1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/pci-aspm.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pci-ats.h> 33 #include <asm/setup.h> 34 #include <asm/dma.h> 35 #include <linux/aer.h> 36 #include "pci.h" 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3_delay; 67 68 if (delay < pci_pm_d3_delay) 69 delay = pci_pm_d3_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 88 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 90 91 #define DEFAULT_HOTPLUG_BUS_SIZE 1 92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 93 94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 95 96 /* 97 * The default CLS is used if arch didn't set CLS explicitly and not 98 * all pci devices agree on the same value. Arch can override either 99 * the dfl or actual value as it sees fit. Don't forget this is 100 * measured in 32-bit words, not bytes. 101 */ 102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 103 u8 pci_cache_line_size; 104 105 /* 106 * If we set up a device for bus mastering, we need to check the latency 107 * timer as certain BIOSes forget to set it properly. 108 */ 109 unsigned int pcibios_max_latency = 255; 110 111 /* If set, the PCIe ARI capability will not be used. */ 112 static bool pcie_ari_disabled; 113 114 /* Disable bridge_d3 for all PCIe ports */ 115 static bool pci_bridge_d3_disable; 116 /* Force bridge_d3 for all PCIe ports */ 117 static bool pci_bridge_d3_force; 118 119 static int __init pcie_port_pm_setup(char *str) 120 { 121 if (!strcmp(str, "off")) 122 pci_bridge_d3_disable = true; 123 else if (!strcmp(str, "force")) 124 pci_bridge_d3_force = true; 125 return 1; 126 } 127 __setup("pcie_port_pm=", pcie_port_pm_setup); 128 129 /** 130 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 131 * @bus: pointer to PCI bus structure to search 132 * 133 * Given a PCI bus, returns the highest PCI bus number present in the set 134 * including the given PCI bus and its list of child PCI buses. 135 */ 136 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 137 { 138 struct pci_bus *tmp; 139 unsigned char max, n; 140 141 max = bus->busn_res.end; 142 list_for_each_entry(tmp, &bus->children, node) { 143 n = pci_bus_max_busnr(tmp); 144 if (n > max) 145 max = n; 146 } 147 return max; 148 } 149 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 150 151 #ifdef CONFIG_HAS_IOMEM 152 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 153 { 154 struct resource *res = &pdev->resource[bar]; 155 156 /* 157 * Make sure the BAR is actually a memory resource, not an IO resource 158 */ 159 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 160 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 161 return NULL; 162 } 163 return ioremap_nocache(res->start, resource_size(res)); 164 } 165 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 166 167 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 168 { 169 /* 170 * Make sure the BAR is actually a memory resource, not an IO resource 171 */ 172 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 173 WARN_ON(1); 174 return NULL; 175 } 176 return ioremap_wc(pci_resource_start(pdev, bar), 177 pci_resource_len(pdev, bar)); 178 } 179 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 180 #endif 181 182 183 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 184 u8 pos, int cap, int *ttl) 185 { 186 u8 id; 187 u16 ent; 188 189 pci_bus_read_config_byte(bus, devfn, pos, &pos); 190 191 while ((*ttl)--) { 192 if (pos < 0x40) 193 break; 194 pos &= ~3; 195 pci_bus_read_config_word(bus, devfn, pos, &ent); 196 197 id = ent & 0xff; 198 if (id == 0xff) 199 break; 200 if (id == cap) 201 return pos; 202 pos = (ent >> 8); 203 } 204 return 0; 205 } 206 207 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 208 u8 pos, int cap) 209 { 210 int ttl = PCI_FIND_CAP_TTL; 211 212 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 213 } 214 215 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 216 { 217 return __pci_find_next_cap(dev->bus, dev->devfn, 218 pos + PCI_CAP_LIST_NEXT, cap); 219 } 220 EXPORT_SYMBOL_GPL(pci_find_next_capability); 221 222 static int __pci_bus_find_cap_start(struct pci_bus *bus, 223 unsigned int devfn, u8 hdr_type) 224 { 225 u16 status; 226 227 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 228 if (!(status & PCI_STATUS_CAP_LIST)) 229 return 0; 230 231 switch (hdr_type) { 232 case PCI_HEADER_TYPE_NORMAL: 233 case PCI_HEADER_TYPE_BRIDGE: 234 return PCI_CAPABILITY_LIST; 235 case PCI_HEADER_TYPE_CARDBUS: 236 return PCI_CB_CAPABILITY_LIST; 237 } 238 239 return 0; 240 } 241 242 /** 243 * pci_find_capability - query for devices' capabilities 244 * @dev: PCI device to query 245 * @cap: capability code 246 * 247 * Tell if a device supports a given PCI capability. 248 * Returns the address of the requested capability structure within the 249 * device's PCI configuration space or 0 in case the device does not 250 * support it. Possible values for @cap: 251 * 252 * %PCI_CAP_ID_PM Power Management 253 * %PCI_CAP_ID_AGP Accelerated Graphics Port 254 * %PCI_CAP_ID_VPD Vital Product Data 255 * %PCI_CAP_ID_SLOTID Slot Identification 256 * %PCI_CAP_ID_MSI Message Signalled Interrupts 257 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 258 * %PCI_CAP_ID_PCIX PCI-X 259 * %PCI_CAP_ID_EXP PCI Express 260 */ 261 int pci_find_capability(struct pci_dev *dev, int cap) 262 { 263 int pos; 264 265 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 266 if (pos) 267 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 268 269 return pos; 270 } 271 EXPORT_SYMBOL(pci_find_capability); 272 273 /** 274 * pci_bus_find_capability - query for devices' capabilities 275 * @bus: the PCI bus to query 276 * @devfn: PCI device to query 277 * @cap: capability code 278 * 279 * Like pci_find_capability() but works for pci devices that do not have a 280 * pci_dev structure set up yet. 281 * 282 * Returns the address of the requested capability structure within the 283 * device's PCI configuration space or 0 in case the device does not 284 * support it. 285 */ 286 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 287 { 288 int pos; 289 u8 hdr_type; 290 291 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 292 293 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 294 if (pos) 295 pos = __pci_find_next_cap(bus, devfn, pos, cap); 296 297 return pos; 298 } 299 EXPORT_SYMBOL(pci_bus_find_capability); 300 301 /** 302 * pci_find_next_ext_capability - Find an extended capability 303 * @dev: PCI device to query 304 * @start: address at which to start looking (0 to start at beginning of list) 305 * @cap: capability code 306 * 307 * Returns the address of the next matching extended capability structure 308 * within the device's PCI configuration space or 0 if the device does 309 * not support it. Some capabilities can occur several times, e.g., the 310 * vendor-specific capability, and this provides a way to find them all. 311 */ 312 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 313 { 314 u32 header; 315 int ttl; 316 int pos = PCI_CFG_SPACE_SIZE; 317 318 /* minimum 8 bytes per capability */ 319 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 320 321 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 322 return 0; 323 324 if (start) 325 pos = start; 326 327 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 328 return 0; 329 330 /* 331 * If we have no capabilities, this is indicated by cap ID, 332 * cap version and next pointer all being 0. 333 */ 334 if (header == 0) 335 return 0; 336 337 while (ttl-- > 0) { 338 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 339 return pos; 340 341 pos = PCI_EXT_CAP_NEXT(header); 342 if (pos < PCI_CFG_SPACE_SIZE) 343 break; 344 345 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 346 break; 347 } 348 349 return 0; 350 } 351 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 352 353 /** 354 * pci_find_ext_capability - Find an extended capability 355 * @dev: PCI device to query 356 * @cap: capability code 357 * 358 * Returns the address of the requested extended capability structure 359 * within the device's PCI configuration space or 0 if the device does 360 * not support it. Possible values for @cap: 361 * 362 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 363 * %PCI_EXT_CAP_ID_VC Virtual Channel 364 * %PCI_EXT_CAP_ID_DSN Device Serial Number 365 * %PCI_EXT_CAP_ID_PWR Power Budgeting 366 */ 367 int pci_find_ext_capability(struct pci_dev *dev, int cap) 368 { 369 return pci_find_next_ext_capability(dev, 0, cap); 370 } 371 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 372 373 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 374 { 375 int rc, ttl = PCI_FIND_CAP_TTL; 376 u8 cap, mask; 377 378 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 379 mask = HT_3BIT_CAP_MASK; 380 else 381 mask = HT_5BIT_CAP_MASK; 382 383 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 384 PCI_CAP_ID_HT, &ttl); 385 while (pos) { 386 rc = pci_read_config_byte(dev, pos + 3, &cap); 387 if (rc != PCIBIOS_SUCCESSFUL) 388 return 0; 389 390 if ((cap & mask) == ht_cap) 391 return pos; 392 393 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 394 pos + PCI_CAP_LIST_NEXT, 395 PCI_CAP_ID_HT, &ttl); 396 } 397 398 return 0; 399 } 400 /** 401 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 402 * @dev: PCI device to query 403 * @pos: Position from which to continue searching 404 * @ht_cap: Hypertransport capability code 405 * 406 * To be used in conjunction with pci_find_ht_capability() to search for 407 * all capabilities matching @ht_cap. @pos should always be a value returned 408 * from pci_find_ht_capability(). 409 * 410 * NB. To be 100% safe against broken PCI devices, the caller should take 411 * steps to avoid an infinite loop. 412 */ 413 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 414 { 415 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 416 } 417 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 418 419 /** 420 * pci_find_ht_capability - query a device's Hypertransport capabilities 421 * @dev: PCI device to query 422 * @ht_cap: Hypertransport capability code 423 * 424 * Tell if a device supports a given Hypertransport capability. 425 * Returns an address within the device's PCI configuration space 426 * or 0 in case the device does not support the request capability. 427 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 428 * which has a Hypertransport capability matching @ht_cap. 429 */ 430 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 431 { 432 int pos; 433 434 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 435 if (pos) 436 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 437 438 return pos; 439 } 440 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 441 442 /** 443 * pci_find_parent_resource - return resource region of parent bus of given region 444 * @dev: PCI device structure contains resources to be searched 445 * @res: child resource record for which parent is sought 446 * 447 * For given resource region of given device, return the resource 448 * region of parent bus the given region is contained in. 449 */ 450 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 451 struct resource *res) 452 { 453 const struct pci_bus *bus = dev->bus; 454 struct resource *r; 455 int i; 456 457 pci_bus_for_each_resource(bus, r, i) { 458 if (!r) 459 continue; 460 if (resource_contains(r, res)) { 461 462 /* 463 * If the window is prefetchable but the BAR is 464 * not, the allocator made a mistake. 465 */ 466 if (r->flags & IORESOURCE_PREFETCH && 467 !(res->flags & IORESOURCE_PREFETCH)) 468 return NULL; 469 470 /* 471 * If we're below a transparent bridge, there may 472 * be both a positively-decoded aperture and a 473 * subtractively-decoded region that contain the BAR. 474 * We want the positively-decoded one, so this depends 475 * on pci_bus_for_each_resource() giving us those 476 * first. 477 */ 478 return r; 479 } 480 } 481 return NULL; 482 } 483 EXPORT_SYMBOL(pci_find_parent_resource); 484 485 /** 486 * pci_find_resource - Return matching PCI device resource 487 * @dev: PCI device to query 488 * @res: Resource to look for 489 * 490 * Goes over standard PCI resources (BARs) and checks if the given resource 491 * is partially or fully contained in any of them. In that case the 492 * matching resource is returned, %NULL otherwise. 493 */ 494 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 495 { 496 int i; 497 498 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 499 struct resource *r = &dev->resource[i]; 500 501 if (r->start && resource_contains(r, res)) 502 return r; 503 } 504 505 return NULL; 506 } 507 EXPORT_SYMBOL(pci_find_resource); 508 509 /** 510 * pci_find_pcie_root_port - return PCIe Root Port 511 * @dev: PCI device to query 512 * 513 * Traverse up the parent chain and return the PCIe Root Port PCI Device 514 * for a given PCI Device. 515 */ 516 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 517 { 518 struct pci_dev *bridge, *highest_pcie_bridge = dev; 519 520 bridge = pci_upstream_bridge(dev); 521 while (bridge && pci_is_pcie(bridge)) { 522 highest_pcie_bridge = bridge; 523 bridge = pci_upstream_bridge(bridge); 524 } 525 526 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 527 return NULL; 528 529 return highest_pcie_bridge; 530 } 531 EXPORT_SYMBOL(pci_find_pcie_root_port); 532 533 /** 534 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 535 * @dev: the PCI device to operate on 536 * @pos: config space offset of status word 537 * @mask: mask of bit(s) to care about in status word 538 * 539 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 540 */ 541 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 542 { 543 int i; 544 545 /* Wait for Transaction Pending bit clean */ 546 for (i = 0; i < 4; i++) { 547 u16 status; 548 if (i) 549 msleep((1 << (i - 1)) * 100); 550 551 pci_read_config_word(dev, pos, &status); 552 if (!(status & mask)) 553 return 1; 554 } 555 556 return 0; 557 } 558 559 /** 560 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 561 * @dev: PCI device to have its BARs restored 562 * 563 * Restore the BAR values for a given device, so as to make it 564 * accessible by its driver. 565 */ 566 static void pci_restore_bars(struct pci_dev *dev) 567 { 568 int i; 569 570 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 571 pci_update_resource(dev, i); 572 } 573 574 static const struct pci_platform_pm_ops *pci_platform_pm; 575 576 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 577 { 578 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 579 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 580 return -EINVAL; 581 pci_platform_pm = ops; 582 return 0; 583 } 584 585 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 586 { 587 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 588 } 589 590 static inline int platform_pci_set_power_state(struct pci_dev *dev, 591 pci_power_t t) 592 { 593 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 594 } 595 596 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 597 { 598 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 599 } 600 601 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 602 { 603 return pci_platform_pm ? 604 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 605 } 606 607 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 608 { 609 return pci_platform_pm ? 610 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 611 } 612 613 static inline bool platform_pci_need_resume(struct pci_dev *dev) 614 { 615 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 616 } 617 618 /** 619 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 620 * given PCI device 621 * @dev: PCI device to handle. 622 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 623 * 624 * RETURN VALUE: 625 * -EINVAL if the requested state is invalid. 626 * -EIO if device does not support PCI PM or its PM capabilities register has a 627 * wrong version, or device doesn't support the requested state. 628 * 0 if device already is in the requested state. 