1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/string.h> 18 #include <linux/log2.h> 19 #include <linux/pci-aspm.h> 20 #include <linux/pm_wakeup.h> 21 #include <linux/interrupt.h> 22 #include <asm/dma.h> /* isa_dma_bridge_buggy */ 23 #include <linux/device.h> 24 #include <asm/setup.h> 25 #include "pci.h" 26 27 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT; 28 29 #ifdef CONFIG_PCI_DOMAINS 30 int pci_domains_supported = 1; 31 #endif 32 33 #define DEFAULT_CARDBUS_IO_SIZE (256) 34 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 35 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 36 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 37 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 38 39 /** 40 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 41 * @bus: pointer to PCI bus structure to search 42 * 43 * Given a PCI bus, returns the highest PCI bus number present in the set 44 * including the given PCI bus and its list of child PCI buses. 45 */ 46 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 47 { 48 struct list_head *tmp; 49 unsigned char max, n; 50 51 max = bus->subordinate; 52 list_for_each(tmp, &bus->children) { 53 n = pci_bus_max_busnr(pci_bus_b(tmp)); 54 if(n > max) 55 max = n; 56 } 57 return max; 58 } 59 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 60 61 #ifdef CONFIG_HAS_IOMEM 62 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 63 { 64 /* 65 * Make sure the BAR is actually a memory resource, not an IO resource 66 */ 67 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 68 WARN_ON(1); 69 return NULL; 70 } 71 return ioremap_nocache(pci_resource_start(pdev, bar), 72 pci_resource_len(pdev, bar)); 73 } 74 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 75 #endif 76 77 #if 0 78 /** 79 * pci_max_busnr - returns maximum PCI bus number 80 * 81 * Returns the highest PCI bus number present in the system global list of 82 * PCI buses. 83 */ 84 unsigned char __devinit 85 pci_max_busnr(void) 86 { 87 struct pci_bus *bus = NULL; 88 unsigned char max, n; 89 90 max = 0; 91 while ((bus = pci_find_next_bus(bus)) != NULL) { 92 n = pci_bus_max_busnr(bus); 93 if(n > max) 94 max = n; 95 } 96 return max; 97 } 98 99 #endif /* 0 */ 100 101 #define PCI_FIND_CAP_TTL 48 102 103 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 104 u8 pos, int cap, int *ttl) 105 { 106 u8 id; 107 108 while ((*ttl)--) { 109 pci_bus_read_config_byte(bus, devfn, pos, &pos); 110 if (pos < 0x40) 111 break; 112 pos &= ~3; 113 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 114 &id); 115 if (id == 0xff) 116 break; 117 if (id == cap) 118 return pos; 119 pos += PCI_CAP_LIST_NEXT; 120 } 121 return 0; 122 } 123 124 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 125 u8 pos, int cap) 126 { 127 int ttl = PCI_FIND_CAP_TTL; 128 129 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 130 } 131 132 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 133 { 134 return __pci_find_next_cap(dev->bus, dev->devfn, 135 pos + PCI_CAP_LIST_NEXT, cap); 136 } 137 EXPORT_SYMBOL_GPL(pci_find_next_capability); 138 139 static int __pci_bus_find_cap_start(struct pci_bus *bus, 140 unsigned int devfn, u8 hdr_type) 141 { 142 u16 status; 143 144 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 145 if (!(status & PCI_STATUS_CAP_LIST)) 146 return 0; 147 148 switch (hdr_type) { 149 case PCI_HEADER_TYPE_NORMAL: 150 case PCI_HEADER_TYPE_BRIDGE: 151 return PCI_CAPABILITY_LIST; 152 case PCI_HEADER_TYPE_CARDBUS: 153 return PCI_CB_CAPABILITY_LIST; 154 default: 155 return 0; 156 } 157 158 return 0; 159 } 160 161 /** 162 * pci_find_capability - query for devices' capabilities 163 * @dev: PCI device to query 164 * @cap: capability code 165 * 166 * Tell if a device supports a given PCI capability. 167 * Returns the address of the requested capability structure within the 168 * device's PCI configuration space or 0 in case the device does not 169 * support it. Possible values for @cap: 170 * 171 * %PCI_CAP_ID_PM Power Management 172 * %PCI_CAP_ID_AGP Accelerated Graphics Port 173 * %PCI_CAP_ID_VPD Vital Product Data 174 * %PCI_CAP_ID_SLOTID Slot Identification 175 * %PCI_CAP_ID_MSI Message Signalled Interrupts 176 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 177 * %PCI_CAP_ID_PCIX PCI-X 178 * %PCI_CAP_ID_EXP PCI Express 179 */ 180 int pci_find_capability(struct pci_dev *dev, int cap) 181 { 182 int pos; 183 184 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 185 if (pos) 186 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 187 188 return pos; 189 } 190 191 /** 192 * pci_bus_find_capability - query for devices' capabilities 193 * @bus: the PCI bus to query 194 * @devfn: PCI device to query 195 * @cap: capability code 196 * 197 * Like pci_find_capability() but works for pci devices that do not have a 198 * pci_dev structure set up yet. 199 * 200 * Returns the address of the requested capability structure within the 201 * device's PCI configuration space or 0 in case the device does not 202 * support it. 203 */ 204 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 205 { 206 int pos; 207 u8 hdr_type; 208 209 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 210 211 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 212 if (pos) 213 pos = __pci_find_next_cap(bus, devfn, pos, cap); 214 215 return pos; 216 } 217 218 /** 219 * pci_find_ext_capability - Find an extended capability 220 * @dev: PCI device to query 221 * @cap: capability code 222 * 223 * Returns the address of the requested extended capability structure 224 * within the device's PCI configuration space or 0 if the device does 225 * not support it. Possible values for @cap: 226 * 227 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 228 * %PCI_EXT_CAP_ID_VC Virtual Channel 229 * %PCI_EXT_CAP_ID_DSN Device Serial Number 230 * %PCI_EXT_CAP_ID_PWR Power Budgeting 231 */ 232 int pci_find_ext_capability(struct pci_dev *dev, int cap) 233 { 234 u32 header; 235 int ttl; 236 int pos = PCI_CFG_SPACE_SIZE; 237 238 /* minimum 8 bytes per capability */ 239 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 240 241 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 242 return 0; 243 244 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 245 return 0; 246 247 /* 248 * If we have no capabilities, this is indicated by cap ID, 249 * cap version and next pointer all being 0. 250 */ 251 if (header == 0) 252 return 0; 253 254 while (ttl-- > 0) { 255 if (PCI_EXT_CAP_ID(header) == cap) 256 return pos; 257 258 pos = PCI_EXT_CAP_NEXT(header); 259 if (pos < PCI_CFG_SPACE_SIZE) 260 break; 261 262 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 263 break; 264 } 265 266 return 0; 267 } 268 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 269 270 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 271 { 272 int rc, ttl = PCI_FIND_CAP_TTL; 273 u8 cap, mask; 274 275 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 276 mask = HT_3BIT_CAP_MASK; 277 else 278 mask = HT_5BIT_CAP_MASK; 279 280 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 281 PCI_CAP_ID_HT, &ttl); 282 while (pos) { 283 rc = pci_read_config_byte(dev, pos + 3, &cap); 284 if (rc != PCIBIOS_SUCCESSFUL) 285 return 0; 286 287 if ((cap & mask) == ht_cap) 288 return pos; 289 290 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 291 pos + PCI_CAP_LIST_NEXT, 292 PCI_CAP_ID_HT, &ttl); 293 } 294 295 return 0; 296 } 297 /** 298 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 299 * @dev: PCI device to query 300 * @pos: Position from which to continue searching 301 * @ht_cap: Hypertransport capability code 302 * 303 * To be used in conjunction with pci_find_ht_capability() to search for 304 * all capabilities matching @ht_cap. @pos should always be a value returned 305 * from pci_find_ht_capability(). 306 * 307 * NB. To be 100% safe against broken PCI devices, the caller should take 308 * steps to avoid an infinite loop. 309 */ 310 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 311 { 312 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 313 } 314 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 315 316 /** 317 * pci_find_ht_capability - query a device's Hypertransport capabilities 318 * @dev: PCI device to query 319 * @ht_cap: Hypertransport capability code 320 * 321 * Tell if a device supports a given Hypertransport capability. 322 * Returns an address within the device's PCI configuration space 323 * or 0 in case the device does not support the request capability. 324 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 325 * which has a Hypertransport capability matching @ht_cap. 326 */ 327 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 328 { 329 int pos; 330 331 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 332 if (pos) 333 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 334 335 return pos; 336 } 337 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 338 339 /** 340 * pci_find_parent_resource - return resource region of parent bus of given region 341 * @dev: PCI device structure contains resources to be searched 342 * @res: child resource record for which parent is sought 343 * 344 * For given resource region of given device, return the resource 345 * region of parent bus the given region is contained in or where 346 * it should be allocated from. 347 */ 348 struct resource * 349 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 350 { 351 const struct pci_bus *bus = dev->bus; 352 int i; 353 struct resource *best = NULL; 354 355 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) { 356 struct resource *r = bus->resource[i]; 357 if (!r) 358 continue; 359 if (res->start && !