1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <asm-generic/pci-bridge.h> 26 #include <asm/setup.h> 27 #include "pci.h" 28 29 const char *pci_power_names[] = { 30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 31 }; 32 EXPORT_SYMBOL_GPL(pci_power_names); 33 34 int isa_dma_bridge_buggy; 35 EXPORT_SYMBOL(isa_dma_bridge_buggy); 36 37 int pci_pci_problems; 38 EXPORT_SYMBOL(pci_pci_problems); 39 40 unsigned int pci_pm_d3_delay; 41 42 static void pci_pme_list_scan(struct work_struct *work); 43 44 static LIST_HEAD(pci_pme_list); 45 static DEFINE_MUTEX(pci_pme_list_mutex); 46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 47 48 struct pci_pme_device { 49 struct list_head list; 50 struct pci_dev *dev; 51 }; 52 53 #define PME_TIMEOUT 1000 /* How long between PME checks */ 54 55 static void pci_dev_d3_sleep(struct pci_dev *dev) 56 { 57 unsigned int delay = dev->d3_delay; 58 59 if (delay < pci_pm_d3_delay) 60 delay = pci_pm_d3_delay; 61 62 msleep(delay); 63 } 64 65 #ifdef CONFIG_PCI_DOMAINS 66 int pci_domains_supported = 1; 67 #endif 68 69 #define DEFAULT_CARDBUS_IO_SIZE (256) 70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 74 75 #define DEFAULT_HOTPLUG_IO_SIZE (256) 76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 78 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 80 81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 82 83 /* 84 * The default CLS is used if arch didn't set CLS explicitly and not 85 * all pci devices agree on the same value. Arch can override either 86 * the dfl or actual value as it sees fit. Don't forget this is 87 * measured in 32-bit words, not bytes. 88 */ 89 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 90 u8 pci_cache_line_size; 91 92 /* 93 * If we set up a device for bus mastering, we need to check the latency 94 * timer as certain BIOSes forget to set it properly. 95 */ 96 unsigned int pcibios_max_latency = 255; 97 98 /* If set, the PCIe ARI capability will not be used. */ 99 static bool pcie_ari_disabled; 100 101 /** 102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 103 * @bus: pointer to PCI bus structure to search 104 * 105 * Given a PCI bus, returns the highest PCI bus number present in the set 106 * including the given PCI bus and its list of child PCI buses. 107 */ 108 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 109 { 110 struct list_head *tmp; 111 unsigned char max, n; 112 113 max = bus->busn_res.end; 114 list_for_each(tmp, &bus->children) { 115 n = pci_bus_max_busnr(pci_bus_b(tmp)); 116 if(n > max) 117 max = n; 118 } 119 return max; 120 } 121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 122 123 #ifdef CONFIG_HAS_IOMEM 124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 125 { 126 /* 127 * Make sure the BAR is actually a memory resource, not an IO resource 128 */ 129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 130 WARN_ON(1); 131 return NULL; 132 } 133 return ioremap_nocache(pci_resource_start(pdev, bar), 134 pci_resource_len(pdev, bar)); 135 } 136 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 137 #endif 138 139 #define PCI_FIND_CAP_TTL 48 140 141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 142 u8 pos, int cap, int *ttl) 143 { 144 u8 id; 145 146 while ((*ttl)--) { 147 pci_bus_read_config_byte(bus, devfn, pos, &pos); 148 if (pos < 0x40) 149 break; 150 pos &= ~3; 151 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 152 &id); 153 if (id == 0xff) 154 break; 155 if (id == cap) 156 return pos; 157 pos += PCI_CAP_LIST_NEXT; 158 } 159 return 0; 160 } 161 162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 163 u8 pos, int cap) 164 { 165 int ttl = PCI_FIND_CAP_TTL; 166 167 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 168 } 169 170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 171 { 172 return __pci_find_next_cap(dev->bus, dev->devfn, 173 pos + PCI_CAP_LIST_NEXT, cap); 174 } 175 EXPORT_SYMBOL_GPL(pci_find_next_capability); 176 177 static int __pci_bus_find_cap_start(struct pci_bus *bus, 178 unsigned int devfn, u8 hdr_type) 179 { 180 u16 status; 181 182 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 183 if (!(status & PCI_STATUS_CAP_LIST)) 184 return 0; 185 186 switch (hdr_type) { 187 case PCI_HEADER_TYPE_NORMAL: 188 case PCI_HEADER_TYPE_BRIDGE: 189 return PCI_CAPABILITY_LIST; 190 case PCI_HEADER_TYPE_CARDBUS: 191 return PCI_CB_CAPABILITY_LIST; 192 default: 193 return 0; 194 } 195 196 return 0; 197 } 198 199 /** 200 * pci_find_capability - query for devices' capabilities 201 * @dev: PCI device to query 202 * @cap: capability code 203 * 204 * Tell if a device supports a given PCI capability. 205 * Returns the address of the requested capability structure within the 206 * device's PCI configuration space or 0 in case the device does not 207 * support it. Possible values for @cap: 208 * 209 * %PCI_CAP_ID_PM Power Management 210 * %PCI_CAP_ID_AGP Accelerated Graphics Port 211 * %PCI_CAP_ID_VPD Vital Product Data 212 * %PCI_CAP_ID_SLOTID Slot Identification 213 * %PCI_CAP_ID_MSI Message Signalled Interrupts 214 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 215 * %PCI_CAP_ID_PCIX PCI-X 216 * %PCI_CAP_ID_EXP PCI Express 217 */ 218 int pci_find_capability(struct pci_dev *dev, int cap) 219 { 220 int pos; 221 222 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 223 if (pos) 224 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 225 226 return pos; 227 } 228 229 /** 230 * pci_bus_find_capability - query for devices' capabilities 231 * @bus: the PCI bus to query 232 * @devfn: PCI device to query 233 * @cap: capability code 234 * 235 * Like pci_find_capability() but works for pci devices that do not have a 236 * pci_dev structure set up yet. 237 * 238 * Returns the address of the requested capability structure within the 239 * device's PCI configuration space or 0 in case the device does not 240 * support it. 241 */ 242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 243 { 244 int pos; 245 u8 hdr_type; 246 247 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 248 249 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 250 if (pos) 251 pos = __pci_find_next_cap(bus, devfn, pos, cap); 252 253 return pos; 254 } 255 256 /** 257 * pci_find_next_ext_capability - Find an extended capability 258 * @dev: PCI device to query 259 * @start: address at which to start looking (0 to start at beginning of list) 260 * @cap: capability code 261 * 262 * Returns the address of the next matching extended capability structure 263 * within the device's PCI configuration space or 0 if the device does 264 * not support it. Some capabilities can occur several times, e.g., the 265 * vendor-specific capability, and this provides a way to find them all. 266 */ 267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 268 { 269 u32 header; 270 int ttl; 271 int pos = PCI_CFG_SPACE_SIZE; 272 273 /* minimum 8 bytes per capability */ 274 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 275 276 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 277 return 0; 278 279 if (start) 280 pos = start; 281 282 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 283 return 0; 284 285 /* 286 * If we have no capabilities, this is indicated by cap ID, 287 * cap version and next pointer all being 0. 288 */ 289 if (header == 0) 290 return 0; 291 292 while (ttl-- > 0) { 293 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 294 return pos; 295 296 pos = PCI_EXT_CAP_NEXT(header); 297 if (pos < PCI_CFG_SPACE_SIZE) 298 break; 299 300 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 301 break; 302 } 303 304 return 0; 305 } 306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 307 308 /** 309 * pci_find_ext_capability - Find an extended capability 310 * @dev: PCI device to query 311 * @cap: capability code 312 * 313 * Returns the address of the requested extended capability structure 314 * within the device's PCI configuration space or 0 if the device does 315 * not support it. Possible values for @cap: 316 * 317 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 318 * %PCI_EXT_CAP_ID_VC Virtual Channel 319 * %PCI_EXT_CAP_ID_DSN Device Serial Number 320 * %PCI_EXT_CAP_ID_PWR Power Budgeting 321 */ 322 int pci_find_ext_capability(struct pci_dev *dev, int cap) 323 { 324 return pci_find_next_ext_capability(dev, 0, cap); 325 } 326 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 327 328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 329 { 330 int rc, ttl = PCI_FIND_CAP_TTL; 331 u8 cap, mask; 332 333 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 334 mask = HT_3BIT_CAP_MASK; 335 else 336 mask = HT_5BIT_CAP_MASK; 337 338 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 339 PCI_CAP_ID_HT, &ttl); 340 while (pos) { 341 rc = pci_read_config_byte(dev, pos + 3, &cap); 342 if (rc != PCIBIOS_SUCCESSFUL) 343 return 0; 344 345 if ((cap & mask) == ht_cap) 346 return pos; 347 348 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 349 pos + PCI_CAP_LIST_NEXT, 350 PCI_CAP_ID_HT, &ttl); 351 } 352 353 return 0; 354 } 355 /** 356 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 357 * @dev: PCI device to query 358 * @pos: Position from which to continue searching 359 * @ht_cap: Hypertransport capability code 360 * 361 * To be used in conjunction with pci_find_ht_capability() to search for 362 * all capabilities matching @ht_cap. @pos should always be a value returned 363 * from pci_find_ht_capability(). 364 * 365 * NB. To be 100% safe against broken PCI devices, the caller should take 366 * steps to avoid an infinite loop. 367 */ 368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 369 { 370 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 371 } 372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 373 374 /** 375 * pci_find_ht_capability - query a device's Hypertransport capabilities 376 * @dev: PCI device to query 377 * @ht_cap: Hypertransport capability code 378 * 379 * Tell if a device supports a given Hypertransport capability. 380 * Returns an address within the device's PCI configuration space 381 * or 0 in case the device does not support the request capability. 382 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 383 * which has a Hypertransport capability matching @ht_cap. 384 */ 385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 386 { 387 int pos; 388 389 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 390 if (pos) 391 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 392 393 return pos; 394 } 395 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 396 397 /** 398 * pci_find_parent_resource - return resource region of parent bus of given region 399 * @dev: PCI device structure contains resources to be searched 400 * @res: child resource record for which parent is sought 401 * 402 * For given resource region of given device, return the resource 403 * region of parent bus the given region is contained in or where 404 * it should be allocated from. 405 */ 406 struct resource * 407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 408 { 409 const struct pci_bus *bus = dev->bus; 410 int i; 411 struct resource *best = NULL, *r; 412 413 pci_bus_for_each_resource(bus, r, i) { 414 if (!r) 415 continue; 416 if (res->start && !(res->start >= r->start && res->end <= r->end)) 417 continue; /* Not contained */ 418 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 419 continue; /* Wrong type */ 420 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 421 return r; /* Exact match */ 422 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */ 423 if (r->flags & IORESOURCE_PREFETCH) 424 continue; 425 /* .. but we can put a prefetchable resource inside a non-prefetchable one */ 426 if (!best) 427 best = r; 428 } 429 return best; 430 } 431 432 /** 433 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 434 * @dev: PCI device to have its BARs restored 435 * 436 * Restore the BAR values for a given device, so as to make it 437 * accessible by its driver. 438 */ 439 static void 440 pci_restore_bars(struct pci_dev *dev) 441 { 442 int i; 443 444 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 445 pci_update_resource(dev, i); 446 } 447 448 static struct pci_platform_pm_ops *pci_platform_pm; 449 450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 451 { 452 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 453 || !ops->sleep_wake || !ops->can_wakeup) 454 return -EINVAL; 455 pci_platform_pm = ops; 456 return 0; 457 } 458 459 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 460 { 461 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 462 } 463 464 static inline int platform_pci_set_power_state(struct pci_dev *dev, 465 pci_power_t t) 466 { 467 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 468 } 469 470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 471 { 472 return pci_platform_pm ? 473 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 474 } 475 476 static inline bool platform_pci_can_wakeup(struct pci_dev *dev) 477 { 478 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false; 479 } 480 481 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 482 { 483 return pci_platform_pm ? 484 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 485 } 486 487 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 488 { 489 return pci_platform_pm ? 490 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 491 } 492 493 /** 494 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 495 * given PCI device 496 * @dev: PCI device to handle. 497 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 498 * 499 * RETURN VALUE: 500 * -EINVAL if the requested state is invalid. 501 * -EIO if device does not support PCI PM or its PM capabilities register has a 502 * wrong version, or device doesn't support the requested state. 503 * 0 if device already is in the requested state. 504 * 0 if device's power state has been successfully changed. 505 */ 506 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 507 { 508 u16 pmcsr; 509 bool need_restore = false; 510 511 /* Check if we're already there */ 512 if (dev->current_state == state) 513 return 0; 514 515 if (!dev->pm_cap) 516 return -EIO; 517 518 if (state < PCI_D0 || state > PCI_D3hot) 519 return -EINVAL; 520 521 /* Validate current state: 522 * Can enter D0 from any state, but if we can only go deeper 523 * to sleep if we're already in a low power state 524 */ 525 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 526 && dev->current_state > state) { 527 dev_err(&dev->dev, "invalid power transition " 528 "(from state %d to %d)\n", dev->current_state, state); 529 return -EINVAL; 530 } 531 532 /* check if this device supports the desired state */ 533 if ((state == PCI_D1 && !dev->d1_support) 534 || (state == PCI_D2 && !dev->d2_support)) 535 return -EIO; 536 537 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 538 539 /* If we're (effectively) in D3, force entire word to 0. 