1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3hot_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 static void pci_dev_d3_sleep(struct pci_dev *dev) 66 { 67 unsigned int delay = dev->d3hot_delay; 68 69 if (delay < pci_pm_d3hot_delay) 70 delay = pci_pm_d3hot_delay; 71 72 if (delay) 73 msleep(delay); 74 } 75 76 bool pci_reset_supported(struct pci_dev *dev) 77 { 78 return dev->reset_methods[0] != 0; 79 } 80 81 #ifdef CONFIG_PCI_DOMAINS 82 int pci_domains_supported = 1; 83 #endif 84 85 #define DEFAULT_CARDBUS_IO_SIZE (256) 86 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 90 91 #define DEFAULT_HOTPLUG_IO_SIZE (256) 92 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 94 /* hpiosize=nn can override this */ 95 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 96 /* 97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 99 * pci=hpmemsize=nnM overrides both 100 */ 101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 103 104 #define DEFAULT_HOTPLUG_BUS_SIZE 1 105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 106 107 108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 111 #elif defined CONFIG_PCIE_BUS_SAFE 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 115 #elif defined CONFIG_PCIE_BUS_PEER2PEER 116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 117 #else 118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 119 #endif 120 121 /* 122 * The default CLS is used if arch didn't set CLS explicitly and not 123 * all pci devices agree on the same value. Arch can override either 124 * the dfl or actual value as it sees fit. Don't forget this is 125 * measured in 32-bit words, not bytes. 126 */ 127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 128 u8 pci_cache_line_size; 129 130 /* 131 * If we set up a device for bus mastering, we need to check the latency 132 * timer as certain BIOSes forget to set it properly. 133 */ 134 unsigned int pcibios_max_latency = 255; 135 136 /* If set, the PCIe ARI capability will not be used. */ 137 static bool pcie_ari_disabled; 138 139 /* If set, the PCIe ATS capability will not be used. */ 140 static bool pcie_ats_disabled; 141 142 /* If set, the PCI config space of each device is printed during boot. */ 143 bool pci_early_dump; 144 145 bool pci_ats_disabled(void) 146 { 147 return pcie_ats_disabled; 148 } 149 EXPORT_SYMBOL_GPL(pci_ats_disabled); 150 151 /* Disable bridge_d3 for all PCIe ports */ 152 static bool pci_bridge_d3_disable; 153 /* Force bridge_d3 for all PCIe ports */ 154 static bool pci_bridge_d3_force; 155 156 static int __init pcie_port_pm_setup(char *str) 157 { 158 if (!strcmp(str, "off")) 159 pci_bridge_d3_disable = true; 160 else if (!strcmp(str, "force")) 161 pci_bridge_d3_force = true; 162 return 1; 163 } 164 __setup("pcie_port_pm=", pcie_port_pm_setup); 165 166 /* Time to wait after a reset for device to become responsive */ 167 #define PCIE_RESET_READY_POLL_MS 60000 168 169 /** 170 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 171 * @bus: pointer to PCI bus structure to search 172 * 173 * Given a PCI bus, returns the highest PCI bus number present in the set 174 * including the given PCI bus and its list of child PCI buses. 175 */ 176 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 177 { 178 struct pci_bus *tmp; 179 unsigned char max, n; 180 181 max = bus->busn_res.end; 182 list_for_each_entry(tmp, &bus->children, node) { 183 n = pci_bus_max_busnr(tmp); 184 if (n > max) 185 max = n; 186 } 187 return max; 188 } 189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 190 191 /** 192 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 193 * @pdev: the PCI device 194 * 195 * Returns error bits set in PCI_STATUS and clears them. 196 */ 197 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 198 { 199 u16 status; 200 int ret; 201 202 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 203 if (ret != PCIBIOS_SUCCESSFUL) 204 return -EIO; 205 206 status &= PCI_STATUS_ERROR_BITS; 207 if (status) 208 pci_write_config_word(pdev, PCI_STATUS, status); 209 210 return status; 211 } 212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 213 214 #ifdef CONFIG_HAS_IOMEM 215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 216 bool write_combine) 217 { 218 struct resource *res = &pdev->resource[bar]; 219 resource_size_t start = res->start; 220 resource_size_t size = resource_size(res); 221 222 /* 223 * Make sure the BAR is actually a memory resource, not an IO resource 224 */ 225 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 226 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 227 return NULL; 228 } 229 230 if (write_combine) 231 return ioremap_wc(start, size); 232 233 return ioremap(start, size); 234 } 235 236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 237 { 238 return __pci_ioremap_resource(pdev, bar, false); 239 } 240 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 241 242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 243 { 244 return __pci_ioremap_resource(pdev, bar, true); 245 } 246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 247 #endif 248 249 /** 250 * pci_dev_str_match_path - test if a path string matches a device 251 * @dev: the PCI device to test 252 * @path: string to match the device against 253 * @endptr: pointer to the string after the match 254 * 255 * Test if a string (typically from a kernel parameter) formatted as a 256 * path of device/function addresses matches a PCI device. The string must 257 * be of the form: 258 * 259 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 260 * 261 * A path for a device can be obtained using 'lspci -t'. Using a path 262 * is more robust against bus renumbering than using only a single bus, 263 * device and function address. 264 * 265 * Returns 1 if the string matches the device, 0 if it does not and 266 * a negative error code if it fails to parse the string. 267 */ 268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 269 const char **endptr) 270 { 271 int ret; 272 unsigned int seg, bus, slot, func; 273 char *wpath, *p; 274 char end; 275 276 *endptr = strchrnul(path, ';'); 277 278 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 279 if (!wpath) 280 return -ENOMEM; 281 282 while (1) { 283 p = strrchr(wpath, '/'); 284 if (!p) 285 break; 286 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 287 if (ret != 2) { 288 ret = -EINVAL; 289 goto free_and_exit; 290 } 291 292 if (dev->devfn != PCI_DEVFN(slot, func)) { 293 ret = 0; 294 goto free_and_exit; 295 } 296 297 /* 298 * Note: we don't need to get a reference to the upstream 299 * bridge because we hold a reference to the top level 300 * device which should hold a reference to the bridge, 301 * and so on. 302 */ 303 dev = pci_upstream_bridge(dev); 304 if (!dev) { 305 ret = 0; 306 goto free_and_exit; 307 } 308 309 *p = 0; 310 } 311 312 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 313 &func, &end); 314 if (ret != 4) { 315 seg = 0; 316 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 317 if (ret != 3) { 318 ret = -EINVAL; 319 goto free_and_exit; 320 } 321 } 322 323 ret = (seg == pci_domain_nr(dev->bus) && 324 bus == dev->bus->number && 325 dev->devfn == PCI_DEVFN(slot, func)); 326 327 free_and_exit: 328 kfree(wpath); 329 return ret; 330 } 331 332 /** 333 * pci_dev_str_match - test if a string matches a device 334 * @dev: the PCI device to test 335 * @p: string to match the device against 336 * @endptr: pointer to the string after the match 337 * 338 * Test if a string (typically from a kernel parameter) matches a specified 339 * PCI device. The string may be of one of the following formats: 340 * 341 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 342 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 343 * 344 * The first format specifies a PCI bus/device/function address which 345 * may change if new hardware is inserted, if motherboard firmware changes, 346 * or due to changes caused in kernel parameters. If the domain is 347 * left unspecified, it is taken to be 0. In order to be robust against 348 * bus renumbering issues, a path of PCI device/function numbers may be used 349 * to address the specific device. The path for a device can be determined 350 * through the use of 'lspci -t'. 351 * 352 * The second format matches devices using IDs in the configuration 353 * space which may match multiple devices in the system. A value of 0 354 * for any field will match all devices. (Note: this differs from 355 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 356 * legacy reasons and convenience so users don't have to specify 357 * FFFFFFFFs on the command line.) 358 * 359 * Returns 1 if the string matches the device, 0 if it does not and 360 * a negative error code if the string cannot be parsed. 361 */ 362 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 363 const char **endptr) 364 { 365 int ret; 366 int count; 367 unsigned short vendor, device, subsystem_vendor, subsystem_device; 368 369 if (strncmp(p, "pci:", 4) == 0) { 370 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 371 p += 4; 372 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 373 &subsystem_vendor, &subsystem_device, &count); 374 if (ret != 4) { 375 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 376 if (ret != 2) 377 return -EINVAL; 378 379 subsystem_vendor = 0; 380 subsystem_device = 0; 381 } 382 383 p += count; 384 385 if ((!vendor || vendor == dev->vendor) && 386 (!device || device == dev->device) && 387 (!subsystem_vendor || 388 subsystem_vendor == dev->subsystem_vendor) && 389 (!subsystem_device || 390 subsystem_device == dev->subsystem_device)) 391 goto found; 392 } else { 393 /* 394 * PCI Bus, Device, Function IDs are specified 395 * (optionally, may include a path of devfns following it) 396 */ 397 ret = pci_dev_str_match_path(dev, p, &p); 398 if (ret < 0) 399 return ret; 400 else if (ret) 401 goto found; 402 } 403 404 *endptr = p; 405 return 0; 406 407 found: 408 *endptr = p; 409 return 1; 410 } 411 412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 413 u8 pos, int cap, int *ttl) 414 { 415 u8 id; 416 u16 ent; 417 418 pci_bus_read_config_byte(bus, devfn, pos, &pos); 419 420 while ((*ttl)--) { 421 if (pos < 0x40) 422 break; 423 pos &= ~3; 424 pci_bus_read_config_word(bus, devfn, pos, &ent); 425 426 id = ent & 0xff; 427 if (id == 0xff) 428 break; 429 if (id == cap) 430 return pos; 431 pos = (ent >> 8); 432 } 433 return 0; 434 } 435 436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 437 u8 pos, int cap) 438 { 439 int ttl = PCI_FIND_CAP_TTL; 440 441 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 442 } 443 444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 445 { 446 return __pci_find_next_cap(dev->bus, dev->devfn, 447 pos + PCI_CAP_LIST_NEXT, cap); 448 } 449 EXPORT_SYMBOL_GPL(pci_find_next_capability); 450 451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 452 unsigned int devfn, u8 hdr_type) 453 { 454 u16 status; 455 456 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 457 if (!(status & PCI_STATUS_CAP_LIST)) 458 return 0; 459 460 switch (hdr_type) { 461 case PCI_HEADER_TYPE_NORMAL: 462 case PCI_HEADER_TYPE_BRIDGE: 463 return PCI_CAPABILITY_LIST; 464 case PCI_HEADER_TYPE_CARDBUS: 465 return PCI_CB_CAPABILITY_LIST; 466 } 467 468 return 0; 469 } 470 471 /** 472 * pci_find_capability - query for devices' capabilities 473 * @dev: PCI device to query 474 * @cap: capability code 475 * 476 * Tell if a device supports a given PCI capability. 477 * Returns the address of the requested capability structure within the 478 * device's PCI configuration space or 0 in case the device does not 479 * support it. Possible values for @cap include: 480 * 481 * %PCI_CAP_ID_PM Power Management 482 * %PCI_CAP_ID_AGP Accelerated Graphics Port 483 * %PCI_CAP_ID_VPD Vital Product Data 484 * %PCI_CAP_ID_SLOTID Slot Identification 485 * %PCI_CAP_ID_MSI Message Signalled Interrupts 486 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 487 * %PCI_CAP_ID_PCIX PCI-X 488 * %PCI_CAP_ID_EXP PCI Express 489 */ 490 u8 pci_find_capability(struct pci_dev *dev, int cap) 491 { 492 u8 pos; 493 494 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 495 if (pos) 496 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 497 498 return pos; 499 } 500 EXPORT_SYMBOL(pci_find_capability); 501 502 /** 503 * pci_bus_find_capability - query for devices' capabilities 504 * @bus: the PCI bus to query 505 * @devfn: PCI device to query 506 * @cap: capability code 507 * 508 * Like pci_find_capability() but works for PCI devices that do not have a 509 * pci_dev structure set up yet. 510 * 511 * Returns the address of the requested capability structure within the 512 * device's PCI configuration space or 0 in case the device does not 513 * support it. 514 */ 515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 516 { 517 u8 hdr_type, pos; 518 519 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 520 521 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 522 if (pos) 523 pos = __pci_find_next_cap(bus, devfn, pos, cap); 524 525 return pos; 526 } 527 EXPORT_SYMBOL(pci_bus_find_capability); 528 529 /** 530 * pci_find_next_ext_capability - Find an extended capability 531 * @dev: PCI device to query 532 * @start: address at which to start looking (0 to start at beginning of list) 533 * @cap: capability code 534 * 535 * Returns the address of the next matching extended capability structure 536 * within the device's PCI configuration space or 0 if the device does 537 * not support it. Some capabilities can occur several times, e.g., the 538 * vendor-specific capability, and this provides a way to find them all. 539 */ 540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 541 { 542 u32 header; 543 int ttl; 544 u16 pos = PCI_CFG_SPACE_SIZE; 545 546 /* minimum 8 bytes per capability */ 547 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 548 549 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 550 return 0; 551 552 if (start) 553 pos = start; 554 555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 556 return 0; 557 558 /* 559 * If we have no capabilities, this is indicated by cap ID, 560 * cap version and next pointer all being 0. 561 */ 562 if (header == 0) 563 return 0; 564 565 while (ttl-- > 0) { 566 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 567 return pos; 568 569 pos = PCI_EXT_CAP_NEXT(header); 570 if (pos < PCI_CFG_SPACE_SIZE) 571 break; 572 573 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 574 break; 575 } 576 577 return 0; 578 } 579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 580 581 /** 582 * pci_find_ext_capability - Find an extended capability 583 * @dev: PCI device to query 584 * @cap: capability code 585 * 586 * Returns the address of the requested extended capability structure 587 * within the device's PCI configuration space or 0 if the device does 588 * not support it. Possible values for @cap include: 589 * 590 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 591 * %PCI_EXT_CAP_ID_VC Virtual Channel 592 * %PCI_EXT_CAP_ID_DSN Device Serial Number 593 * %PCI_EXT_CAP_ID_PWR Power Budgeting 594 */ 595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 596 { 597 return pci_find_next_ext_capability(dev, 0, cap); 598 } 599 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 600 601 /** 602 * pci_get_dsn - Read and return the 8-byte Device Serial Number 603 * @dev: PCI device to query 604 * 605 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 606 * Number. 607 * 608 * Returns the DSN, or zero if the capability does not exist. 609 */ 610 u64 pci_get_dsn(struct pci_dev *dev) 611 { 612 u32 dword; 613 u64 dsn; 614 int pos; 615 616 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 617 if (!pos) 618 return 0; 619 620 /* 621 * The Device Serial Number is two dwords offset 4 bytes from the 622 * capability position. The specification says that the first dword is 623 * the lower half, and the second dword is the upper half. 624 */ 625 pos += 4; 626 pci_read_config_dword(dev, pos, &dword); 627 dsn = (u64)dword; 628 pci_read_config_dword(dev, pos + 4, &dword); 629 dsn |= ((u64)dword) << 32; 630 631 return dsn; 632 } 633 EXPORT_SYMBOL_GPL(pci_get_dsn); 634 635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 636 { 637 int rc, ttl = PCI_FIND_CAP_TTL; 638 u8 cap, mask; 639 640 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 641 mask = HT_3BIT_CAP_MASK; 642 else 643 mask = HT_5BIT_CAP_MASK; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 646 PCI_CAP_ID_HT, &ttl); 647 while (pos) { 648 rc = pci_read_config_byte(dev, pos + 3, &cap); 649 if (rc != PCIBIOS_SUCCESSFUL) 650 return 0; 651 652 if ((cap & mask) == ht_cap) 653 return pos; 654 655 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 656 pos + PCI_CAP_LIST_NEXT, 657 PCI_CAP_ID_HT, &ttl); 658 } 659 660 return 0; 661 } 662 663 /** 664 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 665 * @dev: PCI device to query 666 * @pos: Position from which to continue searching 667 * @ht_cap: HyperTransport capability code 668 * 669 * To be used in conjunction with pci_find_ht_capability() to search for 670 * all capabilities matching @ht_cap. @pos should always be a value returned 671 * from pci_find_ht_capability(). 672 * 673 * NB. To be 100% safe against broken PCI devices, the caller should take 674 * steps to avoid an infinite loop. 675 */ 676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 677 { 678 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 679 } 680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 681 682 /** 683 * pci_find_ht_capability - query a device's HyperTransport capabilities 684 * @dev: PCI device to query 685 * @ht_cap: HyperTransport capability code 686 * 687 * Tell if a device supports a given HyperTransport capability. 688 * Returns an address within the device's PCI configuration space 689 * or 0 in case the device does not support the request capability. 690 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 691 * which has a HyperTransport capability matching @ht_cap. 692 */ 693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 694 { 695 u8 pos; 696 697 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 698 if (pos) 699 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 700 701 return pos; 702 } 703 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 704 705 /** 706 * pci_find_vsec_capability - Find a vendor-specific extended capability 707 * @dev: PCI device to query 708 * @vendor: Vendor ID for which capability is defined 709 * @cap: Vendor-specific capability ID 710 * 711 * If @dev has Vendor ID @vendor, search for a VSEC capability with 712 * VSEC ID @cap. If found, return the capability offset in 713 * config space; otherwise return 0. 714 */ 715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 716 { 717 u16 vsec = 0; 718 u32 header; 719 720 if (vendor != dev->vendor) 721 return 0; 722 723 while ((vsec = pci_find_next_ext_capability(dev, vsec, 724 PCI_EXT_CAP_ID_VNDR))) { 725 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 726 &header) == PCIBIOS_SUCCESSFUL && 727 PCI_VNDR_HEADER_ID(header) == cap) 728 return vsec; 729 } 730 731 return 0; 732 } 733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 734 735 /** 736 * pci_find_dvsec_capability - Find DVSEC for vendor 737 * @dev: PCI device to query 738 * @vendor: Vendor ID to match for the DVSEC 739 * @dvsec: Designated Vendor-specific capability ID 740 * 741 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 742 * offset in config space; otherwise return 0. 743 */ 744 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 745 { 746 int pos; 747 748 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 749 if (!pos) 750 return 0; 751 752 while (pos) { 753 u16 v, id; 754 755 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 756 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 757 if (vendor == v && dvsec == id) 758 return pos; 759 760 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 761 } 762 763 return 0; 764 } 765 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 766 767 /** 768 * pci_find_parent_resource - return resource region of parent bus of given 769 * region 770 * @dev: PCI device structure contains resources to be searched 771 * @res: child resource record for which parent is sought 772 * 773 * For given resource region of given device, return the resource region of 774 * parent bus the given region is contained in. 775 */ 776 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 777 struct resource *res) 778 { 779 const struct pci_bus *bus = dev->bus; 780 struct resource *r; 781 int i; 782 783 pci_bus_for_each_resource(bus, r, i) { 784 if (!r) 785 continue; 786 if (resource_contains(r, res)) { 787 788 /* 789 * If the window is prefetchable but the BAR is 790 * not, the allocator made a mistake. 791 */ 792 if (r->flags & IORESOURCE_PREFETCH && 793 !(res->flags & IORESOURCE_PREFETCH)) 794 return NULL; 795 796 /* 797 * If we're below a transparent bridge, there may 798 * be both a positively-decoded aperture and a 799 * subtractively-decoded region that contain the BAR. 800 * We want the positively-decoded one, so this depends 801 * on pci_bus_for_each_resource() giving us those 802 * first. 803 */ 804 return r; 805 } 806 } 807 return NULL; 808 } 809 EXPORT_SYMBOL(pci_find_parent_resource); 810 811 /** 812 * pci_find_resource - Return matching PCI device resource 813 * @dev: PCI device to query 814 * @res: Resource to look for 815 * 816 * Goes over standard PCI resources (BARs) and checks if the given resource 817 * is partially or fully contained in any of them. In that case the 818 * matching resource is returned, %NULL otherwise. 819 */ 820 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 821 { 822 int i; 823 824 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 825 struct resource *r = &dev->resource[i]; 826 827 if (r->start && resource_contains(r, res)) 828 return r; 829 } 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(pci_find_resource); 834 835 /** 836 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 837 * @dev: the PCI device to operate on 838 * @pos: config space offset of status word 839 * @mask: mask of bit(s) to care about in status word 840 * 841 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 842 */ 843 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 844 { 845 int i; 846 847 /* Wait for Transaction Pending bit clean */ 848 for (i = 0; i < 4; i++) { 849 u16 status; 850 if (i) 851 msleep((1 << (i - 1)) * 100); 852 853 pci_read_config_word(dev, pos, &status); 854 if (!(status & mask)) 855 return 1; 856 } 857 858 return 0; 859 } 860 861 static int pci_acs_enable; 862 863 /** 864 * pci_request_acs - ask for ACS to be enabled if supported 865 */ 866 void pci_request_acs(void) 867 { 868 pci_acs_enable = 1; 869 } 870 871 static const char *disable_acs_redir_param; 872 873 /** 874 * pci_disable_acs_redir - disable ACS redirect capabilities 875 * @dev: the PCI device 876 * 877 * For only devices specified in the disable_acs_redir parameter. 878 */ 879 static void pci_disable_acs_redir(struct pci_dev *dev) 880 { 881 int ret = 0; 882 const char *p; 883 int pos; 884 u16 ctrl; 885 886 if (!disable_acs_redir_param) 887 return; 888 889 p = disable_acs_redir_param; 890 while (*p) { 891 ret = pci_dev_str_match(dev, p, &p); 892 if (ret < 0) { 893 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 894 disable_acs_redir_param); 895 896 break; 897 } else if (ret == 1) { 898 /* Found a match */ 899 break; 900 } 901 902 if (*p != ';' && *p != ',') { 903 /* End of param or invalid format */ 904 break; 905 } 906 p++; 907 } 908 909 if (ret != 1) 910 return; 911 912 if (!pci_dev_specific_disable_acs_redir(dev)) 913 return; 914 915 pos = dev->acs_cap; 916 if (!pos) { 917 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 918 return; 919 } 920 921 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 922 923 /* P2P Request & Completion Redirect */ 924 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 925 926 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 927 928 pci_info(dev, "disabled ACS redirect\n"); 929 } 930 931 /** 932 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 933 * @dev: the PCI device 934 */ 935 static void pci_std_enable_acs(struct pci_dev *dev) 936 { 937 int pos; 938 u16 cap; 939 u16 ctrl; 940 941 pos = dev->acs_cap; 942 if (!pos) 943 return; 944 945 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 946 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 947 948 /* Source Validation */ 949 ctrl |= (cap & PCI_ACS_SV); 950 951 /* P2P Request Redirect */ 952 ctrl |= (cap & PCI_ACS_RR); 953 954 /* P2P Completion Redirect */ 955 ctrl |= (cap & PCI_ACS_CR); 956 957 /* Upstream Forwarding */ 958 ctrl |= (cap & PCI_ACS_UF); 959 960 /* Enable Translation Blocking for external devices and noats */ 961 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 962 ctrl |= (cap & PCI_ACS_TB); 963 964 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 965 } 966 967 /** 968 * pci_enable_acs - enable ACS if hardware support it 969 * @dev: the PCI device 970 */ 971 static void pci_enable_acs(struct pci_dev *dev) 972 { 973 if (!pci_acs_enable) 974 goto disable_acs_redir; 975 976 if (!pci_dev_specific_enable_acs(dev)) 977 goto disable_acs_redir; 978 979 pci_std_enable_acs(dev); 980 981 disable_acs_redir: 982 /* 983 * Note: pci_disable_acs_redir() must be called even if ACS was not 984 * enabled by the kernel because it may have been enabled by 985 * platform firmware. So if we are told to disable it, we should 986 * always disable it after setting the kernel's default 987 * preferences. 