1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pci-ats.h> 33 #include <asm/setup.h> 34 #include <asm/dma.h> 35 #include <linux/aer.h> 36 #include "pci.h" 37 38 DEFINE_MUTEX(pci_slot_mutex); 39 40 const char *pci_power_names[] = { 41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 42 }; 43 EXPORT_SYMBOL_GPL(pci_power_names); 44 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 static void pci_dev_d3_sleep(struct pci_dev *dev) 67 { 68 unsigned int delay = dev->d3_delay; 69 70 if (delay < pci_pm_d3_delay) 71 delay = pci_pm_d3_delay; 72 73 if (delay) 74 msleep(delay); 75 } 76 77 #ifdef CONFIG_PCI_DOMAINS 78 int pci_domains_supported = 1; 79 #endif 80 81 #define DEFAULT_CARDBUS_IO_SIZE (256) 82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 86 87 #define DEFAULT_HOTPLUG_IO_SIZE (256) 88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 92 93 #define DEFAULT_HOTPLUG_BUS_SIZE 1 94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 95 96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 97 98 /* 99 * The default CLS is used if arch didn't set CLS explicitly and not 100 * all pci devices agree on the same value. Arch can override either 101 * the dfl or actual value as it sees fit. Don't forget this is 102 * measured in 32-bit words, not bytes. 103 */ 104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 105 u8 pci_cache_line_size; 106 107 /* 108 * If we set up a device for bus mastering, we need to check the latency 109 * timer as certain BIOSes forget to set it properly. 110 */ 111 unsigned int pcibios_max_latency = 255; 112 113 /* If set, the PCIe ARI capability will not be used. */ 114 static bool pcie_ari_disabled; 115 116 /* If set, the PCIe ATS capability will not be used. */ 117 static bool pcie_ats_disabled; 118 119 /* If set, the PCI config space of each device is printed during boot. */ 120 bool pci_early_dump; 121 122 bool pci_ats_disabled(void) 123 { 124 return pcie_ats_disabled; 125 } 126 127 /* Disable bridge_d3 for all PCIe ports */ 128 static bool pci_bridge_d3_disable; 129 /* Force bridge_d3 for all PCIe ports */ 130 static bool pci_bridge_d3_force; 131 132 static int __init pcie_port_pm_setup(char *str) 133 { 134 if (!strcmp(str, "off")) 135 pci_bridge_d3_disable = true; 136 else if (!strcmp(str, "force")) 137 pci_bridge_d3_force = true; 138 return 1; 139 } 140 __setup("pcie_port_pm=", pcie_port_pm_setup); 141 142 /* Time to wait after a reset for device to become responsive */ 143 #define PCIE_RESET_READY_POLL_MS 60000 144 145 /** 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 147 * @bus: pointer to PCI bus structure to search 148 * 149 * Given a PCI bus, returns the highest PCI bus number present in the set 150 * including the given PCI bus and its list of child PCI buses. 151 */ 152 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 153 { 154 struct pci_bus *tmp; 155 unsigned char max, n; 156 157 max = bus->busn_res.end; 158 list_for_each_entry(tmp, &bus->children, node) { 159 n = pci_bus_max_busnr(tmp); 160 if (n > max) 161 max = n; 162 } 163 return max; 164 } 165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 166 167 #ifdef CONFIG_HAS_IOMEM 168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 169 { 170 struct resource *res = &pdev->resource[bar]; 171 172 /* 173 * Make sure the BAR is actually a memory resource, not an IO resource 174 */ 175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 177 return NULL; 178 } 179 return ioremap_nocache(res->start, resource_size(res)); 180 } 181 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 182 183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 184 { 185 /* 186 * Make sure the BAR is actually a memory resource, not an IO resource 187 */ 188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 189 WARN_ON(1); 190 return NULL; 191 } 192 return ioremap_wc(pci_resource_start(pdev, bar), 193 pci_resource_len(pdev, bar)); 194 } 195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 196 #endif 197 198 /** 199 * pci_dev_str_match_path - test if a path string matches a device 200 * @dev: the PCI device to test 201 * @path: string to match the device against 202 * @endptr: pointer to the string after the match 203 * 204 * Test if a string (typically from a kernel parameter) formatted as a 205 * path of device/function addresses matches a PCI device. The string must 206 * be of the form: 207 * 208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 209 * 210 * A path for a device can be obtained using 'lspci -t'. Using a path 211 * is more robust against bus renumbering than using only a single bus, 212 * device and function address. 213 * 214 * Returns 1 if the string matches the device, 0 if it does not and 215 * a negative error code if it fails to parse the string. 216 */ 217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 218 const char **endptr) 219 { 220 int ret; 221 int seg, bus, slot, func; 222 char *wpath, *p; 223 char end; 224 225 *endptr = strchrnul(path, ';'); 226 227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 228 if (!wpath) 229 return -ENOMEM; 230 231 while (1) { 232 p = strrchr(wpath, '/'); 233 if (!p) 234 break; 235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 236 if (ret != 2) { 237 ret = -EINVAL; 238 goto free_and_exit; 239 } 240 241 if (dev->devfn != PCI_DEVFN(slot, func)) { 242 ret = 0; 243 goto free_and_exit; 244 } 245 246 /* 247 * Note: we don't need to get a reference to the upstream 248 * bridge because we hold a reference to the top level 249 * device which should hold a reference to the bridge, 250 * and so on. 251 */ 252 dev = pci_upstream_bridge(dev); 253 if (!dev) { 254 ret = 0; 255 goto free_and_exit; 256 } 257 258 *p = 0; 259 } 260 261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 262 &func, &end); 263 if (ret != 4) { 264 seg = 0; 265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 266 if (ret != 3) { 267 ret = -EINVAL; 268 goto free_and_exit; 269 } 270 } 271 272 ret = (seg == pci_domain_nr(dev->bus) && 273 bus == dev->bus->number && 274 dev->devfn == PCI_DEVFN(slot, func)); 275 276 free_and_exit: 277 kfree(wpath); 278 return ret; 279 } 280 281 /** 282 * pci_dev_str_match - test if a string matches a device 283 * @dev: the PCI device to test 284 * @p: string to match the device against 285 * @endptr: pointer to the string after the match 286 * 287 * Test if a string (typically from a kernel parameter) matches a specified 288 * PCI device. The string may be of one of the following formats: 289 * 290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 292 * 293 * The first format specifies a PCI bus/device/function address which 294 * may change if new hardware is inserted, if motherboard firmware changes, 295 * or due to changes caused in kernel parameters. If the domain is 296 * left unspecified, it is taken to be 0. In order to be robust against 297 * bus renumbering issues, a path of PCI device/function numbers may be used 298 * to address the specific device. The path for a device can be determined 299 * through the use of 'lspci -t'. 300 * 301 * The second format matches devices using IDs in the configuration 302 * space which may match multiple devices in the system. A value of 0 303 * for any field will match all devices. (Note: this differs from 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 305 * legacy reasons and convenience so users don't have to specify 306 * FFFFFFFFs on the command line.) 307 * 308 * Returns 1 if the string matches the device, 0 if it does not and 309 * a negative error code if the string cannot be parsed. 310 */ 311 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 312 const char **endptr) 313 { 314 int ret; 315 int count; 316 unsigned short vendor, device, subsystem_vendor, subsystem_device; 317 318 if (strncmp(p, "pci:", 4) == 0) { 319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 320 p += 4; 321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 322 &subsystem_vendor, &subsystem_device, &count); 323 if (ret != 4) { 324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 325 if (ret != 2) 326 return -EINVAL; 327 328 subsystem_vendor = 0; 329 subsystem_device = 0; 330 } 331 332 p += count; 333 334 if ((!vendor || vendor == dev->vendor) && 335 (!device || device == dev->device) && 336 (!subsystem_vendor || 337 subsystem_vendor == dev->subsystem_vendor) && 338 (!subsystem_device || 339 subsystem_device == dev->subsystem_device)) 340 goto found; 341 } else { 342 /* 343 * PCI Bus, Device, Function IDs are specified 344 * (optionally, may include a path of devfns following it) 345 */ 346 ret = pci_dev_str_match_path(dev, p, &p); 347 if (ret < 0) 348 return ret; 349 else if (ret) 350 goto found; 351 } 352 353 *endptr = p; 354 return 0; 355 356 found: 357 *endptr = p; 358 return 1; 359 } 360 361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 362 u8 pos, int cap, int *ttl) 363 { 364 u8 id; 365 u16 ent; 366 367 pci_bus_read_config_byte(bus, devfn, pos, &pos); 368 369 while ((*ttl)--) { 370 if (pos < 0x40) 371 break; 372 pos &= ~3; 373 pci_bus_read_config_word(bus, devfn, pos, &ent); 374 375 id = ent & 0xff; 376 if (id == 0xff) 377 break; 378 if (id == cap) 379 return pos; 380 pos = (ent >> 8); 381 } 382 return 0; 383 } 384 385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 386 u8 pos, int cap) 387 { 388 int ttl = PCI_FIND_CAP_TTL; 389 390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 391 } 392 393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 394 { 395 return __pci_find_next_cap(dev->bus, dev->devfn, 396 pos + PCI_CAP_LIST_NEXT, cap); 397 } 398 EXPORT_SYMBOL_GPL(pci_find_next_capability); 399 400 static int __pci_bus_find_cap_start(struct pci_bus *bus, 401 unsigned int devfn, u8 hdr_type) 402 { 403 u16 status; 404 405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 406 if (!(status & PCI_STATUS_CAP_LIST)) 407 return 0; 408 409 switch (hdr_type) { 410 case PCI_HEADER_TYPE_NORMAL: 411 case PCI_HEADER_TYPE_BRIDGE: 412 return PCI_CAPABILITY_LIST; 413 case PCI_HEADER_TYPE_CARDBUS: 414 return PCI_CB_CAPABILITY_LIST; 415 } 416 417 return 0; 418 } 419 420 /** 421 * pci_find_capability - query for devices' capabilities 422 * @dev: PCI device to query 423 * @cap: capability code 424 * 425 * Tell if a device supports a given PCI capability. 426 * Returns the address of the requested capability structure within the 427 * device's PCI configuration space or 0 in case the device does not 428 * support it. Possible values for @cap include: 429 * 430 * %PCI_CAP_ID_PM Power Management 431 * %PCI_CAP_ID_AGP Accelerated Graphics Port 432 * %PCI_CAP_ID_VPD Vital Product Data 433 * %PCI_CAP_ID_SLOTID Slot Identification 434 * %PCI_CAP_ID_MSI Message Signalled Interrupts 435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 436 * %PCI_CAP_ID_PCIX PCI-X 437 * %PCI_CAP_ID_EXP PCI Express 438 */ 439 int pci_find_capability(struct pci_dev *dev, int cap) 440 { 441 int pos; 442 443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 444 if (pos) 445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 446 447 return pos; 448 } 449 EXPORT_SYMBOL(pci_find_capability); 450 451 /** 452 * pci_bus_find_capability - query for devices' capabilities 453 * @bus: the PCI bus to query 454 * @devfn: PCI device to query 455 * @cap: capability code 456 * 457 * Like pci_find_capability() but works for PCI devices that do not have a 458 * pci_dev structure set up yet. 459 * 460 * Returns the address of the requested capability structure within the 461 * device's PCI configuration space or 0 in case the device does not 462 * support it. 463 */ 464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 465 { 466 int pos; 467 u8 hdr_type; 468 469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 470 471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 472 if (pos) 473 pos = __pci_find_next_cap(bus, devfn, pos, cap); 474 475 return pos; 476 } 477 EXPORT_SYMBOL(pci_bus_find_capability); 478 479 /** 480 * pci_find_next_ext_capability - Find an extended capability 481 * @dev: PCI device to query 482 * @start: address at which to start looking (0 to start at beginning of list) 483 * @cap: capability code 484 * 485 * Returns the address of the next matching extended capability structure 486 * within the device's PCI configuration space or 0 if the device does 487 * not support it. Some capabilities can occur several times, e.g., the 488 * vendor-specific capability, and this provides a way to find them all. 489 */ 490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 491 { 492 u32 header; 493 int ttl; 494 int pos = PCI_CFG_SPACE_SIZE; 495 496 /* minimum 8 bytes per capability */ 497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 498 499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 500 return 0; 501 502 if (start) 503 pos = start; 504 505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 506 return 0; 507 508 /* 509 * If we have no capabilities, this is indicated by cap ID, 510 * cap version and next pointer all being 0. 511 */ 512 if (header == 0) 513 return 0; 514 515 while (ttl-- > 0) { 516 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 517 return pos; 518 519 pos = PCI_EXT_CAP_NEXT(header); 520 if (pos < PCI_CFG_SPACE_SIZE) 521 break; 522 523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 524 break; 525 } 526 527 return 0; 528 } 529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 530 531 /** 532 * pci_find_ext_capability - Find an extended capability 533 * @dev: PCI device to query 534 * @cap: capability code 535 * 536 * Returns the address of the requested extended capability structure 537 * within the device's PCI configuration space or 0 if the device does 538 * not support it. Possible values for @cap include: 539 * 540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 541 * %PCI_EXT_CAP_ID_VC Virtual Channel 542 * %PCI_EXT_CAP_ID_DSN Device Serial Number 543 * %PCI_EXT_CAP_ID_PWR Power Budgeting 544 */ 545 int pci_find_ext_capability(struct pci_dev *dev, int cap) 546 { 547 return pci_find_next_ext_capability(dev, 0, cap); 548 } 549 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 550 551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 552 { 553 int rc, ttl = PCI_FIND_CAP_TTL; 554 u8 cap, mask; 555 556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 557 mask = HT_3BIT_CAP_MASK; 558 else 559 mask = HT_5BIT_CAP_MASK; 560 561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 562 PCI_CAP_ID_HT, &ttl); 563 while (pos) { 564 rc = pci_read_config_byte(dev, pos + 3, &cap); 565 if (rc != PCIBIOS_SUCCESSFUL) 566 return 0; 567 568 if ((cap & mask) == ht_cap) 569 return pos; 570 571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 572 pos + PCI_CAP_LIST_NEXT, 573 PCI_CAP_ID_HT, &ttl); 574 } 575 576 return 0; 577 } 578 /** 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 580 * @dev: PCI device to query 581 * @pos: Position from which to continue searching 582 * @ht_cap: Hypertransport capability code 583 * 584 * To be used in conjunction with pci_find_ht_capability() to search for 585 * all capabilities matching @ht_cap. @pos should always be a value returned 586 * from pci_find_ht_capability(). 587 * 588 * NB. To be 100% safe against broken PCI devices, the caller should take 589 * steps to avoid an infinite loop. 590 */ 591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 592 { 593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 596 597 /** 598 * pci_find_ht_capability - query a device's Hypertransport capabilities 599 * @dev: PCI device to query 600 * @ht_cap: Hypertransport capability code 601 * 602 * Tell if a device supports a given Hypertransport capability. 603 * Returns an address within the device's PCI configuration space 604 * or 0 in case the device does not support the request capability. 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 606 * which has a Hypertransport capability matching @ht_cap. 607 */ 608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 609 { 610 int pos; 611 612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 613 if (pos) 614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 615 616 return pos; 617 } 618 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 619 620 /** 621 * pci_find_parent_resource - return resource region of parent bus of given 622 * region 623 * @dev: PCI device structure contains resources to be searched 624 * @res: child resource record for which parent is sought 625 * 626 * For given resource region of given device, return the resource region of 627 * parent bus the given region is contained in. 628 */ 629 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 630 struct resource *res) 631 { 632 const struct pci_bus *bus = dev->bus; 633 struct resource *r; 634 int i; 635 636 pci_bus_for_each_resource(bus, r, i) { 637 if (!r) 638 continue; 639 if (resource_contains(r, res)) { 640 641 /* 642 * If the window is prefetchable but the BAR is 643 * not, the allocator made a mistake. 644 */ 645 if (r->flags & IORESOURCE_PREFETCH && 646 !(res->flags & IORESOURCE_PREFETCH)) 647 return NULL; 648 649 /* 650 * If we're below a transparent bridge, there may 651 * be both a positively-decoded aperture and a 652 * subtractively-decoded region that contain the BAR. 653 * We want the positively-decoded one, so this depends 654 * on pci_bus_for_each_resource() giving us those 655 * first. 656 */ 657 return r; 658 } 659 } 660 return NULL; 661 } 662 EXPORT_SYMBOL(pci_find_parent_resource); 663 664 /** 665 * pci_find_resource - Return matching PCI device resource 666 * @dev: PCI device to query 667 * @res: Resource to look for 668 * 669 * Goes over standard PCI resources (BARs) and checks if the given resource 670 * is partially or fully contained in any of them. In that case the 671 * matching resource is returned, %NULL otherwise. 672 */ 673 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 674 { 675 int i; 676 677 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 678 struct resource *r = &dev->resource[i]; 679 680 if (r->start && resource_contains(r, res)) 681 return r; 682 } 683 684 return NULL; 685 } 686 EXPORT_SYMBOL(pci_find_resource); 687 688 /** 689 * pci_find_pcie_root_port - return PCIe Root Port 690 * @dev: PCI device to query 691 * 692 * Traverse up the parent chain and return the PCIe Root Port PCI Device 693 * for a given PCI Device. 694 */ 695 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 696 { 697 struct pci_dev *bridge, *highest_pcie_bridge = dev; 698 699 bridge = pci_upstream_bridge(dev); 700 while (bridge && pci_is_pcie(bridge)) { 701 highest_pcie_bridge = bridge; 702 bridge = pci_upstream_bridge(bridge); 703 } 704 705 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 706 return NULL; 707 708 return highest_pcie_bridge; 709 } 710 EXPORT_SYMBOL(pci_find_pcie_root_port); 711 712 /** 713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 714 * @dev: the PCI device to operate on 715 * @pos: config space offset of status word 716 * @mask: mask of bit(s) to care about in status word 717 * 718 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 719 */ 720 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 721 { 722 int i; 723 724 /* Wait for Transaction Pending bit clean */ 725 for (i = 0; i < 4; i++) { 726 u16 status; 727 if (i) 728 msleep((1 << (i - 1)) * 100); 729 730 pci_read_config_word(dev, pos, &status); 731 if (!(status & mask)) 732 return 1; 733 } 734 735 return 0; 736 } 737 738 /** 739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 740 * @dev: PCI device to have its BARs restored 741 * 742 * Restore the BAR values for a given device, so as to make it 743 * accessible by its driver. 744 */ 745 static void pci_restore_bars(struct pci_dev *dev) 746 { 747 int i; 748 749 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 750 pci_update_resource(dev, i); 751 } 752 753 static const struct pci_platform_pm_ops *pci_platform_pm; 754 755 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 756 { 757 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 758 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 759 return -EINVAL; 760 pci_platform_pm = ops; 761 return 0; 762 } 763 764 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 765 { 766 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 767 } 768 769 static inline int platform_pci_set_power_state(struct pci_dev *dev, 770 pci_power_t t) 771 { 772 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 773 } 774 775 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 776 { 777 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 778 } 779 780 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 781 { 782 if (pci_platform_pm && pci_platform_pm->refresh_state) 783 pci_platform_pm->refresh_state(dev); 784 } 785 786 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 787 { 788 return pci_platform_pm ? 789 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 790 } 791 792 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 793 { 794 return pci_platform_pm ? 795 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 796 } 797 798 static inline bool platform_pci_need_resume(struct pci_dev *dev) 799 { 800 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 801 } 802 803 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 804 { 805 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 806 } 807 808 /** 809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 810 * given PCI device 811 * @dev: PCI device to handle. 812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 813 * 814 * RETURN VALUE: 815 * -EINVAL if the requested state is invalid. 816 * -EIO if device does not support PCI PM or its PM capabilities register has a 817 * wrong version, or device doesn't support the requested state. 818 * 0 if device already is in the requested state. 819 * 0 if device's power state has been successfully changed. 820 */ 821 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 822 { 823 u16 pmcsr; 824 bool need_restore = false; 825 826 /* Check if we're already there */ 827 if (dev->current_state == state) 828 return 0; 829 830 if (!dev->pm_cap) 831 return -EIO; 832 833 if (state < PCI_D0 || state > PCI_D3hot) 834 return -EINVAL; 835 836 /* 837 * Validate current state: 838 * Can enter D0 from any state, but if we can only go deeper 839 * to sleep if we're already in a low power state 840 */ 841 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 842 && dev->current_state > state) { 843 pci_err(dev, "invalid power transition (from state %d to %d)\n", 844 dev->current_state, state); 845 return -EINVAL; 846 } 847 848 /* Check if this device supports the desired state */ 849 if ((state == PCI_D1 && !dev->d1_support) 850 || (state == PCI_D2 && !dev->d2_support)) 851 return -EIO; 852 853 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 854 855 /* 856 * If we're (effectively) in D3, force entire word to 0. 857 * This doesn't affect PME_Status, disables PME_En, and 858 * sets PowerState to 0. 