540 * This doesn't affect PME_Status, disables PME_En, and 541 * sets PowerState to 0. 542 */ 543 switch (dev->current_state) { 544 case PCI_D0: 545 case PCI_D1: 546 case PCI_D2: 547 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 548 pmcsr |= state; 549 break; 550 case PCI_D3hot: 551 case PCI_D3cold: 552 case PCI_UNKNOWN: /* Boot-up */ 553 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 554 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 555 need_restore = true; 556 /* Fall-through: force to D0 */ 557 default: 558 pmcsr = 0; 559 break; 560 } 561 562 /* enter specified state */ 563 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 564 565 /* Mandatory power management transition delays */ 566 /* see PCI PM 1.1 5.6.1 table 18 */ 567 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 568 pci_dev_d3_sleep(dev); 569 else if (state == PCI_D2 || dev->current_state == PCI_D2) 570 udelay(PCI_PM_D2_DELAY); 571 572 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 573 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 574 if (dev->current_state != state && printk_ratelimit()) 575 dev_info(&dev->dev, "Refused to change power state, " 576 "currently in D%d\n", dev->current_state); 577 578 /* 579 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 580 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 581 * from D3hot to D0 _may_ perform an internal reset, thereby 582 * going to "D0 Uninitialized" rather than "D0 Initialized". 583 * For example, at least some versions of the 3c905B and the 584 * 3c556B exhibit this behaviour. 585 * 586 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 587 * devices in a D3hot state at boot. Consequently, we need to 588 * restore at least the BARs so that the device will be 589 * accessible to its driver. 590 */ 591 if (need_restore) 592 pci_restore_bars(dev); 593 594 if (dev->bus->self) 595 pcie_aspm_pm_state_change(dev->bus->self); 596 597 return 0; 598 } 599 600 /** 601 * pci_update_current_state - Read PCI power state of given device from its 602 * PCI PM registers and cache it 603 * @dev: PCI device to handle. 604 * @state: State to cache in case the device doesn't have the PM capability 605 */ 606 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 607 { 608 if (dev->pm_cap) { 609 u16 pmcsr; 610 611 /* 612 * Configuration space is not accessible for device in 613 * D3cold, so just keep or set D3cold for safety 614 */ 615 if (dev->current_state == PCI_D3cold) 616 return; 617 if (state == PCI_D3cold) { 618 dev->current_state = PCI_D3cold; 619 return; 620 } 621 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 622 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 623 } else { 624 dev->current_state = state; 625 } 626 } 627 628 /** 629 * pci_power_up - Put the given device into D0 forcibly 630 * @dev: PCI device to power up 631 */ 632 void pci_power_up(struct pci_dev *dev) 633 { 634 if (platform_pci_power_manageable(dev)) 635 platform_pci_set_power_state(dev, PCI_D0); 636 637 pci_raw_set_power_state(dev, PCI_D0); 638 pci_update_current_state(dev, PCI_D0); 639 } 640 641 /** 642 * pci_platform_power_transition - Use platform to change device power state 643 * @dev: PCI device to handle. 644 * @state: State to put the device into. 645 */ 646 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 647 { 648 int error; 649 650 if (platform_pci_power_manageable(dev)) { 651 error = platform_pci_set_power_state(dev, state); 652 if (!error) 653 pci_update_current_state(dev, state); 654 /* Fall back to PCI_D0 if native PM is not supported */ 655 if (!dev->pm_cap) 656 dev->current_state = PCI_D0; 657 } else { 658 error = -ENODEV; 659 /* Fall back to PCI_D0 if native PM is not supported */ 660 if (!dev->pm_cap) 661 dev->current_state = PCI_D0; 662 } 663 664 return error; 665 } 666 667 /** 668 * __pci_start_power_transition - Start power transition of a PCI device 669 * @dev: PCI device to handle. 670 * @state: State to put the device into. 671 */ 672 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 673 { 674 if (state == PCI_D0) { 675 pci_platform_power_transition(dev, PCI_D0); 676 /* 677 * Mandatory power management transition delays, see 678 * PCI Express Base Specification Revision 2.0 Section 679 * 6.6.1: Conventional Reset. Do not delay for 680 * devices powered on/off by corresponding bridge, 681 * because have already delayed for the bridge. 682 */ 683 if (dev->runtime_d3cold) { 684 msleep(dev->d3cold_delay); 685 /* 686 * When powering on a bridge from D3cold, the 687 * whole hierarchy may be powered on into 688 * D0uninitialized state, resume them to give 689 * them a chance to suspend again 690 */ 691 pci_wakeup_bus(dev->subordinate); 692 } 693 } 694 } 695 696 /** 697 * __pci_dev_set_current_state - Set current state of a PCI device 698 * @dev: Device to handle 699 * @data: pointer to state to be set 700 */ 701 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 702 { 703 pci_power_t state = *(pci_power_t *)data; 704 705 dev->current_state = state; 706 return 0; 707 } 708 709 /** 710 * __pci_bus_set_current_state - Walk given bus and set current state of devices 711 * @bus: Top bus of the subtree to walk. 712 * @state: state to be set 713 */ 714 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 715 { 716 if (bus) 717 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 718 } 719 720 /** 721 * __pci_complete_power_transition - Complete power transition of a PCI device 722 * @dev: PCI device to handle. 723 * @state: State to put the device into. 724 * 725 * This function should not be called directly by device drivers. 726 */ 727 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 728 { 729 int ret; 730 731 if (state <= PCI_D0) 732 return -EINVAL; 733 ret = pci_platform_power_transition(dev, state); 734 /* Power off the bridge may power off the whole hierarchy */ 735 if (!ret && state == PCI_D3cold) 736 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 737 return ret; 738 } 739 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 740 741 /** 742 * pci_set_power_state - Set the power state of a PCI device 743 * @dev: PCI device to handle. 744 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 745 * 746 * Transition a device to a new power state, using the platform firmware and/or 747 * the device's PCI PM registers. 748 * 749 * RETURN VALUE: 750 * -EINVAL if the requested state is invalid. 751 * -EIO if device does not support PCI PM or its PM capabilities register has a 752 * wrong version, or device doesn't support the requested state. 753 * 0 if device already is in the requested state. 754 * 0 if device's power state has been successfully changed. 755 */ 756 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 757 { 758 int error; 759 760 /* bound the state we're entering */ 761 if (state > PCI_D3cold) 762 state = PCI_D3cold; 763 else if (state < PCI_D0) 764 state = PCI_D0; 765 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 766 /* 767 * If the device or the parent bridge do not support PCI PM, 768 * ignore the request if we're doing anything other than putting 769 * it into D0 (which would only happen on boot). 770 */ 771 return 0; 772 773 /* Check if we're already there */ 774 if (dev->current_state == state) 775 return 0; 776 777 __pci_start_power_transition(dev, state); 778 779 /* This device is quirked not to be put into D3, so 780 don't put it in D3 */ 781 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 782 return 0; 783 784 /* 785 * To put device in D3cold, we put device into D3hot in native 786 * way, then put device into D3cold with platform ops 787 */ 788 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 789 PCI_D3hot : state); 790 791 if (!__pci_complete_power_transition(dev, state)) 792 error = 0; 793 /* 794 * When aspm_policy is "powersave" this call ensures 795 * that ASPM is configured. 796 */ 797 if (!error && dev->bus->self) 798 pcie_aspm_powersave_config_link(dev->bus->self); 799 800 return error; 801 } 802 803 /** 804 * pci_choose_state - Choose the power state of a PCI device 805 * @dev: PCI device to be suspended 806 * @state: target sleep state for the whole system. This is the value 807 * that is passed to suspend() function. 808 * 809 * Returns PCI power state suitable for given device and given system 810 * message. 811 */ 812 813 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 814 { 815 pci_power_t ret; 816 817 if (!pci_find_capability(dev, PCI_CAP_ID_PM)) 818 return PCI_D0; 819 820 ret = platform_pci_choose_state(dev); 821 if (ret != PCI_POWER_ERROR) 822 return ret; 823 824 switch (state.event) { 825 case PM_EVENT_ON: 826 return PCI_D0; 827 case PM_EVENT_FREEZE: 828 case PM_EVENT_PRETHAW: 829 /* REVISIT both freeze and pre-thaw "should" use D0 */ 830 case PM_EVENT_SUSPEND: 831 case PM_EVENT_HIBERNATE: 832 return PCI_D3hot; 833 default: 834 dev_info(&dev->dev, "unrecognized suspend event %d\n", 835 state.event); 836 BUG(); 837 } 838 return PCI_D0; 839 } 840 841 EXPORT_SYMBOL(pci_choose_state); 842 843 #define PCI_EXP_SAVE_REGS 7 844 845 846 static struct pci_cap_saved_state *pci_find_saved_cap( 847 struct pci_dev *pci_dev, char cap) 848 { 849 struct pci_cap_saved_state *tmp; 850 struct hlist_node *pos; 851 852 hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) { 853 if (tmp->cap.cap_nr == cap) 854 return tmp; 855 } 856 return NULL; 857 } 858 859 static int pci_save_pcie_state(struct pci_dev *dev) 860 { 861 int i = 0; 862 struct pci_cap_saved_state *save_state; 863 u16 *cap; 864 865 if (!pci_is_pcie(dev)) 866 return 0; 867 868 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 869 if (!save_state) { 870 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 871 return -ENOMEM; 872 } 873 874 cap = (u16 *)&save_state->cap.data[0]; 875 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 876 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 877 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 878 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 879 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 880 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 881 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 882 883 return 0; 884 } 885 886 static void pci_restore_pcie_state(struct pci_dev *dev) 887 { 888 int i = 0; 889 struct pci_cap_saved_state *save_state; 890 u16 *cap; 891 892 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 893 if (!save_state) 894 return; 895 896 cap = (u16 *)&save_state->cap.data[0]; 897 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 898 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 899 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 900 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 901 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 902 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 903 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 904 } 905 906 907 static int pci_save_pcix_state(struct pci_dev *dev) 908 { 909 int pos; 910 struct pci_cap_saved_state *save_state; 911 912 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 913 if (pos <= 0) 914 return 0; 915 916 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 917 if (!save_state) { 918 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 919 return -ENOMEM; 920 } 921 922 pci_read_config_word(dev, pos + PCI_X_CMD, 923 (u16 *)save_state->cap.data); 924 925 return 0; 926 } 927 928 static void pci_restore_pcix_state(struct pci_dev *dev) 929 { 930 int i = 0, pos; 931 struct pci_cap_saved_state *save_state; 932 u16 *cap; 933 934 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 935 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 936 if (!save_state || pos <= 0) 937 return; 938 cap = (u16 *)&save_state->cap.data[0]; 939 940 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 941 } 942 943 944 /** 945 * pci_save_state - save the PCI configuration space of a device before suspending 946 * @dev: - PCI device that we're dealing with 947 */ 948 int 949 pci_save_state(struct pci_dev *dev) 950 { 951 int i; 952 /* XXX: 100% dword access ok here? */ 953 for (i = 0; i < 16; i++) 954 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 955 dev->state_saved = true; 956 if ((i = pci_save_pcie_state(dev)) != 0) 957 return i; 958 if ((i = pci_save_pcix_state(dev)) != 0) 959 return i; 960 return 0; 961 } 962 963 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 964 u32 saved_val, int retry) 965 { 966 u32 val; 967 968 pci_read_config_dword(pdev, offset, &val); 969 if (val == saved_val) 970 return; 971 972 for (;;) { 973 dev_dbg(&pdev->dev, "restoring config space at offset " 974 "%#x (was %#x, writing %#x)\n", offset, val, saved_val); 975 pci_write_config_dword(pdev, offset, saved_val); 976 if (retry-- <= 0) 977 return; 978 979 pci_read_config_dword(pdev, offset, &val); 980 if (val == saved_val) 981 return; 982 983 mdelay(1); 984 } 985 } 986 987 static void pci_restore_config_space_range(struct pci_dev *pdev, 988 int start, int end, int retry) 989 { 990 int index; 991 992 for (index = end; index >= start; index--) 993 pci_restore_config_dword(pdev, 4 * index, 994 pdev->saved_config_space[index], 995 retry); 996 } 997 998 static void pci_restore_config_space(struct pci_dev *pdev) 999 { 1000 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1001 pci_restore_config_space_range(pdev, 10, 15, 0); 1002 /* Restore BARs before the command register. */ 1003 pci_restore_config_space_range(pdev, 4, 9, 10); 1004 pci_restore_config_space_range(pdev, 0, 3, 0); 1005 } else { 1006 pci_restore_config_space_range(pdev, 0, 15, 0); 1007 } 1008 } 1009 1010 /** 1011 * pci_restore_state - Restore the saved state of a PCI device 1012 * @dev: - PCI device that we're dealing with 1013 */ 1014 void pci_restore_state(struct pci_dev *dev) 1015 { 1016 if (!dev->state_saved) 1017 return; 1018 1019 /* PCI Express register must be restored first */ 1020 pci_restore_pcie_state(dev); 1021 pci_restore_ats_state(dev); 1022 1023 pci_restore_config_space(dev); 1024 1025 pci_restore_pcix_state(dev); 1026 pci_restore_msi_state(dev); 1027 pci_restore_iov_state(dev); 1028 1029 dev->state_saved = false; 1030 } 1031 1032 struct pci_saved_state { 1033 u32 config_space[16]; 1034 struct pci_cap_saved_data cap[0]; 1035 }; 1036 1037 /** 1038 * pci_store_saved_state - Allocate and return an opaque struct containing 1039 * the device saved state. 