(res->start >= r->start && res->end <= r->end)) 360 continue; /* Not contained */ 361 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 362 continue; /* Wrong type */ 363 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 364 return r; /* Exact match */ 365 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH)) 366 best = r; /* Approximating prefetchable by non-prefetchable */ 367 } 368 return best; 369 } 370 371 /** 372 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 373 * @dev: PCI device to have its BARs restored 374 * 375 * Restore the BAR values for a given device, so as to make it 376 * accessible by its driver. 377 */ 378 static void 379 pci_restore_bars(struct pci_dev *dev) 380 { 381 int i; 382 383 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 384 pci_update_resource(dev, i); 385 } 386 387 static struct pci_platform_pm_ops *pci_platform_pm; 388 389 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 390 { 391 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 392 || !ops->sleep_wake || !ops->can_wakeup) 393 return -EINVAL; 394 pci_platform_pm = ops; 395 return 0; 396 } 397 398 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 399 { 400 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 401 } 402 403 static inline int platform_pci_set_power_state(struct pci_dev *dev, 404 pci_power_t t) 405 { 406 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 407 } 408 409 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 410 { 411 return pci_platform_pm ? 412 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 413 } 414 415 static inline bool platform_pci_can_wakeup(struct pci_dev *dev) 416 { 417 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false; 418 } 419 420 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 421 { 422 return pci_platform_pm ? 423 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 424 } 425 426 /** 427 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 428 * given PCI device 429 * @dev: PCI device to handle. 430 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 431 * 432 * RETURN VALUE: 433 * -EINVAL if the requested state is invalid. 434 * -EIO if device does not support PCI PM or its PM capabilities register has a 435 * wrong version, or device doesn't support the requested state. 436 * 0 if device already is in the requested state. 437 * 0 if device's power state has been successfully changed. 438 */ 439 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 440 { 441 u16 pmcsr; 442 bool need_restore = false; 443 444 /* Check if we're already there */ 445 if (dev->current_state == state) 446 return 0; 447 448 if (!dev->pm_cap) 449 return -EIO; 450 451 if (state < PCI_D0 || state > PCI_D3hot) 452 return -EINVAL; 453 454 /* Validate current state: 455 * Can enter D0 from any state, but if we can only go deeper 456 * to sleep if we're already in a low power state 457 */ 458 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 459 && dev->current_state > state) { 460 dev_err(&dev->dev, "invalid power transition " 461 "(from state %d to %d)\n", dev->current_state, state); 462 return -EINVAL; 463 } 464 465 /* check if this device supports the desired state */ 466 if ((state == PCI_D1 && !dev->d1_support) 467 || (state == PCI_D2 && !dev->d2_support)) 468 return -EIO; 469 470 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 471 472 /* If we're (effectively) in D3, force entire word to 0. 473 * This doesn't affect PME_Status, disables PME_En, and 474 * sets PowerState to 0. 475 */ 476 switch (dev->current_state) { 477 case PCI_D0: 478 case PCI_D1: 479 case PCI_D2: 480 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 481 pmcsr |= state; 482 break; 483 case PCI_UNKNOWN: /* Boot-up */ 484 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 485 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 486 need_restore = true; 487 /* Fall-through: force to D0 */ 488 default: 489 pmcsr = 0; 490 break; 491 } 492 493 /* enter specified state */ 494 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 495 496 /* Mandatory power management transition delays */ 497 /* see PCI PM 1.1 5.6.1 table 18 */ 498 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 499 msleep(pci_pm_d3_delay); 500 else if (state == PCI_D2 || dev->current_state == PCI_D2) 501 udelay(PCI_PM_D2_DELAY); 502 503 dev->current_state = state; 504 505 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 506 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 507 * from D3hot to D0 _may_ perform an internal reset, thereby 508 * going to "D0 Uninitialized" rather than "D0 Initialized". 509 * For example, at least some versions of the 3c905B and the 510 * 3c556B exhibit this behaviour. 511 * 512 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 513 * devices in a D3hot state at boot. Consequently, we need to 514 * restore at least the BARs so that the device will be 515 * accessible to its driver. 516 */ 517 if (need_restore) 518 pci_restore_bars(dev); 519 520 if (dev->bus->self) 521 pcie_aspm_pm_state_change(dev->bus->self); 522 523 return 0; 524 } 525 526 /** 527 * pci_update_current_state - Read PCI power state of given device from its 528 * PCI PM registers and cache it 529 * @dev: PCI device to handle. 530 * @state: State to cache in case the device doesn't have the PM capability 531 */ 532 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 533 { 534 if (dev->pm_cap) { 535 u16 pmcsr; 536 537 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 538 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 539 } else { 540 dev->current_state = state; 541 } 542 } 543 544 /** 545 * pci_platform_power_transition - Use platform to change device power state 546 * @dev: PCI device to handle. 547 * @state: State to put the device into. 548 */ 549 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 550 { 551 int error; 552 553 if (platform_pci_power_manageable(dev)) { 554 error = platform_pci_set_power_state(dev, state); 555 if (!error) 556 pci_update_current_state(dev, state); 557 } else { 558 error = -ENODEV; 559 /* Fall back to PCI_D0 if native PM is not supported */ 560 pci_update_current_state(dev, PCI_D0); 561 } 562 563 return error; 564 } 565 566 /** 567 * __pci_start_power_transition - Start power transition of a PCI device 568 * @dev: PCI device to handle. 569 * @state: State to put the device into. 570 */ 571 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 572 { 573 if (state == PCI_D0) 574 pci_platform_power_transition(dev, PCI_D0); 575 } 576 577 /** 578 * __pci_complete_power_transition - Complete power transition of a PCI device 579 * @dev: PCI device to handle. 580 * @state: State to put the device into. 581 * 582 * This function should not be called directly by device drivers. 583 */ 584 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 585 { 586 return state > PCI_D0 ? 587 pci_platform_power_transition(dev, state) : -EINVAL; 588 } 589 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 590 591 /** 592 * pci_set_power_state - Set the power state of a PCI device 593 * @dev: PCI device to handle. 594 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 595 * 596 * Transition a device to a new power state, using the platform firmware and/or 597 * the device's PCI PM registers. 598 * 599 * RETURN VALUE: 600 * -EINVAL if the requested state is invalid. 601 * -EIO if device does not support PCI PM or its PM capabilities register has a 602 * wrong version, or device doesn't support the requested state. 603 * 0 if device already is in the requested state. 604 * 0 if device's power state has been successfully changed. 605 */ 606 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 607 { 608 int error; 609 610 /* bound the state we're entering */ 611 if (state > PCI_D3hot) 612 state = PCI_D3hot; 613 else if (state < PCI_D0) 614 state = PCI_D0; 615 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 616 /* 617 * If the device or the parent bridge do not support PCI PM, 618 * ignore the request if we're doing anything other than putting 619 * it into D0 (which would only happen on boot). 620 */ 621 return 0; 622 623 /* Check if we're already there */ 624 if (dev->current_state == state) 625 return 0; 626 627 __pci_start_power_transition(dev, state); 628 629 /* This device is quirked not to be put into D3, so 630 don't put it in D3 */ 631 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 632 return 0; 633 634 error = pci_raw_set_power_state(dev, state); 635 636 if (!__pci_complete_power_transition(dev, state)) 637 error = 0; 638 639 return error; 640 } 641 642 /** 643 * pci_choose_state - Choose the power state of a PCI device 644 * @dev: PCI device to be suspended 645 * @state: target sleep state for the whole system. This is the value 646 * that is passed to suspend() function. 647 * 648 * Returns PCI power state suitable for given device and given system 649 * message. 