1 /* 2 * $Id: pci.c,v 1.91 1999/01/21 13:34:01 davem Exp $ 3 * 4 * PCI Bus Services, see include/linux/pci.h for further explanation. 5 * 6 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 7 * David Mosberger-Tang 8 * 9 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/init.h> 15 #include <linux/pci.h> 16 #include <linux/pm.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/string.h> 20 #include <asm/dma.h> /* isa_dma_bridge_buggy */ 21 #include "pci.h" 22 23 unsigned int pci_pm_d3_delay = 10; 24 25 #define DEFAULT_CARDBUS_IO_SIZE (256) 26 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 27 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 28 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 29 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 30 31 /** 32 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 33 * @bus: pointer to PCI bus structure to search 34 * 35 * Given a PCI bus, returns the highest PCI bus number present in the set 36 * including the given PCI bus and its list of child PCI buses. 37 */ 38 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 39 { 40 struct list_head *tmp; 41 unsigned char max, n; 42 43 max = bus->subordinate; 44 list_for_each(tmp, &bus->children) { 45 n = pci_bus_max_busnr(pci_bus_b(tmp)); 46 if(n > max) 47 max = n; 48 } 49 return max; 50 } 51 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 52 53 #if 0 54 /** 55 * pci_max_busnr - returns maximum PCI bus number 56 * 57 * Returns the highest PCI bus number present in the system global list of 58 * PCI buses. 59 */ 60 unsigned char __devinit 61 pci_max_busnr(void) 62 { 63 struct pci_bus *bus = NULL; 64 unsigned char max, n; 65 66 max = 0; 67 while ((bus = pci_find_next_bus(bus)) != NULL) { 68 n = pci_bus_max_busnr(bus); 69 if(n > max) 70 max = n; 71 } 72 return max; 73 } 74 75 #endif /* 0 */ 76 77 #define PCI_FIND_CAP_TTL 48 78 79 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 80 u8 pos, int cap, int *ttl) 81 { 82 u8 id; 83 84 while ((*ttl)--) { 85 pci_bus_read_config_byte(bus, devfn, pos, &pos); 86 if (pos < 0x40) 87 break; 88 pos &= ~3; 89 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 90 &id); 91 if (id == 0xff) 92 break; 93 if (id == cap) 94 return pos; 95 pos += PCI_CAP_LIST_NEXT; 96 } 97 return 0; 98 } 99 100 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 101 u8 pos, int cap) 102 { 103 int ttl = PCI_FIND_CAP_TTL; 104 105 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 106 } 107 108 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 109 { 110 return __pci_find_next_cap(dev->bus, dev->devfn, 111 pos + PCI_CAP_LIST_NEXT, cap); 112 } 113 EXPORT_SYMBOL_GPL(pci_find_next_capability); 114 115 static int __pci_bus_find_cap_start(struct pci_bus *bus, 116 unsigned int devfn, u8 hdr_type) 117 { 118 u16 status; 119 120 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 121 if (!(status & PCI_STATUS_CAP_LIST)) 122 return 0; 123 124 switch (hdr_type) { 125 case PCI_HEADER_TYPE_NORMAL: 126 case PCI_HEADER_TYPE_BRIDGE: 127 return PCI_CAPABILITY_LIST; 128 case PCI_HEADER_TYPE_CARDBUS: 129 return PCI_CB_CAPABILITY_LIST; 130 default: 131 return 0; 132 } 133 134 return 0; 135 } 136 137 /** 138 * pci_find_capability - query for devices' capabilities 139 * @dev: PCI device to query 140 * @cap: capability code 141 * 142 * Tell if a device supports a given PCI capability. 143 * Returns the address of the requested capability structure within the 144 * device's PCI configuration space or 0 in case the device does not 145 * support it. Possible values for @cap: 146 * 147 * %PCI_CAP_ID_PM Power Management 148 * %PCI_CAP_ID_AGP Accelerated Graphics Port 149 * %PCI_CAP_ID_VPD Vital Product Data 150 * %PCI_CAP_ID_SLOTID Slot Identification 151 * %PCI_CAP_ID_MSI Message Signalled Interrupts 152 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 153 * %PCI_CAP_ID_PCIX PCI-X 154 * %PCI_CAP_ID_EXP PCI Express 155 */ 156 int pci_find_capability(struct pci_dev *dev, int cap) 157 { 158 int pos; 159 160 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 161 if (pos) 162 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 163 164 return pos; 165 } 166 167 /** 168 * pci_bus_find_capability - query for devices' capabilities 169 * @bus: the PCI bus to query 170 * @devfn: PCI device to query 171 * @cap: capability code 172 * 173 * Like pci_find_capability() but works for pci devices that do not have a 174 * pci_dev structure set up yet. 175 * 176 * Returns the address of the requested capability structure within the 177 * device's PCI configuration space or 0 in case the device does not 178 * support it. 179 */ 180 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 181 { 182 int pos; 183 u8 hdr_type; 184 185 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 186 187 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 188 if (pos) 189 pos = __pci_find_next_cap(bus, devfn, pos, cap); 190 191 return pos; 192 } 193 194 /** 195 * pci_find_ext_capability - Find an extended capability 196 * @dev: PCI device to query 197 * @cap: capability code 198 * 199 * Returns the address of the requested extended capability structure 200 * within the device's PCI configuration space or 0 if the device does 201 * not support it. Possible values for @cap: 202 * 203 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 204 * %PCI_EXT_CAP_ID_VC Virtual Channel 205 * %PCI_EXT_CAP_ID_DSN Device Serial Number 206 * %PCI_EXT_CAP_ID_PWR Power Budgeting 207 */ 208 int pci_find_ext_capability(struct pci_dev *dev, int cap) 209 { 210 u32 header; 211 int ttl = 480; /* 3840 bytes, minimum 8 bytes per capability */ 212 int pos = 0x100; 213 214 if (dev->cfg_size <= 256) 215 return 0; 216 217 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 218 return 0; 219 220 /* 221 * If we have no capabilities, this is indicated by cap ID, 222 * cap version and next pointer all being 0. 