xref: /openbmc/linux/drivers/pci/pci.c (revision ca55b2fe)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include "pci.h"
31 
32 const char *pci_power_names[] = {
33 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
34 };
35 EXPORT_SYMBOL_GPL(pci_power_names);
36 
37 int isa_dma_bridge_buggy;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy);
39 
40 int pci_pci_problems;
41 EXPORT_SYMBOL(pci_pci_problems);
42 
43 unsigned int pci_pm_d3_delay;
44 
45 static void pci_pme_list_scan(struct work_struct *work);
46 
47 static LIST_HEAD(pci_pme_list);
48 static DEFINE_MUTEX(pci_pme_list_mutex);
49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
50 
51 struct pci_pme_device {
52 	struct list_head list;
53 	struct pci_dev *dev;
54 };
55 
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
57 
58 static void pci_dev_d3_sleep(struct pci_dev *dev)
59 {
60 	unsigned int delay = dev->d3_delay;
61 
62 	if (delay < pci_pm_d3_delay)
63 		delay = pci_pm_d3_delay;
64 
65 	msleep(delay);
66 }
67 
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported = 1;
70 #endif
71 
72 #define DEFAULT_CARDBUS_IO_SIZE		(256)
73 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
77 
78 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
83 
84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
85 
86 /*
87  * The default CLS is used if arch didn't set CLS explicitly and not
88  * all pci devices agree on the same value.  Arch can override either
89  * the dfl or actual value as it sees fit.  Don't forget this is
90  * measured in 32-bit words, not bytes.
91  */
92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
93 u8 pci_cache_line_size;
94 
95 /*
96  * If we set up a device for bus mastering, we need to check the latency
97  * timer as certain BIOSes forget to set it properly.
98  */
99 unsigned int pcibios_max_latency = 255;
100 
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled;
103 
104 /**
105  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106  * @bus: pointer to PCI bus structure to search
107  *
108  * Given a PCI bus, returns the highest PCI bus number present in the set
109  * including the given PCI bus and its list of child PCI buses.
110  */
111 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
112 {
113 	struct pci_bus *tmp;
114 	unsigned char max, n;
115 
116 	max = bus->busn_res.end;
117 	list_for_each_entry(tmp, &bus->children, node) {
118 		n = pci_bus_max_busnr(tmp);
119 		if (n > max)
120 			max = n;
121 	}
122 	return max;
123 }
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
125 
126 #ifdef CONFIG_HAS_IOMEM
127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 {
129 	struct resource *res = &pdev->resource[bar];
130 
131 	/*
132 	 * Make sure the BAR is actually a memory resource, not an IO resource
133 	 */
134 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
135 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
136 		return NULL;
137 	}
138 	return ioremap_nocache(res->start, resource_size(res));
139 }
140 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
141 
142 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
143 {
144 	/*
145 	 * Make sure the BAR is actually a memory resource, not an IO resource
146 	 */
147 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
148 		WARN_ON(1);
149 		return NULL;
150 	}
151 	return ioremap_wc(pci_resource_start(pdev, bar),
152 			  pci_resource_len(pdev, bar));
153 }
154 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
155 #endif
156 
157 
158 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
159 				   u8 pos, int cap, int *ttl)
160 {
161 	u8 id;
162 	u16 ent;
163 
164 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
165 
166 	while ((*ttl)--) {
167 		if (pos < 0x40)
168 			break;
169 		pos &= ~3;
170 		pci_bus_read_config_word(bus, devfn, pos, &ent);
171 
172 		id = ent & 0xff;
173 		if (id == 0xff)
174 			break;
175 		if (id == cap)
176 			return pos;
177 		pos = (ent >> 8);
178 	}
179 	return 0;
180 }
181 
182 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
183 			       u8 pos, int cap)
184 {
185 	int ttl = PCI_FIND_CAP_TTL;
186 
187 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
188 }
189 
190 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
191 {
192 	return __pci_find_next_cap(dev->bus, dev->devfn,
193 				   pos + PCI_CAP_LIST_NEXT, cap);
194 }
195 EXPORT_SYMBOL_GPL(pci_find_next_capability);
196 
197 static int __pci_bus_find_cap_start(struct pci_bus *bus,
198 				    unsigned int devfn, u8 hdr_type)
199 {
200 	u16 status;
201 
202 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
203 	if (!(status & PCI_STATUS_CAP_LIST))
204 		return 0;
205 
206 	switch (hdr_type) {
207 	case PCI_HEADER_TYPE_NORMAL:
208 	case PCI_HEADER_TYPE_BRIDGE:
209 		return PCI_CAPABILITY_LIST;
210 	case PCI_HEADER_TYPE_CARDBUS:
211 		return PCI_CB_CAPABILITY_LIST;
212 	}
213 
214 	return 0;
215 }
216 
217 /**
218  * pci_find_capability - query for devices' capabilities
219  * @dev: PCI device to query
220  * @cap: capability code
221  *
222  * Tell if a device supports a given PCI capability.
223  * Returns the address of the requested capability structure within the
224  * device's PCI configuration space or 0 in case the device does not
225  * support it.  Possible values for @cap:
226  *
227  *  %PCI_CAP_ID_PM           Power Management
228  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
229  *  %PCI_CAP_ID_VPD          Vital Product Data
230  *  %PCI_CAP_ID_SLOTID       Slot Identification
231  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
232  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
233  *  %PCI_CAP_ID_PCIX         PCI-X
234  *  %PCI_CAP_ID_EXP          PCI Express
235  */
236 int pci_find_capability(struct pci_dev *dev, int cap)
237 {
238 	int pos;
239 
240 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
241 	if (pos)
242 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
243 
244 	return pos;
245 }
246 EXPORT_SYMBOL(pci_find_capability);
247 
248 /**
249  * pci_bus_find_capability - query for devices' capabilities
250  * @bus:   the PCI bus to query
251  * @devfn: PCI device to query
252  * @cap:   capability code
253  *
254  * Like pci_find_capability() but works for pci devices that do not have a
255  * pci_dev structure set up yet.
256  *
257  * Returns the address of the requested capability structure within the
258  * device's PCI configuration space or 0 in case the device does not
259  * support it.
260  */
261 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
262 {
263 	int pos;
264 	u8 hdr_type;
265 
266 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
267 
268 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
269 	if (pos)
270 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
271 
272 	return pos;
273 }
274 EXPORT_SYMBOL(pci_bus_find_capability);
275 
276 /**
277  * pci_find_next_ext_capability - Find an extended capability
278  * @dev: PCI device to query
279  * @start: address at which to start looking (0 to start at beginning of list)
280  * @cap: capability code
281  *
282  * Returns the address of the next matching extended capability structure
283  * within the device's PCI configuration space or 0 if the device does
284  * not support it.  Some capabilities can occur several times, e.g., the
285  * vendor-specific capability, and this provides a way to find them all.
286  */
287 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
288 {
289 	u32 header;
290 	int ttl;
291 	int pos = PCI_CFG_SPACE_SIZE;
292 
293 	/* minimum 8 bytes per capability */
294 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
295 
296 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
297 		return 0;
298 
299 	if (start)
300 		pos = start;
301 
302 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
303 		return 0;
304 
305 	/*
306 	 * If we have no capabilities, this is indicated by cap ID,
307 	 * cap version and next pointer all being 0.
308 	 */
309 	if (header == 0)
310 		return 0;
311 
312 	while (ttl-- > 0) {
313 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
314 			return pos;
315 
316 		pos = PCI_EXT_CAP_NEXT(header);
317 		if (pos < PCI_CFG_SPACE_SIZE)
318 			break;
319 
320 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
321 			break;
322 	}
323 
324 	return 0;
325 }
326 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
327 
328 /**
329  * pci_find_ext_capability - Find an extended capability
330  * @dev: PCI device to query
331  * @cap: capability code
332  *
333  * Returns the address of the requested extended capability structure
334  * within the device's PCI configuration space or 0 if the device does
335  * not support it.  Possible values for @cap:
336  *
337  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
338  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
339  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
340  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
341  */
342 int pci_find_ext_capability(struct pci_dev *dev, int cap)
343 {
344 	return pci_find_next_ext_capability(dev, 0, cap);
345 }
346 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
347 
348 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
349 {
350 	int rc, ttl = PCI_FIND_CAP_TTL;
351 	u8 cap, mask;
352 
353 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
354 		mask = HT_3BIT_CAP_MASK;
355 	else
356 		mask = HT_5BIT_CAP_MASK;
357 
358 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
359 				      PCI_CAP_ID_HT, &ttl);
360 	while (pos) {
361 		rc = pci_read_config_byte(dev, pos + 3, &cap);
362 		if (rc != PCIBIOS_SUCCESSFUL)
363 			return 0;
364 
365 		if ((cap & mask) == ht_cap)
366 			return pos;
367 
368 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
369 					      pos + PCI_CAP_LIST_NEXT,
370 					      PCI_CAP_ID_HT, &ttl);
371 	}
372 
373 	return 0;
374 }
375 /**
376  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
377  * @dev: PCI device to query
378  * @pos: Position from which to continue searching
379  * @ht_cap: Hypertransport capability code
380  *
381  * To be used in conjunction with pci_find_ht_capability() to search for
382  * all capabilities matching @ht_cap. @pos should always be a value returned
383  * from pci_find_ht_capability().
384  *
385  * NB. To be 100% safe against broken PCI devices, the caller should take
386  * steps to avoid an infinite loop.
387  */
388 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
389 {
390 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
391 }
392 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
393 
394 /**
395  * pci_find_ht_capability - query a device's Hypertransport capabilities
396  * @dev: PCI device to query
397  * @ht_cap: Hypertransport capability code
398  *
399  * Tell if a device supports a given Hypertransport capability.
400  * Returns an address within the device's PCI configuration space
401  * or 0 in case the device does not support the request capability.
402  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
403  * which has a Hypertransport capability matching @ht_cap.
404  */
405 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
406 {
407 	int pos;
408 
409 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
410 	if (pos)
411 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
412 
413 	return pos;
414 }
415 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
416 
417 /**
418  * pci_find_parent_resource - return resource region of parent bus of given region
419  * @dev: PCI device structure contains resources to be searched
420  * @res: child resource record for which parent is sought
421  *
422  *  For given resource region of given device, return the resource
423  *  region of parent bus the given region is contained in.
424  */
425 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
426 					  struct resource *res)
427 {
428 	const struct pci_bus *bus = dev->bus;
429 	struct resource *r;
430 	int i;
431 
432 	pci_bus_for_each_resource(bus, r, i) {
433 		if (!r)
434 			continue;
435 		if (res->start && resource_contains(r, res)) {
436 
437 			/*
438 			 * If the window is prefetchable but the BAR is
439 			 * not, the allocator made a mistake.
440 			 */
441 			if (r->flags & IORESOURCE_PREFETCH &&
442 			    !(res->flags & IORESOURCE_PREFETCH))
443 				return NULL;
444 
445 			/*
446 			 * If we're below a transparent bridge, there may
447 			 * be both a positively-decoded aperture and a
448 			 * subtractively-decoded region that contain the BAR.
449 			 * We want the positively-decoded one, so this depends
450 			 * on pci_bus_for_each_resource() giving us those
451 			 * first.
452 			 */
453 			return r;
454 		}
455 	}
456 	return NULL;
457 }
458 EXPORT_SYMBOL(pci_find_parent_resource);
459 
460 /**
461  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
462  * @dev: the PCI device to operate on
463  * @pos: config space offset of status word
464  * @mask: mask of bit(s) to care about in status word
465  *
466  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
467  */
468 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
469 {
470 	int i;
471 
472 	/* Wait for Transaction Pending bit clean */
473 	for (i = 0; i < 4; i++) {
474 		u16 status;
475 		if (i)
476 			msleep((1 << (i - 1)) * 100);
477 
478 		pci_read_config_word(dev, pos, &status);
479 		if (!(status & mask))
480 			return 1;
481 	}
482 
483 	return 0;
484 }
485 
486 /**
487  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
488  * @dev: PCI device to have its BARs restored
489  *
490  * Restore the BAR values for a given device, so as to make it
491  * accessible by its driver.
492  */
493 static void pci_restore_bars(struct pci_dev *dev)
494 {
495 	int i;
496 
497 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
498 		pci_update_resource(dev, i);
499 }
500 
501 static struct pci_platform_pm_ops *pci_platform_pm;
502 
503 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
504 {
505 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
506 	    || !ops->sleep_wake)
507 		return -EINVAL;
508 	pci_platform_pm = ops;
509 	return 0;
510 }
511 
512 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
513 {
514 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
515 }
516 
517 static inline int platform_pci_set_power_state(struct pci_dev *dev,
518 					       pci_power_t t)
519 {
520 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
521 }
522 
523 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
524 {
525 	return pci_platform_pm ?
526 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
527 }
528 
529 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
530 {
531 	return pci_platform_pm ?
532 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
533 }
534 
535 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
536 {
537 	return pci_platform_pm ?
538 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
539 }
540 
541 static inline bool platform_pci_need_resume(struct pci_dev *dev)
542 {
543 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
544 }
545 
546 /**
547  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
548  *                           given PCI device
549  * @dev: PCI device to handle.
550  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
551  *
552  * RETURN VALUE:
553  * -EINVAL if the requested state is invalid.
554  * -EIO if device does not support PCI PM or its PM capabilities register has a
555  * wrong version, or device doesn't support the requested state.
556  * 0 if device already is in the requested state.
557  * 0 if device's power state has been successfully changed.
558  */
559 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
560 {
561 	u16 pmcsr;
562 	bool need_restore = false;
563 
564 	/* Check if we're already there */
565 	if (dev->current_state == state)
566 		return 0;
567 
568 	if (!dev->pm_cap)
569 		return -EIO;
570 
571 	if (state < PCI_D0 || state > PCI_D3hot)
572 		return -EINVAL;
573 
574 	/* Validate current state:
575 	 * Can enter D0 from any state, but if we can only go deeper
576 	 * to sleep if we're already in a low power state
577 	 */
578 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
579 	    && dev->current_state > state) {
580 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
581 			dev->current_state, state);
582 		return -EINVAL;
583 	}
584 
585 	/* check if this device supports the desired state */
586 	if ((state == PCI_D1 && !dev->d1_support)
587 	   || (state == PCI_D2 && !dev->d2_support))
588 		return -EIO;
589 
590 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
591 
592 	/* If we're (effectively) in D3, force entire word to 0.
593 	 * This doesn't affect PME_Status, disables PME_En, and
594 	 * sets PowerState to 0.
595 	 */
596 	switch (dev->current_state) {
597 	case PCI_D0:
598 	case PCI_D1:
599 	case PCI_D2:
600 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
601 		pmcsr |= state;
602 		break;
603 	case PCI_D3hot:
604 	case PCI_D3cold:
605 	case PCI_UNKNOWN: /* Boot-up */
606 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
607 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
608 			need_restore = true;
609 		/* Fall-through: force to D0 */
610 	default:
611 		pmcsr = 0;
612 		break;
613 	}
614 
615 	/* enter specified state */
616 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
617 
618 	/* Mandatory power management transition delays */
619 	/* see PCI PM 1.1 5.6.1 table 18 */
620 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
621 		pci_dev_d3_sleep(dev);
622 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
623 		udelay(PCI_PM_D2_DELAY);
624 
625 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
626 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
627 	if (dev->current_state != state && printk_ratelimit())
628 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
629 			 dev->current_state);
630 
631 	/*
632 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
633 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
634 	 * from D3hot to D0 _may_ perform an internal reset, thereby
635 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
636 	 * For example, at least some versions of the 3c905B and the
637 	 * 3c556B exhibit this behaviour.
638 	 *
639 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
640 	 * devices in a D3hot state at boot.  Consequently, we need to
641 	 * restore at least the BARs so that the device will be
642 	 * accessible to its driver.
643 	 */
644 	if (need_restore)
645 		pci_restore_bars(dev);
646 
647 	if (dev->bus->self)
648 		pcie_aspm_pm_state_change(dev->bus->self);
649 
650 	return 0;
651 }
652 
653 /**
654  * pci_update_current_state - Read PCI power state of given device from its
655  *                            PCI PM registers and cache it
656  * @dev: PCI device to handle.
