6251 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6252 disable_acs_redir_param = str + 18; 6253 } else { 6254 pr_err("PCI: Unknown option `%s'\n", str); 6255 } 6256 } 6257 str = k; 6258 } 6259 return 0; 6260 } 6261 early_param("pci", pci_setup); 6262 6263 /* 6264 * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point 6265 * to data in the __initdata section which will be freed after the init 6266 * sequence is complete. We can't allocate memory in pci_setup() because some 6267 * architectures do not have any memory allocation service available during 6268 * an early_param() call. So we allocate memory and copy the variable here 6269 * before the init section is freed. 6270 */ 6271 static int __init pci_realloc_setup_params(void) 6272 { 6273 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6274 6275 return 0; 6276 } 6277 pure_initcall(pci_realloc_setup_params); 6278