223 */ 224 if (header == 0) 225 return 0; 226 227 while (ttl-- > 0) { 228 if (PCI_EXT_CAP_ID(header) == cap) 229 return pos; 230 231 pos = PCI_EXT_CAP_NEXT(header); 232 if (pos < 0x100) 233 break; 234 235 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 236 break; 237 } 238 239 return 0; 240 } 241 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 242 243 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 244 { 245 int rc, ttl = PCI_FIND_CAP_TTL; 246 u8 cap, mask; 247 248 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 249 mask = HT_3BIT_CAP_MASK; 250 else 251 mask = HT_5BIT_CAP_MASK; 252 253 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 254 PCI_CAP_ID_HT, &ttl); 255 while (pos) { 256 rc = pci_read_config_byte(dev, pos + 3, &cap); 257 if (rc != PCIBIOS_SUCCESSFUL) 258 return 0; 259 260 if ((cap & mask) == ht_cap) 261 return pos; 262 263 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 264 pos + PCI_CAP_LIST_NEXT, 265 PCI_CAP_ID_HT, &ttl); 266 } 267 268 return 0; 269 } 270 /** 271 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 272 * @dev: PCI device to query 273 * @pos: Position from which to continue searching 274 * @ht_cap: Hypertransport capability code 275 * 276 * To be used in conjunction with pci_find_ht_capability() to search for 277 * all capabilities matching @ht_cap. @pos should always be a value returned 278 * from pci_find_ht_capability(). 279 * 280 * NB. To be 100% safe against broken PCI devices, the caller should take 281 * steps to avoid an infinite loop. 282 */ 283 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 284 { 285 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 286 } 287 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 288 289 /** 290 * pci_find_ht_capability - query a device's Hypertransport capabilities 291 * @dev: PCI device to query 292 * @ht_cap: Hypertransport capability code 293 * 294 * Tell if a device supports a given Hypertransport capability. 295 * Returns an address within the device's PCI configuration space 296 * or 0 in case the device does not support the request capability. 297 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 298 * which has a Hypertransport capability matching @ht_cap. 299 */ 300 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 301 { 302 int pos; 303 304 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 305 if (pos) 306 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 307 308 return pos; 309 } 310 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 311 312 /** 313 * pci_find_parent_resource - return resource region of parent bus of given region 314 * @dev: PCI device structure contains resources to be searched 315 * @res: child resource record for which parent is sought 316 * 317 * For given resource region of given device, return the resource 318 * region of parent bus the given region is contained in or where 319 * it should be allocated from. 320 */ 321 struct resource * 322 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 323 { 324 const struct pci_bus *bus = dev->bus; 325 int i; 326 struct resource *best = NULL; 327 328 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) { 329 struct resource *r = bus->resource[i]; 330 if (!r) 331 continue; 332 if (res->start && !(res->start >= r->start && res->end <= r->end)) 333 continue; /* Not contained */ 334 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 335 continue; /* Wrong type */ 336 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 337 return r; /* Exact match */ 338 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH)) 339 best = r; /* Approximating prefetchable by non-prefetchable */ 340 } 341 return best; 342 } 343 344 /** 345 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 346 * @dev: PCI device to have its BARs restored 347 * 348 * Restore the BAR values for a given device, so as to make it 349 * accessible by its driver. 350 */ 351 void 352 pci_restore_bars(struct pci_dev *dev) 353 { 354 int i, numres; 355 356 switch (dev->hdr_type) { 357 case PCI_HEADER_TYPE_NORMAL: 358 numres = 6; 359 break; 360 case PCI_HEADER_TYPE_BRIDGE: 361 numres = 2; 362 break; 363 case PCI_HEADER_TYPE_CARDBUS: 364 numres = 1; 365 break; 366 default: 367 /* Should never get here, but just in case... */ 368 return; 369 } 370 371 for (i = 0; i < numres; i ++) 372 pci_update_resource(dev, &dev->resource[i], i); 373 } 374 375 int (*platform_pci_set_power_state)(struct pci_dev *dev, pci_power_t t); 376 377 /** 378 * pci_set_power_state - Set the power state of a PCI device 379 * @dev: PCI device to be suspended 380 * @state: PCI power state (D0, D1, D2, D3hot, D3cold) we're entering 381 * 382 * Transition a device to a new power state, using the Power Management 383 * Capabilities in the device's config space. 384 * 385 * RETURN VALUE: 386 * -EINVAL if trying to enter a lower state than we're already in. 387 * 0 if we're already in the requested state. 388 * -EIO if device does not support PCI PM. 389 * 0 if we can successfully change the power state. 390 */ 391 int 392 pci_set_power_state(struct pci_dev *dev, pci_power_t state) 393 { 394 int pm, need_restore = 0; 395 u16 pmcsr, pmc; 396 397 /* bound the state we're entering */ 398 if (state > PCI_D3hot) 399 state = PCI_D3hot; 400 401 /* 402 * If the device or the parent bridge can't support PCI PM, ignore 403 * the request if we're doing anything besides putting it into D0 404 * (which would only happen on boot). 