657  * @state: State to cache in case the device doesn't have the PM capability
658  */
659 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
660 {
661 	if (dev->pm_cap) {
662 		u16 pmcsr;
663 
664 		/*
665 		 * Configuration space is not accessible for device in
666 		 * D3cold, so just keep or set D3cold for safety
667 		 */
668 		if (dev->current_state == PCI_D3cold)
669 			return;
670 		if (state == PCI_D3cold) {
671 			dev->current_state = PCI_D3cold;
672 			return;
673 		}
674 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
675 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
676 	} else {
677 		dev->current_state = state;
678 	}
679 }
680 
681 /**
682  * pci_power_up - Put the given device into D0 forcibly
683  * @dev: PCI device to power up
684  */
685 void pci_power_up(struct pci_dev *dev)
686 {
687 	if (platform_pci_power_manageable(dev))
688 		platform_pci_set_power_state(dev, PCI_D0);
689 
690 	pci_raw_set_power_state(dev, PCI_D0);
691 	pci_update_current_state(dev, PCI_D0);
692 }
693 
694 /**
695  * pci_platform_power_transition - Use platform to change device power state
696  * @dev: PCI device to handle.
697  * @state: State to put the device into.
698  */
699 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
700 {
701 	int error;
702 
703 	if (platform_pci_power_manageable(dev)) {
704 		error = platform_pci_set_power_state(dev, state);
705 		if (!error)
706 			pci_update_current_state(dev, state);
707 	} else
708 		error = -ENODEV;
709 
710 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
711 		dev->current_state = PCI_D0;
712 
713 	return error;
714 }
715 
716 /**
717  * pci_wakeup - Wake up a PCI device
718  * @pci_dev: Device to handle.
719  * @ign: ignored parameter
720  */
721 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
722 {
723 	pci_wakeup_event(pci_dev);
724 	pm_request_resume(&pci_dev->dev);
725 	return 0;
726 }
727 
728 /**
729  * pci_wakeup_bus - Walk given bus and wake up devices on it
730  * @bus: Top bus of the subtree to walk.
731  */
732 static void pci_wakeup_bus(struct pci_bus *bus)
733 {
734 	if (bus)
735 		pci_walk_bus(bus, pci_wakeup, NULL);
736 }
737 
738 /**
739  * __pci_start_power_transition - Start power transition of a PCI device
740  * @dev: PCI device to handle.
741  * @state: State to put the device into.
742  */
743 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
744 {
745 	if (state == PCI_D0) {
746 		pci_platform_power_transition(dev, PCI_D0);
747 		/*
748 		 * Mandatory power management transition delays, see
749 		 * PCI Express Base Specification Revision 2.0 Section
750 		 * 6.6.1: Conventional Reset.  Do not delay for
751 		 * devices powered on/off by corresponding bridge,
752 		 * because have already delayed for the bridge.
753 		 */
754 		if (dev->runtime_d3cold) {
755 			msleep(dev->d3cold_delay);
756 			/*
757 			 * When powering on a bridge from D3cold, the
758 			 * whole hierarchy may be powered on into
759 			 * D0uninitialized state, resume them to give
760 			 * them a chance to suspend again
761 			 */
762 			pci_wakeup_bus(dev->subordinate);
763 		}
764 	}
765 }
766 
767 /**
768  * __pci_dev_set_current_state - Set current state of a PCI device
769  * @dev: Device to handle
770  * @data: pointer to state to be set
771  */
772 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
773 {
774 	pci_power_t state = *(pci_power_t *)data;
775 
776 	dev->current_state = state;
777 	return 0;
778 }
779 
780 /**
781  * __pci_bus_set_current_state - Walk given bus and set current state of devices
782  * @bus: Top bus of the subtree to walk.
783  * @state: state to be set
784  */
785 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
786 {
787 	if (bus)
788 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
789 }
790 
791 /**
792  * __pci_complete_power_transition - Complete power transition of a PCI device
793  * @dev: PCI device to handle.
794  * @state: State to put the device into.
795  *
796  * This function should not be called directly by device drivers.
797  */
798 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
799 {
800 	int ret;
801 
802 	if (state <= PCI_D0)
803 		return -EINVAL;
804 	ret = pci_platform_power_transition(dev, state);
805 	/* Power off the bridge may power off the whole hierarchy */
806 	if (!ret && state == PCI_D3cold)
807 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
808 	return ret;
809 }
810 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
811 
812 /**
813  * pci_set_power_state - Set the power state of a PCI device
814  * @dev: PCI device to handle.
815  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
816  *
817  * Transition a device to a new power state, using the platform firmware and/or
818  * the device's PCI PM registers.
819  *
820  * RETURN VALUE:
821  * -EINVAL if the requested state is invalid.
822  * -EIO if device does not support PCI PM or its PM capabilities register has a
823  * wrong version, or device doesn't support the requested state.
824  * 0 if device already is in the requested state.
825  * 0 if device's power state has been successfully changed.
826  */
827 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
828 {
829 	int error;
830 
831 	/* bound the state we're entering */
832 	if (state > PCI_D3cold)
833 		state = PCI_D3cold;
834 	else if (state < PCI_D0)
835 		state = PCI_D0;
836 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
837 		/*
838 		 * If the device or the parent bridge do not support PCI PM,
839 		 * ignore the request if we're doing anything other than putting
840 		 * it into D0 (which would only happen on boot).
841 		 */
842 		return 0;
843 
844 	/* Check if we're already there */
845 	if (dev->current_state == state)
846 		return 0;
847 
848 	__pci_start_power_transition(dev, state);
849 
850 	/* This device is quirked not to be put into D3, so
851 	   don't put it in D3 */
852 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
853 		return 0;
854 
855 	/*
856 	 * To put device in D3cold, we put device into D3hot in native
857 	 * way, then put device into D3cold with platform ops
858 	 */
859 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
860 					PCI_D3hot : state);
861 
862 	if (!__pci_complete_power_transition(dev, state))
863 		error = 0;
864 
865 	return error;
866 }
867 EXPORT_SYMBOL(pci_set_power_state);
868 
869 /**
870  * pci_choose_state - Choose the power state of a PCI device
871  * @dev: PCI device to be suspended
872  * @state: target sleep state for the whole system. This is the value
873  *	that is passed to suspend() function.
874  *
875  * Returns PCI power state suitable for given device and given system
876  * message.
877  */
878 
879 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
880 {
881 	pci_power_t ret;
882 
883 	if (!dev->pm_cap)
884 		return PCI_D0;
885 
886 	ret = platform_pci_choose_state(dev);
887 	if (ret != PCI_POWER_ERROR)
888 		return ret;
889 
890 	switch (state.event) {
891 	case PM_EVENT_ON:
892 		return PCI_D0;
893 	case PM_EVENT_FREEZE:
894 	case PM_EVENT_PRETHAW:
895 		/* REVISIT both freeze and pre-thaw "should" use D0 */
896 	case PM_EVENT_SUSPEND:
897 	case PM_EVENT_HIBERNATE:
898 		return PCI_D3hot;
899 	default:
900 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
901 			 state.event);
902 		BUG();
903 	}
904 	return PCI_D0;
905 }
906 EXPORT_SYMBOL(pci_choose_state);
907 
908 #define PCI_EXP_SAVE_REGS	7
909 
910 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
911 						       u16 cap, bool extended)
912 {
913 	struct pci_cap_saved_state *tmp;
914 
915 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
916 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
917 			return tmp;
918 	}
919 	return NULL;
920 }
921 
922 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
923 {
924 	return _pci_find_saved_cap(dev, cap, false);
925 }
926 
927 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
928 {
929 	return _pci_find_saved_cap(dev, cap, true);
930 }
931 
932 static int pci_save_pcie_state(struct pci_dev *dev)
933 {
934 	int i = 0;
935 	struct pci_cap_saved_state *save_state;
936 	u16 *cap;
937 
938 	if (!pci_is_pcie(dev))
939 		return 0;
940 
941 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
942 	if (!save_state) {
943 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
944 		return -ENOMEM;
945 	}
946 
947 	cap = (u16 *)&save_state->cap.data[0];
948 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
949 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
950 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
951 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
952 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
953 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
954 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
955 
956 	return 0;
957 }
958 
959 static void pci_restore_pcie_state(struct pci_dev *dev)
960 {
961 	int i = 0;
962 	struct pci_cap_saved_state *save_state;
963 	u16 *cap;
964 
965 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
966 	if (!save_state)
967 		return;
968 
969 	cap = (u16 *)&save_state->cap.data[0];
970 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
971 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
972 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
973 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
974 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
975 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
976 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
977 }
978 
979 
980 static int pci_save_pcix_state(struct pci_dev *dev)
981 {
982 	int pos;
983 	struct pci_cap_saved_state *save_state;
984 
985 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
986 	if (!pos)
987 		return 0;
988 
989 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
990 	if (!save_state) {
991 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
992 		return -ENOMEM;
993 	}
994 
995 	pci_read_config_word(dev, pos + PCI_X_CMD,
996 			     (u16 *)save_state->cap.data);
997 
998 	return 0;
999 }
1000 
1001 static void pci_restore_pcix_state(struct pci_dev *dev)
1002 {
1003 	int i = 0, pos;
1004 	struct pci_cap_saved_state *save_state;
1005 	u16 *cap;
1006 
1007 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1008 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1009 	if (!save_state || !pos)
1010 		return;
1011 	cap = (u16 *)&save_state->cap.data[0];
1012 
1013 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1014 }
1015 
1016 
1017 /**
1018  * pci_save_state - save the PCI configuration space of a device before suspending
1019  * @dev: - PCI device that we're dealing with
1020  */
1021 int pci_save_state(struct pci_dev *dev)
1022 {
1023 	int i;
1024 	/* XXX: 100% dword access ok here? */
1025 	for (i = 0; i < 16; i++)
1026 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1027 	dev->state_saved = true;
1028 
1029 	i = pci_save_pcie_state(dev);
1030 	if (i != 0)
1031 		return i;
1032 
1033 	i = pci_save_pcix_state(dev);
1034 	if (i != 0)
1035 		return i;
1036 
1037 	return pci_save_vc_state(dev);
1038 }
1039 EXPORT_SYMBOL(pci_save_state);
1040 
1041 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1042 				     u32 saved_val, int retry)
1043 {
1044 	u32 val;
1045 
1046 	pci_read_config_dword(pdev, offset, &val);
1047 	if (val == saved_val)
1048 		return;
1049 
1050 	for (;;) {
1051 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1052 			offset, val, saved_val);
1053 		pci_write_config_dword(pdev, offset, saved_val);
1054 		if (retry-- <= 0)
1055 			return;
1056 
1057 		pci_read_config_dword(pdev, offset, &val);
1058 		if (val == saved_val)
1059 			return;
1060 
1061 		mdelay(1);
1062 	}
1063 }
1064 
1065 static void pci_restore_config_space_range(struct pci_dev *pdev,
1066 					   int start, int end, int retry)
1067 {
1068 	int index;
1069 
1070 	for (index = end; index >= start; index--)
1071 		pci_restore_config_dword(pdev, 4 * index,
1072 					 pdev->saved_config_space[index],
1073 					 retry);
1074 }
1075 
1076 static void pci_restore_config_space(struct pci_dev *pdev)
1077 {
1078 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1079 		pci_restore_config_space_range(pdev, 10, 15, 0);
1080 		/* Restore BARs before the command register. */
1081 		pci_restore_config_space_range(pdev, 4, 9, 10);
1082 		pci_restore_config_space_range(pdev, 0, 3, 0);
1083 	} else {
1084 		pci_restore_config_space_range(pdev, 0, 15, 0);
1085 	}
1086 }
1087 
1088 /**
1089  * pci_restore_state - Restore the saved state of a PCI device
1090  * @dev: - PCI device that we're dealing with
1091  */
1092 void pci_restore_state(struct pci_dev *dev)
1093 {
1094 	if (!dev->state_saved)
1095 		return;
1096 
1097 	/* PCI Express register must be restored first */
1098 	pci_restore_pcie_state(dev);
1099 	pci_restore_ats_state(dev);
1100 	pci_restore_vc_state(dev);
1101 
1102 	pci_restore_config_space(dev);
1103 
1104 	pci_restore_pcix_state(dev);
1105 	pci_restore_msi_state(dev);
1106 
1107 	/* Restore ACS and IOV configuration state */
1108 	pci_enable_acs(dev);
1109 	pci_restore_iov_state(dev);
1110 
1111 	dev->state_saved = false;
1112 }
1113 EXPORT_SYMBOL(pci_restore_state);
1114 
1115 struct pci_saved_state {
1116 	u32 config_space[16];
1117 	struct pci_cap_saved_data cap[0];
1118 };
1119 
1120 /**
1121  * pci_store_saved_state - Allocate and return an opaque struct containing
1122  *			   the device saved state.
1123  * @dev: PCI device that we're dealing with
1124  *
1125  * Return NULL if no state or error.
1126  */
1127 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1128 {
1129 	struct pci_saved_state *state;
1130 	struct pci_cap_saved_state *tmp;
1131 	struct pci_cap_saved_data *cap;
1132 	size_t size;
1133 
1134 	if (!dev->state_saved)
1135 		return NULL;
1136 
1137 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1138 
1139 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1140 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1141 
1142 	state = kzalloc(size, GFP_KERNEL);
1143 	if (!state)
1144 		return NULL;
1145 
1146 	memcpy(state->config_space, dev->saved_config_space,
1147 	       sizeof(state->config_space));
1148 
1149 	cap = state->cap;
1150 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1151 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1152 		memcpy(cap, &tmp->cap, len);
1153 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1154 	}
1155 	/* Empty cap_save terminates list */
1156 
1157 	return state;
1158 }
1159 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1160 
1161 /**
1162  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1163  * @dev: PCI device that we're dealing with
1164  * @state: Saved state returned from pci_store_saved_state()
1165  */
1166 int pci_load_saved_state(struct pci_dev *dev,
1167 			 struct pci_saved_state *state)
1168 {
1169 	struct pci_cap_saved_data *cap;
1170 
1171 	dev->state_saved = false;
1172 
1173 	if (!state)
1174 		return 0;
1175 
1176 	memcpy(dev->saved_config_space, state->config_space,
1177 	       sizeof(state->config_space));
1178 
1179 	cap = state->cap;
1180 	while (cap->size) {
1181 		struct pci_cap_saved_state *tmp;
1182 
1183 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1184 		if (!tmp || tmp->cap.size != cap->size)
1185 			return -EINVAL;
1186 
1187 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1188 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1189 		       sizeof(struct pci_cap_saved_data) + cap->size);
1190 	}
1191 
1192 	dev->state_saved = true;
1193 	return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1196 
1197 /**
1198  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1199  *				   and free the memory allocated for it.
1200  * @dev: PCI device that we're dealing with
1201  * @state: Pointer to saved state returned from pci_store_saved_state()
1202  */
1203 int pci_load_and_free_saved_state(struct pci_dev *dev,
1204 				  struct pci_saved_state **state)
1205 {
1206 	int ret = pci_load_saved_state(dev, *state);
1207 	kfree(*state);
1208 	*state = NULL;
1209 	return ret;
1210 }
1211 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1212 
1213 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1214 {
1215 	return pci_enable_resources(dev, bars);
1216 }
1217 
1218 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1219 {
1220 	int err;
1221 	struct pci_dev *bridge;
1222 	u16 cmd;
1223 	u8 pin;
1224 
1225 	err = pci_set_power_state(dev, PCI_D0);
1226 	if (err < 0 && err != -EIO)
1227 		return err;
1228 
1229 	bridge = pci_upstream_bridge(dev);
1230 	if (bridge)
1231 		pcie_aspm_powersave_config_link(bridge);
1232 
1233 	err = pcibios_enable_device(dev, bars);
1234 	if (err < 0)
1235 		return err;
1236 	pci_fixup_device(pci_fixup_enable, dev);
1237 
1238 	if (dev->msi_enabled || dev->msix_enabled)
1239 		return 0;
1240 
1241 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1242 	if (pin) {
1243 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1244 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1245 			pci_write_config_word(dev, PCI_COMMAND,
1246 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 /**
1253  * pci_reenable_device - Resume abandoned device
1254  * @dev: PCI device to be resumed
1255  *
1256  *  Note this function is a backend of pci_default_resume and is not supposed
1257  *  to be called by normal code, write proper resume handler and use it instead.
1258  */
1259 int pci_reenable_device(struct pci_dev *dev)
1260 {
1261 	if (pci_is_enabled(dev))
1262 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1263 	return 0;
1264 }
1265 EXPORT_SYMBOL(pci_reenable_device);
1266 
1267 static void pci_enable_bridge(struct pci_dev *dev)
1268 {
1269 	struct pci_dev *bridge;
1270 	int retval;
1271 
1272 	bridge = pci_upstream_bridge(dev);
1273 	if (bridge)
1274 		pci_enable_bridge(bridge);
1275 
1276 	if (pci_is_enabled(dev)) {
1277 		if (!dev->is_busmaster)
1278 			pci_set_master(dev);
1279 		return;
1280 	}
1281 
1282 	retval = pci_enable_device(dev);
1283 	if (retval)
1284 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1285 			retval);
1286 	pci_set_master(dev);
1287 }
1288 
1289 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1290 {
1291 	struct pci_dev *bridge;
1292 	int err;
1293 	int i, bars = 0;
1294 
1295 	/*
1296 	 * Power state could be unknown at this point, either due to a fresh
1297 	 * boot or a device removal call.  So get the current power state
1298 	 * so that things like MSI message writing will behave as expected
1299 	 * (e.g. if the device really is in D0 at enable time).