1040 * @dev: PCI device that we're dealing with 1041 * 1042 * Rerturn NULL if no state or error. 1043 */ 1044 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1045 { 1046 struct pci_saved_state *state; 1047 struct pci_cap_saved_state *tmp; 1048 struct pci_cap_saved_data *cap; 1049 struct hlist_node *pos; 1050 size_t size; 1051 1052 if (!dev->state_saved) 1053 return NULL; 1054 1055 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1056 1057 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) 1058 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1059 1060 state = kzalloc(size, GFP_KERNEL); 1061 if (!state) 1062 return NULL; 1063 1064 memcpy(state->config_space, dev->saved_config_space, 1065 sizeof(state->config_space)); 1066 1067 cap = state->cap; 1068 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) { 1069 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1070 memcpy(cap, &tmp->cap, len); 1071 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1072 } 1073 /* Empty cap_save terminates list */ 1074 1075 return state; 1076 } 1077 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1078 1079 /** 1080 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1081 * @dev: PCI device that we're dealing with 1082 * @state: Saved state returned from pci_store_saved_state() 1083 */ 1084 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state) 1085 { 1086 struct pci_cap_saved_data *cap; 1087 1088 dev->state_saved = false; 1089 1090 if (!state) 1091 return 0; 1092 1093 memcpy(dev->saved_config_space, state->config_space, 1094 sizeof(state->config_space)); 1095 1096 cap = state->cap; 1097 while (cap->size) { 1098 struct pci_cap_saved_state *tmp; 1099 1100 tmp = pci_find_saved_cap(dev, cap->cap_nr); 1101 if (!tmp || tmp->cap.size != cap->size) 1102 return -EINVAL; 1103 1104 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1105 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1106 sizeof(struct pci_cap_saved_data) + cap->size); 1107 } 1108 1109 dev->state_saved = true; 1110 return 0; 1111 } 1112 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1113 1114 /** 1115 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1116 * and free the memory allocated for it. 1117 * @dev: PCI device that we're dealing with 1118 * @state: Pointer to saved state returned from pci_store_saved_state() 1119 */ 1120 int pci_load_and_free_saved_state(struct pci_dev *dev, 1121 struct pci_saved_state **state) 1122 { 1123 int ret = pci_load_saved_state(dev, *state); 1124 kfree(*state); 1125 *state = NULL; 1126 return ret; 1127 } 1128 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1129 1130 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1131 { 1132 int err; 1133 1134 err = pci_set_power_state(dev, PCI_D0); 1135 if (err < 0 && err != -EIO) 1136 return err; 1137 err = pcibios_enable_device(dev, bars); 1138 if (err < 0) 1139 return err; 1140 pci_fixup_device(pci_fixup_enable, dev); 1141 1142 return 0; 1143 } 1144 1145 /** 1146 * pci_reenable_device - Resume abandoned device 1147 * @dev: PCI device to be resumed 1148 * 1149 * Note this function is a backend of pci_default_resume and is not supposed 1150 * to be called by normal code, write proper resume handler and use it instead. 1151 */ 1152 int pci_reenable_device(struct pci_dev *dev) 1153 { 1154 if (pci_is_enabled(dev)) 1155 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1156 return 0; 1157 } 1158 1159 static int __pci_enable_device_flags(struct pci_dev *dev, 1160 resource_size_t flags) 1161 { 1162 int err; 1163 int i, bars = 0; 1164 1165 /* 1166 * Power state could be unknown at this point, either due to a fresh 1167 * boot or a device removal call. So get the current power state 1168 * so that things like MSI message writing will behave as expected 1169 * (e.g. if the device really is in D0 at enable time). 1170 */ 1171 if (dev->pm_cap) { 1172 u16 pmcsr; 1173 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1174 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1175 } 1176 1177 if (atomic_add_return(1, &dev->enable_cnt) > 1) 1178 return 0; /* already enabled */ 1179 1180 /* only skip sriov related */ 1181 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1182 if (dev->resource[i].flags & flags) 1183 bars |= (1 << i); 1184 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1185 if (dev->resource[i].flags & flags) 1186 bars |= (1 << i); 1187 1188 err = do_pci_enable_device(dev, bars); 1189 if (err < 0) 1190 atomic_dec(&dev->enable_cnt); 1191 return err; 1192 } 1193 1194 /** 1195 * pci_enable_device_io - Initialize a device for use with IO space 1196 * @dev: PCI device to be initialized 1197 * 1198 * Initialize device before it's used by a driver. Ask low-level code 1199 * to enable I/O resources. Wake up the device if it was suspended. 1200 * Beware, this function can fail. 1201 */ 1202 int pci_enable_device_io(struct pci_dev *dev) 1203 { 1204 return __pci_enable_device_flags(dev, IORESOURCE_IO); 1205 } 1206 1207 /** 1208 * pci_enable_device_mem - Initialize a device for use with Memory space 1209 * @dev: PCI device to be initialized 1210 * 1211 * Initialize device before it's used by a driver. Ask low-level code 1212 * to enable Memory resources. Wake up the device if it was suspended. 1213 * Beware, this function can fail. 1214 */ 1215 int pci_enable_device_mem(struct pci_dev *dev) 1216 { 1217 return __pci_enable_device_flags(dev, IORESOURCE_MEM); 1218 } 1219 1220 /** 1221 * pci_enable_device - Initialize device before it's used by a driver. 1222 * @dev: PCI device to be initialized 1223 * 1224 * Initialize device before it's used by a driver. Ask low-level code 1225 * to enable I/O and memory. Wake up the device if it was suspended. 1226 * Beware, this function can fail. 1227 * 1228 * Note we don't actually enable the device many times if we call 1229 * this function repeatedly (we just increment the count). 1230 */ 1231 int pci_enable_device(struct pci_dev *dev) 1232 { 1233 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1234 } 1235 1236 /* 1237 * Managed PCI resources. This manages device on/off, intx/msi/msix 1238 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1239 * there's no need to track it separately. pci_devres is initialized 1240 * when a device is enabled using managed PCI device enable interface. 1241 */ 1242 struct pci_devres { 1243 unsigned int enabled:1; 1244 unsigned int pinned:1; 1245 unsigned int orig_intx:1; 1246 unsigned int restore_intx:1; 1247 u32 region_mask; 1248 }; 1249 1250 static void pcim_release(struct device *gendev, void *res) 1251 { 1252 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1253 struct pci_devres *this = res; 1254 int i; 1255 1256 if (dev->msi_enabled) 1257 pci_disable_msi(dev); 1258 if (dev->msix_enabled) 1259 pci_disable_msix(dev); 1260 1261 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1262 if (this->region_mask & (1 << i)) 1263 pci_release_region(dev, i); 1264 1265 if (this->restore_intx) 1266 pci_intx(dev, this->orig_intx); 1267 1268 if (this->enabled && !this->pinned) 1269 pci_disable_device(dev); 1270 } 1271 1272 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 1273 { 1274 struct pci_devres *dr, *new_dr; 1275 1276 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1277 if (dr) 1278 return dr; 1279 1280 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1281 if (!new_dr) 1282 return NULL; 1283 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1284 } 1285 1286 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1287 { 1288 if (pci_is_managed(pdev)) 1289 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1290 return NULL; 1291 } 1292 1293 /** 1294 * pcim_enable_device - Managed pci_enable_device() 1295 * @pdev: PCI device to be initialized 1296 * 1297 * Managed pci_enable_device(). 1298 */ 1299 int pcim_enable_device(struct pci_dev *pdev) 1300 { 1301 struct pci_devres *dr; 1302 int rc; 1303 1304 dr = get_pci_dr(pdev); 1305 if (unlikely(!dr)) 1306 return -ENOMEM; 1307 if (dr->enabled) 1308 return 0; 1309 1310 rc = pci_enable_device(pdev); 1311 if (!rc) { 1312 pdev->is_managed = 1; 1313 dr->enabled = 1; 1314 } 1315 return rc; 1316 } 1317 1318 /** 1319 * pcim_pin_device - Pin managed PCI device 1320 * @pdev: PCI device to pin 1321 * 1322 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1323 * driver detach. @pdev must have been enabled with 1324 * pcim_enable_device(). 1325 */ 1326 void pcim_pin_device(struct pci_dev *pdev) 1327 { 1328 struct pci_devres *dr; 1329 1330 dr = find_pci_dr(pdev); 1331 WARN_ON(!dr || !dr->enabled); 1332 if (dr) 1333 dr->pinned = 1; 1334 } 1335 1336 /* 1337 * pcibios_add_device - provide arch specific hooks when adding device dev 1338 * @dev: the PCI device being added 1339 * 1340 * Permits the platform to provide architecture specific functionality when 1341 * devices are added. This is the default implementation. Architecture 1342 * implementations can override this. 1343 */ 1344 int __weak pcibios_add_device (struct pci_dev *dev) 1345 { 1346 return 0; 1347 } 1348 1349 /** 1350 * pcibios_disable_device - disable arch specific PCI resources for device dev 1351 * @dev: the PCI device to disable 1352 * 1353 * Disables architecture specific PCI resources for the device. This 1354 * is the default implementation. Architecture implementations can 1355 * override this. 1356 */ 1357 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1358 1359 static void do_pci_disable_device(struct pci_dev *dev) 1360 { 1361 u16 pci_command; 1362 1363 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1364 if (pci_command & PCI_COMMAND_MASTER) { 1365 pci_command &= ~PCI_COMMAND_MASTER; 1366 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1367 } 1368 1369 pcibios_disable_device(dev); 1370 } 1371 1372 /** 1373 * pci_disable_enabled_device - Disable device without updating enable_cnt 1374 * @dev: PCI device to disable 1375 * 1376 * NOTE: This function is a backend of PCI power management routines and is 1377 * not supposed to be called drivers. 1378 */ 1379 void pci_disable_enabled_device(struct pci_dev *dev) 1380 { 1381 if (pci_is_enabled(dev)) 1382 do_pci_disable_device(dev); 1383 } 1384 1385 /** 1386 * pci_disable_device - Disable PCI device after use 1387 * @dev: PCI device to be disabled 1388 * 1389 * Signal to the system that the PCI device is not in use by the system 1390 * anymore. This only involves disabling PCI bus-mastering, if active. 1391 * 1392 * Note we don't actually disable the device until all callers of 1393 * pci_enable_device() have called pci_disable_device(). 1394 */ 1395 void 1396 pci_disable_device(struct pci_dev *dev) 1397 { 1398 struct pci_devres *dr; 1399 1400 dr = find_pci_dr(dev); 1401 if (dr) 1402 dr->enabled = 0; 1403 1404 if (atomic_sub_return(1, &dev->enable_cnt) != 0) 1405 return; 1406 1407 do_pci_disable_device(dev); 1408 1409 dev->is_busmaster = 0; 1410 } 1411 1412 /** 1413 * pcibios_set_pcie_reset_state - set reset state for device dev 1414 * @dev: the PCIe device reset 1415 * @state: Reset state to enter into 1416 * 1417 * 1418 * Sets the PCIe reset state for the device. This is the default 1419 * implementation. Architecture implementations can override this. 1420 */ 1421 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1422 enum pcie_reset_state state) 1423 { 1424 return -EINVAL; 1425 } 1426 1427 /** 1428 * pci_set_pcie_reset_state - set reset state for device dev 1429 * @dev: the PCIe device reset 1430 * @state: Reset state to enter into 1431 * 1432 * 1433 * Sets the PCI reset state for the device. 1434 */ 1435 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1436 { 1437 return pcibios_set_pcie_reset_state(dev, state); 1438 } 1439 1440 /** 1441 * pci_check_pme_status - Check if given device has generated PME. 1442 * @dev: Device to check. 1443 * 1444 * Check the PME status of the device and if set, clear it and clear PME enable 1445 * (if set). Return 'true' if PME status and PME enable were both set or 1446 * 'false' otherwise. 1447 */ 1448 bool pci_check_pme_status(struct pci_dev *dev) 1449 { 1450 int pmcsr_pos; 1451 u16 pmcsr; 1452 bool ret = false; 1453 1454 if (!dev->pm_cap) 1455 return false; 1456 1457 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1458 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1459 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1460 return false; 1461 1462 /* Clear PME status. */ 1463 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1464 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1465 /* Disable PME to avoid interrupt flood. */ 1466 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1467 ret = true; 1468 } 1469 1470 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1471 1472 return ret; 1473 } 1474 1475 /** 1476 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1477 * @dev: Device to handle. 1478 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1479 * 1480 * Check if @dev has generated PME and queue a resume request for it in that 1481 * case. 1482 */ 1483 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1484 { 1485 if (pme_poll_reset && dev->pme_poll) 1486 dev->pme_poll = false; 1487 1488 if (pci_check_pme_status(dev)) { 1489 pci_wakeup_event(dev); 1490 pm_request_resume(&dev->dev); 1491 } 1492 return 0; 1493 } 1494 1495 /** 1496 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1497 * @bus: Top bus of the subtree to walk. 1498 */ 1499 void pci_pme_wakeup_bus(struct pci_bus *bus) 1500 { 1501 if (bus) 1502 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1503 } 1504 1505 /** 1506 * pci_wakeup - Wake up a PCI device 1507 * @pci_dev: Device to handle. 1508 * @ign: ignored parameter 1509 */ 1510 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1511 { 1512 pci_wakeup_event(pci_dev); 1513 pm_request_resume(&pci_dev->dev); 1514 return 0; 1515 } 1516 1517 /** 1518 * pci_wakeup_bus - Walk given bus and wake up devices on it 1519 * @bus: Top bus of the subtree to walk. 1520 */ 1521 void pci_wakeup_bus(struct pci_bus *bus) 1522 { 1523 if (bus) 1524 pci_walk_bus(bus, pci_wakeup, NULL); 1525 } 1526 1527 /** 1528 * pci_pme_capable - check the capability of PCI device to generate PME# 1529 * @dev: PCI device to handle. 1530 * @state: PCI state from which device will issue PME#. 1531 */ 1532 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1533 { 1534 if (!dev->pm_cap) 1535 return false; 1536 1537 return !!