405 */ 406 if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 407 return 0; 408 409 /* find PCI PM capability in list */ 410 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 411 412 /* abort if the device doesn't support PM capabilities */ 413 if (!pm) 414 return -EIO; 415 416 /* Validate current state: 417 * Can enter D0 from any state, but if we can only go deeper 418 * to sleep if we're already in a low power state 419 */ 420 if (state != PCI_D0 && dev->current_state > state) { 421 printk(KERN_ERR "%s(): %s: state=%d, current state=%d\n", 422 __FUNCTION__, pci_name(dev), state, dev->current_state); 423 return -EINVAL; 424 } else if (dev->current_state == state) 425 return 0; /* we're already there */ 426 427 428 pci_read_config_word(dev,pm + PCI_PM_PMC,&pmc); 429 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 430 printk(KERN_DEBUG 431 "PCI: %s has unsupported PM cap regs version (%u)\n", 432 pci_name(dev), pmc & PCI_PM_CAP_VER_MASK); 433 return -EIO; 434 } 435 436 /* check if this device supports the desired state */ 437 if (state == PCI_D1 && !(pmc & PCI_PM_CAP_D1)) 438 return -EIO; 439 else if (state == PCI_D2 && !(pmc & PCI_PM_CAP_D2)) 440 return -EIO; 441 442 pci_read_config_word(dev, pm + PCI_PM_CTRL, &pmcsr); 443 444 /* If we're (effectively) in D3, force entire word to 0. 445 * This doesn't affect PME_Status, disables PME_En, and 446 * sets PowerState to 0. 447 */ 448 switch (dev->current_state) { 449 case PCI_D0: 450 case PCI_D1: 451 case PCI_D2: 452 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 453 pmcsr |= state; 454 break; 455 case PCI_UNKNOWN: /* Boot-up */ 456 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 457 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 458 need_restore = 1; 459 /* Fall-through: force to D0 */ 460 default: 461 pmcsr = 0; 462 break; 463 } 464 465 /* enter specified state */ 466 pci_write_config_word(dev, pm + PCI_PM_CTRL, pmcsr); 467 468 /* Mandatory power management transition delays */ 469 /* see PCI PM 1.1 5.6.1 table 18 */ 470 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 471 msleep(pci_pm_d3_delay); 472 else if (state == PCI_D2 || dev->current_state == PCI_D2) 473 udelay(200); 474 475 /* 476 * Give firmware a chance to be called, such as ACPI _PRx, _PSx 477 * Firmware method after native method ? 478 */ 479 if (platform_pci_set_power_state) 480 platform_pci_set_power_state(dev, state); 481 482 dev->current_state = state; 483 484 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 485 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 486 * from D3hot to D0 _may_ perform an internal reset, thereby 487 * going to "D0 Uninitialized" rather than "D0 Initialized". 488 * For example, at least some versions of the 3c905B and the 489 * 3c556B exhibit this behaviour. 490 * 491 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 492 * devices in a D3hot state at boot. Consequently, we need to 493 * restore at least the BARs so that the device will be 494 * accessible to its driver. 495 */ 496 if (need_restore) 497 pci_restore_bars(dev); 498 499 return 0; 500 } 501 502 pci_power_t (*platform_pci_choose_state)(struct pci_dev *dev, pm_message_t state); 503 504 /** 505 * pci_choose_state - Choose the power state of a PCI device 506 * @dev: PCI device to be suspended 507 * @state: target sleep state for the whole system. This is the value 508 * that is passed to suspend() function. 509 * 510 * Returns PCI power state suitable for given device and given system 511 * message. 512 */ 513 514 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 515 { 516 pci_power_t ret; 517 518 if (!pci_find_capability(dev, PCI_CAP_ID_PM)) 519 return PCI_D0; 520 521 if (platform_pci_choose_state) { 522 ret = platform_pci_choose_state(dev, state); 523 if (ret != PCI_POWER_ERROR) 524 return ret; 525 } 526 527 switch (state.event) { 528 case PM_EVENT_ON: 529 return PCI_D0; 530 case PM_EVENT_FREEZE: 531 case PM_EVENT_PRETHAW: 532 /* REVISIT both freeze and pre-thaw "should" use D0 */ 533 case PM_EVENT_SUSPEND: 534 return PCI_D3hot; 535 default: 536 printk("Unrecognized suspend event %d\n", state.event); 537 BUG(); 538 } 539 return PCI_D0; 540 } 541 542 EXPORT_SYMBOL(pci_choose_state); 543 544 static int pci_save_pcie_state(struct pci_dev *dev) 545 { 546 int pos, i = 0; 547 struct pci_cap_saved_state *save_state; 548 u16 *cap; 549 550 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 551 if (pos <= 0) 552 return 0; 553 554 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 555 if (!save_state) 556 save_state = kzalloc(sizeof(*save_state) + sizeof(u16) * 4, GFP_KERNEL); 557 if (!save_state) { 558 dev_err(&dev->dev, "Out of memory in pci_save_pcie_state\n"); 559 return -ENOMEM; 560 } 561 cap = (u16 *)&save_state->data[0]; 562 563 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]); 564 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]); 565 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]); 566 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]); 567 pci_add_saved_cap(dev, save_state); 568 return 0; 569 } 570 571 static void pci_restore_pcie_state(struct pci_dev *dev) 572 { 573 int i = 0, pos; 574 struct pci_cap_saved_state *save_state; 575 u16 *cap; 576 577 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 578 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 579 if (!save_state || pos <= 0) 580 return; 581 cap = (u16 *)&save_state->data[0]; 582 583 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]); 584 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]); 585 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]); 586 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]); 587 } 588 589 590 static int pci_save_pcix_state(struct pci_dev *dev) 591 { 592 int pos, i = 0; 593 struct pci_cap_saved_state *save_state; 594 u16 *cap; 595 596 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 597 if (pos <= 0) 598 return 0; 599 600 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 601 if (!save_state) 602 save_state = kzalloc(sizeof(*save_state) + sizeof(u16), GFP_KERNEL); 603 if (!save_state) { 604 dev_err(&dev->dev, "Out of memory in pci_save_pcie_state\n"); 605 return -ENOMEM; 606 } 607 cap = (u16 *)&save_state->data[0]; 608 609 pci_read_config_word(dev, pos + PCI_X_CMD, &cap[i++]); 610 pci_add_saved_cap(dev, save_state); 