859 */ 860 switch (dev->current_state) { 861 case PCI_D0: 862 case PCI_D1: 863 case PCI_D2: 864 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 865 pmcsr |= state; 866 break; 867 case PCI_D3hot: 868 case PCI_D3cold: 869 case PCI_UNKNOWN: /* Boot-up */ 870 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 871 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 872 need_restore = true; 873 /* Fall-through - force to D0 */ 874 default: 875 pmcsr = 0; 876 break; 877 } 878 879 /* Enter specified state */ 880 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 881 882 /* 883 * Mandatory power management transition delays; see PCI PM 1.1 884 * 5.6.1 table 18 885 */ 886 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 887 pci_dev_d3_sleep(dev); 888 else if (state == PCI_D2 || dev->current_state == PCI_D2) 889 udelay(PCI_PM_D2_DELAY); 890 891 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 892 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 893 if (dev->current_state != state) 894 pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n", 895 dev->current_state); 896 897 /* 898 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 899 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 900 * from D3hot to D0 _may_ perform an internal reset, thereby 901 * going to "D0 Uninitialized" rather than "D0 Initialized". 902 * For example, at least some versions of the 3c905B and the 903 * 3c556B exhibit this behaviour. 904 * 905 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 906 * devices in a D3hot state at boot. Consequently, we need to 907 * restore at least the BARs so that the device will be 908 * accessible to its driver. 909 */ 910 if (need_restore) 911 pci_restore_bars(dev); 912 913 if (dev->bus->self) 914 pcie_aspm_pm_state_change(dev->bus->self); 915 916 return 0; 917 } 918 919 /** 920 * pci_update_current_state - Read power state of given device and cache it 921 * @dev: PCI device to handle. 922 * @state: State to cache in case the device doesn't have the PM capability 923 * 924 * The power state is read from the PMCSR register, which however is 925 * inaccessible in D3cold. The platform firmware is therefore queried first 926 * to detect accessibility of the register. In case the platform firmware 927 * reports an incorrect state or the device isn't power manageable by the 928 * platform at all, we try to detect D3cold by testing accessibility of the 929 * vendor ID in config space. 930 */ 931 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 932 { 933 if (platform_pci_get_power_state(dev) == PCI_D3cold || 934 !pci_device_is_present(dev)) { 935 dev->current_state = PCI_D3cold; 936 } else if (dev->pm_cap) { 937 u16 pmcsr; 938 939 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 940 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 941 } else { 942 dev->current_state = state; 943 } 944 } 945 946 /** 947 * pci_refresh_power_state - Refresh the given device's power state data 948 * @dev: Target PCI device. 949 * 950 * Ask the platform to refresh the devices power state information and invoke 951 * pci_update_current_state() to update its current PCI power state. 952 */ 953 void pci_refresh_power_state(struct pci_dev *dev) 954 { 955 if (platform_pci_power_manageable(dev)) 956 platform_pci_refresh_power_state(dev); 957 958 pci_update_current_state(dev, dev->current_state); 959 } 960 961 /** 962 * pci_platform_power_transition - Use platform to change device power state 963 * @dev: PCI device to handle. 964 * @state: State to put the device into. 965 */ 966 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 967 { 968 int error; 969 970 if (platform_pci_power_manageable(dev)) { 971 error = platform_pci_set_power_state(dev, state); 972 if (!error) 973 pci_update_current_state(dev, state); 974 } else 975 error = -ENODEV; 976 977 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 978 dev->current_state = PCI_D0; 979 980 return error; 981 } 982 983 /** 984 * pci_wakeup - Wake up a PCI device 985 * @pci_dev: Device to handle. 986 * @ign: ignored parameter 987 */ 988 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 989 { 990 pci_wakeup_event(pci_dev); 991 pm_request_resume(&pci_dev->dev); 992 return 0; 993 } 994 995 /** 996 * pci_wakeup_bus - Walk given bus and wake up devices on it 997 * @bus: Top bus of the subtree to walk. 998 */ 999 void pci_wakeup_bus(struct pci_bus *bus) 1000 { 1001 if (bus) 1002 pci_walk_bus(bus, pci_wakeup, NULL); 1003 } 1004 1005 /** 1006 * __pci_start_power_transition - Start power transition of a PCI device 1007 * @dev: PCI device to handle. 1008 * @state: State to put the device into. 1009 */ 1010 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 1011 { 1012 if (state == PCI_D0) { 1013 pci_platform_power_transition(dev, PCI_D0); 1014 /* 1015 * Mandatory power management transition delays, see 1016 * PCI Express Base Specification Revision 2.0 Section 1017 * 6.6.1: Conventional Reset. Do not delay for 1018 * devices powered on/off by corresponding bridge, 1019 * because have already delayed for the bridge. 1020 */ 1021 if (dev->runtime_d3cold) { 1022 if (dev->d3cold_delay && !dev->imm_ready) 1023 msleep(dev->d3cold_delay); 1024 /* 1025 * When powering on a bridge from D3cold, the 1026 * whole hierarchy may be powered on into 1027 * D0uninitialized state, resume them to give 1028 * them a chance to suspend again 1029 */ 1030 pci_wakeup_bus(dev->subordinate); 1031 } 1032 } 1033 } 1034 1035 /** 1036 * __pci_dev_set_current_state - Set current state of a PCI device 1037 * @dev: Device to handle 1038 * @data: pointer to state to be set 1039 */ 1040 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1041 { 1042 pci_power_t state = *(pci_power_t *)data; 1043 1044 dev->current_state = state; 1045 return 0; 1046 } 1047 1048 /** 1049 * pci_bus_set_current_state - Walk given bus and set current state of devices 1050 * @bus: Top bus of the subtree to walk. 1051 * @state: state to be set 1052 */ 1053 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1054 { 1055 if (bus) 1056 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1057 } 1058 1059 /** 1060 * __pci_complete_power_transition - Complete power transition of a PCI device 1061 * @dev: PCI device to handle. 1062 * @state: State to put the device into. 1063 * 1064 * This function should not be called directly by device drivers. 1065 */ 1066 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 1067 { 1068 int ret; 1069 1070 if (state <= PCI_D0) 1071 return -EINVAL; 1072 ret = pci_platform_power_transition(dev, state); 1073 /* Power off the bridge may power off the whole hierarchy */ 1074 if (!ret && state == PCI_D3cold) 1075 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1076 return ret; 1077 } 1078 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 1079 1080 /** 1081 * pci_set_power_state - Set the power state of a PCI device 1082 * @dev: PCI device to handle. 1083 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1084 * 1085 * Transition a device to a new power state, using the platform firmware and/or 1086 * the device's PCI PM registers. 1087 * 1088 * RETURN VALUE: 1089 * -EINVAL if the requested state is invalid. 1090 * -EIO if device does not support PCI PM or its PM capabilities register has a 1091 * wrong version, or device doesn't support the requested state. 1092 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1093 * 0 if device already is in the requested state. 1094 * 0 if the transition is to D3 but D3 is not supported. 1095 * 0 if device's power state has been successfully changed. 1096 */ 1097 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1098 { 1099 int error; 1100 1101 /* Bound the state we're entering */ 1102 if (state > PCI_D3cold) 1103 state = PCI_D3cold; 1104 else if (state < PCI_D0) 1105 state = PCI_D0; 1106 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1107 1108 /* 1109 * If the device or the parent bridge do not support PCI 1110 * PM, ignore the request if we're doing anything other 1111 * than putting it into D0 (which would only happen on 1112 * boot). 1113 */ 1114 return 0; 1115 1116 /* Check if we're already there */ 1117 if (dev->current_state == state) 1118 return 0; 1119 1120 __pci_start_power_transition(dev, state); 1121 1122 /* 1123 * This device is quirked not to be put into D3, so don't put it in 1124 * D3 1125 */ 1126 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1127 return 0; 1128 1129 /* 1130 * To put device in D3cold, we put device into D3hot in native 1131 * way, then put device into D3cold with platform ops 1132 */ 1133 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1134 PCI_D3hot : state); 1135 1136 if (!__pci_complete_power_transition(dev, state)) 1137 error = 0; 1138 1139 return error; 1140 } 1141 EXPORT_SYMBOL(pci_set_power_state); 1142 1143 /** 1144 * pci_power_up - Put the given device into D0 forcibly 1145 * @dev: PCI device to power up 1146 */ 1147 void pci_power_up(struct pci_dev *dev) 1148 { 1149 __pci_start_power_transition(dev, PCI_D0); 1150 pci_raw_set_power_state(dev, PCI_D0); 1151 pci_update_current_state(dev, PCI_D0); 1152 } 1153 1154 /** 1155 * pci_choose_state - Choose the power state of a PCI device 1156 * @dev: PCI device to be suspended 1157 * @state: target sleep state for the whole system. This is the value 1158 * that is passed to suspend() function. 1159 * 1160 * Returns PCI power state suitable for given device and given system 1161 * message. 1162 */ 1163 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1164 { 1165 pci_power_t ret; 1166 1167 if (!dev->pm_cap) 1168 return PCI_D0; 1169 1170 ret = platform_pci_choose_state(dev); 1171 if (ret != PCI_POWER_ERROR) 1172 return ret; 1173 1174 switch (state.event) { 1175 case PM_EVENT_ON: 1176 return PCI_D0; 1177 case PM_EVENT_FREEZE: 1178 case PM_EVENT_PRETHAW: 1179 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1180 case PM_EVENT_SUSPEND: 1181 case PM_EVENT_HIBERNATE: 1182 return PCI_D3hot; 1183 default: 1184 pci_info(dev, "unrecognized suspend event %d\n", 1185 state.event); 1186 BUG(); 1187 } 1188 return PCI_D0; 1189 } 1190 EXPORT_SYMBOL(pci_choose_state); 1191 1192 #define PCI_EXP_SAVE_REGS 7 1193 1194 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1195 u16 cap, bool extended) 1196 { 1197 struct pci_cap_saved_state *tmp; 1198 1199 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1200 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1201 return tmp; 1202 } 1203 return NULL; 1204 } 1205 1206 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1207 { 1208 return _pci_find_saved_cap(dev, cap, false); 1209 } 1210 1211 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1212 { 1213 return _pci_find_saved_cap(dev, cap, true); 1214 } 1215 1216 static int pci_save_pcie_state(struct pci_dev *dev) 1217 { 1218 int i = 0; 1219 struct pci_cap_saved_state *save_state; 1220 u16 *cap; 1221 1222 if (!pci_is_pcie(dev)) 1223 return 0; 1224 1225 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1226 if (!save_state) { 1227 pci_err(dev, "buffer not found in %s\n", __func__); 1228 return -ENOMEM; 1229 } 1230 1231 cap = (u16 *)&save_state->cap.data[0]; 1232 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1233 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1234 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1235 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1236 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1237 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1238 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1239 1240 return 0; 1241 } 1242 1243 static void pci_restore_pcie_state(struct pci_dev *dev) 1244 { 1245 int i = 0; 1246 struct pci_cap_saved_state *save_state; 1247 u16 *cap; 1248 1249 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1250 if (!save_state) 1251 return; 1252 1253 cap = (u16 *)&save_state->cap.data[0]; 1254 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1255 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1256 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1257 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1258 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1259 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1260 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1261 } 1262 1263 static int pci_save_pcix_state(struct pci_dev *dev) 1264 { 1265 int pos; 1266 struct pci_cap_saved_state *save_state; 1267 1268 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1269 if (!pos) 1270 return 0; 1271 1272 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1273 if (!save_state) { 1274 pci_err(dev, "buffer not found in %s\n", __func__); 1275 return -ENOMEM; 1276 } 1277 1278 pci_read_config_word(dev, pos + PCI_X_CMD, 1279 (u16 *)save_state->cap.data); 1280 1281 return 0; 1282 } 1283 1284 static void pci_restore_pcix_state(struct pci_dev *dev) 1285 { 1286 int i = 0, pos; 1287 struct pci_cap_saved_state *save_state; 1288 u16 *cap; 1289 1290 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1291 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1292 if (!save_state || !pos) 1293 return; 1294 cap = (u16 *)&save_state->cap.data[0]; 1295 1296 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1297 } 1298 1299 static void pci_save_ltr_state(struct pci_dev *dev) 1300 { 1301 int ltr; 1302 struct pci_cap_saved_state *save_state; 1303 u16 *cap; 1304 1305 if (!pci_is_pcie(dev)) 1306 return; 1307 1308 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1309 if (!ltr) 1310 return; 1311 1312 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1313 if (!save_state) { 1314 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1315 return; 1316 } 1317 1318 cap = (u16 *)&save_state->cap.data[0]; 1319 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1320 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1321 } 1322 1323 static void pci_restore_ltr_state(struct pci_dev *dev) 1324 { 1325 struct pci_cap_saved_state *save_state; 1326 int ltr; 1327 u16 *cap; 1328 1329 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1330 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1331 if (!save_state || !ltr) 1332 return; 1333 1334 cap = (u16 *)&save_state->cap.data[0]; 1335 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1336 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1337 } 1338 1339 /** 1340 * pci_save_state - save the PCI configuration space of a device before 1341 * suspending 1342 * @dev: PCI device that we're dealing with 1343 */ 1344 int pci_save_state(struct pci_dev *dev) 1345 { 1346 int i; 1347 /* XXX: 100% dword access ok here? */ 1348 for (i = 0; i < 16; i++) 1349 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1350 dev->state_saved = true; 1351 1352 i = pci_save_pcie_state(dev); 1353 if (i != 0) 1354 return i; 1355 1356 i = pci_save_pcix_state(dev); 1357 if (i != 0) 1358 return i; 1359 1360 pci_save_ltr_state(dev); 1361 pci_save_dpc_state(dev); 1362 return pci_save_vc_state(dev); 1363 } 1364 EXPORT_SYMBOL(pci_save_state); 1365 1366 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1367 u32 saved_val, int retry, bool force) 1368 { 1369 u32 val; 1370 1371 pci_read_config_dword(pdev, offset, &val); 1372 if (!force && val == saved_val) 1373 return; 1374 1375 for (;;) { 1376 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1377 offset, val, saved_val); 1378 pci_write_config_dword(pdev, offset, saved_val); 1379 if (retry-- <= 0) 1380 return; 1381 1382 pci_read_config_dword(pdev, offset, &val); 1383 if (val == saved_val) 1384 return; 1385 1386 mdelay(1); 1387 } 1388 } 1389 1390 static void pci_restore_config_space_range(struct pci_dev *pdev, 1391 int start, int end, int retry, 1392 bool force) 1393 { 1394 int index; 1395 1396 for (index = end; index >= start; index--) 1397 pci_restore_config_dword(pdev, 4 * index, 1398 pdev->saved_config_space[index], 1399 retry, force); 1400 } 1401 1402 static void pci_restore_config_space(struct pci_dev *pdev) 1403 { 1404 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1405 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1406 /* Restore BARs before the command register. */ 1407 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1408 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1409 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1410 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1411 1412 /* 1413 * Force rewriting of prefetch registers to avoid S3 resume 1414 * issues on Intel PCI bridges that occur when these 1415 * registers are not explicitly written. 1416 */ 1417 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1418 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1419 } else { 1420 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1421 } 1422 } 1423 1424 static void pci_restore_rebar_state(struct pci_dev *pdev) 1425 { 1426 unsigned int pos, nbars, i; 1427 u32 ctrl; 1428 1429 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1430 if (!pos) 1431 return; 1432 1433 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1434 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1435 PCI_REBAR_CTRL_NBAR_SHIFT; 1436 1437 for (i = 0; i < nbars; i++, pos += 8) { 1438 struct resource *res; 1439 int bar_idx, size; 1440 1441 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1442 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1443 res = pdev->resource + bar_idx; 1444 size = ilog2(resource_size(res)) - 20; 1445 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1446 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1447 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1448 } 1449 } 1450 1451 /** 1452 * pci_restore_state - Restore the saved state of a PCI device 1453 * @dev: PCI device that we're dealing with 1454 */ 1455 void pci_restore_state(struct pci_dev *dev) 1456 { 1457 if (!dev->state_saved) 1458 return; 1459 1460 /* 1461 * Restore max latencies (in the LTR capability) before enabling 1462 * LTR itself (in the PCIe capability). 1463 */ 1464 pci_restore_ltr_state(dev); 1465 1466 pci_restore_pcie_state(dev); 1467 pci_restore_pasid_state(dev); 1468 pci_restore_pri_state(dev); 1469 pci_restore_ats_state(dev); 1470 pci_restore_vc_state(dev); 1471 pci_restore_rebar_state(dev); 1472 pci_restore_dpc_state(dev); 1473 1474 pci_cleanup_aer_error_status_regs(dev); 1475 1476 pci_restore_config_space(dev); 1477 1478 pci_restore_pcix_state(dev); 1479 pci_restore_msi_state(dev); 1480 1481 /* Restore ACS and IOV configuration state */ 1482 pci_enable_acs(dev); 1483 pci_restore_iov_state(dev); 1484 1485 dev->state_saved = false; 1486 } 1487 EXPORT_SYMBOL(pci_restore_state); 1488 1489 struct pci_saved_state { 1490 u32 config_space[16]; 1491 struct pci_cap_saved_data cap[0]; 1492 }; 1493 1494 /** 1495 * pci_store_saved_state - Allocate and return an opaque struct containing 1496 * the device saved state. 1497 * @dev: PCI device that we're dealing with 1498 * 1499 * Return NULL if no state or error. 1500 */ 1501 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1502 { 1503 struct pci_saved_state *state; 1504 struct pci_cap_saved_state *tmp; 1505 struct pci_cap_saved_data *cap; 1506 size_t size; 1507 1508 if (!dev->state_saved) 1509 return NULL; 1510 1511 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1512 1513 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1514 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1515 1516 state = kzalloc(size, GFP_KERNEL); 1517 if (!state) 1518 return NULL; 1519 1520 memcpy(state->config_space, dev->saved_config_space, 1521 sizeof(state->config_space)); 1522 1523 cap = state->cap; 1524 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1525 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1526 memcpy(cap, &tmp->cap, len); 1527 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1528 } 1529 /* Empty cap_save terminates list */ 1530 1531 return state; 1532 } 1533 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1534 1535 /** 1536 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1537 * @dev: PCI device that we're dealing with 1538 * @state: Saved state returned from pci_store_saved_state() 1539 */ 1540 int pci_load_saved_state(struct pci_dev *dev, 1541 struct pci_saved_state *state) 1542 { 1543 struct pci_cap_saved_data *cap; 1544 1545 dev->state_saved = false; 1546 1547 if (!state) 1548 return 0; 1549 1550 memcpy(dev->saved_config_space, state->config_space, 1551 sizeof(state->config_space)); 1552 1553 cap = state->cap; 1554 while (cap->size) { 1555 struct pci_cap_saved_state *tmp; 1556 1557 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1558 if (!tmp || tmp->cap.size != cap->size) 1559 return -EINVAL; 1560 1561 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1562 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1563 sizeof(struct pci_cap_saved_data) + cap->size); 1564 } 1565 1566 dev->state_saved = true; 1567 return 0; 1568 } 1569 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1570 1571 /** 1572 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1573 * and free the memory allocated for it. 1574 * @dev: PCI device that we're dealing with 1575 * @state: Pointer to saved state returned from pci_store_saved_state() 1576 */ 1577 int pci_load_and_free_saved_state(struct pci_dev *dev, 1578 struct pci_saved_state **state) 1579 { 1580 int ret = pci_load_saved_state(dev, *state); 1581 kfree(*state); 1582 *state = NULL; 1583 return ret; 1584 } 1585 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1586 1587 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1588 { 1589 return pci_enable_resources(dev, bars); 1590 } 1591 1592 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1593 { 1594 int err; 1595 struct pci_dev *bridge; 1596 u16 cmd; 1597 u8 pin; 1598 1599 err = pci_set_power_state(dev, PCI_D0); 1600 if (err < 0 && err != -EIO) 1601 return err; 1602 1603 bridge = pci_upstream_bridge(dev); 1604 if (bridge) 1605 pcie_aspm_powersave_config_link(bridge); 1606 1607 err = pcibios_enable_device(dev, bars); 1608 if (err < 0) 1609 return err; 1610 pci_fixup_device(pci_fixup_enable, dev); 1611 1612 if (dev->msi_enabled || dev->msix_enabled) 1613 return 0; 1614 1615 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1616 if (pin) { 1617 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1618 if (cmd & PCI_COMMAND_INTX_DISABLE) 1619 pci_write_config_word(dev, PCI_COMMAND, 1620 cmd & ~PCI_COMMAND_INTX_DISABLE); 1621 } 1622 1623 return 0; 1624 } 1625 1626 /** 1627 * pci_reenable_device - Resume abandoned device 1628 * @dev: PCI device to be resumed 1629 * 1630 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1631 * to be called by normal code, write proper resume handler and use it instead. 1632 */ 1633 int pci_reenable_device(struct pci_dev *dev) 1634 { 1635 if (pci_is_enabled(dev)) 1636 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1637 return 0; 1638 } 1639 EXPORT_SYMBOL(pci_reenable_device); 1640 1641 static void pci_enable_bridge(struct pci_dev *dev) 1642 { 1643 struct pci_dev *bridge; 1644 int retval; 1645 1646 bridge = pci_upstream_bridge(dev); 1647 if (bridge) 1648 pci_enable_bridge(bridge); 1649 1650 if (pci_is_enabled(dev)) { 1651 if (!dev->is_busmaster) 1652 pci_set_master(dev); 1653 return; 1654 } 1655 1656 retval = pci_enable_device(dev); 1657 if (retval) 1658 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1659 retval); 1660 pci_set_master(dev); 1661 } 1662 1663 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1664 { 1665 struct pci_dev *bridge; 1666 int err; 1667 int i, bars = 0; 1668 1669 /* 1670 * Power state could be unknown at this point, either due to a fresh 1671 * boot or a device removal call. So get the current power state 1672 * so that things like MSI message writing will behave as expected 1673 * (e.g. if the device really is in D0 at enable time). 