(dev->pme_support & (1 << state)); 1538 } 1539 1540 static void pci_pme_list_scan(struct work_struct *work) 1541 { 1542 struct pci_pme_device *pme_dev, *n; 1543 1544 mutex_lock(&pci_pme_list_mutex); 1545 if (!list_empty(&pci_pme_list)) { 1546 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1547 if (pme_dev->dev->pme_poll) { 1548 struct pci_dev *bridge; 1549 1550 bridge = pme_dev->dev->bus->self; 1551 /* 1552 * If bridge is in low power state, the 1553 * configuration space of subordinate devices 1554 * may be not accessible 1555 */ 1556 if (bridge && bridge->current_state != PCI_D0) 1557 continue; 1558 pci_pme_wakeup(pme_dev->dev, NULL); 1559 } else { 1560 list_del(&pme_dev->list); 1561 kfree(pme_dev); 1562 } 1563 } 1564 if (!list_empty(&pci_pme_list)) 1565 schedule_delayed_work(&pci_pme_work, 1566 msecs_to_jiffies(PME_TIMEOUT)); 1567 } 1568 mutex_unlock(&pci_pme_list_mutex); 1569 } 1570 1571 /** 1572 * pci_pme_active - enable or disable PCI device's PME# function 1573 * @dev: PCI device to handle. 1574 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1575 * 1576 * The caller must verify that the device is capable of generating PME# before 1577 * calling this function with @enable equal to 'true'. 1578 */ 1579 void pci_pme_active(struct pci_dev *dev, bool enable) 1580 { 1581 u16 pmcsr; 1582 1583 if (!dev->pm_cap) 1584 return; 1585 1586 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1587 /* Clear PME_Status by writing 1 to it and enable PME# */ 1588 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1589 if (!enable) 1590 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1591 1592 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1593 1594 /* 1595 * PCI (as opposed to PCIe) PME requires that the device have 1596 * its PME# line hooked up correctly. Not all hardware vendors 1597 * do this, so the PME never gets delivered and the device 1598 * remains asleep. The easiest way around this is to 1599 * periodically walk the list of suspended devices and check 1600 * whether any have their PME flag set. The assumption is that 1601 * we'll wake up often enough anyway that this won't be a huge 1602 * hit, and the power savings from the devices will still be a 1603 * win. 1604 * 1605 * Although PCIe uses in-band PME message instead of PME# line 1606 * to report PME, PME does not work for some PCIe devices in 1607 * reality. For example, there are devices that set their PME 1608 * status bits, but don't really bother to send a PME message; 1609 * there are PCI Express Root Ports that don't bother to 1610 * trigger interrupts when they receive PME messages from the 1611 * devices below. So PME poll is used for PCIe devices too. 1612 */ 1613 1614 if (dev->pme_poll) { 1615 struct pci_pme_device *pme_dev; 1616 if (enable) { 1617 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1618 GFP_KERNEL); 1619 if (!pme_dev) 1620 goto out; 1621 pme_dev->dev = dev; 1622 mutex_lock(&pci_pme_list_mutex); 1623 list_add(&pme_dev->list, &pci_pme_list); 1624 if (list_is_singular(&pci_pme_list)) 1625 schedule_delayed_work(&pci_pme_work, 1626 msecs_to_jiffies(PME_TIMEOUT)); 1627 mutex_unlock(&pci_pme_list_mutex); 1628 } else { 1629 mutex_lock(&pci_pme_list_mutex); 1630 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1631 if (pme_dev->dev == dev) { 1632 list_del(&pme_dev->list); 1633 kfree(pme_dev); 1634 break; 1635 } 1636 } 1637 mutex_unlock(&pci_pme_list_mutex); 1638 } 1639 } 1640 1641 out: 1642 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1643 } 1644 1645 /** 1646 * __pci_enable_wake - enable PCI device as wakeup event source 1647 * @dev: PCI device affected 1648 * @state: PCI state from which device will issue wakeup events 1649 * @runtime: True if the events are to be generated at run time 1650 * @enable: True to enable event generation; false to disable 1651 * 1652 * This enables the device as a wakeup event source, or disables it. 1653 * When such events involves platform-specific hooks, those hooks are 1654 * called automatically by this routine. 1655 * 1656 * Devices with legacy power management (no standard PCI PM capabilities) 1657 * always require such platform hooks. 1658 * 1659 * RETURN VALUE: 1660 * 0 is returned on success 1661 * -EINVAL is returned if device is not supposed to wake up the system 1662 * Error code depending on the platform is returned if both the platform and 1663 * the native mechanism fail to enable the generation of wake-up events 1664 */ 1665 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1666 bool runtime, bool enable) 1667 { 1668 int ret = 0; 1669 1670 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1671 return -EINVAL; 1672 1673 /* Don't do the same thing twice in a row for one device. */ 1674 if (!!enable == !!dev->wakeup_prepared) 1675 return 0; 1676 1677 /* 1678 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1679 * Anderson we should be doing PME# wake enable followed by ACPI wake 1680 * enable. To disable wake-up we call the platform first, for symmetry. 1681 */ 1682 1683 if (enable) { 1684 int error; 1685 1686 if (pci_pme_capable(dev, state)) 1687 pci_pme_active(dev, true); 1688 else 1689 ret = 1; 1690 error = runtime ? platform_pci_run_wake(dev, true) : 1691 platform_pci_sleep_wake(dev, true); 1692 if (ret) 1693 ret = error; 1694 if (!ret) 1695 dev->wakeup_prepared = true; 1696 } else { 1697 if (runtime) 1698 platform_pci_run_wake(dev, false); 1699 else 1700 platform_pci_sleep_wake(dev, false); 1701 pci_pme_active(dev, false); 1702 dev->wakeup_prepared = false; 1703 } 1704 1705 return ret; 1706 } 1707 EXPORT_SYMBOL(__pci_enable_wake); 1708 1709 /** 1710 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1711 * @dev: PCI device to prepare 1712 * @enable: True to enable wake-up event generation; false to disable 1713 * 1714 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1715 * and this function allows them to set that up cleanly - pci_enable_wake() 1716 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1717 * ordering constraints. 1718 * 1719 * This function only returns error code if the device is not capable of 1720 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1721 * enable wake-up power for it. 1722 */ 1723 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1724 { 1725 return pci_pme_capable(dev, PCI_D3cold) ? 1726 pci_enable_wake(dev, PCI_D3cold, enable) : 1727 pci_enable_wake(dev, PCI_D3hot, enable); 1728 } 1729 1730 /** 1731 * pci_target_state - find an appropriate low power state for a given PCI dev 1732 * @dev: PCI device 1733 * 1734 * Use underlying platform code to find a supported low power state for @dev. 1735 * If the platform can't manage @dev, return the deepest state from which it 1736 * can generate wake events, based on any available PME info. 1737 */ 1738 pci_power_t pci_target_state(struct pci_dev *dev) 1739 { 1740 pci_power_t target_state = PCI_D3hot; 1741 1742 if (platform_pci_power_manageable(dev)) { 1743 /* 1744 * Call the platform to choose the target state of the device 1745 * and enable wake-up from this state if supported. 1746 */ 1747 pci_power_t state = platform_pci_choose_state(dev); 1748 1749 switch (state) { 1750 case PCI_POWER_ERROR: 1751 case PCI_UNKNOWN: 1752 break; 1753 case PCI_D1: 1754 case PCI_D2: 1755 if (pci_no_d1d2(dev)) 1756 break; 1757 default: 1758 target_state = state; 1759 } 1760 } else if (!dev->pm_cap) { 1761 target_state = PCI_D0; 1762 } else if (device_may_wakeup(&dev->dev)) { 1763 /* 1764 * Find the deepest state from which the device can generate 1765 * wake-up events, make it the target state and enable device 1766 * to generate PME#. 1767 */ 1768 if (dev->pme_support) { 1769 while (target_state 1770 && !(dev->pme_support & (1 << target_state))) 1771 target_state--; 1772 } 1773 } 1774 1775 return target_state; 1776 } 1777 1778 /** 1779 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1780 * @dev: Device to handle. 1781 * 1782 * Choose the power state appropriate for the device depending on whether 1783 * it can wake up the system and/or is power manageable by the platform 1784 * (PCI_D3hot is the default) and put the device into that state. 1785 */ 1786 int pci_prepare_to_sleep(struct pci_dev *dev) 1787 { 1788 pci_power_t target_state = pci_target_state(dev); 1789 int error; 1790 1791 if (target_state == PCI_POWER_ERROR) 1792 return -EIO; 1793 1794 /* D3cold during system suspend/hibernate is not supported */ 1795 if (target_state > PCI_D3hot) 1796 target_state = PCI_D3hot; 1797 1798 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1799 1800 error = pci_set_power_state(dev, target_state); 1801 1802 if (error) 1803 pci_enable_wake(dev, target_state, false); 1804 1805 return error; 1806 } 1807 1808 /** 1809 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1810 * @dev: Device to handle. 1811 * 1812 * Disable device's system wake-up capability and put it into D0. 1813 */ 1814 int pci_back_from_sleep(struct pci_dev *dev) 1815 { 1816 pci_enable_wake(dev, PCI_D0, false); 1817 return pci_set_power_state(dev, PCI_D0); 1818 } 1819 1820 /** 1821 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1822 * @dev: PCI device being suspended. 1823 * 1824 * Prepare @dev to generate wake-up events at run time and put it into a low 1825 * power state. 1826 */ 1827 int pci_finish_runtime_suspend(struct pci_dev *dev) 1828 { 1829 pci_power_t target_state = pci_target_state(dev); 1830 int error; 1831 1832 if (target_state == PCI_POWER_ERROR) 1833 return -EIO; 1834 1835 dev->runtime_d3cold = target_state == PCI_D3cold; 1836 1837 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1838 1839 error = pci_set_power_state(dev, target_state); 1840 1841 if (error) { 1842 __pci_enable_wake(dev, target_state, true, false); 1843 dev->runtime_d3cold = false; 1844 } 1845 1846 return error; 1847 } 1848 1849 /** 1850 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1851 * @dev: Device to check. 1852 * 1853 * Return true if the device itself is cabable of generating wake-up events 1854 * (through the platform or using the native PCIe PME) or if the device supports 1855 * PME and one of its upstream bridges can generate wake-up events. 1856 */ 1857 bool pci_dev_run_wake(struct pci_dev *dev) 1858 { 1859 struct pci_bus *bus = dev->bus; 1860 1861 if (device_run_wake(&dev->dev)) 1862 return true; 1863 1864 if (!dev->pme_support) 1865 return false; 1866 1867 while (bus->parent) { 1868 struct pci_dev *bridge = bus->self; 1869 1870 if (device_run_wake(&bridge->dev)) 1871 return true; 1872 1873 bus = bus->parent; 1874 } 1875 1876 /* We have reached the root bus. */ 1877 if (bus->bridge) 1878 return device_run_wake(bus->bridge); 1879 1880 return false; 1881 } 1882 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 1883 1884 void pci_config_pm_runtime_get(struct pci_dev *pdev) 1885 { 1886 struct device *dev = &pdev->dev; 1887 struct device *parent = dev->parent; 1888 1889 if (parent) 1890 pm_runtime_get_sync(parent); 1891 pm_runtime_get_noresume(dev); 1892 /* 1893 * pdev->current_state is set to PCI_D3cold during suspending, 1894 * so wait until suspending completes 1895 */ 1896 pm_runtime_barrier(dev); 1897 /* 1898 * Only need to resume devices in D3cold, because config 1899 * registers are still accessible for devices suspended but 1900 * not in D3cold. 1901 */ 1902 if (pdev->current_state == PCI_D3cold) 1903 pm_runtime_resume(dev); 1904 } 1905 1906 void pci_config_pm_runtime_put(struct pci_dev *pdev) 1907 { 1908 struct device *dev = &pdev->dev; 1909 struct device *parent = dev->parent; 1910 1911 pm_runtime_put(dev); 1912 if (parent) 1913 pm_runtime_put_sync(parent); 1914 } 1915 1916 /** 1917 * pci_pm_init - Initialize PM functions of given PCI device 1918 * @dev: PCI device to handle. 1919 */ 1920 void pci_pm_init(struct pci_dev *dev) 1921 { 1922 int pm; 1923 u16 pmc; 1924 1925 pm_runtime_forbid(&dev->dev); 1926 pm_runtime_set_active(&dev->dev); 1927 pm_runtime_enable(&dev->dev); 1928 device_enable_async_suspend(&dev->dev); 1929 dev->wakeup_prepared = false; 1930 1931 dev->pm_cap = 0; 1932 1933 /* find PCI PM capability in list */ 1934 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 1935 if (!pm) 1936 return; 1937 /* Check device's ability to generate PME# */ 1938 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 1939 1940 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 1941 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 1942 pmc & PCI_PM_CAP_VER_MASK); 1943 return; 1944 } 1945 1946 dev->pm_cap = pm; 1947 dev->d3_delay = PCI_PM_D3_WAIT; 1948 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 1949 dev->d3cold_allowed = true; 1950 1951 dev->d1_support = false; 1952 dev->d2_support = false; 1953 if (!pci_no_d1d2(dev)) { 1954 if (pmc & PCI_PM_CAP_D1) 1955 dev->d1_support = true; 1956 if (pmc & PCI_PM_CAP_D2) 1957 dev->d2_support = true; 1958 1959 if (dev->d1_support || dev->d2_support) 1960 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 1961 dev->d1_support ? " D1" : "", 1962 dev->d2_support ? " D2" : ""); 1963 } 1964 1965 pmc &= PCI_PM_CAP_PME_MASK; 1966 if (pmc) { 1967 dev_printk(KERN_DEBUG, &dev->dev, 1968 "PME# supported from%s%s%s%s%s\n", 1969 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 1970 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 1971 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 1972 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 1973 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 1974 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 1975 dev->pme_poll = true; 1976 /* 1977 * Make device's PM flags reflect the wake-up capability, but 1978 * let the user space enable it to wake up the system as needed. 