988 */ 989 pci_disable_acs_redir(dev); 990 } 991 992 /** 993 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 994 * @dev: PCI device to have its BARs restored 995 * 996 * Restore the BAR values for a given device, so as to make it 997 * accessible by its driver. 998 */ 999 static void pci_restore_bars(struct pci_dev *dev) 1000 { 1001 int i; 1002 1003 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1004 pci_update_resource(dev, i); 1005 } 1006 1007 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1008 { 1009 if (pci_use_mid_pm()) 1010 return true; 1011 1012 return acpi_pci_power_manageable(dev); 1013 } 1014 1015 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1016 pci_power_t t) 1017 { 1018 if (pci_use_mid_pm()) 1019 return mid_pci_set_power_state(dev, t); 1020 1021 return acpi_pci_set_power_state(dev, t); 1022 } 1023 1024 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1025 { 1026 if (pci_use_mid_pm()) 1027 return mid_pci_get_power_state(dev); 1028 1029 return acpi_pci_get_power_state(dev); 1030 } 1031 1032 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1033 { 1034 if (!pci_use_mid_pm()) 1035 acpi_pci_refresh_power_state(dev); 1036 } 1037 1038 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1039 { 1040 if (pci_use_mid_pm()) 1041 return PCI_POWER_ERROR; 1042 1043 return acpi_pci_choose_state(dev); 1044 } 1045 1046 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1047 { 1048 if (pci_use_mid_pm()) 1049 return PCI_POWER_ERROR; 1050 1051 return acpi_pci_wakeup(dev, enable); 1052 } 1053 1054 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1055 { 1056 if (pci_use_mid_pm()) 1057 return false; 1058 1059 return acpi_pci_need_resume(dev); 1060 } 1061 1062 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1063 { 1064 if (pci_use_mid_pm()) 1065 return false; 1066 1067 return acpi_pci_bridge_d3(dev); 1068 } 1069 1070 /** 1071 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 1072 * given PCI device 1073 * @dev: PCI device to handle. 1074 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1075 * 1076 * RETURN VALUE: 1077 * -EINVAL if the requested state is invalid. 1078 * -EIO if device does not support PCI PM or its PM capabilities register has a 1079 * wrong version, or device doesn't support the requested state. 1080 * 0 if device already is in the requested state. 1081 * 0 if device's power state has been successfully changed. 1082 */ 1083 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1084 { 1085 u16 pmcsr; 1086 bool need_restore = false; 1087 1088 /* Check if we're already there */ 1089 if (dev->current_state == state) 1090 return 0; 1091 1092 if (!dev->pm_cap) 1093 return -EIO; 1094 1095 if (state < PCI_D0 || state > PCI_D3hot) 1096 return -EINVAL; 1097 1098 /* 1099 * Validate transition: We can enter D0 from any state, but if 1100 * we're already in a low-power state, we can only go deeper. E.g., 1101 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1102 * we'd have to go from D3 to D0, then to D1. 1103 */ 1104 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1105 && dev->current_state > state) { 1106 pci_err(dev, "invalid power transition (from %s to %s)\n", 1107 pci_power_name(dev->current_state), 1108 pci_power_name(state)); 1109 return -EINVAL; 1110 } 1111 1112 /* Check if this device supports the desired state */ 1113 if ((state == PCI_D1 && !dev->d1_support) 1114 || (state == PCI_D2 && !dev->d2_support)) 1115 return -EIO; 1116 1117 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1118 if (pmcsr == (u16) ~0) { 1119 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1120 pci_power_name(dev->current_state), 1121 pci_power_name(state)); 1122 return -EIO; 1123 } 1124 1125 /* 1126 * If we're (effectively) in D3, force entire word to 0. 1127 * This doesn't affect PME_Status, disables PME_En, and 1128 * sets PowerState to 0. 1129 */ 1130 switch (dev->current_state) { 1131 case PCI_D0: 1132 case PCI_D1: 1133 case PCI_D2: 1134 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1135 pmcsr |= state; 1136 break; 1137 case PCI_D3hot: 1138 case PCI_D3cold: 1139 case PCI_UNKNOWN: /* Boot-up */ 1140 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1141 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1142 need_restore = true; 1143 fallthrough; /* force to D0 */ 1144 default: 1145 pmcsr = 0; 1146 break; 1147 } 1148 1149 /* Enter specified state */ 1150 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1151 1152 /* 1153 * Mandatory power management transition delays; see PCI PM 1.1 1154 * 5.6.1 table 18 1155 */ 1156 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1157 pci_dev_d3_sleep(dev); 1158 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1159 udelay(PCI_PM_D2_DELAY); 1160 1161 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1162 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1163 if (dev->current_state != state) 1164 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1165 pci_power_name(dev->current_state), 1166 pci_power_name(state)); 1167 1168 /* 1169 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1170 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1171 * from D3hot to D0 _may_ perform an internal reset, thereby 1172 * going to "D0 Uninitialized" rather than "D0 Initialized". 1173 * For example, at least some versions of the 3c905B and the 1174 * 3c556B exhibit this behaviour. 1175 * 1176 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1177 * devices in a D3hot state at boot. Consequently, we need to 1178 * restore at least the BARs so that the device will be 1179 * accessible to its driver. 1180 */ 1181 if (need_restore) 1182 pci_restore_bars(dev); 1183 1184 if (dev->bus->self) 1185 pcie_aspm_pm_state_change(dev->bus->self); 1186 1187 return 0; 1188 } 1189 1190 /** 1191 * pci_update_current_state - Read power state of given device and cache it 1192 * @dev: PCI device to handle. 1193 * @state: State to cache in case the device doesn't have the PM capability 1194 * 1195 * The power state is read from the PMCSR register, which however is 1196 * inaccessible in D3cold. The platform firmware is therefore queried first 1197 * to detect accessibility of the register. In case the platform firmware 1198 * reports an incorrect state or the device isn't power manageable by the 1199 * platform at all, we try to detect D3cold by testing accessibility of the 1200 * vendor ID in config space. 1201 */ 1202 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1203 { 1204 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1205 !pci_device_is_present(dev)) { 1206 dev->current_state = PCI_D3cold; 1207 } else if (dev->pm_cap) { 1208 u16 pmcsr; 1209 1210 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1211 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1212 } else { 1213 dev->current_state = state; 1214 } 1215 } 1216 1217 /** 1218 * pci_refresh_power_state - Refresh the given device's power state data 1219 * @dev: Target PCI device. 1220 * 1221 * Ask the platform to refresh the devices power state information and invoke 1222 * pci_update_current_state() to update its current PCI power state. 1223 */ 1224 void pci_refresh_power_state(struct pci_dev *dev) 1225 { 1226 platform_pci_refresh_power_state(dev); 1227 pci_update_current_state(dev, dev->current_state); 1228 } 1229 1230 /** 1231 * pci_platform_power_transition - Use platform to change device power state 1232 * @dev: PCI device to handle. 1233 * @state: State to put the device into. 1234 */ 1235 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1236 { 1237 int error; 1238 1239 error = platform_pci_set_power_state(dev, state); 1240 if (!error) 1241 pci_update_current_state(dev, state); 1242 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1243 dev->current_state = PCI_D0; 1244 1245 return error; 1246 } 1247 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1248 1249 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1250 { 1251 pm_request_resume(&pci_dev->dev); 1252 return 0; 1253 } 1254 1255 /** 1256 * pci_resume_bus - Walk given bus and runtime resume devices on it 1257 * @bus: Top bus of the subtree to walk. 1258 */ 1259 void pci_resume_bus(struct pci_bus *bus) 1260 { 1261 if (bus) 1262 pci_walk_bus(bus, pci_resume_one, NULL); 1263 } 1264 1265 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1266 { 1267 int delay = 1; 1268 u32 id; 1269 1270 /* 1271 * After reset, the device should not silently discard config 1272 * requests, but it may still indicate that it needs more time by 1273 * responding to them with CRS completions. The Root Port will 1274 * generally synthesize ~0 data to complete the read (except when 1275 * CRS SV is enabled and the read was for the Vendor ID; in that 1276 * case it synthesizes 0x0001 data). 1277 * 1278 * Wait for the device to return a non-CRS completion. Read the 1279 * Command register instead of Vendor ID so we don't have to 1280 * contend with the CRS SV value. 1281 */ 1282 pci_read_config_dword(dev, PCI_COMMAND, &id); 1283 while (id == ~0) { 1284 if (delay > timeout) { 1285 pci_warn(dev, "not ready %dms after %s; giving up\n", 1286 delay - 1, reset_type); 1287 return -ENOTTY; 1288 } 1289 1290 if (delay > 1000) 1291 pci_info(dev, "not ready %dms after %s; waiting\n", 1292 delay - 1, reset_type); 1293 1294 msleep(delay); 1295 delay *= 2; 1296 pci_read_config_dword(dev, PCI_COMMAND, &id); 1297 } 1298 1299 if (delay > 1000) 1300 pci_info(dev, "ready %dms after %s\n", delay - 1, 1301 reset_type); 1302 1303 return 0; 1304 } 1305 1306 /** 1307 * pci_power_up - Put the given device into D0 1308 * @dev: PCI device to power up 1309 */ 1310 int pci_power_up(struct pci_dev *dev) 1311 { 1312 pci_platform_power_transition(dev, PCI_D0); 1313 1314 /* 1315 * Mandatory power management transition delays are handled in 1316 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1317 * corresponding bridge. 1318 */ 1319 if (dev->runtime_d3cold) { 1320 /* 1321 * When powering on a bridge from D3cold, the whole hierarchy 1322 * may be powered on into D0uninitialized state, resume them to 1323 * give them a chance to suspend again 1324 */ 1325 pci_resume_bus(dev->subordinate); 1326 } 1327 1328 return pci_raw_set_power_state(dev, PCI_D0); 1329 } 1330 1331 /** 1332 * __pci_dev_set_current_state - Set current state of a PCI device 1333 * @dev: Device to handle 1334 * @data: pointer to state to be set 1335 */ 1336 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1337 { 1338 pci_power_t state = *(pci_power_t *)data; 1339 1340 dev->current_state = state; 1341 return 0; 1342 } 1343 1344 /** 1345 * pci_bus_set_current_state - Walk given bus and set current state of devices 1346 * @bus: Top bus of the subtree to walk. 1347 * @state: state to be set 1348 */ 1349 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1350 { 1351 if (bus) 1352 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1353 } 1354 1355 /** 1356 * pci_set_power_state - Set the power state of a PCI device 1357 * @dev: PCI device to handle. 1358 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1359 * 1360 * Transition a device to a new power state, using the platform firmware and/or 1361 * the device's PCI PM registers. 1362 * 1363 * RETURN VALUE: 1364 * -EINVAL if the requested state is invalid. 1365 * -EIO if device does not support PCI PM or its PM capabilities register has a 1366 * wrong version, or device doesn't support the requested state. 1367 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1368 * 0 if device already is in the requested state. 1369 * 0 if the transition is to D3 but D3 is not supported. 1370 * 0 if device's power state has been successfully changed. 1371 */ 1372 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1373 { 1374 int error; 1375 1376 /* Bound the state we're entering */ 1377 if (state > PCI_D3cold) 1378 state = PCI_D3cold; 1379 else if (state < PCI_D0) 1380 state = PCI_D0; 1381 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1382 1383 /* 1384 * If the device or the parent bridge do not support PCI 1385 * PM, ignore the request if we're doing anything other 1386 * than putting it into D0 (which would only happen on 1387 * boot). 1388 */ 1389 return 0; 1390 1391 /* Check if we're already there */ 1392 if (dev->current_state == state) 1393 return 0; 1394 1395 if (state == PCI_D0) 1396 return pci_power_up(dev); 1397 1398 /* 1399 * This device is quirked not to be put into D3, so don't put it in 1400 * D3 1401 */ 1402 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1403 return 0; 1404 1405 /* 1406 * To put device in D3cold, we put device into D3hot in native 1407 * way, then put device into D3cold with platform ops 1408 */ 1409 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1410 PCI_D3hot : state); 1411 1412 if (pci_platform_power_transition(dev, state)) 1413 return error; 1414 1415 /* Powering off a bridge may power off the whole hierarchy */ 1416 if (state == PCI_D3cold) 1417 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1418 1419 return 0; 1420 } 1421 EXPORT_SYMBOL(pci_set_power_state); 1422 1423 #define PCI_EXP_SAVE_REGS 7 1424 1425 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1426 u16 cap, bool extended) 1427 { 1428 struct pci_cap_saved_state *tmp; 1429 1430 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1431 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1432 return tmp; 1433 } 1434 return NULL; 1435 } 1436 1437 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1438 { 1439 return _pci_find_saved_cap(dev, cap, false); 1440 } 1441 1442 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1443 { 1444 return _pci_find_saved_cap(dev, cap, true); 1445 } 1446 1447 static int pci_save_pcie_state(struct pci_dev *dev) 1448 { 1449 int i = 0; 1450 struct pci_cap_saved_state *save_state; 1451 u16 *cap; 1452 1453 if (!pci_is_pcie(dev)) 1454 return 0; 1455 1456 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1457 if (!save_state) { 1458 pci_err(dev, "buffer not found in %s\n", __func__); 1459 return -ENOMEM; 1460 } 1461 1462 cap = (u16 *)&save_state->cap.data[0]; 1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1466 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1467 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1468 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1469 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1470 1471 return 0; 1472 } 1473 1474 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1475 { 1476 #ifdef CONFIG_PCIEASPM 1477 struct pci_dev *bridge; 1478 u32 ctl; 1479 1480 bridge = pci_upstream_bridge(dev); 1481 if (bridge && bridge->ltr_path) { 1482 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1483 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1484 pci_dbg(bridge, "re-enabling LTR\n"); 1485 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1486 PCI_EXP_DEVCTL2_LTR_EN); 1487 } 1488 } 1489 #endif 1490 } 1491 1492 static void pci_restore_pcie_state(struct pci_dev *dev) 1493 { 1494 int i = 0; 1495 struct pci_cap_saved_state *save_state; 1496 u16 *cap; 1497 1498 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1499 if (!save_state) 1500 return; 1501 1502 /* 1503 * Downstream ports reset the LTR enable bit when link goes down. 1504 * Check and re-configure the bit here before restoring device. 1505 * PCIe r5.0, sec 7.5.3.16. 1506 */ 1507 pci_bridge_reconfigure_ltr(dev); 1508 1509 cap = (u16 *)&save_state->cap.data[0]; 1510 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1511 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1512 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1513 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1514 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1515 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1516 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1517 } 1518 1519 static int pci_save_pcix_state(struct pci_dev *dev) 1520 { 1521 int pos; 1522 struct pci_cap_saved_state *save_state; 1523 1524 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1525 if (!pos) 1526 return 0; 1527 1528 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1529 if (!save_state) { 1530 pci_err(dev, "buffer not found in %s\n", __func__); 1531 return -ENOMEM; 1532 } 1533 1534 pci_read_config_word(dev, pos + PCI_X_CMD, 1535 (u16 *)save_state->cap.data); 1536 1537 return 0; 1538 } 1539 1540 static void pci_restore_pcix_state(struct pci_dev *dev) 1541 { 1542 int i = 0, pos; 1543 struct pci_cap_saved_state *save_state; 1544 u16 *cap; 1545 1546 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1547 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1548 if (!save_state || !pos) 1549 return; 1550 cap = (u16 *)&save_state->cap.data[0]; 1551 1552 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1553 } 1554 1555 static void pci_save_ltr_state(struct pci_dev *dev) 1556 { 1557 int ltr; 1558 struct pci_cap_saved_state *save_state; 1559 u16 *cap; 1560 1561 if (!pci_is_pcie(dev)) 1562 return; 1563 1564 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1565 if (!ltr) 1566 return; 1567 1568 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1569 if (!save_state) { 1570 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1571 return; 1572 } 1573 1574 cap = (u16 *)&save_state->cap.data[0]; 1575 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1576 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1577 } 1578 1579 static void pci_restore_ltr_state(struct pci_dev *dev) 1580 { 1581 struct pci_cap_saved_state *save_state; 1582 int ltr; 1583 u16 *cap; 1584 1585 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1586 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1587 if (!save_state || !ltr) 1588 return; 1589 1590 cap = (u16 *)&save_state->cap.data[0]; 1591 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1592 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1593 } 1594 1595 /** 1596 * pci_save_state - save the PCI configuration space of a device before 1597 * suspending 1598 * @dev: PCI device that we're dealing with 1599 */ 1600 int pci_save_state(struct pci_dev *dev) 1601 { 1602 int i; 1603 /* XXX: 100% dword access ok here? */ 1604 for (i = 0; i < 16; i++) { 1605 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1606 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1607 i * 4, dev->saved_config_space[i]); 1608 } 1609 dev->state_saved = true; 1610 1611 i = pci_save_pcie_state(dev); 1612 if (i != 0) 1613 return i; 1614 1615 i = pci_save_pcix_state(dev); 1616 if (i != 0) 1617 return i; 1618 1619 pci_save_ltr_state(dev); 1620 pci_save_dpc_state(dev); 1621 pci_save_aer_state(dev); 1622 pci_save_ptm_state(dev); 1623 return pci_save_vc_state(dev); 1624 } 1625 EXPORT_SYMBOL(pci_save_state); 1626 1627 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1628 u32 saved_val, int retry, bool force) 1629 { 1630 u32 val; 1631 1632 pci_read_config_dword(pdev, offset, &val); 1633 if (!force && val == saved_val) 1634 return; 1635 1636 for (;;) { 1637 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1638 offset, val, saved_val); 1639 pci_write_config_dword(pdev, offset, saved_val); 1640 if (retry-- <= 0) 1641 return; 1642 1643 pci_read_config_dword(pdev, offset, &val); 1644 if (val == saved_val) 1645 return; 1646 1647 mdelay(1); 1648 } 1649 } 1650 1651 static void pci_restore_config_space_range(struct pci_dev *pdev, 1652 int start, int end, int retry, 1653 bool force) 1654 { 1655 int index; 1656 1657 for (index = end; index >= start; index--) 1658 pci_restore_config_dword(pdev, 4 * index, 1659 pdev->saved_config_space[index], 1660 retry, force); 1661 } 1662 1663 static void pci_restore_config_space(struct pci_dev *pdev) 1664 { 1665 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1666 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1667 /* Restore BARs before the command register. */ 1668 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1669 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1670 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1671 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1672 1673 /* 1674 * Force rewriting of prefetch registers to avoid S3 resume 1675 * issues on Intel PCI bridges that occur when these 1676 * registers are not explicitly written. 1677 */ 1678 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1679 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1680 } else { 1681 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1682 } 1683 } 1684 1685 static void pci_restore_rebar_state(struct pci_dev *pdev) 1686 { 1687 unsigned int pos, nbars, i; 1688 u32 ctrl; 1689 1690 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1691 if (!pos) 1692 return; 1693 1694 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1695 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1696 PCI_REBAR_CTRL_NBAR_SHIFT; 1697 1698 for (i = 0; i < nbars; i++, pos += 8) { 1699 struct resource *res; 1700 int bar_idx, size; 1701 1702 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1703 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1704 res = pdev->resource + bar_idx; 1705 size = pci_rebar_bytes_to_size(resource_size(res)); 1706 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1707 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1708 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1709 } 1710 } 1711 1712 /** 1713 * pci_restore_state - Restore the saved state of a PCI device 1714 * @dev: PCI device that we're dealing with 1715 */ 1716 void pci_restore_state(struct pci_dev *dev) 1717 { 1718 if (!dev->state_saved) 1719 return; 1720 1721 /* 1722 * Restore max latencies (in the LTR capability) before enabling 1723 * LTR itself (in the PCIe capability). 1724 */ 1725 pci_restore_ltr_state(dev); 1726 1727 pci_restore_pcie_state(dev); 1728 pci_restore_pasid_state(dev); 1729 pci_restore_pri_state(dev); 1730 pci_restore_ats_state(dev); 1731 pci_restore_vc_state(dev); 1732 pci_restore_rebar_state(dev); 1733 pci_restore_dpc_state(dev); 1734 pci_restore_ptm_state(dev); 1735 1736 pci_aer_clear_status(dev); 1737 pci_restore_aer_state(dev); 1738 1739 pci_restore_config_space(dev); 1740 1741 pci_restore_pcix_state(dev); 1742 pci_restore_msi_state(dev); 1743 1744 /* Restore ACS and IOV configuration state */ 1745 pci_enable_acs(dev); 1746 pci_restore_iov_state(dev); 1747 1748 dev->state_saved = false; 1749 } 1750 EXPORT_SYMBOL(pci_restore_state); 1751 1752 struct pci_saved_state { 1753 u32 config_space[16]; 1754 struct pci_cap_saved_data cap[]; 1755 }; 1756 1757 /** 1758 * pci_store_saved_state - Allocate and return an opaque struct containing 1759 * the device saved state. 1760 * @dev: PCI device that we're dealing with 1761 * 1762 * Return NULL if no state or error. 1763 */ 1764 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1765 { 1766 struct pci_saved_state *state; 1767 struct pci_cap_saved_state *tmp; 1768 struct pci_cap_saved_data *cap; 1769 size_t size; 1770 1771 if (!dev->state_saved) 1772 return NULL; 1773 1774 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1775 1776 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1777 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1778 1779 state = kzalloc(size, GFP_KERNEL); 1780 if (!state) 1781 return NULL; 1782 1783 memcpy(state->config_space, dev->saved_config_space, 1784 sizeof(state->config_space)); 1785 1786 cap = state->cap; 1787 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1788 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1789 memcpy(cap, &tmp->cap, len); 1790 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1791 } 1792 /* Empty cap_save terminates list */ 1793 1794 return state; 1795 } 1796 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1797 1798 /** 1799 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1800 * @dev: PCI device that we're dealing with 1801 * @state: Saved state returned from pci_store_saved_state() 1802 */ 1803 int pci_load_saved_state(struct pci_dev *dev, 1804 struct pci_saved_state *state) 1805 { 1806 struct pci_cap_saved_data *cap; 1807 1808 dev->state_saved = false; 1809 1810 if (!state) 1811 return 0; 1812 1813 memcpy(dev->saved_config_space, state->config_space, 1814 sizeof(state->config_space)); 1815 1816 cap = state->cap; 1817 while (cap->size) { 1818 struct pci_cap_saved_state *tmp; 1819 1820 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1821 if (!tmp || tmp->cap.size != cap->size) 1822 return -EINVAL; 1823 1824 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1825 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1826 sizeof(struct pci_cap_saved_data) + cap->size); 1827 } 1828 1829 dev->state_saved = true; 1830 return 0; 1831 } 1832 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1833 1834 /** 1835 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1836 * and free the memory allocated for it. 1837 * @dev: PCI device that we're dealing with 1838 * @state: Pointer to saved state returned from pci_store_saved_state() 1839 */ 1840 int pci_load_and_free_saved_state(struct pci_dev *dev, 1841 struct pci_saved_state **state) 1842 { 1843 int ret = pci_load_saved_state(dev, *state); 1844 kfree(*state); 1845 *state = NULL; 1846 return ret; 1847 } 1848 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1849 1850 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1851 { 1852 return pci_enable_resources(dev, bars); 1853 } 1854 1855 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1856 { 1857 int err; 1858 struct pci_dev *bridge; 1859 u16 cmd; 1860 u8 pin; 1861 1862 err = pci_set_power_state(dev, PCI_D0); 1863 if (err < 0 && err != -EIO) 1864 return err; 1865 1866 bridge = pci_upstream_bridge(dev); 1867 if (bridge) 1868 pcie_aspm_powersave_config_link(bridge); 1869 1870 err = pcibios_enable_device(dev, bars); 1871 if (err < 0) 1872 return err; 1873 pci_fixup_device(pci_fixup_enable, dev); 1874 1875 if (dev->msi_enabled || dev->msix_enabled) 1876 return 0; 1877 1878 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1879 if (pin) { 1880 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1881 if (cmd & PCI_COMMAND_INTX_DISABLE) 1882 pci_write_config_word(dev, PCI_COMMAND, 1883 cmd & ~PCI_COMMAND_INTX_DISABLE); 1884 } 1885 1886 return 0; 1887 } 1888 1889 /** 1890 * pci_reenable_device - Resume abandoned device 1891 * @dev: PCI device to be resumed 1892 * 1893 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1894 * to be called by normal code, write proper resume handler and use it instead. 