1300 	 */
1301 	if (dev->pm_cap) {
1302 		u16 pmcsr;
1303 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1304 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1305 	}
1306 
1307 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1308 		return 0;		/* already enabled */
1309 
1310 	bridge = pci_upstream_bridge(dev);
1311 	if (bridge)
1312 		pci_enable_bridge(bridge);
1313 
1314 	/* only skip sriov related */
1315 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1316 		if (dev->resource[i].flags & flags)
1317 			bars |= (1 << i);
1318 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1319 		if (dev->resource[i].flags & flags)
1320 			bars |= (1 << i);
1321 
1322 	err = do_pci_enable_device(dev, bars);
1323 	if (err < 0)
1324 		atomic_dec(&dev->enable_cnt);
1325 	return err;
1326 }
1327 
1328 /**
1329  * pci_enable_device_io - Initialize a device for use with IO space
1330  * @dev: PCI device to be initialized
1331  *
1332  *  Initialize device before it's used by a driver. Ask low-level code
1333  *  to enable I/O resources. Wake up the device if it was suspended.
1334  *  Beware, this function can fail.
1335  */
1336 int pci_enable_device_io(struct pci_dev *dev)
1337 {
1338 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1339 }
1340 EXPORT_SYMBOL(pci_enable_device_io);
1341 
1342 /**
1343  * pci_enable_device_mem - Initialize a device for use with Memory space
1344  * @dev: PCI device to be initialized
1345  *
1346  *  Initialize device before it's used by a driver. Ask low-level code
1347  *  to enable Memory resources. Wake up the device if it was suspended.
1348  *  Beware, this function can fail.
1349  */
1350 int pci_enable_device_mem(struct pci_dev *dev)
1351 {
1352 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1353 }
1354 EXPORT_SYMBOL(pci_enable_device_mem);
1355 
1356 /**
1357  * pci_enable_device - Initialize device before it's used by a driver.
1358  * @dev: PCI device to be initialized
1359  *
1360  *  Initialize device before it's used by a driver. Ask low-level code
1361  *  to enable I/O and memory. Wake up the device if it was suspended.
1362  *  Beware, this function can fail.
1363  *
1364  *  Note we don't actually enable the device many times if we call
1365  *  this function repeatedly (we just increment the count).
1366  */
1367 int pci_enable_device(struct pci_dev *dev)
1368 {
1369 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1370 }
1371 EXPORT_SYMBOL(pci_enable_device);
1372 
1373 /*
1374  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1375  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1376  * there's no need to track it separately.  pci_devres is initialized
1377  * when a device is enabled using managed PCI device enable interface.
1378  */
1379 struct pci_devres {
1380 	unsigned int enabled:1;
1381 	unsigned int pinned:1;
1382 	unsigned int orig_intx:1;
1383 	unsigned int restore_intx:1;
1384 	u32 region_mask;
1385 };
1386 
1387 static void pcim_release(struct device *gendev, void *res)
1388 {
1389 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1390 	struct pci_devres *this = res;
1391 	int i;
1392 
1393 	if (dev->msi_enabled)
1394 		pci_disable_msi(dev);
1395 	if (dev->msix_enabled)
1396 		pci_disable_msix(dev);
1397 
1398 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1399 		if (this->region_mask & (1 << i))
1400 			pci_release_region(dev, i);
1401 
1402 	if (this->restore_intx)
1403 		pci_intx(dev, this->orig_intx);
1404 
1405 	if (this->enabled && !this->pinned)
1406 		pci_disable_device(dev);
1407 }
1408 
1409 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1410 {
1411 	struct pci_devres *dr, *new_dr;
1412 
1413 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1414 	if (dr)
1415 		return dr;
1416 
1417 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1418 	if (!new_dr)
1419 		return NULL;
1420 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1421 }
1422 
1423 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1424 {
1425 	if (pci_is_managed(pdev))
1426 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1427 	return NULL;
1428 }
1429 
1430 /**
1431  * pcim_enable_device - Managed pci_enable_device()
1432  * @pdev: PCI device to be initialized
1433  *
1434  * Managed pci_enable_device().
1435  */
1436 int pcim_enable_device(struct pci_dev *pdev)
1437 {
1438 	struct pci_devres *dr;
1439 	int rc;
1440 
1441 	dr = get_pci_dr(pdev);
1442 	if (unlikely(!dr))
1443 		return -ENOMEM;
1444 	if (dr->enabled)
1445 		return 0;
1446 
1447 	rc = pci_enable_device(pdev);
1448 	if (!rc) {
1449 		pdev->is_managed = 1;
1450 		dr->enabled = 1;
1451 	}
1452 	return rc;
1453 }
1454 EXPORT_SYMBOL(pcim_enable_device);
1455 
1456 /**
1457  * pcim_pin_device - Pin managed PCI device
1458  * @pdev: PCI device to pin
1459  *
1460  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1461  * driver detach.  @pdev must have been enabled with
1462  * pcim_enable_device().
1463  */
1464 void pcim_pin_device(struct pci_dev *pdev)
1465 {
1466 	struct pci_devres *dr;
1467 
1468 	dr = find_pci_dr(pdev);
1469 	WARN_ON(!dr || !dr->enabled);
1470 	if (dr)
1471 		dr->pinned = 1;
1472 }
1473 EXPORT_SYMBOL(pcim_pin_device);
1474 
1475 /*
1476  * pcibios_add_device - provide arch specific hooks when adding device dev
1477  * @dev: the PCI device being added
1478  *
1479  * Permits the platform to provide architecture specific functionality when
1480  * devices are added. This is the default implementation. Architecture
1481  * implementations can override this.
1482  */
1483 int __weak pcibios_add_device(struct pci_dev *dev)
1484 {
1485 	return 0;
1486 }
1487 
1488 /**
1489  * pcibios_release_device - provide arch specific hooks when releasing device dev
1490  * @dev: the PCI device being released
1491  *
1492  * Permits the platform to provide architecture specific functionality when
1493  * devices are released. This is the default implementation. Architecture
1494  * implementations can override this.
1495  */
1496 void __weak pcibios_release_device(struct pci_dev *dev) {}
1497 
1498 /**
1499  * pcibios_disable_device - disable arch specific PCI resources for device dev
1500  * @dev: the PCI device to disable
1501  *
1502  * Disables architecture specific PCI resources for the device. This
1503  * is the default implementation. Architecture implementations can
1504  * override this.
1505  */
1506 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1507 
1508 /**
1509  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1510  * @irq: ISA IRQ to penalize
1511  * @active: IRQ active or not
1512  *
1513  * Permits the platform to provide architecture-specific functionality when
1514  * penalizing ISA IRQs. This is the default implementation. Architecture
1515  * implementations can override this.
1516  */
1517 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1518 
1519 static void do_pci_disable_device(struct pci_dev *dev)
1520 {
1521 	u16 pci_command;
1522 
1523 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1524 	if (pci_command & PCI_COMMAND_MASTER) {
1525 		pci_command &= ~PCI_COMMAND_MASTER;
1526 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1527 	}
1528 
1529 	pcibios_disable_device(dev);
1530 }
1531 
1532 /**
1533  * pci_disable_enabled_device - Disable device without updating enable_cnt
1534  * @dev: PCI device to disable
1535  *
1536  * NOTE: This function is a backend of PCI power management routines and is
1537  * not supposed to be called drivers.
1538  */
1539 void pci_disable_enabled_device(struct pci_dev *dev)
1540 {
1541 	if (pci_is_enabled(dev))
1542 		do_pci_disable_device(dev);
1543 }
1544 
1545 /**
1546  * pci_disable_device - Disable PCI device after use
1547  * @dev: PCI device to be disabled
1548  *
1549  * Signal to the system that the PCI device is not in use by the system
1550  * anymore.  This only involves disabling PCI bus-mastering, if active.
1551  *
1552  * Note we don't actually disable the device until all callers of
1553  * pci_enable_device() have called pci_disable_device().
1554  */
1555 void pci_disable_device(struct pci_dev *dev)
1556 {
1557 	struct pci_devres *dr;
1558 
1559 	dr = find_pci_dr(dev);
1560 	if (dr)
1561 		dr->enabled = 0;
1562 
1563 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1564 		      "disabling already-disabled device");
1565 
1566 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1567 		return;
1568 
1569 	do_pci_disable_device(dev);
1570 
1571 	dev->is_busmaster = 0;
1572 }
1573 EXPORT_SYMBOL(pci_disable_device);
1574 
1575 /**
1576  * pcibios_set_pcie_reset_state - set reset state for device dev
1577  * @dev: the PCIe device reset
1578  * @state: Reset state to enter into
1579  *
1580  *
1581  * Sets the PCIe reset state for the device. This is the default
1582  * implementation. Architecture implementations can override this.
1583  */
1584 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1585 					enum pcie_reset_state state)
1586 {
1587 	return -EINVAL;
1588 }
1589 
1590 /**
1591  * pci_set_pcie_reset_state - set reset state for device dev
1592  * @dev: the PCIe device reset
1593  * @state: Reset state to enter into
1594  *
1595  *
1596  * Sets the PCI reset state for the device.
1597  */
1598 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1599 {
1600 	return pcibios_set_pcie_reset_state(dev, state);
1601 }
1602 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1603 
1604 /**
1605  * pci_check_pme_status - Check if given device has generated PME.
1606  * @dev: Device to check.
1607  *
1608  * Check the PME status of the device and if set, clear it and clear PME enable
1609  * (if set).  Return 'true' if PME status and PME enable were both set or
1610  * 'false' otherwise.
1611  */
1612 bool pci_check_pme_status(struct pci_dev *dev)
1613 {
1614 	int pmcsr_pos;
1615 	u16 pmcsr;
1616 	bool ret = false;
1617 
1618 	if (!dev->pm_cap)
1619 		return false;
1620 
1621 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1622 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1623 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1624 		return false;
1625 
1626 	/* Clear PME status. */
1627 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1628 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1629 		/* Disable PME to avoid interrupt flood. */
1630 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1631 		ret = true;
1632 	}
1633 
1634 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1635 
1636 	return ret;
1637 }
1638 
1639 /**
1640  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1641  * @dev: Device to handle.
1642  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1643  *
1644  * Check if @dev has generated PME and queue a resume request for it in that
1645  * case.
1646  */
1647 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1648 {
1649 	if (pme_poll_reset && dev->pme_poll)
1650 		dev->pme_poll = false;
1651 
1652 	if (pci_check_pme_status(dev)) {
1653 		pci_wakeup_event(dev);
1654 		pm_request_resume(&dev->dev);
1655 	}
1656 	return 0;
1657 }
1658 
1659 /**
1660  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1661  * @bus: Top bus of the subtree to walk.
1662  */
1663 void pci_pme_wakeup_bus(struct pci_bus *bus)
1664 {
1665 	if (bus)
1666 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1667 }
1668 
1669 
1670 /**
1671  * pci_pme_capable - check the capability of PCI device to generate PME#
1672  * @dev: PCI device to handle.
1673  * @state: PCI state from which device will issue PME#.
1674  */
1675 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1676 {
1677 	if (!dev->pm_cap)
1678 		return false;
1679 
1680 	return !!(dev->pme_support & (1 << state));
1681 }
1682 EXPORT_SYMBOL(pci_pme_capable);
1683 
1684 static void pci_pme_list_scan(struct work_struct *work)
1685 {
1686 	struct pci_pme_device *pme_dev, *n;
1687 
1688 	mutex_lock(&pci_pme_list_mutex);
1689 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1690 		if (pme_dev->dev->pme_poll) {
1691 			struct pci_dev *bridge;
1692 
1693 			bridge = pme_dev->dev->bus->self;
1694 			/*
1695 			 * If bridge is in low power state, the
1696 			 * configuration space of subordinate devices
1697 			 * may be not accessible
1698 			 */
1699 			if (bridge && bridge->current_state != PCI_D0)
1700 				continue;
1701 			pci_pme_wakeup(pme_dev->dev, NULL);
1702 		} else {
1703 			list_del(&pme_dev->list);
1704 			kfree(pme_dev);
1705 		}
1706 	}
1707 	if (!list_empty(&pci_pme_list))
1708 		schedule_delayed_work(&pci_pme_work,
1709 				      msecs_to_jiffies(PME_TIMEOUT));
1710 	mutex_unlock(&pci_pme_list_mutex);
1711 }
1712 
1713 /**
1714  * pci_pme_active - enable or disable PCI device's PME# function
1715  * @dev: PCI device to handle.
1716  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1717  *
1718  * The caller must verify that the device is capable of generating PME# before
1719  * calling this function with @enable equal to 'true'.
1720  */
1721 void pci_pme_active(struct pci_dev *dev, bool enable)
1722 {
1723 	u16 pmcsr;
1724 
1725 	if (!dev->pme_support)
1726 		return;
1727 
1728 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1729 	/* Clear PME_Status by writing 1 to it and enable PME# */
1730 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1731 	if (!enable)
1732 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1733 
1734 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1735 
1736 	/*
1737 	 * PCI (as opposed to PCIe) PME requires that the device have
1738 	 * its PME# line hooked up correctly. Not all hardware vendors
1739 	 * do this, so the PME never gets delivered and the device
1740 	 * remains asleep. The easiest way around this is to
1741 	 * periodically walk the list of suspended devices and check
1742 	 * whether any have their PME flag set. The assumption is that
1743 	 * we'll wake up often enough anyway that this won't be a huge
1744 	 * hit, and the power savings from the devices will still be a
1745 	 * win.
1746 	 *
1747 	 * Although PCIe uses in-band PME message instead of PME# line
1748 	 * to report PME, PME does not work for some PCIe devices in
1749 	 * reality.  For example, there are devices that set their PME
1750 	 * status bits, but don't really bother to send a PME message;
1751 	 * there are PCI Express Root Ports that don't bother to
1752 	 * trigger interrupts when they receive PME messages from the
1753 	 * devices below.  So PME poll is used for PCIe devices too.
1754 	 */
1755 
1756 	if (dev->pme_poll) {
1757 		struct pci_pme_device *pme_dev;
1758 		if (enable) {
1759 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1760 					  GFP_KERNEL);
1761 			if (!pme_dev) {
1762 				dev_warn(&dev->dev, "can't enable PME#\n");
1763 				return;
1764 			}
1765 			pme_dev->dev = dev;
1766 			mutex_lock(&pci_pme_list_mutex);
1767 			list_add(&pme_dev->list, &pci_pme_list);
1768 			if (list_is_singular(&pci_pme_list))
1769 				schedule_delayed_work(&pci_pme_work,
1770 						      msecs_to_jiffies(PME_TIMEOUT));
1771 			mutex_unlock(&pci_pme_list_mutex);
1772 		} else {
1773 			mutex_lock(&pci_pme_list_mutex);
1774 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1775 				if (pme_dev->dev == dev) {
1776 					list_del(&pme_dev->list);
1777 					kfree(pme_dev);
1778 					break;
1779 				}
1780 			}
1781 			mutex_unlock(&pci_pme_list_mutex);
1782 		}
1783 	}
1784 
1785 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1786 }
1787 EXPORT_SYMBOL(pci_pme_active);
1788 
1789 /**
1790  * __pci_enable_wake - enable PCI device as wakeup event source
1791  * @dev: PCI device affected
1792  * @state: PCI state from which device will issue wakeup events
1793  * @runtime: True if the events are to be generated at run time
1794  * @enable: True to enable event generation; false to disable
1795  *
1796  * This enables the device as a wakeup event source, or disables it.
1797  * When such events involves platform-specific hooks, those hooks are
1798  * called automatically by this routine.
1799  *
1800  * Devices with legacy power management (no standard PCI PM capabilities)
1801  * always require such platform hooks.