1979 */ 1980 device_set_wakeup_capable(&dev->dev, true); 1981 /* Disable the PME# generation functionality */ 1982 pci_pme_active(dev, false); 1983 } else { 1984 dev->pme_support = 0; 1985 } 1986 } 1987 1988 /** 1989 * platform_pci_wakeup_init - init platform wakeup if present 1990 * @dev: PCI device 1991 * 1992 * Some devices don't have PCI PM caps but can still generate wakeup 1993 * events through platform methods (like ACPI events). If @dev supports 1994 * platform wakeup events, set the device flag to indicate as much. This 1995 * may be redundant if the device also supports PCI PM caps, but double 1996 * initialization should be safe in that case. 1997 */ 1998 void platform_pci_wakeup_init(struct pci_dev *dev) 1999 { 2000 if (!platform_pci_can_wakeup(dev)) 2001 return; 2002 2003 device_set_wakeup_capable(&dev->dev, true); 2004 platform_pci_sleep_wake(dev, false); 2005 } 2006 2007 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2008 struct pci_cap_saved_state *new_cap) 2009 { 2010 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2011 } 2012 2013 /** 2014 * pci_add_save_buffer - allocate buffer for saving given capability registers 2015 * @dev: the PCI device 2016 * @cap: the capability to allocate the buffer for 2017 * @size: requested size of the buffer 2018 */ 2019 static int pci_add_cap_save_buffer( 2020 struct pci_dev *dev, char cap, unsigned int size) 2021 { 2022 int pos; 2023 struct pci_cap_saved_state *save_state; 2024 2025 pos = pci_find_capability(dev, cap); 2026 if (pos <= 0) 2027 return 0; 2028 2029 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2030 if (!save_state) 2031 return -ENOMEM; 2032 2033 save_state->cap.cap_nr = cap; 2034 save_state->cap.size = size; 2035 pci_add_saved_cap(dev, save_state); 2036 2037 return 0; 2038 } 2039 2040 /** 2041 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2042 * @dev: the PCI device 2043 */ 2044 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2045 { 2046 int error; 2047 2048 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2049 PCI_EXP_SAVE_REGS * sizeof(u16)); 2050 if (error) 2051 dev_err(&dev->dev, 2052 "unable to preallocate PCI Express save buffer\n"); 2053 2054 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2055 if (error) 2056 dev_err(&dev->dev, 2057 "unable to preallocate PCI-X save buffer\n"); 2058 } 2059 2060 void pci_free_cap_save_buffers(struct pci_dev *dev) 2061 { 2062 struct pci_cap_saved_state *tmp; 2063 struct hlist_node *pos, *n; 2064 2065 hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next) 2066 kfree(tmp); 2067 } 2068 2069 /** 2070 * pci_enable_ari - enable ARI forwarding if hardware support it 2071 * @dev: the PCI device 2072 */ 2073 void pci_enable_ari(struct pci_dev *dev) 2074 { 2075 u32 cap; 2076 struct pci_dev *bridge; 2077 2078 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2079 return; 2080 2081 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) 2082 return; 2083 2084 bridge = dev->bus->self; 2085 if (!bridge) 2086 return; 2087 2088 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2089 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2090 return; 2091 2092 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_ARI); 2093 bridge->ari_enabled = 1; 2094 } 2095 2096 /** 2097 * pci_enable_ido - enable ID-based Ordering on a device 2098 * @dev: the PCI device 2099 * @type: which types of IDO to enable 2100 * 2101 * Enable ID-based ordering on @dev. @type can contain the bits 2102 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate 2103 * which types of transactions are allowed to be re-ordered. 2104 */ 2105 void pci_enable_ido(struct pci_dev *dev, unsigned long type) 2106 { 2107 u16 ctrl = 0; 2108 2109 if (type & PCI_EXP_IDO_REQUEST) 2110 ctrl |= PCI_EXP_IDO_REQ_EN; 2111 if (type & PCI_EXP_IDO_COMPLETION) 2112 ctrl |= PCI_EXP_IDO_CMP_EN; 2113 if (ctrl) 2114 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl); 2115 } 2116 EXPORT_SYMBOL(pci_enable_ido); 2117 2118 /** 2119 * pci_disable_ido - disable ID-based ordering on a device 2120 * @dev: the PCI device 2121 * @type: which types of IDO to disable 2122 */ 2123 void pci_disable_ido(struct pci_dev *dev, unsigned long type) 2124 { 2125 u16 ctrl = 0; 2126 2127 if (type & PCI_EXP_IDO_REQUEST) 2128 ctrl |= PCI_EXP_IDO_REQ_EN; 2129 if (type & PCI_EXP_IDO_COMPLETION) 2130 ctrl |= PCI_EXP_IDO_CMP_EN; 2131 if (ctrl) 2132 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl); 2133 } 2134 EXPORT_SYMBOL(pci_disable_ido); 2135 2136 /** 2137 * pci_enable_obff - enable optimized buffer flush/fill 2138 * @dev: PCI device 2139 * @type: type of signaling to use 2140 * 2141 * Try to enable @type OBFF signaling on @dev. It will try using WAKE# 2142 * signaling if possible, falling back to message signaling only if 2143 * WAKE# isn't supported. @type should indicate whether the PCIe link 2144 * be brought out of L0s or L1 to send the message. It should be either 2145 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0. 2146 * 2147 * If your device can benefit from receiving all messages, even at the 2148 * power cost of bringing the link back up from a low power state, use 2149 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the 2150 * preferred type). 2151 * 2152 * RETURNS: 2153 * Zero on success, appropriate error number on failure. 2154 */ 2155 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type) 2156 { 2157 u32 cap; 2158 u16 ctrl; 2159 int ret; 2160 2161 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap); 2162 if (!(cap & PCI_EXP_OBFF_MASK)) 2163 return -ENOTSUPP; /* no OBFF support at all */ 2164 2165 /* Make sure the topology supports OBFF as well */ 2166 if (dev->bus->self) { 2167 ret = pci_enable_obff(dev->bus->self, type); 2168 if (ret) 2169 return ret; 2170 } 2171 2172 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl); 2173 if (cap & PCI_EXP_OBFF_WAKE) 2174 ctrl |= PCI_EXP_OBFF_WAKE_EN; 2175 else { 2176 switch (type) { 2177 case PCI_EXP_OBFF_SIGNAL_L0: 2178 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN)) 2179 ctrl |= PCI_EXP_OBFF_MSGA_EN; 2180 break; 2181 case PCI_EXP_OBFF_SIGNAL_ALWAYS: 2182 ctrl &= ~PCI_EXP_OBFF_WAKE_EN; 2183 ctrl |= PCI_EXP_OBFF_MSGB_EN; 2184 break; 2185 default: 2186 WARN(1, "bad OBFF signal type\n"); 2187 return -ENOTSUPP; 2188 } 2189 } 2190 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl); 2191 2192 return 0; 2193 } 2194 EXPORT_SYMBOL(pci_enable_obff); 2195 2196 /** 2197 * pci_disable_obff - disable optimized buffer flush/fill 2198 * @dev: PCI device 2199 * 2200 * Disable OBFF on @dev. 2201 */ 2202 void pci_disable_obff(struct pci_dev *dev) 2203 { 2204 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN); 2205 } 2206 EXPORT_SYMBOL(pci_disable_obff); 2207 2208 /** 2209 * pci_ltr_supported - check whether a device supports LTR 2210 * @dev: PCI device 2211 * 2212 * RETURNS: 2213 * True if @dev supports latency tolerance reporting, false otherwise. 2214 */ 2215 static bool pci_ltr_supported(struct pci_dev *dev) 2216 { 2217 u32 cap; 2218 2219 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap); 2220 2221 return cap & PCI_EXP_DEVCAP2_LTR; 2222 } 2223 2224 /** 2225 * pci_enable_ltr - enable latency tolerance reporting 2226 * @dev: PCI device 2227 * 2228 * Enable LTR on @dev if possible, which means enabling it first on 2229 * upstream ports. 2230 * 2231 * RETURNS: 2232 * Zero on success, errno on failure. 2233 */ 2234 int pci_enable_ltr(struct pci_dev *dev) 2235 { 2236 int ret; 2237 2238 /* Only primary function can enable/disable LTR */ 2239 if (PCI_FUNC(dev->devfn) != 0) 2240 return -EINVAL; 2241 2242 if (!pci_ltr_supported(dev)) 2243 return -ENOTSUPP; 2244 2245 /* Enable upstream ports first */ 2246 if (dev->bus->self) { 2247 ret = pci_enable_ltr(dev->bus->self); 2248 if (ret) 2249 return ret; 2250 } 2251 2252 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN); 2253 } 2254 EXPORT_SYMBOL(pci_enable_ltr); 2255 2256 /** 2257 * pci_disable_ltr - disable latency tolerance reporting 2258 * @dev: PCI device 2259 */ 2260 void pci_disable_ltr(struct pci_dev *dev) 2261 { 2262 /* Only primary function can enable/disable LTR */ 2263 if (PCI_FUNC(dev->devfn) != 0) 2264 return; 2265 2266 if (!pci_ltr_supported(dev)) 2267 return; 2268 2269 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN); 2270 } 2271 EXPORT_SYMBOL(pci_disable_ltr); 2272 2273 static int __pci_ltr_scale(int *val) 2274 { 2275 int scale = 0; 2276 2277 while (*val > 1023) { 2278 *val = (*val + 31) / 32; 2279 scale++; 2280 } 2281 return scale; 2282 } 2283 2284 /** 2285 * pci_set_ltr - set LTR latency values 2286 * @dev: PCI device 2287 * @snoop_lat_ns: snoop latency in nanoseconds 2288 * @nosnoop_lat_ns: nosnoop latency in nanoseconds 2289 * 2290 * Figure out the scale and set the LTR values accordingly. 2291 */ 2292 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns) 2293 { 2294 int pos, ret, snoop_scale, nosnoop_scale; 2295 u16 val; 2296 2297 if (!pci_ltr_supported(dev)) 2298 return -ENOTSUPP; 2299 2300 snoop_scale = __pci_ltr_scale(&snoop_lat_ns); 2301 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns); 2302 2303 if (snoop_lat_ns > PCI_LTR_VALUE_MASK || 2304 nosnoop_lat_ns > PCI_LTR_VALUE_MASK) 2305 return -EINVAL; 2306 2307 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) || 2308 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT))) 2309 return -EINVAL; 2310 2311 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 2312 if (!pos) 2313 return -ENOTSUPP; 2314 2315 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns; 2316 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val); 2317 if (ret != 4) 2318 return -EIO; 2319 2320 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns; 2321 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val); 2322 if (ret != 4) 2323 return -EIO; 2324 2325 return 0; 2326 } 2327 EXPORT_SYMBOL(pci_set_ltr); 2328 2329 static int pci_acs_enable; 2330 2331 /** 2332 * pci_request_acs - ask for ACS to be enabled if supported 2333 */ 2334 void pci_request_acs(void) 2335 { 2336 pci_acs_enable = 1; 2337 } 2338 2339 /** 2340 * pci_enable_acs - enable ACS if hardware support it 2341 * @dev: the PCI device 2342 */ 2343 void pci_enable_acs(struct pci_dev *dev) 2344 { 2345 int pos; 2346 u16 cap; 2347 u16 ctrl; 2348 2349 if (!pci_acs_enable) 2350 return; 2351 2352 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2353 if (!pos) 2354 return; 2355 2356 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2357 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2358 2359 /* Source Validation */ 2360 ctrl |= (cap & PCI_ACS_SV); 2361 2362 /* P2P Request Redirect */ 2363 ctrl |= (cap & PCI_ACS_RR); 2364 2365 /* P2P Completion Redirect */ 2366 ctrl |= (cap & PCI_ACS_CR); 2367 2368 /* Upstream Forwarding */ 2369 ctrl |= (cap & PCI_ACS_UF); 2370 2371 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2372 } 2373 2374 /** 2375 * pci_acs_enabled - test ACS against required flags for a given device 2376 * @pdev: device to test 2377 * @acs_flags: required PCI ACS flags 2378 * 2379 * Return true if the device supports the provided flags. Automatically 2380 * filters out flags that are not implemented on multifunction devices. 2381 */ 2382 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2383 { 2384 int pos, ret; 2385 u16 ctrl; 2386 2387 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2388 if (ret >= 0) 2389 return ret > 0; 2390 2391 if (!pci_is_pcie(pdev)) 2392 return false; 2393 2394 /* Filter out flags not applicable to multifunction */ 2395 if (pdev->multifunction) 2396 acs_flags &= (PCI_ACS_RR | PCI_ACS_CR | 2397 PCI_ACS_EC | PCI_ACS_DT); 2398 2399 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM || 2400 pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT || 2401 pdev->multifunction) { 2402 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2403 if (!pos) 2404 return false; 2405 2406 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2407 if ((ctrl & acs_flags) != acs_flags) 2408 return false; 2409 } 2410 2411 return true; 2412 } 2413 2414 /** 2415 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2416 * @start: starting downstream device 2417 * @end: ending upstream device or NULL to search to the root bus 2418 * @acs_flags: required flags 2419 * 2420 * Walk up a device tree from start to end testing PCI ACS support. If 2421 * any step along the way does not support the required flags, return false. 2422 */ 2423 bool pci_acs_path_enabled(struct pci_dev *start, 2424 struct pci_dev *end, u16 acs_flags) 2425 { 2426 struct pci_dev *pdev, *parent = start; 2427 2428 do { 2429 pdev = parent; 2430 2431 if (!pci_acs_enabled(pdev, acs_flags)) 2432 return false; 2433 2434 if (pci_is_root_bus(pdev->bus)) 2435 return (end == NULL); 2436 2437 parent = pdev->bus->self; 2438 } while (pdev != end); 2439 2440 return true; 2441 } 2442 2443 /** 2444 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2445 * @dev: the PCI device 2446 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2447 * 2448 * Perform INTx swizzling for a device behind one level of bridge. This is 2449 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2450 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2451 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2452 * the PCI Express Base Specification, Revision 2.1) 2453 */ 2454 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2455 { 2456 int slot; 2457 2458 if (pci_ari_enabled(dev->bus)) 2459 slot = 0; 2460 else 2461 slot = PCI_SLOT(dev->devfn); 2462 2463 return (((pin - 1) + slot) % 4) + 1; 2464 } 2465 2466 int 2467 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2468 { 2469 u8 pin; 2470 2471 pin = dev->pin; 2472 if (!pin) 2473 return -1; 2474 2475 while (!pci_is_root_bus(dev->bus)) { 2476 pin = pci_swizzle_interrupt_pin(dev, pin); 2477 dev = dev->bus->self; 2478 } 2479 *bridge = dev; 2480 return pin; 2481 } 2482 2483 /** 2484 * pci_common_swizzle - swizzle INTx all the way to root bridge 2485 * @dev: the PCI device 2486 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2487 * 2488 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2489 * bridges all the way up to a PCI root bus. 2490 */ 2491 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2492 { 2493 u8 pin = *pinp; 2494 2495 while (!pci_is_root_bus(dev->bus)) { 2496 pin = pci_swizzle_interrupt_pin(dev, pin); 2497 dev = dev->bus->self; 2498 } 2499 *pinp = pin; 2500 return PCI_SLOT(dev->devfn); 2501 } 2502 2503 /** 2504 * pci_release_region - Release a PCI bar 2505 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2506 * @bar: BAR to release 2507 * 2508 * Releases the PCI I/O and memory resources previously reserved by a 2509 * successful call to pci_request_region. Call this function only 2510 * after all use of the PCI regions has ceased. 2511 */ 2512 void pci_release_region(struct pci_dev *pdev, int bar) 2513 { 2514 struct pci_devres *dr; 2515 2516 if (pci_resource_len(pdev, bar) == 0) 2517 return; 2518 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2519 release_region(pci_resource_start(pdev, bar), 2520 pci_resource_len(pdev, bar)); 2521 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2522 release_mem_region(pci_resource_start(pdev, bar), 2523 pci_resource_len(pdev, bar)); 2524 2525 dr = find_pci_dr(pdev); 2526 if (dr) 2527 dr->region_mask &= ~(1 << bar); 2528 } 2529 2530 /** 2531 * __pci_request_region - Reserved PCI I/O and memory resource 2532 * @pdev: PCI device whose resources are to be reserved 2533 * @bar: BAR to be reserved 2534 * @res_name: Name to be associated with resource. 