1895 */ 1896 int pci_reenable_device(struct pci_dev *dev) 1897 { 1898 if (pci_is_enabled(dev)) 1899 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1900 return 0; 1901 } 1902 EXPORT_SYMBOL(pci_reenable_device); 1903 1904 static void pci_enable_bridge(struct pci_dev *dev) 1905 { 1906 struct pci_dev *bridge; 1907 int retval; 1908 1909 bridge = pci_upstream_bridge(dev); 1910 if (bridge) 1911 pci_enable_bridge(bridge); 1912 1913 if (pci_is_enabled(dev)) { 1914 if (!dev->is_busmaster) 1915 pci_set_master(dev); 1916 return; 1917 } 1918 1919 retval = pci_enable_device(dev); 1920 if (retval) 1921 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1922 retval); 1923 pci_set_master(dev); 1924 } 1925 1926 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1927 { 1928 struct pci_dev *bridge; 1929 int err; 1930 int i, bars = 0; 1931 1932 /* 1933 * Power state could be unknown at this point, either due to a fresh 1934 * boot or a device removal call. So get the current power state 1935 * so that things like MSI message writing will behave as expected 1936 * (e.g. if the device really is in D0 at enable time). 1937 */ 1938 pci_update_current_state(dev, dev->current_state); 1939 1940 if (atomic_inc_return(&dev->enable_cnt) > 1) 1941 return 0; /* already enabled */ 1942 1943 bridge = pci_upstream_bridge(dev); 1944 if (bridge) 1945 pci_enable_bridge(bridge); 1946 1947 /* only skip sriov related */ 1948 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1949 if (dev->resource[i].flags & flags) 1950 bars |= (1 << i); 1951 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1952 if (dev->resource[i].flags & flags) 1953 bars |= (1 << i); 1954 1955 err = do_pci_enable_device(dev, bars); 1956 if (err < 0) 1957 atomic_dec(&dev->enable_cnt); 1958 return err; 1959 } 1960 1961 /** 1962 * pci_enable_device_io - Initialize a device for use with IO space 1963 * @dev: PCI device to be initialized 1964 * 1965 * Initialize device before it's used by a driver. Ask low-level code 1966 * to enable I/O resources. Wake up the device if it was suspended. 1967 * Beware, this function can fail. 1968 */ 1969 int pci_enable_device_io(struct pci_dev *dev) 1970 { 1971 return pci_enable_device_flags(dev, IORESOURCE_IO); 1972 } 1973 EXPORT_SYMBOL(pci_enable_device_io); 1974 1975 /** 1976 * pci_enable_device_mem - Initialize a device for use with Memory space 1977 * @dev: PCI device to be initialized 1978 * 1979 * Initialize device before it's used by a driver. Ask low-level code 1980 * to enable Memory resources. Wake up the device if it was suspended. 1981 * Beware, this function can fail. 1982 */ 1983 int pci_enable_device_mem(struct pci_dev *dev) 1984 { 1985 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1986 } 1987 EXPORT_SYMBOL(pci_enable_device_mem); 1988 1989 /** 1990 * pci_enable_device - Initialize device before it's used by a driver. 1991 * @dev: PCI device to be initialized 1992 * 1993 * Initialize device before it's used by a driver. Ask low-level code 1994 * to enable I/O and memory. Wake up the device if it was suspended. 1995 * Beware, this function can fail. 1996 * 1997 * Note we don't actually enable the device many times if we call 1998 * this function repeatedly (we just increment the count). 1999 */ 2000 int pci_enable_device(struct pci_dev *dev) 2001 { 2002 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2003 } 2004 EXPORT_SYMBOL(pci_enable_device); 2005 2006 /* 2007 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2008 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2009 * there's no need to track it separately. pci_devres is initialized 2010 * when a device is enabled using managed PCI device enable interface. 2011 */ 2012 struct pci_devres { 2013 unsigned int enabled:1; 2014 unsigned int pinned:1; 2015 unsigned int orig_intx:1; 2016 unsigned int restore_intx:1; 2017 unsigned int mwi:1; 2018 u32 region_mask; 2019 }; 2020 2021 static void pcim_release(struct device *gendev, void *res) 2022 { 2023 struct pci_dev *dev = to_pci_dev(gendev); 2024 struct pci_devres *this = res; 2025 int i; 2026 2027 if (dev->msi_enabled) 2028 pci_disable_msi(dev); 2029 if (dev->msix_enabled) 2030 pci_disable_msix(dev); 2031 2032 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2033 if (this->region_mask & (1 << i)) 2034 pci_release_region(dev, i); 2035 2036 if (this->mwi) 2037 pci_clear_mwi(dev); 2038 2039 if (this->restore_intx) 2040 pci_intx(dev, this->orig_intx); 2041 2042 if (this->enabled && !this->pinned) 2043 pci_disable_device(dev); 2044 } 2045 2046 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2047 { 2048 struct pci_devres *dr, *new_dr; 2049 2050 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2051 if (dr) 2052 return dr; 2053 2054 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2055 if (!new_dr) 2056 return NULL; 2057 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2058 } 2059 2060 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2061 { 2062 if (pci_is_managed(pdev)) 2063 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2064 return NULL; 2065 } 2066 2067 /** 2068 * pcim_enable_device - Managed pci_enable_device() 2069 * @pdev: PCI device to be initialized 2070 * 2071 * Managed pci_enable_device(). 2072 */ 2073 int pcim_enable_device(struct pci_dev *pdev) 2074 { 2075 struct pci_devres *dr; 2076 int rc; 2077 2078 dr = get_pci_dr(pdev); 2079 if (unlikely(!dr)) 2080 return -ENOMEM; 2081 if (dr->enabled) 2082 return 0; 2083 2084 rc = pci_enable_device(pdev); 2085 if (!rc) { 2086 pdev->is_managed = 1; 2087 dr->enabled = 1; 2088 } 2089 return rc; 2090 } 2091 EXPORT_SYMBOL(pcim_enable_device); 2092 2093 /** 2094 * pcim_pin_device - Pin managed PCI device 2095 * @pdev: PCI device to pin 2096 * 2097 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2098 * driver detach. @pdev must have been enabled with 2099 * pcim_enable_device(). 2100 */ 2101 void pcim_pin_device(struct pci_dev *pdev) 2102 { 2103 struct pci_devres *dr; 2104 2105 dr = find_pci_dr(pdev); 2106 WARN_ON(!dr || !dr->enabled); 2107 if (dr) 2108 dr->pinned = 1; 2109 } 2110 EXPORT_SYMBOL(pcim_pin_device); 2111 2112 /* 2113 * pcibios_device_add - provide arch specific hooks when adding device dev 2114 * @dev: the PCI device being added 2115 * 2116 * Permits the platform to provide architecture specific functionality when 2117 * devices are added. This is the default implementation. Architecture 2118 * implementations can override this. 2119 */ 2120 int __weak pcibios_device_add(struct pci_dev *dev) 2121 { 2122 return 0; 2123 } 2124 2125 /** 2126 * pcibios_release_device - provide arch specific hooks when releasing 2127 * device dev 2128 * @dev: the PCI device being released 2129 * 2130 * Permits the platform to provide architecture specific functionality when 2131 * devices are released. This is the default implementation. Architecture 2132 * implementations can override this. 2133 */ 2134 void __weak pcibios_release_device(struct pci_dev *dev) {} 2135 2136 /** 2137 * pcibios_disable_device - disable arch specific PCI resources for device dev 2138 * @dev: the PCI device to disable 2139 * 2140 * Disables architecture specific PCI resources for the device. This 2141 * is the default implementation. Architecture implementations can 2142 * override this. 2143 */ 2144 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2145 2146 /** 2147 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2148 * @irq: ISA IRQ to penalize 2149 * @active: IRQ active or not 2150 * 2151 * Permits the platform to provide architecture-specific functionality when 2152 * penalizing ISA IRQs. This is the default implementation. Architecture 2153 * implementations can override this. 2154 */ 2155 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2156 2157 static void do_pci_disable_device(struct pci_dev *dev) 2158 { 2159 u16 pci_command; 2160 2161 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2162 if (pci_command & PCI_COMMAND_MASTER) { 2163 pci_command &= ~PCI_COMMAND_MASTER; 2164 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2165 } 2166 2167 pcibios_disable_device(dev); 2168 } 2169 2170 /** 2171 * pci_disable_enabled_device - Disable device without updating enable_cnt 2172 * @dev: PCI device to disable 2173 * 2174 * NOTE: This function is a backend of PCI power management routines and is 2175 * not supposed to be called drivers. 2176 */ 2177 void pci_disable_enabled_device(struct pci_dev *dev) 2178 { 2179 if (pci_is_enabled(dev)) 2180 do_pci_disable_device(dev); 2181 } 2182 2183 /** 2184 * pci_disable_device - Disable PCI device after use 2185 * @dev: PCI device to be disabled 2186 * 2187 * Signal to the system that the PCI device is not in use by the system 2188 * anymore. This only involves disabling PCI bus-mastering, if active. 2189 * 2190 * Note we don't actually disable the device until all callers of 2191 * pci_enable_device() have called pci_disable_device(). 2192 */ 2193 void pci_disable_device(struct pci_dev *dev) 2194 { 2195 struct pci_devres *dr; 2196 2197 dr = find_pci_dr(dev); 2198 if (dr) 2199 dr->enabled = 0; 2200 2201 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2202 "disabling already-disabled device"); 2203 2204 if (atomic_dec_return(&dev->enable_cnt) != 0) 2205 return; 2206 2207 do_pci_disable_device(dev); 2208 2209 dev->is_busmaster = 0; 2210 } 2211 EXPORT_SYMBOL(pci_disable_device); 2212 2213 /** 2214 * pcibios_set_pcie_reset_state - set reset state for device dev 2215 * @dev: the PCIe device reset 2216 * @state: Reset state to enter into 2217 * 2218 * Set the PCIe reset state for the device. This is the default 2219 * implementation. Architecture implementations can override this. 2220 */ 2221 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2222 enum pcie_reset_state state) 2223 { 2224 return -EINVAL; 2225 } 2226 2227 /** 2228 * pci_set_pcie_reset_state - set reset state for device dev 2229 * @dev: the PCIe device reset 2230 * @state: Reset state to enter into 2231 * 2232 * Sets the PCI reset state for the device. 2233 */ 2234 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2235 { 2236 return pcibios_set_pcie_reset_state(dev, state); 2237 } 2238 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2239 2240 #ifdef CONFIG_PCIEAER 2241 void pcie_clear_device_status(struct pci_dev *dev) 2242 { 2243 u16 sta; 2244 2245 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2246 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2247 } 2248 #endif 2249 2250 /** 2251 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2252 * @dev: PCIe root port or event collector. 2253 */ 2254 void pcie_clear_root_pme_status(struct pci_dev *dev) 2255 { 2256 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2257 } 2258 2259 /** 2260 * pci_check_pme_status - Check if given device has generated PME. 2261 * @dev: Device to check. 2262 * 2263 * Check the PME status of the device and if set, clear it and clear PME enable 2264 * (if set). Return 'true' if PME status and PME enable were both set or 2265 * 'false' otherwise. 2266 */ 2267 bool pci_check_pme_status(struct pci_dev *dev) 2268 { 2269 int pmcsr_pos; 2270 u16 pmcsr; 2271 bool ret = false; 2272 2273 if (!dev->pm_cap) 2274 return false; 2275 2276 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2277 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2278 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2279 return false; 2280 2281 /* Clear PME status. */ 2282 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2283 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2284 /* Disable PME to avoid interrupt flood. */ 2285 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2286 ret = true; 2287 } 2288 2289 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2290 2291 return ret; 2292 } 2293 2294 /** 2295 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2296 * @dev: Device to handle. 2297 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2298 * 2299 * Check if @dev has generated PME and queue a resume request for it in that 2300 * case. 2301 */ 2302 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2303 { 2304 if (pme_poll_reset && dev->pme_poll) 2305 dev->pme_poll = false; 2306 2307 if (pci_check_pme_status(dev)) { 2308 pci_wakeup_event(dev); 2309 pm_request_resume(&dev->dev); 2310 } 2311 return 0; 2312 } 2313 2314 /** 2315 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2316 * @bus: Top bus of the subtree to walk. 2317 */ 2318 void pci_pme_wakeup_bus(struct pci_bus *bus) 2319 { 2320 if (bus) 2321 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2322 } 2323 2324 2325 /** 2326 * pci_pme_capable - check the capability of PCI device to generate PME# 2327 * @dev: PCI device to handle. 2328 * @state: PCI state from which device will issue PME#. 2329 */ 2330 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2331 { 2332 if (!dev->pm_cap) 2333 return false; 2334 2335 return !!(dev->pme_support & (1 << state)); 2336 } 2337 EXPORT_SYMBOL(pci_pme_capable); 2338 2339 static void pci_pme_list_scan(struct work_struct *work) 2340 { 2341 struct pci_pme_device *pme_dev, *n; 2342 2343 mutex_lock(&pci_pme_list_mutex); 2344 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2345 if (pme_dev->dev->pme_poll) { 2346 struct pci_dev *bridge; 2347 2348 bridge = pme_dev->dev->bus->self; 2349 /* 2350 * If bridge is in low power state, the 2351 * configuration space of subordinate devices 2352 * may be not accessible 2353 */ 2354 if (bridge && bridge->current_state != PCI_D0) 2355 continue; 2356 /* 2357 * If the device is in D3cold it should not be 2358 * polled either. 2359 */ 2360 if (pme_dev->dev->current_state == PCI_D3cold) 2361 continue; 2362 2363 pci_pme_wakeup(pme_dev->dev, NULL); 2364 } else { 2365 list_del(&pme_dev->list); 2366 kfree(pme_dev); 2367 } 2368 } 2369 if (!list_empty(&pci_pme_list)) 2370 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2371 msecs_to_jiffies(PME_TIMEOUT)); 2372 mutex_unlock(&pci_pme_list_mutex); 2373 } 2374 2375 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2376 { 2377 u16 pmcsr; 2378 2379 if (!dev->pme_support) 2380 return; 2381 2382 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2383 /* Clear PME_Status by writing 1 to it and enable PME# */ 2384 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2385 if (!enable) 2386 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2387 2388 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2389 } 2390 2391 /** 2392 * pci_pme_restore - Restore PME configuration after config space restore. 2393 * @dev: PCI device to update. 2394 */ 2395 void pci_pme_restore(struct pci_dev *dev) 2396 { 2397 u16 pmcsr; 2398 2399 if (!dev->pme_support) 2400 return; 2401 2402 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2403 if (dev->wakeup_prepared) { 2404 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2405 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2406 } else { 2407 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2408 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2409 } 2410 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2411 } 2412 2413 /** 2414 * pci_pme_active - enable or disable PCI device's PME# function 2415 * @dev: PCI device to handle. 2416 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2417 * 2418 * The caller must verify that the device is capable of generating PME# before 2419 * calling this function with @enable equal to 'true'. 2420 */ 2421 void pci_pme_active(struct pci_dev *dev, bool enable) 2422 { 2423 __pci_pme_active(dev, enable); 2424 2425 /* 2426 * PCI (as opposed to PCIe) PME requires that the device have 2427 * its PME# line hooked up correctly. Not all hardware vendors 2428 * do this, so the PME never gets delivered and the device 2429 * remains asleep. The easiest way around this is to 2430 * periodically walk the list of suspended devices and check 2431 * whether any have their PME flag set. The assumption is that 2432 * we'll wake up often enough anyway that this won't be a huge 2433 * hit, and the power savings from the devices will still be a 2434 * win. 2435 * 2436 * Although PCIe uses in-band PME message instead of PME# line 2437 * to report PME, PME does not work for some PCIe devices in 2438 * reality. For example, there are devices that set their PME 2439 * status bits, but don't really bother to send a PME message; 2440 * there are PCI Express Root Ports that don't bother to 2441 * trigger interrupts when they receive PME messages from the 2442 * devices below. So PME poll is used for PCIe devices too. 2443 */ 2444 2445 if (dev->pme_poll) { 2446 struct pci_pme_device *pme_dev; 2447 if (enable) { 2448 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2449 GFP_KERNEL); 2450 if (!pme_dev) { 2451 pci_warn(dev, "can't enable PME#\n"); 2452 return; 2453 } 2454 pme_dev->dev = dev; 2455 mutex_lock(&pci_pme_list_mutex); 2456 list_add(&pme_dev->list, &pci_pme_list); 2457 if (list_is_singular(&pci_pme_list)) 2458 queue_delayed_work(system_freezable_wq, 2459 &pci_pme_work, 2460 msecs_to_jiffies(PME_TIMEOUT)); 2461 mutex_unlock(&pci_pme_list_mutex); 2462 } else { 2463 mutex_lock(&pci_pme_list_mutex); 2464 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2465 if (pme_dev->dev == dev) { 2466 list_del(&pme_dev->list); 2467 kfree(pme_dev); 2468 break; 2469 } 2470 } 2471 mutex_unlock(&pci_pme_list_mutex); 2472 } 2473 } 2474 2475 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2476 } 2477 EXPORT_SYMBOL(pci_pme_active); 2478 2479 /** 2480 * __pci_enable_wake - enable PCI device as wakeup event source 2481 * @dev: PCI device affected 2482 * @state: PCI state from which device will issue wakeup events 2483 * @enable: True to enable event generation; false to disable 2484 * 2485 * This enables the device as a wakeup event source, or disables it. 2486 * When such events involves platform-specific hooks, those hooks are 2487 * called automatically by this routine. 2488 * 2489 * Devices with legacy power management (no standard PCI PM capabilities) 2490 * always require such platform hooks. 2491 * 2492 * RETURN VALUE: 2493 * 0 is returned on success 2494 * -EINVAL is returned if device is not supposed to wake up the system 2495 * Error code depending on the platform is returned if both the platform and 2496 * the native mechanism fail to enable the generation of wake-up events 2497 */ 2498 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2499 { 2500 int ret = 0; 2501 2502 /* 2503 * Bridges that are not power-manageable directly only signal 2504 * wakeup on behalf of subordinate devices which is set up 2505 * elsewhere, so skip them. However, bridges that are 2506 * power-manageable may signal wakeup for themselves (for example, 2507 * on a hotplug event) and they need to be covered here. 2508 */ 2509 if (!pci_power_manageable(dev)) 2510 return 0; 2511 2512 /* Don't do the same thing twice in a row for one device. */ 2513 if (!!enable == !!dev->wakeup_prepared) 2514 return 0; 2515 2516 /* 2517 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2518 * Anderson we should be doing PME# wake enable followed by ACPI wake 2519 * enable. To disable wake-up we call the platform first, for symmetry. 2520 */ 2521 2522 if (enable) { 2523 int error; 2524 2525 /* 2526 * Enable PME signaling if the device can signal PME from 2527 * D3cold regardless of whether or not it can signal PME from 2528 * the current target state, because that will allow it to 2529 * signal PME when the hierarchy above it goes into D3cold and 2530 * the device itself ends up in D3cold as a result of that. 2531 */ 2532 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2533 pci_pme_active(dev, true); 2534 else 2535 ret = 1; 2536 error = platform_pci_set_wakeup(dev, true); 2537 if (ret) 2538 ret = error; 2539 if (!ret) 2540 dev->wakeup_prepared = true; 2541 } else { 2542 platform_pci_set_wakeup(dev, false); 2543 pci_pme_active(dev, false); 2544 dev->wakeup_prepared = false; 2545 } 2546 2547 return ret; 2548 } 2549 2550 /** 2551 * pci_enable_wake - change wakeup settings for a PCI device 2552 * @pci_dev: Target device 2553 * @state: PCI state from which device will issue wakeup events 2554 * @enable: Whether or not to enable event generation 2555 * 2556 * If @enable is set, check device_may_wakeup() for the device before calling 2557 * __pci_enable_wake() for it. 2558 */ 2559 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2560 { 2561 if (enable && !device_may_wakeup(&pci_dev->dev)) 2562 return -EINVAL; 2563 2564 return __pci_enable_wake(pci_dev, state, enable); 2565 } 2566 EXPORT_SYMBOL(pci_enable_wake); 2567 2568 /** 2569 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2570 * @dev: PCI device to prepare 2571 * @enable: True to enable wake-up event generation; false to disable 2572 * 2573 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2574 * and this function allows them to set that up cleanly - pci_enable_wake() 2575 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2576 * ordering constraints. 2577 * 2578 * This function only returns error code if the device is not allowed to wake 2579 * up the system from sleep or it is not capable of generating PME# from both 2580 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2581 */ 2582 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2583 { 2584 return pci_pme_capable(dev, PCI_D3cold) ? 2585 pci_enable_wake(dev, PCI_D3cold, enable) : 2586 pci_enable_wake(dev, PCI_D3hot, enable); 2587 } 2588 EXPORT_SYMBOL(pci_wake_from_d3); 2589 2590 /** 2591 * pci_target_state - find an appropriate low power state for a given PCI dev 2592 * @dev: PCI device 2593 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2594 * 2595 * Use underlying platform code to find a supported low power state for @dev. 2596 * If the platform can't manage @dev, return the deepest state from which it 2597 * can generate wake events, based on any available PME info. 2598 */ 2599 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2600 { 2601 if (platform_pci_power_manageable(dev)) { 2602 /* 2603 * Call the platform to find the target state for the device. 2604 */ 2605 pci_power_t state = platform_pci_choose_state(dev); 2606 2607 switch (state) { 2608 case PCI_POWER_ERROR: 2609 case PCI_UNKNOWN: 2610 return PCI_D3hot; 2611 2612 case PCI_D1: 2613 case PCI_D2: 2614 if (pci_no_d1d2(dev)) 2615 return PCI_D3hot; 2616 } 2617 2618 return state; 2619 } 2620 2621 /* 2622 * If the device is in D3cold even though it's not power-manageable by 2623 * the platform, it may have been powered down by non-standard means. 2624 * Best to let it slumber. 2625 */ 2626 if (dev->current_state == PCI_D3cold) 2627 return PCI_D3cold; 2628 else if (!dev->pm_cap) 2629 return PCI_D0; 2630 2631 if (wakeup && dev->pme_support) { 2632 pci_power_t state = PCI_D3hot; 2633 2634 /* 2635 * Find the deepest state from which the device can generate 2636 * PME#. 2637 */ 2638 while (state && !(dev->pme_support & (1 << state))) 2639 state--; 2640 2641 if (state) 2642 return state; 2643 else if (dev->pme_support & 1) 2644 return PCI_D0; 2645 } 2646 2647 return PCI_D3hot; 2648 } 2649 2650 /** 2651 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2652 * into a sleep state 2653 * @dev: Device to handle. 2654 * 2655 * Choose the power state appropriate for the device depending on whether 2656 * it can wake up the system and/or is power manageable by the platform 2657 * (PCI_D3hot is the default) and put the device into that state. 