611 return 0; 612 } 613 614 static void pci_restore_pcix_state(struct pci_dev *dev) 615 { 616 int i = 0, pos; 617 struct pci_cap_saved_state *save_state; 618 u16 *cap; 619 620 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 621 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 622 if (!save_state || pos <= 0) 623 return; 624 cap = (u16 *)&save_state->data[0]; 625 626 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 627 } 628 629 630 /** 631 * pci_save_state - save the PCI configuration space of a device before suspending 632 * @dev: - PCI device that we're dealing with 633 */ 634 int 635 pci_save_state(struct pci_dev *dev) 636 { 637 int i; 638 /* XXX: 100% dword access ok here? */ 639 for (i = 0; i < 16; i++) 640 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]); 641 if ((i = pci_save_pcie_state(dev)) != 0) 642 return i; 643 if ((i = pci_save_pcix_state(dev)) != 0) 644 return i; 645 return 0; 646 } 647 648 /** 649 * pci_restore_state - Restore the saved state of a PCI device 650 * @dev: - PCI device that we're dealing with 651 */ 652 int 653 pci_restore_state(struct pci_dev *dev) 654 { 655 int i; 656 int val; 657 658 /* PCI Express register must be restored first */ 659 pci_restore_pcie_state(dev); 660 661 /* 662 * The Base Address register should be programmed before the command 663 * register(s) 664 */ 665 for (i = 15; i >= 0; i--) { 666 pci_read_config_dword(dev, i * 4, &val); 667 if (val != dev->saved_config_space[i]) { 668 printk(KERN_DEBUG "PM: Writing back config space on " 669 "device %s at offset %x (was %x, writing %x)\n", 670 pci_name(dev), i, 671 val, (int)dev->saved_config_space[i]); 672 pci_write_config_dword(dev,i * 4, 673 dev->saved_config_space[i]); 674 } 675 } 676 pci_restore_pcix_state(dev); 677 pci_restore_msi_state(dev); 678 679 return 0; 680 } 681 682 static int do_pci_enable_device(struct pci_dev *dev, int bars) 683 { 684 int err; 685 686 err = pci_set_power_state(dev, PCI_D0); 687 if (err < 0 && err != -EIO) 688 return err; 689 err = pcibios_enable_device(dev, bars); 690 if (err < 0) 691 return err; 692 pci_fixup_device(pci_fixup_enable, dev); 693 694 return 0; 695 } 696 697 /** 698 * __pci_reenable_device - Resume abandoned device 699 * @dev: PCI device to be resumed 700 * 701 * Note this function is a backend of pci_default_resume and is not supposed 702 * to be called by normal code, write proper resume handler and use it instead. 703 */ 704 int 705 __pci_reenable_device(struct pci_dev *dev) 706 { 707 if (atomic_read(&dev->enable_cnt)) 708 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 709 return 0; 710 } 711 712 /** 713 * pci_enable_device_bars - Initialize some of a device for use 714 * @dev: PCI device to be initialized 715 * @bars: bitmask of BAR's that must be configured 716 * 717 * Initialize device before it's used by a driver. Ask low-level code 718 * to enable selected I/O and memory resources. Wake up the device if it 719 * was suspended. Beware, this function can fail. 720 */ 721 int 722 pci_enable_device_bars(struct pci_dev *dev, int bars) 723 { 724 int err; 725 726 if (atomic_add_return(1, &dev->enable_cnt) > 1) 727 return 0; /* already enabled */ 728 729 err = do_pci_enable_device(dev, bars); 730 if (err < 0) 731 atomic_dec(&dev->enable_cnt); 732 return err; 733 } 734 735 /** 736 * pci_enable_device - Initialize device before it's used by a driver. 737 * @dev: PCI device to be initialized 738 * 739 * Initialize device before it's used by a driver. Ask low-level code 740 * to enable I/O and memory. Wake up the device if it was suspended. 741 * Beware, this function can fail. 742 * 743 * Note we don't actually enable the device many times if we call 744 * this function repeatedly (we just increment the count). 745 */ 746 int pci_enable_device(struct pci_dev *dev) 747 { 748 return pci_enable_device_bars(dev, (1 << PCI_NUM_RESOURCES) - 1); 749 } 750 751 /* 752 * Managed PCI resources. This manages device on/off, intx/msi/msix 753 * on/off and BAR regions. pci_dev itself records msi/msix status, so 754 * there's no need to track it separately. pci_devres is initialized 755 * when a device is enabled using managed PCI device enable interface. 756 */ 757 struct pci_devres { 758 unsigned int enabled:1; 759 unsigned int pinned:1; 760 unsigned int orig_intx:1; 761 unsigned int restore_intx:1; 762 u32 region_mask; 763 }; 764 765 static void pcim_release(struct device *gendev, void *res) 766 { 767 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 768 struct pci_devres *this = res; 769 int i; 770 771 if (dev->msi_enabled) 772 pci_disable_msi(dev); 773 if (dev->msix_enabled) 774 pci_disable_msix(dev); 775 776 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 777 if (this->region_mask & (1 << i)) 778 pci_release_region(dev, i); 779 780 if (this->restore_intx) 781 pci_intx(dev, this->orig_intx); 782 783 if (this->enabled && !this->pinned) 784 pci_disable_device(dev); 785 } 786 787 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 788 { 789 struct pci_devres *dr, *new_dr; 790 791 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 792 if (dr) 793 return dr; 794 795 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 796 if (!new_dr) 797 return NULL; 798 return devres_get(&pdev->dev, new_dr, NULL, NULL); 799 } 800 801 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 802 { 803 if (pci_is_managed(pdev)) 804 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 805 return NULL; 806 } 807 808 /** 809 * pcim_enable_device - Managed pci_enable_device() 810 * @pdev: PCI device to be initialized 811 * 812 * Managed pci_enable_device(). 