1674 */ 1675 if (dev->pm_cap) { 1676 u16 pmcsr; 1677 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1678 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1679 } 1680 1681 if (atomic_inc_return(&dev->enable_cnt) > 1) 1682 return 0; /* already enabled */ 1683 1684 bridge = pci_upstream_bridge(dev); 1685 if (bridge) 1686 pci_enable_bridge(bridge); 1687 1688 /* only skip sriov related */ 1689 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1690 if (dev->resource[i].flags & flags) 1691 bars |= (1 << i); 1692 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1693 if (dev->resource[i].flags & flags) 1694 bars |= (1 << i); 1695 1696 err = do_pci_enable_device(dev, bars); 1697 if (err < 0) 1698 atomic_dec(&dev->enable_cnt); 1699 return err; 1700 } 1701 1702 /** 1703 * pci_enable_device_io - Initialize a device for use with IO space 1704 * @dev: PCI device to be initialized 1705 * 1706 * Initialize device before it's used by a driver. Ask low-level code 1707 * to enable I/O resources. Wake up the device if it was suspended. 1708 * Beware, this function can fail. 1709 */ 1710 int pci_enable_device_io(struct pci_dev *dev) 1711 { 1712 return pci_enable_device_flags(dev, IORESOURCE_IO); 1713 } 1714 EXPORT_SYMBOL(pci_enable_device_io); 1715 1716 /** 1717 * pci_enable_device_mem - Initialize a device for use with Memory space 1718 * @dev: PCI device to be initialized 1719 * 1720 * Initialize device before it's used by a driver. Ask low-level code 1721 * to enable Memory resources. Wake up the device if it was suspended. 1722 * Beware, this function can fail. 1723 */ 1724 int pci_enable_device_mem(struct pci_dev *dev) 1725 { 1726 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1727 } 1728 EXPORT_SYMBOL(pci_enable_device_mem); 1729 1730 /** 1731 * pci_enable_device - Initialize device before it's used by a driver. 1732 * @dev: PCI device to be initialized 1733 * 1734 * Initialize device before it's used by a driver. Ask low-level code 1735 * to enable I/O and memory. Wake up the device if it was suspended. 1736 * Beware, this function can fail. 1737 * 1738 * Note we don't actually enable the device many times if we call 1739 * this function repeatedly (we just increment the count). 1740 */ 1741 int pci_enable_device(struct pci_dev *dev) 1742 { 1743 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1744 } 1745 EXPORT_SYMBOL(pci_enable_device); 1746 1747 /* 1748 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1749 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1750 * there's no need to track it separately. pci_devres is initialized 1751 * when a device is enabled using managed PCI device enable interface. 1752 */ 1753 struct pci_devres { 1754 unsigned int enabled:1; 1755 unsigned int pinned:1; 1756 unsigned int orig_intx:1; 1757 unsigned int restore_intx:1; 1758 unsigned int mwi:1; 1759 u32 region_mask; 1760 }; 1761 1762 static void pcim_release(struct device *gendev, void *res) 1763 { 1764 struct pci_dev *dev = to_pci_dev(gendev); 1765 struct pci_devres *this = res; 1766 int i; 1767 1768 if (dev->msi_enabled) 1769 pci_disable_msi(dev); 1770 if (dev->msix_enabled) 1771 pci_disable_msix(dev); 1772 1773 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1774 if (this->region_mask & (1 << i)) 1775 pci_release_region(dev, i); 1776 1777 if (this->mwi) 1778 pci_clear_mwi(dev); 1779 1780 if (this->restore_intx) 1781 pci_intx(dev, this->orig_intx); 1782 1783 if (this->enabled && !this->pinned) 1784 pci_disable_device(dev); 1785 } 1786 1787 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1788 { 1789 struct pci_devres *dr, *new_dr; 1790 1791 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1792 if (dr) 1793 return dr; 1794 1795 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1796 if (!new_dr) 1797 return NULL; 1798 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1799 } 1800 1801 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1802 { 1803 if (pci_is_managed(pdev)) 1804 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1805 return NULL; 1806 } 1807 1808 /** 1809 * pcim_enable_device - Managed pci_enable_device() 1810 * @pdev: PCI device to be initialized 1811 * 1812 * Managed pci_enable_device(). 1813 */ 1814 int pcim_enable_device(struct pci_dev *pdev) 1815 { 1816 struct pci_devres *dr; 1817 int rc; 1818 1819 dr = get_pci_dr(pdev); 1820 if (unlikely(!dr)) 1821 return -ENOMEM; 1822 if (dr->enabled) 1823 return 0; 1824 1825 rc = pci_enable_device(pdev); 1826 if (!rc) { 1827 pdev->is_managed = 1; 1828 dr->enabled = 1; 1829 } 1830 return rc; 1831 } 1832 EXPORT_SYMBOL(pcim_enable_device); 1833 1834 /** 1835 * pcim_pin_device - Pin managed PCI device 1836 * @pdev: PCI device to pin 1837 * 1838 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1839 * driver detach. @pdev must have been enabled with 1840 * pcim_enable_device(). 1841 */ 1842 void pcim_pin_device(struct pci_dev *pdev) 1843 { 1844 struct pci_devres *dr; 1845 1846 dr = find_pci_dr(pdev); 1847 WARN_ON(!dr || !dr->enabled); 1848 if (dr) 1849 dr->pinned = 1; 1850 } 1851 EXPORT_SYMBOL(pcim_pin_device); 1852 1853 /* 1854 * pcibios_add_device - provide arch specific hooks when adding device dev 1855 * @dev: the PCI device being added 1856 * 1857 * Permits the platform to provide architecture specific functionality when 1858 * devices are added. This is the default implementation. Architecture 1859 * implementations can override this. 1860 */ 1861 int __weak pcibios_add_device(struct pci_dev *dev) 1862 { 1863 return 0; 1864 } 1865 1866 /** 1867 * pcibios_release_device - provide arch specific hooks when releasing 1868 * device dev 1869 * @dev: the PCI device being released 1870 * 1871 * Permits the platform to provide architecture specific functionality when 1872 * devices are released. This is the default implementation. Architecture 1873 * implementations can override this. 1874 */ 1875 void __weak pcibios_release_device(struct pci_dev *dev) {} 1876 1877 /** 1878 * pcibios_disable_device - disable arch specific PCI resources for device dev 1879 * @dev: the PCI device to disable 1880 * 1881 * Disables architecture specific PCI resources for the device. This 1882 * is the default implementation. Architecture implementations can 1883 * override this. 1884 */ 1885 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1886 1887 /** 1888 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1889 * @irq: ISA IRQ to penalize 1890 * @active: IRQ active or not 1891 * 1892 * Permits the platform to provide architecture-specific functionality when 1893 * penalizing ISA IRQs. This is the default implementation. Architecture 1894 * implementations can override this. 1895 */ 1896 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1897 1898 static void do_pci_disable_device(struct pci_dev *dev) 1899 { 1900 u16 pci_command; 1901 1902 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1903 if (pci_command & PCI_COMMAND_MASTER) { 1904 pci_command &= ~PCI_COMMAND_MASTER; 1905 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1906 } 1907 1908 pcibios_disable_device(dev); 1909 } 1910 1911 /** 1912 * pci_disable_enabled_device - Disable device without updating enable_cnt 1913 * @dev: PCI device to disable 1914 * 1915 * NOTE: This function is a backend of PCI power management routines and is 1916 * not supposed to be called drivers. 1917 */ 1918 void pci_disable_enabled_device(struct pci_dev *dev) 1919 { 1920 if (pci_is_enabled(dev)) 1921 do_pci_disable_device(dev); 1922 } 1923 1924 /** 1925 * pci_disable_device - Disable PCI device after use 1926 * @dev: PCI device to be disabled 1927 * 1928 * Signal to the system that the PCI device is not in use by the system 1929 * anymore. This only involves disabling PCI bus-mastering, if active. 1930 * 1931 * Note we don't actually disable the device until all callers of 1932 * pci_enable_device() have called pci_disable_device(). 1933 */ 1934 void pci_disable_device(struct pci_dev *dev) 1935 { 1936 struct pci_devres *dr; 1937 1938 dr = find_pci_dr(dev); 1939 if (dr) 1940 dr->enabled = 0; 1941 1942 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1943 "disabling already-disabled device"); 1944 1945 if (atomic_dec_return(&dev->enable_cnt) != 0) 1946 return; 1947 1948 do_pci_disable_device(dev); 1949 1950 dev->is_busmaster = 0; 1951 } 1952 EXPORT_SYMBOL(pci_disable_device); 1953 1954 /** 1955 * pcibios_set_pcie_reset_state - set reset state for device dev 1956 * @dev: the PCIe device reset 1957 * @state: Reset state to enter into 1958 * 1959 * Set the PCIe reset state for the device. This is the default 1960 * implementation. Architecture implementations can override this. 1961 */ 1962 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1963 enum pcie_reset_state state) 1964 { 1965 return -EINVAL; 1966 } 1967 1968 /** 1969 * pci_set_pcie_reset_state - set reset state for device dev 1970 * @dev: the PCIe device reset 1971 * @state: Reset state to enter into 1972 * 1973 * Sets the PCI reset state for the device. 1974 */ 1975 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1976 { 1977 return pcibios_set_pcie_reset_state(dev, state); 1978 } 1979 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1980 1981 /** 1982 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1983 * @dev: PCIe root port or event collector. 1984 */ 1985 void pcie_clear_root_pme_status(struct pci_dev *dev) 1986 { 1987 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1988 } 1989 1990 /** 1991 * pci_check_pme_status - Check if given device has generated PME. 1992 * @dev: Device to check. 1993 * 1994 * Check the PME status of the device and if set, clear it and clear PME enable 1995 * (if set). Return 'true' if PME status and PME enable were both set or 1996 * 'false' otherwise. 1997 */ 1998 bool pci_check_pme_status(struct pci_dev *dev) 1999 { 2000 int pmcsr_pos; 2001 u16 pmcsr; 2002 bool ret = false; 2003 2004 if (!dev->pm_cap) 2005 return false; 2006 2007 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2008 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2009 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2010 return false; 2011 2012 /* Clear PME status. */ 2013 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2014 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2015 /* Disable PME to avoid interrupt flood. */ 2016 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2017 ret = true; 2018 } 2019 2020 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2021 2022 return ret; 2023 } 2024 2025 /** 2026 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2027 * @dev: Device to handle. 2028 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2029 * 2030 * Check if @dev has generated PME and queue a resume request for it in that 2031 * case. 2032 */ 2033 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2034 { 2035 if (pme_poll_reset && dev->pme_poll) 2036 dev->pme_poll = false; 2037 2038 if (pci_check_pme_status(dev)) { 2039 pci_wakeup_event(dev); 2040 pm_request_resume(&dev->dev); 2041 } 2042 return 0; 2043 } 2044 2045 /** 2046 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2047 * @bus: Top bus of the subtree to walk. 2048 */ 2049 void pci_pme_wakeup_bus(struct pci_bus *bus) 2050 { 2051 if (bus) 2052 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2053 } 2054 2055 2056 /** 2057 * pci_pme_capable - check the capability of PCI device to generate PME# 2058 * @dev: PCI device to handle. 2059 * @state: PCI state from which device will issue PME#. 2060 */ 2061 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2062 { 2063 if (!dev->pm_cap) 2064 return false; 2065 2066 return !!(dev->pme_support & (1 << state)); 2067 } 2068 EXPORT_SYMBOL(pci_pme_capable); 2069 2070 static void pci_pme_list_scan(struct work_struct *work) 2071 { 2072 struct pci_pme_device *pme_dev, *n; 2073 2074 mutex_lock(&pci_pme_list_mutex); 2075 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2076 if (pme_dev->dev->pme_poll) { 2077 struct pci_dev *bridge; 2078 2079 bridge = pme_dev->dev->bus->self; 2080 /* 2081 * If bridge is in low power state, the 2082 * configuration space of subordinate devices 2083 * may be not accessible 2084 */ 2085 if (bridge && bridge->current_state != PCI_D0) 2086 continue; 2087 /* 2088 * If the device is in D3cold it should not be 2089 * polled either. 2090 */ 2091 if (pme_dev->dev->current_state == PCI_D3cold) 2092 continue; 2093 2094 pci_pme_wakeup(pme_dev->dev, NULL); 2095 } else { 2096 list_del(&pme_dev->list); 2097 kfree(pme_dev); 2098 } 2099 } 2100 if (!list_empty(&pci_pme_list)) 2101 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2102 msecs_to_jiffies(PME_TIMEOUT)); 2103 mutex_unlock(&pci_pme_list_mutex); 2104 } 2105 2106 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2107 { 2108 u16 pmcsr; 2109 2110 if (!dev->pme_support) 2111 return; 2112 2113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2114 /* Clear PME_Status by writing 1 to it and enable PME# */ 2115 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2116 if (!enable) 2117 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2118 2119 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2120 } 2121 2122 /** 2123 * pci_pme_restore - Restore PME configuration after config space restore. 2124 * @dev: PCI device to update. 2125 */ 2126 void pci_pme_restore(struct pci_dev *dev) 2127 { 2128 u16 pmcsr; 2129 2130 if (!dev->pme_support) 2131 return; 2132 2133 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2134 if (dev->wakeup_prepared) { 2135 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2136 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2137 } else { 2138 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2139 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2140 } 2141 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2142 } 2143 2144 /** 2145 * pci_pme_active - enable or disable PCI device's PME# function 2146 * @dev: PCI device to handle. 2147 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2148 * 2149 * The caller must verify that the device is capable of generating PME# before 2150 * calling this function with @enable equal to 'true'. 2151 */ 2152 void pci_pme_active(struct pci_dev *dev, bool enable) 2153 { 2154 __pci_pme_active(dev, enable); 2155 2156 /* 2157 * PCI (as opposed to PCIe) PME requires that the device have 2158 * its PME# line hooked up correctly. Not all hardware vendors 2159 * do this, so the PME never gets delivered and the device 2160 * remains asleep. The easiest way around this is to 2161 * periodically walk the list of suspended devices and check 2162 * whether any have their PME flag set. The assumption is that 2163 * we'll wake up often enough anyway that this won't be a huge 2164 * hit, and the power savings from the devices will still be a 2165 * win. 2166 * 2167 * Although PCIe uses in-band PME message instead of PME# line 2168 * to report PME, PME does not work for some PCIe devices in 2169 * reality. For example, there are devices that set their PME 2170 * status bits, but don't really bother to send a PME message; 2171 * there are PCI Express Root Ports that don't bother to 2172 * trigger interrupts when they receive PME messages from the 2173 * devices below. So PME poll is used for PCIe devices too. 2174 */ 2175 2176 if (dev->pme_poll) { 2177 struct pci_pme_device *pme_dev; 2178 if (enable) { 2179 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2180 GFP_KERNEL); 2181 if (!pme_dev) { 2182 pci_warn(dev, "can't enable PME#\n"); 2183 return; 2184 } 2185 pme_dev->dev = dev; 2186 mutex_lock(&pci_pme_list_mutex); 2187 list_add(&pme_dev->list, &pci_pme_list); 2188 if (list_is_singular(&pci_pme_list)) 2189 queue_delayed_work(system_freezable_wq, 2190 &pci_pme_work, 2191 msecs_to_jiffies(PME_TIMEOUT)); 2192 mutex_unlock(&pci_pme_list_mutex); 2193 } else { 2194 mutex_lock(&pci_pme_list_mutex); 2195 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2196 if (pme_dev->dev == dev) { 2197 list_del(&pme_dev->list); 2198 kfree(pme_dev); 2199 break; 2200 } 2201 } 2202 mutex_unlock(&pci_pme_list_mutex); 2203 } 2204 } 2205 2206 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2207 } 2208 EXPORT_SYMBOL(pci_pme_active); 2209 2210 /** 2211 * __pci_enable_wake - enable PCI device as wakeup event source 2212 * @dev: PCI device affected 2213 * @state: PCI state from which device will issue wakeup events 2214 * @enable: True to enable event generation; false to disable 2215 * 2216 * This enables the device as a wakeup event source, or disables it. 2217 * When such events involves platform-specific hooks, those hooks are 2218 * called automatically by this routine. 2219 * 2220 * Devices with legacy power management (no standard PCI PM capabilities) 2221 * always require such platform hooks. 2222 * 2223 * RETURN VALUE: 2224 * 0 is returned on success 2225 * -EINVAL is returned if device is not supposed to wake up the system 2226 * Error code depending on the platform is returned if both the platform and 2227 * the native mechanism fail to enable the generation of wake-up events 2228 */ 2229 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2230 { 2231 int ret = 0; 2232 2233 /* 2234 * Bridges that are not power-manageable directly only signal 2235 * wakeup on behalf of subordinate devices which is set up 2236 * elsewhere, so skip them. However, bridges that are 2237 * power-manageable may signal wakeup for themselves (for example, 2238 * on a hotplug event) and they need to be covered here. 2239 */ 2240 if (!pci_power_manageable(dev)) 2241 return 0; 2242 2243 /* Don't do the same thing twice in a row for one device. */ 2244 if (!!enable == !!dev->wakeup_prepared) 2245 return 0; 2246 2247 /* 2248 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2249 * Anderson we should be doing PME# wake enable followed by ACPI wake 2250 * enable. To disable wake-up we call the platform first, for symmetry. 2251 */ 2252 2253 if (enable) { 2254 int error; 2255 2256 if (pci_pme_capable(dev, state)) 2257 pci_pme_active(dev, true); 2258 else 2259 ret = 1; 2260 error = platform_pci_set_wakeup(dev, true); 2261 if (ret) 2262 ret = error; 2263 if (!ret) 2264 dev->wakeup_prepared = true; 2265 } else { 2266 platform_pci_set_wakeup(dev, false); 2267 pci_pme_active(dev, false); 2268 dev->wakeup_prepared = false; 2269 } 2270 2271 return ret; 2272 } 2273 2274 /** 2275 * pci_enable_wake - change wakeup settings for a PCI device 2276 * @pci_dev: Target device 2277 * @state: PCI state from which device will issue wakeup events 2278 * @enable: Whether or not to enable event generation 2279 * 2280 * If @enable is set, check device_may_wakeup() for the device before calling 2281 * __pci_enable_wake() for it. 2282 */ 2283 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2284 { 2285 if (enable && !device_may_wakeup(&pci_dev->dev)) 2286 return -EINVAL; 2287 2288 return __pci_enable_wake(pci_dev, state, enable); 2289 } 2290 EXPORT_SYMBOL(pci_enable_wake); 2291 2292 /** 2293 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2294 * @dev: PCI device to prepare 2295 * @enable: True to enable wake-up event generation; false to disable 2296 * 2297 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2298 * and this function allows them to set that up cleanly - pci_enable_wake() 2299 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2300 * ordering constraints. 2301 * 2302 * This function only returns error code if the device is not allowed to wake 2303 * up the system from sleep or it is not capable of generating PME# from both 2304 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2305 */ 2306 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2307 { 2308 return pci_pme_capable(dev, PCI_D3cold) ? 2309 pci_enable_wake(dev, PCI_D3cold, enable) : 2310 pci_enable_wake(dev, PCI_D3hot, enable); 2311 } 2312 EXPORT_SYMBOL(pci_wake_from_d3); 2313 2314 /** 2315 * pci_target_state - find an appropriate low power state for a given PCI dev 2316 * @dev: PCI device 2317 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2318 * 2319 * Use underlying platform code to find a supported low power state for @dev. 2320 * If the platform can't manage @dev, return the deepest state from which it 2321 * can generate wake events, based on any available PME info. 2322 */ 2323 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2324 { 2325 pci_power_t target_state = PCI_D3hot; 2326 2327 if (platform_pci_power_manageable(dev)) { 2328 /* 2329 * Call the platform to find the target state for the device. 2330 */ 2331 pci_power_t state = platform_pci_choose_state(dev); 2332 2333 switch (state) { 2334 case PCI_POWER_ERROR: 2335 case PCI_UNKNOWN: 2336 break; 2337 case PCI_D1: 2338 case PCI_D2: 2339 if (pci_no_d1d2(dev)) 2340 break; 2341 /* else, fall through */ 2342 default: 2343 target_state = state; 2344 } 2345 2346 return target_state; 2347 } 2348 2349 if (!dev->pm_cap) 2350 target_state = PCI_D0; 2351 2352 /* 2353 * If the device is in D3cold even though it's not power-manageable by 2354 * the platform, it may have been powered down by non-standard means. 2355 * Best to let it slumber. 2356 */ 2357 if (dev->current_state == PCI_D3cold) 2358 target_state = PCI_D3cold; 2359 2360 if (wakeup) { 2361 /* 2362 * Find the deepest state from which the device can generate 2363 * PME#. 2364 */ 2365 if (dev->pme_support) { 2366 while (target_state 2367 && !(dev->pme_support & (1 << target_state))) 2368 target_state--; 2369 } 2370 } 2371 2372 return target_state; 2373 } 2374 2375 /** 2376 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2377 * into a sleep state 2378 * @dev: Device to handle. 2379 * 2380 * Choose the power state appropriate for the device depending on whether 2381 * it can wake up the system and/or is power manageable by the platform 2382 * (PCI_D3hot is the default) and put the device into that state. 2383 */ 2384 int pci_prepare_to_sleep(struct pci_dev *dev) 2385 { 2386 bool wakeup = device_may_wakeup(&dev->dev); 2387 pci_power_t target_state = pci_target_state(dev, wakeup); 2388 int error; 2389 2390 if (target_state == PCI_POWER_ERROR) 2391 return -EIO; 2392 2393 pci_enable_wake(dev, target_state, wakeup); 2394 2395 error = pci_set_power_state(dev, target_state); 2396 2397 if (error) 2398 pci_enable_wake(dev, target_state, false); 2399 2400 return error; 2401 } 2402 EXPORT_SYMBOL(pci_prepare_to_sleep); 2403 2404 /** 2405 * pci_back_from_sleep - turn PCI device on during system-wide transition 2406 * into working state 2407 * @dev: Device to handle. 2408 * 2409 * Disable device's system wake-up capability and put it into D0. 2410 */ 2411 int pci_back_from_sleep(struct pci_dev *dev) 2412 { 2413 pci_enable_wake(dev, PCI_D0, false); 2414 return pci_set_power_state(dev, PCI_D0); 2415 } 2416 EXPORT_SYMBOL(pci_back_from_sleep); 2417 2418 /** 2419 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2420 * @dev: PCI device being suspended. 