2658 */ 2659 int pci_prepare_to_sleep(struct pci_dev *dev) 2660 { 2661 bool wakeup = device_may_wakeup(&dev->dev); 2662 pci_power_t target_state = pci_target_state(dev, wakeup); 2663 int error; 2664 2665 if (target_state == PCI_POWER_ERROR) 2666 return -EIO; 2667 2668 /* 2669 * There are systems (for example, Intel mobile chips since Coffee 2670 * Lake) where the power drawn while suspended can be significantly 2671 * reduced by disabling PTM on PCIe root ports as this allows the 2672 * port to enter a lower-power PM state and the SoC to reach a 2673 * lower-power idle state as a whole. 2674 */ 2675 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2676 pci_disable_ptm(dev); 2677 2678 pci_enable_wake(dev, target_state, wakeup); 2679 2680 error = pci_set_power_state(dev, target_state); 2681 2682 if (error) { 2683 pci_enable_wake(dev, target_state, false); 2684 pci_restore_ptm_state(dev); 2685 } 2686 2687 return error; 2688 } 2689 EXPORT_SYMBOL(pci_prepare_to_sleep); 2690 2691 /** 2692 * pci_back_from_sleep - turn PCI device on during system-wide transition 2693 * into working state 2694 * @dev: Device to handle. 2695 * 2696 * Disable device's system wake-up capability and put it into D0. 2697 */ 2698 int pci_back_from_sleep(struct pci_dev *dev) 2699 { 2700 int ret = pci_set_power_state(dev, PCI_D0); 2701 2702 if (ret) 2703 return ret; 2704 2705 pci_enable_wake(dev, PCI_D0, false); 2706 return 0; 2707 } 2708 EXPORT_SYMBOL(pci_back_from_sleep); 2709 2710 /** 2711 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2712 * @dev: PCI device being suspended. 2713 * 2714 * Prepare @dev to generate wake-up events at run time and put it into a low 2715 * power state. 2716 */ 2717 int pci_finish_runtime_suspend(struct pci_dev *dev) 2718 { 2719 pci_power_t target_state; 2720 int error; 2721 2722 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2723 if (target_state == PCI_POWER_ERROR) 2724 return -EIO; 2725 2726 dev->runtime_d3cold = target_state == PCI_D3cold; 2727 2728 /* 2729 * There are systems (for example, Intel mobile chips since Coffee 2730 * Lake) where the power drawn while suspended can be significantly 2731 * reduced by disabling PTM on PCIe root ports as this allows the 2732 * port to enter a lower-power PM state and the SoC to reach a 2733 * lower-power idle state as a whole. 2734 */ 2735 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2736 pci_disable_ptm(dev); 2737 2738 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2739 2740 error = pci_set_power_state(dev, target_state); 2741 2742 if (error) { 2743 pci_enable_wake(dev, target_state, false); 2744 pci_restore_ptm_state(dev); 2745 dev->runtime_d3cold = false; 2746 } 2747 2748 return error; 2749 } 2750 2751 /** 2752 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2753 * @dev: Device to check. 2754 * 2755 * Return true if the device itself is capable of generating wake-up events 2756 * (through the platform or using the native PCIe PME) or if the device supports 2757 * PME and one of its upstream bridges can generate wake-up events. 2758 */ 2759 bool pci_dev_run_wake(struct pci_dev *dev) 2760 { 2761 struct pci_bus *bus = dev->bus; 2762 2763 if (!dev->pme_support) 2764 return false; 2765 2766 /* PME-capable in principle, but not from the target power state */ 2767 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2768 return false; 2769 2770 if (device_can_wakeup(&dev->dev)) 2771 return true; 2772 2773 while (bus->parent) { 2774 struct pci_dev *bridge = bus->self; 2775 2776 if (device_can_wakeup(&bridge->dev)) 2777 return true; 2778 2779 bus = bus->parent; 2780 } 2781 2782 /* We have reached the root bus. */ 2783 if (bus->bridge) 2784 return device_can_wakeup(bus->bridge); 2785 2786 return false; 2787 } 2788 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2789 2790 /** 2791 * pci_dev_need_resume - Check if it is necessary to resume the device. 2792 * @pci_dev: Device to check. 2793 * 2794 * Return 'true' if the device is not runtime-suspended or it has to be 2795 * reconfigured due to wakeup settings difference between system and runtime 2796 * suspend, or the current power state of it is not suitable for the upcoming 2797 * (system-wide) transition. 2798 */ 2799 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2800 { 2801 struct device *dev = &pci_dev->dev; 2802 pci_power_t target_state; 2803 2804 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2805 return true; 2806 2807 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2808 2809 /* 2810 * If the earlier platform check has not triggered, D3cold is just power 2811 * removal on top of D3hot, so no need to resume the device in that 2812 * case. 2813 */ 2814 return target_state != pci_dev->current_state && 2815 target_state != PCI_D3cold && 2816 pci_dev->current_state != PCI_D3hot; 2817 } 2818 2819 /** 2820 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2821 * @pci_dev: Device to check. 2822 * 2823 * If the device is suspended and it is not configured for system wakeup, 2824 * disable PME for it to prevent it from waking up the system unnecessarily. 2825 * 2826 * Note that if the device's power state is D3cold and the platform check in 2827 * pci_dev_need_resume() has not triggered, the device's configuration need not 2828 * be changed. 2829 */ 2830 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2831 { 2832 struct device *dev = &pci_dev->dev; 2833 2834 spin_lock_irq(&dev->power.lock); 2835 2836 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2837 pci_dev->current_state < PCI_D3cold) 2838 __pci_pme_active(pci_dev, false); 2839 2840 spin_unlock_irq(&dev->power.lock); 2841 } 2842 2843 /** 2844 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2845 * @pci_dev: Device to handle. 2846 * 2847 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2848 * it might have been disabled during the prepare phase of system suspend if 2849 * the device was not configured for system wakeup. 2850 */ 2851 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2852 { 2853 struct device *dev = &pci_dev->dev; 2854 2855 if (!pci_dev_run_wake(pci_dev)) 2856 return; 2857 2858 spin_lock_irq(&dev->power.lock); 2859 2860 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2861 __pci_pme_active(pci_dev, true); 2862 2863 spin_unlock_irq(&dev->power.lock); 2864 } 2865 2866 /** 2867 * pci_choose_state - Choose the power state of a PCI device. 2868 * @dev: Target PCI device. 2869 * @state: Target state for the whole system. 2870 * 2871 * Returns PCI power state suitable for @dev and @state. 2872 */ 2873 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2874 { 2875 if (state.event == PM_EVENT_ON) 2876 return PCI_D0; 2877 2878 return pci_target_state(dev, false); 2879 } 2880 EXPORT_SYMBOL(pci_choose_state); 2881 2882 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2883 { 2884 struct device *dev = &pdev->dev; 2885 struct device *parent = dev->parent; 2886 2887 if (parent) 2888 pm_runtime_get_sync(parent); 2889 pm_runtime_get_noresume(dev); 2890 /* 2891 * pdev->current_state is set to PCI_D3cold during suspending, 2892 * so wait until suspending completes 2893 */ 2894 pm_runtime_barrier(dev); 2895 /* 2896 * Only need to resume devices in D3cold, because config 2897 * registers are still accessible for devices suspended but 2898 * not in D3cold. 2899 */ 2900 if (pdev->current_state == PCI_D3cold) 2901 pm_runtime_resume(dev); 2902 } 2903 2904 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2905 { 2906 struct device *dev = &pdev->dev; 2907 struct device *parent = dev->parent; 2908 2909 pm_runtime_put(dev); 2910 if (parent) 2911 pm_runtime_put_sync(parent); 2912 } 2913 2914 static const struct dmi_system_id bridge_d3_blacklist[] = { 2915 #ifdef CONFIG_X86 2916 { 2917 /* 2918 * Gigabyte X299 root port is not marked as hotplug capable 2919 * which allows Linux to power manage it. However, this 2920 * confuses the BIOS SMI handler so don't power manage root 2921 * ports on that system. 2922 */ 2923 .ident = "X299 DESIGNARE EX-CF", 2924 .matches = { 2925 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2926 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2927 }, 2928 }, 2929 #endif 2930 { } 2931 }; 2932 2933 /** 2934 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2935 * @bridge: Bridge to check 2936 * 2937 * This function checks if it is possible to move the bridge to D3. 2938 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2939 */ 2940 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2941 { 2942 if (!pci_is_pcie(bridge)) 2943 return false; 2944 2945 switch (pci_pcie_type(bridge)) { 2946 case PCI_EXP_TYPE_ROOT_PORT: 2947 case PCI_EXP_TYPE_UPSTREAM: 2948 case PCI_EXP_TYPE_DOWNSTREAM: 2949 if (pci_bridge_d3_disable) 2950 return false; 2951 2952 /* 2953 * Hotplug ports handled by firmware in System Management Mode 2954 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2955 */ 2956 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2957 return false; 2958 2959 if (pci_bridge_d3_force) 2960 return true; 2961 2962 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2963 if (bridge->is_thunderbolt) 2964 return true; 2965 2966 /* Platform might know better if the bridge supports D3 */ 2967 if (platform_pci_bridge_d3(bridge)) 2968 return true; 2969 2970 /* 2971 * Hotplug ports handled natively by the OS were not validated 2972 * by vendors for runtime D3 at least until 2018 because there 2973 * was no OS support. 2974 */ 2975 if (bridge->is_hotplug_bridge) 2976 return false; 2977 2978 if (dmi_check_system(bridge_d3_blacklist)) 2979 return false; 2980 2981 /* 2982 * It should be safe to put PCIe ports from 2015 or newer 2983 * to D3. 2984 */ 2985 if (dmi_get_bios_year() >= 2015) 2986 return true; 2987 break; 2988 } 2989 2990 return false; 2991 } 2992 2993 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2994 { 2995 bool *d3cold_ok = data; 2996 2997 if (/* The device needs to be allowed to go D3cold ... */ 2998 dev->no_d3cold || !dev->d3cold_allowed || 2999 3000 /* ... and if it is wakeup capable to do so from D3cold. */ 3001 (device_may_wakeup(&dev->dev) && 3002 !pci_pme_capable(dev, PCI_D3cold)) || 3003 3004 /* If it is a bridge it must be allowed to go to D3. */ 3005 !pci_power_manageable(dev)) 3006 3007 *d3cold_ok = false; 3008 3009 return !*d3cold_ok; 3010 } 3011 3012 /* 3013 * pci_bridge_d3_update - Update bridge D3 capabilities 3014 * @dev: PCI device which is changed 3015 * 3016 * Update upstream bridge PM capabilities accordingly depending on if the 3017 * device PM configuration was changed or the device is being removed. The 3018 * change is also propagated upstream. 3019 */ 3020 void pci_bridge_d3_update(struct pci_dev *dev) 3021 { 3022 bool remove = !device_is_registered(&dev->dev); 3023 struct pci_dev *bridge; 3024 bool d3cold_ok = true; 3025 3026 bridge = pci_upstream_bridge(dev); 3027 if (!bridge || !pci_bridge_d3_possible(bridge)) 3028 return; 3029 3030 /* 3031 * If D3 is currently allowed for the bridge, removing one of its 3032 * children won't change that. 3033 */ 3034 if (remove && bridge->bridge_d3) 3035 return; 3036 3037 /* 3038 * If D3 is currently allowed for the bridge and a child is added or 3039 * changed, disallowance of D3 can only be caused by that child, so 3040 * we only need to check that single device, not any of its siblings. 3041 * 3042 * If D3 is currently not allowed for the bridge, checking the device 3043 * first may allow us to skip checking its siblings. 3044 */ 3045 if (!remove) 3046 pci_dev_check_d3cold(dev, &d3cold_ok); 3047 3048 /* 3049 * If D3 is currently not allowed for the bridge, this may be caused 3050 * either by the device being changed/removed or any of its siblings, 3051 * so we need to go through all children to find out if one of them 3052 * continues to block D3. 3053 */ 3054 if (d3cold_ok && !bridge->bridge_d3) 3055 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3056 &d3cold_ok); 3057 3058 if (bridge->bridge_d3 != d3cold_ok) { 3059 bridge->bridge_d3 = d3cold_ok; 3060 /* Propagate change to upstream bridges */ 3061 pci_bridge_d3_update(bridge); 3062 } 3063 } 3064 3065 /** 3066 * pci_d3cold_enable - Enable D3cold for device 3067 * @dev: PCI device to handle 3068 * 3069 * This function can be used in drivers to enable D3cold from the device 3070 * they handle. It also updates upstream PCI bridge PM capabilities 3071 * accordingly. 3072 */ 3073 void pci_d3cold_enable(struct pci_dev *dev) 3074 { 3075 if (dev->no_d3cold) { 3076 dev->no_d3cold = false; 3077 pci_bridge_d3_update(dev); 3078 } 3079 } 3080 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3081 3082 /** 3083 * pci_d3cold_disable - Disable D3cold for device 3084 * @dev: PCI device to handle 3085 * 3086 * This function can be used in drivers to disable D3cold from the device 3087 * they handle. It also updates upstream PCI bridge PM capabilities 3088 * accordingly. 3089 */ 3090 void pci_d3cold_disable(struct pci_dev *dev) 3091 { 3092 if (!dev->no_d3cold) { 3093 dev->no_d3cold = true; 3094 pci_bridge_d3_update(dev); 3095 } 3096 } 3097 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3098 3099 /** 3100 * pci_pm_init - Initialize PM functions of given PCI device 3101 * @dev: PCI device to handle. 3102 */ 3103 void pci_pm_init(struct pci_dev *dev) 3104 { 3105 int pm; 3106 u16 status; 3107 u16 pmc; 3108 3109 pm_runtime_forbid(&dev->dev); 3110 pm_runtime_set_active(&dev->dev); 3111 pm_runtime_enable(&dev->dev); 3112 device_enable_async_suspend(&dev->dev); 3113 dev->wakeup_prepared = false; 3114 3115 dev->pm_cap = 0; 3116 dev->pme_support = 0; 3117 3118 /* find PCI PM capability in list */ 3119 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3120 if (!pm) 3121 return; 3122 /* Check device's ability to generate PME# */ 3123 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3124 3125 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3126 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3127 pmc & PCI_PM_CAP_VER_MASK); 3128 return; 3129 } 3130 3131 dev->pm_cap = pm; 3132 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3133 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3134 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3135 dev->d3cold_allowed = true; 3136 3137 dev->d1_support = false; 3138 dev->d2_support = false; 3139 if (!pci_no_d1d2(dev)) { 3140 if (pmc & PCI_PM_CAP_D1) 3141 dev->d1_support = true; 3142 if (pmc & PCI_PM_CAP_D2) 3143 dev->d2_support = true; 3144 3145 if (dev->d1_support || dev->d2_support) 3146 pci_info(dev, "supports%s%s\n", 3147 dev->d1_support ? " D1" : "", 3148 dev->d2_support ? " D2" : ""); 3149 } 3150 3151 pmc &= PCI_PM_CAP_PME_MASK; 3152 if (pmc) { 3153 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3154 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3155 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3156 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3157 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3158 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3159 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3160 dev->pme_poll = true; 3161 /* 3162 * Make device's PM flags reflect the wake-up capability, but 3163 * let the user space enable it to wake up the system as needed. 3164 */ 3165 device_set_wakeup_capable(&dev->dev, true); 3166 /* Disable the PME# generation functionality */ 3167 pci_pme_active(dev, false); 3168 } 3169 3170 pci_read_config_word(dev, PCI_STATUS, &status); 3171 if (status & PCI_STATUS_IMM_READY) 3172 dev->imm_ready = 1; 3173 } 3174 3175 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3176 { 3177 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3178 3179 switch (prop) { 3180 case PCI_EA_P_MEM: 3181 case PCI_EA_P_VF_MEM: 3182 flags |= IORESOURCE_MEM; 3183 break; 3184 case PCI_EA_P_MEM_PREFETCH: 3185 case PCI_EA_P_VF_MEM_PREFETCH: 3186 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3187 break; 3188 case PCI_EA_P_IO: 3189 flags |= IORESOURCE_IO; 3190 break; 3191 default: 3192 return 0; 3193 } 3194 3195 return flags; 3196 } 3197 3198 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3199 u8 prop) 3200 { 3201 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3202 return &dev->resource[bei]; 3203 #ifdef CONFIG_PCI_IOV 3204 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3205 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3206 return &dev->resource[PCI_IOV_RESOURCES + 3207 bei - PCI_EA_BEI_VF_BAR0]; 3208 #endif 3209 else if (bei == PCI_EA_BEI_ROM) 3210 return &dev->resource[PCI_ROM_RESOURCE]; 3211 else 3212 return NULL; 3213 } 3214 3215 /* Read an Enhanced Allocation (EA) entry */ 3216 static int pci_ea_read(struct pci_dev *dev, int offset) 3217 { 3218 struct resource *res; 3219 int ent_size, ent_offset = offset; 3220 resource_size_t start, end; 3221 unsigned long flags; 3222 u32 dw0, bei, base, max_offset; 3223 u8 prop; 3224 bool support_64 = (sizeof(resource_size_t) >= 8); 3225 3226 pci_read_config_dword(dev, ent_offset, &dw0); 3227 ent_offset += 4; 3228 3229 /* Entry size field indicates DWORDs after 1st */ 3230 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3231 3232 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3233 goto out; 3234 3235 bei = (dw0 & PCI_EA_BEI) >> 4; 3236 prop = (dw0 & PCI_EA_PP) >> 8; 3237 3238 /* 3239 * If the Property is in the reserved range, try the Secondary 3240 * Property instead. 3241 */ 3242 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3243 prop = (dw0 & PCI_EA_SP) >> 16; 3244 if (prop > PCI_EA_P_BRIDGE_IO) 3245 goto out; 3246 3247 res = pci_ea_get_resource(dev, bei, prop); 3248 if (!res) { 3249 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3250 goto out; 3251 } 3252 3253 flags = pci_ea_flags(dev, prop); 3254 if (!flags) { 3255 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3256 goto out; 3257 } 3258 3259 /* Read Base */ 3260 pci_read_config_dword(dev, ent_offset, &base); 3261 start = (base & PCI_EA_FIELD_MASK); 3262 ent_offset += 4; 3263 3264 /* Read MaxOffset */ 3265 pci_read_config_dword(dev, ent_offset, &max_offset); 3266 ent_offset += 4; 3267 3268 /* Read Base MSBs (if 64-bit entry) */ 3269 if (base & PCI_EA_IS_64) { 3270 u32 base_upper; 3271 3272 pci_read_config_dword(dev, ent_offset, &base_upper); 3273 ent_offset += 4; 3274 3275 flags |= IORESOURCE_MEM_64; 3276 3277 /* entry starts above 32-bit boundary, can't use */ 3278 if (!support_64 && base_upper) 3279 goto out; 3280 3281 if (support_64) 3282 start |= ((u64)base_upper << 32); 3283 } 3284 3285 end = start + (max_offset | 0x03); 3286 3287 /* Read MaxOffset MSBs (if 64-bit entry) */ 3288 if (max_offset & PCI_EA_IS_64) { 3289 u32 max_offset_upper; 3290 3291 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3292 ent_offset += 4; 3293 3294 flags |= IORESOURCE_MEM_64; 3295 3296 /* entry too big, can't use */ 3297 if (!support_64 && max_offset_upper) 3298 goto out; 3299 3300 if (support_64) 3301 end += ((u64)max_offset_upper << 32); 3302 } 3303 3304 if (end < start) { 3305 pci_err(dev, "EA Entry crosses address boundary\n"); 3306 goto out; 3307 } 3308 3309 if (ent_size != ent_offset - offset) { 3310 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3311 ent_size, ent_offset - offset); 3312 goto out; 3313 } 3314 3315 res->name = pci_name(dev); 3316 res->start = start; 3317 res->end = end; 3318 res->flags = flags; 3319 3320 if (bei <= PCI_EA_BEI_BAR5) 3321 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3322 bei, res, prop); 3323 else if (bei == PCI_EA_BEI_ROM) 3324 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3325 res, prop); 3326 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3327 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3328 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3329 else 3330 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3331 bei, res, prop); 3332 3333 out: 3334 return offset + ent_size; 3335 } 3336 3337 /* Enhanced Allocation Initialization */ 3338 void pci_ea_init(struct pci_dev *dev) 3339 { 3340 int ea; 3341 u8 num_ent; 3342 int offset; 3343 int i; 3344 3345 /* find PCI EA capability in list */ 3346 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3347 if (!ea) 3348 return; 3349 3350 /* determine the number of entries */ 3351 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3352 &num_ent); 3353 num_ent &= PCI_EA_NUM_ENT_MASK; 3354 3355 offset = ea + PCI_EA_FIRST_ENT; 3356 3357 /* Skip DWORD 2 for type 1 functions */ 3358 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3359 offset += 4; 3360 3361 /* parse each EA entry */ 3362 for (i = 0; i < num_ent; ++i) 3363 offset = pci_ea_read(dev, offset); 3364 } 3365 3366 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3367 struct pci_cap_saved_state *new_cap) 3368 { 3369 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3370 } 3371 3372 /** 3373 * _pci_add_cap_save_buffer - allocate buffer for saving given 3374 * capability registers 3375 * @dev: the PCI device 3376 * @cap: the capability to allocate the buffer for 3377 * @extended: Standard or Extended capability ID 3378 * @size: requested size of the buffer 3379 */ 3380 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3381 bool extended, unsigned int size) 3382 { 3383 int pos; 3384 struct pci_cap_saved_state *save_state; 3385 3386 if (extended) 3387 pos = pci_find_ext_capability(dev, cap); 3388 else 3389 pos = pci_find_capability(dev, cap); 3390 3391 if (!pos) 3392 return 0; 3393 3394 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3395 if (!save_state) 3396 return -ENOMEM; 3397 3398 save_state->cap.cap_nr = cap; 3399 save_state->cap.cap_extended = extended; 3400 save_state->cap.size = size; 3401 pci_add_saved_cap(dev, save_state); 3402 3403 return 0; 3404 } 3405 3406 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3407 { 3408 return _pci_add_cap_save_buffer(dev, cap, false, size); 3409 } 3410 3411 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3412 { 3413 return _pci_add_cap_save_buffer(dev, cap, true, size); 3414 } 3415 3416 /** 3417 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3418 * @dev: the PCI device 3419 */ 3420 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3421 { 3422 int error; 3423 3424 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3425 PCI_EXP_SAVE_REGS * sizeof(u16)); 3426 if (error) 3427 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3428 3429 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3430 if (error) 3431 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3432 3433 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3434 2 * sizeof(u16)); 3435 if (error) 3436 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3437 3438 pci_allocate_vc_save_buffers(dev); 3439 } 3440 3441 void pci_free_cap_save_buffers(struct pci_dev *dev) 3442 { 3443 struct pci_cap_saved_state *tmp; 3444 struct hlist_node *n; 3445 3446 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3447 kfree(tmp); 3448 } 3449 3450 /** 3451 * pci_configure_ari - enable or disable ARI forwarding 3452 * @dev: the PCI device 3453 * 3454 * If @dev and its upstream bridge both support ARI, enable ARI in the 3455 * bridge. Otherwise, disable ARI in the bridge. 3456 */ 3457 void pci_configure_ari(struct pci_dev *dev) 3458 { 3459 u32 cap; 3460 struct pci_dev *bridge; 3461 3462 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3463 return; 3464 3465 bridge = dev->bus->self; 3466 if (!bridge) 3467 return; 3468 3469 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3470 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3471 return; 3472 3473 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3474 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3475 PCI_EXP_DEVCTL2_ARI); 3476 bridge->ari_enabled = 1; 3477 } else { 3478 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3479 PCI_EXP_DEVCTL2_ARI); 3480 bridge->ari_enabled = 0; 3481 } 3482 } 3483 3484 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3485 { 3486 int pos; 3487 u16 cap, ctrl; 3488 3489 pos = pdev->acs_cap; 3490 if (!pos) 3491 return false; 3492 3493 /* 3494 * Except for egress control, capabilities are either required 3495 * or only required if controllable. Features missing from the 3496 * capability field can therefore be assumed as hard-wired enabled. 3497 */ 3498 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3499 acs_flags &= (cap | PCI_ACS_EC); 3500 3501 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3502 return (ctrl & acs_flags) == acs_flags; 3503 } 3504 3505 /** 3506 * pci_acs_enabled - test ACS against required flags for a given device 3507 * @pdev: device to test 3508 * @acs_flags: required PCI ACS flags 3509 * 3510 * Return true if the device supports the provided flags. Automatically 3511 * filters out flags that are not implemented on multifunction devices. 3512 * 3513 * Note that this interface checks the effective ACS capabilities of the 3514 * device rather than the actual capabilities. For instance, most single 3515 * function endpoints are not required to support ACS because they have no 3516 * opportunity for peer-to-peer access. We therefore return 'true' 3517 * regardless of whether the device exposes an ACS capability. This makes 3518 * it much easier for callers of this function to ignore the actual type 3519 * or topology of the device when testing ACS support. 