813 */ 814 int pcim_enable_device(struct pci_dev *pdev) 815 { 816 struct pci_devres *dr; 817 int rc; 818 819 dr = get_pci_dr(pdev); 820 if (unlikely(!dr)) 821 return -ENOMEM; 822 WARN_ON(!!dr->enabled); 823 824 rc = pci_enable_device(pdev); 825 if (!rc) { 826 pdev->is_managed = 1; 827 dr->enabled = 1; 828 } 829 return rc; 830 } 831 832 /** 833 * pcim_pin_device - Pin managed PCI device 834 * @pdev: PCI device to pin 835 * 836 * Pin managed PCI device @pdev. Pinned device won't be disabled on 837 * driver detach. @pdev must have been enabled with 838 * pcim_enable_device(). 839 */ 840 void pcim_pin_device(struct pci_dev *pdev) 841 { 842 struct pci_devres *dr; 843 844 dr = find_pci_dr(pdev); 845 WARN_ON(!dr || !dr->enabled); 846 if (dr) 847 dr->pinned = 1; 848 } 849 850 /** 851 * pcibios_disable_device - disable arch specific PCI resources for device dev 852 * @dev: the PCI device to disable 853 * 854 * Disables architecture specific PCI resources for the device. This 855 * is the default implementation. Architecture implementations can 856 * override this. 857 */ 858 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {} 859 860 /** 861 * pci_disable_device - Disable PCI device after use 862 * @dev: PCI device to be disabled 863 * 864 * Signal to the system that the PCI device is not in use by the system 865 * anymore. This only involves disabling PCI bus-mastering, if active. 866 * 867 * Note we don't actually disable the device until all callers of 868 * pci_device_enable() have called pci_device_disable(). 869 */ 870 void 871 pci_disable_device(struct pci_dev *dev) 872 { 873 struct pci_devres *dr; 874 u16 pci_command; 875 876 dr = find_pci_dr(dev); 877 if (dr) 878 dr->enabled = 0; 879 880 if (atomic_sub_return(1, &dev->enable_cnt) != 0) 881 return; 882 883 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 884 if (pci_command & PCI_COMMAND_MASTER) { 885 pci_command &= ~PCI_COMMAND_MASTER; 886 pci_write_config_word(dev, PCI_COMMAND, pci_command); 887 } 888 dev->is_busmaster = 0; 889 890 pcibios_disable_device(dev); 891 } 892 893 /** 894 * pcibios_set_pcie_reset_state - set reset state for device dev 895 * @dev: the PCI-E device reset 896 * @state: Reset state to enter into 897 * 898 * 899 * Sets the PCI-E reset state for the device. This is the default 900 * implementation. Architecture implementations can override this. 901 */ 902 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev, 903 enum pcie_reset_state state) 904 { 905 return -EINVAL; 906 } 907 908 /** 909 * pci_set_pcie_reset_state - set reset state for device dev 910 * @dev: the PCI-E device reset 911 * @state: Reset state to enter into 912 * 913 * 914 * Sets the PCI reset state for the device. 915 */ 916 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 917 { 918 return pcibios_set_pcie_reset_state(dev, state); 919 } 920 921 /** 922 * pci_enable_wake - enable PCI device as wakeup event source 923 * @dev: PCI device affected 924 * @state: PCI state from which device will issue wakeup events 925 * @enable: True to enable event generation; false to disable 926 * 927 * This enables the device as a wakeup event source, or disables it. 928 * When such events involves platform-specific hooks, those hooks are 929 * called automatically by this routine. 930 * 931 * Devices with legacy power management (no standard PCI PM capabilities) 932 * always require such platform hooks. Depending on the platform, devices 933 * supporting the standard PCI PME# signal may require such platform hooks; 934 * they always update bits in config space to allow PME# generation. 935 * 936 * -EIO is returned if the device can't ever be a wakeup event source. 937 * -EINVAL is returned if the device can't generate wakeup events from 938 * the specified PCI state. Returns zero if the operation is successful. 939 */ 940 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable) 941 { 942 int pm; 943 int status; 944 u16 value; 945 946 /* Note that drivers should verify device_may_wakeup(&dev->dev) 947 * before calling this function. Platform code should report 948 * errors when drivers try to enable wakeup on devices that 949 * can't issue wakeups, or on which wakeups were disabled by 950 * userspace updating the /sys/devices.../power/wakeup file. 951 */ 952 953 status = call_platform_enable_wakeup(&dev->dev, enable); 954 955 /* find PCI PM capability in list */ 956 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 957 958 /* If device doesn't support PM Capabilities, but caller wants to 959 * disable wake events, it's a NOP. Otherwise fail unless the 960 * platform hooks handled this legacy device already. 961 */ 962 if (!pm) 963 return enable ? status : 0; 964 965 /* Check device's ability to generate PME# */ 966 pci_read_config_word(dev,pm+PCI_PM_PMC,&value); 967 968 value &= PCI_PM_CAP_PME_MASK; 969 value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */ 970 971 /* Check if it can generate PME# from requested state. */ 972 if (!value || !(value & (1 << state))) { 973 /* if it can't, revert what the platform hook changed, 974 * always reporting the base "EINVAL, can't PME#" error 975 */ 976 if (enable) 977 call_platform_enable_wakeup(&dev->dev, 0); 978 return enable ? -EINVAL : 0; 979 } 980 981 pci_read_config_word(dev, pm + PCI_PM_CTRL, &value); 982 983 /* Clear PME_Status by writing 1 to it and enable PME# */ 984 value |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 985 986 if (!enable) 987 value &= ~PCI_PM_CTRL_PME_ENABLE; 988 989 pci_write_config_word(dev, pm + PCI_PM_CTRL, value); 990 991 return 0; 992 } 993 994 int 995 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 996 { 997 u8 pin; 998 999 pin = dev->pin; 1000 if (!pin) 1001 return -1; 1002 pin--; 1003 while (dev->bus->self) { 1004 pin = (pin + PCI_SLOT(dev->devfn)) % 4; 1005 dev = dev->bus->self; 1006 } 1007 *bridge = dev; 1008 return pin; 1009 } 1010 1011 /** 1012 * pci_release_region - Release a PCI bar 1013 * @pdev: PCI device whose resources were previously reserved by pci_request_region 1014 * @bar: BAR to release 1015 * 1016 * Releases the PCI I/O and memory resources previously reserved by a 1017 * successful call to pci_request_region. Call this function only 1018 * after all use of the PCI regions has ceased. 