2421 * 2422 * Prepare @dev to generate wake-up events at run time and put it into a low 2423 * power state. 2424 */ 2425 int pci_finish_runtime_suspend(struct pci_dev *dev) 2426 { 2427 pci_power_t target_state; 2428 int error; 2429 2430 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2431 if (target_state == PCI_POWER_ERROR) 2432 return -EIO; 2433 2434 dev->runtime_d3cold = target_state == PCI_D3cold; 2435 2436 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2437 2438 error = pci_set_power_state(dev, target_state); 2439 2440 if (error) { 2441 pci_enable_wake(dev, target_state, false); 2442 dev->runtime_d3cold = false; 2443 } 2444 2445 return error; 2446 } 2447 2448 /** 2449 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2450 * @dev: Device to check. 2451 * 2452 * Return true if the device itself is capable of generating wake-up events 2453 * (through the platform or using the native PCIe PME) or if the device supports 2454 * PME and one of its upstream bridges can generate wake-up events. 2455 */ 2456 bool pci_dev_run_wake(struct pci_dev *dev) 2457 { 2458 struct pci_bus *bus = dev->bus; 2459 2460 if (!dev->pme_support) 2461 return false; 2462 2463 /* PME-capable in principle, but not from the target power state */ 2464 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2465 return false; 2466 2467 if (device_can_wakeup(&dev->dev)) 2468 return true; 2469 2470 while (bus->parent) { 2471 struct pci_dev *bridge = bus->self; 2472 2473 if (device_can_wakeup(&bridge->dev)) 2474 return true; 2475 2476 bus = bus->parent; 2477 } 2478 2479 /* We have reached the root bus. */ 2480 if (bus->bridge) 2481 return device_can_wakeup(bus->bridge); 2482 2483 return false; 2484 } 2485 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2486 2487 /** 2488 * pci_dev_need_resume - Check if it is necessary to resume the device. 2489 * @pci_dev: Device to check. 2490 * 2491 * Return 'true' if the device is not runtime-suspended or it has to be 2492 * reconfigured due to wakeup settings difference between system and runtime 2493 * suspend, or the current power state of it is not suitable for the upcoming 2494 * (system-wide) transition. 2495 */ 2496 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2497 { 2498 struct device *dev = &pci_dev->dev; 2499 pci_power_t target_state; 2500 2501 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2502 return true; 2503 2504 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2505 2506 /* 2507 * If the earlier platform check has not triggered, D3cold is just power 2508 * removal on top of D3hot, so no need to resume the device in that 2509 * case. 2510 */ 2511 return target_state != pci_dev->current_state && 2512 target_state != PCI_D3cold && 2513 pci_dev->current_state != PCI_D3hot; 2514 } 2515 2516 /** 2517 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2518 * @pci_dev: Device to check. 2519 * 2520 * If the device is suspended and it is not configured for system wakeup, 2521 * disable PME for it to prevent it from waking up the system unnecessarily. 2522 * 2523 * Note that if the device's power state is D3cold and the platform check in 2524 * pci_dev_need_resume() has not triggered, the device's configuration need not 2525 * be changed. 2526 */ 2527 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2528 { 2529 struct device *dev = &pci_dev->dev; 2530 2531 spin_lock_irq(&dev->power.lock); 2532 2533 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2534 pci_dev->current_state < PCI_D3cold) 2535 __pci_pme_active(pci_dev, false); 2536 2537 spin_unlock_irq(&dev->power.lock); 2538 } 2539 2540 /** 2541 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2542 * @pci_dev: Device to handle. 2543 * 2544 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2545 * it might have been disabled during the prepare phase of system suspend if 2546 * the device was not configured for system wakeup. 2547 */ 2548 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2549 { 2550 struct device *dev = &pci_dev->dev; 2551 2552 if (!pci_dev_run_wake(pci_dev)) 2553 return; 2554 2555 spin_lock_irq(&dev->power.lock); 2556 2557 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2558 __pci_pme_active(pci_dev, true); 2559 2560 spin_unlock_irq(&dev->power.lock); 2561 } 2562 2563 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2564 { 2565 struct device *dev = &pdev->dev; 2566 struct device *parent = dev->parent; 2567 2568 if (parent) 2569 pm_runtime_get_sync(parent); 2570 pm_runtime_get_noresume(dev); 2571 /* 2572 * pdev->current_state is set to PCI_D3cold during suspending, 2573 * so wait until suspending completes 2574 */ 2575 pm_runtime_barrier(dev); 2576 /* 2577 * Only need to resume devices in D3cold, because config 2578 * registers are still accessible for devices suspended but 2579 * not in D3cold. 2580 */ 2581 if (pdev->current_state == PCI_D3cold) 2582 pm_runtime_resume(dev); 2583 } 2584 2585 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2586 { 2587 struct device *dev = &pdev->dev; 2588 struct device *parent = dev->parent; 2589 2590 pm_runtime_put(dev); 2591 if (parent) 2592 pm_runtime_put_sync(parent); 2593 } 2594 2595 static const struct dmi_system_id bridge_d3_blacklist[] = { 2596 #ifdef CONFIG_X86 2597 { 2598 /* 2599 * Gigabyte X299 root port is not marked as hotplug capable 2600 * which allows Linux to power manage it. However, this 2601 * confuses the BIOS SMI handler so don't power manage root 2602 * ports on that system. 2603 */ 2604 .ident = "X299 DESIGNARE EX-CF", 2605 .matches = { 2606 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2607 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2608 }, 2609 }, 2610 #endif 2611 { } 2612 }; 2613 2614 /** 2615 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2616 * @bridge: Bridge to check 2617 * 2618 * This function checks if it is possible to move the bridge to D3. 2619 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2620 */ 2621 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2622 { 2623 if (!pci_is_pcie(bridge)) 2624 return false; 2625 2626 switch (pci_pcie_type(bridge)) { 2627 case PCI_EXP_TYPE_ROOT_PORT: 2628 case PCI_EXP_TYPE_UPSTREAM: 2629 case PCI_EXP_TYPE_DOWNSTREAM: 2630 if (pci_bridge_d3_disable) 2631 return false; 2632 2633 /* 2634 * Hotplug ports handled by firmware in System Management Mode 2635 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2636 */ 2637 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2638 return false; 2639 2640 if (pci_bridge_d3_force) 2641 return true; 2642 2643 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2644 if (bridge->is_thunderbolt) 2645 return true; 2646 2647 /* Platform might know better if the bridge supports D3 */ 2648 if (platform_pci_bridge_d3(bridge)) 2649 return true; 2650 2651 /* 2652 * Hotplug ports handled natively by the OS were not validated 2653 * by vendors for runtime D3 at least until 2018 because there 2654 * was no OS support. 2655 */ 2656 if (bridge->is_hotplug_bridge) 2657 return false; 2658 2659 if (dmi_check_system(bridge_d3_blacklist)) 2660 return false; 2661 2662 /* 2663 * It should be safe to put PCIe ports from 2015 or newer 2664 * to D3. 2665 */ 2666 if (dmi_get_bios_year() >= 2015) 2667 return true; 2668 break; 2669 } 2670 2671 return false; 2672 } 2673 2674 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2675 { 2676 bool *d3cold_ok = data; 2677 2678 if (/* The device needs to be allowed to go D3cold ... */ 2679 dev->no_d3cold || !dev->d3cold_allowed || 2680 2681 /* ... and if it is wakeup capable to do so from D3cold. */ 2682 (device_may_wakeup(&dev->dev) && 2683 !pci_pme_capable(dev, PCI_D3cold)) || 2684 2685 /* If it is a bridge it must be allowed to go to D3. */ 2686 !pci_power_manageable(dev)) 2687 2688 *d3cold_ok = false; 2689 2690 return !*d3cold_ok; 2691 } 2692 2693 /* 2694 * pci_bridge_d3_update - Update bridge D3 capabilities 2695 * @dev: PCI device which is changed 2696 * 2697 * Update upstream bridge PM capabilities accordingly depending on if the 2698 * device PM configuration was changed or the device is being removed. The 2699 * change is also propagated upstream. 2700 */ 2701 void pci_bridge_d3_update(struct pci_dev *dev) 2702 { 2703 bool remove = !device_is_registered(&dev->dev); 2704 struct pci_dev *bridge; 2705 bool d3cold_ok = true; 2706 2707 bridge = pci_upstream_bridge(dev); 2708 if (!bridge || !pci_bridge_d3_possible(bridge)) 2709 return; 2710 2711 /* 2712 * If D3 is currently allowed for the bridge, removing one of its 2713 * children won't change that. 2714 */ 2715 if (remove && bridge->bridge_d3) 2716 return; 2717 2718 /* 2719 * If D3 is currently allowed for the bridge and a child is added or 2720 * changed, disallowance of D3 can only be caused by that child, so 2721 * we only need to check that single device, not any of its siblings. 2722 * 2723 * If D3 is currently not allowed for the bridge, checking the device 2724 * first may allow us to skip checking its siblings. 2725 */ 2726 if (!remove) 2727 pci_dev_check_d3cold(dev, &d3cold_ok); 2728 2729 /* 2730 * If D3 is currently not allowed for the bridge, this may be caused 2731 * either by the device being changed/removed or any of its siblings, 2732 * so we need to go through all children to find out if one of them 2733 * continues to block D3. 2734 */ 2735 if (d3cold_ok && !bridge->bridge_d3) 2736 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2737 &d3cold_ok); 2738 2739 if (bridge->bridge_d3 != d3cold_ok) { 2740 bridge->bridge_d3 = d3cold_ok; 2741 /* Propagate change to upstream bridges */ 2742 pci_bridge_d3_update(bridge); 2743 } 2744 } 2745 2746 /** 2747 * pci_d3cold_enable - Enable D3cold for device 2748 * @dev: PCI device to handle 2749 * 2750 * This function can be used in drivers to enable D3cold from the device 2751 * they handle. It also updates upstream PCI bridge PM capabilities 2752 * accordingly. 2753 */ 2754 void pci_d3cold_enable(struct pci_dev *dev) 2755 { 2756 if (dev->no_d3cold) { 2757 dev->no_d3cold = false; 2758 pci_bridge_d3_update(dev); 2759 } 2760 } 2761 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2762 2763 /** 2764 * pci_d3cold_disable - Disable D3cold for device 2765 * @dev: PCI device to handle 2766 * 2767 * This function can be used in drivers to disable D3cold from the device 2768 * they handle. It also updates upstream PCI bridge PM capabilities 2769 * accordingly. 2770 */ 2771 void pci_d3cold_disable(struct pci_dev *dev) 2772 { 2773 if (!dev->no_d3cold) { 2774 dev->no_d3cold = true; 2775 pci_bridge_d3_update(dev); 2776 } 2777 } 2778 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2779 2780 /** 2781 * pci_pm_init - Initialize PM functions of given PCI device 2782 * @dev: PCI device to handle. 2783 */ 2784 void pci_pm_init(struct pci_dev *dev) 2785 { 2786 int pm; 2787 u16 status; 2788 u16 pmc; 2789 2790 pm_runtime_forbid(&dev->dev); 2791 pm_runtime_set_active(&dev->dev); 2792 pm_runtime_enable(&dev->dev); 2793 device_enable_async_suspend(&dev->dev); 2794 dev->wakeup_prepared = false; 2795 2796 dev->pm_cap = 0; 2797 dev->pme_support = 0; 2798 2799 /* find PCI PM capability in list */ 2800 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2801 if (!pm) 2802 return; 2803 /* Check device's ability to generate PME# */ 2804 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2805 2806 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2807 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2808 pmc & PCI_PM_CAP_VER_MASK); 2809 return; 2810 } 2811 2812 dev->pm_cap = pm; 2813 dev->d3_delay = PCI_PM_D3_WAIT; 2814 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2815 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2816 dev->d3cold_allowed = true; 2817 2818 dev->d1_support = false; 2819 dev->d2_support = false; 2820 if (!pci_no_d1d2(dev)) { 2821 if (pmc & PCI_PM_CAP_D1) 2822 dev->d1_support = true; 2823 if (pmc & PCI_PM_CAP_D2) 2824 dev->d2_support = true; 2825 2826 if (dev->d1_support || dev->d2_support) 2827 pci_info(dev, "supports%s%s\n", 2828 dev->d1_support ? " D1" : "", 2829 dev->d2_support ? " D2" : ""); 2830 } 2831 2832 pmc &= PCI_PM_CAP_PME_MASK; 2833 if (pmc) { 2834 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 2835 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2836 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2837 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2838 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2839 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2840 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2841 dev->pme_poll = true; 2842 /* 2843 * Make device's PM flags reflect the wake-up capability, but 2844 * let the user space enable it to wake up the system as needed. 2845 */ 2846 device_set_wakeup_capable(&dev->dev, true); 2847 /* Disable the PME# generation functionality */ 2848 pci_pme_active(dev, false); 2849 } 2850 2851 pci_read_config_word(dev, PCI_STATUS, &status); 2852 if (status & PCI_STATUS_IMM_READY) 2853 dev->imm_ready = 1; 2854 } 2855 2856 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2857 { 2858 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2859 2860 switch (prop) { 2861 case PCI_EA_P_MEM: 2862 case PCI_EA_P_VF_MEM: 2863 flags |= IORESOURCE_MEM; 2864 break; 2865 case PCI_EA_P_MEM_PREFETCH: 2866 case PCI_EA_P_VF_MEM_PREFETCH: 2867 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2868 break; 2869 case PCI_EA_P_IO: 2870 flags |= IORESOURCE_IO; 2871 break; 2872 default: 2873 return 0; 2874 } 2875 2876 return flags; 2877 } 2878 2879 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2880 u8 prop) 2881 { 2882 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2883 return &dev->resource[bei]; 2884 #ifdef CONFIG_PCI_IOV 2885 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2886 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2887 return &dev->resource[PCI_IOV_RESOURCES + 2888 bei - PCI_EA_BEI_VF_BAR0]; 2889 #endif 2890 else if (bei == PCI_EA_BEI_ROM) 2891 return &dev->resource[PCI_ROM_RESOURCE]; 2892 else 2893 return NULL; 2894 } 2895 2896 /* Read an Enhanced Allocation (EA) entry */ 2897 static int pci_ea_read(struct pci_dev *dev, int offset) 2898 { 2899 struct resource *res; 2900 int ent_size, ent_offset = offset; 2901 resource_size_t start, end; 2902 unsigned long flags; 2903 u32 dw0, bei, base, max_offset; 2904 u8 prop; 2905 bool support_64 = (sizeof(resource_size_t) >= 8); 2906 2907 pci_read_config_dword(dev, ent_offset, &dw0); 2908 ent_offset += 4; 2909 2910 /* Entry size field indicates DWORDs after 1st */ 2911 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2912 2913 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2914 goto out; 2915 2916 bei = (dw0 & PCI_EA_BEI) >> 4; 2917 prop = (dw0 & PCI_EA_PP) >> 8; 2918 2919 /* 2920 * If the Property is in the reserved range, try the Secondary 2921 * Property instead. 2922 */ 2923 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2924 prop = (dw0 & PCI_EA_SP) >> 16; 2925 if (prop > PCI_EA_P_BRIDGE_IO) 2926 goto out; 2927 2928 res = pci_ea_get_resource(dev, bei, prop); 2929 if (!res) { 2930 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2931 goto out; 2932 } 2933 2934 flags = pci_ea_flags(dev, prop); 2935 if (!flags) { 2936 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2937 goto out; 2938 } 2939 2940 /* Read Base */ 2941 pci_read_config_dword(dev, ent_offset, &base); 2942 start = (base & PCI_EA_FIELD_MASK); 2943 ent_offset += 4; 2944 2945 /* Read MaxOffset */ 2946 pci_read_config_dword(dev, ent_offset, &max_offset); 2947 ent_offset += 4; 2948 2949 /* Read Base MSBs (if 64-bit entry) */ 2950 if (base & PCI_EA_IS_64) { 2951 u32 base_upper; 2952 2953 pci_read_config_dword(dev, ent_offset, &base_upper); 2954 ent_offset += 4; 2955 2956 flags |= IORESOURCE_MEM_64; 2957 2958 /* entry starts above 32-bit boundary, can't use */ 2959 if (!support_64 && base_upper) 2960 goto out; 2961 2962 if (support_64) 2963 start |= ((u64)base_upper << 32); 2964 } 2965 2966 end = start + (max_offset | 0x03); 2967 2968 /* Read MaxOffset MSBs (if 64-bit entry) */ 2969 if (max_offset & PCI_EA_IS_64) { 2970 u32 max_offset_upper; 2971 2972 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2973 ent_offset += 4; 2974 2975 flags |= IORESOURCE_MEM_64; 2976 2977 /* entry too big, can't use */ 2978 if (!support_64 && max_offset_upper) 2979 goto out; 2980 2981 if (support_64) 2982 end += ((u64)max_offset_upper << 32); 2983 } 2984 2985 if (end < start) { 2986 pci_err(dev, "EA Entry crosses address boundary\n"); 2987 goto out; 2988 } 2989 2990 if (ent_size != ent_offset - offset) { 2991 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2992 ent_size, ent_offset - offset); 2993 goto out; 2994 } 2995 2996 res->name = pci_name(dev); 2997 res->start = start; 2998 res->end = end; 2999 res->flags = flags; 3000 3001 if (bei <= PCI_EA_BEI_BAR5) 3002 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3003 bei, res, prop); 3004 else if (bei == PCI_EA_BEI_ROM) 3005 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3006 res, prop); 3007 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3008 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3009 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3010 else 3011 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3012 bei, res, prop); 3013 3014 out: 3015 return offset + ent_size; 3016 } 3017 3018 /* Enhanced Allocation Initialization */ 3019 void pci_ea_init(struct pci_dev *dev) 3020 { 3021 int ea; 3022 u8 num_ent; 3023 int offset; 3024 int i; 3025 3026 /* find PCI EA capability in list */ 3027 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3028 if (!ea) 3029 return; 3030 3031 /* determine the number of entries */ 3032 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3033 &num_ent); 3034 num_ent &= PCI_EA_NUM_ENT_MASK; 3035 3036 offset = ea + PCI_EA_FIRST_ENT; 3037 3038 /* Skip DWORD 2 for type 1 functions */ 3039 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3040 offset += 4; 3041 3042 /* parse each EA entry */ 3043 for (i = 0; i < num_ent; ++i) 3044 offset = pci_ea_read(dev, offset); 3045 } 3046 3047 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3048 struct pci_cap_saved_state *new_cap) 3049 { 3050 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3051 } 3052 3053 /** 3054 * _pci_add_cap_save_buffer - allocate buffer for saving given 3055 * capability registers 3056 * @dev: the PCI device 3057 * @cap: the capability to allocate the buffer for 3058 * @extended: Standard or Extended capability ID 3059 * @size: requested size of the buffer 3060 */ 3061 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3062 bool extended, unsigned int size) 3063 { 3064 int pos; 3065 struct pci_cap_saved_state *save_state; 3066 3067 if (extended) 3068 pos = pci_find_ext_capability(dev, cap); 3069 else 3070 pos = pci_find_capability(dev, cap); 3071 3072 if (!pos) 3073 return 0; 3074 3075 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3076 if (!save_state) 3077 return -ENOMEM; 3078 3079 save_state->cap.cap_nr = cap; 3080 save_state->cap.cap_extended = extended; 3081 save_state->cap.size = size; 3082 pci_add_saved_cap(dev, save_state); 3083 3084 return 0; 3085 } 3086 3087 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3088 { 3089 return _pci_add_cap_save_buffer(dev, cap, false, size); 3090 } 3091 3092 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3093 { 3094 return _pci_add_cap_save_buffer(dev, cap, true, size); 3095 } 3096 3097 /** 3098 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3099 * @dev: the PCI device 3100 */ 3101 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3102 { 3103 int error; 3104 3105 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3106 PCI_EXP_SAVE_REGS * sizeof(u16)); 3107 if (error) 3108 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3109 3110 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3111 if (error) 3112 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3113 3114 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3115 2 * sizeof(u16)); 3116 if (error) 3117 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3118 3119 pci_allocate_vc_save_buffers(dev); 3120 } 3121 3122 void pci_free_cap_save_buffers(struct pci_dev *dev) 3123 { 3124 struct pci_cap_saved_state *tmp; 3125 struct hlist_node *n; 3126 3127 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3128 kfree(tmp); 3129 } 3130 3131 /** 3132 * pci_configure_ari - enable or disable ARI forwarding 3133 * @dev: the PCI device 3134 * 3135 * If @dev and its upstream bridge both support ARI, enable ARI in the 3136 * bridge. Otherwise, disable ARI in the bridge. 3137 */ 3138 void pci_configure_ari(struct pci_dev *dev) 3139 { 3140 u32 cap; 3141 struct pci_dev *bridge; 3142 3143 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3144 return; 3145 3146 bridge = dev->bus->self; 3147 if (!bridge) 3148 return; 3149 3150 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3151 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3152 return; 3153 3154 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3155 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3156 PCI_EXP_DEVCTL2_ARI); 3157 bridge->ari_enabled = 1; 3158 } else { 3159 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3160 PCI_EXP_DEVCTL2_ARI); 3161 bridge->ari_enabled = 0; 3162 } 3163 } 3164 3165 static int pci_acs_enable; 3166 3167 /** 3168 * pci_request_acs - ask for ACS to be enabled if supported 3169 */ 3170 void pci_request_acs(void) 3171 { 3172 pci_acs_enable = 1; 3173 } 3174 3175 static const char *disable_acs_redir_param; 3176 3177 /** 3178 * pci_disable_acs_redir - disable ACS redirect capabilities 3179 * @dev: the PCI device 3180 * 3181 * For only devices specified in the disable_acs_redir parameter. 3182 */ 3183 static void pci_disable_acs_redir(struct pci_dev *dev) 3184 { 3185 int ret = 0; 3186 const char *p; 3187 int pos; 3188 u16 ctrl; 3189 3190 if (!disable_acs_redir_param) 3191 return; 3192 3193 p = disable_acs_redir_param; 3194 while (*p) { 3195 ret = pci_dev_str_match(dev, p, &p); 3196 if (ret < 0) { 3197 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3198 disable_acs_redir_param); 3199 3200 break; 3201 } else if (ret == 1) { 3202 /* Found a match */ 3203 break; 3204 } 3205 3206 if (*p != ';' && *p != ',') { 3207 /* End of param or invalid format */ 3208 break; 3209 } 3210 p++; 3211 } 3212 3213 if (ret != 1) 3214 return; 3215 3216 if (!pci_dev_specific_disable_acs_redir(dev)) 3217 return; 3218 3219 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3220 if (!pos) { 3221 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3222 return; 3223 } 3224 3225 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3226 3227 /* P2P Request & Completion Redirect */ 3228 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3229 3230 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3231 3232 pci_info(dev, "disabled ACS redirect\n"); 3233 } 3234 3235 /** 3236 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 3237 * @dev: the PCI device 3238 */ 3239 static void pci_std_enable_acs(struct pci_dev *dev) 3240 { 3241 int pos; 3242 u16 cap; 3243 u16 ctrl; 3244 3245 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3246 if (!pos) 3247 return; 3248 3249 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3250 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3251 3252 /* Source Validation */ 3253 ctrl |= (cap & PCI_ACS_SV); 3254 3255 /* P2P Request Redirect */ 3256 ctrl |= (cap & PCI_ACS_RR); 3257 3258 /* P2P Completion Redirect */ 3259 ctrl |= (cap & PCI_ACS_CR); 3260 3261 /* Upstream Forwarding */ 3262 ctrl |= (cap & PCI_ACS_UF); 3263 3264 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3265 } 3266 3267 /** 3268 * pci_enable_acs - enable ACS if hardware support it 3269 * @dev: the PCI device 3270 */ 3271 void pci_enable_acs(struct pci_dev *dev) 3272 { 3273 if (!pci_acs_enable) 3274 goto disable_acs_redir; 3275 3276 if (!pci_dev_specific_enable_acs(dev)) 3277 goto disable_acs_redir; 3278 3279 pci_std_enable_acs(dev); 3280 3281 disable_acs_redir: 3282 /* 3283 * Note: pci_disable_acs_redir() must be called even if ACS was not 3284 * enabled by the kernel because it may have been enabled by 3285 * platform firmware. So if we are told to disable it, we should 3286 * always disable it after setting the kernel's default 3287 * preferences. 