629 * 0 if device's power state has been successfully changed. 630 */ 631 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 632 { 633 u16 pmcsr; 634 bool need_restore = false; 635 636 /* Check if we're already there */ 637 if (dev->current_state == state) 638 return 0; 639 640 if (!dev->pm_cap) 641 return -EIO; 642 643 if (state < PCI_D0 || state > PCI_D3hot) 644 return -EINVAL; 645 646 /* Validate current state: 647 * Can enter D0 from any state, but if we can only go deeper 648 * to sleep if we're already in a low power state 649 */ 650 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 651 && dev->current_state > state) { 652 pci_err(dev, "invalid power transition (from state %d to %d)\n", 653 dev->current_state, state); 654 return -EINVAL; 655 } 656 657 /* check if this device supports the desired state */ 658 if ((state == PCI_D1 && !dev->d1_support) 659 || (state == PCI_D2 && !dev->d2_support)) 660 return -EIO; 661 662 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 663 664 /* If we're (effectively) in D3, force entire word to 0. 665 * This doesn't affect PME_Status, disables PME_En, and 666 * sets PowerState to 0. 667 */ 668 switch (dev->current_state) { 669 case PCI_D0: 670 case PCI_D1: 671 case PCI_D2: 672 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 673 pmcsr |= state; 674 break; 675 case PCI_D3hot: 676 case PCI_D3cold: 677 case PCI_UNKNOWN: /* Boot-up */ 678 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 679 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 680 need_restore = true; 681 /* Fall-through: force to D0 */ 682 default: 683 pmcsr = 0; 684 break; 685 } 686 687 /* enter specified state */ 688 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 689 690 /* Mandatory power management transition delays */ 691 /* see PCI PM 1.1 5.6.1 table 18 */ 692 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 693 pci_dev_d3_sleep(dev); 694 else if (state == PCI_D2 || dev->current_state == PCI_D2) 695 udelay(PCI_PM_D2_DELAY); 696 697 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 698 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 699 if (dev->current_state != state && printk_ratelimit()) 700 pci_info(dev, "Refused to change power state, currently in D%d\n", 701 dev->current_state); 702 703 /* 704 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 705 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 706 * from D3hot to D0 _may_ perform an internal reset, thereby 707 * going to "D0 Uninitialized" rather than "D0 Initialized". 708 * For example, at least some versions of the 3c905B and the 709 * 3c556B exhibit this behaviour. 710 * 711 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 712 * devices in a D3hot state at boot. Consequently, we need to 713 * restore at least the BARs so that the device will be 714 * accessible to its driver. 715 */ 716 if (need_restore) 717 pci_restore_bars(dev); 718 719 if (dev->bus->self) 720 pcie_aspm_pm_state_change(dev->bus->self); 721 722 return 0; 723 } 724 725 /** 726 * pci_update_current_state - Read power state of given device and cache it 727 * @dev: PCI device to handle. 728 * @state: State to cache in case the device doesn't have the PM capability 729 * 730 * The power state is read from the PMCSR register, which however is 731 * inaccessible in D3cold. The platform firmware is therefore queried first 732 * to detect accessibility of the register. In case the platform firmware 733 * reports an incorrect state or the device isn't power manageable by the 734 * platform at all, we try to detect D3cold by testing accessibility of the 735 * vendor ID in config space. 736 */ 737 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 738 { 739 if (platform_pci_get_power_state(dev) == PCI_D3cold || 740 !pci_device_is_present(dev)) { 741 dev->current_state = PCI_D3cold; 742 } else if (dev->pm_cap) { 743 u16 pmcsr; 744 745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 747 } else { 748 dev->current_state = state; 749 } 750 } 751 752 /** 753 * pci_power_up - Put the given device into D0 forcibly 754 * @dev: PCI device to power up 755 */ 756 void pci_power_up(struct pci_dev *dev) 757 { 758 if (platform_pci_power_manageable(dev)) 759 platform_pci_set_power_state(dev, PCI_D0); 760 761 pci_raw_set_power_state(dev, PCI_D0); 762 pci_update_current_state(dev, PCI_D0); 763 } 764 765 /** 766 * pci_platform_power_transition - Use platform to change device power state 767 * @dev: PCI device to handle. 768 * @state: State to put the device into. 769 */ 770 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 771 { 772 int error; 773 774 if (platform_pci_power_manageable(dev)) { 775 error = platform_pci_set_power_state(dev, state); 776 if (!error) 777 pci_update_current_state(dev, state); 778 } else 779 error = -ENODEV; 780 781 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 782 dev->current_state = PCI_D0; 783 784 return error; 785 } 786 787 /** 788 * pci_wakeup - Wake up a PCI device 789 * @pci_dev: Device to handle. 790 * @ign: ignored parameter 791 */ 792 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 793 { 794 pci_wakeup_event(pci_dev); 795 pm_request_resume(&pci_dev->dev); 796 return 0; 797 } 798 799 /** 800 * pci_wakeup_bus - Walk given bus and wake up devices on it 801 * @bus: Top bus of the subtree to walk. 802 */ 803 void pci_wakeup_bus(struct pci_bus *bus) 804 { 805 if (bus) 806 pci_walk_bus(bus, pci_wakeup, NULL); 807 } 808 809 /** 810 * __pci_start_power_transition - Start power transition of a PCI device 811 * @dev: PCI device to handle. 812 * @state: State to put the device into. 813 */ 814 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 815 { 816 if (state == PCI_D0) { 817 pci_platform_power_transition(dev, PCI_D0); 818 /* 819 * Mandatory power management transition delays, see 820 * PCI Express Base Specification Revision 2.0 Section 821 * 6.6.1: Conventional Reset. Do not delay for 822 * devices powered on/off by corresponding bridge, 823 * because have already delayed for the bridge. 824 */ 825 if (dev->runtime_d3cold) { 826 if (dev->d3cold_delay) 827 msleep(dev->d3cold_delay); 828 /* 829 * When powering on a bridge from D3cold, the 830 * whole hierarchy may be powered on into 831 * D0uninitialized state, resume them to give 832 * them a chance to suspend again 833 */ 834 pci_wakeup_bus(dev->subordinate); 835 } 836 } 837 } 838 839 /** 840 * __pci_dev_set_current_state - Set current state of a PCI device 841 * @dev: Device to handle 842 * @data: pointer to state to be set 843 */ 844 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 845 { 846 pci_power_t state = *(pci_power_t *)data; 847 848 dev->current_state = state; 849 return 0; 850 } 851 852 /** 853 * pci_bus_set_current_state - Walk given bus and set current state of devices 854 * @bus: Top bus of the subtree to walk. 855 * @state: state to be set 856 */ 857 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 858 { 859 if (bus) 860 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 861 } 862 863 /** 864 * __pci_complete_power_transition - Complete power transition of a PCI device 865 * @dev: PCI device to handle. 866 * @state: State to put the device into. 867 * 868 * This function should not be called directly by device drivers. 869 */ 870 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 871 { 872 int ret; 873 874 if (state <= PCI_D0) 875 return -EINVAL; 876 ret = pci_platform_power_transition(dev, state); 877 /* Power off the bridge may power off the whole hierarchy */ 878 if (!ret && state == PCI_D3cold) 879 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 880 return ret; 881 } 882 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 883 884 /** 885 * pci_set_power_state - Set the power state of a PCI device 886 * @dev: PCI device to handle. 887 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 888 * 889 * Transition a device to a new power state, using the platform firmware and/or 890 * the device's PCI PM registers. 891 * 892 * RETURN VALUE: 893 * -EINVAL if the requested state is invalid. 894 * -EIO if device does not support PCI PM or its PM capabilities register has a 895 * wrong version, or device doesn't support the requested state. 896 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 897 * 0 if device already is in the requested state. 898 * 0 if the transition is to D3 but D3 is not supported. 899 * 0 if device's power state has been successfully changed. 900 */ 901 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 902 { 903 int error; 904 905 /* bound the state we're entering */ 906 if (state > PCI_D3cold) 907 state = PCI_D3cold; 908 else if (state < PCI_D0) 909 state = PCI_D0; 910 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 911 /* 912 * If the device or the parent bridge do not support PCI PM, 913 * ignore the request if we're doing anything other than putting 914 * it into D0 (which would only happen on boot). 915 */ 916 return 0; 917 918 /* Check if we're already there */ 919 if (dev->current_state == state) 920 return 0; 921 922 __pci_start_power_transition(dev, state); 923 924 /* This device is quirked not to be put into D3, so 925 don't put it in D3 */ 926 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 927 return 0; 928 929 /* 930 * To put device in D3cold, we put device into D3hot in native 931 * way, then put device into D3cold with platform ops 932 */ 933 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 934 PCI_D3hot : state); 935 936 if (!__pci_complete_power_transition(dev, state)) 937 error = 0; 938 939 return error; 940 } 941 EXPORT_SYMBOL(pci_set_power_state); 942 943 /** 944 * pci_choose_state - Choose the power state of a PCI device 945 * @dev: PCI device to be suspended 946 * @state: target sleep state for the whole system. This is the value 947 * that is passed to suspend() function. 948 * 949 * Returns PCI power state suitable for given device and given system 950 * message. 951 */ 952 953 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 954 { 955 pci_power_t ret; 956 957 if (!dev->pm_cap) 958 return PCI_D0; 959 960 ret = platform_pci_choose_state(dev); 961 if (ret != PCI_POWER_ERROR) 962 return ret; 963 964 switch (state.event) { 965 case PM_EVENT_ON: 966 return PCI_D0; 967 case PM_EVENT_FREEZE: 968 case PM_EVENT_PRETHAW: 969 /* REVISIT both freeze and pre-thaw "should" use D0 */ 970 case PM_EVENT_SUSPEND: 971 case PM_EVENT_HIBERNATE: 972 return PCI_D3hot; 973 default: 974 pci_info(dev, "unrecognized suspend event %d\n", 975 state.event); 976 BUG(); 977 } 978 return PCI_D0; 979 } 980 EXPORT_SYMBOL(pci_choose_state); 981 982 #define PCI_EXP_SAVE_REGS 7 983 984 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 985 u16 cap, bool extended) 986 { 987 struct pci_cap_saved_state *tmp; 988 989 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 990 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 991 return tmp; 992 } 993 return NULL; 994 } 995 996 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 997 { 998 return _pci_find_saved_cap(dev, cap, false); 999 } 1000 1001 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1002 { 1003 return _pci_find_saved_cap(dev, cap, true); 1004 } 1005 1006 static int pci_save_pcie_state(struct pci_dev *dev) 1007 { 1008 int i = 0; 1009 struct pci_cap_saved_state *save_state; 1010 u16 *cap; 1011 1012 if (!pci_is_pcie(dev)) 1013 return 0; 1014 1015 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1016 if (!save_state) { 1017 pci_err(dev, "buffer not found in %s\n", __func__); 1018 return -ENOMEM; 1019 } 1020 1021 cap = (u16 *)&save_state->cap.data[0]; 1022 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1023 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1024 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1025 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1029 1030 return 0; 1031 } 1032 1033 static void pci_restore_pcie_state(struct pci_dev *dev) 1034 { 1035 int i = 0; 1036 struct pci_cap_saved_state *save_state; 1037 u16 *cap; 1038 1039 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1040 if (!save_state) 1041 return; 1042 1043 cap = (u16 *)&save_state->cap.data[0]; 1044 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1045 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1046 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1047 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1051 } 1052 1053 1054 static int pci_save_pcix_state(struct pci_dev *dev) 1055 { 1056 int pos; 1057 struct pci_cap_saved_state *save_state; 1058 1059 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1060 if (!pos) 1061 return 0; 1062 1063 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1064 if (!save_state) { 1065 pci_err(dev, "buffer not found in %s\n", __func__); 1066 return -ENOMEM; 1067 } 1068 1069 pci_read_config_word(dev, pos + PCI_X_CMD, 1070 (u16 *)save_state->cap.data); 1071 1072 return 0; 1073 } 1074 1075 static void pci_restore_pcix_state(struct pci_dev *dev) 1076 { 1077 int i = 0, pos; 1078 struct pci_cap_saved_state *save_state; 1079 u16 *cap; 1080 1081 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1082 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1083 if (!save_state || !pos) 1084 return; 1085 cap = (u16 *)&save_state->cap.data[0]; 1086 1087 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1088 } 1089 1090 1091 /** 1092 * pci_save_state - save the PCI configuration space of a device before suspending 1093 * @dev: - PCI device that we're dealing with 1094 */ 1095 int pci_save_state(struct pci_dev *dev) 1096 { 1097 int i; 1098 /* XXX: 100% dword access ok here? */ 1099 for (i = 0; i < 16; i++) 1100 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1101 dev->state_saved = true; 1102 1103 i = pci_save_pcie_state(dev); 1104 if (i != 0) 1105 return i; 1106 1107 i = pci_save_pcix_state(dev); 1108 if (i != 0) 1109 return i; 1110 1111 return pci_save_vc_state(dev); 1112 } 1113 EXPORT_SYMBOL(pci_save_state); 1114 1115 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1116 u32 saved_val, int retry) 1117 { 1118 u32 val; 1119 1120 pci_read_config_dword(pdev, offset, &val); 1121 if (val == saved_val) 1122 return; 1123 1124 for (;;) { 1125 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1126 offset, val, saved_val); 1127 pci_write_config_dword(pdev, offset, saved_val); 1128 if (retry-- <= 0) 1129 return; 1130 1131 pci_read_config_dword(pdev, offset, &val); 1132 if (val == saved_val) 1133 return; 1134 1135 mdelay(1); 1136 } 1137 } 1138 1139 static void pci_restore_config_space_range(struct pci_dev *pdev, 1140 int start, int end, int retry) 1141 { 1142 int index; 1143 1144 for (index = end; index >= start; index--) 1145 pci_restore_config_dword(pdev, 4 * index, 1146 pdev->saved_config_space[index], 1147 retry); 1148 } 1149 1150 static void pci_restore_config_space(struct pci_dev *pdev) 1151 { 1152 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1153 pci_restore_config_space_range(pdev, 10, 15, 0); 1154 /* Restore BARs before the command register. */ 1155 pci_restore_config_space_range(pdev, 4, 9, 10); 1156 pci_restore_config_space_range(pdev, 0, 3, 0); 1157 } else { 1158 pci_restore_config_space_range(pdev, 0, 15, 0); 1159 } 1160 } 1161 1162 /** 1163 * pci_restore_state - Restore the saved state of a PCI device 1164 * @dev: - PCI device that we're dealing with 1165 */ 1166 void pci_restore_state(struct pci_dev *dev) 1167 { 1168 if (!dev->state_saved) 1169 return; 1170 1171 /* PCI Express register must be restored first */ 1172 pci_restore_pcie_state(dev); 1173 pci_restore_pasid_state(dev); 1174 pci_restore_pri_state(dev); 1175 pci_restore_ats_state(dev); 1176 pci_restore_vc_state(dev); 1177 1178 pci_cleanup_aer_error_status_regs(dev); 1179 1180 pci_restore_config_space(dev); 1181 1182 pci_restore_pcix_state(dev); 1183 pci_restore_msi_state(dev); 1184 1185 /* Restore ACS and IOV configuration state */ 1186 pci_enable_acs(dev); 1187 pci_restore_iov_state(dev); 1188 1189 dev->state_saved = false; 1190 } 1191 EXPORT_SYMBOL(pci_restore_state); 1192 1193 struct pci_saved_state { 1194 u32 config_space[16]; 1195 struct pci_cap_saved_data cap[0]; 1196 }; 1197 1198 /** 1199 * pci_store_saved_state - Allocate and return an opaque struct containing 1200 * the device saved state. 