3520 */ 3521 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3522 { 3523 int ret; 3524 3525 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3526 if (ret >= 0) 3527 return ret > 0; 3528 3529 /* 3530 * Conventional PCI and PCI-X devices never support ACS, either 3531 * effectively or actually. The shared bus topology implies that 3532 * any device on the bus can receive or snoop DMA. 3533 */ 3534 if (!pci_is_pcie(pdev)) 3535 return false; 3536 3537 switch (pci_pcie_type(pdev)) { 3538 /* 3539 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3540 * but since their primary interface is PCI/X, we conservatively 3541 * handle them as we would a non-PCIe device. 3542 */ 3543 case PCI_EXP_TYPE_PCIE_BRIDGE: 3544 /* 3545 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3546 * applicable... must never implement an ACS Extended Capability...". 3547 * This seems arbitrary, but we take a conservative interpretation 3548 * of this statement. 3549 */ 3550 case PCI_EXP_TYPE_PCI_BRIDGE: 3551 case PCI_EXP_TYPE_RC_EC: 3552 return false; 3553 /* 3554 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3555 * implement ACS in order to indicate their peer-to-peer capabilities, 3556 * regardless of whether they are single- or multi-function devices. 3557 */ 3558 case PCI_EXP_TYPE_DOWNSTREAM: 3559 case PCI_EXP_TYPE_ROOT_PORT: 3560 return pci_acs_flags_enabled(pdev, acs_flags); 3561 /* 3562 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3563 * implemented by the remaining PCIe types to indicate peer-to-peer 3564 * capabilities, but only when they are part of a multifunction 3565 * device. The footnote for section 6.12 indicates the specific 3566 * PCIe types included here. 3567 */ 3568 case PCI_EXP_TYPE_ENDPOINT: 3569 case PCI_EXP_TYPE_UPSTREAM: 3570 case PCI_EXP_TYPE_LEG_END: 3571 case PCI_EXP_TYPE_RC_END: 3572 if (!pdev->multifunction) 3573 break; 3574 3575 return pci_acs_flags_enabled(pdev, acs_flags); 3576 } 3577 3578 /* 3579 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3580 * to single function devices with the exception of downstream ports. 3581 */ 3582 return true; 3583 } 3584 3585 /** 3586 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3587 * @start: starting downstream device 3588 * @end: ending upstream device or NULL to search to the root bus 3589 * @acs_flags: required flags 3590 * 3591 * Walk up a device tree from start to end testing PCI ACS support. If 3592 * any step along the way does not support the required flags, return false. 3593 */ 3594 bool pci_acs_path_enabled(struct pci_dev *start, 3595 struct pci_dev *end, u16 acs_flags) 3596 { 3597 struct pci_dev *pdev, *parent = start; 3598 3599 do { 3600 pdev = parent; 3601 3602 if (!pci_acs_enabled(pdev, acs_flags)) 3603 return false; 3604 3605 if (pci_is_root_bus(pdev->bus)) 3606 return (end == NULL); 3607 3608 parent = pdev->bus->self; 3609 } while (pdev != end); 3610 3611 return true; 3612 } 3613 3614 /** 3615 * pci_acs_init - Initialize ACS if hardware supports it 3616 * @dev: the PCI device 3617 */ 3618 void pci_acs_init(struct pci_dev *dev) 3619 { 3620 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3621 3622 /* 3623 * Attempt to enable ACS regardless of capability because some Root 3624 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3625 * the standard ACS capability but still support ACS via those 3626 * quirks. 3627 */ 3628 pci_enable_acs(dev); 3629 } 3630 3631 /** 3632 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3633 * @pdev: PCI device 3634 * @bar: BAR to find 3635 * 3636 * Helper to find the position of the ctrl register for a BAR. 3637 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3638 * Returns -ENOENT if no ctrl register for the BAR could be found. 3639 */ 3640 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3641 { 3642 unsigned int pos, nbars, i; 3643 u32 ctrl; 3644 3645 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3646 if (!pos) 3647 return -ENOTSUPP; 3648 3649 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3650 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3651 PCI_REBAR_CTRL_NBAR_SHIFT; 3652 3653 for (i = 0; i < nbars; i++, pos += 8) { 3654 int bar_idx; 3655 3656 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3657 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3658 if (bar_idx == bar) 3659 return pos; 3660 } 3661 3662 return -ENOENT; 3663 } 3664 3665 /** 3666 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3667 * @pdev: PCI device 3668 * @bar: BAR to query 3669 * 3670 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3671 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3672 */ 3673 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3674 { 3675 int pos; 3676 u32 cap; 3677 3678 pos = pci_rebar_find_pos(pdev, bar); 3679 if (pos < 0) 3680 return 0; 3681 3682 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3683 cap &= PCI_REBAR_CAP_SIZES; 3684 3685 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3686 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3687 bar == 0 && cap == 0x7000) 3688 cap = 0x3f000; 3689 3690 return cap >> 4; 3691 } 3692 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3693 3694 /** 3695 * pci_rebar_get_current_size - get the current size of a BAR 3696 * @pdev: PCI device 3697 * @bar: BAR to set size to 3698 * 3699 * Read the size of a BAR from the resizable BAR config. 3700 * Returns size if found or negative error code. 3701 */ 3702 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3703 { 3704 int pos; 3705 u32 ctrl; 3706 3707 pos = pci_rebar_find_pos(pdev, bar); 3708 if (pos < 0) 3709 return pos; 3710 3711 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3712 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3713 } 3714 3715 /** 3716 * pci_rebar_set_size - set a new size for a BAR 3717 * @pdev: PCI device 3718 * @bar: BAR to set size to 3719 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3720 * 3721 * Set the new size of a BAR as defined in the spec. 3722 * Returns zero if resizing was successful, error code otherwise. 3723 */ 3724 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3725 { 3726 int pos; 3727 u32 ctrl; 3728 3729 pos = pci_rebar_find_pos(pdev, bar); 3730 if (pos < 0) 3731 return pos; 3732 3733 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3734 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3735 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3736 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3737 return 0; 3738 } 3739 3740 /** 3741 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3742 * @dev: the PCI device 3743 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3744 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3745 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3746 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3747 * 3748 * Return 0 if all upstream bridges support AtomicOp routing, egress 3749 * blocking is disabled on all upstream ports, and the root port supports 3750 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3751 * AtomicOp completion), or negative otherwise. 3752 */ 3753 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3754 { 3755 struct pci_bus *bus = dev->bus; 3756 struct pci_dev *bridge; 3757 u32 cap, ctl2; 3758 3759 /* 3760 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3761 * in Device Control 2 is reserved in VFs and the PF value applies 3762 * to all associated VFs. 3763 */ 3764 if (dev->is_virtfn) 3765 return -EINVAL; 3766 3767 if (!pci_is_pcie(dev)) 3768 return -EINVAL; 3769 3770 /* 3771 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3772 * AtomicOp requesters. For now, we only support endpoints as 3773 * requesters and root ports as completers. No endpoints as 3774 * completers, and no peer-to-peer. 3775 */ 3776 3777 switch (pci_pcie_type(dev)) { 3778 case PCI_EXP_TYPE_ENDPOINT: 3779 case PCI_EXP_TYPE_LEG_END: 3780 case PCI_EXP_TYPE_RC_END: 3781 break; 3782 default: 3783 return -EINVAL; 3784 } 3785 3786 while (bus->parent) { 3787 bridge = bus->self; 3788 3789 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3790 3791 switch (pci_pcie_type(bridge)) { 3792 /* Ensure switch ports support AtomicOp routing */ 3793 case PCI_EXP_TYPE_UPSTREAM: 3794 case PCI_EXP_TYPE_DOWNSTREAM: 3795 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3796 return -EINVAL; 3797 break; 3798 3799 /* Ensure root port supports all the sizes we care about */ 3800 case PCI_EXP_TYPE_ROOT_PORT: 3801 if ((cap & cap_mask) != cap_mask) 3802 return -EINVAL; 3803 break; 3804 } 3805 3806 /* Ensure upstream ports don't block AtomicOps on egress */ 3807 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3808 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3809 &ctl2); 3810 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3811 return -EINVAL; 3812 } 3813 3814 bus = bus->parent; 3815 } 3816 3817 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3818 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3819 return 0; 3820 } 3821 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3822 3823 /** 3824 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3825 * @dev: the PCI device 3826 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3827 * 3828 * Perform INTx swizzling for a device behind one level of bridge. This is 3829 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3830 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3831 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3832 * the PCI Express Base Specification, Revision 2.1) 3833 */ 3834 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3835 { 3836 int slot; 3837 3838 if (pci_ari_enabled(dev->bus)) 3839 slot = 0; 3840 else 3841 slot = PCI_SLOT(dev->devfn); 3842 3843 return (((pin - 1) + slot) % 4) + 1; 3844 } 3845 3846 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3847 { 3848 u8 pin; 3849 3850 pin = dev->pin; 3851 if (!pin) 3852 return -1; 3853 3854 while (!pci_is_root_bus(dev->bus)) { 3855 pin = pci_swizzle_interrupt_pin(dev, pin); 3856 dev = dev->bus->self; 3857 } 3858 *bridge = dev; 3859 return pin; 3860 } 3861 3862 /** 3863 * pci_common_swizzle - swizzle INTx all the way to root bridge 3864 * @dev: the PCI device 3865 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3866 * 3867 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3868 * bridges all the way up to a PCI root bus. 3869 */ 3870 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3871 { 3872 u8 pin = *pinp; 3873 3874 while (!pci_is_root_bus(dev->bus)) { 3875 pin = pci_swizzle_interrupt_pin(dev, pin); 3876 dev = dev->bus->self; 3877 } 3878 *pinp = pin; 3879 return PCI_SLOT(dev->devfn); 3880 } 3881 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3882 3883 /** 3884 * pci_release_region - Release a PCI bar 3885 * @pdev: PCI device whose resources were previously reserved by 3886 * pci_request_region() 3887 * @bar: BAR to release 3888 * 3889 * Releases the PCI I/O and memory resources previously reserved by a 3890 * successful call to pci_request_region(). Call this function only 3891 * after all use of the PCI regions has ceased. 3892 */ 3893 void pci_release_region(struct pci_dev *pdev, int bar) 3894 { 3895 struct pci_devres *dr; 3896 3897 if (pci_resource_len(pdev, bar) == 0) 3898 return; 3899 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3900 release_region(pci_resource_start(pdev, bar), 3901 pci_resource_len(pdev, bar)); 3902 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3903 release_mem_region(pci_resource_start(pdev, bar), 3904 pci_resource_len(pdev, bar)); 3905 3906 dr = find_pci_dr(pdev); 3907 if (dr) 3908 dr->region_mask &= ~(1 << bar); 3909 } 3910 EXPORT_SYMBOL(pci_release_region); 3911 3912 /** 3913 * __pci_request_region - Reserved PCI I/O and memory resource 3914 * @pdev: PCI device whose resources are to be reserved 3915 * @bar: BAR to be reserved 3916 * @res_name: Name to be associated with resource. 3917 * @exclusive: whether the region access is exclusive or not 3918 * 3919 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3920 * being reserved by owner @res_name. Do not access any 3921 * address inside the PCI regions unless this call returns 3922 * successfully. 3923 * 3924 * If @exclusive is set, then the region is marked so that userspace 3925 * is explicitly not allowed to map the resource via /dev/mem or 3926 * sysfs MMIO access. 3927 * 3928 * Returns 0 on success, or %EBUSY on error. A warning 3929 * message is also printed on failure. 3930 */ 3931 static int __pci_request_region(struct pci_dev *pdev, int bar, 3932 const char *res_name, int exclusive) 3933 { 3934 struct pci_devres *dr; 3935 3936 if (pci_resource_len(pdev, bar) == 0) 3937 return 0; 3938 3939 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3940 if (!request_region(pci_resource_start(pdev, bar), 3941 pci_resource_len(pdev, bar), res_name)) 3942 goto err_out; 3943 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3944 if (!__request_mem_region(pci_resource_start(pdev, bar), 3945 pci_resource_len(pdev, bar), res_name, 3946 exclusive)) 3947 goto err_out; 3948 } 3949 3950 dr = find_pci_dr(pdev); 3951 if (dr) 3952 dr->region_mask |= 1 << bar; 3953 3954 return 0; 3955 3956 err_out: 3957 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3958 &pdev->resource[bar]); 3959 return -EBUSY; 3960 } 3961 3962 /** 3963 * pci_request_region - Reserve PCI I/O and memory resource 3964 * @pdev: PCI device whose resources are to be reserved 3965 * @bar: BAR to be reserved 3966 * @res_name: Name to be associated with resource 3967 * 3968 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3969 * being reserved by owner @res_name. Do not access any 3970 * address inside the PCI regions unless this call returns 3971 * successfully. 3972 * 3973 * Returns 0 on success, or %EBUSY on error. A warning 3974 * message is also printed on failure. 3975 */ 3976 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3977 { 3978 return __pci_request_region(pdev, bar, res_name, 0); 3979 } 3980 EXPORT_SYMBOL(pci_request_region); 3981 3982 /** 3983 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3984 * @pdev: PCI device whose resources were previously reserved 3985 * @bars: Bitmask of BARs to be released 3986 * 3987 * Release selected PCI I/O and memory resources previously reserved. 3988 * Call this function only after all use of the PCI regions has ceased. 3989 */ 3990 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3991 { 3992 int i; 3993 3994 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3995 if (bars & (1 << i)) 3996 pci_release_region(pdev, i); 3997 } 3998 EXPORT_SYMBOL(pci_release_selected_regions); 3999 4000 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4001 const char *res_name, int excl) 4002 { 4003 int i; 4004 4005 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4006 if (bars & (1 << i)) 4007 if (__pci_request_region(pdev, i, res_name, excl)) 4008 goto err_out; 4009 return 0; 4010 4011 err_out: 4012 while (--i >= 0) 4013 if (bars & (1 << i)) 4014 pci_release_region(pdev, i); 4015 4016 return -EBUSY; 4017 } 4018 4019 4020 /** 4021 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4022 * @pdev: PCI device whose resources are to be reserved 4023 * @bars: Bitmask of BARs to be requested 4024 * @res_name: Name to be associated with resource 4025 */ 4026 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4027 const char *res_name) 4028 { 4029 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4030 } 4031 EXPORT_SYMBOL(pci_request_selected_regions); 4032 4033 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4034 const char *res_name) 4035 { 4036 return __pci_request_selected_regions(pdev, bars, res_name, 4037 IORESOURCE_EXCLUSIVE); 4038 } 4039 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4040 4041 /** 4042 * pci_release_regions - Release reserved PCI I/O and memory resources 4043 * @pdev: PCI device whose resources were previously reserved by 4044 * pci_request_regions() 4045 * 4046 * Releases all PCI I/O and memory resources previously reserved by a 4047 * successful call to pci_request_regions(). Call this function only 4048 * after all use of the PCI regions has ceased. 4049 */ 4050 4051 void pci_release_regions(struct pci_dev *pdev) 4052 { 4053 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4054 } 4055 EXPORT_SYMBOL(pci_release_regions); 4056 4057 /** 4058 * pci_request_regions - Reserve PCI I/O and memory resources 4059 * @pdev: PCI device whose resources are to be reserved 4060 * @res_name: Name to be associated with resource. 4061 * 4062 * Mark all PCI regions associated with PCI device @pdev as 4063 * being reserved by owner @res_name. Do not access any 4064 * address inside the PCI regions unless this call returns 4065 * successfully. 4066 * 4067 * Returns 0 on success, or %EBUSY on error. A warning 4068 * message is also printed on failure. 4069 */ 4070 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4071 { 4072 return pci_request_selected_regions(pdev, 4073 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4074 } 4075 EXPORT_SYMBOL(pci_request_regions); 4076 4077 /** 4078 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4079 * @pdev: PCI device whose resources are to be reserved 4080 * @res_name: Name to be associated with resource. 4081 * 4082 * Mark all PCI regions associated with PCI device @pdev as being reserved 4083 * by owner @res_name. Do not access any address inside the PCI regions 4084 * unless this call returns successfully. 4085 * 4086 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4087 * and the sysfs MMIO access will not be allowed. 4088 * 4089 * Returns 0 on success, or %EBUSY on error. A warning message is also 4090 * printed on failure. 4091 */ 4092 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4093 { 4094 return pci_request_selected_regions_exclusive(pdev, 4095 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4096 } 4097 EXPORT_SYMBOL(pci_request_regions_exclusive); 4098 4099 /* 4100 * Record the PCI IO range (expressed as CPU physical address + size). 4101 * Return a negative value if an error has occurred, zero otherwise 4102 */ 4103 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4104 resource_size_t size) 4105 { 4106 int ret = 0; 4107 #ifdef PCI_IOBASE 4108 struct logic_pio_hwaddr *range; 4109 4110 if (!size || addr + size < addr) 4111 return -EINVAL; 4112 4113 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4114 if (!range) 4115 return -ENOMEM; 4116 4117 range->fwnode = fwnode; 4118 range->size = size; 4119 range->hw_start = addr; 4120 range->flags = LOGIC_PIO_CPU_MMIO; 4121 4122 ret = logic_pio_register_range(range); 4123 if (ret) 4124 kfree(range); 4125 4126 /* Ignore duplicates due to deferred probing */ 4127 if (ret == -EEXIST) 4128 ret = 0; 4129 #endif 4130 4131 return ret; 4132 } 4133 4134 phys_addr_t pci_pio_to_address(unsigned long pio) 4135 { 4136 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4137 4138 #ifdef PCI_IOBASE 4139 if (pio >= MMIO_UPPER_LIMIT) 4140 return address; 4141 4142 address = logic_pio_to_hwaddr(pio); 4143 #endif 4144 4145 return address; 4146 } 4147 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4148 4149 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4150 { 4151 #ifdef PCI_IOBASE 4152 return logic_pio_trans_cpuaddr(address); 4153 #else 4154 if (address > IO_SPACE_LIMIT) 4155 return (unsigned long)-1; 4156 4157 return (unsigned long) address; 4158 #endif 4159 } 4160 4161 /** 4162 * pci_remap_iospace - Remap the memory mapped I/O space 4163 * @res: Resource describing the I/O space 4164 * @phys_addr: physical address of range to be mapped 4165 * 4166 * Remap the memory mapped I/O space described by the @res and the CPU 4167 * physical address @phys_addr into virtual address space. Only 4168 * architectures that have memory mapped IO functions defined (and the 4169 * PCI_IOBASE value defined) should call this function. 4170 */ 4171 #ifndef pci_remap_iospace 4172 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4173 { 4174 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4175 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4176 4177 if (!(res->flags & IORESOURCE_IO)) 4178 return -EINVAL; 4179 4180 if (res->end > IO_SPACE_LIMIT) 4181 return -EINVAL; 4182 4183 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4184 pgprot_device(PAGE_KERNEL)); 4185 #else 4186 /* 4187 * This architecture does not have memory mapped I/O space, 4188 * so this function should never be called 4189 */ 4190 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4191 return -ENODEV; 4192 #endif 4193 } 4194 EXPORT_SYMBOL(pci_remap_iospace); 4195 #endif 4196 4197 /** 4198 * pci_unmap_iospace - Unmap the memory mapped I/O space 4199 * @res: resource to be unmapped 4200 * 4201 * Unmap the CPU virtual address @res from virtual address space. Only 4202 * architectures that have memory mapped IO functions defined (and the 4203 * PCI_IOBASE value defined) should call this function. 4204 */ 4205 void pci_unmap_iospace(struct resource *res) 4206 { 4207 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4208 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4209 4210 vunmap_range(vaddr, vaddr + resource_size(res)); 4211 #endif 4212 } 4213 EXPORT_SYMBOL(pci_unmap_iospace); 4214 4215 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4216 { 4217 struct resource **res = ptr; 4218 4219 pci_unmap_iospace(*res); 4220 } 4221 4222 /** 4223 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4224 * @dev: Generic device to remap IO address for 4225 * @res: Resource describing the I/O space 4226 * @phys_addr: physical address of range to be mapped 4227 * 4228 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4229 * detach. 4230 */ 4231 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4232 phys_addr_t phys_addr) 4233 { 4234 const struct resource **ptr; 4235 int error; 4236 4237 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4238 if (!ptr) 4239 return -ENOMEM; 4240 4241 error = pci_remap_iospace(res, phys_addr); 4242 if (error) { 4243 devres_free(ptr); 4244 } else { 4245 *ptr = res; 4246 devres_add(dev, ptr); 4247 } 4248 4249 return error; 4250 } 4251 EXPORT_SYMBOL(devm_pci_remap_iospace); 4252 4253 /** 4254 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4255 * @dev: Generic device to remap IO address for 4256 * @offset: Resource address to map 4257 * @size: Size of map 4258 * 4259 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4260 * detach. 4261 */ 4262 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4263 resource_size_t offset, 4264 resource_size_t size) 4265 { 4266 void __iomem **ptr, *addr; 4267 4268 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4269 if (!ptr) 4270 return NULL; 4271 4272 addr = pci_remap_cfgspace(offset, size); 4273 if (addr) { 4274 *ptr = addr; 4275 devres_add(dev, ptr); 4276 } else 4277 devres_free(ptr); 4278 4279 return addr; 4280 } 4281 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4282 4283 /** 4284 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4285 * @dev: generic device to handle the resource for 4286 * @res: configuration space resource to be handled 4287 * 4288 * Checks that a resource is a valid memory region, requests the memory 4289 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4290 * proper PCI configuration space memory attributes are guaranteed. 4291 * 4292 * All operations are managed and will be undone on driver detach. 4293 * 4294 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4295 * on failure. Usage example:: 4296 * 4297 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4298 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4299 * if (IS_ERR(base)) 4300 * return PTR_ERR(base); 4301 */ 4302 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4303 struct resource *res) 4304 { 4305 resource_size_t size; 4306 const char *name; 4307 void __iomem *dest_ptr; 4308 4309 BUG_ON(!dev); 4310 4311 if (!res || resource_type(res) != IORESOURCE_MEM) { 4312 dev_err(dev, "invalid resource\n"); 4313 return IOMEM_ERR_PTR(-EINVAL); 4314 } 4315 4316 size = resource_size(res); 4317 4318 if (res->name) 4319 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4320 res->name); 4321 else 4322 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4323 if (!name) 4324 return IOMEM_ERR_PTR(-ENOMEM); 4325 4326 if (!devm_request_mem_region(dev, res->start, size, name)) { 4327 dev_err(dev, "can't request region for resource %pR\n", res); 4328 return IOMEM_ERR_PTR(-EBUSY); 4329 } 4330 4331 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4332 if (!dest_ptr) { 4333 dev_err(dev, "ioremap failed for resource %pR\n", res); 4334 devm_release_mem_region(dev, res->start, size); 4335 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4336 } 4337 4338 return dest_ptr; 4339 } 4340 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4341 4342 static void __pci_set_master(struct pci_dev *dev, bool enable) 4343 { 4344 u16 old_cmd, cmd; 4345 4346 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4347 if (enable) 4348 cmd = old_cmd | PCI_COMMAND_MASTER; 4349 else 4350 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4351 if (cmd != old_cmd) { 4352 pci_dbg(dev, "%s bus mastering\n", 4353 enable ? "enabling" : "disabling"); 4354 pci_write_config_word(dev, PCI_COMMAND, cmd); 4355 } 4356 dev->is_busmaster = enable; 4357 } 4358 4359 /** 4360 * pcibios_setup - process "pci=" kernel boot arguments 4361 * @str: string used to pass in "pci=" kernel boot arguments 4362 * 4363 * Process kernel boot arguments. This is the default implementation. 