3288 */ 3289 pci_disable_acs_redir(dev); 3290 } 3291 3292 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3293 { 3294 int pos; 3295 u16 cap, ctrl; 3296 3297 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3298 if (!pos) 3299 return false; 3300 3301 /* 3302 * Except for egress control, capabilities are either required 3303 * or only required if controllable. Features missing from the 3304 * capability field can therefore be assumed as hard-wired enabled. 3305 */ 3306 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3307 acs_flags &= (cap | PCI_ACS_EC); 3308 3309 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3310 return (ctrl & acs_flags) == acs_flags; 3311 } 3312 3313 /** 3314 * pci_acs_enabled - test ACS against required flags for a given device 3315 * @pdev: device to test 3316 * @acs_flags: required PCI ACS flags 3317 * 3318 * Return true if the device supports the provided flags. Automatically 3319 * filters out flags that are not implemented on multifunction devices. 3320 * 3321 * Note that this interface checks the effective ACS capabilities of the 3322 * device rather than the actual capabilities. For instance, most single 3323 * function endpoints are not required to support ACS because they have no 3324 * opportunity for peer-to-peer access. We therefore return 'true' 3325 * regardless of whether the device exposes an ACS capability. This makes 3326 * it much easier for callers of this function to ignore the actual type 3327 * or topology of the device when testing ACS support. 3328 */ 3329 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3330 { 3331 int ret; 3332 3333 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3334 if (ret >= 0) 3335 return ret > 0; 3336 3337 /* 3338 * Conventional PCI and PCI-X devices never support ACS, either 3339 * effectively or actually. The shared bus topology implies that 3340 * any device on the bus can receive or snoop DMA. 3341 */ 3342 if (!pci_is_pcie(pdev)) 3343 return false; 3344 3345 switch (pci_pcie_type(pdev)) { 3346 /* 3347 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3348 * but since their primary interface is PCI/X, we conservatively 3349 * handle them as we would a non-PCIe device. 3350 */ 3351 case PCI_EXP_TYPE_PCIE_BRIDGE: 3352 /* 3353 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3354 * applicable... must never implement an ACS Extended Capability...". 3355 * This seems arbitrary, but we take a conservative interpretation 3356 * of this statement. 3357 */ 3358 case PCI_EXP_TYPE_PCI_BRIDGE: 3359 case PCI_EXP_TYPE_RC_EC: 3360 return false; 3361 /* 3362 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3363 * implement ACS in order to indicate their peer-to-peer capabilities, 3364 * regardless of whether they are single- or multi-function devices. 3365 */ 3366 case PCI_EXP_TYPE_DOWNSTREAM: 3367 case PCI_EXP_TYPE_ROOT_PORT: 3368 return pci_acs_flags_enabled(pdev, acs_flags); 3369 /* 3370 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3371 * implemented by the remaining PCIe types to indicate peer-to-peer 3372 * capabilities, but only when they are part of a multifunction 3373 * device. The footnote for section 6.12 indicates the specific 3374 * PCIe types included here. 3375 */ 3376 case PCI_EXP_TYPE_ENDPOINT: 3377 case PCI_EXP_TYPE_UPSTREAM: 3378 case PCI_EXP_TYPE_LEG_END: 3379 case PCI_EXP_TYPE_RC_END: 3380 if (!pdev->multifunction) 3381 break; 3382 3383 return pci_acs_flags_enabled(pdev, acs_flags); 3384 } 3385 3386 /* 3387 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3388 * to single function devices with the exception of downstream ports. 3389 */ 3390 return true; 3391 } 3392 3393 /** 3394 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3395 * @start: starting downstream device 3396 * @end: ending upstream device or NULL to search to the root bus 3397 * @acs_flags: required flags 3398 * 3399 * Walk up a device tree from start to end testing PCI ACS support. If 3400 * any step along the way does not support the required flags, return false. 3401 */ 3402 bool pci_acs_path_enabled(struct pci_dev *start, 3403 struct pci_dev *end, u16 acs_flags) 3404 { 3405 struct pci_dev *pdev, *parent = start; 3406 3407 do { 3408 pdev = parent; 3409 3410 if (!pci_acs_enabled(pdev, acs_flags)) 3411 return false; 3412 3413 if (pci_is_root_bus(pdev->bus)) 3414 return (end == NULL); 3415 3416 parent = pdev->bus->self; 3417 } while (pdev != end); 3418 3419 return true; 3420 } 3421 3422 /** 3423 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3424 * @pdev: PCI device 3425 * @bar: BAR to find 3426 * 3427 * Helper to find the position of the ctrl register for a BAR. 3428 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3429 * Returns -ENOENT if no ctrl register for the BAR could be found. 3430 */ 3431 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3432 { 3433 unsigned int pos, nbars, i; 3434 u32 ctrl; 3435 3436 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3437 if (!pos) 3438 return -ENOTSUPP; 3439 3440 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3441 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3442 PCI_REBAR_CTRL_NBAR_SHIFT; 3443 3444 for (i = 0; i < nbars; i++, pos += 8) { 3445 int bar_idx; 3446 3447 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3448 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3449 if (bar_idx == bar) 3450 return pos; 3451 } 3452 3453 return -ENOENT; 3454 } 3455 3456 /** 3457 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3458 * @pdev: PCI device 3459 * @bar: BAR to query 3460 * 3461 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3462 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3463 */ 3464 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3465 { 3466 int pos; 3467 u32 cap; 3468 3469 pos = pci_rebar_find_pos(pdev, bar); 3470 if (pos < 0) 3471 return 0; 3472 3473 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3474 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3475 } 3476 3477 /** 3478 * pci_rebar_get_current_size - get the current size of a BAR 3479 * @pdev: PCI device 3480 * @bar: BAR to set size to 3481 * 3482 * Read the size of a BAR from the resizable BAR config. 3483 * Returns size if found or negative error code. 3484 */ 3485 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3486 { 3487 int pos; 3488 u32 ctrl; 3489 3490 pos = pci_rebar_find_pos(pdev, bar); 3491 if (pos < 0) 3492 return pos; 3493 3494 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3495 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3496 } 3497 3498 /** 3499 * pci_rebar_set_size - set a new size for a BAR 3500 * @pdev: PCI device 3501 * @bar: BAR to set size to 3502 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3503 * 3504 * Set the new size of a BAR as defined in the spec. 3505 * Returns zero if resizing was successful, error code otherwise. 3506 */ 3507 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3508 { 3509 int pos; 3510 u32 ctrl; 3511 3512 pos = pci_rebar_find_pos(pdev, bar); 3513 if (pos < 0) 3514 return pos; 3515 3516 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3517 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3518 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3519 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3520 return 0; 3521 } 3522 3523 /** 3524 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3525 * @dev: the PCI device 3526 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3527 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3528 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3529 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3530 * 3531 * Return 0 if all upstream bridges support AtomicOp routing, egress 3532 * blocking is disabled on all upstream ports, and the root port supports 3533 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3534 * AtomicOp completion), or negative otherwise. 3535 */ 3536 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3537 { 3538 struct pci_bus *bus = dev->bus; 3539 struct pci_dev *bridge; 3540 u32 cap, ctl2; 3541 3542 if (!pci_is_pcie(dev)) 3543 return -EINVAL; 3544 3545 /* 3546 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3547 * AtomicOp requesters. For now, we only support endpoints as 3548 * requesters and root ports as completers. No endpoints as 3549 * completers, and no peer-to-peer. 3550 */ 3551 3552 switch (pci_pcie_type(dev)) { 3553 case PCI_EXP_TYPE_ENDPOINT: 3554 case PCI_EXP_TYPE_LEG_END: 3555 case PCI_EXP_TYPE_RC_END: 3556 break; 3557 default: 3558 return -EINVAL; 3559 } 3560 3561 while (bus->parent) { 3562 bridge = bus->self; 3563 3564 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3565 3566 switch (pci_pcie_type(bridge)) { 3567 /* Ensure switch ports support AtomicOp routing */ 3568 case PCI_EXP_TYPE_UPSTREAM: 3569 case PCI_EXP_TYPE_DOWNSTREAM: 3570 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3571 return -EINVAL; 3572 break; 3573 3574 /* Ensure root port supports all the sizes we care about */ 3575 case PCI_EXP_TYPE_ROOT_PORT: 3576 if ((cap & cap_mask) != cap_mask) 3577 return -EINVAL; 3578 break; 3579 } 3580 3581 /* Ensure upstream ports don't block AtomicOps on egress */ 3582 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3583 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3584 &ctl2); 3585 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3586 return -EINVAL; 3587 } 3588 3589 bus = bus->parent; 3590 } 3591 3592 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3593 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3594 return 0; 3595 } 3596 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3597 3598 /** 3599 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3600 * @dev: the PCI device 3601 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3602 * 3603 * Perform INTx swizzling for a device behind one level of bridge. This is 3604 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3605 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3606 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3607 * the PCI Express Base Specification, Revision 2.1) 3608 */ 3609 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3610 { 3611 int slot; 3612 3613 if (pci_ari_enabled(dev->bus)) 3614 slot = 0; 3615 else 3616 slot = PCI_SLOT(dev->devfn); 3617 3618 return (((pin - 1) + slot) % 4) + 1; 3619 } 3620 3621 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3622 { 3623 u8 pin; 3624 3625 pin = dev->pin; 3626 if (!pin) 3627 return -1; 3628 3629 while (!pci_is_root_bus(dev->bus)) { 3630 pin = pci_swizzle_interrupt_pin(dev, pin); 3631 dev = dev->bus->self; 3632 } 3633 *bridge = dev; 3634 return pin; 3635 } 3636 3637 /** 3638 * pci_common_swizzle - swizzle INTx all the way to root bridge 3639 * @dev: the PCI device 3640 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3641 * 3642 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3643 * bridges all the way up to a PCI root bus. 3644 */ 3645 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3646 { 3647 u8 pin = *pinp; 3648 3649 while (!pci_is_root_bus(dev->bus)) { 3650 pin = pci_swizzle_interrupt_pin(dev, pin); 3651 dev = dev->bus->self; 3652 } 3653 *pinp = pin; 3654 return PCI_SLOT(dev->devfn); 3655 } 3656 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3657 3658 /** 3659 * pci_release_region - Release a PCI bar 3660 * @pdev: PCI device whose resources were previously reserved by 3661 * pci_request_region() 3662 * @bar: BAR to release 3663 * 3664 * Releases the PCI I/O and memory resources previously reserved by a 3665 * successful call to pci_request_region(). Call this function only 3666 * after all use of the PCI regions has ceased. 3667 */ 3668 void pci_release_region(struct pci_dev *pdev, int bar) 3669 { 3670 struct pci_devres *dr; 3671 3672 if (pci_resource_len(pdev, bar) == 0) 3673 return; 3674 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3675 release_region(pci_resource_start(pdev, bar), 3676 pci_resource_len(pdev, bar)); 3677 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3678 release_mem_region(pci_resource_start(pdev, bar), 3679 pci_resource_len(pdev, bar)); 3680 3681 dr = find_pci_dr(pdev); 3682 if (dr) 3683 dr->region_mask &= ~(1 << bar); 3684 } 3685 EXPORT_SYMBOL(pci_release_region); 3686 3687 /** 3688 * __pci_request_region - Reserved PCI I/O and memory resource 3689 * @pdev: PCI device whose resources are to be reserved 3690 * @bar: BAR to be reserved 3691 * @res_name: Name to be associated with resource. 3692 * @exclusive: whether the region access is exclusive or not 3693 * 3694 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3695 * being reserved by owner @res_name. Do not access any 3696 * address inside the PCI regions unless this call returns 3697 * successfully. 3698 * 3699 * If @exclusive is set, then the region is marked so that userspace 3700 * is explicitly not allowed to map the resource via /dev/mem or 3701 * sysfs MMIO access. 3702 * 3703 * Returns 0 on success, or %EBUSY on error. A warning 3704 * message is also printed on failure. 3705 */ 3706 static int __pci_request_region(struct pci_dev *pdev, int bar, 3707 const char *res_name, int exclusive) 3708 { 3709 struct pci_devres *dr; 3710 3711 if (pci_resource_len(pdev, bar) == 0) 3712 return 0; 3713 3714 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3715 if (!request_region(pci_resource_start(pdev, bar), 3716 pci_resource_len(pdev, bar), res_name)) 3717 goto err_out; 3718 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3719 if (!__request_mem_region(pci_resource_start(pdev, bar), 3720 pci_resource_len(pdev, bar), res_name, 3721 exclusive)) 3722 goto err_out; 3723 } 3724 3725 dr = find_pci_dr(pdev); 3726 if (dr) 3727 dr->region_mask |= 1 << bar; 3728 3729 return 0; 3730 3731 err_out: 3732 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3733 &pdev->resource[bar]); 3734 return -EBUSY; 3735 } 3736 3737 /** 3738 * pci_request_region - Reserve PCI I/O and memory resource 3739 * @pdev: PCI device whose resources are to be reserved 3740 * @bar: BAR to be reserved 3741 * @res_name: Name to be associated with resource 3742 * 3743 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3744 * being reserved by owner @res_name. Do not access any 3745 * address inside the PCI regions unless this call returns 3746 * successfully. 3747 * 3748 * Returns 0 on success, or %EBUSY on error. A warning 3749 * message is also printed on failure. 3750 */ 3751 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3752 { 3753 return __pci_request_region(pdev, bar, res_name, 0); 3754 } 3755 EXPORT_SYMBOL(pci_request_region); 3756 3757 /** 3758 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3759 * @pdev: PCI device whose resources were previously reserved 3760 * @bars: Bitmask of BARs to be released 3761 * 3762 * Release selected PCI I/O and memory resources previously reserved. 3763 * Call this function only after all use of the PCI regions has ceased. 3764 */ 3765 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3766 { 3767 int i; 3768 3769 for (i = 0; i < 6; i++) 3770 if (bars & (1 << i)) 3771 pci_release_region(pdev, i); 3772 } 3773 EXPORT_SYMBOL(pci_release_selected_regions); 3774 3775 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3776 const char *res_name, int excl) 3777 { 3778 int i; 3779 3780 for (i = 0; i < 6; i++) 3781 if (bars & (1 << i)) 3782 if (__pci_request_region(pdev, i, res_name, excl)) 3783 goto err_out; 3784 return 0; 3785 3786 err_out: 3787 while (--i >= 0) 3788 if (bars & (1 << i)) 3789 pci_release_region(pdev, i); 3790 3791 return -EBUSY; 3792 } 3793 3794 3795 /** 3796 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3797 * @pdev: PCI device whose resources are to be reserved 3798 * @bars: Bitmask of BARs to be requested 3799 * @res_name: Name to be associated with resource 3800 */ 3801 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3802 const char *res_name) 3803 { 3804 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3805 } 3806 EXPORT_SYMBOL(pci_request_selected_regions); 3807 3808 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3809 const char *res_name) 3810 { 3811 return __pci_request_selected_regions(pdev, bars, res_name, 3812 IORESOURCE_EXCLUSIVE); 3813 } 3814 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3815 3816 /** 3817 * pci_release_regions - Release reserved PCI I/O and memory resources 3818 * @pdev: PCI device whose resources were previously reserved by 3819 * pci_request_regions() 3820 * 3821 * Releases all PCI I/O and memory resources previously reserved by a 3822 * successful call to pci_request_regions(). Call this function only 3823 * after all use of the PCI regions has ceased. 3824 */ 3825 3826 void pci_release_regions(struct pci_dev *pdev) 3827 { 3828 pci_release_selected_regions(pdev, (1 << 6) - 1); 3829 } 3830 EXPORT_SYMBOL(pci_release_regions); 3831 3832 /** 3833 * pci_request_regions - Reserve PCI I/O and memory resources 3834 * @pdev: PCI device whose resources are to be reserved 3835 * @res_name: Name to be associated with resource. 3836 * 3837 * Mark all PCI regions associated with PCI device @pdev as 3838 * being reserved by owner @res_name. Do not access any 3839 * address inside the PCI regions unless this call returns 3840 * successfully. 3841 * 3842 * Returns 0 on success, or %EBUSY on error. A warning 3843 * message is also printed on failure. 3844 */ 3845 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3846 { 3847 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3848 } 3849 EXPORT_SYMBOL(pci_request_regions); 3850 3851 /** 3852 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3853 * @pdev: PCI device whose resources are to be reserved 3854 * @res_name: Name to be associated with resource. 3855 * 3856 * Mark all PCI regions associated with PCI device @pdev as being reserved 3857 * by owner @res_name. Do not access any address inside the PCI regions 3858 * unless this call returns successfully. 3859 * 3860 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3861 * and the sysfs MMIO access will not be allowed. 3862 * 3863 * Returns 0 on success, or %EBUSY on error. A warning message is also 3864 * printed on failure. 3865 */ 3866 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3867 { 3868 return pci_request_selected_regions_exclusive(pdev, 3869 ((1 << 6) - 1), res_name); 3870 } 3871 EXPORT_SYMBOL(pci_request_regions_exclusive); 3872 3873 /* 3874 * Record the PCI IO range (expressed as CPU physical address + size). 3875 * Return a negative value if an error has occurred, zero otherwise 3876 */ 3877 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3878 resource_size_t size) 3879 { 3880 int ret = 0; 3881 #ifdef PCI_IOBASE 3882 struct logic_pio_hwaddr *range; 3883 3884 if (!size || addr + size < addr) 3885 return -EINVAL; 3886 3887 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3888 if (!range) 3889 return -ENOMEM; 3890 3891 range->fwnode = fwnode; 3892 range->size = size; 3893 range->hw_start = addr; 3894 range->flags = LOGIC_PIO_CPU_MMIO; 3895 3896 ret = logic_pio_register_range(range); 3897 if (ret) 3898 kfree(range); 3899 #endif 3900 3901 return ret; 3902 } 3903 3904 phys_addr_t pci_pio_to_address(unsigned long pio) 3905 { 3906 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3907 3908 #ifdef PCI_IOBASE 3909 if (pio >= MMIO_UPPER_LIMIT) 3910 return address; 3911 3912 address = logic_pio_to_hwaddr(pio); 3913 #endif 3914 3915 return address; 3916 } 3917 3918 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3919 { 3920 #ifdef PCI_IOBASE 3921 return logic_pio_trans_cpuaddr(address); 3922 #else 3923 if (address > IO_SPACE_LIMIT) 3924 return (unsigned long)-1; 3925 3926 return (unsigned long) address; 3927 #endif 3928 } 3929 3930 /** 3931 * pci_remap_iospace - Remap the memory mapped I/O space 3932 * @res: Resource describing the I/O space 3933 * @phys_addr: physical address of range to be mapped 3934 * 3935 * Remap the memory mapped I/O space described by the @res and the CPU 3936 * physical address @phys_addr into virtual address space. Only 3937 * architectures that have memory mapped IO functions defined (and the 3938 * PCI_IOBASE value defined) should call this function. 3939 */ 3940 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3941 { 3942 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3943 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3944 3945 if (!(res->flags & IORESOURCE_IO)) 3946 return -EINVAL; 3947 3948 if (res->end > IO_SPACE_LIMIT) 3949 return -EINVAL; 3950 3951 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3952 pgprot_device(PAGE_KERNEL)); 3953 #else 3954 /* 3955 * This architecture does not have memory mapped I/O space, 3956 * so this function should never be called 3957 */ 3958 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3959 return -ENODEV; 3960 #endif 3961 } 3962 EXPORT_SYMBOL(pci_remap_iospace); 3963 3964 /** 3965 * pci_unmap_iospace - Unmap the memory mapped I/O space 3966 * @res: resource to be unmapped 3967 * 3968 * Unmap the CPU virtual address @res from virtual address space. Only 3969 * architectures that have memory mapped IO functions defined (and the 3970 * PCI_IOBASE value defined) should call this function. 3971 */ 3972 void pci_unmap_iospace(struct resource *res) 3973 { 3974 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3975 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3976 3977 unmap_kernel_range(vaddr, resource_size(res)); 3978 #endif 3979 } 3980 EXPORT_SYMBOL(pci_unmap_iospace); 3981 3982 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 3983 { 3984 struct resource **res = ptr; 3985 3986 pci_unmap_iospace(*res); 3987 } 3988 3989 /** 3990 * devm_pci_remap_iospace - Managed pci_remap_iospace() 3991 * @dev: Generic device to remap IO address for 3992 * @res: Resource describing the I/O space 3993 * @phys_addr: physical address of range to be mapped 3994 * 3995 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 3996 * detach. 