1802  *
1803  * RETURN VALUE:
1804  * 0 is returned on success
1805  * -EINVAL is returned if device is not supposed to wake up the system
1806  * Error code depending on the platform is returned if both the platform and
1807  * the native mechanism fail to enable the generation of wake-up events
1808  */
1809 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1810 		      bool runtime, bool enable)
1811 {
1812 	int ret = 0;
1813 
1814 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1815 		return -EINVAL;
1816 
1817 	/* Don't do the same thing twice in a row for one device. */
1818 	if (!!enable == !!dev->wakeup_prepared)
1819 		return 0;
1820 
1821 	/*
1822 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1823 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1824 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1825 	 */
1826 
1827 	if (enable) {
1828 		int error;
1829 
1830 		if (pci_pme_capable(dev, state))
1831 			pci_pme_active(dev, true);
1832 		else
1833 			ret = 1;
1834 		error = runtime ? platform_pci_run_wake(dev, true) :
1835 					platform_pci_sleep_wake(dev, true);
1836 		if (ret)
1837 			ret = error;
1838 		if (!ret)
1839 			dev->wakeup_prepared = true;
1840 	} else {
1841 		if (runtime)
1842 			platform_pci_run_wake(dev, false);
1843 		else
1844 			platform_pci_sleep_wake(dev, false);
1845 		pci_pme_active(dev, false);
1846 		dev->wakeup_prepared = false;
1847 	}
1848 
1849 	return ret;
1850 }
1851 EXPORT_SYMBOL(__pci_enable_wake);
1852 
1853 /**
1854  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1855  * @dev: PCI device to prepare
1856  * @enable: True to enable wake-up event generation; false to disable
1857  *
1858  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1859  * and this function allows them to set that up cleanly - pci_enable_wake()
1860  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1861  * ordering constraints.
1862  *
1863  * This function only returns error code if the device is not capable of
1864  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1865  * enable wake-up power for it.
1866  */
1867 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1868 {
1869 	return pci_pme_capable(dev, PCI_D3cold) ?
1870 			pci_enable_wake(dev, PCI_D3cold, enable) :
1871 			pci_enable_wake(dev, PCI_D3hot, enable);
1872 }
1873 EXPORT_SYMBOL(pci_wake_from_d3);
1874 
1875 /**
1876  * pci_target_state - find an appropriate low power state for a given PCI dev
1877  * @dev: PCI device
1878  *
1879  * Use underlying platform code to find a supported low power state for @dev.
1880  * If the platform can't manage @dev, return the deepest state from which it
1881  * can generate wake events, based on any available PME info.
1882  */
1883 static pci_power_t pci_target_state(struct pci_dev *dev)
1884 {
1885 	pci_power_t target_state = PCI_D3hot;
1886 
1887 	if (platform_pci_power_manageable(dev)) {
1888 		/*
1889 		 * Call the platform to choose the target state of the device
1890 		 * and enable wake-up from this state if supported.
1891 		 */
1892 		pci_power_t state = platform_pci_choose_state(dev);
1893 
1894 		switch (state) {
1895 		case PCI_POWER_ERROR:
1896 		case PCI_UNKNOWN:
1897 			break;
1898 		case PCI_D1:
1899 		case PCI_D2:
1900 			if (pci_no_d1d2(dev))
1901 				break;
1902 		default:
1903 			target_state = state;
1904 		}
1905 	} else if (!dev->pm_cap) {
1906 		target_state = PCI_D0;
1907 	} else if (device_may_wakeup(&dev->dev)) {
1908 		/*
1909 		 * Find the deepest state from which the device can generate
1910 		 * wake-up events, make it the target state and enable device
1911 		 * to generate PME#.
1912 		 */
1913 		if (dev->pme_support) {
1914 			while (target_state
1915 			      && !(dev->pme_support & (1 << target_state)))
1916 				target_state--;
1917 		}
1918 	}
1919 
1920 	return target_state;
1921 }
1922 
1923 /**
1924  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1925  * @dev: Device to handle.
1926  *
1927  * Choose the power state appropriate for the device depending on whether
1928  * it can wake up the system and/or is power manageable by the platform
1929  * (PCI_D3hot is the default) and put the device into that state.
1930  */
1931 int pci_prepare_to_sleep(struct pci_dev *dev)
1932 {
1933 	pci_power_t target_state = pci_target_state(dev);
1934 	int error;
1935 
1936 	if (target_state == PCI_POWER_ERROR)
1937 		return -EIO;
1938 
1939 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1940 
1941 	error = pci_set_power_state(dev, target_state);
1942 
1943 	if (error)
1944 		pci_enable_wake(dev, target_state, false);
1945 
1946 	return error;
1947 }
1948 EXPORT_SYMBOL(pci_prepare_to_sleep);
1949 
1950 /**
1951  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1952  * @dev: Device to handle.
1953  *
1954  * Disable device's system wake-up capability and put it into D0.
1955  */
1956 int pci_back_from_sleep(struct pci_dev *dev)
1957 {
1958 	pci_enable_wake(dev, PCI_D0, false);
1959 	return pci_set_power_state(dev, PCI_D0);
1960 }
1961 EXPORT_SYMBOL(pci_back_from_sleep);
1962 
1963 /**
1964  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1965  * @dev: PCI device being suspended.
1966  *
1967  * Prepare @dev to generate wake-up events at run time and put it into a low
1968  * power state.
1969  */
1970 int pci_finish_runtime_suspend(struct pci_dev *dev)
1971 {
1972 	pci_power_t target_state = pci_target_state(dev);
1973 	int error;
1974 
1975 	if (target_state == PCI_POWER_ERROR)
1976 		return -EIO;
1977 
1978 	dev->runtime_d3cold = target_state == PCI_D3cold;
1979 
1980 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1981 
1982 	error = pci_set_power_state(dev, target_state);
1983 
1984 	if (error) {
1985 		__pci_enable_wake(dev, target_state, true, false);
1986 		dev->runtime_d3cold = false;
1987 	}
1988 
1989 	return error;
1990 }
1991 
1992 /**
1993  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1994  * @dev: Device to check.
1995  *
1996  * Return true if the device itself is capable of generating wake-up events
1997  * (through the platform or using the native PCIe PME) or if the device supports
1998  * PME and one of its upstream bridges can generate wake-up events.
1999  */
2000 bool pci_dev_run_wake(struct pci_dev *dev)
2001 {
2002 	struct pci_bus *bus = dev->bus;
2003 
2004 	if (device_run_wake(&dev->dev))
2005 		return true;
2006 
2007 	if (!dev->pme_support)
2008 		return false;
2009 
2010 	while (bus->parent) {
2011 		struct pci_dev *bridge = bus->self;
2012 
2013 		if (device_run_wake(&bridge->dev))
2014 			return true;
2015 
2016 		bus = bus->parent;
2017 	}
2018 
2019 	/* We have reached the root bus. */
2020 	if (bus->bridge)
2021 		return device_run_wake(bus->bridge);
2022 
2023 	return false;
2024 }
2025 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2026 
2027 /**
2028  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2029  * @pci_dev: Device to check.
2030  *
2031  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2032  * reconfigured due to wakeup settings difference between system and runtime
2033  * suspend and the current power state of it is suitable for the upcoming
2034  * (system) transition.
2035  */
2036 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2037 {
2038 	struct device *dev = &pci_dev->dev;
2039 
2040 	if (!pm_runtime_suspended(dev)
2041 	    || (device_can_wakeup(dev) && !device_may_wakeup(dev))
2042 	    || platform_pci_need_resume(pci_dev))
2043 		return false;
2044 
2045 	return pci_target_state(pci_dev) == pci_dev->current_state;
2046 }
2047 
2048 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2049 {
2050 	struct device *dev = &pdev->dev;
2051 	struct device *parent = dev->parent;
2052 
2053 	if (parent)
2054 		pm_runtime_get_sync(parent);
2055 	pm_runtime_get_noresume(dev);
2056 	/*
2057 	 * pdev->current_state is set to PCI_D3cold during suspending,
2058 	 * so wait until suspending completes
2059 	 */
2060 	pm_runtime_barrier(dev);
2061 	/*
2062 	 * Only need to resume devices in D3cold, because config
2063 	 * registers are still accessible for devices suspended but
2064 	 * not in D3cold.
2065 	 */
2066 	if (pdev->current_state == PCI_D3cold)
2067 		pm_runtime_resume(dev);
2068 }
2069 
2070 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2071 {
2072 	struct device *dev = &pdev->dev;
2073 	struct device *parent = dev->parent;
2074 
2075 	pm_runtime_put(dev);
2076 	if (parent)
2077 		pm_runtime_put_sync(parent);
2078 }
2079 
2080 /**
2081  * pci_pm_init - Initialize PM functions of given PCI device
2082  * @dev: PCI device to handle.
2083  */
2084 void pci_pm_init(struct pci_dev *dev)
2085 {
2086 	int pm;
2087 	u16 pmc;
2088 
2089 	pm_runtime_forbid(&dev->dev);
2090 	pm_runtime_set_active(&dev->dev);
2091 	pm_runtime_enable(&dev->dev);
2092 	device_enable_async_suspend(&dev->dev);
2093 	dev->wakeup_prepared = false;
2094 
2095 	dev->pm_cap = 0;
2096 	dev->pme_support = 0;
2097 
2098 	/* find PCI PM capability in list */
2099 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2100 	if (!pm)
2101 		return;
2102 	/* Check device's ability to generate PME# */
2103 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2104 
2105 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2106 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2107 			pmc & PCI_PM_CAP_VER_MASK);
2108 		return;
2109 	}
2110 
2111 	dev->pm_cap = pm;
2112 	dev->d3_delay = PCI_PM_D3_WAIT;
2113 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2114 	dev->d3cold_allowed = true;
2115 
2116 	dev->d1_support = false;
2117 	dev->d2_support = false;
2118 	if (!pci_no_d1d2(dev)) {
2119 		if (pmc & PCI_PM_CAP_D1)
2120 			dev->d1_support = true;
2121 		if (pmc & PCI_PM_CAP_D2)
2122 			dev->d2_support = true;
2123 
2124 		if (dev->d1_support || dev->d2_support)
2125 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2126 				   dev->d1_support ? " D1" : "",
2127 				   dev->d2_support ? " D2" : "");
2128 	}
2129 
2130 	pmc &= PCI_PM_CAP_PME_MASK;
2131 	if (pmc) {
2132 		dev_printk(KERN_DEBUG, &dev->dev,
2133 			 "PME# supported from%s%s%s%s%s\n",
2134 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2135 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2136 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2137 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2138 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2139 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2140 		dev->pme_poll = true;
2141 		/*
2142 		 * Make device's PM flags reflect the wake-up capability, but
2143 		 * let the user space enable it to wake up the system as needed.
2144 		 */
2145 		device_set_wakeup_capable(&dev->dev, true);
2146 		/* Disable the PME# generation functionality */
2147 		pci_pme_active(dev, false);
2148 	}
2149 }
2150 
2151 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2152 	struct pci_cap_saved_state *new_cap)
2153 {
2154 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2155 }
2156 
2157 /**
2158  * _pci_add_cap_save_buffer - allocate buffer for saving given
2159  *                            capability registers
2160  * @dev: the PCI device
2161  * @cap: the capability to allocate the buffer for
2162  * @extended: Standard or Extended capability ID
2163  * @size: requested size of the buffer
2164  */
2165 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2166 				    bool extended, unsigned int size)
2167 {
2168 	int pos;
2169 	struct pci_cap_saved_state *save_state;
2170 
2171 	if (extended)
2172 		pos = pci_find_ext_capability(dev, cap);
2173 	else
2174 		pos = pci_find_capability(dev, cap);
2175 
2176 	if (!pos)
2177 		return 0;
2178 
2179 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2180 	if (!save_state)
2181 		return -ENOMEM;
2182 
2183 	save_state->cap.cap_nr = cap;
2184 	save_state->cap.cap_extended = extended;
2185 	save_state->cap.size = size;
2186 	pci_add_saved_cap(dev, save_state);
2187 
2188 	return 0;
2189 }
2190 
2191 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2192 {
2193 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2194 }
2195 
2196 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2197 {
2198 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2199 }
2200 
2201 /**
2202  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2203  * @dev: the PCI device
2204  */
2205 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2206 {
2207 	int error;
2208 
2209 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2210 					PCI_EXP_SAVE_REGS * sizeof(u16));
2211 	if (error)
2212 		dev_err(&dev->dev,
2213 			"unable to preallocate PCI Express save buffer\n");
2214 
2215 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2216 	if (error)
2217 		dev_err(&dev->dev,
2218 			"unable to preallocate PCI-X save buffer\n");
2219 
2220 	pci_allocate_vc_save_buffers(dev);
2221 }
2222 
2223 void pci_free_cap_save_buffers(struct pci_dev *dev)
2224 {
2225 	struct pci_cap_saved_state *tmp;
2226 	struct hlist_node *n;
2227 
2228 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2229 		kfree(tmp);
2230 }
2231 
2232 /**
2233  * pci_configure_ari - enable or disable ARI forwarding
2234  * @dev: the PCI device
2235  *
2236  * If @dev and its upstream bridge both support ARI, enable ARI in the
2237  * bridge.  Otherwise, disable ARI in the bridge.
2238  */
2239 void pci_configure_ari(struct pci_dev *dev)
2240 {
2241 	u32 cap;
2242 	struct pci_dev *bridge;
2243 
2244 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2245 		return;
2246 
2247 	bridge = dev->bus->self;
2248 	if (!bridge)
2249 		return;
2250 
2251 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2252 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2253 		return;
2254 
2255 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2256 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2257 					 PCI_EXP_DEVCTL2_ARI);
2258 		bridge->ari_enabled = 1;
2259 	} else {
2260 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2261 					   PCI_EXP_DEVCTL2_ARI);
2262 		bridge->ari_enabled = 0;
2263 	}
2264 }
2265 
2266 static int pci_acs_enable;
2267 
2268 /**
2269  * pci_request_acs - ask for ACS to be enabled if supported
2270  */
2271 void pci_request_acs(void)
2272 {
2273 	pci_acs_enable = 1;
2274 }
2275 
2276 /**
2277  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2278  * @dev: the PCI device
2279  */
2280 static int pci_std_enable_acs(struct pci_dev *dev)
2281 {
2282 	int pos;
2283 	u16 cap;
2284 	u16 ctrl;
2285 
2286 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2287 	if (!pos)
2288 		return -ENODEV;
2289 
2290 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2291 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2292 
2293 	/* Source Validation */
2294 	ctrl |= (cap & PCI_ACS_SV);
2295 
2296 	/* P2P Request Redirect */
2297 	ctrl |= (cap & PCI_ACS_RR);
2298 
2299 	/* P2P Completion Redirect */
2300 	ctrl |= (cap & PCI_ACS_CR);
2301 
2302 	/* Upstream Forwarding */
2303 	ctrl |= (cap & PCI_ACS_UF);
2304 
2305 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2306 
2307 	return 0;
2308 }
2309 
2310 /**
2311  * pci_enable_acs - enable ACS if hardware support it
2312  * @dev: the PCI device
2313  */
2314 void pci_enable_acs(struct pci_dev *dev)
2315 {
2316 	if (!pci_acs_enable)
2317 		return;
2318 
2319 	if (!pci_std_enable_acs(dev))
2320 		return;
2321 
2322 	pci_dev_specific_enable_acs(dev);
2323 }
2324 
2325 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2326 {
2327 	int pos;
2328 	u16 cap, ctrl;
2329 
2330 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2331 	if (!pos)
2332 		return false;
2333 
2334 	/*
2335 	 * Except for egress control, capabilities are either required
2336 	 * or only required if controllable.  Features missing from the
2337 	 * capability field can therefore be assumed as hard-wired enabled.
2338 	 */
2339 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2340 	acs_flags &= (cap | PCI_ACS_EC);
2341 
2342 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2343 	return (ctrl & acs_flags) == acs_flags;
2344 }
2345 
2346 /**
2347  * pci_acs_enabled - test ACS against required flags for a given device
2348  * @pdev: device to test
2349  * @acs_flags: required PCI ACS flags
2350  *
2351  * Return true if the device supports the provided flags.  Automatically
2352  * filters out flags that are not implemented on multifunction devices.
2353  *
2354  * Note that this interface checks the effective ACS capabilities of the
2355  * device rather than the actual capabilities.  For instance, most single
2356  * function endpoints are not required to support ACS because they have no
2357  * opportunity for peer-to-peer access.  We therefore return 'true'
2358  * regardless of whether the device exposes an ACS capability.  This makes
2359  * it much easier for callers of this function to ignore the actual type
2360  * or topology of the device when testing ACS support.
2361  */
2362 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2363 {
2364 	int ret;
2365 
2366 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2367 	if (ret >= 0)
2368 		return ret > 0;
2369 
2370 	/*
2371 	 * Conventional PCI and PCI-X devices never support ACS, either
2372 	 * effectively or actually.  The shared bus topology implies that
2373 	 * any device on the bus can receive or snoop DMA.