4364 * Architecture specific implementations can override this as necessary. 4365 */ 4366 char * __weak __init pcibios_setup(char *str) 4367 { 4368 return str; 4369 } 4370 4371 /** 4372 * pcibios_set_master - enable PCI bus-mastering for device dev 4373 * @dev: the PCI device to enable 4374 * 4375 * Enables PCI bus-mastering for the device. This is the default 4376 * implementation. Architecture specific implementations can override 4377 * this if necessary. 4378 */ 4379 void __weak pcibios_set_master(struct pci_dev *dev) 4380 { 4381 u8 lat; 4382 4383 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4384 if (pci_is_pcie(dev)) 4385 return; 4386 4387 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4388 if (lat < 16) 4389 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4390 else if (lat > pcibios_max_latency) 4391 lat = pcibios_max_latency; 4392 else 4393 return; 4394 4395 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4396 } 4397 4398 /** 4399 * pci_set_master - enables bus-mastering for device dev 4400 * @dev: the PCI device to enable 4401 * 4402 * Enables bus-mastering on the device and calls pcibios_set_master() 4403 * to do the needed arch specific settings. 4404 */ 4405 void pci_set_master(struct pci_dev *dev) 4406 { 4407 __pci_set_master(dev, true); 4408 pcibios_set_master(dev); 4409 } 4410 EXPORT_SYMBOL(pci_set_master); 4411 4412 /** 4413 * pci_clear_master - disables bus-mastering for device dev 4414 * @dev: the PCI device to disable 4415 */ 4416 void pci_clear_master(struct pci_dev *dev) 4417 { 4418 __pci_set_master(dev, false); 4419 } 4420 EXPORT_SYMBOL(pci_clear_master); 4421 4422 /** 4423 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4424 * @dev: the PCI device for which MWI is to be enabled 4425 * 4426 * Helper function for pci_set_mwi. 4427 * Originally copied from drivers/net/acenic.c. 4428 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4429 * 4430 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4431 */ 4432 int pci_set_cacheline_size(struct pci_dev *dev) 4433 { 4434 u8 cacheline_size; 4435 4436 if (!pci_cache_line_size) 4437 return -EINVAL; 4438 4439 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4440 equal to or multiple of the right value. */ 4441 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4442 if (cacheline_size >= pci_cache_line_size && 4443 (cacheline_size % pci_cache_line_size) == 0) 4444 return 0; 4445 4446 /* Write the correct value. */ 4447 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4448 /* Read it back. */ 4449 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4450 if (cacheline_size == pci_cache_line_size) 4451 return 0; 4452 4453 pci_dbg(dev, "cache line size of %d is not supported\n", 4454 pci_cache_line_size << 2); 4455 4456 return -EINVAL; 4457 } 4458 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4459 4460 /** 4461 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4462 * @dev: the PCI device for which MWI is enabled 4463 * 4464 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4465 * 4466 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4467 */ 4468 int pci_set_mwi(struct pci_dev *dev) 4469 { 4470 #ifdef PCI_DISABLE_MWI 4471 return 0; 4472 #else 4473 int rc; 4474 u16 cmd; 4475 4476 rc = pci_set_cacheline_size(dev); 4477 if (rc) 4478 return rc; 4479 4480 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4481 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4482 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4483 cmd |= PCI_COMMAND_INVALIDATE; 4484 pci_write_config_word(dev, PCI_COMMAND, cmd); 4485 } 4486 return 0; 4487 #endif 4488 } 4489 EXPORT_SYMBOL(pci_set_mwi); 4490 4491 /** 4492 * pcim_set_mwi - a device-managed pci_set_mwi() 4493 * @dev: the PCI device for which MWI is enabled 4494 * 4495 * Managed pci_set_mwi(). 4496 * 4497 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4498 */ 4499 int pcim_set_mwi(struct pci_dev *dev) 4500 { 4501 struct pci_devres *dr; 4502 4503 dr = find_pci_dr(dev); 4504 if (!dr) 4505 return -ENOMEM; 4506 4507 dr->mwi = 1; 4508 return pci_set_mwi(dev); 4509 } 4510 EXPORT_SYMBOL(pcim_set_mwi); 4511 4512 /** 4513 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4514 * @dev: the PCI device for which MWI is enabled 4515 * 4516 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4517 * Callers are not required to check the return value. 4518 * 4519 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4520 */ 4521 int pci_try_set_mwi(struct pci_dev *dev) 4522 { 4523 #ifdef PCI_DISABLE_MWI 4524 return 0; 4525 #else 4526 return pci_set_mwi(dev); 4527 #endif 4528 } 4529 EXPORT_SYMBOL(pci_try_set_mwi); 4530 4531 /** 4532 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4533 * @dev: the PCI device to disable 4534 * 4535 * Disables PCI Memory-Write-Invalidate transaction on the device 4536 */ 4537 void pci_clear_mwi(struct pci_dev *dev) 4538 { 4539 #ifndef PCI_DISABLE_MWI 4540 u16 cmd; 4541 4542 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4543 if (cmd & PCI_COMMAND_INVALIDATE) { 4544 cmd &= ~PCI_COMMAND_INVALIDATE; 4545 pci_write_config_word(dev, PCI_COMMAND, cmd); 4546 } 4547 #endif 4548 } 4549 EXPORT_SYMBOL(pci_clear_mwi); 4550 4551 /** 4552 * pci_disable_parity - disable parity checking for device 4553 * @dev: the PCI device to operate on 4554 * 4555 * Disable parity checking for device @dev 4556 */ 4557 void pci_disable_parity(struct pci_dev *dev) 4558 { 4559 u16 cmd; 4560 4561 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4562 if (cmd & PCI_COMMAND_PARITY) { 4563 cmd &= ~PCI_COMMAND_PARITY; 4564 pci_write_config_word(dev, PCI_COMMAND, cmd); 4565 } 4566 } 4567 4568 /** 4569 * pci_intx - enables/disables PCI INTx for device dev 4570 * @pdev: the PCI device to operate on 4571 * @enable: boolean: whether to enable or disable PCI INTx 4572 * 4573 * Enables/disables PCI INTx for device @pdev 4574 */ 4575 void pci_intx(struct pci_dev *pdev, int enable) 4576 { 4577 u16 pci_command, new; 4578 4579 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4580 4581 if (enable) 4582 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4583 else 4584 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4585 4586 if (new != pci_command) { 4587 struct pci_devres *dr; 4588 4589 pci_write_config_word(pdev, PCI_COMMAND, new); 4590 4591 dr = find_pci_dr(pdev); 4592 if (dr && !dr->restore_intx) { 4593 dr->restore_intx = 1; 4594 dr->orig_intx = !enable; 4595 } 4596 } 4597 } 4598 EXPORT_SYMBOL_GPL(pci_intx); 4599 4600 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4601 { 4602 struct pci_bus *bus = dev->bus; 4603 bool mask_updated = true; 4604 u32 cmd_status_dword; 4605 u16 origcmd, newcmd; 4606 unsigned long flags; 4607 bool irq_pending; 4608 4609 /* 4610 * We do a single dword read to retrieve both command and status. 4611 * Document assumptions that make this possible. 4612 */ 4613 BUILD_BUG_ON(PCI_COMMAND % 4); 4614 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4615 4616 raw_spin_lock_irqsave(&pci_lock, flags); 4617 4618 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4619 4620 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4621 4622 /* 4623 * Check interrupt status register to see whether our device 4624 * triggered the interrupt (when masking) or the next IRQ is 4625 * already pending (when unmasking). 4626 */ 4627 if (mask != irq_pending) { 4628 mask_updated = false; 4629 goto done; 4630 } 4631 4632 origcmd = cmd_status_dword; 4633 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4634 if (mask) 4635 newcmd |= PCI_COMMAND_INTX_DISABLE; 4636 if (newcmd != origcmd) 4637 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4638 4639 done: 4640 raw_spin_unlock_irqrestore(&pci_lock, flags); 4641 4642 return mask_updated; 4643 } 4644 4645 /** 4646 * pci_check_and_mask_intx - mask INTx on pending interrupt 4647 * @dev: the PCI device to operate on 4648 * 4649 * Check if the device dev has its INTx line asserted, mask it and return 4650 * true in that case. False is returned if no interrupt was pending. 4651 */ 4652 bool pci_check_and_mask_intx(struct pci_dev *dev) 4653 { 4654 return pci_check_and_set_intx_mask(dev, true); 4655 } 4656 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4657 4658 /** 4659 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4660 * @dev: the PCI device to operate on 4661 * 4662 * Check if the device dev has its INTx line asserted, unmask it if not and 4663 * return true. False is returned and the mask remains active if there was 4664 * still an interrupt pending. 4665 */ 4666 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4667 { 4668 return pci_check_and_set_intx_mask(dev, false); 4669 } 4670 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4671 4672 /** 4673 * pci_wait_for_pending_transaction - wait for pending transaction 4674 * @dev: the PCI device to operate on 4675 * 4676 * Return 0 if transaction is pending 1 otherwise. 4677 */ 4678 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4679 { 4680 if (!pci_is_pcie(dev)) 4681 return 1; 4682 4683 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4684 PCI_EXP_DEVSTA_TRPND); 4685 } 4686 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4687 4688 /** 4689 * pcie_flr - initiate a PCIe function level reset 4690 * @dev: device to reset 4691 * 4692 * Initiate a function level reset unconditionally on @dev without 4693 * checking any flags and DEVCAP 4694 */ 4695 int pcie_flr(struct pci_dev *dev) 4696 { 4697 if (!pci_wait_for_pending_transaction(dev)) 4698 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4699 4700 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4701 4702 if (dev->imm_ready) 4703 return 0; 4704 4705 /* 4706 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4707 * 100ms, but may silently discard requests while the FLR is in 4708 * progress. Wait 100ms before trying to access the device. 4709 */ 4710 msleep(100); 4711 4712 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4713 } 4714 EXPORT_SYMBOL_GPL(pcie_flr); 4715 4716 /** 4717 * pcie_reset_flr - initiate a PCIe function level reset 4718 * @dev: device to reset 4719 * @probe: if true, return 0 if device can be reset this way 4720 * 4721 * Initiate a function level reset on @dev. 4722 */ 4723 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4724 { 4725 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4726 return -ENOTTY; 4727 4728 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4729 return -ENOTTY; 4730 4731 if (probe) 4732 return 0; 4733 4734 return pcie_flr(dev); 4735 } 4736 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4737 4738 static int pci_af_flr(struct pci_dev *dev, bool probe) 4739 { 4740 int pos; 4741 u8 cap; 4742 4743 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4744 if (!pos) 4745 return -ENOTTY; 4746 4747 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4748 return -ENOTTY; 4749 4750 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4751 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4752 return -ENOTTY; 4753 4754 if (probe) 4755 return 0; 4756 4757 /* 4758 * Wait for Transaction Pending bit to clear. A word-aligned test 4759 * is used, so we use the control offset rather than status and shift 4760 * the test bit to match. 4761 */ 4762 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4763 PCI_AF_STATUS_TP << 8)) 4764 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4765 4766 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4767 4768 if (dev->imm_ready) 4769 return 0; 4770 4771 /* 4772 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4773 * updated 27 July 2006; a device must complete an FLR within 4774 * 100ms, but may silently discard requests while the FLR is in 4775 * progress. Wait 100ms before trying to access the device. 4776 */ 4777 msleep(100); 4778 4779 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4780 } 4781 4782 /** 4783 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4784 * @dev: Device to reset. 4785 * @probe: if true, return 0 if the device can be reset this way. 4786 * 4787 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4788 * unset, it will be reinitialized internally when going from PCI_D3hot to 4789 * PCI_D0. If that's the case and the device is not in a low-power state 4790 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4791 * 4792 * NOTE: This causes the caller to sleep for twice the device power transition 4793 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4794 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4795 * Moreover, only devices in D0 can be reset by this function. 4796 */ 4797 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4798 { 4799 u16 csr; 4800 4801 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4802 return -ENOTTY; 4803 4804 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4805 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4806 return -ENOTTY; 4807 4808 if (probe) 4809 return 0; 4810 4811 if (dev->current_state != PCI_D0) 4812 return -EINVAL; 4813 4814 csr &= ~PCI_PM_CTRL_STATE_MASK; 4815 csr |= PCI_D3hot; 4816 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4817 pci_dev_d3_sleep(dev); 4818 4819 csr &= ~PCI_PM_CTRL_STATE_MASK; 4820 csr |= PCI_D0; 4821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4822 pci_dev_d3_sleep(dev); 4823 4824 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4825 } 4826 4827 /** 4828 * pcie_wait_for_link_delay - Wait until link is active or inactive 4829 * @pdev: Bridge device 4830 * @active: waiting for active or inactive? 4831 * @delay: Delay to wait after link has become active (in ms) 4832 * 4833 * Use this to wait till link becomes active or inactive. 4834 */ 4835 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4836 int delay) 4837 { 4838 int timeout = 1000; 4839 bool ret; 4840 u16 lnk_status; 4841 4842 /* 4843 * Some controllers might not implement link active reporting. In this 4844 * case, we wait for 1000 ms + any delay requested by the caller. 4845 */ 4846 if (!pdev->link_active_reporting) { 4847 msleep(timeout + delay); 4848 return true; 4849 } 4850 4851 /* 4852 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4853 * after which we should expect an link active if the reset was 4854 * successful. If so, software must wait a minimum 100ms before sending 4855 * configuration requests to devices downstream this port. 4856 * 4857 * If the link fails to activate, either the device was physically 4858 * removed or the link is permanently failed. 4859 */ 4860 if (active) 4861 msleep(20); 4862 for (;;) { 4863 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4864 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4865 if (ret == active) 4866 break; 4867 if (timeout <= 0) 4868 break; 4869 msleep(10); 4870 timeout -= 10; 4871 } 4872 if (active && ret) 4873 msleep(delay); 4874 4875 return ret == active; 4876 } 4877 4878 /** 4879 * pcie_wait_for_link - Wait until link is active or inactive 4880 * @pdev: Bridge device 4881 * @active: waiting for active or inactive? 4882 * 4883 * Use this to wait till link becomes active or inactive. 4884 */ 4885 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4886 { 4887 return pcie_wait_for_link_delay(pdev, active, 100); 4888 } 4889 4890 /* 4891 * Find maximum D3cold delay required by all the devices on the bus. The 4892 * spec says 100 ms, but firmware can lower it and we allow drivers to 4893 * increase it as well. 4894 * 4895 * Called with @pci_bus_sem locked for reading. 4896 */ 4897 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4898 { 4899 const struct pci_dev *pdev; 4900 int min_delay = 100; 4901 int max_delay = 0; 4902 4903 list_for_each_entry(pdev, &bus->devices, bus_list) { 4904 if (pdev->d3cold_delay < min_delay) 4905 min_delay = pdev->d3cold_delay; 4906 if (pdev->d3cold_delay > max_delay) 4907 max_delay = pdev->d3cold_delay; 4908 } 4909 4910 return max(min_delay, max_delay); 4911 } 4912 4913 /** 4914 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4915 * @dev: PCI bridge 4916 * 4917 * Handle necessary delays before access to the devices on the secondary 4918 * side of the bridge are permitted after D3cold to D0 transition. 4919 * 4920 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4921 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4922 * 4.3.2. 4923 */ 4924 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4925 { 4926 struct pci_dev *child; 4927 int delay; 4928 4929 if (pci_dev_is_disconnected(dev)) 4930 return; 4931 4932 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4933 return; 4934 4935 down_read(&pci_bus_sem); 4936 4937 /* 4938 * We only deal with devices that are present currently on the bus. 4939 * For any hot-added devices the access delay is handled in pciehp 4940 * board_added(). In case of ACPI hotplug the firmware is expected 4941 * to configure the devices before OS is notified. 4942 */ 4943 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4944 up_read(&pci_bus_sem); 4945 return; 4946 } 4947 4948 /* Take d3cold_delay requirements into account */ 4949 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4950 if (!delay) { 4951 up_read(&pci_bus_sem); 4952 return; 4953 } 4954 4955 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4956 bus_list); 4957 up_read(&pci_bus_sem); 4958 4959 /* 4960 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4961 * accessing the device after reset (that is 1000 ms + 100 ms). In 4962 * practice this should not be needed because we don't do power 4963 * management for them (see pci_bridge_d3_possible()). 4964 */ 4965 if (!pci_is_pcie(dev)) { 4966 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4967 msleep(1000 + delay); 4968 return; 4969 } 4970 4971 /* 4972 * For PCIe downstream and root ports that do not support speeds 4973 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4974 * speeds (gen3) we need to wait first for the data link layer to 4975 * become active. 4976 * 4977 * However, 100 ms is the minimum and the PCIe spec says the 4978 * software must allow at least 1s before it can determine that the 4979 * device that did not respond is a broken device. There is 4980 * evidence that 100 ms is not always enough, for example certain 4981 * Titan Ridge xHCI controller does not always respond to 4982 * configuration requests if we only wait for 100 ms (see 4983 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4984 * 4985 * Therefore we wait for 100 ms and check for the device presence. 4986 * If it is still not present give it an additional 100 ms. 4987 */ 4988 if (!pcie_downstream_port(dev)) 4989 return; 4990 4991 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4992 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4993 msleep(delay); 4994 } else { 4995 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4996 delay); 4997 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4998 /* Did not train, no need to wait any further */ 4999 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5000 return; 5001 } 5002 } 5003 5004 if (!pci_device_is_present(child)) { 5005 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 5006 msleep(delay); 5007 } 5008 } 5009 5010 void pci_reset_secondary_bus(struct pci_dev *dev) 5011 { 5012 u16 ctrl; 5013 5014 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5015 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5016 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5017 5018 /* 5019 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5020 * this to 2ms to ensure that we meet the minimum requirement. 5021 */ 5022 msleep(2); 5023 5024 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5025 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5026 5027 /* 5028 * Trhfa for conventional PCI is 2^25 clock cycles. 5029 * Assuming a minimum 33MHz clock this results in a 1s 5030 * delay before we can consider subordinate devices to 5031 * be re-initialized. PCIe has some ways to shorten this, 5032 * but we don't make use of them yet. 5033 */ 5034 ssleep(1); 5035 } 5036 5037 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5038 { 5039 pci_reset_secondary_bus(dev); 5040 } 5041 5042 /** 5043 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5044 * @dev: Bridge device 5045 * 5046 * Use the bridge control register to assert reset on the secondary bus. 5047 * Devices on the secondary bus are left in power-on state. 5048 */ 5049 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5050 { 5051 pcibios_reset_secondary_bus(dev); 5052 5053 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 5054 } 5055 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5056 5057 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5058 { 5059 struct pci_dev *pdev; 5060 5061 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5062 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5063 return -ENOTTY; 5064 5065 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5066 if (pdev != dev) 5067 return -ENOTTY; 5068 5069 if (probe) 5070 return 0; 5071 5072 return pci_bridge_secondary_bus_reset(dev->bus->self); 5073 } 5074 5075 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5076 { 5077 int rc = -ENOTTY; 5078 5079 if (!hotplug || !try_module_get(hotplug->owner)) 5080 return rc; 5081 5082 if (hotplug->ops->reset_slot) 5083 rc = hotplug->ops->reset_slot(hotplug, probe); 5084 5085 module_put(hotplug->owner); 5086 5087 return rc; 5088 } 5089 5090 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5091 { 5092 if (dev->multifunction || dev->subordinate || !dev->slot || 5093 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5094 return -ENOTTY; 5095 5096 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5097 } 5098 5099 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5100 { 5101 int rc; 5102 5103 rc = pci_dev_reset_slot_function(dev, probe); 5104 if (rc != -ENOTTY) 5105 return rc; 5106 return pci_parent_bus_reset(dev, probe); 5107 } 5108 5109 void pci_dev_lock(struct pci_dev *dev) 5110 { 5111 pci_cfg_access_lock(dev); 5112 /* block PM suspend, driver probe, etc. */ 5113 device_lock(&dev->dev); 5114 } 5115 EXPORT_SYMBOL_GPL(pci_dev_lock); 5116 5117 /* Return 1 on successful lock, 0 on contention */ 5118 int pci_dev_trylock(struct pci_dev *dev) 5119 { 5120 if (pci_cfg_access_trylock(dev)) { 5121 if (device_trylock(&dev->dev)) 5122 return 1; 5123 pci_cfg_access_unlock(dev); 5124 } 5125 5126 return 0; 5127 } 5128 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5129 5130 void pci_dev_unlock(struct pci_dev *dev) 5131 { 5132 device_unlock(&dev->dev); 5133 pci_cfg_access_unlock(dev); 5134 } 5135 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5136 5137 static void pci_dev_save_and_disable(struct pci_dev *dev) 5138 { 5139 const struct pci_error_handlers *err_handler = 5140 dev->driver ? dev->driver->err_handler : NULL; 5141 5142 /* 5143 * dev->driver->err_handler->reset_prepare() is protected against 5144 * races with ->remove() by the device lock, which must be held by 5145 * the caller. 5146 */ 5147 if (err_handler && err_handler->reset_prepare) 5148 err_handler->reset_prepare(dev); 5149 5150 /* 5151 * Wake-up device prior to save. PM registers default to D0 after 5152 * reset and a simple register restore doesn't reliably return 5153 * to a non-D0 state anyway. 5154 */ 5155 pci_set_power_state(dev, PCI_D0); 5156 5157 pci_save_state(dev); 5158 /* 5159 * Disable the device by clearing the Command register, except for 5160 * INTx-disable which is set. This not only disables MMIO and I/O port 5161 * BARs, but also prevents the device from being Bus Master, preventing 5162 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5163 * compliant devices, INTx-disable prevents legacy interrupts. 5164 */ 5165 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5166 } 5167 5168 static void pci_dev_restore(struct pci_dev *dev) 5169 { 5170 const struct pci_error_handlers *err_handler = 5171 dev->driver ? dev->driver->err_handler : NULL; 5172 5173 pci_restore_state(dev); 5174 5175 /* 5176 * dev->driver->err_handler->reset_done() is protected against 5177 * races with ->remove() by the device lock, which must be held by 5178 * the caller. 