3997 */ 3998 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 3999 phys_addr_t phys_addr) 4000 { 4001 const struct resource **ptr; 4002 int error; 4003 4004 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4005 if (!ptr) 4006 return -ENOMEM; 4007 4008 error = pci_remap_iospace(res, phys_addr); 4009 if (error) { 4010 devres_free(ptr); 4011 } else { 4012 *ptr = res; 4013 devres_add(dev, ptr); 4014 } 4015 4016 return error; 4017 } 4018 EXPORT_SYMBOL(devm_pci_remap_iospace); 4019 4020 /** 4021 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4022 * @dev: Generic device to remap IO address for 4023 * @offset: Resource address to map 4024 * @size: Size of map 4025 * 4026 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4027 * detach. 4028 */ 4029 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4030 resource_size_t offset, 4031 resource_size_t size) 4032 { 4033 void __iomem **ptr, *addr; 4034 4035 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4036 if (!ptr) 4037 return NULL; 4038 4039 addr = pci_remap_cfgspace(offset, size); 4040 if (addr) { 4041 *ptr = addr; 4042 devres_add(dev, ptr); 4043 } else 4044 devres_free(ptr); 4045 4046 return addr; 4047 } 4048 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4049 4050 /** 4051 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4052 * @dev: generic device to handle the resource for 4053 * @res: configuration space resource to be handled 4054 * 4055 * Checks that a resource is a valid memory region, requests the memory 4056 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4057 * proper PCI configuration space memory attributes are guaranteed. 4058 * 4059 * All operations are managed and will be undone on driver detach. 4060 * 4061 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4062 * on failure. Usage example:: 4063 * 4064 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4065 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4066 * if (IS_ERR(base)) 4067 * return PTR_ERR(base); 4068 */ 4069 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4070 struct resource *res) 4071 { 4072 resource_size_t size; 4073 const char *name; 4074 void __iomem *dest_ptr; 4075 4076 BUG_ON(!dev); 4077 4078 if (!res || resource_type(res) != IORESOURCE_MEM) { 4079 dev_err(dev, "invalid resource\n"); 4080 return IOMEM_ERR_PTR(-EINVAL); 4081 } 4082 4083 size = resource_size(res); 4084 name = res->name ?: dev_name(dev); 4085 4086 if (!devm_request_mem_region(dev, res->start, size, name)) { 4087 dev_err(dev, "can't request region for resource %pR\n", res); 4088 return IOMEM_ERR_PTR(-EBUSY); 4089 } 4090 4091 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4092 if (!dest_ptr) { 4093 dev_err(dev, "ioremap failed for resource %pR\n", res); 4094 devm_release_mem_region(dev, res->start, size); 4095 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4096 } 4097 4098 return dest_ptr; 4099 } 4100 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4101 4102 static void __pci_set_master(struct pci_dev *dev, bool enable) 4103 { 4104 u16 old_cmd, cmd; 4105 4106 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4107 if (enable) 4108 cmd = old_cmd | PCI_COMMAND_MASTER; 4109 else 4110 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4111 if (cmd != old_cmd) { 4112 pci_dbg(dev, "%s bus mastering\n", 4113 enable ? "enabling" : "disabling"); 4114 pci_write_config_word(dev, PCI_COMMAND, cmd); 4115 } 4116 dev->is_busmaster = enable; 4117 } 4118 4119 /** 4120 * pcibios_setup - process "pci=" kernel boot arguments 4121 * @str: string used to pass in "pci=" kernel boot arguments 4122 * 4123 * Process kernel boot arguments. This is the default implementation. 4124 * Architecture specific implementations can override this as necessary. 4125 */ 4126 char * __weak __init pcibios_setup(char *str) 4127 { 4128 return str; 4129 } 4130 4131 /** 4132 * pcibios_set_master - enable PCI bus-mastering for device dev 4133 * @dev: the PCI device to enable 4134 * 4135 * Enables PCI bus-mastering for the device. This is the default 4136 * implementation. Architecture specific implementations can override 4137 * this if necessary. 4138 */ 4139 void __weak pcibios_set_master(struct pci_dev *dev) 4140 { 4141 u8 lat; 4142 4143 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4144 if (pci_is_pcie(dev)) 4145 return; 4146 4147 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4148 if (lat < 16) 4149 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4150 else if (lat > pcibios_max_latency) 4151 lat = pcibios_max_latency; 4152 else 4153 return; 4154 4155 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4156 } 4157 4158 /** 4159 * pci_set_master - enables bus-mastering for device dev 4160 * @dev: the PCI device to enable 4161 * 4162 * Enables bus-mastering on the device and calls pcibios_set_master() 4163 * to do the needed arch specific settings. 4164 */ 4165 void pci_set_master(struct pci_dev *dev) 4166 { 4167 __pci_set_master(dev, true); 4168 pcibios_set_master(dev); 4169 } 4170 EXPORT_SYMBOL(pci_set_master); 4171 4172 /** 4173 * pci_clear_master - disables bus-mastering for device dev 4174 * @dev: the PCI device to disable 4175 */ 4176 void pci_clear_master(struct pci_dev *dev) 4177 { 4178 __pci_set_master(dev, false); 4179 } 4180 EXPORT_SYMBOL(pci_clear_master); 4181 4182 /** 4183 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4184 * @dev: the PCI device for which MWI is to be enabled 4185 * 4186 * Helper function for pci_set_mwi. 4187 * Originally copied from drivers/net/acenic.c. 4188 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4189 * 4190 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4191 */ 4192 int pci_set_cacheline_size(struct pci_dev *dev) 4193 { 4194 u8 cacheline_size; 4195 4196 if (!pci_cache_line_size) 4197 return -EINVAL; 4198 4199 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4200 equal to or multiple of the right value. */ 4201 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4202 if (cacheline_size >= pci_cache_line_size && 4203 (cacheline_size % pci_cache_line_size) == 0) 4204 return 0; 4205 4206 /* Write the correct value. */ 4207 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4208 /* Read it back. */ 4209 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4210 if (cacheline_size == pci_cache_line_size) 4211 return 0; 4212 4213 pci_info(dev, "cache line size of %d is not supported\n", 4214 pci_cache_line_size << 2); 4215 4216 return -EINVAL; 4217 } 4218 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4219 4220 /** 4221 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4222 * @dev: the PCI device for which MWI is enabled 4223 * 4224 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4225 * 4226 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4227 */ 4228 int pci_set_mwi(struct pci_dev *dev) 4229 { 4230 #ifdef PCI_DISABLE_MWI 4231 return 0; 4232 #else 4233 int rc; 4234 u16 cmd; 4235 4236 rc = pci_set_cacheline_size(dev); 4237 if (rc) 4238 return rc; 4239 4240 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4241 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4242 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4243 cmd |= PCI_COMMAND_INVALIDATE; 4244 pci_write_config_word(dev, PCI_COMMAND, cmd); 4245 } 4246 return 0; 4247 #endif 4248 } 4249 EXPORT_SYMBOL(pci_set_mwi); 4250 4251 /** 4252 * pcim_set_mwi - a device-managed pci_set_mwi() 4253 * @dev: the PCI device for which MWI is enabled 4254 * 4255 * Managed pci_set_mwi(). 4256 * 4257 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4258 */ 4259 int pcim_set_mwi(struct pci_dev *dev) 4260 { 4261 struct pci_devres *dr; 4262 4263 dr = find_pci_dr(dev); 4264 if (!dr) 4265 return -ENOMEM; 4266 4267 dr->mwi = 1; 4268 return pci_set_mwi(dev); 4269 } 4270 EXPORT_SYMBOL(pcim_set_mwi); 4271 4272 /** 4273 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4274 * @dev: the PCI device for which MWI is enabled 4275 * 4276 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4277 * Callers are not required to check the return value. 4278 * 4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4280 */ 4281 int pci_try_set_mwi(struct pci_dev *dev) 4282 { 4283 #ifdef PCI_DISABLE_MWI 4284 return 0; 4285 #else 4286 return pci_set_mwi(dev); 4287 #endif 4288 } 4289 EXPORT_SYMBOL(pci_try_set_mwi); 4290 4291 /** 4292 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4293 * @dev: the PCI device to disable 4294 * 4295 * Disables PCI Memory-Write-Invalidate transaction on the device 4296 */ 4297 void pci_clear_mwi(struct pci_dev *dev) 4298 { 4299 #ifndef PCI_DISABLE_MWI 4300 u16 cmd; 4301 4302 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4303 if (cmd & PCI_COMMAND_INVALIDATE) { 4304 cmd &= ~PCI_COMMAND_INVALIDATE; 4305 pci_write_config_word(dev, PCI_COMMAND, cmd); 4306 } 4307 #endif 4308 } 4309 EXPORT_SYMBOL(pci_clear_mwi); 4310 4311 /** 4312 * pci_intx - enables/disables PCI INTx for device dev 4313 * @pdev: the PCI device to operate on 4314 * @enable: boolean: whether to enable or disable PCI INTx 4315 * 4316 * Enables/disables PCI INTx for device @pdev 4317 */ 4318 void pci_intx(struct pci_dev *pdev, int enable) 4319 { 4320 u16 pci_command, new; 4321 4322 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4323 4324 if (enable) 4325 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4326 else 4327 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4328 4329 if (new != pci_command) { 4330 struct pci_devres *dr; 4331 4332 pci_write_config_word(pdev, PCI_COMMAND, new); 4333 4334 dr = find_pci_dr(pdev); 4335 if (dr && !dr->restore_intx) { 4336 dr->restore_intx = 1; 4337 dr->orig_intx = !enable; 4338 } 4339 } 4340 } 4341 EXPORT_SYMBOL_GPL(pci_intx); 4342 4343 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4344 { 4345 struct pci_bus *bus = dev->bus; 4346 bool mask_updated = true; 4347 u32 cmd_status_dword; 4348 u16 origcmd, newcmd; 4349 unsigned long flags; 4350 bool irq_pending; 4351 4352 /* 4353 * We do a single dword read to retrieve both command and status. 4354 * Document assumptions that make this possible. 4355 */ 4356 BUILD_BUG_ON(PCI_COMMAND % 4); 4357 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4358 4359 raw_spin_lock_irqsave(&pci_lock, flags); 4360 4361 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4362 4363 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4364 4365 /* 4366 * Check interrupt status register to see whether our device 4367 * triggered the interrupt (when masking) or the next IRQ is 4368 * already pending (when unmasking). 4369 */ 4370 if (mask != irq_pending) { 4371 mask_updated = false; 4372 goto done; 4373 } 4374 4375 origcmd = cmd_status_dword; 4376 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4377 if (mask) 4378 newcmd |= PCI_COMMAND_INTX_DISABLE; 4379 if (newcmd != origcmd) 4380 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4381 4382 done: 4383 raw_spin_unlock_irqrestore(&pci_lock, flags); 4384 4385 return mask_updated; 4386 } 4387 4388 /** 4389 * pci_check_and_mask_intx - mask INTx on pending interrupt 4390 * @dev: the PCI device to operate on 4391 * 4392 * Check if the device dev has its INTx line asserted, mask it and return 4393 * true in that case. False is returned if no interrupt was pending. 4394 */ 4395 bool pci_check_and_mask_intx(struct pci_dev *dev) 4396 { 4397 return pci_check_and_set_intx_mask(dev, true); 4398 } 4399 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4400 4401 /** 4402 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4403 * @dev: the PCI device to operate on 4404 * 4405 * Check if the device dev has its INTx line asserted, unmask it if not and 4406 * return true. False is returned and the mask remains active if there was 4407 * still an interrupt pending. 4408 */ 4409 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4410 { 4411 return pci_check_and_set_intx_mask(dev, false); 4412 } 4413 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4414 4415 /** 4416 * pci_wait_for_pending_transaction - wait for pending transaction 4417 * @dev: the PCI device to operate on 4418 * 4419 * Return 0 if transaction is pending 1 otherwise. 4420 */ 4421 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4422 { 4423 if (!pci_is_pcie(dev)) 4424 return 1; 4425 4426 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4427 PCI_EXP_DEVSTA_TRPND); 4428 } 4429 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4430 4431 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 4432 { 4433 int delay = 1; 4434 u32 id; 4435 4436 /* 4437 * After reset, the device should not silently discard config 4438 * requests, but it may still indicate that it needs more time by 4439 * responding to them with CRS completions. The Root Port will 4440 * generally synthesize ~0 data to complete the read (except when 4441 * CRS SV is enabled and the read was for the Vendor ID; in that 4442 * case it synthesizes 0x0001 data). 4443 * 4444 * Wait for the device to return a non-CRS completion. Read the 4445 * Command register instead of Vendor ID so we don't have to 4446 * contend with the CRS SV value. 4447 */ 4448 pci_read_config_dword(dev, PCI_COMMAND, &id); 4449 while (id == ~0) { 4450 if (delay > timeout) { 4451 pci_warn(dev, "not ready %dms after %s; giving up\n", 4452 delay - 1, reset_type); 4453 return -ENOTTY; 4454 } 4455 4456 if (delay > 1000) 4457 pci_info(dev, "not ready %dms after %s; waiting\n", 4458 delay - 1, reset_type); 4459 4460 msleep(delay); 4461 delay *= 2; 4462 pci_read_config_dword(dev, PCI_COMMAND, &id); 4463 } 4464 4465 if (delay > 1000) 4466 pci_info(dev, "ready %dms after %s\n", delay - 1, 4467 reset_type); 4468 4469 return 0; 4470 } 4471 4472 /** 4473 * pcie_has_flr - check if a device supports function level resets 4474 * @dev: device to check 4475 * 4476 * Returns true if the device advertises support for PCIe function level 4477 * resets. 4478 */ 4479 bool pcie_has_flr(struct pci_dev *dev) 4480 { 4481 u32 cap; 4482 4483 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4484 return false; 4485 4486 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4487 return cap & PCI_EXP_DEVCAP_FLR; 4488 } 4489 EXPORT_SYMBOL_GPL(pcie_has_flr); 4490 4491 /** 4492 * pcie_flr - initiate a PCIe function level reset 4493 * @dev: device to reset 4494 * 4495 * Initiate a function level reset on @dev. The caller should ensure the 4496 * device supports FLR before calling this function, e.g. by using the 4497 * pcie_has_flr() helper. 4498 */ 4499 int pcie_flr(struct pci_dev *dev) 4500 { 4501 if (!pci_wait_for_pending_transaction(dev)) 4502 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4503 4504 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4505 4506 if (dev->imm_ready) 4507 return 0; 4508 4509 /* 4510 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4511 * 100ms, but may silently discard requests while the FLR is in 4512 * progress. Wait 100ms before trying to access the device. 4513 */ 4514 msleep(100); 4515 4516 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4517 } 4518 EXPORT_SYMBOL_GPL(pcie_flr); 4519 4520 static int pci_af_flr(struct pci_dev *dev, int probe) 4521 { 4522 int pos; 4523 u8 cap; 4524 4525 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4526 if (!pos) 4527 return -ENOTTY; 4528 4529 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4530 return -ENOTTY; 4531 4532 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4533 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4534 return -ENOTTY; 4535 4536 if (probe) 4537 return 0; 4538 4539 /* 4540 * Wait for Transaction Pending bit to clear. A word-aligned test 4541 * is used, so we use the control offset rather than status and shift 4542 * the test bit to match. 4543 */ 4544 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4545 PCI_AF_STATUS_TP << 8)) 4546 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4547 4548 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4549 4550 if (dev->imm_ready) 4551 return 0; 4552 4553 /* 4554 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4555 * updated 27 July 2006; a device must complete an FLR within 4556 * 100ms, but may silently discard requests while the FLR is in 4557 * progress. Wait 100ms before trying to access the device. 4558 */ 4559 msleep(100); 4560 4561 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4562 } 4563 4564 /** 4565 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4566 * @dev: Device to reset. 4567 * @probe: If set, only check if the device can be reset this way. 4568 * 4569 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4570 * unset, it will be reinitialized internally when going from PCI_D3hot to 4571 * PCI_D0. If that's the case and the device is not in a low-power state 4572 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4573 * 4574 * NOTE: This causes the caller to sleep for twice the device power transition 4575 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4576 * by default (i.e. unless the @dev's d3_delay field has a different value). 4577 * Moreover, only devices in D0 can be reset by this function. 4578 */ 4579 static int pci_pm_reset(struct pci_dev *dev, int probe) 4580 { 4581 u16 csr; 4582 4583 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4584 return -ENOTTY; 4585 4586 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4587 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4588 return -ENOTTY; 4589 4590 if (probe) 4591 return 0; 4592 4593 if (dev->current_state != PCI_D0) 4594 return -EINVAL; 4595 4596 csr &= ~PCI_PM_CTRL_STATE_MASK; 4597 csr |= PCI_D3hot; 4598 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4599 pci_dev_d3_sleep(dev); 4600 4601 csr &= ~PCI_PM_CTRL_STATE_MASK; 4602 csr |= PCI_D0; 4603 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4604 pci_dev_d3_sleep(dev); 4605 4606 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4607 } 4608 /** 4609 * pcie_wait_for_link - Wait until link is active or inactive 4610 * @pdev: Bridge device 4611 * @active: waiting for active or inactive? 4612 * 4613 * Use this to wait till link becomes active or inactive. 4614 */ 4615 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4616 { 4617 int timeout = 1000; 4618 bool ret; 4619 u16 lnk_status; 4620 4621 /* 4622 * Some controllers might not implement link active reporting. In this 4623 * case, we wait for 1000 + 100 ms. 4624 */ 4625 if (!pdev->link_active_reporting) { 4626 msleep(1100); 4627 return true; 4628 } 4629 4630 /* 4631 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4632 * after which we should expect an link active if the reset was 4633 * successful. If so, software must wait a minimum 100ms before sending 4634 * configuration requests to devices downstream this port. 4635 * 4636 * If the link fails to activate, either the device was physically 4637 * removed or the link is permanently failed. 4638 */ 4639 if (active) 4640 msleep(20); 4641 for (;;) { 4642 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4643 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4644 if (ret == active) 4645 break; 4646 if (timeout <= 0) 4647 break; 4648 msleep(10); 4649 timeout -= 10; 4650 } 4651 if (active && ret) 4652 msleep(100); 4653 else if (ret != active) 4654 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4655 active ? "set" : "cleared"); 4656 return ret == active; 4657 } 4658 4659 void pci_reset_secondary_bus(struct pci_dev *dev) 4660 { 4661 u16 ctrl; 4662 4663 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4664 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4665 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4666 4667 /* 4668 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4669 * this to 2ms to ensure that we meet the minimum requirement. 4670 */ 4671 msleep(2); 4672 4673 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4674 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4675 4676 /* 4677 * Trhfa for conventional PCI is 2^25 clock cycles. 4678 * Assuming a minimum 33MHz clock this results in a 1s 4679 * delay before we can consider subordinate devices to 4680 * be re-initialized. PCIe has some ways to shorten this, 4681 * but we don't make use of them yet. 4682 */ 4683 ssleep(1); 4684 } 4685 4686 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4687 { 4688 pci_reset_secondary_bus(dev); 4689 } 4690 4691 /** 4692 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4693 * @dev: Bridge device 4694 * 4695 * Use the bridge control register to assert reset on the secondary bus. 4696 * Devices on the secondary bus are left in power-on state. 4697 */ 4698 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4699 { 4700 pcibios_reset_secondary_bus(dev); 4701 4702 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4703 } 4704 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4705 4706 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4707 { 4708 struct pci_dev *pdev; 4709 4710 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4711 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4712 return -ENOTTY; 4713 4714 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4715 if (pdev != dev) 4716 return -ENOTTY; 4717 4718 if (probe) 4719 return 0; 4720 4721 return pci_bridge_secondary_bus_reset(dev->bus->self); 4722 } 4723 4724 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4725 { 4726 int rc = -ENOTTY; 4727 4728 if (!hotplug || !try_module_get(hotplug->owner)) 4729 return rc; 4730 4731 if (hotplug->ops->reset_slot) 4732 rc = hotplug->ops->reset_slot(hotplug, probe); 4733 4734 module_put(hotplug->owner); 4735 4736 return rc; 4737 } 4738 4739 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4740 { 4741 struct pci_dev *pdev; 4742 4743 if (dev->subordinate || !dev->slot || 4744 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4745 return -ENOTTY; 4746 4747 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4748 if (pdev != dev && pdev->slot == dev->slot) 4749 return -ENOTTY; 4750 4751 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4752 } 4753 4754 static void pci_dev_lock(struct pci_dev *dev) 4755 { 4756 pci_cfg_access_lock(dev); 4757 /* block PM suspend, driver probe, etc. */ 4758 device_lock(&dev->dev); 4759 } 4760 4761 /* Return 1 on successful lock, 0 on contention */ 4762 static int pci_dev_trylock(struct pci_dev *dev) 4763 { 4764 if (pci_cfg_access_trylock(dev)) { 4765 if (device_trylock(&dev->dev)) 4766 return 1; 4767 pci_cfg_access_unlock(dev); 4768 } 4769 4770 return 0; 4771 } 4772 4773 static void pci_dev_unlock(struct pci_dev *dev) 4774 { 4775 device_unlock(&dev->dev); 4776 pci_cfg_access_unlock(dev); 4777 } 4778 4779 static void pci_dev_save_and_disable(struct pci_dev *dev) 4780 { 4781 const struct pci_error_handlers *err_handler = 4782 dev->driver ? dev->driver->err_handler : NULL; 4783 4784 /* 4785 * dev->driver->err_handler->reset_prepare() is protected against 4786 * races with ->remove() by the device lock, which must be held by 4787 * the caller. 4788 */ 4789 if (err_handler && err_handler->reset_prepare) 4790 err_handler->reset_prepare(dev); 4791 4792 /* 4793 * Wake-up device prior to save. PM registers default to D0 after 4794 * reset and a simple register restore doesn't reliably return 4795 * to a non-D0 state anyway. 