2374 	 */
2375 	if (!pci_is_pcie(pdev))
2376 		return false;
2377 
2378 	switch (pci_pcie_type(pdev)) {
2379 	/*
2380 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2381 	 * but since their primary interface is PCI/X, we conservatively
2382 	 * handle them as we would a non-PCIe device.
2383 	 */
2384 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2385 	/*
2386 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2387 	 * applicable... must never implement an ACS Extended Capability...".
2388 	 * This seems arbitrary, but we take a conservative interpretation
2389 	 * of this statement.
2390 	 */
2391 	case PCI_EXP_TYPE_PCI_BRIDGE:
2392 	case PCI_EXP_TYPE_RC_EC:
2393 		return false;
2394 	/*
2395 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2396 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2397 	 * regardless of whether they are single- or multi-function devices.
2398 	 */
2399 	case PCI_EXP_TYPE_DOWNSTREAM:
2400 	case PCI_EXP_TYPE_ROOT_PORT:
2401 		return pci_acs_flags_enabled(pdev, acs_flags);
2402 	/*
2403 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2404 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2405 	 * capabilities, but only when they are part of a multifunction
2406 	 * device.  The footnote for section 6.12 indicates the specific
2407 	 * PCIe types included here.
2408 	 */
2409 	case PCI_EXP_TYPE_ENDPOINT:
2410 	case PCI_EXP_TYPE_UPSTREAM:
2411 	case PCI_EXP_TYPE_LEG_END:
2412 	case PCI_EXP_TYPE_RC_END:
2413 		if (!pdev->multifunction)
2414 			break;
2415 
2416 		return pci_acs_flags_enabled(pdev, acs_flags);
2417 	}
2418 
2419 	/*
2420 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2421 	 * to single function devices with the exception of downstream ports.
2422 	 */
2423 	return true;
2424 }
2425 
2426 /**
2427  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2428  * @start: starting downstream device
2429  * @end: ending upstream device or NULL to search to the root bus
2430  * @acs_flags: required flags
2431  *
2432  * Walk up a device tree from start to end testing PCI ACS support.  If
2433  * any step along the way does not support the required flags, return false.
2434  */
2435 bool pci_acs_path_enabled(struct pci_dev *start,
2436 			  struct pci_dev *end, u16 acs_flags)
2437 {
2438 	struct pci_dev *pdev, *parent = start;
2439 
2440 	do {
2441 		pdev = parent;
2442 
2443 		if (!pci_acs_enabled(pdev, acs_flags))
2444 			return false;
2445 
2446 		if (pci_is_root_bus(pdev->bus))
2447 			return (end == NULL);
2448 
2449 		parent = pdev->bus->self;
2450 	} while (pdev != end);
2451 
2452 	return true;
2453 }
2454 
2455 /**
2456  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2457  * @dev: the PCI device
2458  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2459  *
2460  * Perform INTx swizzling for a device behind one level of bridge.  This is
2461  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2462  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2463  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2464  * the PCI Express Base Specification, Revision 2.1)
2465  */
2466 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2467 {
2468 	int slot;
2469 
2470 	if (pci_ari_enabled(dev->bus))
2471 		slot = 0;
2472 	else
2473 		slot = PCI_SLOT(dev->devfn);
2474 
2475 	return (((pin - 1) + slot) % 4) + 1;
2476 }
2477 
2478 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2479 {
2480 	u8 pin;
2481 
2482 	pin = dev->pin;
2483 	if (!pin)
2484 		return -1;
2485 
2486 	while (!pci_is_root_bus(dev->bus)) {
2487 		pin = pci_swizzle_interrupt_pin(dev, pin);
2488 		dev = dev->bus->self;
2489 	}
2490 	*bridge = dev;
2491 	return pin;
2492 }
2493 
2494 /**
2495  * pci_common_swizzle - swizzle INTx all the way to root bridge
2496  * @dev: the PCI device
2497  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2498  *
2499  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2500  * bridges all the way up to a PCI root bus.
2501  */
2502 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2503 {
2504 	u8 pin = *pinp;
2505 
2506 	while (!pci_is_root_bus(dev->bus)) {
2507 		pin = pci_swizzle_interrupt_pin(dev, pin);
2508 		dev = dev->bus->self;
2509 	}
2510 	*pinp = pin;
2511 	return PCI_SLOT(dev->devfn);
2512 }
2513 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2514 
2515 /**
2516  *	pci_release_region - Release a PCI bar
2517  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2518  *	@bar: BAR to release
2519  *
2520  *	Releases the PCI I/O and memory resources previously reserved by a
2521  *	successful call to pci_request_region.  Call this function only
2522  *	after all use of the PCI regions has ceased.
2523  */
2524 void pci_release_region(struct pci_dev *pdev, int bar)
2525 {
2526 	struct pci_devres *dr;
2527 
2528 	if (pci_resource_len(pdev, bar) == 0)
2529 		return;
2530 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2531 		release_region(pci_resource_start(pdev, bar),
2532 				pci_resource_len(pdev, bar));
2533 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2534 		release_mem_region(pci_resource_start(pdev, bar),
2535 				pci_resource_len(pdev, bar));
2536 
2537 	dr = find_pci_dr(pdev);
2538 	if (dr)
2539 		dr->region_mask &= ~(1 << bar);
2540 }
2541 EXPORT_SYMBOL(pci_release_region);
2542 
2543 /**
2544  *	__pci_request_region - Reserved PCI I/O and memory resource
2545  *	@pdev: PCI device whose resources are to be reserved
2546  *	@bar: BAR to be reserved
2547  *	@res_name: Name to be associated with resource.
2548  *	@exclusive: whether the region access is exclusive or not
2549  *
2550  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2551  *	being reserved by owner @res_name.  Do not access any
2552  *	address inside the PCI regions unless this call returns
2553  *	successfully.
2554  *
2555  *	If @exclusive is set, then the region is marked so that userspace
2556  *	is explicitly not allowed to map the resource via /dev/mem or
2557  *	sysfs MMIO access.
2558  *
2559  *	Returns 0 on success, or %EBUSY on error.  A warning
2560  *	message is also printed on failure.
2561  */
2562 static int __pci_request_region(struct pci_dev *pdev, int bar,
2563 				const char *res_name, int exclusive)
2564 {
2565 	struct pci_devres *dr;
2566 
2567 	if (pci_resource_len(pdev, bar) == 0)
2568 		return 0;
2569 
2570 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2571 		if (!request_region(pci_resource_start(pdev, bar),
2572 			    pci_resource_len(pdev, bar), res_name))
2573 			goto err_out;
2574 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2575 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2576 					pci_resource_len(pdev, bar), res_name,
2577 					exclusive))
2578 			goto err_out;
2579 	}
2580 
2581 	dr = find_pci_dr(pdev);
2582 	if (dr)
2583 		dr->region_mask |= 1 << bar;
2584 
2585 	return 0;
2586 
2587 err_out:
2588 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2589 		 &pdev->resource[bar]);
2590 	return -EBUSY;
2591 }
2592 
2593 /**
2594  *	pci_request_region - Reserve PCI I/O and memory resource
2595  *	@pdev: PCI device whose resources are to be reserved
2596  *	@bar: BAR to be reserved
2597  *	@res_name: Name to be associated with resource
2598  *
2599  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2600  *	being reserved by owner @res_name.  Do not access any
2601  *	address inside the PCI regions unless this call returns
2602  *	successfully.
2603  *
2604  *	Returns 0 on success, or %EBUSY on error.  A warning
2605  *	message is also printed on failure.
2606  */
2607 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2608 {
2609 	return __pci_request_region(pdev, bar, res_name, 0);
2610 }
2611 EXPORT_SYMBOL(pci_request_region);
2612 
2613 /**
2614  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2615  *	@pdev: PCI device whose resources are to be reserved
2616  *	@bar: BAR to be reserved
2617  *	@res_name: Name to be associated with resource.
2618  *
2619  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2620  *	being reserved by owner @res_name.  Do not access any
2621  *	address inside the PCI regions unless this call returns
2622  *	successfully.
2623  *
2624  *	Returns 0 on success, or %EBUSY on error.  A warning
2625  *	message is also printed on failure.
2626  *
2627  *	The key difference that _exclusive makes it that userspace is
2628  *	explicitly not allowed to map the resource via /dev/mem or
2629  *	sysfs.
2630  */
2631 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2632 				 const char *res_name)
2633 {
2634 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2635 }
2636 EXPORT_SYMBOL(pci_request_region_exclusive);
2637 
2638 /**
2639  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2640  * @pdev: PCI device whose resources were previously reserved
2641  * @bars: Bitmask of BARs to be released
2642  *
2643  * Release selected PCI I/O and memory resources previously reserved.
2644  * Call this function only after all use of the PCI regions has ceased.
2645  */
2646 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2647 {
2648 	int i;
2649 
2650 	for (i = 0; i < 6; i++)
2651 		if (bars & (1 << i))
2652 			pci_release_region(pdev, i);
2653 }
2654 EXPORT_SYMBOL(pci_release_selected_regions);
2655 
2656 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2657 					  const char *res_name, int excl)
2658 {
2659 	int i;
2660 
2661 	for (i = 0; i < 6; i++)
2662 		if (bars & (1 << i))
2663 			if (__pci_request_region(pdev, i, res_name, excl))
2664 				goto err_out;
2665 	return 0;
2666 
2667 err_out:
2668 	while (--i >= 0)
2669 		if (bars & (1 << i))
2670 			pci_release_region(pdev, i);
2671 
2672 	return -EBUSY;
2673 }
2674 
2675 
2676 /**
2677  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2678  * @pdev: PCI device whose resources are to be reserved
2679  * @bars: Bitmask of BARs to be requested
2680  * @res_name: Name to be associated with resource
2681  */
2682 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2683 				 const char *res_name)
2684 {
2685 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2686 }
2687 EXPORT_SYMBOL(pci_request_selected_regions);
2688 
2689 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2690 					   const char *res_name)
2691 {
2692 	return __pci_request_selected_regions(pdev, bars, res_name,
2693 			IORESOURCE_EXCLUSIVE);
2694 }
2695 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2696 
2697 /**
2698  *	pci_release_regions - Release reserved PCI I/O and memory resources
2699  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2700  *
2701  *	Releases all PCI I/O and memory resources previously reserved by a
2702  *	successful call to pci_request_regions.  Call this function only
2703  *	after all use of the PCI regions has ceased.
2704  */
2705 
2706 void pci_release_regions(struct pci_dev *pdev)
2707 {
2708 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2709 }
2710 EXPORT_SYMBOL(pci_release_regions);
2711 
2712 /**
2713  *	pci_request_regions - Reserved PCI I/O and memory resources
2714  *	@pdev: PCI device whose resources are to be reserved
2715  *	@res_name: Name to be associated with resource.
2716  *
2717  *	Mark all PCI regions associated with PCI device @pdev as
2718  *	being reserved by owner @res_name.  Do not access any
2719  *	address inside the PCI regions unless this call returns
2720  *	successfully.
2721  *
2722  *	Returns 0 on success, or %EBUSY on error.  A warning
2723  *	message is also printed on failure.
2724  */
2725 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2726 {
2727 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2728 }
2729 EXPORT_SYMBOL(pci_request_regions);
2730 
2731 /**
2732  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2733  *	@pdev: PCI device whose resources are to be reserved
2734  *	@res_name: Name to be associated with resource.
2735  *
2736  *	Mark all PCI regions associated with PCI device @pdev as
2737  *	being reserved by owner @res_name.  Do not access any
2738  *	address inside the PCI regions unless this call returns
2739  *	successfully.
2740  *
2741  *	pci_request_regions_exclusive() will mark the region so that
2742  *	/dev/mem and the sysfs MMIO access will not be allowed.
2743  *
2744  *	Returns 0 on success, or %EBUSY on error.  A warning
2745  *	message is also printed on failure.
2746  */
2747 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2748 {
2749 	return pci_request_selected_regions_exclusive(pdev,
2750 					((1 << 6) - 1), res_name);
2751 }
2752 EXPORT_SYMBOL(pci_request_regions_exclusive);
2753 
2754 /**
2755  *	pci_remap_iospace - Remap the memory mapped I/O space
2756  *	@res: Resource describing the I/O space
2757  *	@phys_addr: physical address of range to be mapped
2758  *
2759  *	Remap the memory mapped I/O space described by the @res
2760  *	and the CPU physical address @phys_addr into virtual address space.
2761  *	Only architectures that have memory mapped IO functions defined
2762  *	(and the PCI_IOBASE value defined) should call this function.
2763  */
2764 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2765 {
2766 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2767 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2768 
2769 	if (!(res->flags & IORESOURCE_IO))
2770 		return -EINVAL;
2771 
2772 	if (res->end > IO_SPACE_LIMIT)
2773 		return -EINVAL;
2774 
2775 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2776 				  pgprot_device(PAGE_KERNEL));
2777 #else
2778 	/* this architecture does not have memory mapped I/O space,
2779 	   so this function should never be called */
2780 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2781 	return -ENODEV;
2782 #endif
2783 }
2784 
2785 static void __pci_set_master(struct pci_dev *dev, bool enable)
2786 {
2787 	u16 old_cmd, cmd;
2788 
2789 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2790 	if (enable)
2791 		cmd = old_cmd | PCI_COMMAND_MASTER;
2792 	else
2793 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2794 	if (cmd != old_cmd) {
2795 		dev_dbg(&dev->dev, "%s bus mastering\n",
2796 			enable ? "enabling" : "disabling");
2797 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2798 	}
2799 	dev->is_busmaster = enable;
2800 }
2801 
2802 /**
2803  * pcibios_setup - process "pci=" kernel boot arguments
2804  * @str: string used to pass in "pci=" kernel boot arguments
2805  *
2806  * Process kernel boot arguments.  This is the default implementation.
2807  * Architecture specific implementations can override this as necessary.
2808  */
2809 char * __weak __init pcibios_setup(char *str)
2810 {
2811 	return str;
2812 }
2813 
2814 /**
2815  * pcibios_set_master - enable PCI bus-mastering for device dev
2816  * @dev: the PCI device to enable
2817  *
2818  * Enables PCI bus-mastering for the device.  This is the default
2819  * implementation.  Architecture specific implementations can override
2820  * this if necessary.
2821  */
2822 void __weak pcibios_set_master(struct pci_dev *dev)
2823 {
2824 	u8 lat;
2825 
2826 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2827 	if (pci_is_pcie(dev))
2828 		return;
2829 
2830 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2831 	if (lat < 16)
2832 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2833 	else if (lat > pcibios_max_latency)
2834 		lat = pcibios_max_latency;
2835 	else
2836 		return;
2837 
2838 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2839 }
2840 
2841 /**
2842  * pci_set_master - enables bus-mastering for device dev
2843  * @dev: the PCI device to enable
2844  *
2845  * Enables bus-mastering on the device and calls pcibios_set_master()
2846  * to do the needed arch specific settings.
2847  */
2848 void pci_set_master(struct pci_dev *dev)
2849 {
2850 	__pci_set_master(dev, true);
2851 	pcibios_set_master(dev);
2852 }
2853 EXPORT_SYMBOL(pci_set_master);
2854 
2855 /**
2856  * pci_clear_master - disables bus-mastering for device dev
2857  * @dev: the PCI device to disable
2858  */
2859 void pci_clear_master(struct pci_dev *dev)
2860 {
2861 	__pci_set_master(dev, false);
2862 }
2863 EXPORT_SYMBOL(pci_clear_master);
2864 
2865 /**
2866  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2867  * @dev: the PCI device for which MWI is to be enabled
2868  *
2869  * Helper function for pci_set_mwi.
2870  * Originally copied from drivers/net/acenic.c.
2871  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2872  *
2873  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2874  */
2875 int pci_set_cacheline_size(struct pci_dev *dev)
2876 {
2877 	u8 cacheline_size;
2878 
2879 	if (!pci_cache_line_size)
2880 		return -EINVAL;
2881 
2882 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2883 	   equal to or multiple of the right value. */
2884 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2885 	if (cacheline_size >= pci_cache_line_size &&
2886 	    (cacheline_size % pci_cache_line_size) == 0)
2887 		return 0;
2888 
2889 	/* Write the correct value. */
2890 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2891 	/* Read it back. */
2892 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2893 	if (cacheline_size == pci_cache_line_size)
2894 		return 0;
2895 
2896 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2897 		   pci_cache_line_size << 2);
2898 
2899 	return -EINVAL;
2900 }
2901 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2902 
2903 /**
2904  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2905  * @dev: the PCI device for which MWI is enabled
2906  *
2907  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2908  *
2909  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2910  */
2911 int pci_set_mwi(struct pci_dev *dev)
2912 {
2913 #ifdef PCI_DISABLE_MWI
2914 	return 0;
2915 #else
2916 	int rc;
2917 	u16 cmd;
2918 
2919 	rc = pci_set_cacheline_size(dev);
2920 	if (rc)
2921 		return rc;
2922 
2923 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2924 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2925 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2926 		cmd |= PCI_COMMAND_INVALIDATE;
2927 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2928 	}
2929 	return 0;
2930 #endif
2931 }
2932 EXPORT_SYMBOL(pci_set_mwi);
2933 
2934 /**
2935  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2936  * @dev: the PCI device for which MWI is enabled
2937  *
2938  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2939  * Callers are not required to check the return value.