650 */ 651 652 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 653 { 654 pci_power_t ret; 655 656 if (!pci_find_capability(dev, PCI_CAP_ID_PM)) 657 return PCI_D0; 658 659 ret = platform_pci_choose_state(dev); 660 if (ret != PCI_POWER_ERROR) 661 return ret; 662 663 switch (state.event) { 664 case PM_EVENT_ON: 665 return PCI_D0; 666 case PM_EVENT_FREEZE: 667 case PM_EVENT_PRETHAW: 668 /* REVISIT both freeze and pre-thaw "should" use D0 */ 669 case PM_EVENT_SUSPEND: 670 case PM_EVENT_HIBERNATE: 671 return PCI_D3hot; 672 default: 673 dev_info(&dev->dev, "unrecognized suspend event %d\n", 674 state.event); 675 BUG(); 676 } 677 return PCI_D0; 678 } 679 680 EXPORT_SYMBOL(pci_choose_state); 681 682 #define PCI_EXP_SAVE_REGS 7 683 684 static int pci_save_pcie_state(struct pci_dev *dev) 685 { 686 int pos, i = 0; 687 struct pci_cap_saved_state *save_state; 688 u16 *cap; 689 690 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 691 if (pos <= 0) 692 return 0; 693 694 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 695 if (!save_state) { 696 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 697 return -ENOMEM; 698 } 699 cap = (u16 *)&save_state->data[0]; 700 701 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]); 702 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]); 703 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]); 704 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]); 705 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]); 706 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]); 707 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]); 708 709 return 0; 710 } 711 712 static void pci_restore_pcie_state(struct pci_dev *dev) 713 { 714 int i = 0, pos; 715 struct pci_cap_saved_state *save_state; 716 u16 *cap; 717 718 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 719 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 720 if (!save_state || pos <= 0) 721 return; 722 cap = (u16 *)&save_state->data[0]; 723 724 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]); 725 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]); 726 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]); 727 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]); 728 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]); 729 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]); 730 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]); 731 } 732 733 734 static int pci_save_pcix_state(struct pci_dev *dev) 735 { 736 int pos; 737 struct pci_cap_saved_state *save_state; 738 739 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 740 if (pos <= 0) 741 return 0; 742 743 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 744 if (!save_state) { 745 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 746 return -ENOMEM; 747 } 748 749 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data); 750 751 return 0; 752 } 753 754 static void pci_restore_pcix_state(struct pci_dev *dev) 755 { 756 int i = 0, pos; 757 struct pci_cap_saved_state *save_state; 758 u16 *cap; 759 760 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 761 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 762 if (!save_state || pos <= 0) 763 return; 764 cap = (u16 *)&save_state->data[0]; 765 766 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 767 } 768 769 770 /** 771 * pci_save_state - save the PCI configuration space of a device before suspending 772 * @dev: - PCI device that we're dealing with 773 */ 774 int 775 pci_save_state(struct pci_dev *dev) 776 { 777 int i; 778 /* XXX: 100% dword access ok here? */ 779 for (i = 0; i < 16; i++) 780 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]); 781 dev->state_saved = true; 782 if ((i = pci_save_pcie_state(dev)) != 0) 783 return i; 784 if ((i = pci_save_pcix_state(dev)) != 0) 785 return i; 786 return 0; 787 } 788 789 /** 790 * pci_restore_state - Restore the saved state of a PCI device 791 * @dev: - PCI device that we're dealing with 792 */ 793 int 794 pci_restore_state(struct pci_dev *dev) 795 { 796 int i; 797 u32 val; 798 799 /* PCI Express register must be restored first */ 800 pci_restore_pcie_state(dev); 801 802 /* 803 * The Base Address register should be programmed before the command 804 * register(s) 805 */ 806 for (i = 15; i >= 0; i--) { 807 pci_read_config_dword(dev, i * 4, &val); 808 if (val != dev->saved_config_space[i]) { 809 dev_printk(KERN_DEBUG, &dev->dev, "restoring config " 810 "space at offset %#x (was %#x, writing %#x)\n", 811 i, val, (int)dev->saved_config_space[i]); 812 pci_write_config_dword(dev,i * 4, 813 dev->saved_config_space[i]); 814 } 815 } 816 pci_restore_pcix_state(dev); 817 pci_restore_msi_state(dev); 818 pci_restore_iov_state(dev); 819 820 return 0; 821 } 822 823 static int do_pci_enable_device(struct pci_dev *dev, int bars) 824 { 825 int err; 826 827 err = pci_set_power_state(dev, PCI_D0); 828 if (err < 0 && err != -EIO) 829 return err; 830 err = pcibios_enable_device(dev, bars); 831 if (err < 0) 832 return err; 833 pci_fixup_device(pci_fixup_enable, dev); 834 835 return 0; 836 } 837 838 /** 839 * pci_reenable_device - Resume abandoned device 840 * @dev: PCI device to be resumed 841 * 842 * Note this function is a backend of pci_default_resume and is not supposed 843 * to be called by normal code, write proper resume handler and use it instead. 844 */ 845 int pci_reenable_device(struct pci_dev *dev) 846 { 847 if (pci_is_enabled(dev)) 848 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 849 return 0; 850 } 851 852 static int __pci_enable_device_flags(struct pci_dev *dev, 853 resource_size_t flags) 854 { 855 int err; 856 int i, bars = 0; 857 858 if (atomic_add_return(1, &dev->enable_cnt) > 1) 859 return 0; /* already enabled */ 860 861 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 862 if (dev->resource[i].flags & flags) 863 bars |= (1 << i); 864 865 err = do_pci_enable_device(dev, bars); 866 if (err < 0) 867 atomic_dec(&dev->enable_cnt); 868 return err; 869 } 870 871 /** 872 * pci_enable_device_io - Initialize a device for use with IO space 873 * @dev: PCI device to be initialized 874 * 875 * Initialize device before it's used by a driver. Ask low-level code 876 * to enable I/O resources. Wake up the device if it was suspended. 877 * Beware, this function can fail. 878 */ 879 int pci_enable_device_io(struct pci_dev *dev) 880 { 881 return __pci_enable_device_flags(dev, IORESOURCE_IO); 882 } 883 884 /** 885 * pci_enable_device_mem - Initialize a device for use with Memory space 886 * @dev: PCI device to be initialized 887 * 888 * Initialize device before it's used by a driver. Ask low-level code 889 * to enable Memory resources. Wake up the device if it was suspended. 890 * Beware, this function can fail. 891 */ 892 int pci_enable_device_mem(struct pci_dev *dev) 893 { 894 return __pci_enable_device_flags(dev, IORESOURCE_MEM); 895 } 896 897 /** 898 * pci_enable_device - Initialize device before it's used by a driver. 899 * @dev: PCI device to be initialized 900 * 901 * Initialize device before it's used by a driver. Ask low-level code 902 * to enable I/O and memory. Wake up the device if it was suspended. 903 * Beware, this function can fail. 904 * 905 * Note we don't actually enable the device many times if we call 906 * this function repeatedly (we just increment the count). 907 */ 908 int pci_enable_device(struct pci_dev *dev) 909 { 910 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 911 } 912 913 /* 914 * Managed PCI resources. This manages device on/off, intx/msi/msix 915 * on/off and BAR regions. pci_dev itself records msi/msix status, so 916 * there's no need to track it separately. pci_devres is initialized 917 * when a device is enabled using managed PCI device enable interface. 918 */ 919 struct pci_devres { 920 unsigned int enabled:1; 921 unsigned int pinned:1; 922 unsigned int orig_intx:1; 923 unsigned int restore_intx:1; 924 u32 region_mask; 925 }; 926 927 static void pcim_release(struct device *gendev, void *res) 928 { 929 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 930 struct pci_devres *this = res; 931 int i; 932 933 if (dev->msi_enabled) 934 pci_disable_msi(dev); 935 if (dev->msix_enabled) 936 pci_disable_msix(dev); 937 938 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 939 if (this->region_mask & (1 << i)) 940 pci_release_region(dev, i); 941 942 if (this->restore_intx) 943 pci_intx(dev, this->orig_intx); 944 945 if (this->enabled && !this->pinned) 946 pci_disable_device(dev); 947 } 948 949 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 950 { 951 struct pci_devres *dr, *new_dr; 952 953 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 954 if (dr) 955 return dr; 956 957 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 958 if (!new_dr) 959 return NULL; 960 return devres_get(&pdev->dev, new_dr, NULL, NULL); 961 } 962 963 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 964 { 965 if (pci_is_managed(pdev)) 966 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 967 return NULL; 968 } 969 970 /** 971 * pcim_enable_device - Managed pci_enable_device() 972 * @pdev: PCI device to be initialized 973 * 974 * Managed pci_enable_device(). 975 */ 976 int pcim_enable_device(struct pci_dev *pdev) 977 { 978 struct pci_devres *dr; 979 int rc; 980 981 dr = get_pci_dr(pdev); 982 if (unlikely(!dr)) 983 return -ENOMEM; 984 if (dr->enabled) 985 return 0; 986 987 rc = pci_enable_device(pdev); 988 if (!rc) { 989 pdev->is_managed = 1; 990 dr->enabled = 1; 991 } 992 return rc; 993 } 994 995 /** 996 * pcim_pin_device - Pin managed PCI device 997 * @pdev: PCI device to pin 998 * 999 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1000 * driver detach. @pdev must have been enabled with 1001 * pcim_enable_device(). 