4796 */ 4797 pci_set_power_state(dev, PCI_D0); 4798 4799 pci_save_state(dev); 4800 /* 4801 * Disable the device by clearing the Command register, except for 4802 * INTx-disable which is set. This not only disables MMIO and I/O port 4803 * BARs, but also prevents the device from being Bus Master, preventing 4804 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4805 * compliant devices, INTx-disable prevents legacy interrupts. 4806 */ 4807 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4808 } 4809 4810 static void pci_dev_restore(struct pci_dev *dev) 4811 { 4812 const struct pci_error_handlers *err_handler = 4813 dev->driver ? dev->driver->err_handler : NULL; 4814 4815 pci_restore_state(dev); 4816 4817 /* 4818 * dev->driver->err_handler->reset_done() is protected against 4819 * races with ->remove() by the device lock, which must be held by 4820 * the caller. 4821 */ 4822 if (err_handler && err_handler->reset_done) 4823 err_handler->reset_done(dev); 4824 } 4825 4826 /** 4827 * __pci_reset_function_locked - reset a PCI device function while holding 4828 * the @dev mutex lock. 4829 * @dev: PCI device to reset 4830 * 4831 * Some devices allow an individual function to be reset without affecting 4832 * other functions in the same device. The PCI device must be responsive 4833 * to PCI config space in order to use this function. 4834 * 4835 * The device function is presumed to be unused and the caller is holding 4836 * the device mutex lock when this function is called. 4837 * 4838 * Resetting the device will make the contents of PCI configuration space 4839 * random, so any caller of this must be prepared to reinitialise the 4840 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4841 * etc. 4842 * 4843 * Returns 0 if the device function was successfully reset or negative if the 4844 * device doesn't support resetting a single function. 4845 */ 4846 int __pci_reset_function_locked(struct pci_dev *dev) 4847 { 4848 int rc; 4849 4850 might_sleep(); 4851 4852 /* 4853 * A reset method returns -ENOTTY if it doesn't support this device 4854 * and we should try the next method. 4855 * 4856 * If it returns 0 (success), we're finished. If it returns any 4857 * other error, we're also finished: this indicates that further 4858 * reset mechanisms might be broken on the device. 4859 */ 4860 rc = pci_dev_specific_reset(dev, 0); 4861 if (rc != -ENOTTY) 4862 return rc; 4863 if (pcie_has_flr(dev)) { 4864 rc = pcie_flr(dev); 4865 if (rc != -ENOTTY) 4866 return rc; 4867 } 4868 rc = pci_af_flr(dev, 0); 4869 if (rc != -ENOTTY) 4870 return rc; 4871 rc = pci_pm_reset(dev, 0); 4872 if (rc != -ENOTTY) 4873 return rc; 4874 rc = pci_dev_reset_slot_function(dev, 0); 4875 if (rc != -ENOTTY) 4876 return rc; 4877 return pci_parent_bus_reset(dev, 0); 4878 } 4879 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4880 4881 /** 4882 * pci_probe_reset_function - check whether the device can be safely reset 4883 * @dev: PCI device to reset 4884 * 4885 * Some devices allow an individual function to be reset without affecting 4886 * other functions in the same device. The PCI device must be responsive 4887 * to PCI config space in order to use this function. 4888 * 4889 * Returns 0 if the device function can be reset or negative if the 4890 * device doesn't support resetting a single function. 4891 */ 4892 int pci_probe_reset_function(struct pci_dev *dev) 4893 { 4894 int rc; 4895 4896 might_sleep(); 4897 4898 rc = pci_dev_specific_reset(dev, 1); 4899 if (rc != -ENOTTY) 4900 return rc; 4901 if (pcie_has_flr(dev)) 4902 return 0; 4903 rc = pci_af_flr(dev, 1); 4904 if (rc != -ENOTTY) 4905 return rc; 4906 rc = pci_pm_reset(dev, 1); 4907 if (rc != -ENOTTY) 4908 return rc; 4909 rc = pci_dev_reset_slot_function(dev, 1); 4910 if (rc != -ENOTTY) 4911 return rc; 4912 4913 return pci_parent_bus_reset(dev, 1); 4914 } 4915 4916 /** 4917 * pci_reset_function - quiesce and reset a PCI device function 4918 * @dev: PCI device to reset 4919 * 4920 * Some devices allow an individual function to be reset without affecting 4921 * other functions in the same device. The PCI device must be responsive 4922 * to PCI config space in order to use this function. 4923 * 4924 * This function does not just reset the PCI portion of a device, but 4925 * clears all the state associated with the device. This function differs 4926 * from __pci_reset_function_locked() in that it saves and restores device state 4927 * over the reset and takes the PCI device lock. 4928 * 4929 * Returns 0 if the device function was successfully reset or negative if the 4930 * device doesn't support resetting a single function. 4931 */ 4932 int pci_reset_function(struct pci_dev *dev) 4933 { 4934 int rc; 4935 4936 if (!dev->reset_fn) 4937 return -ENOTTY; 4938 4939 pci_dev_lock(dev); 4940 pci_dev_save_and_disable(dev); 4941 4942 rc = __pci_reset_function_locked(dev); 4943 4944 pci_dev_restore(dev); 4945 pci_dev_unlock(dev); 4946 4947 return rc; 4948 } 4949 EXPORT_SYMBOL_GPL(pci_reset_function); 4950 4951 /** 4952 * pci_reset_function_locked - quiesce and reset a PCI device function 4953 * @dev: PCI device to reset 4954 * 4955 * Some devices allow an individual function to be reset without affecting 4956 * other functions in the same device. The PCI device must be responsive 4957 * to PCI config space in order to use this function. 4958 * 4959 * This function does not just reset the PCI portion of a device, but 4960 * clears all the state associated with the device. This function differs 4961 * from __pci_reset_function_locked() in that it saves and restores device state 4962 * over the reset. It also differs from pci_reset_function() in that it 4963 * requires the PCI device lock to be held. 4964 * 4965 * Returns 0 if the device function was successfully reset or negative if the 4966 * device doesn't support resetting a single function. 4967 */ 4968 int pci_reset_function_locked(struct pci_dev *dev) 4969 { 4970 int rc; 4971 4972 if (!dev->reset_fn) 4973 return -ENOTTY; 4974 4975 pci_dev_save_and_disable(dev); 4976 4977 rc = __pci_reset_function_locked(dev); 4978 4979 pci_dev_restore(dev); 4980 4981 return rc; 4982 } 4983 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4984 4985 /** 4986 * pci_try_reset_function - quiesce and reset a PCI device function 4987 * @dev: PCI device to reset 4988 * 4989 * Same as above, except return -EAGAIN if unable to lock device. 4990 */ 4991 int pci_try_reset_function(struct pci_dev *dev) 4992 { 4993 int rc; 4994 4995 if (!dev->reset_fn) 4996 return -ENOTTY; 4997 4998 if (!pci_dev_trylock(dev)) 4999 return -EAGAIN; 5000 5001 pci_dev_save_and_disable(dev); 5002 rc = __pci_reset_function_locked(dev); 5003 pci_dev_restore(dev); 5004 pci_dev_unlock(dev); 5005 5006 return rc; 5007 } 5008 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5009 5010 /* Do any devices on or below this bus prevent a bus reset? */ 5011 static bool pci_bus_resetable(struct pci_bus *bus) 5012 { 5013 struct pci_dev *dev; 5014 5015 5016 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5017 return false; 5018 5019 list_for_each_entry(dev, &bus->devices, bus_list) { 5020 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5021 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5022 return false; 5023 } 5024 5025 return true; 5026 } 5027 5028 /* Lock devices from the top of the tree down */ 5029 static void pci_bus_lock(struct pci_bus *bus) 5030 { 5031 struct pci_dev *dev; 5032 5033 list_for_each_entry(dev, &bus->devices, bus_list) { 5034 pci_dev_lock(dev); 5035 if (dev->subordinate) 5036 pci_bus_lock(dev->subordinate); 5037 } 5038 } 5039 5040 /* Unlock devices from the bottom of the tree up */ 5041 static void pci_bus_unlock(struct pci_bus *bus) 5042 { 5043 struct pci_dev *dev; 5044 5045 list_for_each_entry(dev, &bus->devices, bus_list) { 5046 if (dev->subordinate) 5047 pci_bus_unlock(dev->subordinate); 5048 pci_dev_unlock(dev); 5049 } 5050 } 5051 5052 /* Return 1 on successful lock, 0 on contention */ 5053 static int pci_bus_trylock(struct pci_bus *bus) 5054 { 5055 struct pci_dev *dev; 5056 5057 list_for_each_entry(dev, &bus->devices, bus_list) { 5058 if (!pci_dev_trylock(dev)) 5059 goto unlock; 5060 if (dev->subordinate) { 5061 if (!pci_bus_trylock(dev->subordinate)) { 5062 pci_dev_unlock(dev); 5063 goto unlock; 5064 } 5065 } 5066 } 5067 return 1; 5068 5069 unlock: 5070 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5071 if (dev->subordinate) 5072 pci_bus_unlock(dev->subordinate); 5073 pci_dev_unlock(dev); 5074 } 5075 return 0; 5076 } 5077 5078 /* Do any devices on or below this slot prevent a bus reset? */ 5079 static bool pci_slot_resetable(struct pci_slot *slot) 5080 { 5081 struct pci_dev *dev; 5082 5083 if (slot->bus->self && 5084 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5085 return false; 5086 5087 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5088 if (!dev->slot || dev->slot != slot) 5089 continue; 5090 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5091 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5092 return false; 5093 } 5094 5095 return true; 5096 } 5097 5098 /* Lock devices from the top of the tree down */ 5099 static void pci_slot_lock(struct pci_slot *slot) 5100 { 5101 struct pci_dev *dev; 5102 5103 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5104 if (!dev->slot || dev->slot != slot) 5105 continue; 5106 pci_dev_lock(dev); 5107 if (dev->subordinate) 5108 pci_bus_lock(dev->subordinate); 5109 } 5110 } 5111 5112 /* Unlock devices from the bottom of the tree up */ 5113 static void pci_slot_unlock(struct pci_slot *slot) 5114 { 5115 struct pci_dev *dev; 5116 5117 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5118 if (!dev->slot || dev->slot != slot) 5119 continue; 5120 if (dev->subordinate) 5121 pci_bus_unlock(dev->subordinate); 5122 pci_dev_unlock(dev); 5123 } 5124 } 5125 5126 /* Return 1 on successful lock, 0 on contention */ 5127 static int pci_slot_trylock(struct pci_slot *slot) 5128 { 5129 struct pci_dev *dev; 5130 5131 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5132 if (!dev->slot || dev->slot != slot) 5133 continue; 5134 if (!pci_dev_trylock(dev)) 5135 goto unlock; 5136 if (dev->subordinate) { 5137 if (!pci_bus_trylock(dev->subordinate)) { 5138 pci_dev_unlock(dev); 5139 goto unlock; 5140 } 5141 } 5142 } 5143 return 1; 5144 5145 unlock: 5146 list_for_each_entry_continue_reverse(dev, 5147 &slot->bus->devices, bus_list) { 5148 if (!dev->slot || dev->slot != slot) 5149 continue; 5150 if (dev->subordinate) 5151 pci_bus_unlock(dev->subordinate); 5152 pci_dev_unlock(dev); 5153 } 5154 return 0; 5155 } 5156 5157 /* 5158 * Save and disable devices from the top of the tree down while holding 5159 * the @dev mutex lock for the entire tree. 5160 */ 5161 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5162 { 5163 struct pci_dev *dev; 5164 5165 list_for_each_entry(dev, &bus->devices, bus_list) { 5166 pci_dev_save_and_disable(dev); 5167 if (dev->subordinate) 5168 pci_bus_save_and_disable_locked(dev->subordinate); 5169 } 5170 } 5171 5172 /* 5173 * Restore devices from top of the tree down while holding @dev mutex lock 5174 * for the entire tree. Parent bridges need to be restored before we can 5175 * get to subordinate devices. 5176 */ 5177 static void pci_bus_restore_locked(struct pci_bus *bus) 5178 { 5179 struct pci_dev *dev; 5180 5181 list_for_each_entry(dev, &bus->devices, bus_list) { 5182 pci_dev_restore(dev); 5183 if (dev->subordinate) 5184 pci_bus_restore_locked(dev->subordinate); 5185 } 5186 } 5187 5188 /* 5189 * Save and disable devices from the top of the tree down while holding 5190 * the @dev mutex lock for the entire tree. 5191 */ 5192 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5193 { 5194 struct pci_dev *dev; 5195 5196 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5197 if (!dev->slot || dev->slot != slot) 5198 continue; 5199 pci_dev_save_and_disable(dev); 5200 if (dev->subordinate) 5201 pci_bus_save_and_disable_locked(dev->subordinate); 5202 } 5203 } 5204 5205 /* 5206 * Restore devices from top of the tree down while holding @dev mutex lock 5207 * for the entire tree. Parent bridges need to be restored before we can 5208 * get to subordinate devices. 5209 */ 5210 static void pci_slot_restore_locked(struct pci_slot *slot) 5211 { 5212 struct pci_dev *dev; 5213 5214 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5215 if (!dev->slot || dev->slot != slot) 5216 continue; 5217 pci_dev_restore(dev); 5218 if (dev->subordinate) 5219 pci_bus_restore_locked(dev->subordinate); 5220 } 5221 } 5222 5223 static int pci_slot_reset(struct pci_slot *slot, int probe) 5224 { 5225 int rc; 5226 5227 if (!slot || !pci_slot_resetable(slot)) 5228 return -ENOTTY; 5229 5230 if (!probe) 5231 pci_slot_lock(slot); 5232 5233 might_sleep(); 5234 5235 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5236 5237 if (!probe) 5238 pci_slot_unlock(slot); 5239 5240 return rc; 5241 } 5242 5243 /** 5244 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5245 * @slot: PCI slot to probe 5246 * 5247 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5248 */ 5249 int pci_probe_reset_slot(struct pci_slot *slot) 5250 { 5251 return pci_slot_reset(slot, 1); 5252 } 5253 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5254 5255 /** 5256 * __pci_reset_slot - Try to reset a PCI slot 5257 * @slot: PCI slot to reset 5258 * 5259 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5260 * independent of other slots. For instance, some slots may support slot power 5261 * control. In the case of a 1:1 bus to slot architecture, this function may 5262 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5263 * Generally a slot reset should be attempted before a bus reset. All of the 5264 * function of the slot and any subordinate buses behind the slot are reset 5265 * through this function. PCI config space of all devices in the slot and 5266 * behind the slot is saved before and restored after reset. 5267 * 5268 * Same as above except return -EAGAIN if the slot cannot be locked 5269 */ 5270 static int __pci_reset_slot(struct pci_slot *slot) 5271 { 5272 int rc; 5273 5274 rc = pci_slot_reset(slot, 1); 5275 if (rc) 5276 return rc; 5277 5278 if (pci_slot_trylock(slot)) { 5279 pci_slot_save_and_disable_locked(slot); 5280 might_sleep(); 5281 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5282 pci_slot_restore_locked(slot); 5283 pci_slot_unlock(slot); 5284 } else 5285 rc = -EAGAIN; 5286 5287 return rc; 5288 } 5289 5290 static int pci_bus_reset(struct pci_bus *bus, int probe) 5291 { 5292 int ret; 5293 5294 if (!bus->self || !pci_bus_resetable(bus)) 5295 return -ENOTTY; 5296 5297 if (probe) 5298 return 0; 5299 5300 pci_bus_lock(bus); 5301 5302 might_sleep(); 5303 5304 ret = pci_bridge_secondary_bus_reset(bus->self); 5305 5306 pci_bus_unlock(bus); 5307 5308 return ret; 5309 } 5310 5311 /** 5312 * pci_bus_error_reset - reset the bridge's subordinate bus 5313 * @bridge: The parent device that connects to the bus to reset 5314 * 5315 * This function will first try to reset the slots on this bus if the method is 5316 * available. If slot reset fails or is not available, this will fall back to a 5317 * secondary bus reset. 5318 */ 5319 int pci_bus_error_reset(struct pci_dev *bridge) 5320 { 5321 struct pci_bus *bus = bridge->subordinate; 5322 struct pci_slot *slot; 5323 5324 if (!bus) 5325 return -ENOTTY; 5326 5327 mutex_lock(&pci_slot_mutex); 5328 if (list_empty(&bus->slots)) 5329 goto bus_reset; 5330 5331 list_for_each_entry(slot, &bus->slots, list) 5332 if (pci_probe_reset_slot(slot)) 5333 goto bus_reset; 5334 5335 list_for_each_entry(slot, &bus->slots, list) 5336 if (pci_slot_reset(slot, 0)) 5337 goto bus_reset; 5338 5339 mutex_unlock(&pci_slot_mutex); 5340 return 0; 5341 bus_reset: 5342 mutex_unlock(&pci_slot_mutex); 5343 return pci_bus_reset(bridge->subordinate, 0); 5344 } 5345 5346 /** 5347 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5348 * @bus: PCI bus to probe 5349 * 5350 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5351 */ 5352 int pci_probe_reset_bus(struct pci_bus *bus) 5353 { 5354 return pci_bus_reset(bus, 1); 5355 } 5356 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5357 5358 /** 5359 * __pci_reset_bus - Try to reset a PCI bus 5360 * @bus: top level PCI bus to reset 5361 * 5362 * Same as above except return -EAGAIN if the bus cannot be locked 5363 */ 5364 static int __pci_reset_bus(struct pci_bus *bus) 5365 { 5366 int rc; 5367 5368 rc = pci_bus_reset(bus, 1); 5369 if (rc) 5370 return rc; 5371 5372 if (pci_bus_trylock(bus)) { 5373 pci_bus_save_and_disable_locked(bus); 5374 might_sleep(); 5375 rc = pci_bridge_secondary_bus_reset(bus->self); 5376 pci_bus_restore_locked(bus); 5377 pci_bus_unlock(bus); 5378 } else 5379 rc = -EAGAIN; 5380 5381 return rc; 5382 } 5383 5384 /** 5385 * pci_reset_bus - Try to reset a PCI bus 5386 * @pdev: top level PCI device to reset via slot/bus 5387 * 5388 * Same as above except return -EAGAIN if the bus cannot be locked 5389 */ 5390 int pci_reset_bus(struct pci_dev *pdev) 5391 { 5392 return (!pci_probe_reset_slot(pdev->slot)) ? 5393 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5394 } 5395 EXPORT_SYMBOL_GPL(pci_reset_bus); 5396 5397 /** 5398 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5399 * @dev: PCI device to query 5400 * 5401 * Returns mmrbc: maximum designed memory read count in bytes or 5402 * appropriate error value. 5403 */ 5404 int pcix_get_max_mmrbc(struct pci_dev *dev) 5405 { 5406 int cap; 5407 u32 stat; 5408 5409 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5410 if (!cap) 5411 return -EINVAL; 5412 5413 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5414 return -EINVAL; 5415 5416 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5417 } 5418 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5419 5420 /** 5421 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5422 * @dev: PCI device to query 5423 * 5424 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5425 * value. 5426 */ 5427 int pcix_get_mmrbc(struct pci_dev *dev) 5428 { 5429 int cap; 5430 u16 cmd; 5431 5432 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5433 if (!cap) 5434 return -EINVAL; 5435 5436 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5437 return -EINVAL; 5438 5439 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5440 } 5441 EXPORT_SYMBOL(pcix_get_mmrbc); 5442 5443 /** 5444 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5445 * @dev: PCI device to query 5446 * @mmrbc: maximum memory read count in bytes 5447 * valid values are 512, 1024, 2048, 4096 5448 * 5449 * If possible sets maximum memory read byte count, some bridges have errata 5450 * that prevent this. 5451 */ 5452 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5453 { 5454 int cap; 5455 u32 stat, v, o; 5456 u16 cmd; 5457 5458 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5459 return -EINVAL; 5460 5461 v = ffs(mmrbc) - 10; 5462 5463 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5464 if (!cap) 5465 return -EINVAL; 5466 5467 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5468 return -EINVAL; 5469 5470 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5471 return -E2BIG; 5472 5473 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5474 return -EINVAL; 5475 5476 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5477 if (o != v) { 5478 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5479 return -EIO; 5480 5481 cmd &= ~PCI_X_CMD_MAX_READ; 5482 cmd |= v << 2; 5483 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5484 return -EIO; 5485 } 5486 return 0; 5487 } 5488 EXPORT_SYMBOL(pcix_set_mmrbc); 5489 5490 /** 5491 * pcie_get_readrq - get PCI Express read request size 5492 * @dev: PCI device to query 5493 * 5494 * Returns maximum memory read request in bytes or appropriate error value. 5495 */ 5496 int pcie_get_readrq(struct pci_dev *dev) 5497 { 5498 u16 ctl; 5499 5500 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5501 5502 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5503 } 5504 EXPORT_SYMBOL(pcie_get_readrq); 5505 5506 /** 5507 * pcie_set_readrq - set PCI Express maximum memory read request 5508 * @dev: PCI device to query 5509 * @rq: maximum memory read count in bytes 5510 * valid values are 128, 256, 512, 1024, 2048, 4096 5511 * 5512 * If possible sets maximum memory read request in bytes 5513 */ 5514 int pcie_set_readrq(struct pci_dev *dev, int rq) 5515 { 5516 u16 v; 5517 5518 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5519 return -EINVAL; 5520 5521 /* 5522 * If using the "performance" PCIe config, we clamp the read rq 5523 * size to the max packet size to keep the host bridge from 5524 * generating requests larger than we can cope with. 5525 */ 5526 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5527 int mps = pcie_get_mps(dev); 5528 5529 if (mps < rq) 5530 rq = mps; 5531 } 5532 5533 v = (ffs(rq) - 8) << 12; 5534 5535 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5536 PCI_EXP_DEVCTL_READRQ, v); 5537 } 5538 EXPORT_SYMBOL(pcie_set_readrq); 5539 5540 /** 5541 * pcie_get_mps - get PCI Express maximum payload size 5542 * @dev: PCI device to query 5543 * 5544 * Returns maximum payload size in bytes 5545 */ 5546 int pcie_get_mps(struct pci_dev *dev) 5547 { 5548 u16 ctl; 5549 5550 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5551 5552 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5553 } 5554 EXPORT_SYMBOL(pcie_get_mps); 5555 5556 /** 5557 * pcie_set_mps - set PCI Express maximum payload size 5558 * @dev: PCI device to query 5559 * @mps: maximum payload size in bytes 5560 * valid values are 128, 256, 512, 1024, 2048, 4096 5561 * 5562 * If possible sets maximum payload size 5563 */ 5564 int pcie_set_mps(struct pci_dev *dev, int mps) 5565 { 5566 u16 v; 5567 5568 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5569 return -EINVAL; 5570 5571 v = ffs(mps) - 8; 5572 if (v > dev->pcie_mpss) 5573 return -EINVAL; 5574 v <<= 5; 5575 5576 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5577 PCI_EXP_DEVCTL_PAYLOAD, v); 5578 } 5579 EXPORT_SYMBOL(pcie_set_mps); 5580 5581 /** 5582 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5583 * device and its bandwidth limitation 5584 * @dev: PCI device to query 5585 * @limiting_dev: storage for device causing the bandwidth limitation 5586 * @speed: storage for speed of limiting device 5587 * @width: storage for width of limiting device 5588 * 5589 * Walk up the PCI device chain and find the point where the minimum 5590 * bandwidth is available. Return the bandwidth available there and (if 5591 * limiting_dev, speed, and width pointers are supplied) information about 5592 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5593 * raw bandwidth. 