2940  *
2941  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2942  */
2943 int pci_try_set_mwi(struct pci_dev *dev)
2944 {
2945 #ifdef PCI_DISABLE_MWI
2946 	return 0;
2947 #else
2948 	return pci_set_mwi(dev);
2949 #endif
2950 }
2951 EXPORT_SYMBOL(pci_try_set_mwi);
2952 
2953 /**
2954  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2955  * @dev: the PCI device to disable
2956  *
2957  * Disables PCI Memory-Write-Invalidate transaction on the device
2958  */
2959 void pci_clear_mwi(struct pci_dev *dev)
2960 {
2961 #ifndef PCI_DISABLE_MWI
2962 	u16 cmd;
2963 
2964 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2965 	if (cmd & PCI_COMMAND_INVALIDATE) {
2966 		cmd &= ~PCI_COMMAND_INVALIDATE;
2967 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2968 	}
2969 #endif
2970 }
2971 EXPORT_SYMBOL(pci_clear_mwi);
2972 
2973 /**
2974  * pci_intx - enables/disables PCI INTx for device dev
2975  * @pdev: the PCI device to operate on
2976  * @enable: boolean: whether to enable or disable PCI INTx
2977  *
2978  * Enables/disables PCI INTx for device dev
2979  */
2980 void pci_intx(struct pci_dev *pdev, int enable)
2981 {
2982 	u16 pci_command, new;
2983 
2984 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2985 
2986 	if (enable)
2987 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2988 	else
2989 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2990 
2991 	if (new != pci_command) {
2992 		struct pci_devres *dr;
2993 
2994 		pci_write_config_word(pdev, PCI_COMMAND, new);
2995 
2996 		dr = find_pci_dr(pdev);
2997 		if (dr && !dr->restore_intx) {
2998 			dr->restore_intx = 1;
2999 			dr->orig_intx = !enable;
3000 		}
3001 	}
3002 }
3003 EXPORT_SYMBOL_GPL(pci_intx);
3004 
3005 /**
3006  * pci_intx_mask_supported - probe for INTx masking support
3007  * @dev: the PCI device to operate on
3008  *
3009  * Check if the device dev support INTx masking via the config space
3010  * command word.
3011  */
3012 bool pci_intx_mask_supported(struct pci_dev *dev)
3013 {
3014 	bool mask_supported = false;
3015 	u16 orig, new;
3016 
3017 	if (dev->broken_intx_masking)
3018 		return false;
3019 
3020 	pci_cfg_access_lock(dev);
3021 
3022 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3023 	pci_write_config_word(dev, PCI_COMMAND,
3024 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3025 	pci_read_config_word(dev, PCI_COMMAND, &new);
3026 
3027 	/*
3028 	 * There's no way to protect against hardware bugs or detect them
3029 	 * reliably, but as long as we know what the value should be, let's
3030 	 * go ahead and check it.
3031 	 */
3032 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3033 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3034 			orig, new);
3035 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3036 		mask_supported = true;
3037 		pci_write_config_word(dev, PCI_COMMAND, orig);
3038 	}
3039 
3040 	pci_cfg_access_unlock(dev);
3041 	return mask_supported;
3042 }
3043 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3044 
3045 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3046 {
3047 	struct pci_bus *bus = dev->bus;
3048 	bool mask_updated = true;
3049 	u32 cmd_status_dword;
3050 	u16 origcmd, newcmd;
3051 	unsigned long flags;
3052 	bool irq_pending;
3053 
3054 	/*
3055 	 * We do a single dword read to retrieve both command and status.
3056 	 * Document assumptions that make this possible.
3057 	 */
3058 	BUILD_BUG_ON(PCI_COMMAND % 4);
3059 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3060 
3061 	raw_spin_lock_irqsave(&pci_lock, flags);
3062 
3063 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3064 
3065 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3066 
3067 	/*
3068 	 * Check interrupt status register to see whether our device
3069 	 * triggered the interrupt (when masking) or the next IRQ is
3070 	 * already pending (when unmasking).
3071 	 */
3072 	if (mask != irq_pending) {
3073 		mask_updated = false;
3074 		goto done;
3075 	}
3076 
3077 	origcmd = cmd_status_dword;
3078 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3079 	if (mask)
3080 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3081 	if (newcmd != origcmd)
3082 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3083 
3084 done:
3085 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3086 
3087 	return mask_updated;
3088 }
3089 
3090 /**
3091  * pci_check_and_mask_intx - mask INTx on pending interrupt
3092  * @dev: the PCI device to operate on
3093  *
3094  * Check if the device dev has its INTx line asserted, mask it and
3095  * return true in that case. False is returned if not interrupt was
3096  * pending.
3097  */
3098 bool pci_check_and_mask_intx(struct pci_dev *dev)
3099 {
3100 	return pci_check_and_set_intx_mask(dev, true);
3101 }
3102 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3103 
3104 /**
3105  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3106  * @dev: the PCI device to operate on
3107  *
3108  * Check if the device dev has its INTx line asserted, unmask it if not
3109  * and return true. False is returned and the mask remains active if
3110  * there was still an interrupt pending.
3111  */
3112 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3113 {
3114 	return pci_check_and_set_intx_mask(dev, false);
3115 }
3116 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3117 
3118 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3119 {
3120 	return dma_set_max_seg_size(&dev->dev, size);
3121 }
3122 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3123 
3124 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3125 {
3126 	return dma_set_seg_boundary(&dev->dev, mask);
3127 }
3128 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3129 
3130 /**
3131  * pci_wait_for_pending_transaction - waits for pending transaction
3132  * @dev: the PCI device to operate on
3133  *
3134  * Return 0 if transaction is pending 1 otherwise.
3135  */
3136 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3137 {
3138 	if (!pci_is_pcie(dev))
3139 		return 1;
3140 
3141 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3142 				    PCI_EXP_DEVSTA_TRPND);
3143 }
3144 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3145 
3146 static int pcie_flr(struct pci_dev *dev, int probe)
3147 {
3148 	u32 cap;
3149 
3150 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3151 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3152 		return -ENOTTY;
3153 
3154 	if (probe)
3155 		return 0;
3156 
3157 	if (!pci_wait_for_pending_transaction(dev))
3158 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3159 
3160 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3161 	msleep(100);
3162 	return 0;
3163 }
3164 
3165 static int pci_af_flr(struct pci_dev *dev, int probe)
3166 {
3167 	int pos;
3168 	u8 cap;
3169 
3170 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3171 	if (!pos)
3172 		return -ENOTTY;
3173 
3174 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3175 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3176 		return -ENOTTY;
3177 
3178 	if (probe)
3179 		return 0;
3180 
3181 	/*
3182 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3183 	 * is used, so we use the conrol offset rather than status and shift
3184 	 * the test bit to match.
3185 	 */
3186 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3187 				 PCI_AF_STATUS_TP << 8))
3188 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3189 
3190 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3191 	msleep(100);
3192 	return 0;
3193 }
3194 
3195 /**
3196  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3197  * @dev: Device to reset.
3198  * @probe: If set, only check if the device can be reset this way.
3199  *
3200  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3201  * unset, it will be reinitialized internally when going from PCI_D3hot to
3202  * PCI_D0.  If that's the case and the device is not in a low-power state
3203  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3204  *
3205  * NOTE: This causes the caller to sleep for twice the device power transition
3206  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3207  * by default (i.e. unless the @dev's d3_delay field has a different value).
3208  * Moreover, only devices in D0 can be reset by this function.
3209  */
3210 static int pci_pm_reset(struct pci_dev *dev, int probe)
3211 {
3212 	u16 csr;
3213 
3214 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3215 		return -ENOTTY;
3216 
3217 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3218 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3219 		return -ENOTTY;
3220 
3221 	if (probe)
3222 		return 0;
3223 
3224 	if (dev->current_state != PCI_D0)
3225 		return -EINVAL;
3226 
3227 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3228 	csr |= PCI_D3hot;
3229 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3230 	pci_dev_d3_sleep(dev);
3231 
3232 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3233 	csr |= PCI_D0;
3234 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3235 	pci_dev_d3_sleep(dev);
3236 
3237 	return 0;
3238 }
3239 
3240 void pci_reset_secondary_bus(struct pci_dev *dev)
3241 {
3242 	u16 ctrl;
3243 
3244 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3245 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3246 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3247 	/*
3248 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3249 	 * this to 2ms to ensure that we meet the minimum requirement.
3250 	 */
3251 	msleep(2);
3252 
3253 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3254 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3255 
3256 	/*
3257 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3258 	 * Assuming a minimum 33MHz clock this results in a 1s
3259 	 * delay before we can consider subordinate devices to
3260 	 * be re-initialized.  PCIe has some ways to shorten this,
3261 	 * but we don't make use of them yet.
3262 	 */
3263 	ssleep(1);
3264 }
3265 
3266 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3267 {
3268 	pci_reset_secondary_bus(dev);
3269 }
3270 
3271 /**
3272  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3273  * @dev: Bridge device
3274  *
3275  * Use the bridge control register to assert reset on the secondary bus.
3276  * Devices on the secondary bus are left in power-on state.
3277  */
3278 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3279 {
3280 	pcibios_reset_secondary_bus(dev);
3281 }
3282 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3283 
3284 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3285 {
3286 	struct pci_dev *pdev;
3287 
3288 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3289 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3290 		return -ENOTTY;
3291 
3292 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3293 		if (pdev != dev)
3294 			return -ENOTTY;
3295 
3296 	if (probe)
3297 		return 0;
3298 
3299 	pci_reset_bridge_secondary_bus(dev->bus->self);
3300 
3301 	return 0;
3302 }
3303 
3304 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3305 {
3306 	int rc = -ENOTTY;
3307 
3308 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3309 		return rc;
3310 
3311 	if (hotplug->ops->reset_slot)
3312 		rc = hotplug->ops->reset_slot(hotplug, probe);
3313 
3314 	module_put(hotplug->ops->owner);
3315 
3316 	return rc;
3317 }
3318 
3319 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3320 {
3321 	struct pci_dev *pdev;
3322 
3323 	if (dev->subordinate || !dev->slot ||
3324 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3325 		return -ENOTTY;
3326 
3327 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3328 		if (pdev != dev && pdev->slot == dev->slot)
3329 			return -ENOTTY;
3330 
3331 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3332 }
3333 
3334 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3335 {
3336 	int rc;
3337 
3338 	might_sleep();
3339 
3340 	rc = pci_dev_specific_reset(dev, probe);
3341 	if (rc != -ENOTTY)
3342 		goto done;
3343 
3344 	rc = pcie_flr(dev, probe);
3345 	if (rc != -ENOTTY)
3346 		goto done;
3347 
3348 	rc = pci_af_flr(dev, probe);
3349 	if (rc != -ENOTTY)
3350 		goto done;
3351 
3352 	rc = pci_pm_reset(dev, probe);
3353 	if (rc != -ENOTTY)
3354 		goto done;
3355 
3356 	rc = pci_dev_reset_slot_function(dev, probe);
3357 	if (rc != -ENOTTY)
3358 		goto done;
3359 
3360 	rc = pci_parent_bus_reset(dev, probe);
3361 done:
3362 	return rc;
3363 }
3364 
3365 static void pci_dev_lock(struct pci_dev *dev)
3366 {
3367 	pci_cfg_access_lock(dev);
3368 	/* block PM suspend, driver probe, etc. */
3369 	device_lock(&dev->dev);
3370 }
3371 
3372 /* Return 1 on successful lock, 0 on contention */
3373 static int pci_dev_trylock(struct pci_dev *dev)
3374 {
3375 	if (pci_cfg_access_trylock(dev)) {
3376 		if (device_trylock(&dev->dev))
3377 			return 1;
3378 		pci_cfg_access_unlock(dev);
3379 	}
3380 
3381 	return 0;
3382 }
3383 
3384 static void pci_dev_unlock(struct pci_dev *dev)
3385 {
3386 	device_unlock(&dev->dev);
3387 	pci_cfg_access_unlock(dev);
3388 }
3389 
3390 /**
3391  * pci_reset_notify - notify device driver of reset
3392  * @dev: device to be notified of reset
3393  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3394  *           completed
3395  *
3396  * Must be called prior to device access being disabled and after device
3397  * access is restored.
3398  */
3399 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3400 {
3401 	const struct pci_error_handlers *err_handler =
3402 			dev->driver ? dev->driver->err_handler : NULL;
3403 	if (err_handler && err_handler->reset_notify)
3404 		err_handler->reset_notify(dev, prepare);
3405 }
3406 
3407 static void pci_dev_save_and_disable(struct pci_dev *dev)
3408 {
3409 	pci_reset_notify(dev, true);
3410 
3411 	/*
3412 	 * Wake-up device prior to save.  PM registers default to D0 after
3413 	 * reset and a simple register restore doesn't reliably return
3414 	 * to a non-D0 state anyway.
3415 	 */
3416 	pci_set_power_state(dev, PCI_D0);
3417 
3418 	pci_save_state(dev);
3419 	/*
3420 	 * Disable the device by clearing the Command register, except for
3421 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3422 	 * BARs, but also prevents the device from being Bus Master, preventing
3423 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3424 	 * compliant devices, INTx-disable prevents legacy interrupts.
3425 	 */
3426 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3427 }
3428 
3429 static void pci_dev_restore(struct pci_dev *dev)
3430 {
3431 	pci_restore_state(dev);
3432 	pci_reset_notify(dev, false);
3433 }
3434 
3435 static int pci_dev_reset(struct pci_dev *dev, int probe)
3436 {
3437 	int rc;
3438 
3439 	if (!probe)
3440 		pci_dev_lock(dev);
3441 
3442 	rc = __pci_dev_reset(dev, probe);
3443 
3444 	if (!probe)
3445 		pci_dev_unlock(dev);
3446 
3447 	return rc;
3448 }
3449 
3450 /**
3451  * __pci_reset_function - reset a PCI device function
3452  * @dev: PCI device to reset
3453  *
3454  * Some devices allow an individual function to be reset without affecting
3455  * other functions in the same device.  The PCI device must be responsive
3456  * to PCI config space in order to use this function.
3457  *
3458  * The device function is presumed to be unused when this function is called.
3459  * Resetting the device will make the contents of PCI configuration space
3460  * random, so any caller of this must be prepared to reinitialise the
3461  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3462  * etc.
3463  *
3464  * Returns 0 if the device function was successfully reset or negative if the
3465  * device doesn't support resetting a single function.
3466  */
3467 int __pci_reset_function(struct pci_dev *dev)
3468 {
3469 	return pci_dev_reset(dev, 0);
3470 }
3471 EXPORT_SYMBOL_GPL(__pci_reset_function);
3472 
3473 /**
3474  * __pci_reset_function_locked - reset a PCI device function while holding
3475  * the @dev mutex lock.
3476  * @dev: PCI device to reset
3477  *
3478  * Some devices allow an individual function to be reset without affecting
3479  * other functions in the same device.  The PCI device must be responsive
3480  * to PCI config space in order to use this function.
3481  *
3482  * The device function is presumed to be unused and the caller is holding
3483  * the device mutex lock when this function is called.
3484  * Resetting the device will make the contents of PCI configuration space
3485  * random, so any caller of this must be prepared to reinitialise the
3486  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3487  * etc.
3488  *
3489  * Returns 0 if the device function was successfully reset or negative if the
3490  * device doesn't support resetting a single function.
3491  */
3492 int __pci_reset_function_locked(struct pci_dev *dev)
3493 {
3494 	return __pci_dev_reset(dev, 0);
3495 }
3496 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3497 
3498 /**
3499  * pci_probe_reset_function - check whether the device can be safely reset
3500  * @dev: PCI device to reset
3501  *
3502  * Some devices allow an individual function to be reset without affecting
3503  * other functions in the same device.  The PCI device must be responsive
3504  * to PCI config space in order to use this function.