1002 */ 1003 void pcim_pin_device(struct pci_dev *pdev) 1004 { 1005 struct pci_devres *dr; 1006 1007 dr = find_pci_dr(pdev); 1008 WARN_ON(!dr || !dr->enabled); 1009 if (dr) 1010 dr->pinned = 1; 1011 } 1012 1013 /** 1014 * pcibios_disable_device - disable arch specific PCI resources for device dev 1015 * @dev: the PCI device to disable 1016 * 1017 * Disables architecture specific PCI resources for the device. This 1018 * is the default implementation. Architecture implementations can 1019 * override this. 1020 */ 1021 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {} 1022 1023 static void do_pci_disable_device(struct pci_dev *dev) 1024 { 1025 u16 pci_command; 1026 1027 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1028 if (pci_command & PCI_COMMAND_MASTER) { 1029 pci_command &= ~PCI_COMMAND_MASTER; 1030 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1031 } 1032 1033 pcibios_disable_device(dev); 1034 } 1035 1036 /** 1037 * pci_disable_enabled_device - Disable device without updating enable_cnt 1038 * @dev: PCI device to disable 1039 * 1040 * NOTE: This function is a backend of PCI power management routines and is 1041 * not supposed to be called drivers. 1042 */ 1043 void pci_disable_enabled_device(struct pci_dev *dev) 1044 { 1045 if (pci_is_enabled(dev)) 1046 do_pci_disable_device(dev); 1047 } 1048 1049 /** 1050 * pci_disable_device - Disable PCI device after use 1051 * @dev: PCI device to be disabled 1052 * 1053 * Signal to the system that the PCI device is not in use by the system 1054 * anymore. This only involves disabling PCI bus-mastering, if active. 1055 * 1056 * Note we don't actually disable the device until all callers of 1057 * pci_device_enable() have called pci_device_disable(). 1058 */ 1059 void 1060 pci_disable_device(struct pci_dev *dev) 1061 { 1062 struct pci_devres *dr; 1063 1064 dr = find_pci_dr(dev); 1065 if (dr) 1066 dr->enabled = 0; 1067 1068 if (atomic_sub_return(1, &dev->enable_cnt) != 0) 1069 return; 1070 1071 do_pci_disable_device(dev); 1072 1073 dev->is_busmaster = 0; 1074 } 1075 1076 /** 1077 * pcibios_set_pcie_reset_state - set reset state for device dev 1078 * @dev: the PCI-E device reset 1079 * @state: Reset state to enter into 1080 * 1081 * 1082 * Sets the PCI-E reset state for the device. This is the default 1083 * implementation. Architecture implementations can override this. 1084 */ 1085 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev, 1086 enum pcie_reset_state state) 1087 { 1088 return -EINVAL; 1089 } 1090 1091 /** 1092 * pci_set_pcie_reset_state - set reset state for device dev 1093 * @dev: the PCI-E device reset 1094 * @state: Reset state to enter into 1095 * 1096 * 1097 * Sets the PCI reset state for the device. 1098 */ 1099 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1100 { 1101 return pcibios_set_pcie_reset_state(dev, state); 1102 } 1103 1104 /** 1105 * pci_pme_capable - check the capability of PCI device to generate PME# 1106 * @dev: PCI device to handle. 1107 * @state: PCI state from which device will issue PME#. 1108 */ 1109 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1110 { 1111 if (!dev->pm_cap) 1112 return false; 1113 1114 return !!(dev->pme_support & (1 << state)); 1115 } 1116 1117 /** 1118 * pci_pme_active - enable or disable PCI device's PME# function 1119 * @dev: PCI device to handle. 1120 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1121 * 1122 * The caller must verify that the device is capable of generating PME# before 1123 * calling this function with @enable equal to 'true'. 1124 */ 1125 void pci_pme_active(struct pci_dev *dev, bool enable) 1126 { 1127 u16 pmcsr; 1128 1129 if (!dev->pm_cap) 1130 return; 1131 1132 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1133 /* Clear PME_Status by writing 1 to it and enable PME# */ 1134 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1135 if (!enable) 1136 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1137 1138 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1139 1140 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n", 1141 enable ? "enabled" : "disabled"); 1142 } 1143 1144 /** 1145 * pci_enable_wake - enable PCI device as wakeup event source 1146 * @dev: PCI device affected 1147 * @state: PCI state from which device will issue wakeup events 1148 * @enable: True to enable event generation; false to disable 1149 * 1150 * This enables the device as a wakeup event source, or disables it. 1151 * When such events involves platform-specific hooks, those hooks are 1152 * called automatically by this routine. 1153 * 1154 * Devices with legacy power management (no standard PCI PM capabilities) 1155 * always require such platform hooks. 1156 * 1157 * RETURN VALUE: 1158 * 0 is returned on success 1159 * -EINVAL is returned if device is not supposed to wake up the system 1160 * Error code depending on the platform is returned if both the platform and 1161 * the native mechanism fail to enable the generation of wake-up events 1162 */ 1163 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable) 1164 { 1165 int error = 0; 1166 bool pme_done = false; 1167 1168 if (enable && !device_may_wakeup(&dev->dev)) 1169 return -EINVAL; 1170 1171 /* 1172 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1173 * Anderson we should be doing PME# wake enable followed by ACPI wake 1174 * enable. To disable wake-up we call the platform first, for symmetry. 1175 */ 1176 1177 if (!enable && platform_pci_can_wakeup(dev)) 1178 error = platform_pci_sleep_wake(dev, false); 1179 1180 if (!enable || pci_pme_capable(dev, state)) { 1181 pci_pme_active(dev, enable); 1182 pme_done = true; 1183 } 1184 1185 if (enable && platform_pci_can_wakeup(dev)) 1186 error = platform_pci_sleep_wake(dev, true); 1187 1188 return pme_done ? 0 : error; 1189 } 1190 1191 /** 1192 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1193 * @dev: PCI device to prepare 1194 * @enable: True to enable wake-up event generation; false to disable 1195 * 1196 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1197 * and this function allows them to set that up cleanly - pci_enable_wake() 1198 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1199 * ordering constraints. 1200 * 1201 * This function only returns error code if the device is not capable of 1202 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1203 * enable wake-up power for it. 1204 */ 1205 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1206 { 1207 return pci_pme_capable(dev, PCI_D3cold) ? 1208 pci_enable_wake(dev, PCI_D3cold, enable) : 1209 pci_enable_wake(dev, PCI_D3hot, enable); 1210 } 1211 1212 /** 1213 * pci_target_state - find an appropriate low power state for a given PCI dev 1214 * @dev: PCI device 1215 * 1216 * Use underlying platform code to find a supported low power state for @dev. 1217 * If the platform can't manage @dev, return the deepest state from which it 1218 * can generate wake events, based on any available PME info. 1219 */ 1220 pci_power_t pci_target_state(struct pci_dev *dev) 1221 { 1222 pci_power_t target_state = PCI_D3hot; 1223 1224 if (platform_pci_power_manageable(dev)) { 1225 /* 1226 * Call the platform to choose the target state of the device 1227 * and enable wake-up from this state if supported. 1228 */ 1229 pci_power_t state = platform_pci_choose_state(dev); 1230 1231 switch (state) { 1232 case PCI_POWER_ERROR: 1233 case PCI_UNKNOWN: 1234 break; 1235 case PCI_D1: 1236 case PCI_D2: 1237 if (pci_no_d1d2(dev)) 1238 break; 1239 default: 1240 target_state = state; 1241 } 1242 } else if (device_may_wakeup(&dev->dev)) { 1243 /* 1244 * Find the deepest state from which the device can generate 1245 * wake-up events, make it the target state and enable device 1246 * to generate PME#. 1247 */ 1248 if (!dev->pm_cap) 1249 return PCI_POWER_ERROR; 1250 1251 if (dev->pme_support) { 1252 while (target_state 1253 && !(dev->pme_support & (1 << target_state))) 1254 target_state--; 1255 } 1256 } 1257 1258 return target_state; 1259 } 1260 1261 /** 1262 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1263 * @dev: Device to handle. 1264 * 1265 * Choose the power state appropriate for the device depending on whether 1266 * it can wake up the system and/or is power manageable by the platform 1267 * (PCI_D3hot is the default) and put the device into that state. 1268 */ 1269 int pci_prepare_to_sleep(struct pci_dev *dev) 1270 { 1271 pci_power_t target_state = pci_target_state(dev); 1272 int error; 1273 1274 if (target_state == PCI_POWER_ERROR) 1275 return -EIO; 1276 1277 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1278 1279 error = pci_set_power_state(dev, target_state); 1280 1281 if (error) 1282 pci_enable_wake(dev, target_state, false); 1283 1284 return error; 1285 } 1286 1287 /** 1288 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1289 * @dev: Device to handle. 1290 * 1291 * Disable device's sytem wake-up capability and put it into D0. 1292 */ 1293 int pci_back_from_sleep(struct pci_dev *dev) 1294 { 1295 pci_enable_wake(dev, PCI_D0, false); 1296 return pci_set_power_state(dev, PCI_D0); 1297 } 1298 1299 /** 1300 * pci_pm_init - Initialize PM functions of given PCI device 1301 * @dev: PCI device to handle. 