1201 * @dev: PCI device that we're dealing with 1202 * 1203 * Return NULL if no state or error. 1204 */ 1205 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1206 { 1207 struct pci_saved_state *state; 1208 struct pci_cap_saved_state *tmp; 1209 struct pci_cap_saved_data *cap; 1210 size_t size; 1211 1212 if (!dev->state_saved) 1213 return NULL; 1214 1215 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1216 1217 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1218 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1219 1220 state = kzalloc(size, GFP_KERNEL); 1221 if (!state) 1222 return NULL; 1223 1224 memcpy(state->config_space, dev->saved_config_space, 1225 sizeof(state->config_space)); 1226 1227 cap = state->cap; 1228 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1229 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1230 memcpy(cap, &tmp->cap, len); 1231 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1232 } 1233 /* Empty cap_save terminates list */ 1234 1235 return state; 1236 } 1237 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1238 1239 /** 1240 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1241 * @dev: PCI device that we're dealing with 1242 * @state: Saved state returned from pci_store_saved_state() 1243 */ 1244 int pci_load_saved_state(struct pci_dev *dev, 1245 struct pci_saved_state *state) 1246 { 1247 struct pci_cap_saved_data *cap; 1248 1249 dev->state_saved = false; 1250 1251 if (!state) 1252 return 0; 1253 1254 memcpy(dev->saved_config_space, state->config_space, 1255 sizeof(state->config_space)); 1256 1257 cap = state->cap; 1258 while (cap->size) { 1259 struct pci_cap_saved_state *tmp; 1260 1261 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1262 if (!tmp || tmp->cap.size != cap->size) 1263 return -EINVAL; 1264 1265 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1266 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1267 sizeof(struct pci_cap_saved_data) + cap->size); 1268 } 1269 1270 dev->state_saved = true; 1271 return 0; 1272 } 1273 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1274 1275 /** 1276 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1277 * and free the memory allocated for it. 1278 * @dev: PCI device that we're dealing with 1279 * @state: Pointer to saved state returned from pci_store_saved_state() 1280 */ 1281 int pci_load_and_free_saved_state(struct pci_dev *dev, 1282 struct pci_saved_state **state) 1283 { 1284 int ret = pci_load_saved_state(dev, *state); 1285 kfree(*state); 1286 *state = NULL; 1287 return ret; 1288 } 1289 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1290 1291 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1292 { 1293 return pci_enable_resources(dev, bars); 1294 } 1295 1296 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1297 { 1298 int err; 1299 struct pci_dev *bridge; 1300 u16 cmd; 1301 u8 pin; 1302 1303 err = pci_set_power_state(dev, PCI_D0); 1304 if (err < 0 && err != -EIO) 1305 return err; 1306 1307 bridge = pci_upstream_bridge(dev); 1308 if (bridge) 1309 pcie_aspm_powersave_config_link(bridge); 1310 1311 err = pcibios_enable_device(dev, bars); 1312 if (err < 0) 1313 return err; 1314 pci_fixup_device(pci_fixup_enable, dev); 1315 1316 if (dev->msi_enabled || dev->msix_enabled) 1317 return 0; 1318 1319 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1320 if (pin) { 1321 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1322 if (cmd & PCI_COMMAND_INTX_DISABLE) 1323 pci_write_config_word(dev, PCI_COMMAND, 1324 cmd & ~PCI_COMMAND_INTX_DISABLE); 1325 } 1326 1327 return 0; 1328 } 1329 1330 /** 1331 * pci_reenable_device - Resume abandoned device 1332 * @dev: PCI device to be resumed 1333 * 1334 * Note this function is a backend of pci_default_resume and is not supposed 1335 * to be called by normal code, write proper resume handler and use it instead. 1336 */ 1337 int pci_reenable_device(struct pci_dev *dev) 1338 { 1339 if (pci_is_enabled(dev)) 1340 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1341 return 0; 1342 } 1343 EXPORT_SYMBOL(pci_reenable_device); 1344 1345 static void pci_enable_bridge(struct pci_dev *dev) 1346 { 1347 struct pci_dev *bridge; 1348 int retval; 1349 1350 bridge = pci_upstream_bridge(dev); 1351 if (bridge) 1352 pci_enable_bridge(bridge); 1353 1354 if (pci_is_enabled(dev)) { 1355 if (!dev->is_busmaster) 1356 pci_set_master(dev); 1357 return; 1358 } 1359 1360 retval = pci_enable_device(dev); 1361 if (retval) 1362 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1363 retval); 1364 pci_set_master(dev); 1365 } 1366 1367 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1368 { 1369 struct pci_dev *bridge; 1370 int err; 1371 int i, bars = 0; 1372 1373 /* 1374 * Power state could be unknown at this point, either due to a fresh 1375 * boot or a device removal call. So get the current power state 1376 * so that things like MSI message writing will behave as expected 1377 * (e.g. if the device really is in D0 at enable time). 1378 */ 1379 if (dev->pm_cap) { 1380 u16 pmcsr; 1381 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1382 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1383 } 1384 1385 if (atomic_inc_return(&dev->enable_cnt) > 1) 1386 return 0; /* already enabled */ 1387 1388 bridge = pci_upstream_bridge(dev); 1389 if (bridge) 1390 pci_enable_bridge(bridge); 1391 1392 /* only skip sriov related */ 1393 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1394 if (dev->resource[i].flags & flags) 1395 bars |= (1 << i); 1396 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1397 if (dev->resource[i].flags & flags) 1398 bars |= (1 << i); 1399 1400 err = do_pci_enable_device(dev, bars); 1401 if (err < 0) 1402 atomic_dec(&dev->enable_cnt); 1403 return err; 1404 } 1405 1406 /** 1407 * pci_enable_device_io - Initialize a device for use with IO space 1408 * @dev: PCI device to be initialized 1409 * 1410 * Initialize device before it's used by a driver. Ask low-level code 1411 * to enable I/O resources. Wake up the device if it was suspended. 1412 * Beware, this function can fail. 1413 */ 1414 int pci_enable_device_io(struct pci_dev *dev) 1415 { 1416 return pci_enable_device_flags(dev, IORESOURCE_IO); 1417 } 1418 EXPORT_SYMBOL(pci_enable_device_io); 1419 1420 /** 1421 * pci_enable_device_mem - Initialize a device for use with Memory space 1422 * @dev: PCI device to be initialized 1423 * 1424 * Initialize device before it's used by a driver. Ask low-level code 1425 * to enable Memory resources. Wake up the device if it was suspended. 1426 * Beware, this function can fail. 1427 */ 1428 int pci_enable_device_mem(struct pci_dev *dev) 1429 { 1430 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1431 } 1432 EXPORT_SYMBOL(pci_enable_device_mem); 1433 1434 /** 1435 * pci_enable_device - Initialize device before it's used by a driver. 1436 * @dev: PCI device to be initialized 1437 * 1438 * Initialize device before it's used by a driver. Ask low-level code 1439 * to enable I/O and memory. Wake up the device if it was suspended. 1440 * Beware, this function can fail. 1441 * 1442 * Note we don't actually enable the device many times if we call 1443 * this function repeatedly (we just increment the count). 1444 */ 1445 int pci_enable_device(struct pci_dev *dev) 1446 { 1447 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1448 } 1449 EXPORT_SYMBOL(pci_enable_device); 1450 1451 /* 1452 * Managed PCI resources. This manages device on/off, intx/msi/msix 1453 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1454 * there's no need to track it separately. pci_devres is initialized 1455 * when a device is enabled using managed PCI device enable interface. 1456 */ 1457 struct pci_devres { 1458 unsigned int enabled:1; 1459 unsigned int pinned:1; 1460 unsigned int orig_intx:1; 1461 unsigned int restore_intx:1; 1462 unsigned int mwi:1; 1463 u32 region_mask; 1464 }; 1465 1466 static void pcim_release(struct device *gendev, void *res) 1467 { 1468 struct pci_dev *dev = to_pci_dev(gendev); 1469 struct pci_devres *this = res; 1470 int i; 1471 1472 if (dev->msi_enabled) 1473 pci_disable_msi(dev); 1474 if (dev->msix_enabled) 1475 pci_disable_msix(dev); 1476 1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1478 if (this->region_mask & (1 << i)) 1479 pci_release_region(dev, i); 1480 1481 if (this->mwi) 1482 pci_clear_mwi(dev); 1483 1484 if (this->restore_intx) 1485 pci_intx(dev, this->orig_intx); 1486 1487 if (this->enabled && !this->pinned) 1488 pci_disable_device(dev); 1489 } 1490 1491 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1492 { 1493 struct pci_devres *dr, *new_dr; 1494 1495 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1496 if (dr) 1497 return dr; 1498 1499 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1500 if (!new_dr) 1501 return NULL; 1502 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1503 } 1504 1505 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1506 { 1507 if (pci_is_managed(pdev)) 1508 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1509 return NULL; 1510 } 1511 1512 /** 1513 * pcim_enable_device - Managed pci_enable_device() 1514 * @pdev: PCI device to be initialized 1515 * 1516 * Managed pci_enable_device(). 1517 */ 1518 int pcim_enable_device(struct pci_dev *pdev) 1519 { 1520 struct pci_devres *dr; 1521 int rc; 1522 1523 dr = get_pci_dr(pdev); 1524 if (unlikely(!dr)) 1525 return -ENOMEM; 1526 if (dr->enabled) 1527 return 0; 1528 1529 rc = pci_enable_device(pdev); 1530 if (!rc) { 1531 pdev->is_managed = 1; 1532 dr->enabled = 1; 1533 } 1534 return rc; 1535 } 1536 EXPORT_SYMBOL(pcim_enable_device); 1537 1538 /** 1539 * pcim_pin_device - Pin managed PCI device 1540 * @pdev: PCI device to pin 1541 * 1542 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1543 * driver detach. @pdev must have been enabled with 1544 * pcim_enable_device(). 1545 */ 1546 void pcim_pin_device(struct pci_dev *pdev) 1547 { 1548 struct pci_devres *dr; 1549 1550 dr = find_pci_dr(pdev); 1551 WARN_ON(!dr || !dr->enabled); 1552 if (dr) 1553 dr->pinned = 1; 1554 } 1555 EXPORT_SYMBOL(pcim_pin_device); 1556 1557 /* 1558 * pcibios_add_device - provide arch specific hooks when adding device dev 1559 * @dev: the PCI device being added 1560 * 1561 * Permits the platform to provide architecture specific functionality when 1562 * devices are added. This is the default implementation. Architecture 1563 * implementations can override this. 1564 */ 1565 int __weak pcibios_add_device(struct pci_dev *dev) 1566 { 1567 return 0; 1568 } 1569 1570 /** 1571 * pcibios_release_device - provide arch specific hooks when releasing device dev 1572 * @dev: the PCI device being released 1573 * 1574 * Permits the platform to provide architecture specific functionality when 1575 * devices are released. This is the default implementation. Architecture 1576 * implementations can override this. 1577 */ 1578 void __weak pcibios_release_device(struct pci_dev *dev) {} 1579 1580 /** 1581 * pcibios_disable_device - disable arch specific PCI resources for device dev 1582 * @dev: the PCI device to disable 1583 * 1584 * Disables architecture specific PCI resources for the device. This 1585 * is the default implementation. Architecture implementations can 1586 * override this. 1587 */ 1588 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1589 1590 /** 1591 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1592 * @irq: ISA IRQ to penalize 1593 * @active: IRQ active or not 1594 * 1595 * Permits the platform to provide architecture-specific functionality when 1596 * penalizing ISA IRQs. This is the default implementation. Architecture 1597 * implementations can override this. 1598 */ 1599 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1600 1601 static void do_pci_disable_device(struct pci_dev *dev) 1602 { 1603 u16 pci_command; 1604 1605 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1606 if (pci_command & PCI_COMMAND_MASTER) { 1607 pci_command &= ~PCI_COMMAND_MASTER; 1608 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1609 } 1610 1611 pcibios_disable_device(dev); 1612 } 1613 1614 /** 1615 * pci_disable_enabled_device - Disable device without updating enable_cnt 1616 * @dev: PCI device to disable 1617 * 1618 * NOTE: This function is a backend of PCI power management routines and is 1619 * not supposed to be called drivers. 1620 */ 1621 void pci_disable_enabled_device(struct pci_dev *dev) 1622 { 1623 if (pci_is_enabled(dev)) 1624 do_pci_disable_device(dev); 1625 } 1626 1627 /** 1628 * pci_disable_device - Disable PCI device after use 1629 * @dev: PCI device to be disabled 1630 * 1631 * Signal to the system that the PCI device is not in use by the system 1632 * anymore. This only involves disabling PCI bus-mastering, if active. 1633 * 1634 * Note we don't actually disable the device until all callers of 1635 * pci_enable_device() have called pci_disable_device(). 1636 */ 1637 void pci_disable_device(struct pci_dev *dev) 1638 { 1639 struct pci_devres *dr; 1640 1641 dr = find_pci_dr(dev); 1642 if (dr) 1643 dr->enabled = 0; 1644 1645 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1646 "disabling already-disabled device"); 1647 1648 if (atomic_dec_return(&dev->enable_cnt) != 0) 1649 return; 1650 1651 do_pci_disable_device(dev); 1652 1653 dev->is_busmaster = 0; 1654 } 1655 EXPORT_SYMBOL(pci_disable_device); 1656 1657 /** 1658 * pcibios_set_pcie_reset_state - set reset state for device dev 1659 * @dev: the PCIe device reset 1660 * @state: Reset state to enter into 1661 * 1662 * 1663 * Sets the PCIe reset state for the device. This is the default 1664 * implementation. Architecture implementations can override this. 1665 */ 1666 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1667 enum pcie_reset_state state) 1668 { 1669 return -EINVAL; 1670 } 1671 1672 /** 1673 * pci_set_pcie_reset_state - set reset state for device dev 1674 * @dev: the PCIe device reset 1675 * @state: Reset state to enter into 1676 * 1677 * 1678 * Sets the PCI reset state for the device. 1679 */ 1680 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1681 { 1682 return pcibios_set_pcie_reset_state(dev, state); 1683 } 1684 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1685 1686 /** 1687 * pci_check_pme_status - Check if given device has generated PME. 1688 * @dev: Device to check. 1689 * 1690 * Check the PME status of the device and if set, clear it and clear PME enable 1691 * (if set). Return 'true' if PME status and PME enable were both set or 1692 * 'false' otherwise. 1693 */ 1694 bool pci_check_pme_status(struct pci_dev *dev) 1695 { 1696 int pmcsr_pos; 1697 u16 pmcsr; 1698 bool ret = false; 1699 1700 if (!dev->pm_cap) 1701 return false; 1702 1703 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1704 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1705 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1706 return false; 1707 1708 /* Clear PME status. */ 1709 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1710 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1711 /* Disable PME to avoid interrupt flood. */ 1712 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1713 ret = true; 1714 } 1715 1716 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1717 1718 return ret; 1719 } 1720 1721 /** 1722 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1723 * @dev: Device to handle. 1724 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1725 * 1726 * Check if @dev has generated PME and queue a resume request for it in that 1727 * case. 1728 */ 1729 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1730 { 1731 if (pme_poll_reset && dev->pme_poll) 1732 dev->pme_poll = false; 1733 1734 if (pci_check_pme_status(dev)) { 1735 pci_wakeup_event(dev); 1736 pm_request_resume(&dev->dev); 1737 } 1738 return 0; 1739 } 1740 1741 /** 1742 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1743 * @bus: Top bus of the subtree to walk. 1744 */ 1745 void pci_pme_wakeup_bus(struct pci_bus *bus) 1746 { 1747 if (bus) 1748 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1749 } 1750 1751 1752 /** 1753 * pci_pme_capable - check the capability of PCI device to generate PME# 1754 * @dev: PCI device to handle. 