3505  *
3506  * Returns 0 if the device function can be reset or negative if the
3507  * device doesn't support resetting a single function.
3508  */
3509 int pci_probe_reset_function(struct pci_dev *dev)
3510 {
3511 	return pci_dev_reset(dev, 1);
3512 }
3513 
3514 /**
3515  * pci_reset_function - quiesce and reset a PCI device function
3516  * @dev: PCI device to reset
3517  *
3518  * Some devices allow an individual function to be reset without affecting
3519  * other functions in the same device.  The PCI device must be responsive
3520  * to PCI config space in order to use this function.
3521  *
3522  * This function does not just reset the PCI portion of a device, but
3523  * clears all the state associated with the device.  This function differs
3524  * from __pci_reset_function in that it saves and restores device state
3525  * over the reset.
3526  *
3527  * Returns 0 if the device function was successfully reset or negative if the
3528  * device doesn't support resetting a single function.
3529  */
3530 int pci_reset_function(struct pci_dev *dev)
3531 {
3532 	int rc;
3533 
3534 	rc = pci_dev_reset(dev, 1);
3535 	if (rc)
3536 		return rc;
3537 
3538 	pci_dev_save_and_disable(dev);
3539 
3540 	rc = pci_dev_reset(dev, 0);
3541 
3542 	pci_dev_restore(dev);
3543 
3544 	return rc;
3545 }
3546 EXPORT_SYMBOL_GPL(pci_reset_function);
3547 
3548 /**
3549  * pci_try_reset_function - quiesce and reset a PCI device function
3550  * @dev: PCI device to reset
3551  *
3552  * Same as above, except return -EAGAIN if unable to lock device.
3553  */
3554 int pci_try_reset_function(struct pci_dev *dev)
3555 {
3556 	int rc;
3557 
3558 	rc = pci_dev_reset(dev, 1);
3559 	if (rc)
3560 		return rc;
3561 
3562 	pci_dev_save_and_disable(dev);
3563 
3564 	if (pci_dev_trylock(dev)) {
3565 		rc = __pci_dev_reset(dev, 0);
3566 		pci_dev_unlock(dev);
3567 	} else
3568 		rc = -EAGAIN;
3569 
3570 	pci_dev_restore(dev);
3571 
3572 	return rc;
3573 }
3574 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3575 
3576 /* Do any devices on or below this bus prevent a bus reset? */
3577 static bool pci_bus_resetable(struct pci_bus *bus)
3578 {
3579 	struct pci_dev *dev;
3580 
3581 	list_for_each_entry(dev, &bus->devices, bus_list) {
3582 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3583 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3584 			return false;
3585 	}
3586 
3587 	return true;
3588 }
3589 
3590 /* Lock devices from the top of the tree down */
3591 static void pci_bus_lock(struct pci_bus *bus)
3592 {
3593 	struct pci_dev *dev;
3594 
3595 	list_for_each_entry(dev, &bus->devices, bus_list) {
3596 		pci_dev_lock(dev);
3597 		if (dev->subordinate)
3598 			pci_bus_lock(dev->subordinate);
3599 	}
3600 }
3601 
3602 /* Unlock devices from the bottom of the tree up */
3603 static void pci_bus_unlock(struct pci_bus *bus)
3604 {
3605 	struct pci_dev *dev;
3606 
3607 	list_for_each_entry(dev, &bus->devices, bus_list) {
3608 		if (dev->subordinate)
3609 			pci_bus_unlock(dev->subordinate);
3610 		pci_dev_unlock(dev);
3611 	}
3612 }
3613 
3614 /* Return 1 on successful lock, 0 on contention */
3615 static int pci_bus_trylock(struct pci_bus *bus)
3616 {
3617 	struct pci_dev *dev;
3618 
3619 	list_for_each_entry(dev, &bus->devices, bus_list) {
3620 		if (!pci_dev_trylock(dev))
3621 			goto unlock;
3622 		if (dev->subordinate) {
3623 			if (!pci_bus_trylock(dev->subordinate)) {
3624 				pci_dev_unlock(dev);
3625 				goto unlock;
3626 			}
3627 		}
3628 	}
3629 	return 1;
3630 
3631 unlock:
3632 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3633 		if (dev->subordinate)
3634 			pci_bus_unlock(dev->subordinate);
3635 		pci_dev_unlock(dev);
3636 	}
3637 	return 0;
3638 }
3639 
3640 /* Do any devices on or below this slot prevent a bus reset? */
3641 static bool pci_slot_resetable(struct pci_slot *slot)
3642 {
3643 	struct pci_dev *dev;
3644 
3645 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3646 		if (!dev->slot || dev->slot != slot)
3647 			continue;
3648 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3649 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3650 			return false;
3651 	}
3652 
3653 	return true;
3654 }
3655 
3656 /* Lock devices from the top of the tree down */
3657 static void pci_slot_lock(struct pci_slot *slot)
3658 {
3659 	struct pci_dev *dev;
3660 
3661 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3662 		if (!dev->slot || dev->slot != slot)
3663 			continue;
3664 		pci_dev_lock(dev);
3665 		if (dev->subordinate)
3666 			pci_bus_lock(dev->subordinate);
3667 	}
3668 }
3669 
3670 /* Unlock devices from the bottom of the tree up */
3671 static void pci_slot_unlock(struct pci_slot *slot)
3672 {
3673 	struct pci_dev *dev;
3674 
3675 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3676 		if (!dev->slot || dev->slot != slot)
3677 			continue;
3678 		if (dev->subordinate)
3679 			pci_bus_unlock(dev->subordinate);
3680 		pci_dev_unlock(dev);
3681 	}
3682 }
3683 
3684 /* Return 1 on successful lock, 0 on contention */
3685 static int pci_slot_trylock(struct pci_slot *slot)
3686 {
3687 	struct pci_dev *dev;
3688 
3689 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3690 		if (!dev->slot || dev->slot != slot)
3691 			continue;
3692 		if (!pci_dev_trylock(dev))
3693 			goto unlock;
3694 		if (dev->subordinate) {
3695 			if (!pci_bus_trylock(dev->subordinate)) {
3696 				pci_dev_unlock(dev);
3697 				goto unlock;
3698 			}
3699 		}
3700 	}
3701 	return 1;
3702 
3703 unlock:
3704 	list_for_each_entry_continue_reverse(dev,
3705 					     &slot->bus->devices, bus_list) {
3706 		if (!dev->slot || dev->slot != slot)
3707 			continue;
3708 		if (dev->subordinate)
3709 			pci_bus_unlock(dev->subordinate);
3710 		pci_dev_unlock(dev);
3711 	}
3712 	return 0;
3713 }
3714 
3715 /* Save and disable devices from the top of the tree down */
3716 static void pci_bus_save_and_disable(struct pci_bus *bus)
3717 {
3718 	struct pci_dev *dev;
3719 
3720 	list_for_each_entry(dev, &bus->devices, bus_list) {
3721 		pci_dev_save_and_disable(dev);
3722 		if (dev->subordinate)
3723 			pci_bus_save_and_disable(dev->subordinate);
3724 	}
3725 }
3726 
3727 /*
3728  * Restore devices from top of the tree down - parent bridges need to be
3729  * restored before we can get to subordinate devices.
3730  */
3731 static void pci_bus_restore(struct pci_bus *bus)
3732 {
3733 	struct pci_dev *dev;
3734 
3735 	list_for_each_entry(dev, &bus->devices, bus_list) {
3736 		pci_dev_restore(dev);
3737 		if (dev->subordinate)
3738 			pci_bus_restore(dev->subordinate);
3739 	}
3740 }
3741 
3742 /* Save and disable devices from the top of the tree down */
3743 static void pci_slot_save_and_disable(struct pci_slot *slot)
3744 {
3745 	struct pci_dev *dev;
3746 
3747 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3748 		if (!dev->slot || dev->slot != slot)
3749 			continue;
3750 		pci_dev_save_and_disable(dev);
3751 		if (dev->subordinate)
3752 			pci_bus_save_and_disable(dev->subordinate);
3753 	}
3754 }
3755 
3756 /*
3757  * Restore devices from top of the tree down - parent bridges need to be
3758  * restored before we can get to subordinate devices.
3759  */
3760 static void pci_slot_restore(struct pci_slot *slot)
3761 {
3762 	struct pci_dev *dev;
3763 
3764 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3765 		if (!dev->slot || dev->slot != slot)
3766 			continue;
3767 		pci_dev_restore(dev);
3768 		if (dev->subordinate)
3769 			pci_bus_restore(dev->subordinate);
3770 	}
3771 }
3772 
3773 static int pci_slot_reset(struct pci_slot *slot, int probe)
3774 {
3775 	int rc;
3776 
3777 	if (!slot || !pci_slot_resetable(slot))
3778 		return -ENOTTY;
3779 
3780 	if (!probe)
3781 		pci_slot_lock(slot);
3782 
3783 	might_sleep();
3784 
3785 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3786 
3787 	if (!probe)
3788 		pci_slot_unlock(slot);
3789 
3790 	return rc;
3791 }
3792 
3793 /**
3794  * pci_probe_reset_slot - probe whether a PCI slot can be reset
3795  * @slot: PCI slot to probe
3796  *
3797  * Return 0 if slot can be reset, negative if a slot reset is not supported.
3798  */
3799 int pci_probe_reset_slot(struct pci_slot *slot)
3800 {
3801 	return pci_slot_reset(slot, 1);
3802 }
3803 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3804 
3805 /**
3806  * pci_reset_slot - reset a PCI slot
3807  * @slot: PCI slot to reset
3808  *
3809  * A PCI bus may host multiple slots, each slot may support a reset mechanism
3810  * independent of other slots.  For instance, some slots may support slot power
3811  * control.  In the case of a 1:1 bus to slot architecture, this function may
3812  * wrap the bus reset to avoid spurious slot related events such as hotplug.
3813  * Generally a slot reset should be attempted before a bus reset.  All of the
3814  * function of the slot and any subordinate buses behind the slot are reset
3815  * through this function.  PCI config space of all devices in the slot and
3816  * behind the slot is saved before and restored after reset.
3817  *
3818  * Return 0 on success, non-zero on error.
3819  */
3820 int pci_reset_slot(struct pci_slot *slot)
3821 {
3822 	int rc;
3823 
3824 	rc = pci_slot_reset(slot, 1);
3825 	if (rc)
3826 		return rc;
3827 
3828 	pci_slot_save_and_disable(slot);
3829 
3830 	rc = pci_slot_reset(slot, 0);
3831 
3832 	pci_slot_restore(slot);
3833 
3834 	return rc;
3835 }
3836 EXPORT_SYMBOL_GPL(pci_reset_slot);
3837 
3838 /**
3839  * pci_try_reset_slot - Try to reset a PCI slot
3840  * @slot: PCI slot to reset
3841  *
3842  * Same as above except return -EAGAIN if the slot cannot be locked
3843  */
3844 int pci_try_reset_slot(struct pci_slot *slot)
3845 {
3846 	int rc;
3847 
3848 	rc = pci_slot_reset(slot, 1);
3849 	if (rc)
3850 		return rc;
3851 
3852 	pci_slot_save_and_disable(slot);
3853 
3854 	if (pci_slot_trylock(slot)) {
3855 		might_sleep();
3856 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3857 		pci_slot_unlock(slot);
3858 	} else
3859 		rc = -EAGAIN;
3860 
3861 	pci_slot_restore(slot);
3862 
3863 	return rc;
3864 }
3865 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3866 
3867 static int pci_bus_reset(struct pci_bus *bus, int probe)
3868 {
3869 	if (!bus->self || !pci_bus_resetable(bus))
3870 		return -ENOTTY;
3871 
3872 	if (probe)
3873 		return 0;
3874 
3875 	pci_bus_lock(bus);
3876 
3877 	might_sleep();
3878 
3879 	pci_reset_bridge_secondary_bus(bus->self);
3880 
3881 	pci_bus_unlock(bus);
3882 
3883 	return 0;
3884 }
3885 
3886 /**
3887  * pci_probe_reset_bus - probe whether a PCI bus can be reset
3888  * @bus: PCI bus to probe
3889  *
3890  * Return 0 if bus can be reset, negative if a bus reset is not supported.
3891  */
3892 int pci_probe_reset_bus(struct pci_bus *bus)
3893 {
3894 	return pci_bus_reset(bus, 1);
3895 }
3896 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3897 
3898 /**
3899  * pci_reset_bus - reset a PCI bus
3900  * @bus: top level PCI bus to reset
3901  *
3902  * Do a bus reset on the given bus and any subordinate buses, saving
3903  * and restoring state of all devices.
3904  *
3905  * Return 0 on success, non-zero on error.
3906  */
3907 int pci_reset_bus(struct pci_bus *bus)
3908 {
3909 	int rc;
3910 
3911 	rc = pci_bus_reset(bus, 1);
3912 	if (rc)
3913 		return rc;
3914 
3915 	pci_bus_save_and_disable(bus);
3916 
3917 	rc = pci_bus_reset(bus, 0);
3918 
3919 	pci_bus_restore(bus);
3920 
3921 	return rc;
3922 }
3923 EXPORT_SYMBOL_GPL(pci_reset_bus);
3924 
3925 /**
3926  * pci_try_reset_bus - Try to reset a PCI bus
3927  * @bus: top level PCI bus to reset
3928  *
3929  * Same as above except return -EAGAIN if the bus cannot be locked
3930  */
3931 int pci_try_reset_bus(struct pci_bus *bus)
3932 {
3933 	int rc;
3934 
3935 	rc = pci_bus_reset(bus, 1);
3936 	if (rc)
3937 		return rc;
3938 
3939 	pci_bus_save_and_disable(bus);
3940 
3941 	if (pci_bus_trylock(bus)) {
3942 		might_sleep();
3943 		pci_reset_bridge_secondary_bus(bus->self);
3944 		pci_bus_unlock(bus);
3945 	} else
3946 		rc = -EAGAIN;
3947 
3948 	pci_bus_restore(bus);
3949 
3950 	return rc;
3951 }
3952 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3953 
3954 /**
3955  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3956  * @dev: PCI device to query
3957  *
3958  * Returns mmrbc: maximum designed memory read count in bytes
3959  *    or appropriate error value.
3960  */
3961 int pcix_get_max_mmrbc(struct pci_dev *dev)
3962 {
3963 	int cap;
3964 	u32 stat;
3965 
3966 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3967 	if (!cap)
3968 		return -EINVAL;
3969 
3970 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3971 		return -EINVAL;
3972 
3973 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3974 }
3975 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3976 
3977 /**
3978  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3979  * @dev: PCI device to query
3980  *
3981  * Returns mmrbc: maximum memory read count in bytes
3982  *    or appropriate error value.
3983  */
3984 int pcix_get_mmrbc(struct pci_dev *dev)
3985 {
3986 	int cap;
3987 	u16 cmd;
3988 
3989 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3990 	if (!cap)
3991 		return -EINVAL;
3992 
3993 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3994 		return -EINVAL;
3995 
3996 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3997 }
3998 EXPORT_SYMBOL(pcix_get_mmrbc);
3999 
4000 /**
4001  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4002  * @dev: PCI device to query
4003  * @mmrbc: maximum memory read count in bytes
4004  *    valid values are 512, 1024, 2048, 4096
4005  *
4006  * If possible sets maximum memory read byte count, some bridges have erratas
4007  * that prevent this.
4008  */
4009 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4010 {
4011 	int cap;
4012 	u32 stat, v, o;
4013 	u16 cmd;
4014 
4015 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4016 		return -EINVAL;
4017 
4018 	v = ffs(mmrbc) - 10;
4019 
4020 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4021 	if (!cap)
4022 		return -EINVAL;
4023 
4024 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4025 		return -EINVAL;
4026 
4027 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4028 		return -E2BIG;
4029 
4030 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4031 		return -EINVAL;
4032 
4033 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4034 	if (o != v) {
4035 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4036 			return -EIO;
4037 
4038 		cmd &= ~PCI_X_CMD_MAX_READ;
4039 		cmd |= v << 2;
4040 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4041 			return -EIO;
4042 	}
4043 	return 0;
4044 }
4045 EXPORT_SYMBOL(pcix_set_mmrbc);
4046 
4047 /**
4048  * pcie_get_readrq - get PCI Express read request size
4049  * @dev: PCI device to query
4050  *
4051  * Returns maximum memory read request in bytes
4052  *    or appropriate error value.