1302 */ 1303 void pci_pm_init(struct pci_dev *dev) 1304 { 1305 int pm; 1306 u16 pmc; 1307 1308 dev->pm_cap = 0; 1309 1310 /* find PCI PM capability in list */ 1311 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 1312 if (!pm) 1313 return; 1314 /* Check device's ability to generate PME# */ 1315 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 1316 1317 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 1318 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 1319 pmc & PCI_PM_CAP_VER_MASK); 1320 return; 1321 } 1322 1323 dev->pm_cap = pm; 1324 1325 dev->d1_support = false; 1326 dev->d2_support = false; 1327 if (!pci_no_d1d2(dev)) { 1328 if (pmc & PCI_PM_CAP_D1) 1329 dev->d1_support = true; 1330 if (pmc & PCI_PM_CAP_D2) 1331 dev->d2_support = true; 1332 1333 if (dev->d1_support || dev->d2_support) 1334 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 1335 dev->d1_support ? " D1" : "", 1336 dev->d2_support ? " D2" : ""); 1337 } 1338 1339 pmc &= PCI_PM_CAP_PME_MASK; 1340 if (pmc) { 1341 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n", 1342 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 1343 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 1344 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 1345 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 1346 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 1347 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 1348 /* 1349 * Make device's PM flags reflect the wake-up capability, but 1350 * let the user space enable it to wake up the system as needed. 1351 */ 1352 device_set_wakeup_capable(&dev->dev, true); 1353 device_set_wakeup_enable(&dev->dev, false); 1354 /* Disable the PME# generation functionality */ 1355 pci_pme_active(dev, false); 1356 } else { 1357 dev->pme_support = 0; 1358 } 1359 } 1360 1361 /** 1362 * platform_pci_wakeup_init - init platform wakeup if present 1363 * @dev: PCI device 1364 * 1365 * Some devices don't have PCI PM caps but can still generate wakeup 1366 * events through platform methods (like ACPI events). If @dev supports 1367 * platform wakeup events, set the device flag to indicate as much. This 1368 * may be redundant if the device also supports PCI PM caps, but double 1369 * initialization should be safe in that case. 1370 */ 1371 void platform_pci_wakeup_init(struct pci_dev *dev) 1372 { 1373 if (!platform_pci_can_wakeup(dev)) 1374 return; 1375 1376 device_set_wakeup_capable(&dev->dev, true); 1377 device_set_wakeup_enable(&dev->dev, false); 1378 platform_pci_sleep_wake(dev, false); 1379 } 1380 1381 /** 1382 * pci_add_save_buffer - allocate buffer for saving given capability registers 1383 * @dev: the PCI device 1384 * @cap: the capability to allocate the buffer for 1385 * @size: requested size of the buffer 1386 */ 1387 static int pci_add_cap_save_buffer( 1388 struct pci_dev *dev, char cap, unsigned int size) 1389 { 1390 int pos; 1391 struct pci_cap_saved_state *save_state; 1392 1393 pos = pci_find_capability(dev, cap); 1394 if (pos <= 0) 1395 return 0; 1396 1397 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 1398 if (!save_state) 1399 return -ENOMEM; 1400 1401 save_state->cap_nr = cap; 1402 pci_add_saved_cap(dev, save_state); 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 1409 * @dev: the PCI device 1410 */ 1411 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 1412 { 1413 int error; 1414 1415 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 1416 PCI_EXP_SAVE_REGS * sizeof(u16)); 1417 if (error) 1418 dev_err(&dev->dev, 1419 "unable to preallocate PCI Express save buffer\n"); 1420 1421 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 1422 if (error) 1423 dev_err(&dev->dev, 1424 "unable to preallocate PCI-X save buffer\n"); 1425 } 1426 1427 /** 1428 * pci_enable_ari - enable ARI forwarding if hardware support it 1429 * @dev: the PCI device 1430 */ 1431 void pci_enable_ari(struct pci_dev *dev) 1432 { 1433 int pos; 1434 u32 cap; 1435 u16 ctrl; 1436 struct pci_dev *bridge; 1437 1438 if (!dev->is_pcie || dev->devfn) 1439 return; 1440 1441 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI); 1442 if (!pos) 1443 return; 1444 1445 bridge = dev->bus->self; 1446 if (!bridge || !bridge->is_pcie) 1447 return; 1448 1449 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP); 1450 if (!pos) 1451 return; 1452 1453 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap); 1454 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 1455 return; 1456 1457 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl); 1458 ctrl |= PCI_EXP_DEVCTL2_ARI; 1459 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl); 1460 1461 bridge->ari_enabled = 1; 1462 } 1463 1464 /** 1465 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 1466 * @dev: the PCI device 1467 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD) 1468 * 1469 * Perform INTx swizzling for a device behind one level of bridge. This is 1470 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 1471 * behind bridges on add-in cards. 1472 */ 1473 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin) 1474 { 1475 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1; 1476 } 1477 1478 int 1479 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 1480 { 1481 u8 pin; 1482 1483 pin = dev->pin; 1484 if (!pin) 1485 return -1; 1486 1487 while (dev->bus->parent) { 1488 pin = pci_swizzle_interrupt_pin(dev, pin); 1489 dev = dev->bus->self; 1490 } 1491 *bridge = dev; 1492 return pin; 1493 } 1494 1495 /** 1496 * pci_common_swizzle - swizzle INTx all the way to root bridge 1497 * @dev: the PCI device 1498 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 1499 * 1500 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 1501 * bridges all the way up to a PCI root bus. 1502 */ 1503 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 1504 { 1505 u8 pin = *pinp; 1506 1507 while (dev->bus->parent) { 1508 pin = pci_swizzle_interrupt_pin(dev, pin); 1509 dev = dev->bus->self; 1510 } 1511 *pinp = pin; 1512 return PCI_SLOT(dev->devfn); 1513 } 1514 1515 /** 1516 * pci_release_region - Release a PCI bar 1517 * @pdev: PCI device whose resources were previously reserved by pci_request_region 1518 * @bar: BAR to release 1519 * 1520 * Releases the PCI I/O and memory resources previously reserved by a 1521 * successful call to pci_request_region. Call this function only 1522 * after all use of the PCI regions has ceased. 1523 */ 1524 void pci_release_region(struct pci_dev *pdev, int bar) 1525 { 1526 struct pci_devres *dr; 1527 1528 if (pci_resource_len(pdev, bar) == 0) 1529 return; 1530 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 1531 release_region(pci_resource_start(pdev, bar), 1532 pci_resource_len(pdev, bar)); 1533 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 1534 release_mem_region(pci_resource_start(pdev, bar), 1535 pci_resource_len(pdev, bar)); 1536 1537 dr = find_pci_dr(pdev); 1538 if (dr) 1539 dr->region_mask &= ~(1 << bar); 1540 } 1541 1542 /** 1543 * __pci_request_region - Reserved PCI I/O and memory resource 1544 * @pdev: PCI device whose resources are to be reserved 1545 * @bar: BAR to be reserved 1546 * @res_name: Name to be associated with resource. 1547 * @exclusive: whether the region access is exclusive or not 1548 * 1549 * Mark the PCI region associated with PCI device @pdev BR @bar as 1550 * being reserved by owner @res_name. Do not access any 1551 * address inside the PCI regions unless this call returns 1552 * successfully. 1553 * 1554 * If @exclusive is set, then the region is marked so that userspace 1555 * is explicitly not allowed to map the resource via /dev/mem or 1556 * sysfs MMIO access. 1557 * 1558 * Returns 0 on success, or %EBUSY on error. A warning 1559 * message is also printed on failure. 1560 */ 1561 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 1562 int exclusive) 1563 { 1564 struct pci_devres *dr; 1565 1566 if (pci_resource_len(pdev, bar) == 0) 1567 return 0; 1568 1569 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 1570 if (!request_region(pci_resource_start(pdev, bar), 1571 pci_resource_len(pdev, bar), res_name)) 1572 goto err_out; 1573 } 1574 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 1575 if (!__request_mem_region(pci_resource_start(pdev, bar), 1576 pci_resource_len(pdev, bar), res_name, 1577 exclusive)) 1578 goto err_out; 1579 } 1580 1581 dr = find_pci_dr(pdev); 1582 if (dr) 1583 dr->region_mask |= 1 << bar; 1584 1585 return 0; 1586 1587 err_out: 1588 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n", 1589 bar, 1590 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem", 1591 &pdev->resource[bar]); 1592 return -EBUSY; 1593 } 1594 1595 /** 1596 * pci_request_region - Reserve PCI I/O and memory resource 1597 * @pdev: PCI device whose resources are to be reserved 1598 * @bar: BAR to be reserved 1599 * @res_name: Name to be associated with resource 1600 * 1601 * Mark the PCI region associated with PCI device @pdev BAR @bar as 1602 * being reserved by owner @res_name. Do not access any 1603 * address inside the PCI regions unless this call returns 1604 * successfully. 1605 * 1606 * Returns 0 on success, or %EBUSY on error. A warning 1607 * message is also printed on failure. 1608 */ 1609 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 1610 { 1611 return __pci_request_region(pdev, bar, res_name, 0); 1612 } 1613 1614 /** 1615 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 1616 * @pdev: PCI device whose resources are to be reserved 1617 * @bar: BAR to be reserved 1618 * @res_name: Name to be associated with resource. 1619 * 1620 * Mark the PCI region associated with PCI device @pdev BR @bar as 1621 * being reserved by owner @res_name. Do not access any 1622 * address inside the PCI regions unless this call returns 1623 * successfully. 1624 * 1625 * Returns 0 on success, or %EBUSY on error. A warning 1626 * message is also printed on failure. 