1755 * @state: PCI state from which device will issue PME#. 1756 */ 1757 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1758 { 1759 if (!dev->pm_cap) 1760 return false; 1761 1762 return !!(dev->pme_support & (1 << state)); 1763 } 1764 EXPORT_SYMBOL(pci_pme_capable); 1765 1766 static void pci_pme_list_scan(struct work_struct *work) 1767 { 1768 struct pci_pme_device *pme_dev, *n; 1769 1770 mutex_lock(&pci_pme_list_mutex); 1771 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1772 if (pme_dev->dev->pme_poll) { 1773 struct pci_dev *bridge; 1774 1775 bridge = pme_dev->dev->bus->self; 1776 /* 1777 * If bridge is in low power state, the 1778 * configuration space of subordinate devices 1779 * may be not accessible 1780 */ 1781 if (bridge && bridge->current_state != PCI_D0) 1782 continue; 1783 pci_pme_wakeup(pme_dev->dev, NULL); 1784 } else { 1785 list_del(&pme_dev->list); 1786 kfree(pme_dev); 1787 } 1788 } 1789 if (!list_empty(&pci_pme_list)) 1790 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1791 msecs_to_jiffies(PME_TIMEOUT)); 1792 mutex_unlock(&pci_pme_list_mutex); 1793 } 1794 1795 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1796 { 1797 u16 pmcsr; 1798 1799 if (!dev->pme_support) 1800 return; 1801 1802 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1803 /* Clear PME_Status by writing 1 to it and enable PME# */ 1804 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1805 if (!enable) 1806 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1807 1808 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1809 } 1810 1811 /** 1812 * pci_pme_restore - Restore PME configuration after config space restore. 1813 * @dev: PCI device to update. 1814 */ 1815 void pci_pme_restore(struct pci_dev *dev) 1816 { 1817 u16 pmcsr; 1818 1819 if (!dev->pme_support) 1820 return; 1821 1822 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1823 if (dev->wakeup_prepared) { 1824 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1825 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1826 } else { 1827 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1828 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1829 } 1830 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1831 } 1832 1833 /** 1834 * pci_pme_active - enable or disable PCI device's PME# function 1835 * @dev: PCI device to handle. 1836 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1837 * 1838 * The caller must verify that the device is capable of generating PME# before 1839 * calling this function with @enable equal to 'true'. 1840 */ 1841 void pci_pme_active(struct pci_dev *dev, bool enable) 1842 { 1843 __pci_pme_active(dev, enable); 1844 1845 /* 1846 * PCI (as opposed to PCIe) PME requires that the device have 1847 * its PME# line hooked up correctly. Not all hardware vendors 1848 * do this, so the PME never gets delivered and the device 1849 * remains asleep. The easiest way around this is to 1850 * periodically walk the list of suspended devices and check 1851 * whether any have their PME flag set. The assumption is that 1852 * we'll wake up often enough anyway that this won't be a huge 1853 * hit, and the power savings from the devices will still be a 1854 * win. 1855 * 1856 * Although PCIe uses in-band PME message instead of PME# line 1857 * to report PME, PME does not work for some PCIe devices in 1858 * reality. For example, there are devices that set their PME 1859 * status bits, but don't really bother to send a PME message; 1860 * there are PCI Express Root Ports that don't bother to 1861 * trigger interrupts when they receive PME messages from the 1862 * devices below. So PME poll is used for PCIe devices too. 1863 */ 1864 1865 if (dev->pme_poll) { 1866 struct pci_pme_device *pme_dev; 1867 if (enable) { 1868 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1869 GFP_KERNEL); 1870 if (!pme_dev) { 1871 pci_warn(dev, "can't enable PME#\n"); 1872 return; 1873 } 1874 pme_dev->dev = dev; 1875 mutex_lock(&pci_pme_list_mutex); 1876 list_add(&pme_dev->list, &pci_pme_list); 1877 if (list_is_singular(&pci_pme_list)) 1878 queue_delayed_work(system_freezable_wq, 1879 &pci_pme_work, 1880 msecs_to_jiffies(PME_TIMEOUT)); 1881 mutex_unlock(&pci_pme_list_mutex); 1882 } else { 1883 mutex_lock(&pci_pme_list_mutex); 1884 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1885 if (pme_dev->dev == dev) { 1886 list_del(&pme_dev->list); 1887 kfree(pme_dev); 1888 break; 1889 } 1890 } 1891 mutex_unlock(&pci_pme_list_mutex); 1892 } 1893 } 1894 1895 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1896 } 1897 EXPORT_SYMBOL(pci_pme_active); 1898 1899 /** 1900 * pci_enable_wake - enable PCI device as wakeup event source 1901 * @dev: PCI device affected 1902 * @state: PCI state from which device will issue wakeup events 1903 * @enable: True to enable event generation; false to disable 1904 * 1905 * This enables the device as a wakeup event source, or disables it. 1906 * When such events involves platform-specific hooks, those hooks are 1907 * called automatically by this routine. 1908 * 1909 * Devices with legacy power management (no standard PCI PM capabilities) 1910 * always require such platform hooks. 1911 * 1912 * RETURN VALUE: 1913 * 0 is returned on success 1914 * -EINVAL is returned if device is not supposed to wake up the system 1915 * Error code depending on the platform is returned if both the platform and 1916 * the native mechanism fail to enable the generation of wake-up events 1917 */ 1918 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1919 { 1920 int ret = 0; 1921 1922 /* 1923 * Bridges can only signal wakeup on behalf of subordinate devices, 1924 * but that is set up elsewhere, so skip them. 1925 */ 1926 if (pci_has_subordinate(dev)) 1927 return 0; 1928 1929 /* Don't do the same thing twice in a row for one device. */ 1930 if (!!enable == !!dev->wakeup_prepared) 1931 return 0; 1932 1933 /* 1934 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1935 * Anderson we should be doing PME# wake enable followed by ACPI wake 1936 * enable. To disable wake-up we call the platform first, for symmetry. 1937 */ 1938 1939 if (enable) { 1940 int error; 1941 1942 if (pci_pme_capable(dev, state)) 1943 pci_pme_active(dev, true); 1944 else 1945 ret = 1; 1946 error = platform_pci_set_wakeup(dev, true); 1947 if (ret) 1948 ret = error; 1949 if (!ret) 1950 dev->wakeup_prepared = true; 1951 } else { 1952 platform_pci_set_wakeup(dev, false); 1953 pci_pme_active(dev, false); 1954 dev->wakeup_prepared = false; 1955 } 1956 1957 return ret; 1958 } 1959 EXPORT_SYMBOL(pci_enable_wake); 1960 1961 /** 1962 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1963 * @dev: PCI device to prepare 1964 * @enable: True to enable wake-up event generation; false to disable 1965 * 1966 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1967 * and this function allows them to set that up cleanly - pci_enable_wake() 1968 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1969 * ordering constraints. 1970 * 1971 * This function only returns error code if the device is not capable of 1972 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1973 * enable wake-up power for it. 1974 */ 1975 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1976 { 1977 return pci_pme_capable(dev, PCI_D3cold) ? 1978 pci_enable_wake(dev, PCI_D3cold, enable) : 1979 pci_enable_wake(dev, PCI_D3hot, enable); 1980 } 1981 EXPORT_SYMBOL(pci_wake_from_d3); 1982 1983 /** 1984 * pci_target_state - find an appropriate low power state for a given PCI dev 1985 * @dev: PCI device 1986 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 1987 * 1988 * Use underlying platform code to find a supported low power state for @dev. 1989 * If the platform can't manage @dev, return the deepest state from which it 1990 * can generate wake events, based on any available PME info. 1991 */ 1992 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 1993 { 1994 pci_power_t target_state = PCI_D3hot; 1995 1996 if (platform_pci_power_manageable(dev)) { 1997 /* 1998 * Call the platform to choose the target state of the device 1999 * and enable wake-up from this state if supported. 2000 */ 2001 pci_power_t state = platform_pci_choose_state(dev); 2002 2003 switch (state) { 2004 case PCI_POWER_ERROR: 2005 case PCI_UNKNOWN: 2006 break; 2007 case PCI_D1: 2008 case PCI_D2: 2009 if (pci_no_d1d2(dev)) 2010 break; 2011 default: 2012 target_state = state; 2013 } 2014 2015 return target_state; 2016 } 2017 2018 if (!dev->pm_cap) 2019 target_state = PCI_D0; 2020 2021 /* 2022 * If the device is in D3cold even though it's not power-manageable by 2023 * the platform, it may have been powered down by non-standard means. 2024 * Best to let it slumber. 2025 */ 2026 if (dev->current_state == PCI_D3cold) 2027 target_state = PCI_D3cold; 2028 2029 if (wakeup) { 2030 /* 2031 * Find the deepest state from which the device can generate 2032 * wake-up events, make it the target state and enable device 2033 * to generate PME#. 2034 */ 2035 if (dev->pme_support) { 2036 while (target_state 2037 && !(dev->pme_support & (1 << target_state))) 2038 target_state--; 2039 } 2040 } 2041 2042 return target_state; 2043 } 2044 2045 /** 2046 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2047 * @dev: Device to handle. 2048 * 2049 * Choose the power state appropriate for the device depending on whether 2050 * it can wake up the system and/or is power manageable by the platform 2051 * (PCI_D3hot is the default) and put the device into that state. 2052 */ 2053 int pci_prepare_to_sleep(struct pci_dev *dev) 2054 { 2055 bool wakeup = device_may_wakeup(&dev->dev); 2056 pci_power_t target_state = pci_target_state(dev, wakeup); 2057 int error; 2058 2059 if (target_state == PCI_POWER_ERROR) 2060 return -EIO; 2061 2062 pci_enable_wake(dev, target_state, wakeup); 2063 2064 error = pci_set_power_state(dev, target_state); 2065 2066 if (error) 2067 pci_enable_wake(dev, target_state, false); 2068 2069 return error; 2070 } 2071 EXPORT_SYMBOL(pci_prepare_to_sleep); 2072 2073 /** 2074 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2075 * @dev: Device to handle. 2076 * 2077 * Disable device's system wake-up capability and put it into D0. 2078 */ 2079 int pci_back_from_sleep(struct pci_dev *dev) 2080 { 2081 pci_enable_wake(dev, PCI_D0, false); 2082 return pci_set_power_state(dev, PCI_D0); 2083 } 2084 EXPORT_SYMBOL(pci_back_from_sleep); 2085 2086 /** 2087 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2088 * @dev: PCI device being suspended. 2089 * 2090 * Prepare @dev to generate wake-up events at run time and put it into a low 2091 * power state. 2092 */ 2093 int pci_finish_runtime_suspend(struct pci_dev *dev) 2094 { 2095 pci_power_t target_state; 2096 int error; 2097 2098 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2099 if (target_state == PCI_POWER_ERROR) 2100 return -EIO; 2101 2102 dev->runtime_d3cold = target_state == PCI_D3cold; 2103 2104 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2105 2106 error = pci_set_power_state(dev, target_state); 2107 2108 if (error) { 2109 pci_enable_wake(dev, target_state, false); 2110 dev->runtime_d3cold = false; 2111 } 2112 2113 return error; 2114 } 2115 2116 /** 2117 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2118 * @dev: Device to check. 2119 * 2120 * Return true if the device itself is capable of generating wake-up events 2121 * (through the platform or using the native PCIe PME) or if the device supports 2122 * PME and one of its upstream bridges can generate wake-up events. 2123 */ 2124 bool pci_dev_run_wake(struct pci_dev *dev) 2125 { 2126 struct pci_bus *bus = dev->bus; 2127 2128 if (device_can_wakeup(&dev->dev)) 2129 return true; 2130 2131 if (!dev->pme_support) 2132 return false; 2133 2134 /* PME-capable in principle, but not from the target power state */ 2135 if (!pci_pme_capable(dev, pci_target_state(dev, false))) 2136 return false; 2137 2138 while (bus->parent) { 2139 struct pci_dev *bridge = bus->self; 2140 2141 if (device_can_wakeup(&bridge->dev)) 2142 return true; 2143 2144 bus = bus->parent; 2145 } 2146 2147 /* We have reached the root bus. */ 2148 if (bus->bridge) 2149 return device_can_wakeup(bus->bridge); 2150 2151 return false; 2152 } 2153 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2154 2155 /** 2156 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2157 * @pci_dev: Device to check. 2158 * 2159 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2160 * reconfigured due to wakeup settings difference between system and runtime 2161 * suspend and the current power state of it is suitable for the upcoming 2162 * (system) transition. 2163 * 2164 * If the device is not configured for system wakeup, disable PME for it before 2165 * returning 'true' to prevent it from waking up the system unnecessarily. 2166 */ 2167 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2168 { 2169 struct device *dev = &pci_dev->dev; 2170 bool wakeup = device_may_wakeup(dev); 2171 2172 if (!pm_runtime_suspended(dev) 2173 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2174 || platform_pci_need_resume(pci_dev)) 2175 return false; 2176 2177 /* 2178 * At this point the device is good to go unless it's been configured 2179 * to generate PME at the runtime suspend time, but it is not supposed 2180 * to wake up the system. In that case, simply disable PME for it 2181 * (it will have to be re-enabled on exit from system resume). 2182 * 2183 * If the device's power state is D3cold and the platform check above 2184 * hasn't triggered, the device's configuration is suitable and we don't 2185 * need to manipulate it at all. 2186 */ 2187 spin_lock_irq(&dev->power.lock); 2188 2189 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2190 !wakeup) 2191 __pci_pme_active(pci_dev, false); 2192 2193 spin_unlock_irq(&dev->power.lock); 2194 return true; 2195 } 2196 2197 /** 2198 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2199 * @pci_dev: Device to handle. 2200 * 2201 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2202 * it might have been disabled during the prepare phase of system suspend if 2203 * the device was not configured for system wakeup. 2204 */ 2205 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2206 { 2207 struct device *dev = &pci_dev->dev; 2208 2209 if (!pci_dev_run_wake(pci_dev)) 2210 return; 2211 2212 spin_lock_irq(&dev->power.lock); 2213 2214 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2215 __pci_pme_active(pci_dev, true); 2216 2217 spin_unlock_irq(&dev->power.lock); 2218 } 2219 2220 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2221 { 2222 struct device *dev = &pdev->dev; 2223 struct device *parent = dev->parent; 2224 2225 if (parent) 2226 pm_runtime_get_sync(parent); 2227 pm_runtime_get_noresume(dev); 2228 /* 2229 * pdev->current_state is set to PCI_D3cold during suspending, 2230 * so wait until suspending completes 2231 */ 2232 pm_runtime_barrier(dev); 2233 /* 2234 * Only need to resume devices in D3cold, because config 2235 * registers are still accessible for devices suspended but 2236 * not in D3cold. 2237 */ 2238 if (pdev->current_state == PCI_D3cold) 2239 pm_runtime_resume(dev); 2240 } 2241 2242 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2243 { 2244 struct device *dev = &pdev->dev; 2245 struct device *parent = dev->parent; 2246 2247 pm_runtime_put(dev); 2248 if (parent) 2249 pm_runtime_put_sync(parent); 2250 } 2251 2252 /** 2253 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2254 * @bridge: Bridge to check 2255 * 2256 * This function checks if it is possible to move the bridge to D3. 2257 * Currently we only allow D3 for recent enough PCIe ports. 