5179 */ 5180 if (err_handler && err_handler->reset_done) 5181 err_handler->reset_done(dev); 5182 } 5183 5184 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5185 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5186 { }, 5187 { pci_dev_specific_reset, .name = "device_specific" }, 5188 { pci_dev_acpi_reset, .name = "acpi" }, 5189 { pcie_reset_flr, .name = "flr" }, 5190 { pci_af_flr, .name = "af_flr" }, 5191 { pci_pm_reset, .name = "pm" }, 5192 { pci_reset_bus_function, .name = "bus" }, 5193 }; 5194 5195 static ssize_t reset_method_show(struct device *dev, 5196 struct device_attribute *attr, char *buf) 5197 { 5198 struct pci_dev *pdev = to_pci_dev(dev); 5199 ssize_t len = 0; 5200 int i, m; 5201 5202 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5203 m = pdev->reset_methods[i]; 5204 if (!m) 5205 break; 5206 5207 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5208 pci_reset_fn_methods[m].name); 5209 } 5210 5211 if (len) 5212 len += sysfs_emit_at(buf, len, "\n"); 5213 5214 return len; 5215 } 5216 5217 static int reset_method_lookup(const char *name) 5218 { 5219 int m; 5220 5221 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5222 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5223 return m; 5224 } 5225 5226 return 0; /* not found */ 5227 } 5228 5229 static ssize_t reset_method_store(struct device *dev, 5230 struct device_attribute *attr, 5231 const char *buf, size_t count) 5232 { 5233 struct pci_dev *pdev = to_pci_dev(dev); 5234 char *options, *name; 5235 int m, n; 5236 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5237 5238 if (sysfs_streq(buf, "")) { 5239 pdev->reset_methods[0] = 0; 5240 pci_warn(pdev, "All device reset methods disabled by user"); 5241 return count; 5242 } 5243 5244 if (sysfs_streq(buf, "default")) { 5245 pci_init_reset_methods(pdev); 5246 return count; 5247 } 5248 5249 options = kstrndup(buf, count, GFP_KERNEL); 5250 if (!options) 5251 return -ENOMEM; 5252 5253 n = 0; 5254 while ((name = strsep(&options, " ")) != NULL) { 5255 if (sysfs_streq(name, "")) 5256 continue; 5257 5258 name = strim(name); 5259 5260 m = reset_method_lookup(name); 5261 if (!m) { 5262 pci_err(pdev, "Invalid reset method '%s'", name); 5263 goto error; 5264 } 5265 5266 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5267 pci_err(pdev, "Unsupported reset method '%s'", name); 5268 goto error; 5269 } 5270 5271 if (n == PCI_NUM_RESET_METHODS - 1) { 5272 pci_err(pdev, "Too many reset methods\n"); 5273 goto error; 5274 } 5275 5276 reset_methods[n++] = m; 5277 } 5278 5279 reset_methods[n] = 0; 5280 5281 /* Warn if dev-specific supported but not highest priority */ 5282 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5283 reset_methods[0] != 1) 5284 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5285 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5286 kfree(options); 5287 return count; 5288 5289 error: 5290 /* Leave previous methods unchanged */ 5291 kfree(options); 5292 return -EINVAL; 5293 } 5294 static DEVICE_ATTR_RW(reset_method); 5295 5296 static struct attribute *pci_dev_reset_method_attrs[] = { 5297 &dev_attr_reset_method.attr, 5298 NULL, 5299 }; 5300 5301 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5302 struct attribute *a, int n) 5303 { 5304 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5305 5306 if (!pci_reset_supported(pdev)) 5307 return 0; 5308 5309 return a->mode; 5310 } 5311 5312 const struct attribute_group pci_dev_reset_method_attr_group = { 5313 .attrs = pci_dev_reset_method_attrs, 5314 .is_visible = pci_dev_reset_method_attr_is_visible, 5315 }; 5316 5317 /** 5318 * __pci_reset_function_locked - reset a PCI device function while holding 5319 * the @dev mutex lock. 5320 * @dev: PCI device to reset 5321 * 5322 * Some devices allow an individual function to be reset without affecting 5323 * other functions in the same device. The PCI device must be responsive 5324 * to PCI config space in order to use this function. 5325 * 5326 * The device function is presumed to be unused and the caller is holding 5327 * the device mutex lock when this function is called. 5328 * 5329 * Resetting the device will make the contents of PCI configuration space 5330 * random, so any caller of this must be prepared to reinitialise the 5331 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5332 * etc. 5333 * 5334 * Returns 0 if the device function was successfully reset or negative if the 5335 * device doesn't support resetting a single function. 5336 */ 5337 int __pci_reset_function_locked(struct pci_dev *dev) 5338 { 5339 int i, m, rc; 5340 5341 might_sleep(); 5342 5343 /* 5344 * A reset method returns -ENOTTY if it doesn't support this device and 5345 * we should try the next method. 5346 * 5347 * If it returns 0 (success), we're finished. If it returns any other 5348 * error, we're also finished: this indicates that further reset 5349 * mechanisms might be broken on the device. 5350 */ 5351 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5352 m = dev->reset_methods[i]; 5353 if (!m) 5354 return -ENOTTY; 5355 5356 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5357 if (!rc) 5358 return 0; 5359 if (rc != -ENOTTY) 5360 return rc; 5361 } 5362 5363 return -ENOTTY; 5364 } 5365 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5366 5367 /** 5368 * pci_init_reset_methods - check whether device can be safely reset 5369 * and store supported reset mechanisms. 5370 * @dev: PCI device to check for reset mechanisms 5371 * 5372 * Some devices allow an individual function to be reset without affecting 5373 * other functions in the same device. The PCI device must be in D0-D3hot 5374 * state. 5375 * 5376 * Stores reset mechanisms supported by device in reset_methods byte array 5377 * which is a member of struct pci_dev. 5378 */ 5379 void pci_init_reset_methods(struct pci_dev *dev) 5380 { 5381 int m, i, rc; 5382 5383 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5384 5385 might_sleep(); 5386 5387 i = 0; 5388 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5389 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5390 if (!rc) 5391 dev->reset_methods[i++] = m; 5392 else if (rc != -ENOTTY) 5393 break; 5394 } 5395 5396 dev->reset_methods[i] = 0; 5397 } 5398 5399 /** 5400 * pci_reset_function - quiesce and reset a PCI device function 5401 * @dev: PCI device to reset 5402 * 5403 * Some devices allow an individual function to be reset without affecting 5404 * other functions in the same device. The PCI device must be responsive 5405 * to PCI config space in order to use this function. 5406 * 5407 * This function does not just reset the PCI portion of a device, but 5408 * clears all the state associated with the device. This function differs 5409 * from __pci_reset_function_locked() in that it saves and restores device state 5410 * over the reset and takes the PCI device lock. 5411 * 5412 * Returns 0 if the device function was successfully reset or negative if the 5413 * device doesn't support resetting a single function. 5414 */ 5415 int pci_reset_function(struct pci_dev *dev) 5416 { 5417 int rc; 5418 5419 if (!pci_reset_supported(dev)) 5420 return -ENOTTY; 5421 5422 pci_dev_lock(dev); 5423 pci_dev_save_and_disable(dev); 5424 5425 rc = __pci_reset_function_locked(dev); 5426 5427 pci_dev_restore(dev); 5428 pci_dev_unlock(dev); 5429 5430 return rc; 5431 } 5432 EXPORT_SYMBOL_GPL(pci_reset_function); 5433 5434 /** 5435 * pci_reset_function_locked - quiesce and reset a PCI device function 5436 * @dev: PCI device to reset 5437 * 5438 * Some devices allow an individual function to be reset without affecting 5439 * other functions in the same device. The PCI device must be responsive 5440 * to PCI config space in order to use this function. 5441 * 5442 * This function does not just reset the PCI portion of a device, but 5443 * clears all the state associated with the device. This function differs 5444 * from __pci_reset_function_locked() in that it saves and restores device state 5445 * over the reset. It also differs from pci_reset_function() in that it 5446 * requires the PCI device lock to be held. 5447 * 5448 * Returns 0 if the device function was successfully reset or negative if the 5449 * device doesn't support resetting a single function. 5450 */ 5451 int pci_reset_function_locked(struct pci_dev *dev) 5452 { 5453 int rc; 5454 5455 if (!pci_reset_supported(dev)) 5456 return -ENOTTY; 5457 5458 pci_dev_save_and_disable(dev); 5459 5460 rc = __pci_reset_function_locked(dev); 5461 5462 pci_dev_restore(dev); 5463 5464 return rc; 5465 } 5466 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5467 5468 /** 5469 * pci_try_reset_function - quiesce and reset a PCI device function 5470 * @dev: PCI device to reset 5471 * 5472 * Same as above, except return -EAGAIN if unable to lock device. 5473 */ 5474 int pci_try_reset_function(struct pci_dev *dev) 5475 { 5476 int rc; 5477 5478 if (!pci_reset_supported(dev)) 5479 return -ENOTTY; 5480 5481 if (!pci_dev_trylock(dev)) 5482 return -EAGAIN; 5483 5484 pci_dev_save_and_disable(dev); 5485 rc = __pci_reset_function_locked(dev); 5486 pci_dev_restore(dev); 5487 pci_dev_unlock(dev); 5488 5489 return rc; 5490 } 5491 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5492 5493 /* Do any devices on or below this bus prevent a bus reset? */ 5494 static bool pci_bus_resetable(struct pci_bus *bus) 5495 { 5496 struct pci_dev *dev; 5497 5498 5499 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5500 return false; 5501 5502 list_for_each_entry(dev, &bus->devices, bus_list) { 5503 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5504 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5505 return false; 5506 } 5507 5508 return true; 5509 } 5510 5511 /* Lock devices from the top of the tree down */ 5512 static void pci_bus_lock(struct pci_bus *bus) 5513 { 5514 struct pci_dev *dev; 5515 5516 list_for_each_entry(dev, &bus->devices, bus_list) { 5517 pci_dev_lock(dev); 5518 if (dev->subordinate) 5519 pci_bus_lock(dev->subordinate); 5520 } 5521 } 5522 5523 /* Unlock devices from the bottom of the tree up */ 5524 static void pci_bus_unlock(struct pci_bus *bus) 5525 { 5526 struct pci_dev *dev; 5527 5528 list_for_each_entry(dev, &bus->devices, bus_list) { 5529 if (dev->subordinate) 5530 pci_bus_unlock(dev->subordinate); 5531 pci_dev_unlock(dev); 5532 } 5533 } 5534 5535 /* Return 1 on successful lock, 0 on contention */ 5536 static int pci_bus_trylock(struct pci_bus *bus) 5537 { 5538 struct pci_dev *dev; 5539 5540 list_for_each_entry(dev, &bus->devices, bus_list) { 5541 if (!pci_dev_trylock(dev)) 5542 goto unlock; 5543 if (dev->subordinate) { 5544 if (!pci_bus_trylock(dev->subordinate)) { 5545 pci_dev_unlock(dev); 5546 goto unlock; 5547 } 5548 } 5549 } 5550 return 1; 5551 5552 unlock: 5553 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5554 if (dev->subordinate) 5555 pci_bus_unlock(dev->subordinate); 5556 pci_dev_unlock(dev); 5557 } 5558 return 0; 5559 } 5560 5561 /* Do any devices on or below this slot prevent a bus reset? */ 5562 static bool pci_slot_resetable(struct pci_slot *slot) 5563 { 5564 struct pci_dev *dev; 5565 5566 if (slot->bus->self && 5567 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5568 return false; 5569 5570 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5571 if (!dev->slot || dev->slot != slot) 5572 continue; 5573 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5574 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5575 return false; 5576 } 5577 5578 return true; 5579 } 5580 5581 /* Lock devices from the top of the tree down */ 5582 static void pci_slot_lock(struct pci_slot *slot) 5583 { 5584 struct pci_dev *dev; 5585 5586 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5587 if (!dev->slot || dev->slot != slot) 5588 continue; 5589 pci_dev_lock(dev); 5590 if (dev->subordinate) 5591 pci_bus_lock(dev->subordinate); 5592 } 5593 } 5594 5595 /* Unlock devices from the bottom of the tree up */ 5596 static void pci_slot_unlock(struct pci_slot *slot) 5597 { 5598 struct pci_dev *dev; 5599 5600 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5601 if (!dev->slot || dev->slot != slot) 5602 continue; 5603 if (dev->subordinate) 5604 pci_bus_unlock(dev->subordinate); 5605 pci_dev_unlock(dev); 5606 } 5607 } 5608 5609 /* Return 1 on successful lock, 0 on contention */ 5610 static int pci_slot_trylock(struct pci_slot *slot) 5611 { 5612 struct pci_dev *dev; 5613 5614 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5615 if (!dev->slot || dev->slot != slot) 5616 continue; 5617 if (!pci_dev_trylock(dev)) 5618 goto unlock; 5619 if (dev->subordinate) { 5620 if (!pci_bus_trylock(dev->subordinate)) { 5621 pci_dev_unlock(dev); 5622 goto unlock; 5623 } 5624 } 5625 } 5626 return 1; 5627 5628 unlock: 5629 list_for_each_entry_continue_reverse(dev, 5630 &slot->bus->devices, bus_list) { 5631 if (!dev->slot || dev->slot != slot) 5632 continue; 5633 if (dev->subordinate) 5634 pci_bus_unlock(dev->subordinate); 5635 pci_dev_unlock(dev); 5636 } 5637 return 0; 5638 } 5639 5640 /* 5641 * Save and disable devices from the top of the tree down while holding 5642 * the @dev mutex lock for the entire tree. 5643 */ 5644 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5645 { 5646 struct pci_dev *dev; 5647 5648 list_for_each_entry(dev, &bus->devices, bus_list) { 5649 pci_dev_save_and_disable(dev); 5650 if (dev->subordinate) 5651 pci_bus_save_and_disable_locked(dev->subordinate); 5652 } 5653 } 5654 5655 /* 5656 * Restore devices from top of the tree down while holding @dev mutex lock 5657 * for the entire tree. Parent bridges need to be restored before we can 5658 * get to subordinate devices. 5659 */ 5660 static void pci_bus_restore_locked(struct pci_bus *bus) 5661 { 5662 struct pci_dev *dev; 5663 5664 list_for_each_entry(dev, &bus->devices, bus_list) { 5665 pci_dev_restore(dev); 5666 if (dev->subordinate) 5667 pci_bus_restore_locked(dev->subordinate); 5668 } 5669 } 5670 5671 /* 5672 * Save and disable devices from the top of the tree down while holding 5673 * the @dev mutex lock for the entire tree. 5674 */ 5675 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5676 { 5677 struct pci_dev *dev; 5678 5679 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5680 if (!dev->slot || dev->slot != slot) 5681 continue; 5682 pci_dev_save_and_disable(dev); 5683 if (dev->subordinate) 5684 pci_bus_save_and_disable_locked(dev->subordinate); 5685 } 5686 } 5687 5688 /* 5689 * Restore devices from top of the tree down while holding @dev mutex lock 5690 * for the entire tree. Parent bridges need to be restored before we can 5691 * get to subordinate devices. 5692 */ 5693 static void pci_slot_restore_locked(struct pci_slot *slot) 5694 { 5695 struct pci_dev *dev; 5696 5697 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5698 if (!dev->slot || dev->slot != slot) 5699 continue; 5700 pci_dev_restore(dev); 5701 if (dev->subordinate) 5702 pci_bus_restore_locked(dev->subordinate); 5703 } 5704 } 5705 5706 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5707 { 5708 int rc; 5709 5710 if (!slot || !pci_slot_resetable(slot)) 5711 return -ENOTTY; 5712 5713 if (!probe) 5714 pci_slot_lock(slot); 5715 5716 might_sleep(); 5717 5718 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5719 5720 if (!probe) 5721 pci_slot_unlock(slot); 5722 5723 return rc; 5724 } 5725 5726 /** 5727 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5728 * @slot: PCI slot to probe 5729 * 5730 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5731 */ 5732 int pci_probe_reset_slot(struct pci_slot *slot) 5733 { 5734 return pci_slot_reset(slot, PCI_RESET_PROBE); 5735 } 5736 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5737 5738 /** 5739 * __pci_reset_slot - Try to reset a PCI slot 5740 * @slot: PCI slot to reset 5741 * 5742 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5743 * independent of other slots. For instance, some slots may support slot power 5744 * control. In the case of a 1:1 bus to slot architecture, this function may 5745 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5746 * Generally a slot reset should be attempted before a bus reset. All of the 5747 * function of the slot and any subordinate buses behind the slot are reset 5748 * through this function. PCI config space of all devices in the slot and 5749 * behind the slot is saved before and restored after reset. 5750 * 5751 * Same as above except return -EAGAIN if the slot cannot be locked 5752 */ 5753 static int __pci_reset_slot(struct pci_slot *slot) 5754 { 5755 int rc; 5756 5757 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5758 if (rc) 5759 return rc; 5760 5761 if (pci_slot_trylock(slot)) { 5762 pci_slot_save_and_disable_locked(slot); 5763 might_sleep(); 5764 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5765 pci_slot_restore_locked(slot); 5766 pci_slot_unlock(slot); 5767 } else 5768 rc = -EAGAIN; 5769 5770 return rc; 5771 } 5772 5773 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5774 { 5775 int ret; 5776 5777 if (!bus->self || !pci_bus_resetable(bus)) 5778 return -ENOTTY; 5779 5780 if (probe) 5781 return 0; 5782 5783 pci_bus_lock(bus); 5784 5785 might_sleep(); 5786 5787 ret = pci_bridge_secondary_bus_reset(bus->self); 5788 5789 pci_bus_unlock(bus); 5790 5791 return ret; 5792 } 5793 5794 /** 5795 * pci_bus_error_reset - reset the bridge's subordinate bus 5796 * @bridge: The parent device that connects to the bus to reset 5797 * 5798 * This function will first try to reset the slots on this bus if the method is 5799 * available. If slot reset fails or is not available, this will fall back to a 5800 * secondary bus reset. 5801 */ 5802 int pci_bus_error_reset(struct pci_dev *bridge) 5803 { 5804 struct pci_bus *bus = bridge->subordinate; 5805 struct pci_slot *slot; 5806 5807 if (!bus) 5808 return -ENOTTY; 5809 5810 mutex_lock(&pci_slot_mutex); 5811 if (list_empty(&bus->slots)) 5812 goto bus_reset; 5813 5814 list_for_each_entry(slot, &bus->slots, list) 5815 if (pci_probe_reset_slot(slot)) 5816 goto bus_reset; 5817 5818 list_for_each_entry(slot, &bus->slots, list) 5819 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5820 goto bus_reset; 5821 5822 mutex_unlock(&pci_slot_mutex); 5823 return 0; 5824 bus_reset: 5825 mutex_unlock(&pci_slot_mutex); 5826 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5827 } 5828 5829 /** 5830 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5831 * @bus: PCI bus to probe 5832 * 5833 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5834 */ 5835 int pci_probe_reset_bus(struct pci_bus *bus) 5836 { 5837 return pci_bus_reset(bus, PCI_RESET_PROBE); 5838 } 5839 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5840 5841 /** 5842 * __pci_reset_bus - Try to reset a PCI bus 5843 * @bus: top level PCI bus to reset 5844 * 5845 * Same as above except return -EAGAIN if the bus cannot be locked 5846 */ 5847 static int __pci_reset_bus(struct pci_bus *bus) 5848 { 5849 int rc; 5850 5851 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5852 if (rc) 5853 return rc; 5854 5855 if (pci_bus_trylock(bus)) { 5856 pci_bus_save_and_disable_locked(bus); 5857 might_sleep(); 5858 rc = pci_bridge_secondary_bus_reset(bus->self); 5859 pci_bus_restore_locked(bus); 5860 pci_bus_unlock(bus); 5861 } else 5862 rc = -EAGAIN; 5863 5864 return rc; 5865 } 5866 5867 /** 5868 * pci_reset_bus - Try to reset a PCI bus 5869 * @pdev: top level PCI device to reset via slot/bus 5870 * 5871 * Same as above except return -EAGAIN if the bus cannot be locked 5872 */ 5873 int pci_reset_bus(struct pci_dev *pdev) 5874 { 5875 return (!pci_probe_reset_slot(pdev->slot)) ? 5876 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5877 } 5878 EXPORT_SYMBOL_GPL(pci_reset_bus); 5879 5880 /** 5881 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5882 * @dev: PCI device to query 5883 * 5884 * Returns mmrbc: maximum designed memory read count in bytes or 5885 * appropriate error value. 5886 */ 5887 int pcix_get_max_mmrbc(struct pci_dev *dev) 5888 { 5889 int cap; 5890 u32 stat; 5891 5892 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5893 if (!cap) 5894 return -EINVAL; 5895 5896 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5897 return -EINVAL; 5898 5899 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5900 } 5901 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5902 5903 /** 5904 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5905 * @dev: PCI device to query 5906 * 5907 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5908 * value. 5909 */ 5910 int pcix_get_mmrbc(struct pci_dev *dev) 5911 { 5912 int cap; 5913 u16 cmd; 5914 5915 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5916 if (!cap) 5917 return -EINVAL; 5918 5919 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5920 return -EINVAL; 5921 5922 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5923 } 5924 EXPORT_SYMBOL(pcix_get_mmrbc); 5925 5926 /** 5927 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5928 * @dev: PCI device to query 5929 * @mmrbc: maximum memory read count in bytes 5930 * valid values are 512, 1024, 2048, 4096 5931 * 5932 * If possible sets maximum memory read byte count, some bridges have errata 5933 * that prevent this. 5934 */ 5935 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5936 { 5937 int cap; 5938 u32 stat, v, o; 5939 u16 cmd; 5940 5941 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5942 return -EINVAL; 5943 5944 v = ffs(mmrbc) - 10; 5945 5946 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5947 if (!cap) 5948 return -EINVAL; 5949 5950 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5951 return -EINVAL; 5952 5953 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5954 return -E2BIG; 5955 5956 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5957 return -EINVAL; 5958 5959 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5960 if (o != v) { 5961 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5962 return -EIO; 5963 5964 cmd &= ~PCI_X_CMD_MAX_READ; 5965 cmd |= v << 2; 5966 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5967 return -EIO; 5968 } 5969 return 0; 5970 } 5971 EXPORT_SYMBOL(pcix_set_mmrbc); 5972 5973 /** 5974 * pcie_get_readrq - get PCI Express read request size 5975 * @dev: PCI device to query 5976 * 5977 * Returns maximum memory read request in bytes or appropriate error value. 5978 */ 5979 int pcie_get_readrq(struct pci_dev *dev) 5980 { 5981 u16 ctl; 5982 5983 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5984 5985 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5986 } 5987 EXPORT_SYMBOL(pcie_get_readrq); 5988 5989 /** 5990 * pcie_set_readrq - set PCI Express maximum memory read request 5991 * @dev: PCI device to query 5992 * @rq: maximum memory read count in bytes 5993 * valid values are 128, 256, 512, 1024, 2048, 4096 5994 * 5995 * If possible sets maximum memory read request in bytes 5996 */ 5997 int pcie_set_readrq(struct pci_dev *dev, int rq) 5998 { 5999 u16 v; 6000 int ret; 6001 6002 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6003 return -EINVAL; 6004 6005 /* 6006 * If using the "performance" PCIe config, we clamp the read rq 6007 * size to the max packet size to keep the host bridge from 6008 * generating requests larger than we can cope with. 6009 */ 6010 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6011 int mps = pcie_get_mps(dev); 6012 6013 if (mps < rq) 6014 rq = mps; 6015 } 6016 6017 v = (ffs(rq) - 8) << 12; 6018 6019 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6020 PCI_EXP_DEVCTL_READRQ, v); 6021 6022 return pcibios_err_to_errno(ret); 6023 } 6024 EXPORT_SYMBOL(pcie_set_readrq); 6025 6026 /** 6027 * pcie_get_mps - get PCI Express maximum payload size 6028 * @dev: PCI device to query 6029 * 6030 * Returns maximum payload size in bytes 6031 */ 6032 int pcie_get_mps(struct pci_dev *dev) 6033 { 6034 u16 ctl; 6035 6036 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6037 6038 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6039 } 6040 EXPORT_SYMBOL(pcie_get_mps); 6041 6042 /** 6043 * pcie_set_mps - set PCI Express maximum payload size 6044 * @dev: PCI device to query 6045 * @mps: maximum payload size in bytes 6046 * valid values are 128, 256, 512, 1024, 2048, 4096 6047 * 6048 * If possible sets maximum payload size 6049 */ 6050 int pcie_set_mps(struct pci_dev *dev, int mps) 6051 { 6052 u16 v; 6053 int ret; 6054 6055 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6056 return -EINVAL; 6057 6058 v = ffs(mps) - 8; 6059 if (v > dev->pcie_mpss) 6060 return -EINVAL; 6061 v <<= 5; 6062 6063 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6064 PCI_EXP_DEVCTL_PAYLOAD, v); 6065 6066 return pcibios_err_to_errno(ret); 6067 } 6068 EXPORT_SYMBOL(pcie_set_mps); 6069 6070 /** 6071 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6072 * device and its bandwidth limitation 6073 * @dev: PCI device to query 6074 * @limiting_dev: storage for device causing the bandwidth limitation 6075 * @speed: storage for speed of limiting device 6076 * @width: storage for width of limiting device 6077 * 6078 * Walk up the PCI device chain and find the point where the minimum 6079 * bandwidth is available. Return the bandwidth available there and (if 6080 * limiting_dev, speed, and width pointers are supplied) information about 6081 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6082 * raw bandwidth. 