1627 * 1628 * The key difference that _exclusive makes it that userspace is 1629 * explicitly not allowed to map the resource via /dev/mem or 1630 * sysfs. 1631 */ 1632 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 1633 { 1634 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 1635 } 1636 /** 1637 * pci_release_selected_regions - Release selected PCI I/O and memory resources 1638 * @pdev: PCI device whose resources were previously reserved 1639 * @bars: Bitmask of BARs to be released 1640 * 1641 * Release selected PCI I/O and memory resources previously reserved. 1642 * Call this function only after all use of the PCI regions has ceased. 1643 */ 1644 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 1645 { 1646 int i; 1647 1648 for (i = 0; i < 6; i++) 1649 if (bars & (1 << i)) 1650 pci_release_region(pdev, i); 1651 } 1652 1653 int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 1654 const char *res_name, int excl) 1655 { 1656 int i; 1657 1658 for (i = 0; i < 6; i++) 1659 if (bars & (1 << i)) 1660 if (__pci_request_region(pdev, i, res_name, excl)) 1661 goto err_out; 1662 return 0; 1663 1664 err_out: 1665 while(--i >= 0) 1666 if (bars & (1 << i)) 1667 pci_release_region(pdev, i); 1668 1669 return -EBUSY; 1670 } 1671 1672 1673 /** 1674 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 1675 * @pdev: PCI device whose resources are to be reserved 1676 * @bars: Bitmask of BARs to be requested 1677 * @res_name: Name to be associated with resource 1678 */ 1679 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 1680 const char *res_name) 1681 { 1682 return __pci_request_selected_regions(pdev, bars, res_name, 0); 1683 } 1684 1685 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 1686 int bars, const char *res_name) 1687 { 1688 return __pci_request_selected_regions(pdev, bars, res_name, 1689 IORESOURCE_EXCLUSIVE); 1690 } 1691 1692 /** 1693 * pci_release_regions - Release reserved PCI I/O and memory resources 1694 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 1695 * 1696 * Releases all PCI I/O and memory resources previously reserved by a 1697 * successful call to pci_request_regions. Call this function only 1698 * after all use of the PCI regions has ceased. 1699 */ 1700 1701 void pci_release_regions(struct pci_dev *pdev) 1702 { 1703 pci_release_selected_regions(pdev, (1 << 6) - 1); 1704 } 1705 1706 /** 1707 * pci_request_regions - Reserved PCI I/O and memory resources 1708 * @pdev: PCI device whose resources are to be reserved 1709 * @res_name: Name to be associated with resource. 1710 * 1711 * Mark all PCI regions associated with PCI device @pdev as 1712 * being reserved by owner @res_name. Do not access any 1713 * address inside the PCI regions unless this call returns 1714 * successfully. 1715 * 1716 * Returns 0 on success, or %EBUSY on error. A warning 1717 * message is also printed on failure. 1718 */ 1719 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 1720 { 1721 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 1722 } 1723 1724 /** 1725 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 1726 * @pdev: PCI device whose resources are to be reserved 1727 * @res_name: Name to be associated with resource. 1728 * 1729 * Mark all PCI regions associated with PCI device @pdev as 1730 * being reserved by owner @res_name. Do not access any 1731 * address inside the PCI regions unless this call returns 1732 * successfully. 1733 * 1734 * pci_request_regions_exclusive() will mark the region so that 1735 * /dev/mem and the sysfs MMIO access will not be allowed. 1736 * 1737 * Returns 0 on success, or %EBUSY on error. A warning 1738 * message is also printed on failure. 1739 */ 1740 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 1741 { 1742 return pci_request_selected_regions_exclusive(pdev, 1743 ((1 << 6) - 1), res_name); 1744 } 1745 1746 static void __pci_set_master(struct pci_dev *dev, bool enable) 1747 { 1748 u16 old_cmd, cmd; 1749 1750 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 1751 if (enable) 1752 cmd = old_cmd | PCI_COMMAND_MASTER; 1753 else 1754 cmd = old_cmd & ~PCI_COMMAND_MASTER; 1755 if (cmd != old_cmd) { 1756 dev_dbg(&dev->dev, "%s bus mastering\n", 1757 enable ? "enabling" : "disabling"); 1758 pci_write_config_word(dev, PCI_COMMAND, cmd); 1759 } 1760 dev->is_busmaster = enable; 1761 } 1762 1763 /** 1764 * pci_set_master - enables bus-mastering for device dev 1765 * @dev: the PCI device to enable 1766 * 1767 * Enables bus-mastering on the device and calls pcibios_set_master() 1768 * to do the needed arch specific settings. 1769 */ 1770 void pci_set_master(struct pci_dev *dev) 1771 { 1772 __pci_set_master(dev, true); 1773 pcibios_set_master(dev); 1774 } 1775 1776 /** 1777 * pci_clear_master - disables bus-mastering for device dev 1778 * @dev: the PCI device to disable 1779 */ 1780 void pci_clear_master(struct pci_dev *dev) 1781 { 1782 __pci_set_master(dev, false); 1783 } 1784 1785 #ifdef PCI_DISABLE_MWI 1786 int pci_set_mwi(struct pci_dev *dev) 1787 { 1788 return 0; 1789 } 1790 1791 int pci_try_set_mwi(struct pci_dev *dev) 1792 { 1793 return 0; 1794 } 1795 1796 void pci_clear_mwi(struct pci_dev *dev) 1797 { 1798 } 1799 1800 #else 1801 1802 #ifndef PCI_CACHE_LINE_BYTES 1803 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES 1804 #endif 1805 1806 /* This can be overridden by arch code. */ 1807 /* Don't forget this is measured in 32-bit words, not bytes */ 1808 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4; 1809 1810 /** 1811 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 1812 * @dev: the PCI device for which MWI is to be enabled 1813 * 1814 * Helper function for pci_set_mwi. 1815 * Originally copied from drivers/net/acenic.c. 1816 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 1817 * 1818 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 1819 */ 1820 static int 1821 pci_set_cacheline_size(struct pci_dev *dev) 1822 { 1823 u8 cacheline_size; 1824 1825 if (!pci_cache_line_size) 1826 return -EINVAL; /* The system doesn't support MWI. */ 1827 1828 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 1829 equal to or multiple of the right value. */ 1830 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 1831 if (cacheline_size >= pci_cache_line_size && 1832 (cacheline_size % pci_cache_line_size) == 0) 1833 return 0; 1834 1835 /* Write the correct value. */ 1836 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 1837 /* Read it back. */ 1838 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 1839 if (cacheline_size == pci_cache_line_size) 1840 return 0; 1841 1842 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 1843 "supported\n", pci_cache_line_size << 2); 1844 1845 return -EINVAL; 1846 } 1847 1848 /** 1849 * pci_set_mwi - enables memory-write-invalidate PCI transaction 1850 * @dev: the PCI device for which MWI is enabled 1851 * 1852 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 1853 * 1854 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 1855 */ 1856 int 1857 pci_set_mwi(struct pci_dev *dev) 1858 { 1859 int rc; 1860 u16 cmd; 1861 1862 rc = pci_set_cacheline_size(dev); 1863 if (rc) 1864 return rc; 1865 1866 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1867 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 1868 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 1869 cmd |= PCI_COMMAND_INVALIDATE; 1870 pci_write_config_word(dev, PCI_COMMAND, cmd); 1871 } 1872 1873 return 0; 1874 } 1875 1876 /** 1877 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 1878 * @dev: the PCI device for which MWI is enabled 1879 * 1880 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 1881 * Callers are not required to check the return value. 1882 * 1883 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 1884 */ 1885 int pci_try_set_mwi(struct pci_dev *dev) 1886 { 1887 int rc = pci_set_mwi(dev); 1888 return rc; 1889 } 1890 1891 /** 1892 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 1893 * @dev: the PCI device to disable 1894 * 1895 * Disables PCI Memory-Write-Invalidate transaction on the device 1896 */ 1897 void 1898 pci_clear_mwi(struct pci_dev *dev) 1899 { 1900 u16 cmd; 1901 1902 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1903 if (cmd & PCI_COMMAND_INVALIDATE) { 1904 cmd &= ~PCI_COMMAND_INVALIDATE; 1905 pci_write_config_word(dev, PCI_COMMAND, cmd); 1906 } 1907 } 1908 #endif /* ! PCI_DISABLE_MWI */ 1909 1910 /** 1911 * pci_intx - enables/disables PCI INTx for device dev 1912 * @pdev: the PCI device to operate on 1913 * @enable: boolean: whether to enable or disable PCI INTx 1914 * 1915 * Enables/disables PCI INTx for device dev 1916 */ 1917 void 1918 pci_intx(struct pci_dev *pdev, int enable) 1919 { 1920 u16 pci_command, new; 1921 1922 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 1923 1924 if (enable) { 1925 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 1926 } else { 1927 new = pci_command | PCI_COMMAND_INTX_DISABLE; 1928 } 1929 1930 if (new != pci_command) { 1931 struct pci_devres *dr; 1932 1933 pci_write_config_word(pdev, PCI_COMMAND, new); 1934 1935 dr = find_pci_dr(pdev); 1936 if (dr && !dr->restore_intx) { 1937 dr->restore_intx = 1; 1938 dr->orig_intx = !enable; 1939 } 1940 } 1941 } 1942 1943 /** 1944 * pci_msi_off - disables any msi or msix capabilities 1945 * @dev: the PCI device to operate on 1946 * 1947 * If you want to use msi see pci_enable_msi and friends. 