2535 * @exclusive: whether the region access is exclusive or not 2536 * 2537 * Mark the PCI region associated with PCI device @pdev BR @bar as 2538 * being reserved by owner @res_name. Do not access any 2539 * address inside the PCI regions unless this call returns 2540 * successfully. 2541 * 2542 * If @exclusive is set, then the region is marked so that userspace 2543 * is explicitly not allowed to map the resource via /dev/mem or 2544 * sysfs MMIO access. 2545 * 2546 * Returns 0 on success, or %EBUSY on error. A warning 2547 * message is also printed on failure. 2548 */ 2549 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 2550 int exclusive) 2551 { 2552 struct pci_devres *dr; 2553 2554 if (pci_resource_len(pdev, bar) == 0) 2555 return 0; 2556 2557 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2558 if (!request_region(pci_resource_start(pdev, bar), 2559 pci_resource_len(pdev, bar), res_name)) 2560 goto err_out; 2561 } 2562 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2563 if (!__request_mem_region(pci_resource_start(pdev, bar), 2564 pci_resource_len(pdev, bar), res_name, 2565 exclusive)) 2566 goto err_out; 2567 } 2568 2569 dr = find_pci_dr(pdev); 2570 if (dr) 2571 dr->region_mask |= 1 << bar; 2572 2573 return 0; 2574 2575 err_out: 2576 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2577 &pdev->resource[bar]); 2578 return -EBUSY; 2579 } 2580 2581 /** 2582 * pci_request_region - Reserve PCI I/O and memory resource 2583 * @pdev: PCI device whose resources are to be reserved 2584 * @bar: BAR to be reserved 2585 * @res_name: Name to be associated with resource 2586 * 2587 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2588 * being reserved by owner @res_name. Do not access any 2589 * address inside the PCI regions unless this call returns 2590 * successfully. 2591 * 2592 * Returns 0 on success, or %EBUSY on error. A warning 2593 * message is also printed on failure. 2594 */ 2595 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2596 { 2597 return __pci_request_region(pdev, bar, res_name, 0); 2598 } 2599 2600 /** 2601 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2602 * @pdev: PCI device whose resources are to be reserved 2603 * @bar: BAR to be reserved 2604 * @res_name: Name to be associated with resource. 2605 * 2606 * Mark the PCI region associated with PCI device @pdev BR @bar as 2607 * being reserved by owner @res_name. Do not access any 2608 * address inside the PCI regions unless this call returns 2609 * successfully. 2610 * 2611 * Returns 0 on success, or %EBUSY on error. A warning 2612 * message is also printed on failure. 2613 * 2614 * The key difference that _exclusive makes it that userspace is 2615 * explicitly not allowed to map the resource via /dev/mem or 2616 * sysfs. 2617 */ 2618 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 2619 { 2620 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2621 } 2622 /** 2623 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2624 * @pdev: PCI device whose resources were previously reserved 2625 * @bars: Bitmask of BARs to be released 2626 * 2627 * Release selected PCI I/O and memory resources previously reserved. 2628 * Call this function only after all use of the PCI regions has ceased. 2629 */ 2630 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2631 { 2632 int i; 2633 2634 for (i = 0; i < 6; i++) 2635 if (bars & (1 << i)) 2636 pci_release_region(pdev, i); 2637 } 2638 2639 int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2640 const char *res_name, int excl) 2641 { 2642 int i; 2643 2644 for (i = 0; i < 6; i++) 2645 if (bars & (1 << i)) 2646 if (__pci_request_region(pdev, i, res_name, excl)) 2647 goto err_out; 2648 return 0; 2649 2650 err_out: 2651 while(--i >= 0) 2652 if (bars & (1 << i)) 2653 pci_release_region(pdev, i); 2654 2655 return -EBUSY; 2656 } 2657 2658 2659 /** 2660 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2661 * @pdev: PCI device whose resources are to be reserved 2662 * @bars: Bitmask of BARs to be requested 2663 * @res_name: Name to be associated with resource 2664 */ 2665 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2666 const char *res_name) 2667 { 2668 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2669 } 2670 2671 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 2672 int bars, const char *res_name) 2673 { 2674 return __pci_request_selected_regions(pdev, bars, res_name, 2675 IORESOURCE_EXCLUSIVE); 2676 } 2677 2678 /** 2679 * pci_release_regions - Release reserved PCI I/O and memory resources 2680 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2681 * 2682 * Releases all PCI I/O and memory resources previously reserved by a 2683 * successful call to pci_request_regions. Call this function only 2684 * after all use of the PCI regions has ceased. 2685 */ 2686 2687 void pci_release_regions(struct pci_dev *pdev) 2688 { 2689 pci_release_selected_regions(pdev, (1 << 6) - 1); 2690 } 2691 2692 /** 2693 * pci_request_regions - Reserved PCI I/O and memory resources 2694 * @pdev: PCI device whose resources are to be reserved 2695 * @res_name: Name to be associated with resource. 2696 * 2697 * Mark all PCI regions associated with PCI device @pdev as 2698 * being reserved by owner @res_name. Do not access any 2699 * address inside the PCI regions unless this call returns 2700 * successfully. 2701 * 2702 * Returns 0 on success, or %EBUSY on error. A warning 2703 * message is also printed on failure. 2704 */ 2705 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2706 { 2707 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2708 } 2709 2710 /** 2711 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2712 * @pdev: PCI device whose resources are to be reserved 2713 * @res_name: Name to be associated with resource. 2714 * 2715 * Mark all PCI regions associated with PCI device @pdev as 2716 * being reserved by owner @res_name. Do not access any 2717 * address inside the PCI regions unless this call returns 2718 * successfully. 2719 * 2720 * pci_request_regions_exclusive() will mark the region so that 2721 * /dev/mem and the sysfs MMIO access will not be allowed. 2722 * 2723 * Returns 0 on success, or %EBUSY on error. A warning 2724 * message is also printed on failure. 2725 */ 2726 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2727 { 2728 return pci_request_selected_regions_exclusive(pdev, 2729 ((1 << 6) - 1), res_name); 2730 } 2731 2732 static void __pci_set_master(struct pci_dev *dev, bool enable) 2733 { 2734 u16 old_cmd, cmd; 2735 2736 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2737 if (enable) 2738 cmd = old_cmd | PCI_COMMAND_MASTER; 2739 else 2740 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2741 if (cmd != old_cmd) { 2742 dev_dbg(&dev->dev, "%s bus mastering\n", 2743 enable ? "enabling" : "disabling"); 2744 pci_write_config_word(dev, PCI_COMMAND, cmd); 2745 } 2746 dev->is_busmaster = enable; 2747 } 2748 2749 /** 2750 * pcibios_setup - process "pci=" kernel boot arguments 2751 * @str: string used to pass in "pci=" kernel boot arguments 2752 * 2753 * Process kernel boot arguments. This is the default implementation. 2754 * Architecture specific implementations can override this as necessary. 2755 */ 2756 char * __weak __init pcibios_setup(char *str) 2757 { 2758 return str; 2759 } 2760 2761 /** 2762 * pcibios_set_master - enable PCI bus-mastering for device dev 2763 * @dev: the PCI device to enable 2764 * 2765 * Enables PCI bus-mastering for the device. This is the default 2766 * implementation. Architecture specific implementations can override 2767 * this if necessary. 2768 */ 2769 void __weak pcibios_set_master(struct pci_dev *dev) 2770 { 2771 u8 lat; 2772 2773 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2774 if (pci_is_pcie(dev)) 2775 return; 2776 2777 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2778 if (lat < 16) 2779 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2780 else if (lat > pcibios_max_latency) 2781 lat = pcibios_max_latency; 2782 else 2783 return; 2784 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat); 2785 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2786 } 2787 2788 /** 2789 * pci_set_master - enables bus-mastering for device dev 2790 * @dev: the PCI device to enable 2791 * 2792 * Enables bus-mastering on the device and calls pcibios_set_master() 2793 * to do the needed arch specific settings. 2794 */ 2795 void pci_set_master(struct pci_dev *dev) 2796 { 2797 __pci_set_master(dev, true); 2798 pcibios_set_master(dev); 2799 } 2800 2801 /** 2802 * pci_clear_master - disables bus-mastering for device dev 2803 * @dev: the PCI device to disable 2804 */ 2805 void pci_clear_master(struct pci_dev *dev) 2806 { 2807 __pci_set_master(dev, false); 2808 } 2809 2810 /** 2811 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2812 * @dev: the PCI device for which MWI is to be enabled 2813 * 2814 * Helper function for pci_set_mwi. 2815 * Originally copied from drivers/net/acenic.c. 2816 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2817 * 2818 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2819 */ 2820 int pci_set_cacheline_size(struct pci_dev *dev) 2821 { 2822 u8 cacheline_size; 2823 2824 if (!pci_cache_line_size) 2825 return -EINVAL; 2826 2827 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2828 equal to or multiple of the right value. */ 2829 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2830 if (cacheline_size >= pci_cache_line_size && 2831 (cacheline_size % pci_cache_line_size) == 0) 2832 return 0; 2833 2834 /* Write the correct value. */ 2835 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2836 /* Read it back. */ 2837 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2838 if (cacheline_size == pci_cache_line_size) 2839 return 0; 2840 2841 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 2842 "supported\n", pci_cache_line_size << 2); 2843 2844 return -EINVAL; 2845 } 2846 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2847 2848 #ifdef PCI_DISABLE_MWI 2849 int pci_set_mwi(struct pci_dev *dev) 2850 { 2851 return 0; 2852 } 2853 2854 int pci_try_set_mwi(struct pci_dev *dev) 2855 { 2856 return 0; 2857 } 2858 2859 void pci_clear_mwi(struct pci_dev *dev) 2860 { 2861 } 2862 2863 #else 2864 2865 /** 2866 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2867 * @dev: the PCI device for which MWI is enabled 2868 * 2869 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2870 * 2871 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2872 */ 2873 int 2874 pci_set_mwi(struct pci_dev *dev) 2875 { 2876 int rc; 2877 u16 cmd; 2878 2879 rc = pci_set_cacheline_size(dev); 2880 if (rc) 2881 return rc; 2882 2883 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2884 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 2885 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2886 cmd |= PCI_COMMAND_INVALIDATE; 2887 pci_write_config_word(dev, PCI_COMMAND, cmd); 2888 } 2889 2890 return 0; 2891 } 2892 2893 /** 2894 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2895 * @dev: the PCI device for which MWI is enabled 2896 * 2897 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2898 * Callers are not required to check the return value. 2899 * 2900 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2901 */ 2902 int pci_try_set_mwi(struct pci_dev *dev) 2903 { 2904 int rc = pci_set_mwi(dev); 2905 return rc; 2906 } 2907 2908 /** 2909 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2910 * @dev: the PCI device to disable 2911 * 2912 * Disables PCI Memory-Write-Invalidate transaction on the device 2913 */ 2914 void 2915 pci_clear_mwi(struct pci_dev *dev) 2916 { 2917 u16 cmd; 2918 2919 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2920 if (cmd & PCI_COMMAND_INVALIDATE) { 2921 cmd &= ~PCI_COMMAND_INVALIDATE; 2922 pci_write_config_word(dev, PCI_COMMAND, cmd); 2923 } 2924 } 2925 #endif /* ! PCI_DISABLE_MWI */ 2926 2927 /** 2928 * pci_intx - enables/disables PCI INTx for device dev 2929 * @pdev: the PCI device to operate on 2930 * @enable: boolean: whether to enable or disable PCI INTx 2931 * 2932 * Enables/disables PCI INTx for device dev 2933 */ 2934 void 2935 pci_intx(struct pci_dev *pdev, int enable) 2936 { 2937 u16 pci_command, new; 2938 2939 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2940 2941 if (enable) { 2942 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2943 } else { 2944 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2945 } 2946 2947 if (new != pci_command) { 2948 struct pci_devres *dr; 2949 2950 pci_write_config_word(pdev, PCI_COMMAND, new); 2951 2952 dr = find_pci_dr(pdev); 2953 if (dr && !dr->restore_intx) { 2954 dr->restore_intx = 1; 2955 dr->orig_intx = !enable; 2956 } 2957 } 2958 } 2959 2960 /** 2961 * pci_intx_mask_supported - probe for INTx masking support 2962 * @dev: the PCI device to operate on 2963 * 2964 * Check if the device dev support INTx masking via the config space 2965 * command word. 2966 */ 2967 bool pci_intx_mask_supported(struct pci_dev *dev) 2968 { 2969 bool mask_supported = false; 2970 u16 orig, new; 2971 2972 if (dev->broken_intx_masking) 2973 return false; 2974 2975 pci_cfg_access_lock(dev); 2976 2977 pci_read_config_word(dev, PCI_COMMAND, &orig); 2978 pci_write_config_word(dev, PCI_COMMAND, 2979 orig ^ PCI_COMMAND_INTX_DISABLE); 2980 pci_read_config_word(dev, PCI_COMMAND, &new); 2981 2982 /* 2983 * There's no way to protect against hardware bugs or detect them 2984 * reliably, but as long as we know what the value should be, let's 2985 * go ahead and check it. 2986 */ 2987 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 2988 dev_err(&dev->dev, "Command register changed from " 2989 "0x%x to 0x%x: driver or hardware bug?\n", orig, new); 2990 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 2991 mask_supported = true; 2992 pci_write_config_word(dev, PCI_COMMAND, orig); 2993 } 2994 2995 pci_cfg_access_unlock(dev); 2996 return mask_supported; 2997 } 2998 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 2999 3000 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3001 { 3002 struct pci_bus *bus = dev->bus; 3003 bool mask_updated = true; 3004 u32 cmd_status_dword; 3005 u16 origcmd, newcmd; 3006 unsigned long flags; 3007 bool irq_pending; 3008 3009 /* 3010 * We do a single dword read to retrieve both command and status. 3011 * Document assumptions that make this possible. 