2258 */ 2259 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2260 { 2261 if (!pci_is_pcie(bridge)) 2262 return false; 2263 2264 switch (pci_pcie_type(bridge)) { 2265 case PCI_EXP_TYPE_ROOT_PORT: 2266 case PCI_EXP_TYPE_UPSTREAM: 2267 case PCI_EXP_TYPE_DOWNSTREAM: 2268 if (pci_bridge_d3_disable) 2269 return false; 2270 2271 /* 2272 * Hotplug interrupts cannot be delivered if the link is down, 2273 * so parents of a hotplug port must stay awake. In addition, 2274 * hotplug ports handled by firmware in System Management Mode 2275 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2276 * For simplicity, disallow in general for now. 2277 */ 2278 if (bridge->is_hotplug_bridge) 2279 return false; 2280 2281 if (pci_bridge_d3_force) 2282 return true; 2283 2284 /* 2285 * It should be safe to put PCIe ports from 2015 or newer 2286 * to D3. 2287 */ 2288 if (dmi_get_bios_year() >= 2015) 2289 return true; 2290 break; 2291 } 2292 2293 return false; 2294 } 2295 2296 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2297 { 2298 bool *d3cold_ok = data; 2299 2300 if (/* The device needs to be allowed to go D3cold ... */ 2301 dev->no_d3cold || !dev->d3cold_allowed || 2302 2303 /* ... and if it is wakeup capable to do so from D3cold. */ 2304 (device_may_wakeup(&dev->dev) && 2305 !pci_pme_capable(dev, PCI_D3cold)) || 2306 2307 /* If it is a bridge it must be allowed to go to D3. */ 2308 !pci_power_manageable(dev)) 2309 2310 *d3cold_ok = false; 2311 2312 return !*d3cold_ok; 2313 } 2314 2315 /* 2316 * pci_bridge_d3_update - Update bridge D3 capabilities 2317 * @dev: PCI device which is changed 2318 * 2319 * Update upstream bridge PM capabilities accordingly depending on if the 2320 * device PM configuration was changed or the device is being removed. The 2321 * change is also propagated upstream. 2322 */ 2323 void pci_bridge_d3_update(struct pci_dev *dev) 2324 { 2325 bool remove = !device_is_registered(&dev->dev); 2326 struct pci_dev *bridge; 2327 bool d3cold_ok = true; 2328 2329 bridge = pci_upstream_bridge(dev); 2330 if (!bridge || !pci_bridge_d3_possible(bridge)) 2331 return; 2332 2333 /* 2334 * If D3 is currently allowed for the bridge, removing one of its 2335 * children won't change that. 2336 */ 2337 if (remove && bridge->bridge_d3) 2338 return; 2339 2340 /* 2341 * If D3 is currently allowed for the bridge and a child is added or 2342 * changed, disallowance of D3 can only be caused by that child, so 2343 * we only need to check that single device, not any of its siblings. 2344 * 2345 * If D3 is currently not allowed for the bridge, checking the device 2346 * first may allow us to skip checking its siblings. 2347 */ 2348 if (!remove) 2349 pci_dev_check_d3cold(dev, &d3cold_ok); 2350 2351 /* 2352 * If D3 is currently not allowed for the bridge, this may be caused 2353 * either by the device being changed/removed or any of its siblings, 2354 * so we need to go through all children to find out if one of them 2355 * continues to block D3. 2356 */ 2357 if (d3cold_ok && !bridge->bridge_d3) 2358 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2359 &d3cold_ok); 2360 2361 if (bridge->bridge_d3 != d3cold_ok) { 2362 bridge->bridge_d3 = d3cold_ok; 2363 /* Propagate change to upstream bridges */ 2364 pci_bridge_d3_update(bridge); 2365 } 2366 } 2367 2368 /** 2369 * pci_d3cold_enable - Enable D3cold for device 2370 * @dev: PCI device to handle 2371 * 2372 * This function can be used in drivers to enable D3cold from the device 2373 * they handle. It also updates upstream PCI bridge PM capabilities 2374 * accordingly. 2375 */ 2376 void pci_d3cold_enable(struct pci_dev *dev) 2377 { 2378 if (dev->no_d3cold) { 2379 dev->no_d3cold = false; 2380 pci_bridge_d3_update(dev); 2381 } 2382 } 2383 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2384 2385 /** 2386 * pci_d3cold_disable - Disable D3cold for device 2387 * @dev: PCI device to handle 2388 * 2389 * This function can be used in drivers to disable D3cold from the device 2390 * they handle. It also updates upstream PCI bridge PM capabilities 2391 * accordingly. 2392 */ 2393 void pci_d3cold_disable(struct pci_dev *dev) 2394 { 2395 if (!dev->no_d3cold) { 2396 dev->no_d3cold = true; 2397 pci_bridge_d3_update(dev); 2398 } 2399 } 2400 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2401 2402 /** 2403 * pci_pm_init - Initialize PM functions of given PCI device 2404 * @dev: PCI device to handle. 2405 */ 2406 void pci_pm_init(struct pci_dev *dev) 2407 { 2408 int pm; 2409 u16 pmc; 2410 2411 pm_runtime_forbid(&dev->dev); 2412 pm_runtime_set_active(&dev->dev); 2413 pm_runtime_enable(&dev->dev); 2414 device_enable_async_suspend(&dev->dev); 2415 dev->wakeup_prepared = false; 2416 2417 dev->pm_cap = 0; 2418 dev->pme_support = 0; 2419 2420 /* find PCI PM capability in list */ 2421 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2422 if (!pm) 2423 return; 2424 /* Check device's ability to generate PME# */ 2425 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2426 2427 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2428 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2429 pmc & PCI_PM_CAP_VER_MASK); 2430 return; 2431 } 2432 2433 dev->pm_cap = pm; 2434 dev->d3_delay = PCI_PM_D3_WAIT; 2435 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2436 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2437 dev->d3cold_allowed = true; 2438 2439 dev->d1_support = false; 2440 dev->d2_support = false; 2441 if (!pci_no_d1d2(dev)) { 2442 if (pmc & PCI_PM_CAP_D1) 2443 dev->d1_support = true; 2444 if (pmc & PCI_PM_CAP_D2) 2445 dev->d2_support = true; 2446 2447 if (dev->d1_support || dev->d2_support) 2448 pci_printk(KERN_DEBUG, dev, "supports%s%s\n", 2449 dev->d1_support ? " D1" : "", 2450 dev->d2_support ? " D2" : ""); 2451 } 2452 2453 pmc &= PCI_PM_CAP_PME_MASK; 2454 if (pmc) { 2455 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n", 2456 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2457 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2458 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2459 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2460 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2461 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2462 dev->pme_poll = true; 2463 /* 2464 * Make device's PM flags reflect the wake-up capability, but 2465 * let the user space enable it to wake up the system as needed. 2466 */ 2467 device_set_wakeup_capable(&dev->dev, true); 2468 /* Disable the PME# generation functionality */ 2469 pci_pme_active(dev, false); 2470 } 2471 } 2472 2473 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2474 { 2475 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2476 2477 switch (prop) { 2478 case PCI_EA_P_MEM: 2479 case PCI_EA_P_VF_MEM: 2480 flags |= IORESOURCE_MEM; 2481 break; 2482 case PCI_EA_P_MEM_PREFETCH: 2483 case PCI_EA_P_VF_MEM_PREFETCH: 2484 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2485 break; 2486 case PCI_EA_P_IO: 2487 flags |= IORESOURCE_IO; 2488 break; 2489 default: 2490 return 0; 2491 } 2492 2493 return flags; 2494 } 2495 2496 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2497 u8 prop) 2498 { 2499 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2500 return &dev->resource[bei]; 2501 #ifdef CONFIG_PCI_IOV 2502 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2503 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2504 return &dev->resource[PCI_IOV_RESOURCES + 2505 bei - PCI_EA_BEI_VF_BAR0]; 2506 #endif 2507 else if (bei == PCI_EA_BEI_ROM) 2508 return &dev->resource[PCI_ROM_RESOURCE]; 2509 else 2510 return NULL; 2511 } 2512 2513 /* Read an Enhanced Allocation (EA) entry */ 2514 static int pci_ea_read(struct pci_dev *dev, int offset) 2515 { 2516 struct resource *res; 2517 int ent_size, ent_offset = offset; 2518 resource_size_t start, end; 2519 unsigned long flags; 2520 u32 dw0, bei, base, max_offset; 2521 u8 prop; 2522 bool support_64 = (sizeof(resource_size_t) >= 8); 2523 2524 pci_read_config_dword(dev, ent_offset, &dw0); 2525 ent_offset += 4; 2526 2527 /* Entry size field indicates DWORDs after 1st */ 2528 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2529 2530 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2531 goto out; 2532 2533 bei = (dw0 & PCI_EA_BEI) >> 4; 2534 prop = (dw0 & PCI_EA_PP) >> 8; 2535 2536 /* 2537 * If the Property is in the reserved range, try the Secondary 2538 * Property instead. 2539 */ 2540 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2541 prop = (dw0 & PCI_EA_SP) >> 16; 2542 if (prop > PCI_EA_P_BRIDGE_IO) 2543 goto out; 2544 2545 res = pci_ea_get_resource(dev, bei, prop); 2546 if (!res) { 2547 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2548 goto out; 2549 } 2550 2551 flags = pci_ea_flags(dev, prop); 2552 if (!flags) { 2553 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2554 goto out; 2555 } 2556 2557 /* Read Base */ 2558 pci_read_config_dword(dev, ent_offset, &base); 2559 start = (base & PCI_EA_FIELD_MASK); 2560 ent_offset += 4; 2561 2562 /* Read MaxOffset */ 2563 pci_read_config_dword(dev, ent_offset, &max_offset); 2564 ent_offset += 4; 2565 2566 /* Read Base MSBs (if 64-bit entry) */ 2567 if (base & PCI_EA_IS_64) { 2568 u32 base_upper; 2569 2570 pci_read_config_dword(dev, ent_offset, &base_upper); 2571 ent_offset += 4; 2572 2573 flags |= IORESOURCE_MEM_64; 2574 2575 /* entry starts above 32-bit boundary, can't use */ 2576 if (!support_64 && base_upper) 2577 goto out; 2578 2579 if (support_64) 2580 start |= ((u64)base_upper << 32); 2581 } 2582 2583 end = start + (max_offset | 0x03); 2584 2585 /* Read MaxOffset MSBs (if 64-bit entry) */ 2586 if (max_offset & PCI_EA_IS_64) { 2587 u32 max_offset_upper; 2588 2589 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2590 ent_offset += 4; 2591 2592 flags |= IORESOURCE_MEM_64; 2593 2594 /* entry too big, can't use */ 2595 if (!support_64 && max_offset_upper) 2596 goto out; 2597 2598 if (support_64) 2599 end += ((u64)max_offset_upper << 32); 2600 } 2601 2602 if (end < start) { 2603 pci_err(dev, "EA Entry crosses address boundary\n"); 2604 goto out; 2605 } 2606 2607 if (ent_size != ent_offset - offset) { 2608 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2609 ent_size, ent_offset - offset); 2610 goto out; 2611 } 2612 2613 res->name = pci_name(dev); 2614 res->start = start; 2615 res->end = end; 2616 res->flags = flags; 2617 2618 if (bei <= PCI_EA_BEI_BAR5) 2619 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2620 bei, res, prop); 2621 else if (bei == PCI_EA_BEI_ROM) 2622 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2623 res, prop); 2624 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2625 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2626 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2627 else 2628 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2629 bei, res, prop); 2630 2631 out: 2632 return offset + ent_size; 2633 } 2634 2635 /* Enhanced Allocation Initialization */ 2636 void pci_ea_init(struct pci_dev *dev) 2637 { 2638 int ea; 2639 u8 num_ent; 2640 int offset; 2641 int i; 2642 2643 /* find PCI EA capability in list */ 2644 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2645 if (!ea) 2646 return; 2647 2648 /* determine the number of entries */ 2649 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2650 &num_ent); 2651 num_ent &= PCI_EA_NUM_ENT_MASK; 2652 2653 offset = ea + PCI_EA_FIRST_ENT; 2654 2655 /* Skip DWORD 2 for type 1 functions */ 2656 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2657 offset += 4; 2658 2659 /* parse each EA entry */ 2660 for (i = 0; i < num_ent; ++i) 2661 offset = pci_ea_read(dev, offset); 2662 } 2663 2664 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2665 struct pci_cap_saved_state *new_cap) 2666 { 2667 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2668 } 2669 2670 /** 2671 * _pci_add_cap_save_buffer - allocate buffer for saving given 2672 * capability registers 2673 * @dev: the PCI device 2674 * @cap: the capability to allocate the buffer for 2675 * @extended: Standard or Extended capability ID 2676 * @size: requested size of the buffer 2677 */ 2678 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2679 bool extended, unsigned int size) 2680 { 2681 int pos; 2682 struct pci_cap_saved_state *save_state; 2683 2684 if (extended) 2685 pos = pci_find_ext_capability(dev, cap); 2686 else 2687 pos = pci_find_capability(dev, cap); 2688 2689 if (!pos) 2690 return 0; 2691 2692 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2693 if (!save_state) 2694 return -ENOMEM; 2695 2696 save_state->cap.cap_nr = cap; 2697 save_state->cap.cap_extended = extended; 2698 save_state->cap.size = size; 2699 pci_add_saved_cap(dev, save_state); 2700 2701 return 0; 2702 } 2703 2704 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2705 { 2706 return _pci_add_cap_save_buffer(dev, cap, false, size); 2707 } 2708 2709 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2710 { 2711 return _pci_add_cap_save_buffer(dev, cap, true, size); 2712 } 2713 2714 /** 2715 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2716 * @dev: the PCI device 2717 */ 2718 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2719 { 2720 int error; 2721 2722 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2723 PCI_EXP_SAVE_REGS * sizeof(u16)); 2724 if (error) 2725 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 2726 2727 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2728 if (error) 2729 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 2730 2731 pci_allocate_vc_save_buffers(dev); 2732 } 2733 2734 void pci_free_cap_save_buffers(struct pci_dev *dev) 2735 { 2736 struct pci_cap_saved_state *tmp; 2737 struct hlist_node *n; 2738 2739 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2740 kfree(tmp); 2741 } 2742 2743 /** 2744 * pci_configure_ari - enable or disable ARI forwarding 2745 * @dev: the PCI device 2746 * 2747 * If @dev and its upstream bridge both support ARI, enable ARI in the 2748 * bridge. Otherwise, disable ARI in the bridge. 2749 */ 2750 void pci_configure_ari(struct pci_dev *dev) 2751 { 2752 u32 cap; 2753 struct pci_dev *bridge; 2754 2755 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2756 return; 2757 2758 bridge = dev->bus->self; 2759 if (!bridge) 2760 return; 2761 2762 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2763 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2764 return; 2765 2766 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2767 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2768 PCI_EXP_DEVCTL2_ARI); 2769 bridge->ari_enabled = 1; 2770 } else { 2771 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2772 PCI_EXP_DEVCTL2_ARI); 2773 bridge->ari_enabled = 0; 2774 } 2775 } 2776 2777 static int pci_acs_enable; 2778 2779 /** 2780 * pci_request_acs - ask for ACS to be enabled if supported 2781 */ 2782 void pci_request_acs(void) 2783 { 2784 pci_acs_enable = 1; 2785 } 2786 2787 /** 2788 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2789 * @dev: the PCI device 2790 */ 2791 static void pci_std_enable_acs(struct pci_dev *dev) 2792 { 2793 int pos; 2794 u16 cap; 2795 u16 ctrl; 2796 2797 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2798 if (!pos) 2799 return; 2800 2801 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2802 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2803 2804 /* Source Validation */ 2805 ctrl |= (cap & PCI_ACS_SV); 2806 2807 /* P2P Request Redirect */ 2808 ctrl |= (cap & PCI_ACS_RR); 2809 2810 /* P2P Completion Redirect */ 2811 ctrl |= (cap & PCI_ACS_CR); 2812 2813 /* Upstream Forwarding */ 2814 ctrl |= (cap & PCI_ACS_UF); 2815 2816 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2817 } 2818 2819 /** 2820 * pci_enable_acs - enable ACS if hardware support it 2821 * @dev: the PCI device 2822 */ 2823 void pci_enable_acs(struct pci_dev *dev) 2824 { 2825 if (!pci_acs_enable) 2826 return; 2827 2828 if (!pci_dev_specific_enable_acs(dev)) 2829 return; 2830 2831 pci_std_enable_acs(dev); 2832 } 2833 2834 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2835 { 2836 int pos; 2837 u16 cap, ctrl; 2838 2839 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2840 if (!pos) 2841 return false; 2842 2843 /* 2844 * Except for egress control, capabilities are either required 2845 * or only required if controllable. Features missing from the 2846 * capability field can therefore be assumed as hard-wired enabled. 