1948 * This is a lower level primitive that allows us to disable 1949 * msi operation at the device level. 1950 */ 1951 void pci_msi_off(struct pci_dev *dev) 1952 { 1953 int pos; 1954 u16 control; 1955 1956 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 1957 if (pos) { 1958 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 1959 control &= ~PCI_MSI_FLAGS_ENABLE; 1960 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 1961 } 1962 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 1963 if (pos) { 1964 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 1965 control &= ~PCI_MSIX_FLAGS_ENABLE; 1966 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 1967 } 1968 } 1969 1970 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK 1971 /* 1972 * These can be overridden by arch-specific implementations 1973 */ 1974 int 1975 pci_set_dma_mask(struct pci_dev *dev, u64 mask) 1976 { 1977 if (!pci_dma_supported(dev, mask)) 1978 return -EIO; 1979 1980 dev->dma_mask = mask; 1981 1982 return 0; 1983 } 1984 1985 int 1986 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask) 1987 { 1988 if (!pci_dma_supported(dev, mask)) 1989 return -EIO; 1990 1991 dev->dev.coherent_dma_mask = mask; 1992 1993 return 0; 1994 } 1995 #endif 1996 1997 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE 1998 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 1999 { 2000 return dma_set_max_seg_size(&dev->dev, size); 2001 } 2002 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 2003 #endif 2004 2005 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY 2006 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 2007 { 2008 return dma_set_seg_boundary(&dev->dev, mask); 2009 } 2010 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 2011 #endif 2012 2013 static int __pcie_flr(struct pci_dev *dev, int probe) 2014 { 2015 u16 status; 2016 u32 cap; 2017 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP); 2018 2019 if (!exppos) 2020 return -ENOTTY; 2021 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap); 2022 if (!(cap & PCI_EXP_DEVCAP_FLR)) 2023 return -ENOTTY; 2024 2025 if (probe) 2026 return 0; 2027 2028 pci_block_user_cfg_access(dev); 2029 2030 /* Wait for Transaction Pending bit clean */ 2031 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status); 2032 if (!(status & PCI_EXP_DEVSTA_TRPND)) 2033 goto transaction_done; 2034 2035 msleep(100); 2036 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status); 2037 if (!(status & PCI_EXP_DEVSTA_TRPND)) 2038 goto transaction_done; 2039 2040 dev_info(&dev->dev, "Busy after 100ms while trying to reset; " 2041 "sleeping for 1 second\n"); 2042 ssleep(1); 2043 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status); 2044 if (status & PCI_EXP_DEVSTA_TRPND) 2045 dev_info(&dev->dev, "Still busy after 1s; " 2046 "proceeding with reset anyway\n"); 2047 2048 transaction_done: 2049 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL, 2050 PCI_EXP_DEVCTL_BCR_FLR); 2051 mdelay(100); 2052 2053 pci_unblock_user_cfg_access(dev); 2054 return 0; 2055 } 2056 2057 static int __pci_af_flr(struct pci_dev *dev, int probe) 2058 { 2059 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF); 2060 u8 status; 2061 u8 cap; 2062 2063 if (!cappos) 2064 return -ENOTTY; 2065 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap); 2066 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 2067 return -ENOTTY; 2068 2069 if (probe) 2070 return 0; 2071 2072 pci_block_user_cfg_access(dev); 2073 2074 /* Wait for Transaction Pending bit clean */ 2075 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status); 2076 if (!(status & PCI_AF_STATUS_TP)) 2077 goto transaction_done; 2078 2079 msleep(100); 2080 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status); 2081 if (!(status & PCI_AF_STATUS_TP)) 2082 goto transaction_done; 2083 2084 dev_info(&dev->dev, "Busy after 100ms while trying to" 2085 " reset; sleeping for 1 second\n"); 2086 ssleep(1); 2087 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status); 2088 if (status & PCI_AF_STATUS_TP) 2089 dev_info(&dev->dev, "Still busy after 1s; " 2090 "proceeding with reset anyway\n"); 2091 2092 transaction_done: 2093 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 2094 mdelay(100); 2095 2096 pci_unblock_user_cfg_access(dev); 2097 return 0; 2098 } 2099 2100 static int __pci_reset_function(struct pci_dev *pdev, int probe) 2101 { 2102 int res; 2103 2104 res = __pcie_flr(pdev, probe); 2105 if (res != -ENOTTY) 2106 return res; 2107 2108 res = __pci_af_flr(pdev, probe); 2109 if (res != -ENOTTY) 2110 return res; 2111 2112 return res; 2113 } 2114 2115 /** 2116 * pci_execute_reset_function() - Reset a PCI device function 2117 * @dev: Device function to reset 2118 * 2119 * Some devices allow an individual function to be reset without affecting 2120 * other functions in the same device. The PCI device must be responsive 2121 * to PCI config space in order to use this function. 2122 * 2123 * The device function is presumed to be unused when this function is called. 2124 * Resetting the device will make the contents of PCI configuration space 2125 * random, so any caller of this must be prepared to reinitialise the 2126 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 2127 * etc. 2128 * 2129 * Returns 0 if the device function was successfully reset or -ENOTTY if the 2130 * device doesn't support resetting a single function. 2131 */ 2132 int pci_execute_reset_function(struct pci_dev *dev) 2133 { 2134 return __pci_reset_function(dev, 0); 2135 } 2136 EXPORT_SYMBOL_GPL(pci_execute_reset_function); 2137 2138 /** 2139 * pci_reset_function() - quiesce and reset a PCI device function 2140 * @dev: Device function to reset 2141 * 2142 * Some devices allow an individual function to be reset without affecting 2143 * other functions in the same device. The PCI device must be responsive 2144 * to PCI config space in order to use this function. 2145 * 2146 * This function does not just reset the PCI portion of a device, but 2147 * clears all the state associated with the device. This function differs 2148 * from pci_execute_reset_function in that it saves and restores device state 2149 * over the reset. 2150 * 2151 * Returns 0 if the device function was successfully reset or -ENOTTY if the 2152 * device doesn't support resetting a single function. 2153 */ 2154 int pci_reset_function(struct pci_dev *dev) 2155 { 2156 int r = __pci_reset_function(dev, 1); 2157 2158 if (r < 0) 2159 return r; 2160 2161 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0) 2162 disable_irq(dev->irq); 2163 pci_save_state(dev); 2164 2165 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 2166 2167 r = pci_execute_reset_function(dev); 2168 2169 pci_restore_state(dev); 2170 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0) 2171 enable_irq(dev->irq); 2172 2173 return r; 2174 } 2175 EXPORT_SYMBOL_GPL(pci_reset_function); 2176 2177 /** 2178 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 2179 * @dev: PCI device to query 2180 * 2181 * Returns mmrbc: maximum designed memory read count in bytes 2182 * or appropriate error value. 2183 */ 2184 int pcix_get_max_mmrbc(struct pci_dev *dev) 2185 { 2186 int err, cap; 2187 u32 stat; 2188 2189 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 2190 if (!cap) 2191 return -EINVAL; 2192 2193 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat); 2194 if (err) 2195 return -EINVAL; 2196 2197 return (stat & PCI_X_STATUS_MAX_READ) >> 12; 2198 } 2199 EXPORT_SYMBOL(pcix_get_max_mmrbc); 2200 2201 /** 2202 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 2203 * @dev: PCI device to query 2204 * 2205 * Returns mmrbc: maximum memory read count in bytes 2206 * or appropriate error value. 2207 */ 2208 int pcix_get_mmrbc(struct pci_dev *dev) 2209 { 2210 int ret, cap; 2211 u32 cmd; 2212 2213 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 2214 if (!cap) 2215 return -EINVAL; 2216 2217 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd); 2218 if (!ret) 2219 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 2220 2221 return ret; 2222 } 2223 EXPORT_SYMBOL(pcix_get_mmrbc); 2224 2225 /** 2226 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 2227 * @dev: PCI device to query 2228 * @mmrbc: maximum memory read count in bytes 2229 * valid values are 512, 1024, 2048, 4096 2230 * 2231 * If possible sets maximum memory read byte count, some bridges have erratas 2232 * that prevent this. 2233 */ 2234 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 2235 { 2236 int cap, err = -EINVAL; 2237 u32 stat, cmd, v, o; 2238 2239 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 2240 goto out; 2241 2242 v = ffs(mmrbc) - 10; 2243 2244 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 2245 if (!cap) 2246 goto out; 2247 2248 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat); 2249 if (err) 2250 goto out; 2251 2252 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 2253 return -E2BIG; 2254 2255 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd); 2256 if (err) 2257 goto out; 2258 2259 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 2260 if (o != v) { 2261 if (v > o && dev->bus && 2262 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 2263 return -EIO; 2264 2265 cmd &= ~PCI_X_CMD_MAX_READ; 2266 cmd |= v << 2; 2267 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd); 2268 } 2269 out: 2270 return err; 2271 } 2272 EXPORT_SYMBOL(pcix_set_mmrbc); 2273 2274 /** 2275 * pcie_get_readrq - get PCI Express read request size 2276 * @dev: PCI device to query 2277 * 2278 * Returns maximum memory read request in bytes 2279 * or appropriate error value. 