6083 */ 6084 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6085 enum pci_bus_speed *speed, 6086 enum pcie_link_width *width) 6087 { 6088 u16 lnksta; 6089 enum pci_bus_speed next_speed; 6090 enum pcie_link_width next_width; 6091 u32 bw, next_bw; 6092 6093 if (speed) 6094 *speed = PCI_SPEED_UNKNOWN; 6095 if (width) 6096 *width = PCIE_LNK_WIDTH_UNKNOWN; 6097 6098 bw = 0; 6099 6100 while (dev) { 6101 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6102 6103 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6104 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 6105 PCI_EXP_LNKSTA_NLW_SHIFT; 6106 6107 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6108 6109 /* Check if current device limits the total bandwidth */ 6110 if (!bw || next_bw <= bw) { 6111 bw = next_bw; 6112 6113 if (limiting_dev) 6114 *limiting_dev = dev; 6115 if (speed) 6116 *speed = next_speed; 6117 if (width) 6118 *width = next_width; 6119 } 6120 6121 dev = pci_upstream_bridge(dev); 6122 } 6123 6124 return bw; 6125 } 6126 EXPORT_SYMBOL(pcie_bandwidth_available); 6127 6128 /** 6129 * pcie_get_speed_cap - query for the PCI device's link speed capability 6130 * @dev: PCI device to query 6131 * 6132 * Query the PCI device speed capability. Return the maximum link speed 6133 * supported by the device. 6134 */ 6135 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6136 { 6137 u32 lnkcap2, lnkcap; 6138 6139 /* 6140 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6141 * implementation note there recommends using the Supported Link 6142 * Speeds Vector in Link Capabilities 2 when supported. 6143 * 6144 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6145 * should use the Supported Link Speeds field in Link Capabilities, 6146 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6147 */ 6148 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6149 6150 /* PCIe r3.0-compliant */ 6151 if (lnkcap2) 6152 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6153 6154 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6155 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6156 return PCIE_SPEED_5_0GT; 6157 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6158 return PCIE_SPEED_2_5GT; 6159 6160 return PCI_SPEED_UNKNOWN; 6161 } 6162 EXPORT_SYMBOL(pcie_get_speed_cap); 6163 6164 /** 6165 * pcie_get_width_cap - query for the PCI device's link width capability 6166 * @dev: PCI device to query 6167 * 6168 * Query the PCI device width capability. Return the maximum link width 6169 * supported by the device. 6170 */ 6171 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6172 { 6173 u32 lnkcap; 6174 6175 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6176 if (lnkcap) 6177 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 6178 6179 return PCIE_LNK_WIDTH_UNKNOWN; 6180 } 6181 EXPORT_SYMBOL(pcie_get_width_cap); 6182 6183 /** 6184 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6185 * @dev: PCI device 6186 * @speed: storage for link speed 6187 * @width: storage for link width 6188 * 6189 * Calculate a PCI device's link bandwidth by querying for its link speed 6190 * and width, multiplying them, and applying encoding overhead. The result 6191 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6192 */ 6193 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6194 enum pcie_link_width *width) 6195 { 6196 *speed = pcie_get_speed_cap(dev); 6197 *width = pcie_get_width_cap(dev); 6198 6199 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6200 return 0; 6201 6202 return *width * PCIE_SPEED2MBS_ENC(*speed); 6203 } 6204 6205 /** 6206 * __pcie_print_link_status - Report the PCI device's link speed and width 6207 * @dev: PCI device to query 6208 * @verbose: Print info even when enough bandwidth is available 6209 * 6210 * If the available bandwidth at the device is less than the device is 6211 * capable of, report the device's maximum possible bandwidth and the 6212 * upstream link that limits its performance. If @verbose, always print 6213 * the available bandwidth, even if the device isn't constrained. 6214 */ 6215 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6216 { 6217 enum pcie_link_width width, width_cap; 6218 enum pci_bus_speed speed, speed_cap; 6219 struct pci_dev *limiting_dev = NULL; 6220 u32 bw_avail, bw_cap; 6221 6222 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6223 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6224 6225 if (bw_avail >= bw_cap && verbose) 6226 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6227 bw_cap / 1000, bw_cap % 1000, 6228 pci_speed_string(speed_cap), width_cap); 6229 else if (bw_avail < bw_cap) 6230 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6231 bw_avail / 1000, bw_avail % 1000, 6232 pci_speed_string(speed), width, 6233 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6234 bw_cap / 1000, bw_cap % 1000, 6235 pci_speed_string(speed_cap), width_cap); 6236 } 6237 6238 /** 6239 * pcie_print_link_status - Report the PCI device's link speed and width 6240 * @dev: PCI device to query 6241 * 6242 * Report the available bandwidth at the device. 6243 */ 6244 void pcie_print_link_status(struct pci_dev *dev) 6245 { 6246 __pcie_print_link_status(dev, true); 6247 } 6248 EXPORT_SYMBOL(pcie_print_link_status); 6249 6250 /** 6251 * pci_select_bars - Make BAR mask from the type of resource 6252 * @dev: the PCI device for which BAR mask is made 6253 * @flags: resource type mask to be selected 6254 * 6255 * This helper routine makes bar mask from the type of resource. 6256 */ 6257 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6258 { 6259 int i, bars = 0; 6260 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6261 if (pci_resource_flags(dev, i) & flags) 6262 bars |= (1 << i); 6263 return bars; 6264 } 6265 EXPORT_SYMBOL(pci_select_bars); 6266 6267 /* Some architectures require additional programming to enable VGA */ 6268 static arch_set_vga_state_t arch_set_vga_state; 6269 6270 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6271 { 6272 arch_set_vga_state = func; /* NULL disables */ 6273 } 6274 6275 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6276 unsigned int command_bits, u32 flags) 6277 { 6278 if (arch_set_vga_state) 6279 return arch_set_vga_state(dev, decode, command_bits, 6280 flags); 6281 return 0; 6282 } 6283 6284 /** 6285 * pci_set_vga_state - set VGA decode state on device and parents if requested 6286 * @dev: the PCI device 6287 * @decode: true = enable decoding, false = disable decoding 6288 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6289 * @flags: traverse ancestors and change bridges 6290 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6291 */ 6292 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6293 unsigned int command_bits, u32 flags) 6294 { 6295 struct pci_bus *bus; 6296 struct pci_dev *bridge; 6297 u16 cmd; 6298 int rc; 6299 6300 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6301 6302 /* ARCH specific VGA enables */ 6303 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6304 if (rc) 6305 return rc; 6306 6307 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6308 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6309 if (decode) 6310 cmd |= command_bits; 6311 else 6312 cmd &= ~command_bits; 6313 pci_write_config_word(dev, PCI_COMMAND, cmd); 6314 } 6315 6316 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6317 return 0; 6318 6319 bus = dev->bus; 6320 while (bus) { 6321 bridge = bus->self; 6322 if (bridge) { 6323 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6324 &cmd); 6325 if (decode) 6326 cmd |= PCI_BRIDGE_CTL_VGA; 6327 else 6328 cmd &= ~PCI_BRIDGE_CTL_VGA; 6329 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6330 cmd); 6331 } 6332 bus = bus->parent; 6333 } 6334 return 0; 6335 } 6336 6337 #ifdef CONFIG_ACPI 6338 bool pci_pr3_present(struct pci_dev *pdev) 6339 { 6340 struct acpi_device *adev; 6341 6342 if (acpi_disabled) 6343 return false; 6344 6345 adev = ACPI_COMPANION(&pdev->dev); 6346 if (!adev) 6347 return false; 6348 6349 return adev->power.flags.power_resources && 6350 acpi_has_method(adev->handle, "_PR3"); 6351 } 6352 EXPORT_SYMBOL_GPL(pci_pr3_present); 6353 #endif 6354 6355 /** 6356 * pci_add_dma_alias - Add a DMA devfn alias for a device 6357 * @dev: the PCI device for which alias is added 6358 * @devfn_from: alias slot and function 6359 * @nr_devfns: number of subsequent devfns to alias 6360 * 6361 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6362 * which is used to program permissible bus-devfn source addresses for DMA 6363 * requests in an IOMMU. These aliases factor into IOMMU group creation 6364 * and are useful for devices generating DMA requests beyond or different 6365 * from their logical bus-devfn. Examples include device quirks where the 6366 * device simply uses the wrong devfn, as well as non-transparent bridges 6367 * where the alias may be a proxy for devices in another domain. 6368 * 6369 * IOMMU group creation is performed during device discovery or addition, 6370 * prior to any potential DMA mapping and therefore prior to driver probing 6371 * (especially for userspace assigned devices where IOMMU group definition 6372 * cannot be left as a userspace activity). DMA aliases should therefore 6373 * be configured via quirks, such as the PCI fixup header quirk. 6374 */ 6375 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6376 unsigned int nr_devfns) 6377 { 6378 int devfn_to; 6379 6380 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6381 devfn_to = devfn_from + nr_devfns - 1; 6382 6383 if (!dev->dma_alias_mask) 6384 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6385 if (!dev->dma_alias_mask) { 6386 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6387 return; 6388 } 6389 6390 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6391 6392 if (nr_devfns == 1) 6393 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6394 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6395 else if (nr_devfns > 1) 6396 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6397 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6398 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6399 } 6400 6401 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6402 { 6403 return (dev1->dma_alias_mask && 6404 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6405 (dev2->dma_alias_mask && 6406 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6407 pci_real_dma_dev(dev1) == dev2 || 6408 pci_real_dma_dev(dev2) == dev1; 6409 } 6410 6411 bool pci_device_is_present(struct pci_dev *pdev) 6412 { 6413 u32 v; 6414 6415 if (pci_dev_is_disconnected(pdev)) 6416 return false; 6417 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6418 } 6419 EXPORT_SYMBOL_GPL(pci_device_is_present); 6420 6421 void pci_ignore_hotplug(struct pci_dev *dev) 6422 { 6423 struct pci_dev *bridge = dev->bus->self; 6424 6425 dev->ignore_hotplug = 1; 6426 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6427 if (bridge) 6428 bridge->ignore_hotplug = 1; 6429 } 6430 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6431 6432 /** 6433 * pci_real_dma_dev - Get PCI DMA device for PCI device 6434 * @dev: the PCI device that may have a PCI DMA alias 6435 * 6436 * Permits the platform to provide architecture-specific functionality to 6437 * devices needing to alias DMA to another PCI device on another PCI bus. If 6438 * the PCI device is on the same bus, it is recommended to use 6439 * pci_add_dma_alias(). This is the default implementation. Architecture 6440 * implementations can override this. 6441 */ 6442 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6443 { 6444 return dev; 6445 } 6446 6447 resource_size_t __weak pcibios_default_alignment(void) 6448 { 6449 return 0; 6450 } 6451 6452 /* 6453 * Arches that don't want to expose struct resource to userland as-is in 6454 * sysfs and /proc can implement their own pci_resource_to_user(). 6455 */ 6456 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6457 const struct resource *rsrc, 6458 resource_size_t *start, resource_size_t *end) 6459 { 6460 *start = rsrc->start; 6461 *end = rsrc->end; 6462 } 6463 6464 static char *resource_alignment_param; 6465 static DEFINE_SPINLOCK(resource_alignment_lock); 6466 6467 /** 6468 * pci_specified_resource_alignment - get resource alignment specified by user. 6469 * @dev: the PCI device to get 6470 * @resize: whether or not to change resources' size when reassigning alignment 6471 * 6472 * RETURNS: Resource alignment if it is specified. 6473 * Zero if it is not specified. 6474 */ 6475 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6476 bool *resize) 6477 { 6478 int align_order, count; 6479 resource_size_t align = pcibios_default_alignment(); 6480 const char *p; 6481 int ret; 6482 6483 spin_lock(&resource_alignment_lock); 6484 p = resource_alignment_param; 6485 if (!p || !*p) 6486 goto out; 6487 if (pci_has_flag(PCI_PROBE_ONLY)) { 6488 align = 0; 6489 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6490 goto out; 6491 } 6492 6493 while (*p) { 6494 count = 0; 6495 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6496 p[count] == '@') { 6497 p += count + 1; 6498 if (align_order > 63) { 6499 pr_err("PCI: Invalid requested alignment (order %d)\n", 6500 align_order); 6501 align_order = PAGE_SHIFT; 6502 } 6503 } else { 6504 align_order = PAGE_SHIFT; 6505 } 6506 6507 ret = pci_dev_str_match(dev, p, &p); 6508 if (ret == 1) { 6509 *resize = true; 6510 align = 1ULL << align_order; 6511 break; 6512 } else if (ret < 0) { 6513 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6514 p); 6515 break; 6516 } 6517 6518 if (*p != ';' && *p != ',') { 6519 /* End of param or invalid format */ 6520 break; 6521 } 6522 p++; 6523 } 6524 out: 6525 spin_unlock(&resource_alignment_lock); 6526 return align; 6527 } 6528 6529 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6530 resource_size_t align, bool resize) 6531 { 6532 struct resource *r = &dev->resource[bar]; 6533 resource_size_t size; 6534 6535 if (!(r->flags & IORESOURCE_MEM)) 6536 return; 6537 6538 if (r->flags & IORESOURCE_PCI_FIXED) { 6539 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6540 bar, r, (unsigned long long)align); 6541 return; 6542 } 6543 6544 size = resource_size(r); 6545 if (size >= align) 6546 return; 6547 6548 /* 6549 * Increase the alignment of the resource. There are two ways we 6550 * can do this: 6551 * 6552 * 1) Increase the size of the resource. BARs are aligned on their 6553 * size, so when we reallocate space for this resource, we'll 6554 * allocate it with the larger alignment. This also prevents 6555 * assignment of any other BARs inside the alignment region, so 6556 * if we're requesting page alignment, this means no other BARs 6557 * will share the page. 6558 * 6559 * The disadvantage is that this makes the resource larger than 6560 * the hardware BAR, which may break drivers that compute things 6561 * based on the resource size, e.g., to find registers at a 6562 * fixed offset before the end of the BAR. 6563 * 6564 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6565 * set r->start to the desired alignment. By itself this 6566 * doesn't prevent other BARs being put inside the alignment 6567 * region, but if we realign *every* resource of every device in 6568 * the system, none of them will share an alignment region. 6569 * 6570 * When the user has requested alignment for only some devices via 6571 * the "pci=resource_alignment" argument, "resize" is true and we 6572 * use the first method. Otherwise we assume we're aligning all 6573 * devices and we use the second. 6574 */ 6575 6576 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6577 bar, r, (unsigned long long)align); 6578 6579 if (resize) { 6580 r->start = 0; 6581 r->end = align - 1; 6582 } else { 6583 r->flags &= ~IORESOURCE_SIZEALIGN; 6584 r->flags |= IORESOURCE_STARTALIGN; 6585 r->start = align; 6586 r->end = r->start + size - 1; 6587 } 6588 r->flags |= IORESOURCE_UNSET; 6589 } 6590 6591 /* 6592 * This function disables memory decoding and releases memory resources 6593 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6594 * It also rounds up size to specified alignment. 6595 * Later on, the kernel will assign page-aligned memory resource back 6596 * to the device. 6597 */ 6598 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6599 { 6600 int i; 6601 struct resource *r; 6602 resource_size_t align; 6603 u16 command; 6604 bool resize = false; 6605 6606 /* 6607 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6608 * 3.4.1.11. Their resources are allocated from the space 6609 * described by the VF BARx register in the PF's SR-IOV capability. 6610 * We can't influence their alignment here. 6611 */ 6612 if (dev->is_virtfn) 6613 return; 6614 6615 /* check if specified PCI is target device to reassign */ 6616 align = pci_specified_resource_alignment(dev, &resize); 6617 if (!align) 6618 return; 6619 6620 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6621 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6622 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6623 return; 6624 } 6625 6626 pci_read_config_word(dev, PCI_COMMAND, &command); 6627 command &= ~PCI_COMMAND_MEMORY; 6628 pci_write_config_word(dev, PCI_COMMAND, command); 6629 6630 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6631 pci_request_resource_alignment(dev, i, align, resize); 6632 6633 /* 6634 * Need to disable bridge's resource window, 6635 * to enable the kernel to reassign new resource 6636 * window later on. 6637 */ 6638 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6639 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6640 r = &dev->resource[i]; 6641 if (!(r->flags & IORESOURCE_MEM)) 6642 continue; 6643 r->flags |= IORESOURCE_UNSET; 6644 r->end = resource_size(r) - 1; 6645 r->start = 0; 6646 } 6647 pci_disable_bridge_window(dev); 6648 } 6649 } 6650 6651 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6652 { 6653 size_t count = 0; 6654 6655 spin_lock(&resource_alignment_lock); 6656 if (resource_alignment_param) 6657 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6658 spin_unlock(&resource_alignment_lock); 6659 6660 return count; 6661 } 6662 6663 static ssize_t resource_alignment_store(struct bus_type *bus, 6664 const char *buf, size_t count) 6665 { 6666 char *param, *old, *end; 6667 6668 if (count >= (PAGE_SIZE - 1)) 6669 return -EINVAL; 6670 6671 param = kstrndup(buf, count, GFP_KERNEL); 6672 if (!param) 6673 return -ENOMEM; 6674 6675 end = strchr(param, '\n'); 6676 if (end) 6677 *end = '\0'; 6678 6679 spin_lock(&resource_alignment_lock); 6680 old = resource_alignment_param; 6681 if (strlen(param)) { 6682 resource_alignment_param = param; 6683 } else { 6684 kfree(param); 6685 resource_alignment_param = NULL; 6686 } 6687 spin_unlock(&resource_alignment_lock); 6688 6689 kfree(old); 6690 6691 return count; 6692 } 6693 6694 static BUS_ATTR_RW(resource_alignment); 6695 6696 static int __init pci_resource_alignment_sysfs_init(void) 6697 { 6698 return bus_create_file(&pci_bus_type, 6699 &bus_attr_resource_alignment); 6700 } 6701 late_initcall(pci_resource_alignment_sysfs_init); 6702 6703 static void pci_no_domains(void) 6704 { 6705 #ifdef CONFIG_PCI_DOMAINS 6706 pci_domains_supported = 0; 6707 #endif 6708 } 6709 6710 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6711 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6712 6713 static int pci_get_new_domain_nr(void) 6714 { 6715 return atomic_inc_return(&__domain_nr); 6716 } 6717 6718 static int of_pci_bus_find_domain_nr(struct device *parent) 6719 { 6720 static int use_dt_domains = -1; 6721 int domain = -1; 6722 6723 if (parent) 6724 domain = of_get_pci_domain_nr(parent->of_node); 6725 6726 /* 6727 * Check DT domain and use_dt_domains values. 6728 * 6729 * If DT domain property is valid (domain >= 0) and 6730 * use_dt_domains != 0, the DT assignment is valid since this means 6731 * we have not previously allocated a domain number by using 6732 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6733 * 1, to indicate that we have just assigned a domain number from 6734 * DT. 6735 * 6736 * If DT domain property value is not valid (ie domain < 0), and we 6737 * have not previously assigned a domain number from DT 6738 * (use_dt_domains != 1) we should assign a domain number by 6739 * using the: 6740 * 6741 * pci_get_new_domain_nr() 6742 * 6743 * API and update the use_dt_domains value to keep track of method we 6744 * are using to assign domain numbers (use_dt_domains = 0). 6745 * 6746 * All other combinations imply we have a platform that is trying 6747 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6748 * which is a recipe for domain mishandling and it is prevented by 6749 * invalidating the domain value (domain = -1) and printing a 6750 * corresponding error. 6751 */ 6752 if (domain >= 0 && use_dt_domains) { 6753 use_dt_domains = 1; 6754 } else if (domain < 0 && use_dt_domains != 1) { 6755 use_dt_domains = 0; 6756 domain = pci_get_new_domain_nr(); 6757 } else { 6758 if (parent) 6759 pr_err("Node %pOF has ", parent->of_node); 6760 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6761 domain = -1; 6762 } 6763 6764 return domain; 6765 } 6766 6767 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6768 { 6769 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6770 acpi_pci_bus_find_domain_nr(bus); 6771 } 6772 #endif 6773 6774 /** 6775 * pci_ext_cfg_avail - can we access extended PCI config space? 6776 * 6777 * Returns 1 if we can access PCI extended config space (offsets 6778 * greater than 0xff). This is the default implementation. Architecture 6779 * implementations can override this. 6780 */ 6781 int __weak pci_ext_cfg_avail(void) 6782 { 6783 return 1; 6784 } 6785 6786 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6787 { 6788 } 6789 EXPORT_SYMBOL(pci_fixup_cardbus); 6790 6791 static int __init pci_setup(char *str) 6792 { 6793 while (str) { 6794 char *k = strchr(str, ','); 6795 if (k) 6796 *k++ = 0; 6797 if (*str && (str = pcibios_setup(str)) && *str) { 6798 if (!strcmp(str, "nomsi")) { 6799 pci_no_msi(); 6800 } else if (!strncmp(str, "noats", 5)) { 6801 pr_info("PCIe: ATS is disabled\n"); 6802 pcie_ats_disabled = true; 6803 } else if (!strcmp(str, "noaer")) { 6804 pci_no_aer(); 6805 } else if (!strcmp(str, "earlydump")) { 6806 pci_early_dump = true; 6807 } else if (!strncmp(str, "realloc=", 8)) { 6808 pci_realloc_get_opt(str + 8); 6809 } else if (!strncmp(str, "realloc", 7)) { 6810 pci_realloc_get_opt("on"); 6811 } else if (!strcmp(str, "nodomains")) { 6812 pci_no_domains(); 6813 } else if (!strncmp(str, "noari", 5)) { 6814 pcie_ari_disabled = true; 6815 } else if (!strncmp(str, "cbiosize=", 9)) { 6816 pci_cardbus_io_size = memparse(str + 9, &str); 6817 } else if (!strncmp(str, "cbmemsize=", 10)) { 6818 pci_cardbus_mem_size = memparse(str + 10, &str); 6819 } else if (!strncmp(str, "resource_alignment=", 19)) { 6820 resource_alignment_param = str + 19; 6821 } else if (!strncmp(str, "ecrc=", 5)) { 6822 pcie_ecrc_get_policy(str + 5); 6823 } else if (!strncmp(str, "hpiosize=", 9)) { 6824 pci_hotplug_io_size = memparse(str + 9, &str); 6825 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6826 pci_hotplug_mmio_size = memparse(str + 11, &str); 6827 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6828 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6829 } else if (!strncmp(str, "hpmemsize=", 10)) { 6830 pci_hotplug_mmio_size = memparse(str + 10, &str); 6831 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6832 } else if (!strncmp(str, "hpbussize=", 10)) { 6833 pci_hotplug_bus_size = 6834 simple_strtoul(str + 10, &str, 0); 6835 if (pci_hotplug_bus_size > 0xff) 6836 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6837 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6838 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6839 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6840 pcie_bus_config = PCIE_BUS_SAFE; 6841 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6842 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6843 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6844 pcie_bus_config = PCIE_BUS_PEER2PEER; 6845 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6846 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6847 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6848 disable_acs_redir_param = str + 18; 6849 } else { 6850 pr_err("PCI: Unknown option `%s'\n", str); 6851 } 6852 } 6853 str = k; 6854 } 6855 return 0; 6856 } 6857 early_param("pci", pci_setup); 6858 6859 /* 6860 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6861 * in pci_setup(), above, to point to data in the __initdata section which 6862 * will be freed after the init sequence is complete. We can't allocate memory 6863 * in pci_setup() because some architectures do not have any memory allocation 6864 * service available during an early_param() call. So we allocate memory and 6865 * copy the variable here before the init section is freed. 6866 * 6867 */ 6868 static int __init pci_realloc_setup_params(void) 6869 { 6870 resource_alignment_param = kstrdup(resource_alignment_param, 6871 GFP_KERNEL); 6872 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6873 6874 return 0; 6875 } 6876 pure_initcall(pci_realloc_setup_params); 6877