4053  */
4054 int pcie_get_readrq(struct pci_dev *dev)
4055 {
4056 	u16 ctl;
4057 
4058 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4059 
4060 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4061 }
4062 EXPORT_SYMBOL(pcie_get_readrq);
4063 
4064 /**
4065  * pcie_set_readrq - set PCI Express maximum memory read request
4066  * @dev: PCI device to query
4067  * @rq: maximum memory read count in bytes
4068  *    valid values are 128, 256, 512, 1024, 2048, 4096
4069  *
4070  * If possible sets maximum memory read request in bytes
4071  */
4072 int pcie_set_readrq(struct pci_dev *dev, int rq)
4073 {
4074 	u16 v;
4075 
4076 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4077 		return -EINVAL;
4078 
4079 	/*
4080 	 * If using the "performance" PCIe config, we clamp the
4081 	 * read rq size to the max packet size to prevent the
4082 	 * host bridge generating requests larger than we can
4083 	 * cope with
4084 	 */
4085 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4086 		int mps = pcie_get_mps(dev);
4087 
4088 		if (mps < rq)
4089 			rq = mps;
4090 	}
4091 
4092 	v = (ffs(rq) - 8) << 12;
4093 
4094 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4095 						  PCI_EXP_DEVCTL_READRQ, v);
4096 }
4097 EXPORT_SYMBOL(pcie_set_readrq);
4098 
4099 /**
4100  * pcie_get_mps - get PCI Express maximum payload size
4101  * @dev: PCI device to query
4102  *
4103  * Returns maximum payload size in bytes
4104  */
4105 int pcie_get_mps(struct pci_dev *dev)
4106 {
4107 	u16 ctl;
4108 
4109 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4110 
4111 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4112 }
4113 EXPORT_SYMBOL(pcie_get_mps);
4114 
4115 /**
4116  * pcie_set_mps - set PCI Express maximum payload size
4117  * @dev: PCI device to query
4118  * @mps: maximum payload size in bytes
4119  *    valid values are 128, 256, 512, 1024, 2048, 4096
4120  *
4121  * If possible sets maximum payload size
4122  */
4123 int pcie_set_mps(struct pci_dev *dev, int mps)
4124 {
4125 	u16 v;
4126 
4127 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4128 		return -EINVAL;
4129 
4130 	v = ffs(mps) - 8;
4131 	if (v > dev->pcie_mpss)
4132 		return -EINVAL;
4133 	v <<= 5;
4134 
4135 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4136 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4137 }
4138 EXPORT_SYMBOL(pcie_set_mps);
4139 
4140 /**
4141  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4142  * @dev: PCI device to query
4143  * @speed: storage for minimum speed
4144  * @width: storage for minimum width
4145  *
4146  * This function will walk up the PCI device chain and determine the minimum
4147  * link width and speed of the device.
4148  */
4149 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4150 			  enum pcie_link_width *width)
4151 {
4152 	int ret;
4153 
4154 	*speed = PCI_SPEED_UNKNOWN;
4155 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4156 
4157 	while (dev) {
4158 		u16 lnksta;
4159 		enum pci_bus_speed next_speed;
4160 		enum pcie_link_width next_width;
4161 
4162 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4163 		if (ret)
4164 			return ret;
4165 
4166 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4167 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4168 			PCI_EXP_LNKSTA_NLW_SHIFT;
4169 
4170 		if (next_speed < *speed)
4171 			*speed = next_speed;
4172 
4173 		if (next_width < *width)
4174 			*width = next_width;
4175 
4176 		dev = dev->bus->self;
4177 	}
4178 
4179 	return 0;
4180 }
4181 EXPORT_SYMBOL(pcie_get_minimum_link);
4182 
4183 /**
4184  * pci_select_bars - Make BAR mask from the type of resource
4185  * @dev: the PCI device for which BAR mask is made
4186  * @flags: resource type mask to be selected
4187  *
4188  * This helper routine makes bar mask from the type of resource.
4189  */
4190 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4191 {
4192 	int i, bars = 0;
4193 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4194 		if (pci_resource_flags(dev, i) & flags)
4195 			bars |= (1 << i);
4196 	return bars;
4197 }
4198 EXPORT_SYMBOL(pci_select_bars);
4199 
4200 /**
4201  * pci_resource_bar - get position of the BAR associated with a resource
4202  * @dev: the PCI device
4203  * @resno: the resource number
4204  * @type: the BAR type to be filled in
4205  *
4206  * Returns BAR position in config space, or 0 if the BAR is invalid.
4207  */
4208 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4209 {
4210 	int reg;
4211 
4212 	if (resno < PCI_ROM_RESOURCE) {
4213 		*type = pci_bar_unknown;
4214 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4215 	} else if (resno == PCI_ROM_RESOURCE) {
4216 		*type = pci_bar_mem32;
4217 		return dev->rom_base_reg;
4218 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4219 		/* device specific resource */
4220 		*type = pci_bar_unknown;
4221 		reg = pci_iov_resource_bar(dev, resno);
4222 		if (reg)
4223 			return reg;
4224 	}
4225 
4226 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4227 	return 0;
4228 }
4229 
4230 /* Some architectures require additional programming to enable VGA */
4231 static arch_set_vga_state_t arch_set_vga_state;
4232 
4233 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4234 {
4235 	arch_set_vga_state = func;	/* NULL disables */
4236 }
4237 
4238 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4239 				  unsigned int command_bits, u32 flags)
4240 {
4241 	if (arch_set_vga_state)
4242 		return arch_set_vga_state(dev, decode, command_bits,
4243 						flags);
4244 	return 0;
4245 }
4246 
4247 /**
4248  * pci_set_vga_state - set VGA decode state on device and parents if requested
4249  * @dev: the PCI device
4250  * @decode: true = enable decoding, false = disable decoding
4251  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4252  * @flags: traverse ancestors and change bridges
4253  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4254  */
4255 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4256 		      unsigned int command_bits, u32 flags)
4257 {
4258 	struct pci_bus *bus;
4259 	struct pci_dev *bridge;
4260 	u16 cmd;
4261 	int rc;
4262 
4263 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4264 
4265 	/* ARCH specific VGA enables */
4266 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4267 	if (rc)
4268 		return rc;
4269 
4270 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4271 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4272 		if (decode == true)
4273 			cmd |= command_bits;
4274 		else
4275 			cmd &= ~command_bits;
4276 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4277 	}
4278 
4279 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4280 		return 0;
4281 
4282 	bus = dev->bus;
4283 	while (bus) {
4284 		bridge = bus->self;
4285 		if (bridge) {
4286 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4287 					     &cmd);
4288 			if (decode == true)
4289 				cmd |= PCI_BRIDGE_CTL_VGA;
4290 			else
4291 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4292 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4293 					      cmd);
4294 		}
4295 		bus = bus->parent;
4296 	}
4297 	return 0;
4298 }
4299 
4300 bool pci_device_is_present(struct pci_dev *pdev)
4301 {
4302 	u32 v;
4303 
4304 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4305 }
4306 EXPORT_SYMBOL_GPL(pci_device_is_present);
4307 
4308 void pci_ignore_hotplug(struct pci_dev *dev)
4309 {
4310 	struct pci_dev *bridge = dev->bus->self;
4311 
4312 	dev->ignore_hotplug = 1;
4313 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4314 	if (bridge)
4315 		bridge->ignore_hotplug = 1;
4316 }
4317 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4318 
4319 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4320 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4321 static DEFINE_SPINLOCK(resource_alignment_lock);
4322 
4323 /**
4324  * pci_specified_resource_alignment - get resource alignment specified by user.
4325  * @dev: the PCI device to get
4326  *
4327  * RETURNS: Resource alignment if it is specified.
4328  *          Zero if it is not specified.
4329  */
4330 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4331 {
4332 	int seg, bus, slot, func, align_order, count;
4333 	resource_size_t align = 0;
4334 	char *p;
4335 
4336 	spin_lock(&resource_alignment_lock);
4337 	p = resource_alignment_param;
4338 	while (*p) {
4339 		count = 0;
4340 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4341 							p[count] == '@') {
4342 			p += count + 1;
4343 		} else {
4344 			align_order = -1;
4345 		}
4346 		if (sscanf(p, "%x:%x:%x.%x%n",
4347 			&seg, &bus, &slot, &func, &count) != 4) {
4348 			seg = 0;
4349 			if (sscanf(p, "%x:%x.%x%n",
4350 					&bus, &slot, &func, &count) != 3) {
4351 				/* Invalid format */
4352 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4353 					p);
4354 				break;
4355 			}
4356 		}
4357 		p += count;
4358 		if (seg == pci_domain_nr(dev->bus) &&
4359 			bus == dev->bus->number &&
4360 			slot == PCI_SLOT(dev->devfn) &&
4361 			func == PCI_FUNC(dev->devfn)) {
4362 			if (align_order == -1)
4363 				align = PAGE_SIZE;
4364 			else
4365 				align = 1 << align_order;
4366 			/* Found */
4367 			break;
4368 		}
4369 		if (*p != ';' && *p != ',') {
4370 			/* End of param or invalid format */
4371 			break;
4372 		}
4373 		p++;
4374 	}
4375 	spin_unlock(&resource_alignment_lock);
4376 	return align;
4377 }
4378 
4379 /*
4380  * This function disables memory decoding and releases memory resources
4381  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4382  * It also rounds up size to specified alignment.
4383  * Later on, the kernel will assign page-aligned memory resource back
4384  * to the device.
4385  */
4386 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4387 {
4388 	int i;
4389 	struct resource *r;
4390 	resource_size_t align, size;
4391 	u16 command;
4392 
4393 	/* check if specified PCI is target device to reassign */
4394 	align = pci_specified_resource_alignment(dev);
4395 	if (!align)
4396 		return;
4397 
4398 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4399 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4400 		dev_warn(&dev->dev,
4401 			"Can't reassign resources to host bridge.\n");
4402 		return;
4403 	}
4404 
4405 	dev_info(&dev->dev,
4406 		"Disabling memory decoding and releasing memory resources.\n");
4407 	pci_read_config_word(dev, PCI_COMMAND, &command);
4408 	command &= ~PCI_COMMAND_MEMORY;
4409 	pci_write_config_word(dev, PCI_COMMAND, command);
4410 
4411 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4412 		r = &dev->resource[i];
4413 		if (!(r->flags & IORESOURCE_MEM))
4414 			continue;
4415 		size = resource_size(r);
4416 		if (size < align) {
4417 			size = align;
4418 			dev_info(&dev->dev,
4419 				"Rounding up size of resource #%d to %#llx.\n",
4420 				i, (unsigned long long)size);
4421 		}
4422 		r->flags |= IORESOURCE_UNSET;
4423 		r->end = size - 1;
4424 		r->start = 0;
4425 	}
4426 	/* Need to disable bridge's resource window,
4427 	 * to enable the kernel to reassign new resource
4428 	 * window later on.
4429 	 */
4430 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4431 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4432 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4433 			r = &dev->resource[i];
4434 			if (!(r->flags & IORESOURCE_MEM))
4435 				continue;
4436 			r->flags |= IORESOURCE_UNSET;
4437 			r->end = resource_size(r) - 1;
4438 			r->start = 0;
4439 		}
4440 		pci_disable_bridge_window(dev);
4441 	}
4442 }
4443 
4444 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4445 {
4446 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4447 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4448 	spin_lock(&resource_alignment_lock);
4449 	strncpy(resource_alignment_param, buf, count);
4450 	resource_alignment_param[count] = '\0';
4451 	spin_unlock(&resource_alignment_lock);
4452 	return count;
4453 }
4454 
4455 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4456 {
4457 	size_t count;
4458 	spin_lock(&resource_alignment_lock);
4459 	count = snprintf(buf, size, "%s", resource_alignment_param);
4460 	spin_unlock(&resource_alignment_lock);
4461 	return count;
4462 }
4463 
4464 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4465 {
4466 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4467 }
4468 
4469 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4470 					const char *buf, size_t count)
4471 {
4472 	return pci_set_resource_alignment_param(buf, count);
4473 }
4474 
4475 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4476 					pci_resource_alignment_store);
4477 
4478 static int __init pci_resource_alignment_sysfs_init(void)
4479 {
4480 	return bus_create_file(&pci_bus_type,
4481 					&bus_attr_resource_alignment);
4482 }
4483 late_initcall(pci_resource_alignment_sysfs_init);
4484 
4485 static void pci_no_domains(void)
4486 {
4487 #ifdef CONFIG_PCI_DOMAINS
4488 	pci_domains_supported = 0;
4489 #endif
4490 }
4491 
4492 #ifdef CONFIG_PCI_DOMAINS
4493 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4494 
4495 int pci_get_new_domain_nr(void)
4496 {
4497 	return atomic_inc_return(&__domain_nr);
4498 }
4499 
4500 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4501 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4502 {
4503 	static int use_dt_domains = -1;
4504 	int domain = of_get_pci_domain_nr(parent->of_node);
4505 
4506 	/*
4507 	 * Check DT domain and use_dt_domains values.
4508 	 *
4509 	 * If DT domain property is valid (domain >= 0) and
4510 	 * use_dt_domains != 0, the DT assignment is valid since this means
4511 	 * we have not previously allocated a domain number by using
4512 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4513 	 * 1, to indicate that we have just assigned a domain number from
4514 	 * DT.
4515 	 *
4516 	 * If DT domain property value is not valid (ie domain < 0), and we
4517 	 * have not previously assigned a domain number from DT
4518 	 * (use_dt_domains != 1) we should assign a domain number by
4519 	 * using the:
4520 	 *
4521 	 * pci_get_new_domain_nr()
4522 	 *
4523 	 * API and update the use_dt_domains value to keep track of method we
4524 	 * are using to assign domain numbers (use_dt_domains = 0).
4525 	 *
4526 	 * All other combinations imply we have a platform that is trying
4527 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4528 	 * which is a recipe for domain mishandling and it is prevented by
4529 	 * invalidating the domain value (domain = -1) and printing a
4530 	 * corresponding error.
4531 	 */
4532 	if (domain >= 0 && use_dt_domains) {
4533 		use_dt_domains = 1;
4534 	} else if (domain < 0 && use_dt_domains != 1) {
4535 		use_dt_domains = 0;
4536 		domain = pci_get_new_domain_nr();
4537 	} else {
4538 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4539 			parent->of_node->full_name);
4540 		domain = -1;
4541 	}
4542 
4543 	bus->domain_nr = domain;
4544 }
4545 #endif
4546 #endif
4547 
4548 /**
4549  * pci_ext_cfg_avail - can we access extended PCI config space?
4550  *
4551  * Returns 1 if we can access PCI extended config space (offsets
4552  * greater than 0xff). This is the default implementation. Architecture
4553  * implementations can override this.
4554  */
4555 int __weak pci_ext_cfg_avail(void)
4556 {
4557 	return 1;
4558 }
4559 
4560 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4561 {
4562 }
4563 EXPORT_SYMBOL(pci_fixup_cardbus);
4564 
4565 static int __init pci_setup(char *str)
4566 {
4567 	while (str) {
4568 		char *k = strchr(str, ',');
4569 		if (k)
4570 			*k++ = 0;
4571 		if (*str && (str = pcibios_setup(str)) && *str) {
4572 			if (!strcmp(str, "nomsi")) {
4573 				pci_no_msi();
4574 			} else if (!strcmp(str, "noaer")) {
4575 				pci_no_aer();
4576 			} else if (!strncmp(str, "realloc=", 8)) {
4577 				pci_realloc_get_opt(str + 8);
4578 			} else if (!strncmp(str, "realloc", 7)) {
4579 				pci_realloc_get_opt("on");
4580 			} else if (!strcmp(str, "nodomains")) {
4581 				pci_no_domains();
4582 			} else if (!strncmp(str, "noari", 5)) {
4583 				pcie_ari_disabled = true;
4584 			} else if (!strncmp(str, "cbiosize=", 9)) {
4585 				pci_cardbus_io_size = memparse(str + 9, &str);
4586 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4587 				pci_cardbus_mem_size = memparse(str + 10, &str);
4588 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4589 				pci_set_resource_alignment_param(str + 19,
4590 							strlen(str + 19));
4591 			} else if (!strncmp(str, "ecrc=", 5)) {
4592 				pcie_ecrc_get_policy(str + 5);
4593 			} else if (!strncmp(str, "hpiosize=", 9)) {
4594 				pci_hotplug_io_size = memparse(str + 9, &str);
4595 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4596 				pci_hotplug_mem_size = memparse(str + 10, &str);
4597 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4598 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4599 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4600 				pcie_bus_config = PCIE_BUS_SAFE;
4601 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4602 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4603 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4604 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4605 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4606 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4607 			} else {
4608 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4609 						str);
4610 			}
4611 		}
4612 		str = k;
4613 	}
4614 	return 0;
4615 }
4616 early_param("pci", pci_setup);
4617