3012 */ 3013 BUILD_BUG_ON(PCI_COMMAND % 4); 3014 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3015 3016 raw_spin_lock_irqsave(&pci_lock, flags); 3017 3018 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3019 3020 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3021 3022 /* 3023 * Check interrupt status register to see whether our device 3024 * triggered the interrupt (when masking) or the next IRQ is 3025 * already pending (when unmasking). 3026 */ 3027 if (mask != irq_pending) { 3028 mask_updated = false; 3029 goto done; 3030 } 3031 3032 origcmd = cmd_status_dword; 3033 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3034 if (mask) 3035 newcmd |= PCI_COMMAND_INTX_DISABLE; 3036 if (newcmd != origcmd) 3037 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3038 3039 done: 3040 raw_spin_unlock_irqrestore(&pci_lock, flags); 3041 3042 return mask_updated; 3043 } 3044 3045 /** 3046 * pci_check_and_mask_intx - mask INTx on pending interrupt 3047 * @dev: the PCI device to operate on 3048 * 3049 * Check if the device dev has its INTx line asserted, mask it and 3050 * return true in that case. False is returned if not interrupt was 3051 * pending. 3052 */ 3053 bool pci_check_and_mask_intx(struct pci_dev *dev) 3054 { 3055 return pci_check_and_set_intx_mask(dev, true); 3056 } 3057 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3058 3059 /** 3060 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending 3061 * @dev: the PCI device to operate on 3062 * 3063 * Check if the device dev has its INTx line asserted, unmask it if not 3064 * and return true. False is returned and the mask remains active if 3065 * there was still an interrupt pending. 3066 */ 3067 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3068 { 3069 return pci_check_and_set_intx_mask(dev, false); 3070 } 3071 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3072 3073 /** 3074 * pci_msi_off - disables any msi or msix capabilities 3075 * @dev: the PCI device to operate on 3076 * 3077 * If you want to use msi see pci_enable_msi and friends. 3078 * This is a lower level primitive that allows us to disable 3079 * msi operation at the device level. 3080 */ 3081 void pci_msi_off(struct pci_dev *dev) 3082 { 3083 int pos; 3084 u16 control; 3085 3086 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 3087 if (pos) { 3088 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 3089 control &= ~PCI_MSI_FLAGS_ENABLE; 3090 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3091 } 3092 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3093 if (pos) { 3094 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3095 control &= ~PCI_MSIX_FLAGS_ENABLE; 3096 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3097 } 3098 } 3099 EXPORT_SYMBOL_GPL(pci_msi_off); 3100 3101 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3102 { 3103 return dma_set_max_seg_size(&dev->dev, size); 3104 } 3105 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3106 3107 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3108 { 3109 return dma_set_seg_boundary(&dev->dev, mask); 3110 } 3111 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3112 3113 static int pcie_flr(struct pci_dev *dev, int probe) 3114 { 3115 int i; 3116 u32 cap; 3117 u16 status; 3118 3119 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3120 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3121 return -ENOTTY; 3122 3123 if (probe) 3124 return 0; 3125 3126 /* Wait for Transaction Pending bit clean */ 3127 for (i = 0; i < 4; i++) { 3128 if (i) 3129 msleep((1 << (i - 1)) * 100); 3130 3131 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 3132 if (!(status & PCI_EXP_DEVSTA_TRPND)) 3133 goto clear; 3134 } 3135 3136 dev_err(&dev->dev, "transaction is not cleared; " 3137 "proceeding with reset anyway\n"); 3138 3139 clear: 3140 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3141 3142 msleep(100); 3143 3144 return 0; 3145 } 3146 3147 static int pci_af_flr(struct pci_dev *dev, int probe) 3148 { 3149 int i; 3150 int pos; 3151 u8 cap; 3152 u8 status; 3153 3154 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3155 if (!pos) 3156 return -ENOTTY; 3157 3158 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3159 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3160 return -ENOTTY; 3161 3162 if (probe) 3163 return 0; 3164 3165 /* Wait for Transaction Pending bit clean */ 3166 for (i = 0; i < 4; i++) { 3167 if (i) 3168 msleep((1 << (i - 1)) * 100); 3169 3170 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status); 3171 if (!(status & PCI_AF_STATUS_TP)) 3172 goto clear; 3173 } 3174 3175 dev_err(&dev->dev, "transaction is not cleared; " 3176 "proceeding with reset anyway\n"); 3177 3178 clear: 3179 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3180 msleep(100); 3181 3182 return 0; 3183 } 3184 3185 /** 3186 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3187 * @dev: Device to reset. 3188 * @probe: If set, only check if the device can be reset this way. 3189 * 3190 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3191 * unset, it will be reinitialized internally when going from PCI_D3hot to 3192 * PCI_D0. If that's the case and the device is not in a low-power state 3193 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3194 * 3195 * NOTE: This causes the caller to sleep for twice the device power transition 3196 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3197 * by devault (i.e. unless the @dev's d3_delay field has a different value). 3198 * Moreover, only devices in D0 can be reset by this function. 3199 */ 3200 static int pci_pm_reset(struct pci_dev *dev, int probe) 3201 { 3202 u16 csr; 3203 3204 if (!dev->pm_cap) 3205 return -ENOTTY; 3206 3207 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3208 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3209 return -ENOTTY; 3210 3211 if (probe) 3212 return 0; 3213 3214 if (dev->current_state != PCI_D0) 3215 return -EINVAL; 3216 3217 csr &= ~PCI_PM_CTRL_STATE_MASK; 3218 csr |= PCI_D3hot; 3219 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3220 pci_dev_d3_sleep(dev); 3221 3222 csr &= ~PCI_PM_CTRL_STATE_MASK; 3223 csr |= PCI_D0; 3224 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3225 pci_dev_d3_sleep(dev); 3226 3227 return 0; 3228 } 3229 3230 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3231 { 3232 u16 ctrl; 3233 struct pci_dev *pdev; 3234 3235 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3236 return -ENOTTY; 3237 3238 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3239 if (pdev != dev) 3240 return -ENOTTY; 3241 3242 if (probe) 3243 return 0; 3244 3245 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl); 3246 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3247 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl); 3248 msleep(100); 3249 3250 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3251 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl); 3252 msleep(100); 3253 3254 return 0; 3255 } 3256 3257 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3258 { 3259 int rc; 3260 3261 might_sleep(); 3262 3263 rc = pci_dev_specific_reset(dev, probe); 3264 if (rc != -ENOTTY) 3265 goto done; 3266 3267 rc = pcie_flr(dev, probe); 3268 if (rc != -ENOTTY) 3269 goto done; 3270 3271 rc = pci_af_flr(dev, probe); 3272 if (rc != -ENOTTY) 3273 goto done; 3274 3275 rc = pci_pm_reset(dev, probe); 3276 if (rc != -ENOTTY) 3277 goto done; 3278 3279 rc = pci_parent_bus_reset(dev, probe); 3280 done: 3281 return rc; 3282 } 3283 3284 static int pci_dev_reset(struct pci_dev *dev, int probe) 3285 { 3286 int rc; 3287 3288 if (!probe) { 3289 pci_cfg_access_lock(dev); 3290 /* block PM suspend, driver probe, etc. */ 3291 device_lock(&dev->dev); 3292 } 3293 3294 rc = __pci_dev_reset(dev, probe); 3295 3296 if (!probe) { 3297 device_unlock(&dev->dev); 3298 pci_cfg_access_unlock(dev); 3299 } 3300 return rc; 3301 } 3302 /** 3303 * __pci_reset_function - reset a PCI device function 3304 * @dev: PCI device to reset 3305 * 3306 * Some devices allow an individual function to be reset without affecting 3307 * other functions in the same device. The PCI device must be responsive 3308 * to PCI config space in order to use this function. 3309 * 3310 * The device function is presumed to be unused when this function is called. 3311 * Resetting the device will make the contents of PCI configuration space 3312 * random, so any caller of this must be prepared to reinitialise the 3313 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3314 * etc. 3315 * 3316 * Returns 0 if the device function was successfully reset or negative if the 3317 * device doesn't support resetting a single function. 3318 */ 3319 int __pci_reset_function(struct pci_dev *dev) 3320 { 3321 return pci_dev_reset(dev, 0); 3322 } 3323 EXPORT_SYMBOL_GPL(__pci_reset_function); 3324 3325 /** 3326 * __pci_reset_function_locked - reset a PCI device function while holding 3327 * the @dev mutex lock. 3328 * @dev: PCI device to reset 3329 * 3330 * Some devices allow an individual function to be reset without affecting 3331 * other functions in the same device. The PCI device must be responsive 3332 * to PCI config space in order to use this function. 3333 * 3334 * The device function is presumed to be unused and the caller is holding 3335 * the device mutex lock when this function is called. 3336 * Resetting the device will make the contents of PCI configuration space 3337 * random, so any caller of this must be prepared to reinitialise the 3338 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3339 * etc. 3340 * 3341 * Returns 0 if the device function was successfully reset or negative if the 3342 * device doesn't support resetting a single function. 3343 */ 3344 int __pci_reset_function_locked(struct pci_dev *dev) 3345 { 3346 return __pci_dev_reset(dev, 0); 3347 } 3348 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3349 3350 /** 3351 * pci_probe_reset_function - check whether the device can be safely reset 3352 * @dev: PCI device to reset 3353 * 3354 * Some devices allow an individual function to be reset without affecting 3355 * other functions in the same device. The PCI device must be responsive 3356 * to PCI config space in order to use this function. 3357 * 3358 * Returns 0 if the device function can be reset or negative if the 3359 * device doesn't support resetting a single function. 3360 */ 3361 int pci_probe_reset_function(struct pci_dev *dev) 3362 { 3363 return pci_dev_reset(dev, 1); 3364 } 3365 3366 /** 3367 * pci_reset_function - quiesce and reset a PCI device function 3368 * @dev: PCI device to reset 3369 * 3370 * Some devices allow an individual function to be reset without affecting 3371 * other functions in the same device. The PCI device must be responsive 3372 * to PCI config space in order to use this function. 3373 * 3374 * This function does not just reset the PCI portion of a device, but 3375 * clears all the state associated with the device. This function differs 3376 * from __pci_reset_function in that it saves and restores device state 3377 * over the reset. 3378 * 3379 * Returns 0 if the device function was successfully reset or negative if the 3380 * device doesn't support resetting a single function. 3381 */ 3382 int pci_reset_function(struct pci_dev *dev) 3383 { 3384 int rc; 3385 3386 rc = pci_dev_reset(dev, 1); 3387 if (rc) 3388 return rc; 3389 3390 pci_save_state(dev); 3391 3392 /* 3393 * both INTx and MSI are disabled after the Interrupt Disable bit 3394 * is set and the Bus Master bit is cleared. 3395 */ 3396 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3397 3398 rc = pci_dev_reset(dev, 0); 3399 3400 pci_restore_state(dev); 3401 3402 return rc; 3403 } 3404 EXPORT_SYMBOL_GPL(pci_reset_function); 3405 3406 /** 3407 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3408 * @dev: PCI device to query 3409 * 3410 * Returns mmrbc: maximum designed memory read count in bytes 3411 * or appropriate error value. 3412 */ 3413 int pcix_get_max_mmrbc(struct pci_dev *dev) 3414 { 3415 int cap; 3416 u32 stat; 3417 3418 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3419 if (!cap) 3420 return -EINVAL; 3421 3422 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3423 return -EINVAL; 3424 3425 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3426 } 3427 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3428 3429 /** 3430 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3431 * @dev: PCI device to query 3432 * 3433 * Returns mmrbc: maximum memory read count in bytes 3434 * or appropriate error value. 3435 */ 3436 int pcix_get_mmrbc(struct pci_dev *dev) 3437 { 3438 int cap; 3439 u16 cmd; 3440 3441 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3442 if (!cap) 3443 return -EINVAL; 3444 3445 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3446 return -EINVAL; 3447 3448 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3449 } 3450 EXPORT_SYMBOL(pcix_get_mmrbc); 3451 3452 /** 3453 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3454 * @dev: PCI device to query 3455 * @mmrbc: maximum memory read count in bytes 3456 * valid values are 512, 1024, 2048, 4096 3457 * 3458 * If possible sets maximum memory read byte count, some bridges have erratas 3459 * that prevent this. 3460 */ 3461 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3462 { 3463 int cap; 3464 u32 stat, v, o; 3465 u16 cmd; 3466 3467 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3468 return -EINVAL; 3469 3470 v = ffs(mmrbc) - 10; 3471 3472 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3473 if (!cap) 3474 return -EINVAL; 3475 3476 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3477 return -EINVAL; 3478 3479 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3480 return -E2BIG; 3481 3482 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3483 return -EINVAL; 3484 3485 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3486 if (o != v) { 3487 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3488 return -EIO; 3489 3490 cmd &= ~PCI_X_CMD_MAX_READ; 3491 cmd |= v << 2; 3492 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 3493 return -EIO; 3494 } 3495 return 0; 3496 } 3497 EXPORT_SYMBOL(pcix_set_mmrbc); 3498 3499 /** 3500 * pcie_get_readrq - get PCI Express read request size 3501 * @dev: PCI device to query 3502 * 3503 * Returns maximum memory read request in bytes 3504 * or appropriate error value. 