1019 */ 1020 void pci_release_region(struct pci_dev *pdev, int bar) 1021 { 1022 struct pci_devres *dr; 1023 1024 if (pci_resource_len(pdev, bar) == 0) 1025 return; 1026 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 1027 release_region(pci_resource_start(pdev, bar), 1028 pci_resource_len(pdev, bar)); 1029 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 1030 release_mem_region(pci_resource_start(pdev, bar), 1031 pci_resource_len(pdev, bar)); 1032 1033 dr = find_pci_dr(pdev); 1034 if (dr) 1035 dr->region_mask &= ~(1 << bar); 1036 } 1037 1038 /** 1039 * pci_request_region - Reserved PCI I/O and memory resource 1040 * @pdev: PCI device whose resources are to be reserved 1041 * @bar: BAR to be reserved 1042 * @res_name: Name to be associated with resource. 1043 * 1044 * Mark the PCI region associated with PCI device @pdev BR @bar as 1045 * being reserved by owner @res_name. Do not access any 1046 * address inside the PCI regions unless this call returns 1047 * successfully. 1048 * 1049 * Returns 0 on success, or %EBUSY on error. A warning 1050 * message is also printed on failure. 1051 */ 1052 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 1053 { 1054 struct pci_devres *dr; 1055 1056 if (pci_resource_len(pdev, bar) == 0) 1057 return 0; 1058 1059 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 1060 if (!request_region(pci_resource_start(pdev, bar), 1061 pci_resource_len(pdev, bar), res_name)) 1062 goto err_out; 1063 } 1064 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 1065 if (!request_mem_region(pci_resource_start(pdev, bar), 1066 pci_resource_len(pdev, bar), res_name)) 1067 goto err_out; 1068 } 1069 1070 dr = find_pci_dr(pdev); 1071 if (dr) 1072 dr->region_mask |= 1 << bar; 1073 1074 return 0; 1075 1076 err_out: 1077 printk (KERN_WARNING "PCI: Unable to reserve %s region #%d:%llx@%llx " 1078 "for device %s\n", 1079 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem", 1080 bar + 1, /* PCI BAR # */ 1081 (unsigned long long)pci_resource_len(pdev, bar), 1082 (unsigned long long)pci_resource_start(pdev, bar), 1083 pci_name(pdev)); 1084 return -EBUSY; 1085 } 1086 1087 /** 1088 * pci_release_selected_regions - Release selected PCI I/O and memory resources 1089 * @pdev: PCI device whose resources were previously reserved 1090 * @bars: Bitmask of BARs to be released 1091 * 1092 * Release selected PCI I/O and memory resources previously reserved. 1093 * Call this function only after all use of the PCI regions has ceased. 1094 */ 1095 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 1096 { 1097 int i; 1098 1099 for (i = 0; i < 6; i++) 1100 if (bars & (1 << i)) 1101 pci_release_region(pdev, i); 1102 } 1103 1104 /** 1105 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 1106 * @pdev: PCI device whose resources are to be reserved 1107 * @bars: Bitmask of BARs to be requested 1108 * @res_name: Name to be associated with resource 1109 */ 1110 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 1111 const char *res_name) 1112 { 1113 int i; 1114 1115 for (i = 0; i < 6; i++) 1116 if (bars & (1 << i)) 1117 if(pci_request_region(pdev, i, res_name)) 1118 goto err_out; 1119 return 0; 1120 1121 err_out: 1122 while(--i >= 0) 1123 if (bars & (1 << i)) 1124 pci_release_region(pdev, i); 1125 1126 return -EBUSY; 1127 } 1128 1129 /** 1130 * pci_release_regions - Release reserved PCI I/O and memory resources 1131 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 1132 * 1133 * Releases all PCI I/O and memory resources previously reserved by a 1134 * successful call to pci_request_regions. Call this function only 1135 * after all use of the PCI regions has ceased. 1136 */ 1137 1138 void pci_release_regions(struct pci_dev *pdev) 1139 { 1140 pci_release_selected_regions(pdev, (1 << 6) - 1); 1141 } 1142 1143 /** 1144 * pci_request_regions - Reserved PCI I/O and memory resources 1145 * @pdev: PCI device whose resources are to be reserved 1146 * @res_name: Name to be associated with resource. 1147 * 1148 * Mark all PCI regions associated with PCI device @pdev as 1149 * being reserved by owner @res_name. Do not access any 1150 * address inside the PCI regions unless this call returns 1151 * successfully. 1152 * 1153 * Returns 0 on success, or %EBUSY on error. A warning 1154 * message is also printed on failure. 1155 */ 1156 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 1157 { 1158 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 1159 } 1160 1161 /** 1162 * pci_set_master - enables bus-mastering for device dev 1163 * @dev: the PCI device to enable 1164 * 1165 * Enables bus-mastering on the device and calls pcibios_set_master() 1166 * to do the needed arch specific settings. 1167 */ 1168 void 1169 pci_set_master(struct pci_dev *dev) 1170 { 1171 u16 cmd; 1172 1173 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1174 if (! (cmd & PCI_COMMAND_MASTER)) { 1175 pr_debug("PCI: Enabling bus mastering for device %s\n", pci_name(dev)); 1176 cmd |= PCI_COMMAND_MASTER; 1177 pci_write_config_word(dev, PCI_COMMAND, cmd); 1178 } 1179 dev->is_busmaster = 1; 1180 pcibios_set_master(dev); 1181 } 1182 1183 #ifdef PCI_DISABLE_MWI 1184 int pci_set_mwi(struct pci_dev *dev) 1185 { 1186 return 0; 1187 } 1188 1189 int pci_try_set_mwi(struct pci_dev *dev) 1190 { 1191 return 0; 1192 } 1193 1194 void pci_clear_mwi(struct pci_dev *dev) 1195 { 1196 } 1197 1198 #else 1199 1200 #ifndef PCI_CACHE_LINE_BYTES 1201 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES 1202 #endif 1203 1204 /* This can be overridden by arch code. */ 1205 /* Don't forget this is measured in 32-bit words, not bytes */ 1206 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4; 1207 1208 /** 1209 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 1210 * @dev: the PCI device for which MWI is to be