2847 */ 2848 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2849 acs_flags &= (cap | PCI_ACS_EC); 2850 2851 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2852 return (ctrl & acs_flags) == acs_flags; 2853 } 2854 2855 /** 2856 * pci_acs_enabled - test ACS against required flags for a given device 2857 * @pdev: device to test 2858 * @acs_flags: required PCI ACS flags 2859 * 2860 * Return true if the device supports the provided flags. Automatically 2861 * filters out flags that are not implemented on multifunction devices. 2862 * 2863 * Note that this interface checks the effective ACS capabilities of the 2864 * device rather than the actual capabilities. For instance, most single 2865 * function endpoints are not required to support ACS because they have no 2866 * opportunity for peer-to-peer access. We therefore return 'true' 2867 * regardless of whether the device exposes an ACS capability. This makes 2868 * it much easier for callers of this function to ignore the actual type 2869 * or topology of the device when testing ACS support. 2870 */ 2871 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2872 { 2873 int ret; 2874 2875 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2876 if (ret >= 0) 2877 return ret > 0; 2878 2879 /* 2880 * Conventional PCI and PCI-X devices never support ACS, either 2881 * effectively or actually. The shared bus topology implies that 2882 * any device on the bus can receive or snoop DMA. 2883 */ 2884 if (!pci_is_pcie(pdev)) 2885 return false; 2886 2887 switch (pci_pcie_type(pdev)) { 2888 /* 2889 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2890 * but since their primary interface is PCI/X, we conservatively 2891 * handle them as we would a non-PCIe device. 2892 */ 2893 case PCI_EXP_TYPE_PCIE_BRIDGE: 2894 /* 2895 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2896 * applicable... must never implement an ACS Extended Capability...". 2897 * This seems arbitrary, but we take a conservative interpretation 2898 * of this statement. 2899 */ 2900 case PCI_EXP_TYPE_PCI_BRIDGE: 2901 case PCI_EXP_TYPE_RC_EC: 2902 return false; 2903 /* 2904 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2905 * implement ACS in order to indicate their peer-to-peer capabilities, 2906 * regardless of whether they are single- or multi-function devices. 2907 */ 2908 case PCI_EXP_TYPE_DOWNSTREAM: 2909 case PCI_EXP_TYPE_ROOT_PORT: 2910 return pci_acs_flags_enabled(pdev, acs_flags); 2911 /* 2912 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2913 * implemented by the remaining PCIe types to indicate peer-to-peer 2914 * capabilities, but only when they are part of a multifunction 2915 * device. The footnote for section 6.12 indicates the specific 2916 * PCIe types included here. 2917 */ 2918 case PCI_EXP_TYPE_ENDPOINT: 2919 case PCI_EXP_TYPE_UPSTREAM: 2920 case PCI_EXP_TYPE_LEG_END: 2921 case PCI_EXP_TYPE_RC_END: 2922 if (!pdev->multifunction) 2923 break; 2924 2925 return pci_acs_flags_enabled(pdev, acs_flags); 2926 } 2927 2928 /* 2929 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2930 * to single function devices with the exception of downstream ports. 2931 */ 2932 return true; 2933 } 2934 2935 /** 2936 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2937 * @start: starting downstream device 2938 * @end: ending upstream device or NULL to search to the root bus 2939 * @acs_flags: required flags 2940 * 2941 * Walk up a device tree from start to end testing PCI ACS support. If 2942 * any step along the way does not support the required flags, return false. 2943 */ 2944 bool pci_acs_path_enabled(struct pci_dev *start, 2945 struct pci_dev *end, u16 acs_flags) 2946 { 2947 struct pci_dev *pdev, *parent = start; 2948 2949 do { 2950 pdev = parent; 2951 2952 if (!pci_acs_enabled(pdev, acs_flags)) 2953 return false; 2954 2955 if (pci_is_root_bus(pdev->bus)) 2956 return (end == NULL); 2957 2958 parent = pdev->bus->self; 2959 } while (pdev != end); 2960 2961 return true; 2962 } 2963 2964 /** 2965 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 2966 * @pdev: PCI device 2967 * @bar: BAR to find 2968 * 2969 * Helper to find the position of the ctrl register for a BAR. 2970 * Returns -ENOTSUPP if resizable BARs are not supported at all. 2971 * Returns -ENOENT if no ctrl register for the BAR could be found. 2972 */ 2973 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 2974 { 2975 unsigned int pos, nbars, i; 2976 u32 ctrl; 2977 2978 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 2979 if (!pos) 2980 return -ENOTSUPP; 2981 2982 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 2983 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 2984 PCI_REBAR_CTRL_NBAR_SHIFT; 2985 2986 for (i = 0; i < nbars; i++, pos += 8) { 2987 int bar_idx; 2988 2989 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 2990 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 2991 if (bar_idx == bar) 2992 return pos; 2993 } 2994 2995 return -ENOENT; 2996 } 2997 2998 /** 2999 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3000 * @pdev: PCI device 3001 * @bar: BAR to query 3002 * 3003 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3004 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3005 */ 3006 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3007 { 3008 int pos; 3009 u32 cap; 3010 3011 pos = pci_rebar_find_pos(pdev, bar); 3012 if (pos < 0) 3013 return 0; 3014 3015 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3016 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3017 } 3018 3019 /** 3020 * pci_rebar_get_current_size - get the current size of a BAR 3021 * @pdev: PCI device 3022 * @bar: BAR to set size to 3023 * 3024 * Read the size of a BAR from the resizable BAR config. 3025 * Returns size if found or negative error code. 3026 */ 3027 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3028 { 3029 int pos; 3030 u32 ctrl; 3031 3032 pos = pci_rebar_find_pos(pdev, bar); 3033 if (pos < 0) 3034 return pos; 3035 3036 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3037 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8; 3038 } 3039 3040 /** 3041 * pci_rebar_set_size - set a new size for a BAR 3042 * @pdev: PCI device 3043 * @bar: BAR to set size to 3044 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3045 * 3046 * Set the new size of a BAR as defined in the spec. 3047 * Returns zero if resizing was successful, error code otherwise. 3048 */ 3049 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3050 { 3051 int pos; 3052 u32 ctrl; 3053 3054 pos = pci_rebar_find_pos(pdev, bar); 3055 if (pos < 0) 3056 return pos; 3057 3058 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3059 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3060 ctrl |= size << 8; 3061 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3062 return 0; 3063 } 3064 3065 /** 3066 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3067 * @dev: the PCI device 3068 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3069 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3070 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3071 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3072 * 3073 * Return 0 if all upstream bridges support AtomicOp routing, egress 3074 * blocking is disabled on all upstream ports, and the root port supports 3075 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3076 * AtomicOp completion), or negative otherwise. 3077 */ 3078 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3079 { 3080 struct pci_bus *bus = dev->bus; 3081 struct pci_dev *bridge; 3082 u32 cap, ctl2; 3083 3084 if (!pci_is_pcie(dev)) 3085 return -EINVAL; 3086 3087 /* 3088 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3089 * AtomicOp requesters. For now, we only support endpoints as 3090 * requesters and root ports as completers. No endpoints as 3091 * completers, and no peer-to-peer. 3092 */ 3093 3094 switch (pci_pcie_type(dev)) { 3095 case PCI_EXP_TYPE_ENDPOINT: 3096 case PCI_EXP_TYPE_LEG_END: 3097 case PCI_EXP_TYPE_RC_END: 3098 break; 3099 default: 3100 return -EINVAL; 3101 } 3102 3103 while (bus->parent) { 3104 bridge = bus->self; 3105 3106 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3107 3108 switch (pci_pcie_type(bridge)) { 3109 /* Ensure switch ports support AtomicOp routing */ 3110 case PCI_EXP_TYPE_UPSTREAM: 3111 case PCI_EXP_TYPE_DOWNSTREAM: 3112 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3113 return -EINVAL; 3114 break; 3115 3116 /* Ensure root port supports all the sizes we care about */ 3117 case PCI_EXP_TYPE_ROOT_PORT: 3118 if ((cap & cap_mask) != cap_mask) 3119 return -EINVAL; 3120 break; 3121 } 3122 3123 /* Ensure upstream ports don't block AtomicOps on egress */ 3124 if (!bridge->has_secondary_link) { 3125 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3126 &ctl2); 3127 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3128 return -EINVAL; 3129 } 3130 3131 bus = bus->parent; 3132 } 3133 3134 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3135 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3136 return 0; 3137 } 3138 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3139 3140 /** 3141 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3142 * @dev: the PCI device 3143 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3144 * 3145 * Perform INTx swizzling for a device behind one level of bridge. This is 3146 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3147 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3148 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3149 * the PCI Express Base Specification, Revision 2.1) 3150 */ 3151 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3152 { 3153 int slot; 3154 3155 if (pci_ari_enabled(dev->bus)) 3156 slot = 0; 3157 else 3158 slot = PCI_SLOT(dev->devfn); 3159 3160 return (((pin - 1) + slot) % 4) + 1; 3161 } 3162 3163 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3164 { 3165 u8 pin; 3166 3167 pin = dev->pin; 3168 if (!pin) 3169 return -1; 3170 3171 while (!pci_is_root_bus(dev->bus)) { 3172 pin = pci_swizzle_interrupt_pin(dev, pin); 3173 dev = dev->bus->self; 3174 } 3175 *bridge = dev; 3176 return pin; 3177 } 3178 3179 /** 3180 * pci_common_swizzle - swizzle INTx all the way to root bridge 3181 * @dev: the PCI device 3182 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3183 * 3184 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3185 * bridges all the way up to a PCI root bus. 3186 */ 3187 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3188 { 3189 u8 pin = *pinp; 3190 3191 while (!pci_is_root_bus(dev->bus)) { 3192 pin = pci_swizzle_interrupt_pin(dev, pin); 3193 dev = dev->bus->self; 3194 } 3195 *pinp = pin; 3196 return PCI_SLOT(dev->devfn); 3197 } 3198 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3199 3200 /** 3201 * pci_release_region - Release a PCI bar 3202 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3203 * @bar: BAR to release 3204 * 3205 * Releases the PCI I/O and memory resources previously reserved by a 3206 * successful call to pci_request_region. Call this function only 3207 * after all use of the PCI regions has ceased. 3208 */ 3209 void pci_release_region(struct pci_dev *pdev, int bar) 3210 { 3211 struct pci_devres *dr; 3212 3213 if (pci_resource_len(pdev, bar) == 0) 3214 return; 3215 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3216 release_region(pci_resource_start(pdev, bar), 3217 pci_resource_len(pdev, bar)); 3218 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3219 release_mem_region(pci_resource_start(pdev, bar), 3220 pci_resource_len(pdev, bar)); 3221 3222 dr = find_pci_dr(pdev); 3223 if (dr) 3224 dr->region_mask &= ~(1 << bar); 3225 } 3226 EXPORT_SYMBOL(pci_release_region); 3227 3228 /** 3229 * __pci_request_region - Reserved PCI I/O and memory resource 3230 * @pdev: PCI device whose resources are to be reserved 3231 * @bar: BAR to be reserved 3232 * @res_name: Name to be associated with resource. 3233 * @exclusive: whether the region access is exclusive or not 3234 * 3235 * Mark the PCI region associated with PCI device @pdev BR @bar as 3236 * being reserved by owner @res_name. Do not access any 3237 * address inside the PCI regions unless this call returns 3238 * successfully. 3239 * 3240 * If @exclusive is set, then the region is marked so that userspace 3241 * is explicitly not allowed to map the resource via /dev/mem or 3242 * sysfs MMIO access. 3243 * 3244 * Returns 0 on success, or %EBUSY on error. A warning 3245 * message is also printed on failure. 3246 */ 3247 static int __pci_request_region(struct pci_dev *pdev, int bar, 3248 const char *res_name, int exclusive) 3249 { 3250 struct pci_devres *dr; 3251 3252 if (pci_resource_len(pdev, bar) == 0) 3253 return 0; 3254 3255 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3256 if (!request_region(pci_resource_start(pdev, bar), 3257 pci_resource_len(pdev, bar), res_name)) 3258 goto err_out; 3259 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3260 if (!__request_mem_region(pci_resource_start(pdev, bar), 3261 pci_resource_len(pdev, bar), res_name, 3262 exclusive)) 3263 goto err_out; 3264 } 3265 3266 dr = find_pci_dr(pdev); 3267 if (dr) 3268 dr->region_mask |= 1 << bar; 3269 3270 return 0; 3271 3272 err_out: 3273 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3274 &pdev->resource[bar]); 3275 return -EBUSY; 3276 } 3277 3278 /** 3279 * pci_request_region - Reserve PCI I/O and memory resource 3280 * @pdev: PCI device whose resources are to be reserved 3281 * @bar: BAR to be reserved 3282 * @res_name: Name to be associated with resource 3283 * 3284 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3285 * being reserved by owner @res_name. Do not access any 3286 * address inside the PCI regions unless this call returns 3287 * successfully. 3288 * 3289 * Returns 0 on success, or %EBUSY on error. A warning 3290 * message is also printed on failure. 3291 */ 3292 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3293 { 3294 return __pci_request_region(pdev, bar, res_name, 0); 3295 } 3296 EXPORT_SYMBOL(pci_request_region); 3297 3298 /** 3299 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3300 * @pdev: PCI device whose resources are to be reserved 3301 * @bar: BAR to be reserved 3302 * @res_name: Name to be associated with resource. 3303 * 3304 * Mark the PCI region associated with PCI device @pdev BR @bar as 3305 * being reserved by owner @res_name. Do not access any 3306 * address inside the PCI regions unless this call returns 3307 * successfully. 3308 * 3309 * Returns 0 on success, or %EBUSY on error. A warning 3310 * message is also printed on failure. 3311 * 3312 * The key difference that _exclusive makes it that userspace is 3313 * explicitly not allowed to map the resource via /dev/mem or 3314 * sysfs. 3315 */ 3316 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3317 const char *res_name) 3318 { 3319 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3320 } 3321 EXPORT_SYMBOL(pci_request_region_exclusive); 3322 3323 /** 3324 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3325 * @pdev: PCI device whose resources were previously reserved 3326 * @bars: Bitmask of BARs to be released 3327 * 3328 * Release selected PCI I/O and memory resources previously reserved. 3329 * Call this function only after all use of the PCI regions has ceased. 