2280 */ 2281 int pcie_get_readrq(struct pci_dev *dev) 2282 { 2283 int ret, cap; 2284 u16 ctl; 2285 2286 cap = pci_find_capability(dev, PCI_CAP_ID_EXP); 2287 if (!cap) 2288 return -EINVAL; 2289 2290 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 2291 if (!ret) 2292 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 2293 2294 return ret; 2295 } 2296 EXPORT_SYMBOL(pcie_get_readrq); 2297 2298 /** 2299 * pcie_set_readrq - set PCI Express maximum memory read request 2300 * @dev: PCI device to query 2301 * @rq: maximum memory read count in bytes 2302 * valid values are 128, 256, 512, 1024, 2048, 4096 2303 * 2304 * If possible sets maximum read byte count 2305 */ 2306 int pcie_set_readrq(struct pci_dev *dev, int rq) 2307 { 2308 int cap, err = -EINVAL; 2309 u16 ctl, v; 2310 2311 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 2312 goto out; 2313 2314 v = (ffs(rq) - 8) << 12; 2315 2316 cap = pci_find_capability(dev, PCI_CAP_ID_EXP); 2317 if (!cap) 2318 goto out; 2319 2320 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 2321 if (err) 2322 goto out; 2323 2324 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) { 2325 ctl &= ~PCI_EXP_DEVCTL_READRQ; 2326 ctl |= v; 2327 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl); 2328 } 2329 2330 out: 2331 return err; 2332 } 2333 EXPORT_SYMBOL(pcie_set_readrq); 2334 2335 /** 2336 * pci_select_bars - Make BAR mask from the type of resource 2337 * @dev: the PCI device for which BAR mask is made 2338 * @flags: resource type mask to be selected 2339 * 2340 * This helper routine makes bar mask from the type of resource. 2341 */ 2342 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 2343 { 2344 int i, bars = 0; 2345 for (i = 0; i < PCI_NUM_RESOURCES; i++) 2346 if (pci_resource_flags(dev, i) & flags) 2347 bars |= (1 << i); 2348 return bars; 2349 } 2350 2351 /** 2352 * pci_resource_bar - get position of the BAR associated with a resource 2353 * @dev: the PCI device 2354 * @resno: the resource number 2355 * @type: the BAR type to be filled in 2356 * 2357 * Returns BAR position in config space, or 0 if the BAR is invalid. 2358 */ 2359 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 2360 { 2361 int reg; 2362 2363 if (resno < PCI_ROM_RESOURCE) { 2364 *type = pci_bar_unknown; 2365 return PCI_BASE_ADDRESS_0 + 4 * resno; 2366 } else if (resno == PCI_ROM_RESOURCE) { 2367 *type = pci_bar_mem32; 2368 return dev->rom_base_reg; 2369 } else if (resno < PCI_BRIDGE_RESOURCES) { 2370 /* device specific resource */ 2371 reg = pci_iov_resource_bar(dev, resno, type); 2372 if (reg) 2373 return reg; 2374 } 2375 2376 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno); 2377 return 0; 2378 } 2379 2380 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 2381 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 2382 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED; 2383 2384 /** 2385 * pci_specified_resource_alignment - get resource alignment specified by user. 2386 * @dev: the PCI device to get 2387 * 2388 * RETURNS: Resource alignment if it is specified. 2389 * Zero if it is not specified. 2390 */ 2391 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 2392 { 2393 int seg, bus, slot, func, align_order, count; 2394 resource_size_t align = 0; 2395 char *p; 2396 2397 spin_lock(&resource_alignment_lock); 2398 p = resource_alignment_param; 2399 while (*p) { 2400 count = 0; 2401 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 2402 p[count] == '@') { 2403 p += count + 1; 2404 } else { 2405 align_order = -1; 2406 } 2407 if (sscanf(p, "%x:%x:%x.%x%n", 2408 &seg, &bus, &slot, &func, &count) != 4) { 2409 seg = 0; 2410 if (sscanf(p, "%x:%x.%x%n", 2411 &bus, &slot, &func, &count) != 3) { 2412 /* Invalid format */ 2413 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 2414 p); 2415 break; 2416 } 2417 } 2418 p += count; 2419 if (seg == pci_domain_nr(dev->bus) && 2420 bus == dev->bus->number && 2421 slot == PCI_SLOT(dev->devfn) && 2422 func == PCI_FUNC(dev->devfn)) { 2423 if (align_order == -1) { 2424 align = PAGE_SIZE; 2425 } else { 2426 align = 1 << align_order; 2427 } 2428 /* Found */ 2429 break; 2430 } 2431 if (*p != ';' && *p != ',') { 2432 /* End of param or invalid format */ 2433 break; 2434 } 2435 p++; 2436 } 2437 spin_unlock(&resource_alignment_lock); 2438 return align; 2439 } 2440 2441 /** 2442 * pci_is_reassigndev - check if specified PCI is target device to reassign 2443 * @dev: the PCI device to check 2444 * 2445 * RETURNS: non-zero for PCI device is a target device to reassign, 2446 * or zero is not. 2447 */ 2448 int pci_is_reassigndev(struct pci_dev *dev) 2449 { 2450 return (pci_specified_resource_alignment(dev) != 0); 2451 } 2452 2453 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 2454 { 2455 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 2456 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 2457 spin_lock(&resource_alignment_lock); 2458 strncpy(resource_alignment_param, buf, count); 2459 resource_alignment_param[count] = '\0'; 2460 spin_unlock(&resource_alignment_lock); 2461 return count; 2462 } 2463 2464 ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 2465 { 2466 size_t count; 2467 spin_lock(&resource_alignment_lock); 2468 count = snprintf(buf, size, "%s", resource_alignment_param); 2469 spin_unlock(&resource_alignment_lock); 2470 return count; 2471 } 2472 2473 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 2474 { 2475 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 2476 } 2477 2478 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 2479 const char *buf, size_t count) 2480 { 2481 return pci_set_resource_alignment_param(buf, count); 2482 } 2483 2484 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 2485 pci_resource_alignment_store); 2486 2487 static int __init pci_resource_alignment_sysfs_init(void) 2488 { 2489 return bus_create_file(&pci_bus_type, 2490 &bus_attr_resource_alignment); 2491 } 2492 2493 late_initcall(pci_resource_alignment_sysfs_init); 2494 2495 static void __devinit pci_no_domains(void) 2496 { 2497 #ifdef CONFIG_PCI_DOMAINS 2498 pci_domains_supported = 0; 2499 #endif 2500 } 2501 2502 /** 2503 * pci_ext_cfg_enabled - can we access extended PCI config space? 2504 * @dev: The PCI device of the root bridge. 2505 * 2506 * Returns 1 if we can access PCI extended config space (offsets 2507 * greater than 0xff). This is the default implementation. Architecture 2508 * implementations can override this. 2509 */ 2510 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev) 2511 { 2512 return 1; 2513 } 2514 2515 static int __devinit pci_init(void) 2516 { 2517 struct pci_dev *dev = NULL; 2518 2519 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { 2520 pci_fixup_device(pci_fixup_final, dev); 2521 } 2522 2523 return 0; 2524 } 2525 2526 static int __init pci_setup(char *str) 2527 { 2528 while (str) { 2529 char *k = strchr(str, ','); 2530 if (k) 2531 *k++ = 0; 2532 if (*str && (str = pcibios_setup(str)) && *str) { 2533 if (!strcmp(str, "nomsi")) { 2534 pci_no_msi(); 2535 } else if (!strcmp(str, "noaer")) { 2536 pci_no_aer(); 2537 } else if (!strcmp(str, "nodomains")) { 2538 pci_no_domains(); 2539 } else if (!strncmp(str, "cbiosize=", 9)) { 2540 pci_cardbus_io_size = memparse(str + 9, &str); 2541 } else if (!strncmp(str, "cbmemsize=", 10)) { 2542 pci_cardbus_mem_size = memparse(str + 10, &str); 2543 } else if (!strncmp(str, "resource_alignment=", 19)) { 2544 pci_set_resource_alignment_param(str + 19, 2545 strlen(str + 19)); 2546 } else { 2547 printk(KERN_ERR "PCI: Unknown option `%s'\n", 2548 str); 2549 } 2550 } 2551 str = k; 2552 } 2553 return 0; 2554 } 2555 early_param("pci", pci_setup); 2556 2557 device_initcall(pci_init); 2558 2559 EXPORT_SYMBOL(pci_reenable_device); 2560 EXPORT_SYMBOL(pci_enable_device_io); 2561 EXPORT_SYMBOL(pci_enable_device_mem); 2562 EXPORT_SYMBOL(pci_enable_device); 2563 EXPORT_SYMBOL(pcim_enable_device); 2564 EXPORT_SYMBOL(pcim_pin_device); 2565 EXPORT_SYMBOL(pci_disable_device); 2566 EXPORT_SYMBOL(pci_find_capability); 2567 EXPORT_SYMBOL(pci_bus_find_capability); 2568 EXPORT_SYMBOL(pci_release_regions); 2569 EXPORT_SYMBOL(pci_request_regions); 2570 EXPORT_SYMBOL(pci_request_regions_exclusive); 2571 EXPORT_SYMBOL(pci_release_region); 2572 EXPORT_SYMBOL(pci_request_region); 2573 EXPORT_SYMBOL(pci_request_region_exclusive); 2574 EXPORT_SYMBOL(pci_release_selected_regions); 2575 EXPORT_SYMBOL(pci_request_selected_regions); 2576 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 2577 EXPORT_SYMBOL(pci_set_master); 2578 EXPORT_SYMBOL(pci_clear_master); 2579 EXPORT_SYMBOL(pci_set_mwi); 2580 EXPORT_SYMBOL(pci_try_set_mwi); 2581 EXPORT_SYMBOL(pci_clear_mwi); 2582 EXPORT_SYMBOL_GPL(pci_intx); 2583 EXPORT_SYMBOL(pci_set_dma_mask); 2584 EXPORT_SYMBOL(pci_set_consistent_dma_mask); 2585 EXPORT_SYMBOL(pci_assign_resource); 2586 EXPORT_SYMBOL(pci_find_parent_resource); 2587 EXPORT_SYMBOL(pci_select_bars); 2588 2589 EXPORT_SYMBOL(pci_set_power_state); 2590 EXPORT_SYMBOL(pci_save_state); 2591 EXPORT_SYMBOL(pci_restore_state); 2592 EXPORT_SYMBOL(pci_pme_capable); 2593 EXPORT_SYMBOL(pci_pme_active); 2594 EXPORT_SYMBOL(pci_enable_wake); 2595 EXPORT_SYMBOL(pci_wake_from_d3); 2596 EXPORT_SYMBOL(pci_target_state); 2597 EXPORT_SYMBOL(pci_prepare_to_sleep); 2598 EXPORT_SYMBOL(pci_back_from_sleep); 2599 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2600 2601