enabled 1211 * 1212 * Helper function for pci_set_mwi. 1213 * Originally copied from drivers/net/acenic.c. 1214 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 1215 * 1216 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 1217 */ 1218 static int 1219 pci_set_cacheline_size(struct pci_dev *dev) 1220 { 1221 u8 cacheline_size; 1222 1223 if (!pci_cache_line_size) 1224 return -EINVAL; /* The system doesn't support MWI. */ 1225 1226 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 1227 equal to or multiple of the right value. */ 1228 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 1229 if (cacheline_size >= pci_cache_line_size && 1230 (cacheline_size % pci_cache_line_size) == 0) 1231 return 0; 1232 1233 /* Write the correct value. */ 1234 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 1235 /* Read it back. */ 1236 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 1237 if (cacheline_size == pci_cache_line_size) 1238 return 0; 1239 1240 printk(KERN_DEBUG "PCI: cache line size of %d is not supported " 1241 "by device %s\n", pci_cache_line_size << 2, pci_name(dev)); 1242 1243 return -EINVAL; 1244 } 1245 1246 /** 1247 * pci_set_mwi - enables memory-write-invalidate PCI transaction 1248 * @dev: the PCI device for which MWI is enabled 1249 * 1250 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 1251 * 1252 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 1253 */ 1254 int 1255 pci_set_mwi(struct pci_dev *dev) 1256 { 1257 int rc; 1258 u16 cmd; 1259 1260 rc = pci_set_cacheline_size(dev); 1261 if (rc) 1262 return rc; 1263 1264 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1265 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 1266 pr_debug("PCI: Enabling Mem-Wr-Inval for device %s\n", 1267 pci_name(dev)); 1268 cmd |= PCI_COMMAND_INVALIDATE; 1269 pci_write_config_word(dev, PCI_COMMAND, cmd); 1270 } 1271 1272 return 0; 1273 } 1274 1275 /** 1276 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 1277 * @dev: the PCI device for which MWI is enabled 1278 * 1279 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 1280 * Callers are not required to check the return value. 1281 * 1282 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 1283 */ 1284 int pci_try_set_mwi(struct pci_dev *dev) 1285 { 1286 int rc = pci_set_mwi(dev); 1287 return rc; 1288 } 1289 1290 /** 1291 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 1292 * @dev: the PCI device to disable 1293 * 1294 * Disables PCI Memory-Write-Invalidate transaction on the device 1295 */ 1296 void 1297 pci_clear_mwi(struct pci_dev *dev) 1298 { 1299 u16 cmd; 1300 1301 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1302 if (cmd & PCI_COMMAND_INVALIDATE) { 1303 cmd &= ~PCI_COMMAND_INVALIDATE; 1304 pci_write_config_word(dev, PCI_COMMAND, cmd); 1305 } 1306 } 1307 #endif /* ! PCI_DISABLE_MWI */ 1308 1309 /** 1310 * pci_intx - enables/disables PCI INTx for device dev 1311 * @pdev: the PCI device to operate on 1312 * @enable: boolean: whether to enable or disable PCI INTx 1313 * 1314 * Enables/disables PCI INTx for device dev 1315 */ 1316 void 1317 pci_intx(struct pci_dev *pdev, int enable) 1318 { 1319 u16 pci_command, new; 1320 1321 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 1322 1323 if (enable) { 1324 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 1325 } else { 1326 new = pci_command | PCI_COMMAND_INTX_DISABLE; 1327 } 1328 1329 if (new != pci_command) { 1330 struct pci_devres *dr; 1331 1332 pci_write_config_word(pdev, PCI_COMMAND, new); 1333 1334 dr = find_pci_dr(pdev); 1335 if (dr && !dr->restore_intx) { 1336 dr->restore_intx = 1; 1337 dr->orig_intx = !enable; 1338 } 1339 } 1340 } 1341 1342 /** 1343 * pci_msi_off - disables any msi or msix capabilities 1344 * @dev: the PCI device to operate on 1345 * 1346 * If you want to use msi see pci_enable_msi and friends. 1347 * This is a lower level primitive that allows us to disable 1348 * msi operation at the device level. 1349 */ 1350 void pci_msi_off(struct pci_dev *dev) 1351 { 1352 int pos; 1353 u16 control; 1354 1355 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 1356 if (pos) { 1357 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 1358 control &= ~PCI_MSI_FLAGS_ENABLE; 1359 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 1360 } 1361 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 1362 if (pos) { 1363 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 1364 control &= ~PCI_MSIX_FLAGS_ENABLE; 1365 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 1366 } 1367 } 1368 1369 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK 1370 /* 1371 * These can be overridden by arch-specific implementations 1372 */ 1373 int 1374 pci_set_dma_mask(struct pci_dev *dev, u64 mask) 1375 { 1376 if (!pci_dma_supported(dev, mask)) 1377 return -EIO; 1378 1379 dev->dma_mask = mask; 1380 1381 return 0; 1382 } 1383 1384 int 1385 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask) 1386 { 1387 if (!pci_dma_supported(dev, mask)) 1388 return -EIO; 1389 1390 dev->dev.coherent_dma_mask = mask; 1391 1392 return 0; 1393 } 1394 #endif 1395 1396 /** 1397 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 1398 * @dev: PCI device to query 1399 * 1400 * Returns mmrbc: maximum designed memory read count in bytes 1401 * or appropriate error value. 1402 */ 1403 int pcix_get_max_mmrbc(struct pci_dev *dev) 1404 { 1405 int err, cap; 1406 u32 stat; 1407 1408 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1409 if (!cap) 1410 return -EINVAL; 1411 1412 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat); 1413 if (err) 1414 return -EINVAL; 1415 1416 return (stat & PCI_X_STATUS_MAX_READ) >> 12; 1417 } 1418 EXPORT_SYMBOL(pcix_get_max_mmrbc); 1419 1420 /** 1421 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 1422 * @dev: PCI device to query 1423 * 1424 * Returns mmrbc: maximum memory read count in bytes 1425 * or appropriate error value. 