3330 */ 3331 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3332 { 3333 int i; 3334 3335 for (i = 0; i < 6; i++) 3336 if (bars & (1 << i)) 3337 pci_release_region(pdev, i); 3338 } 3339 EXPORT_SYMBOL(pci_release_selected_regions); 3340 3341 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3342 const char *res_name, int excl) 3343 { 3344 int i; 3345 3346 for (i = 0; i < 6; i++) 3347 if (bars & (1 << i)) 3348 if (__pci_request_region(pdev, i, res_name, excl)) 3349 goto err_out; 3350 return 0; 3351 3352 err_out: 3353 while (--i >= 0) 3354 if (bars & (1 << i)) 3355 pci_release_region(pdev, i); 3356 3357 return -EBUSY; 3358 } 3359 3360 3361 /** 3362 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3363 * @pdev: PCI device whose resources are to be reserved 3364 * @bars: Bitmask of BARs to be requested 3365 * @res_name: Name to be associated with resource 3366 */ 3367 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3368 const char *res_name) 3369 { 3370 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3371 } 3372 EXPORT_SYMBOL(pci_request_selected_regions); 3373 3374 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3375 const char *res_name) 3376 { 3377 return __pci_request_selected_regions(pdev, bars, res_name, 3378 IORESOURCE_EXCLUSIVE); 3379 } 3380 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3381 3382 /** 3383 * pci_release_regions - Release reserved PCI I/O and memory resources 3384 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3385 * 3386 * Releases all PCI I/O and memory resources previously reserved by a 3387 * successful call to pci_request_regions. Call this function only 3388 * after all use of the PCI regions has ceased. 3389 */ 3390 3391 void pci_release_regions(struct pci_dev *pdev) 3392 { 3393 pci_release_selected_regions(pdev, (1 << 6) - 1); 3394 } 3395 EXPORT_SYMBOL(pci_release_regions); 3396 3397 /** 3398 * pci_request_regions - Reserved PCI I/O and memory resources 3399 * @pdev: PCI device whose resources are to be reserved 3400 * @res_name: Name to be associated with resource. 3401 * 3402 * Mark all PCI regions associated with PCI device @pdev as 3403 * being reserved by owner @res_name. Do not access any 3404 * address inside the PCI regions unless this call returns 3405 * successfully. 3406 * 3407 * Returns 0 on success, or %EBUSY on error. A warning 3408 * message is also printed on failure. 3409 */ 3410 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3411 { 3412 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3413 } 3414 EXPORT_SYMBOL(pci_request_regions); 3415 3416 /** 3417 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3418 * @pdev: PCI device whose resources are to be reserved 3419 * @res_name: Name to be associated with resource. 3420 * 3421 * Mark all PCI regions associated with PCI device @pdev as 3422 * being reserved by owner @res_name. Do not access any 3423 * address inside the PCI regions unless this call returns 3424 * successfully. 3425 * 3426 * pci_request_regions_exclusive() will mark the region so that 3427 * /dev/mem and the sysfs MMIO access will not be allowed. 3428 * 3429 * Returns 0 on success, or %EBUSY on error. A warning 3430 * message is also printed on failure. 3431 */ 3432 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3433 { 3434 return pci_request_selected_regions_exclusive(pdev, 3435 ((1 << 6) - 1), res_name); 3436 } 3437 EXPORT_SYMBOL(pci_request_regions_exclusive); 3438 3439 #ifdef PCI_IOBASE 3440 struct io_range { 3441 struct list_head list; 3442 phys_addr_t start; 3443 resource_size_t size; 3444 }; 3445 3446 static LIST_HEAD(io_range_list); 3447 static DEFINE_SPINLOCK(io_range_lock); 3448 #endif 3449 3450 /* 3451 * Record the PCI IO range (expressed as CPU physical address + size). 3452 * Return a negative value if an error has occured, zero otherwise 3453 */ 3454 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3455 { 3456 int err = 0; 3457 3458 #ifdef PCI_IOBASE 3459 struct io_range *range; 3460 resource_size_t allocated_size = 0; 3461 3462 /* check if the range hasn't been previously recorded */ 3463 spin_lock(&io_range_lock); 3464 list_for_each_entry(range, &io_range_list, list) { 3465 if (addr >= range->start && addr + size <= range->start + size) { 3466 /* range already registered, bail out */ 3467 goto end_register; 3468 } 3469 allocated_size += range->size; 3470 } 3471 3472 /* range not registed yet, check for available space */ 3473 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3474 /* if it's too big check if 64K space can be reserved */ 3475 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3476 err = -E2BIG; 3477 goto end_register; 3478 } 3479 3480 size = SZ_64K; 3481 pr_warn("Requested IO range too big, new size set to 64K\n"); 3482 } 3483 3484 /* add the range to the list */ 3485 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3486 if (!range) { 3487 err = -ENOMEM; 3488 goto end_register; 3489 } 3490 3491 range->start = addr; 3492 range->size = size; 3493 3494 list_add_tail(&range->list, &io_range_list); 3495 3496 end_register: 3497 spin_unlock(&io_range_lock); 3498 #endif 3499 3500 return err; 3501 } 3502 3503 phys_addr_t pci_pio_to_address(unsigned long pio) 3504 { 3505 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3506 3507 #ifdef PCI_IOBASE 3508 struct io_range *range; 3509 resource_size_t allocated_size = 0; 3510 3511 if (pio > IO_SPACE_LIMIT) 3512 return address; 3513 3514 spin_lock(&io_range_lock); 3515 list_for_each_entry(range, &io_range_list, list) { 3516 if (pio >= allocated_size && pio < allocated_size + range->size) { 3517 address = range->start + pio - allocated_size; 3518 break; 3519 } 3520 allocated_size += range->size; 3521 } 3522 spin_unlock(&io_range_lock); 3523 #endif 3524 3525 return address; 3526 } 3527 3528 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3529 { 3530 #ifdef PCI_IOBASE 3531 struct io_range *res; 3532 resource_size_t offset = 0; 3533 unsigned long addr = -1; 3534 3535 spin_lock(&io_range_lock); 3536 list_for_each_entry(res, &io_range_list, list) { 3537 if (address >= res->start && address < res->start + res->size) { 3538 addr = address - res->start + offset; 3539 break; 3540 } 3541 offset += res->size; 3542 } 3543 spin_unlock(&io_range_lock); 3544 3545 return addr; 3546 #else 3547 if (address > IO_SPACE_LIMIT) 3548 return (unsigned long)-1; 3549 3550 return (unsigned long) address; 3551 #endif 3552 } 3553 3554 /** 3555 * pci_remap_iospace - Remap the memory mapped I/O space 3556 * @res: Resource describing the I/O space 3557 * @phys_addr: physical address of range to be mapped 3558 * 3559 * Remap the memory mapped I/O space described by the @res 3560 * and the CPU physical address @phys_addr into virtual address space. 3561 * Only architectures that have memory mapped IO functions defined 3562 * (and the PCI_IOBASE value defined) should call this function. 3563 */ 3564 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3565 { 3566 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3567 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3568 3569 if (!(res->flags & IORESOURCE_IO)) 3570 return -EINVAL; 3571 3572 if (res->end > IO_SPACE_LIMIT) 3573 return -EINVAL; 3574 3575 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3576 pgprot_device(PAGE_KERNEL)); 3577 #else 3578 /* this architecture does not have memory mapped I/O space, 3579 so this function should never be called */ 3580 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3581 return -ENODEV; 3582 #endif 3583 } 3584 EXPORT_SYMBOL(pci_remap_iospace); 3585 3586 /** 3587 * pci_unmap_iospace - Unmap the memory mapped I/O space 3588 * @res: resource to be unmapped 3589 * 3590 * Unmap the CPU virtual address @res from virtual address space. 3591 * Only architectures that have memory mapped IO functions defined 3592 * (and the PCI_IOBASE value defined) should call this function. 3593 */ 3594 void pci_unmap_iospace(struct resource *res) 3595 { 3596 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3597 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3598 3599 unmap_kernel_range(vaddr, resource_size(res)); 3600 #endif 3601 } 3602 EXPORT_SYMBOL(pci_unmap_iospace); 3603 3604 /** 3605 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3606 * @dev: Generic device to remap IO address for 3607 * @offset: Resource address to map 3608 * @size: Size of map 3609 * 3610 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3611 * detach. 3612 */ 3613 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3614 resource_size_t offset, 3615 resource_size_t size) 3616 { 3617 void __iomem **ptr, *addr; 3618 3619 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3620 if (!ptr) 3621 return NULL; 3622 3623 addr = pci_remap_cfgspace(offset, size); 3624 if (addr) { 3625 *ptr = addr; 3626 devres_add(dev, ptr); 3627 } else 3628 devres_free(ptr); 3629 3630 return addr; 3631 } 3632 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3633 3634 /** 3635 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3636 * @dev: generic device to handle the resource for 3637 * @res: configuration space resource to be handled 3638 * 3639 * Checks that a resource is a valid memory region, requests the memory 3640 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3641 * proper PCI configuration space memory attributes are guaranteed. 3642 * 3643 * All operations are managed and will be undone on driver detach. 3644 * 3645 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3646 * on failure. Usage example:: 3647 * 3648 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3649 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3650 * if (IS_ERR(base)) 3651 * return PTR_ERR(base); 3652 */ 3653 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3654 struct resource *res) 3655 { 3656 resource_size_t size; 3657 const char *name; 3658 void __iomem *dest_ptr; 3659 3660 BUG_ON(!dev); 3661 3662 if (!res || resource_type(res) != IORESOURCE_MEM) { 3663 dev_err(dev, "invalid resource\n"); 3664 return IOMEM_ERR_PTR(-EINVAL); 3665 } 3666 3667 size = resource_size(res); 3668 name = res->name ?: dev_name(dev); 3669 3670 if (!devm_request_mem_region(dev, res->start, size, name)) { 3671 dev_err(dev, "can't request region for resource %pR\n", res); 3672 return IOMEM_ERR_PTR(-EBUSY); 3673 } 3674 3675 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3676 if (!dest_ptr) { 3677 dev_err(dev, "ioremap failed for resource %pR\n", res); 3678 devm_release_mem_region(dev, res->start, size); 3679 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3680 } 3681 3682 return dest_ptr; 3683 } 3684 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3685 3686 static void __pci_set_master(struct pci_dev *dev, bool enable) 3687 { 3688 u16 old_cmd, cmd; 3689 3690 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3691 if (enable) 3692 cmd = old_cmd | PCI_COMMAND_MASTER; 3693 else 3694 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3695 if (cmd != old_cmd) { 3696 pci_dbg(dev, "%s bus mastering\n", 3697 enable ? "enabling" : "disabling"); 3698 pci_write_config_word(dev, PCI_COMMAND, cmd); 3699 } 3700 dev->is_busmaster = enable; 3701 } 3702 3703 /** 3704 * pcibios_setup - process "pci=" kernel boot arguments 3705 * @str: string used to pass in "pci=" kernel boot arguments 3706 * 3707 * Process kernel boot arguments. This is the default implementation. 3708 * Architecture specific implementations can override this as necessary. 3709 */ 3710 char * __weak __init pcibios_setup(char *str) 3711 { 3712 return str; 3713 } 3714 3715 /** 3716 * pcibios_set_master - enable PCI bus-mastering for device dev 3717 * @dev: the PCI device to enable 3718 * 3719 * Enables PCI bus-mastering for the device. This is the default 3720 * implementation. Architecture specific implementations can override 3721 * this if necessary. 3722 */ 3723 void __weak pcibios_set_master(struct pci_dev *dev) 3724 { 3725 u8 lat; 3726 3727 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3728 if (pci_is_pcie(dev)) 3729 return; 3730 3731 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3732 if (lat < 16) 3733 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3734 else if (lat > pcibios_max_latency) 3735 lat = pcibios_max_latency; 3736 else 3737 return; 3738 3739 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3740 } 3741 3742 /** 3743 * pci_set_master - enables bus-mastering for device dev 3744 * @dev: the PCI device to enable 3745 * 3746 * Enables bus-mastering on the device and calls pcibios_set_master() 3747 * to do the needed arch specific settings. 3748 */ 3749 void pci_set_master(struct pci_dev *dev) 3750 { 3751 __pci_set_master(dev, true); 3752 pcibios_set_master(dev); 3753 } 3754 EXPORT_SYMBOL(pci_set_master); 3755 3756 /** 3757 * pci_clear_master - disables bus-mastering for device dev 3758 * @dev: the PCI device to disable 3759 */ 3760 void pci_clear_master(struct pci_dev *dev) 3761 { 3762 __pci_set_master(dev, false); 3763 } 3764 EXPORT_SYMBOL(pci_clear_master); 3765 3766 /** 3767 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3768 * @dev: the PCI device for which MWI is to be enabled 3769 * 3770 * Helper function for pci_set_mwi. 3771 * Originally copied from drivers/net/acenic.c. 3772 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3773 * 3774 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3775 */ 3776 int pci_set_cacheline_size(struct pci_dev *dev) 3777 { 3778 u8 cacheline_size; 3779 3780 if (!pci_cache_line_size) 3781 return -EINVAL; 3782 3783 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3784 equal to or multiple of the right value. */ 3785 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3786 if (cacheline_size >= pci_cache_line_size && 3787 (cacheline_size % pci_cache_line_size) == 0) 3788 return 0; 3789 3790 /* Write the correct value. */ 3791 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3792 /* Read it back. */ 3793 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3794 if (cacheline_size == pci_cache_line_size) 3795 return 0; 3796 3797 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n", 3798 pci_cache_line_size << 2); 3799 3800 return -EINVAL; 3801 } 3802 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3803 3804 /** 3805 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3806 * @dev: the PCI device for which MWI is enabled 3807 * 3808 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3809 * 3810 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3811 */ 3812 int pci_set_mwi(struct pci_dev *dev) 3813 { 3814 #ifdef PCI_DISABLE_MWI 3815 return 0; 3816 #else 3817 int rc; 3818 u16 cmd; 3819 3820 rc = pci_set_cacheline_size(dev); 3821 if (rc) 3822 return rc; 3823 3824 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3825 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3826 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 3827 cmd |= PCI_COMMAND_INVALIDATE; 3828 pci_write_config_word(dev, PCI_COMMAND, cmd); 3829 } 3830 return 0; 3831 #endif 3832 } 3833 EXPORT_SYMBOL(pci_set_mwi); 3834 3835 /** 3836 * pcim_set_mwi - a device-managed pci_set_mwi() 3837 * @dev: the PCI device for which MWI is enabled 3838 * 3839 * Managed pci_set_mwi(). 3840 * 3841 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3842 */ 3843 int pcim_set_mwi(struct pci_dev *dev) 3844 { 3845 struct pci_devres *dr; 3846 3847 dr = find_pci_dr(dev); 3848 if (!dr) 3849 return -ENOMEM; 3850 3851 dr->mwi = 1; 3852 return pci_set_mwi(dev); 3853 } 3854 EXPORT_SYMBOL(pcim_set_mwi); 3855 3856 /** 3857 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3858 * @dev: the PCI device for which MWI is enabled 3859 * 3860 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3861 * Callers are not required to check the return value. 