3505 */ 3506 int pcie_get_readrq(struct pci_dev *dev) 3507 { 3508 u16 ctl; 3509 3510 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3511 3512 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 3513 } 3514 EXPORT_SYMBOL(pcie_get_readrq); 3515 3516 /** 3517 * pcie_set_readrq - set PCI Express maximum memory read request 3518 * @dev: PCI device to query 3519 * @rq: maximum memory read count in bytes 3520 * valid values are 128, 256, 512, 1024, 2048, 4096 3521 * 3522 * If possible sets maximum memory read request in bytes 3523 */ 3524 int pcie_set_readrq(struct pci_dev *dev, int rq) 3525 { 3526 u16 v; 3527 3528 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 3529 return -EINVAL; 3530 3531 /* 3532 * If using the "performance" PCIe config, we clamp the 3533 * read rq size to the max packet size to prevent the 3534 * host bridge generating requests larger than we can 3535 * cope with 3536 */ 3537 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 3538 int mps = pcie_get_mps(dev); 3539 3540 if (mps < 0) 3541 return mps; 3542 if (mps < rq) 3543 rq = mps; 3544 } 3545 3546 v = (ffs(rq) - 8) << 12; 3547 3548 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3549 PCI_EXP_DEVCTL_READRQ, v); 3550 } 3551 EXPORT_SYMBOL(pcie_set_readrq); 3552 3553 /** 3554 * pcie_get_mps - get PCI Express maximum payload size 3555 * @dev: PCI device to query 3556 * 3557 * Returns maximum payload size in bytes 3558 * or appropriate error value. 3559 */ 3560 int pcie_get_mps(struct pci_dev *dev) 3561 { 3562 u16 ctl; 3563 3564 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3565 3566 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 3567 } 3568 3569 /** 3570 * pcie_set_mps - set PCI Express maximum payload size 3571 * @dev: PCI device to query 3572 * @mps: maximum payload size in bytes 3573 * valid values are 128, 256, 512, 1024, 2048, 4096 3574 * 3575 * If possible sets maximum payload size 3576 */ 3577 int pcie_set_mps(struct pci_dev *dev, int mps) 3578 { 3579 u16 v; 3580 3581 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 3582 return -EINVAL; 3583 3584 v = ffs(mps) - 8; 3585 if (v > dev->pcie_mpss) 3586 return -EINVAL; 3587 v <<= 5; 3588 3589 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3590 PCI_EXP_DEVCTL_PAYLOAD, v); 3591 } 3592 3593 /** 3594 * pci_select_bars - Make BAR mask from the type of resource 3595 * @dev: the PCI device for which BAR mask is made 3596 * @flags: resource type mask to be selected 3597 * 3598 * This helper routine makes bar mask from the type of resource. 3599 */ 3600 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 3601 { 3602 int i, bars = 0; 3603 for (i = 0; i < PCI_NUM_RESOURCES; i++) 3604 if (pci_resource_flags(dev, i) & flags) 3605 bars |= (1 << i); 3606 return bars; 3607 } 3608 3609 /** 3610 * pci_resource_bar - get position of the BAR associated with a resource 3611 * @dev: the PCI device 3612 * @resno: the resource number 3613 * @type: the BAR type to be filled in 3614 * 3615 * Returns BAR position in config space, or 0 if the BAR is invalid. 3616 */ 3617 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 3618 { 3619 int reg; 3620 3621 if (resno < PCI_ROM_RESOURCE) { 3622 *type = pci_bar_unknown; 3623 return PCI_BASE_ADDRESS_0 + 4 * resno; 3624 } else if (resno == PCI_ROM_RESOURCE) { 3625 *type = pci_bar_mem32; 3626 return dev->rom_base_reg; 3627 } else if (resno < PCI_BRIDGE_RESOURCES) { 3628 /* device specific resource */ 3629 reg = pci_iov_resource_bar(dev, resno, type); 3630 if (reg) 3631 return reg; 3632 } 3633 3634 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 3635 return 0; 3636 } 3637 3638 /* Some architectures require additional programming to enable VGA */ 3639 static arch_set_vga_state_t arch_set_vga_state; 3640 3641 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 3642 { 3643 arch_set_vga_state = func; /* NULL disables */ 3644 } 3645 3646 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 3647 unsigned int command_bits, u32 flags) 3648 { 3649 if (arch_set_vga_state) 3650 return arch_set_vga_state(dev, decode, command_bits, 3651 flags); 3652 return 0; 3653 } 3654 3655 /** 3656 * pci_set_vga_state - set VGA decode state on device and parents if requested 3657 * @dev: the PCI device 3658 * @decode: true = enable decoding, false = disable decoding 3659 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 3660 * @flags: traverse ancestors and change bridges 3661 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 3662 */ 3663 int pci_set_vga_state(struct pci_dev *dev, bool decode, 3664 unsigned int command_bits, u32 flags) 3665 { 3666 struct pci_bus *bus; 3667 struct pci_dev *bridge; 3668 u16 cmd; 3669 int rc; 3670 3671 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 3672 3673 /* ARCH specific VGA enables */ 3674 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 3675 if (rc) 3676 return rc; 3677 3678 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 3679 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3680 if (decode == true) 3681 cmd |= command_bits; 3682 else 3683 cmd &= ~command_bits; 3684 pci_write_config_word(dev, PCI_COMMAND, cmd); 3685 } 3686 3687 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 3688 return 0; 3689 3690 bus = dev->bus; 3691 while (bus) { 3692 bridge = bus->self; 3693 if (bridge) { 3694 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 3695 &cmd); 3696 if (decode == true) 3697 cmd |= PCI_BRIDGE_CTL_VGA; 3698 else 3699 cmd &= ~PCI_BRIDGE_CTL_VGA; 3700 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 3701 cmd); 3702 } 3703 bus = bus->parent; 3704 } 3705 return 0; 3706 } 3707 3708 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 3709 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 3710 static DEFINE_SPINLOCK(resource_alignment_lock); 3711 3712 /** 3713 * pci_specified_resource_alignment - get resource alignment specified by user. 3714 * @dev: the PCI device to get 3715 * 3716 * RETURNS: Resource alignment if it is specified. 3717 * Zero if it is not specified. 3718 */ 3719 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 3720 { 3721 int seg, bus, slot, func, align_order, count; 3722 resource_size_t align = 0; 3723 char *p; 3724 3725 spin_lock(&resource_alignment_lock); 3726 p = resource_alignment_param; 3727 while (*p) { 3728 count = 0; 3729 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 3730 p[count] == '@') { 3731 p += count + 1; 3732 } else { 3733 align_order = -1; 3734 } 3735 if (sscanf(p, "%x:%x:%x.%x%n", 3736 &seg, &bus, &slot, &func, &count) != 4) { 3737 seg = 0; 3738 if (sscanf(p, "%x:%x.%x%n", 3739 &bus, &slot, &func, &count) != 3) { 3740 /* Invalid format */ 3741 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 3742 p); 3743 break; 3744 } 3745 } 3746 p += count; 3747 if (seg == pci_domain_nr(dev->bus) && 3748 bus == dev->bus->number && 3749 slot == PCI_SLOT(dev->devfn) && 3750 func == PCI_FUNC(dev->devfn)) { 3751 if (align_order == -1) { 3752 align = PAGE_SIZE; 3753 } else { 3754 align = 1 << align_order; 3755 } 3756 /* Found */ 3757 break; 3758 } 3759 if (*p != ';' && *p != ',') { 3760 /* End of param or invalid format */ 3761 break; 3762 } 3763 p++; 3764 } 3765 spin_unlock(&resource_alignment_lock); 3766 return align; 3767 } 3768 3769 /** 3770 * pci_is_reassigndev - check if specified PCI is target device to reassign 3771 * @dev: the PCI device to check 3772 * 3773 * RETURNS: non-zero for PCI device is a target device to reassign, 3774 * or zero is not. 3775 */ 3776 int pci_is_reassigndev(struct pci_dev *dev) 3777 { 3778 return (pci_specified_resource_alignment(dev) != 0); 3779 } 3780 3781 /* 3782 * This function disables memory decoding and releases memory resources 3783 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 3784 * It also rounds up size to specified alignment. 3785 * Later on, the kernel will assign page-aligned memory resource back 3786 * to the device. 3787 */ 3788 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 3789 { 3790 int i; 3791 struct resource *r; 3792 resource_size_t align, size; 3793 u16 command; 3794 3795 if (!pci_is_reassigndev(dev)) 3796 return; 3797 3798 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 3799 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 3800 dev_warn(&dev->dev, 3801 "Can't reassign resources to host bridge.\n"); 3802 return; 3803 } 3804 3805 dev_info(&dev->dev, 3806 "Disabling memory decoding and releasing memory resources.\n"); 3807 pci_read_config_word(dev, PCI_COMMAND, &command); 3808 command &= ~PCI_COMMAND_MEMORY; 3809 pci_write_config_word(dev, PCI_COMMAND, command); 3810 3811 align = pci_specified_resource_alignment(dev); 3812 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 3813 r = &dev->resource[i]; 3814 if (!(r->flags & IORESOURCE_MEM)) 3815 continue; 3816 size = resource_size(r); 3817 if (size < align) { 3818 size = align; 3819 dev_info(&dev->dev, 3820 "Rounding up size of resource #%d to %#llx.\n", 3821 i, (unsigned long long)size); 3822 } 3823 r->end = size - 1; 3824 r->start = 0; 3825 } 3826 /* Need to disable bridge's resource window, 3827 * to enable the kernel to reassign new resource 3828 * window later on. 3829 */ 3830 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 3831 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 3832 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 3833 r = &dev->resource[i]; 3834 if (!(r->flags & IORESOURCE_MEM)) 3835 continue; 3836 r->end = resource_size(r) - 1; 3837 r->start = 0; 3838 } 3839 pci_disable_bridge_window(dev); 3840 } 3841 } 3842 3843 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 3844 { 3845 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 3846 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 3847 spin_lock(&resource_alignment_lock); 3848 strncpy(resource_alignment_param, buf, count); 3849 resource_alignment_param[count] = '\0'; 3850 spin_unlock(&resource_alignment_lock); 3851 return count; 3852 } 3853 3854 ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 3855 { 3856 size_t count; 3857 spin_lock(&resource_alignment_lock); 3858 count = snprintf(buf, size, "%s", resource_alignment_param); 3859 spin_unlock(&resource_alignment_lock); 3860 return count; 3861 } 3862 3863 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 3864 { 3865 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 3866 } 3867 3868 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 3869 const char *buf, size_t count) 3870 { 3871 return pci_set_resource_alignment_param(buf, count); 3872 } 3873 3874 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 3875 pci_resource_alignment_store); 3876 3877 static int __init pci_resource_alignment_sysfs_init(void) 3878 { 3879 return bus_create_file(&pci_bus_type, 3880 &bus_attr_resource_alignment); 3881 } 3882 3883 late_initcall(pci_resource_alignment_sysfs_init); 3884 3885 static void pci_no_domains(void) 3886 { 3887 #ifdef CONFIG_PCI_DOMAINS 3888 pci_domains_supported = 0; 3889 #endif 3890 } 3891 3892 /** 3893 * pci_ext_cfg_avail - can we access extended PCI config space? 3894 * 3895 * Returns 1 if we can access PCI extended config space (offsets 3896 * greater than 0xff). This is the default implementation. Architecture 3897 * implementations can override this. 3898 */ 3899 int __weak pci_ext_cfg_avail(void) 3900 { 3901 return 1; 3902 } 3903 3904 void __weak pci_fixup_cardbus(struct pci_bus *bus) 3905 { 3906 } 3907 EXPORT_SYMBOL(pci_fixup_cardbus); 3908 3909 static int __init pci_setup(char *str) 3910 { 3911 while (str) { 3912 char *k = strchr(str, ','); 3913 if (k) 3914 *k++ = 0; 3915 if (*str && (str = pcibios_setup(str)) && *str) { 3916 if (!strcmp(str, "nomsi")) { 3917 pci_no_msi(); 3918 } else if (!strcmp(str, "noaer")) { 3919 pci_no_aer(); 3920 } else if (!strncmp(str, "realloc=", 8)) { 3921 pci_realloc_get_opt(str + 8); 3922 } else if (!strncmp(str, "realloc", 7)) { 3923 pci_realloc_get_opt("on"); 3924 } else if (!strcmp(str, "nodomains")) { 3925 pci_no_domains(); 3926 } else if (!strncmp(str, "noari", 5)) { 3927 pcie_ari_disabled = true; 3928 } else if (!strncmp(str, "cbiosize=", 9)) { 3929 pci_cardbus_io_size = memparse(str + 9, &str); 3930 } else if (!strncmp(str, "cbmemsize=", 10)) { 3931 pci_cardbus_mem_size = memparse(str + 10, &str); 3932 } else if (!strncmp(str, "resource_alignment=", 19)) { 3933 pci_set_resource_alignment_param(str + 19, 3934 strlen(str + 19)); 3935 } else if (!strncmp(str, "ecrc=", 5)) { 3936 pcie_ecrc_get_policy(str + 5); 3937 } else if (!strncmp(str, "hpiosize=", 9)) { 3938 pci_hotplug_io_size = memparse(str + 9, &str); 3939 } else if (!strncmp(str, "hpmemsize=", 10)) { 3940 pci_hotplug_mem_size = memparse(str + 10, &str); 3941 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 3942 pcie_bus_config = PCIE_BUS_TUNE_OFF; 3943 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 3944 pcie_bus_config = PCIE_BUS_SAFE; 3945 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 3946 pcie_bus_config = PCIE_BUS_PERFORMANCE; 3947 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 3948 pcie_bus_config = PCIE_BUS_PEER2PEER; 3949 } else if (!strncmp(str, "pcie_scan_all", 13)) { 3950 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 3951 } else { 3952 printk(KERN_ERR "PCI: Unknown option `%s'\n", 3953 str); 3954 } 3955 } 3956 str = k; 3957 } 3958 return 0; 3959 } 3960 early_param("pci", pci_setup); 3961 3962 EXPORT_SYMBOL(pci_reenable_device); 3963 EXPORT_SYMBOL(pci_enable_device_io); 3964 EXPORT_SYMBOL(pci_enable_device_mem); 3965 EXPORT_SYMBOL(pci_enable_device); 3966 EXPORT_SYMBOL(pcim_enable_device); 3967 EXPORT_SYMBOL(pcim_pin_device); 3968 EXPORT_SYMBOL(pci_disable_device); 3969 EXPORT_SYMBOL(pci_find_capability); 3970 EXPORT_SYMBOL(pci_bus_find_capability); 3971 EXPORT_SYMBOL(pci_release_regions); 3972 EXPORT_SYMBOL(pci_request_regions); 3973 EXPORT_SYMBOL(pci_request_regions_exclusive); 3974 EXPORT_SYMBOL(pci_release_region); 3975 EXPORT_SYMBOL(pci_request_region); 3976 EXPORT_SYMBOL(pci_request_region_exclusive); 3977 EXPORT_SYMBOL(pci_release_selected_regions); 3978 EXPORT_SYMBOL(pci_request_selected_regions); 3979 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3980 EXPORT_SYMBOL(pci_set_master); 3981 EXPORT_SYMBOL(pci_clear_master); 3982 EXPORT_SYMBOL(pci_set_mwi); 3983 EXPORT_SYMBOL(pci_try_set_mwi); 3984 EXPORT_SYMBOL(pci_clear_mwi); 3985 EXPORT_SYMBOL_GPL(pci_intx); 3986 EXPORT_SYMBOL(pci_assign_resource); 3987 EXPORT_SYMBOL(pci_find_parent_resource); 3988 EXPORT_SYMBOL(pci_select_bars); 3989 3990 EXPORT_SYMBOL(pci_set_power_state); 3991 EXPORT_SYMBOL(pci_save_state); 3992 EXPORT_SYMBOL(pci_restore_state); 3993 EXPORT_SYMBOL(pci_pme_capable); 3994 EXPORT_SYMBOL(pci_pme_active); 3995 EXPORT_SYMBOL(pci_wake_from_d3); 3996 EXPORT_SYMBOL(pci_target_state); 3997 EXPORT_SYMBOL(pci_prepare_to_sleep); 3998 EXPORT_SYMBOL(pci_back_from_sleep); 3999 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 4000