1426 */ 1427 int pcix_get_mmrbc(struct pci_dev *dev) 1428 { 1429 int ret, cap; 1430 u32 cmd; 1431 1432 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1433 if (!cap) 1434 return -EINVAL; 1435 1436 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd); 1437 if (!ret) 1438 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 1439 1440 return ret; 1441 } 1442 EXPORT_SYMBOL(pcix_get_mmrbc); 1443 1444 /** 1445 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 1446 * @dev: PCI device to query 1447 * @mmrbc: maximum memory read count in bytes 1448 * valid values are 512, 1024, 2048, 4096 1449 * 1450 * If possible sets maximum memory read byte count, some bridges have erratas 1451 * that prevent this. 1452 */ 1453 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 1454 { 1455 int cap, err = -EINVAL; 1456 u32 stat, cmd, v, o; 1457 1458 if (mmrbc < 512 || mmrbc > 4096 || (mmrbc & (mmrbc-1))) 1459 goto out; 1460 1461 v = ffs(mmrbc) - 10; 1462 1463 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1464 if (!cap) 1465 goto out; 1466 1467 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat); 1468 if (err) 1469 goto out; 1470 1471 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 1472 return -E2BIG; 1473 1474 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd); 1475 if (err) 1476 goto out; 1477 1478 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 1479 if (o != v) { 1480 if (v > o && dev->bus && 1481 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 1482 return -EIO; 1483 1484 cmd &= ~PCI_X_CMD_MAX_READ; 1485 cmd |= v << 2; 1486 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd); 1487 } 1488 out: 1489 return err; 1490 } 1491 EXPORT_SYMBOL(pcix_set_mmrbc); 1492 1493 /** 1494 * pcie_get_readrq - get PCI Express read request size 1495 * @dev: PCI device to query 1496 * 1497 * Returns maximum memory read request in bytes 1498 * or appropriate error value. 1499 */ 1500 int pcie_get_readrq(struct pci_dev *dev) 1501 { 1502 int ret, cap; 1503 u16 ctl; 1504 1505 cap = pci_find_capability(dev, PCI_CAP_ID_EXP); 1506 if (!cap) 1507 return -EINVAL; 1508 1509 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 1510 if (!ret) 1511 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 1512 1513 return ret; 1514 } 1515 EXPORT_SYMBOL(pcie_get_readrq); 1516 1517 /** 1518 * pcie_set_readrq - set PCI Express maximum memory read request 1519 * @dev: PCI device to query 1520 * @rq: maximum memory read count in bytes 1521 * valid values are 128, 256, 512, 1024, 2048, 4096 1522 * 1523 * If possible sets maximum read byte count 1524 */ 1525 int pcie_set_readrq(struct pci_dev *dev, int rq) 1526 { 1527 int cap, err = -EINVAL; 1528 u16 ctl, v; 1529 1530 if (rq < 128 || rq > 4096 || (rq & (rq-1))) 1531 goto out; 1532 1533 v = (ffs(rq) - 8) << 12; 1534 1535 cap = pci_find_capability(dev, PCI_CAP_ID_EXP); 1536 if (!cap) 1537 goto out; 1538 1539 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 1540 if (err) 1541 goto out; 1542 1543 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) { 1544 ctl &= ~PCI_EXP_DEVCTL_READRQ; 1545 ctl |= v; 1546 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl); 1547 } 1548 1549 out: 1550 return err; 1551 } 1552 EXPORT_SYMBOL(pcie_set_readrq); 1553 1554 /** 1555 * pci_select_bars - Make BAR mask from the type of resource 1556 * @dev: the PCI device for which BAR mask is made 1557 * @flags: resource type mask to be selected 1558 * 1559 * This helper routine makes bar mask from the type of resource. 1560 */ 1561 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 1562 { 1563 int i, bars = 0; 1564 for (i = 0; i < PCI_NUM_RESOURCES; i++) 1565 if (pci_resource_flags(dev, i) & flags) 1566 bars |= (1 << i); 1567 return bars; 1568 } 1569 1570 static int __devinit pci_init(void) 1571 { 1572 struct pci_dev *dev = NULL; 1573 1574 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { 1575 pci_fixup_device(pci_fixup_final, dev); 1576 } 1577 return 0; 1578 } 1579 1580 static int __devinit pci_setup(char *str) 1581 { 1582 while (str) { 1583 char *k = strchr(str, ','); 1584 if (k) 1585 *k++ = 0; 1586 if (*str && (str = pcibios_setup(str)) && *str) { 1587 if (!strcmp(str, "nomsi")) { 1588 pci_no_msi(); 1589 } else if (!strncmp(str, "cbiosize=", 9)) { 1590 pci_cardbus_io_size = memparse(str + 9, &str); 1591 } else if (!strncmp(str, "cbmemsize=", 10)) { 1592 pci_cardbus_mem_size = memparse(str + 10, &str); 1593 } else { 1594 printk(KERN_ERR "PCI: Unknown option `%s'\n", 1595 str); 1596 } 1597 } 1598 str = k; 1599 } 1600 return 0; 1601 } 1602 early_param("pci", pci_setup); 1603 1604 device_initcall(pci_init); 1605 1606 EXPORT_SYMBOL_GPL(pci_restore_bars); 1607 EXPORT_SYMBOL(__pci_reenable_device); 1608 EXPORT_SYMBOL(pci_enable_device_bars); 1609 EXPORT_SYMBOL(pci_enable_device); 1610 EXPORT_SYMBOL(pcim_enable_device); 1611 EXPORT_SYMBOL(pcim_pin_device); 1612 EXPORT_SYMBOL(pci_disable_device); 1613 EXPORT_SYMBOL(pci_find_capability); 1614 EXPORT_SYMBOL(pci_bus_find_capability); 1615 EXPORT_SYMBOL(pci_release_regions); 1616 EXPORT_SYMBOL(pci_request_regions); 1617 EXPORT_SYMBOL(pci_release_region); 1618 EXPORT_SYMBOL(pci_request_region); 1619 EXPORT_SYMBOL(pci_release_selected_regions); 1620 EXPORT_SYMBOL(pci_request_selected_regions); 1621 EXPORT_SYMBOL(pci_set_master); 1622 EXPORT_SYMBOL(pci_set_mwi); 1623 EXPORT_SYMBOL(pci_try_set_mwi); 1624 EXPORT_SYMBOL(pci_clear_mwi); 1625 EXPORT_SYMBOL_GPL(pci_intx); 1626 EXPORT_SYMBOL(pci_set_dma_mask); 1627 EXPORT_SYMBOL(pci_set_consistent_dma_mask); 1628 EXPORT_SYMBOL(pci_assign_resource); 1629 EXPORT_SYMBOL(pci_find_parent_resource); 1630 EXPORT_SYMBOL(pci_select_bars); 1631 1632 EXPORT_SYMBOL(pci_set_power_state); 1633 EXPORT_SYMBOL(pci_save_state); 1634 EXPORT_SYMBOL(pci_restore_state); 1635 EXPORT_SYMBOL(pci_enable_wake); 1636 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1637 1638