5594 */ 5595 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5596 enum pci_bus_speed *speed, 5597 enum pcie_link_width *width) 5598 { 5599 u16 lnksta; 5600 enum pci_bus_speed next_speed; 5601 enum pcie_link_width next_width; 5602 u32 bw, next_bw; 5603 5604 if (speed) 5605 *speed = PCI_SPEED_UNKNOWN; 5606 if (width) 5607 *width = PCIE_LNK_WIDTH_UNKNOWN; 5608 5609 bw = 0; 5610 5611 while (dev) { 5612 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5613 5614 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5615 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5616 PCI_EXP_LNKSTA_NLW_SHIFT; 5617 5618 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5619 5620 /* Check if current device limits the total bandwidth */ 5621 if (!bw || next_bw <= bw) { 5622 bw = next_bw; 5623 5624 if (limiting_dev) 5625 *limiting_dev = dev; 5626 if (speed) 5627 *speed = next_speed; 5628 if (width) 5629 *width = next_width; 5630 } 5631 5632 dev = pci_upstream_bridge(dev); 5633 } 5634 5635 return bw; 5636 } 5637 EXPORT_SYMBOL(pcie_bandwidth_available); 5638 5639 /** 5640 * pcie_get_speed_cap - query for the PCI device's link speed capability 5641 * @dev: PCI device to query 5642 * 5643 * Query the PCI device speed capability. Return the maximum link speed 5644 * supported by the device. 5645 */ 5646 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5647 { 5648 u32 lnkcap2, lnkcap; 5649 5650 /* 5651 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5652 * implementation note there recommends using the Supported Link 5653 * Speeds Vector in Link Capabilities 2 when supported. 5654 * 5655 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5656 * should use the Supported Link Speeds field in Link Capabilities, 5657 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5658 */ 5659 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5660 if (lnkcap2) { /* PCIe r3.0-compliant */ 5661 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB) 5662 return PCIE_SPEED_32_0GT; 5663 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5664 return PCIE_SPEED_16_0GT; 5665 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5666 return PCIE_SPEED_8_0GT; 5667 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5668 return PCIE_SPEED_5_0GT; 5669 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5670 return PCIE_SPEED_2_5GT; 5671 return PCI_SPEED_UNKNOWN; 5672 } 5673 5674 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5675 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5676 return PCIE_SPEED_5_0GT; 5677 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5678 return PCIE_SPEED_2_5GT; 5679 5680 return PCI_SPEED_UNKNOWN; 5681 } 5682 EXPORT_SYMBOL(pcie_get_speed_cap); 5683 5684 /** 5685 * pcie_get_width_cap - query for the PCI device's link width capability 5686 * @dev: PCI device to query 5687 * 5688 * Query the PCI device width capability. Return the maximum link width 5689 * supported by the device. 5690 */ 5691 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5692 { 5693 u32 lnkcap; 5694 5695 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5696 if (lnkcap) 5697 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5698 5699 return PCIE_LNK_WIDTH_UNKNOWN; 5700 } 5701 EXPORT_SYMBOL(pcie_get_width_cap); 5702 5703 /** 5704 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5705 * @dev: PCI device 5706 * @speed: storage for link speed 5707 * @width: storage for link width 5708 * 5709 * Calculate a PCI device's link bandwidth by querying for its link speed 5710 * and width, multiplying them, and applying encoding overhead. The result 5711 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5712 */ 5713 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5714 enum pcie_link_width *width) 5715 { 5716 *speed = pcie_get_speed_cap(dev); 5717 *width = pcie_get_width_cap(dev); 5718 5719 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5720 return 0; 5721 5722 return *width * PCIE_SPEED2MBS_ENC(*speed); 5723 } 5724 5725 /** 5726 * __pcie_print_link_status - Report the PCI device's link speed and width 5727 * @dev: PCI device to query 5728 * @verbose: Print info even when enough bandwidth is available 5729 * 5730 * If the available bandwidth at the device is less than the device is 5731 * capable of, report the device's maximum possible bandwidth and the 5732 * upstream link that limits its performance. If @verbose, always print 5733 * the available bandwidth, even if the device isn't constrained. 5734 */ 5735 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5736 { 5737 enum pcie_link_width width, width_cap; 5738 enum pci_bus_speed speed, speed_cap; 5739 struct pci_dev *limiting_dev = NULL; 5740 u32 bw_avail, bw_cap; 5741 5742 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5743 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5744 5745 if (bw_avail >= bw_cap && verbose) 5746 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5747 bw_cap / 1000, bw_cap % 1000, 5748 PCIE_SPEED2STR(speed_cap), width_cap); 5749 else if (bw_avail < bw_cap) 5750 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5751 bw_avail / 1000, bw_avail % 1000, 5752 PCIE_SPEED2STR(speed), width, 5753 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5754 bw_cap / 1000, bw_cap % 1000, 5755 PCIE_SPEED2STR(speed_cap), width_cap); 5756 } 5757 5758 /** 5759 * pcie_print_link_status - Report the PCI device's link speed and width 5760 * @dev: PCI device to query 5761 * 5762 * Report the available bandwidth at the device. 5763 */ 5764 void pcie_print_link_status(struct pci_dev *dev) 5765 { 5766 __pcie_print_link_status(dev, true); 5767 } 5768 EXPORT_SYMBOL(pcie_print_link_status); 5769 5770 /** 5771 * pci_select_bars - Make BAR mask from the type of resource 5772 * @dev: the PCI device for which BAR mask is made 5773 * @flags: resource type mask to be selected 5774 * 5775 * This helper routine makes bar mask from the type of resource. 5776 */ 5777 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5778 { 5779 int i, bars = 0; 5780 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5781 if (pci_resource_flags(dev, i) & flags) 5782 bars |= (1 << i); 5783 return bars; 5784 } 5785 EXPORT_SYMBOL(pci_select_bars); 5786 5787 /* Some architectures require additional programming to enable VGA */ 5788 static arch_set_vga_state_t arch_set_vga_state; 5789 5790 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5791 { 5792 arch_set_vga_state = func; /* NULL disables */ 5793 } 5794 5795 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5796 unsigned int command_bits, u32 flags) 5797 { 5798 if (arch_set_vga_state) 5799 return arch_set_vga_state(dev, decode, command_bits, 5800 flags); 5801 return 0; 5802 } 5803 5804 /** 5805 * pci_set_vga_state - set VGA decode state on device and parents if requested 5806 * @dev: the PCI device 5807 * @decode: true = enable decoding, false = disable decoding 5808 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5809 * @flags: traverse ancestors and change bridges 5810 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5811 */ 5812 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5813 unsigned int command_bits, u32 flags) 5814 { 5815 struct pci_bus *bus; 5816 struct pci_dev *bridge; 5817 u16 cmd; 5818 int rc; 5819 5820 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5821 5822 /* ARCH specific VGA enables */ 5823 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5824 if (rc) 5825 return rc; 5826 5827 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5828 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5829 if (decode == true) 5830 cmd |= command_bits; 5831 else 5832 cmd &= ~command_bits; 5833 pci_write_config_word(dev, PCI_COMMAND, cmd); 5834 } 5835 5836 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5837 return 0; 5838 5839 bus = dev->bus; 5840 while (bus) { 5841 bridge = bus->self; 5842 if (bridge) { 5843 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5844 &cmd); 5845 if (decode == true) 5846 cmd |= PCI_BRIDGE_CTL_VGA; 5847 else 5848 cmd &= ~PCI_BRIDGE_CTL_VGA; 5849 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5850 cmd); 5851 } 5852 bus = bus->parent; 5853 } 5854 return 0; 5855 } 5856 5857 /** 5858 * pci_add_dma_alias - Add a DMA devfn alias for a device 5859 * @dev: the PCI device for which alias is added 5860 * @devfn: alias slot and function 5861 * 5862 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 5863 * which is used to program permissible bus-devfn source addresses for DMA 5864 * requests in an IOMMU. These aliases factor into IOMMU group creation 5865 * and are useful for devices generating DMA requests beyond or different 5866 * from their logical bus-devfn. Examples include device quirks where the 5867 * device simply uses the wrong devfn, as well as non-transparent bridges 5868 * where the alias may be a proxy for devices in another domain. 5869 * 5870 * IOMMU group creation is performed during device discovery or addition, 5871 * prior to any potential DMA mapping and therefore prior to driver probing 5872 * (especially for userspace assigned devices where IOMMU group definition 5873 * cannot be left as a userspace activity). DMA aliases should therefore 5874 * be configured via quirks, such as the PCI fixup header quirk. 5875 */ 5876 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5877 { 5878 if (!dev->dma_alias_mask) 5879 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL); 5880 if (!dev->dma_alias_mask) { 5881 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5882 return; 5883 } 5884 5885 set_bit(devfn, dev->dma_alias_mask); 5886 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5887 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5888 } 5889 5890 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5891 { 5892 return (dev1->dma_alias_mask && 5893 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5894 (dev2->dma_alias_mask && 5895 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5896 } 5897 5898 bool pci_device_is_present(struct pci_dev *pdev) 5899 { 5900 u32 v; 5901 5902 if (pci_dev_is_disconnected(pdev)) 5903 return false; 5904 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5905 } 5906 EXPORT_SYMBOL_GPL(pci_device_is_present); 5907 5908 void pci_ignore_hotplug(struct pci_dev *dev) 5909 { 5910 struct pci_dev *bridge = dev->bus->self; 5911 5912 dev->ignore_hotplug = 1; 5913 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5914 if (bridge) 5915 bridge->ignore_hotplug = 1; 5916 } 5917 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5918 5919 resource_size_t __weak pcibios_default_alignment(void) 5920 { 5921 return 0; 5922 } 5923 5924 /* 5925 * Arches that don't want to expose struct resource to userland as-is in 5926 * sysfs and /proc can implement their own pci_resource_to_user(). 5927 */ 5928 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 5929 const struct resource *rsrc, 5930 resource_size_t *start, resource_size_t *end) 5931 { 5932 *start = rsrc->start; 5933 *end = rsrc->end; 5934 } 5935 5936 static char *resource_alignment_param; 5937 static DEFINE_SPINLOCK(resource_alignment_lock); 5938 5939 /** 5940 * pci_specified_resource_alignment - get resource alignment specified by user. 5941 * @dev: the PCI device to get 5942 * @resize: whether or not to change resources' size when reassigning alignment 5943 * 5944 * RETURNS: Resource alignment if it is specified. 5945 * Zero if it is not specified. 5946 */ 5947 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5948 bool *resize) 5949 { 5950 int align_order, count; 5951 resource_size_t align = pcibios_default_alignment(); 5952 const char *p; 5953 int ret; 5954 5955 spin_lock(&resource_alignment_lock); 5956 p = resource_alignment_param; 5957 if (!p || !*p) 5958 goto out; 5959 if (pci_has_flag(PCI_PROBE_ONLY)) { 5960 align = 0; 5961 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5962 goto out; 5963 } 5964 5965 while (*p) { 5966 count = 0; 5967 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5968 p[count] == '@') { 5969 p += count + 1; 5970 } else { 5971 align_order = -1; 5972 } 5973 5974 ret = pci_dev_str_match(dev, p, &p); 5975 if (ret == 1) { 5976 *resize = true; 5977 if (align_order == -1) 5978 align = PAGE_SIZE; 5979 else 5980 align = 1 << align_order; 5981 break; 5982 } else if (ret < 0) { 5983 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 5984 p); 5985 break; 5986 } 5987 5988 if (*p != ';' && *p != ',') { 5989 /* End of param or invalid format */ 5990 break; 5991 } 5992 p++; 5993 } 5994 out: 5995 spin_unlock(&resource_alignment_lock); 5996 return align; 5997 } 5998 5999 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6000 resource_size_t align, bool resize) 6001 { 6002 struct resource *r = &dev->resource[bar]; 6003 resource_size_t size; 6004 6005 if (!(r->flags & IORESOURCE_MEM)) 6006 return; 6007 6008 if (r->flags & IORESOURCE_PCI_FIXED) { 6009 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6010 bar, r, (unsigned long long)align); 6011 return; 6012 } 6013 6014 size = resource_size(r); 6015 if (size >= align) 6016 return; 6017 6018 /* 6019 * Increase the alignment of the resource. There are two ways we 6020 * can do this: 6021 * 6022 * 1) Increase the size of the resource. BARs are aligned on their 6023 * size, so when we reallocate space for this resource, we'll 6024 * allocate it with the larger alignment. This also prevents 6025 * assignment of any other BARs inside the alignment region, so 6026 * if we're requesting page alignment, this means no other BARs 6027 * will share the page. 6028 * 6029 * The disadvantage is that this makes the resource larger than 6030 * the hardware BAR, which may break drivers that compute things 6031 * based on the resource size, e.g., to find registers at a 6032 * fixed offset before the end of the BAR. 6033 * 6034 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6035 * set r->start to the desired alignment. By itself this 6036 * doesn't prevent other BARs being put inside the alignment 6037 * region, but if we realign *every* resource of every device in 6038 * the system, none of them will share an alignment region. 6039 * 6040 * When the user has requested alignment for only some devices via 6041 * the "pci=resource_alignment" argument, "resize" is true and we 6042 * use the first method. Otherwise we assume we're aligning all 6043 * devices and we use the second. 6044 */ 6045 6046 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6047 bar, r, (unsigned long long)align); 6048 6049 if (resize) { 6050 r->start = 0; 6051 r->end = align - 1; 6052 } else { 6053 r->flags &= ~IORESOURCE_SIZEALIGN; 6054 r->flags |= IORESOURCE_STARTALIGN; 6055 r->start = align; 6056 r->end = r->start + size - 1; 6057 } 6058 r->flags |= IORESOURCE_UNSET; 6059 } 6060 6061 /* 6062 * This function disables memory decoding and releases memory resources 6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6064 * It also rounds up size to specified alignment. 6065 * Later on, the kernel will assign page-aligned memory resource back 6066 * to the device. 6067 */ 6068 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6069 { 6070 int i; 6071 struct resource *r; 6072 resource_size_t align; 6073 u16 command; 6074 bool resize = false; 6075 6076 /* 6077 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6078 * 3.4.1.11. Their resources are allocated from the space 6079 * described by the VF BARx register in the PF's SR-IOV capability. 6080 * We can't influence their alignment here. 6081 */ 6082 if (dev->is_virtfn) 6083 return; 6084 6085 /* check if specified PCI is target device to reassign */ 6086 align = pci_specified_resource_alignment(dev, &resize); 6087 if (!align) 6088 return; 6089 6090 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6091 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6092 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6093 return; 6094 } 6095 6096 pci_read_config_word(dev, PCI_COMMAND, &command); 6097 command &= ~PCI_COMMAND_MEMORY; 6098 pci_write_config_word(dev, PCI_COMMAND, command); 6099 6100 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6101 pci_request_resource_alignment(dev, i, align, resize); 6102 6103 /* 6104 * Need to disable bridge's resource window, 6105 * to enable the kernel to reassign new resource 6106 * window later on. 6107 */ 6108 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6109 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6110 r = &dev->resource[i]; 6111 if (!(r->flags & IORESOURCE_MEM)) 6112 continue; 6113 r->flags |= IORESOURCE_UNSET; 6114 r->end = resource_size(r) - 1; 6115 r->start = 0; 6116 } 6117 pci_disable_bridge_window(dev); 6118 } 6119 } 6120 6121 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6122 { 6123 size_t count = 0; 6124 6125 spin_lock(&resource_alignment_lock); 6126 if (resource_alignment_param) 6127 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6128 spin_unlock(&resource_alignment_lock); 6129 6130 /* 6131 * When set by the command line, resource_alignment_param will not 6132 * have a trailing line feed, which is ugly. So conditionally add 6133 * it here. 6134 */ 6135 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6136 buf[count - 1] = '\n'; 6137 buf[count++] = 0; 6138 } 6139 6140 return count; 6141 } 6142 6143 static ssize_t resource_alignment_store(struct bus_type *bus, 6144 const char *buf, size_t count) 6145 { 6146 char *param = kstrndup(buf, count, GFP_KERNEL); 6147 6148 if (!param) 6149 return -ENOMEM; 6150 6151 spin_lock(&resource_alignment_lock); 6152 kfree(resource_alignment_param); 6153 resource_alignment_param = param; 6154 spin_unlock(&resource_alignment_lock); 6155 return count; 6156 } 6157 6158 static BUS_ATTR_RW(resource_alignment); 6159 6160 static int __init pci_resource_alignment_sysfs_init(void) 6161 { 6162 return bus_create_file(&pci_bus_type, 6163 &bus_attr_resource_alignment); 6164 } 6165 late_initcall(pci_resource_alignment_sysfs_init); 6166 6167 static void pci_no_domains(void) 6168 { 6169 #ifdef CONFIG_PCI_DOMAINS 6170 pci_domains_supported = 0; 6171 #endif 6172 } 6173 6174 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6175 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6176 6177 static int pci_get_new_domain_nr(void) 6178 { 6179 return atomic_inc_return(&__domain_nr); 6180 } 6181 6182 static int of_pci_bus_find_domain_nr(struct device *parent) 6183 { 6184 static int use_dt_domains = -1; 6185 int domain = -1; 6186 6187 if (parent) 6188 domain = of_get_pci_domain_nr(parent->of_node); 6189 6190 /* 6191 * Check DT domain and use_dt_domains values. 6192 * 6193 * If DT domain property is valid (domain >= 0) and 6194 * use_dt_domains != 0, the DT assignment is valid since this means 6195 * we have not previously allocated a domain number by using 6196 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6197 * 1, to indicate that we have just assigned a domain number from 6198 * DT. 6199 * 6200 * If DT domain property value is not valid (ie domain < 0), and we 6201 * have not previously assigned a domain number from DT 6202 * (use_dt_domains != 1) we should assign a domain number by 6203 * using the: 6204 * 6205 * pci_get_new_domain_nr() 6206 * 6207 * API and update the use_dt_domains value to keep track of method we 6208 * are using to assign domain numbers (use_dt_domains = 0). 6209 * 6210 * All other combinations imply we have a platform that is trying 6211 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6212 * which is a recipe for domain mishandling and it is prevented by 6213 * invalidating the domain value (domain = -1) and printing a 6214 * corresponding error. 6215 */ 6216 if (domain >= 0 && use_dt_domains) { 6217 use_dt_domains = 1; 6218 } else if (domain < 0 && use_dt_domains != 1) { 6219 use_dt_domains = 0; 6220 domain = pci_get_new_domain_nr(); 6221 } else { 6222 if (parent) 6223 pr_err("Node %pOF has ", parent->of_node); 6224 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6225 domain = -1; 6226 } 6227 6228 return domain; 6229 } 6230 6231 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6232 { 6233 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6234 acpi_pci_bus_find_domain_nr(bus); 6235 } 6236 #endif 6237 6238 /** 6239 * pci_ext_cfg_avail - can we access extended PCI config space? 6240 * 6241 * Returns 1 if we can access PCI extended config space (offsets 6242 * greater than 0xff). This is the default implementation. Architecture 6243 * implementations can override this. 6244 */ 6245 int __weak pci_ext_cfg_avail(void) 6246 { 6247 return 1; 6248 } 6249 6250 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6251 { 6252 } 6253 EXPORT_SYMBOL(pci_fixup_cardbus); 6254 6255 static int __init pci_setup(char *str) 6256 { 6257 while (str) { 6258 char *k = strchr(str, ','); 6259 if (k) 6260 *k++ = 0; 6261 if (*str && (str = pcibios_setup(str)) && *str) { 6262 if (!strcmp(str, "nomsi")) { 6263 pci_no_msi(); 6264 } else if (!strncmp(str, "noats", 5)) { 6265 pr_info("PCIe: ATS is disabled\n"); 6266 pcie_ats_disabled = true; 6267 } else if (!strcmp(str, "noaer")) { 6268 pci_no_aer(); 6269 } else if (!strcmp(str, "earlydump")) { 6270 pci_early_dump = true; 6271 } else if (!strncmp(str, "realloc=", 8)) { 6272 pci_realloc_get_opt(str + 8); 6273 } else if (!strncmp(str, "realloc", 7)) { 6274 pci_realloc_get_opt("on"); 6275 } else if (!strcmp(str, "nodomains")) { 6276 pci_no_domains(); 6277 } else if (!strncmp(str, "noari", 5)) { 6278 pcie_ari_disabled = true; 6279 } else if (!strncmp(str, "cbiosize=", 9)) { 6280 pci_cardbus_io_size = memparse(str + 9, &str); 6281 } else if (!strncmp(str, "cbmemsize=", 10)) { 6282 pci_cardbus_mem_size = memparse(str + 10, &str); 6283 } else if (!strncmp(str, "resource_alignment=", 19)) { 6284 resource_alignment_param = str + 19; 6285 } else if (!strncmp(str, "ecrc=", 5)) { 6286 pcie_ecrc_get_policy(str + 5); 6287 } else if (!strncmp(str, "hpiosize=", 9)) { 6288 pci_hotplug_io_size = memparse(str + 9, &str); 6289 } else if (!strncmp(str, "hpmemsize=", 10)) { 6290 pci_hotplug_mem_size = memparse(str + 10, &str); 6291 } else if (!strncmp(str, "hpbussize=", 10)) { 6292 pci_hotplug_bus_size = 6293 simple_strtoul(str + 10, &str, 0); 6294 if (pci_hotplug_bus_size > 0xff) 6295 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6296 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6297 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6298 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6299 pcie_bus_config = PCIE_BUS_SAFE; 6300 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6301 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6302 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6303 pcie_bus_config = PCIE_BUS_PEER2PEER; 6304 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6305 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6306 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6307 disable_acs_redir_param = str + 18; 6308 } else { 6309 pr_err("PCI: Unknown option `%s'\n", str); 6310 } 6311 } 6312 str = k; 6313 } 6314 return 0; 6315 } 6316 early_param("pci", pci_setup); 6317 6318 /* 6319 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6320 * in pci_setup(), above, to point to data in the __initdata section which 6321 * will be freed after the init sequence is complete. We can't allocate memory 6322 * in pci_setup() because some architectures do not have any memory allocation 6323 * service available during an early_param() call. So we allocate memory and 6324 * copy the variable here before the init section is freed. 6325 * 6326 */ 6327 static int __init pci_realloc_setup_params(void) 6328 { 6329 resource_alignment_param = kstrdup(resource_alignment_param, 6330 GFP_KERNEL); 6331 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6332 6333 return 0; 6334 } 6335 pure_initcall(pci_realloc_setup_params); 6336