3862 * 3863 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3864 */ 3865 int pci_try_set_mwi(struct pci_dev *dev) 3866 { 3867 #ifdef PCI_DISABLE_MWI 3868 return 0; 3869 #else 3870 return pci_set_mwi(dev); 3871 #endif 3872 } 3873 EXPORT_SYMBOL(pci_try_set_mwi); 3874 3875 /** 3876 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3877 * @dev: the PCI device to disable 3878 * 3879 * Disables PCI Memory-Write-Invalidate transaction on the device 3880 */ 3881 void pci_clear_mwi(struct pci_dev *dev) 3882 { 3883 #ifndef PCI_DISABLE_MWI 3884 u16 cmd; 3885 3886 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3887 if (cmd & PCI_COMMAND_INVALIDATE) { 3888 cmd &= ~PCI_COMMAND_INVALIDATE; 3889 pci_write_config_word(dev, PCI_COMMAND, cmd); 3890 } 3891 #endif 3892 } 3893 EXPORT_SYMBOL(pci_clear_mwi); 3894 3895 /** 3896 * pci_intx - enables/disables PCI INTx for device dev 3897 * @pdev: the PCI device to operate on 3898 * @enable: boolean: whether to enable or disable PCI INTx 3899 * 3900 * Enables/disables PCI INTx for device dev 3901 */ 3902 void pci_intx(struct pci_dev *pdev, int enable) 3903 { 3904 u16 pci_command, new; 3905 3906 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3907 3908 if (enable) 3909 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3910 else 3911 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3912 3913 if (new != pci_command) { 3914 struct pci_devres *dr; 3915 3916 pci_write_config_word(pdev, PCI_COMMAND, new); 3917 3918 dr = find_pci_dr(pdev); 3919 if (dr && !dr->restore_intx) { 3920 dr->restore_intx = 1; 3921 dr->orig_intx = !enable; 3922 } 3923 } 3924 } 3925 EXPORT_SYMBOL_GPL(pci_intx); 3926 3927 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3928 { 3929 struct pci_bus *bus = dev->bus; 3930 bool mask_updated = true; 3931 u32 cmd_status_dword; 3932 u16 origcmd, newcmd; 3933 unsigned long flags; 3934 bool irq_pending; 3935 3936 /* 3937 * We do a single dword read to retrieve both command and status. 3938 * Document assumptions that make this possible. 3939 */ 3940 BUILD_BUG_ON(PCI_COMMAND % 4); 3941 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3942 3943 raw_spin_lock_irqsave(&pci_lock, flags); 3944 3945 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3946 3947 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3948 3949 /* 3950 * Check interrupt status register to see whether our device 3951 * triggered the interrupt (when masking) or the next IRQ is 3952 * already pending (when unmasking). 3953 */ 3954 if (mask != irq_pending) { 3955 mask_updated = false; 3956 goto done; 3957 } 3958 3959 origcmd = cmd_status_dword; 3960 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3961 if (mask) 3962 newcmd |= PCI_COMMAND_INTX_DISABLE; 3963 if (newcmd != origcmd) 3964 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3965 3966 done: 3967 raw_spin_unlock_irqrestore(&pci_lock, flags); 3968 3969 return mask_updated; 3970 } 3971 3972 /** 3973 * pci_check_and_mask_intx - mask INTx on pending interrupt 3974 * @dev: the PCI device to operate on 3975 * 3976 * Check if the device dev has its INTx line asserted, mask it and 3977 * return true in that case. False is returned if no interrupt was 3978 * pending. 3979 */ 3980 bool pci_check_and_mask_intx(struct pci_dev *dev) 3981 { 3982 return pci_check_and_set_intx_mask(dev, true); 3983 } 3984 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3985 3986 /** 3987 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3988 * @dev: the PCI device to operate on 3989 * 3990 * Check if the device dev has its INTx line asserted, unmask it if not 3991 * and return true. False is returned and the mask remains active if 3992 * there was still an interrupt pending. 3993 */ 3994 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3995 { 3996 return pci_check_and_set_intx_mask(dev, false); 3997 } 3998 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3999 4000 /** 4001 * pci_wait_for_pending_transaction - waits for pending transaction 4002 * @dev: the PCI device to operate on 4003 * 4004 * Return 0 if transaction is pending 1 otherwise. 4005 */ 4006 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4007 { 4008 if (!pci_is_pcie(dev)) 4009 return 1; 4010 4011 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4012 PCI_EXP_DEVSTA_TRPND); 4013 } 4014 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4015 4016 static void pci_flr_wait(struct pci_dev *dev) 4017 { 4018 int delay = 1, timeout = 60000; 4019 u32 id; 4020 4021 /* 4022 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within 4023 * 100ms, but may silently discard requests while the FLR is in 4024 * progress. Wait 100ms before trying to access the device. 4025 */ 4026 msleep(100); 4027 4028 /* 4029 * After 100ms, the device should not silently discard config 4030 * requests, but it may still indicate that it needs more time by 4031 * responding to them with CRS completions. The Root Port will 4032 * generally synthesize ~0 data to complete the read (except when 4033 * CRS SV is enabled and the read was for the Vendor ID; in that 4034 * case it synthesizes 0x0001 data). 4035 * 4036 * Wait for the device to return a non-CRS completion. Read the 4037 * Command register instead of Vendor ID so we don't have to 4038 * contend with the CRS SV value. 4039 */ 4040 pci_read_config_dword(dev, PCI_COMMAND, &id); 4041 while (id == ~0) { 4042 if (delay > timeout) { 4043 pci_warn(dev, "not ready %dms after FLR; giving up\n", 4044 100 + delay - 1); 4045 return; 4046 } 4047 4048 if (delay > 1000) 4049 pci_info(dev, "not ready %dms after FLR; waiting\n", 4050 100 + delay - 1); 4051 4052 msleep(delay); 4053 delay *= 2; 4054 pci_read_config_dword(dev, PCI_COMMAND, &id); 4055 } 4056 4057 if (delay > 1000) 4058 pci_info(dev, "ready %dms after FLR\n", 100 + delay - 1); 4059 } 4060 4061 /** 4062 * pcie_has_flr - check if a device supports function level resets 4063 * @dev: device to check 4064 * 4065 * Returns true if the device advertises support for PCIe function level 4066 * resets. 4067 */ 4068 static bool pcie_has_flr(struct pci_dev *dev) 4069 { 4070 u32 cap; 4071 4072 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4073 return false; 4074 4075 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4076 return cap & PCI_EXP_DEVCAP_FLR; 4077 } 4078 4079 /** 4080 * pcie_flr - initiate a PCIe function level reset 4081 * @dev: device to reset 4082 * 4083 * Initiate a function level reset on @dev. The caller should ensure the 4084 * device supports FLR before calling this function, e.g. by using the 4085 * pcie_has_flr() helper. 4086 */ 4087 void pcie_flr(struct pci_dev *dev) 4088 { 4089 if (!pci_wait_for_pending_transaction(dev)) 4090 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4091 4092 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4093 pci_flr_wait(dev); 4094 } 4095 EXPORT_SYMBOL_GPL(pcie_flr); 4096 4097 static int pci_af_flr(struct pci_dev *dev, int probe) 4098 { 4099 int pos; 4100 u8 cap; 4101 4102 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4103 if (!pos) 4104 return -ENOTTY; 4105 4106 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4107 return -ENOTTY; 4108 4109 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4110 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4111 return -ENOTTY; 4112 4113 if (probe) 4114 return 0; 4115 4116 /* 4117 * Wait for Transaction Pending bit to clear. A word-aligned test 4118 * is used, so we use the conrol offset rather than status and shift 4119 * the test bit to match. 4120 */ 4121 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4122 PCI_AF_STATUS_TP << 8)) 4123 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4124 4125 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4126 pci_flr_wait(dev); 4127 return 0; 4128 } 4129 4130 /** 4131 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4132 * @dev: Device to reset. 4133 * @probe: If set, only check if the device can be reset this way. 4134 * 4135 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4136 * unset, it will be reinitialized internally when going from PCI_D3hot to 4137 * PCI_D0. If that's the case and the device is not in a low-power state 4138 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4139 * 4140 * NOTE: This causes the caller to sleep for twice the device power transition 4141 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4142 * by default (i.e. unless the @dev's d3_delay field has a different value). 4143 * Moreover, only devices in D0 can be reset by this function. 4144 */ 4145 static int pci_pm_reset(struct pci_dev *dev, int probe) 4146 { 4147 u16 csr; 4148 4149 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4150 return -ENOTTY; 4151 4152 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4153 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4154 return -ENOTTY; 4155 4156 if (probe) 4157 return 0; 4158 4159 if (dev->current_state != PCI_D0) 4160 return -EINVAL; 4161 4162 csr &= ~PCI_PM_CTRL_STATE_MASK; 4163 csr |= PCI_D3hot; 4164 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4165 pci_dev_d3_sleep(dev); 4166 4167 csr &= ~PCI_PM_CTRL_STATE_MASK; 4168 csr |= PCI_D0; 4169 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4170 pci_dev_d3_sleep(dev); 4171 4172 return 0; 4173 } 4174 4175 void pci_reset_secondary_bus(struct pci_dev *dev) 4176 { 4177 u16 ctrl; 4178 4179 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4180 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4181 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4182 /* 4183 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4184 * this to 2ms to ensure that we meet the minimum requirement. 4185 */ 4186 msleep(2); 4187 4188 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4189 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4190 4191 /* 4192 * Trhfa for conventional PCI is 2^25 clock cycles. 4193 * Assuming a minimum 33MHz clock this results in a 1s 4194 * delay before we can consider subordinate devices to 4195 * be re-initialized. PCIe has some ways to shorten this, 4196 * but we don't make use of them yet. 4197 */ 4198 ssleep(1); 4199 } 4200 4201 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4202 { 4203 pci_reset_secondary_bus(dev); 4204 } 4205 4206 /** 4207 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4208 * @dev: Bridge device 4209 * 4210 * Use the bridge control register to assert reset on the secondary bus. 4211 * Devices on the secondary bus are left in power-on state. 4212 */ 4213 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4214 { 4215 pcibios_reset_secondary_bus(dev); 4216 } 4217 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4218 4219 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4220 { 4221 struct pci_dev *pdev; 4222 4223 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4224 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4225 return -ENOTTY; 4226 4227 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4228 if (pdev != dev) 4229 return -ENOTTY; 4230 4231 if (probe) 4232 return 0; 4233 4234 pci_reset_bridge_secondary_bus(dev->bus->self); 4235 4236 return 0; 4237 } 4238 4239 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4240 { 4241 int rc = -ENOTTY; 4242 4243 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4244 return rc; 4245 4246 if (hotplug->ops->reset_slot) 4247 rc = hotplug->ops->reset_slot(hotplug, probe); 4248 4249 module_put(hotplug->ops->owner); 4250 4251 return rc; 4252 } 4253 4254 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4255 { 4256 struct pci_dev *pdev; 4257 4258 if (dev->subordinate || !dev->slot || 4259 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4260 return -ENOTTY; 4261 4262 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4263 if (pdev != dev && pdev->slot == dev->slot) 4264 return -ENOTTY; 4265 4266 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4267 } 4268 4269 static void pci_dev_lock(struct pci_dev *dev) 4270 { 4271 pci_cfg_access_lock(dev); 4272 /* block PM suspend, driver probe, etc. */ 4273 device_lock(&dev->dev); 4274 } 4275 4276 /* Return 1 on successful lock, 0 on contention */ 4277 static int pci_dev_trylock(struct pci_dev *dev) 4278 { 4279 if (pci_cfg_access_trylock(dev)) { 4280 if (device_trylock(&dev->dev)) 4281 return 1; 4282 pci_cfg_access_unlock(dev); 4283 } 4284 4285 return 0; 4286 } 4287 4288 static void pci_dev_unlock(struct pci_dev *dev) 4289 { 4290 device_unlock(&dev->dev); 4291 pci_cfg_access_unlock(dev); 4292 } 4293 4294 static void pci_dev_save_and_disable(struct pci_dev *dev) 4295 { 4296 const struct pci_error_handlers *err_handler = 4297 dev->driver ? dev->driver->err_handler : NULL; 4298 4299 /* 4300 * dev->driver->err_handler->reset_prepare() is protected against 4301 * races with ->remove() by the device lock, which must be held by 4302 * the caller. 4303 */ 4304 if (err_handler && err_handler->reset_prepare) 4305 err_handler->reset_prepare(dev); 4306 4307 /* 4308 * Wake-up device prior to save. PM registers default to D0 after 4309 * reset and a simple register restore doesn't reliably return 4310 * to a non-D0 state anyway. 4311 */ 4312 pci_set_power_state(dev, PCI_D0); 4313 4314 pci_save_state(dev); 4315 /* 4316 * Disable the device by clearing the Command register, except for 4317 * INTx-disable which is set. This not only disables MMIO and I/O port 4318 * BARs, but also prevents the device from being Bus Master, preventing 4319 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4320 * compliant devices, INTx-disable prevents legacy interrupts. 4321 */ 4322 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4323 } 4324 4325 static void pci_dev_restore(struct pci_dev *dev) 4326 { 4327 const struct pci_error_handlers *err_handler = 4328 dev->driver ? dev->driver->err_handler : NULL; 4329 4330 pci_restore_state(dev); 4331 4332 /* 4333 * dev->driver->err_handler->reset_done() is protected against 4334 * races with ->remove() by the device lock, which must be held by 4335 * the caller. 4336 */ 4337 if (err_handler && err_handler->reset_done) 4338 err_handler->reset_done(dev); 4339 } 4340 4341 /** 4342 * __pci_reset_function_locked - reset a PCI device function while holding 4343 * the @dev mutex lock. 4344 * @dev: PCI device to reset 4345 * 4346 * Some devices allow an individual function to be reset without affecting 4347 * other functions in the same device. The PCI device must be responsive 4348 * to PCI config space in order to use this function. 4349 * 4350 * The device function is presumed to be unused and the caller is holding 4351 * the device mutex lock when this function is called. 4352 * Resetting the device will make the contents of PCI configuration space 4353 * random, so any caller of this must be prepared to reinitialise the 4354 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4355 * etc. 4356 * 4357 * Returns 0 if the device function was successfully reset or negative if the 4358 * device doesn't support resetting a single function. 4359 */ 4360 int __pci_reset_function_locked(struct pci_dev *dev) 4361 { 4362 int rc; 4363 4364 might_sleep(); 4365 4366 /* 4367 * A reset method returns -ENOTTY if it doesn't support this device 4368 * and we should try the next method. 4369 * 4370 * If it returns 0 (success), we're finished. If it returns any 4371 * other error, we're also finished: this indicates that further 4372 * reset mechanisms might be broken on the device. 4373 */ 4374 rc = pci_dev_specific_reset(dev, 0); 4375 if (rc != -ENOTTY) 4376 return rc; 4377 if (pcie_has_flr(dev)) { 4378 pcie_flr(dev); 4379 return 0; 4380 } 4381 rc = pci_af_flr(dev, 0); 4382 if (rc != -ENOTTY) 4383 return rc; 4384 rc = pci_pm_reset(dev, 0); 4385 if (rc != -ENOTTY) 4386 return rc; 4387 rc = pci_dev_reset_slot_function(dev, 0); 4388 if (rc != -ENOTTY) 4389 return rc; 4390 return pci_parent_bus_reset(dev, 0); 4391 } 4392 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4393 4394 /** 4395 * pci_probe_reset_function - check whether the device can be safely reset 4396 * @dev: PCI device to reset 4397 * 4398 * Some devices allow an individual function to be reset without affecting 4399 * other functions in the same device. The PCI device must be responsive 4400 * to PCI config space in order to use this function. 4401 * 4402 * Returns 0 if the device function can be reset or negative if the 4403 * device doesn't support resetting a single function. 4404 */ 4405 int pci_probe_reset_function(struct pci_dev *dev) 4406 { 4407 int rc; 4408 4409 might_sleep(); 4410 4411 rc = pci_dev_specific_reset(dev, 1); 4412 if (rc != -ENOTTY) 4413 return rc; 4414 if (pcie_has_flr(dev)) 4415 return 0; 4416 rc = pci_af_flr(dev, 1); 4417 if (rc != -ENOTTY) 4418 return rc; 4419 rc = pci_pm_reset(dev, 1); 4420 if (rc != -ENOTTY) 4421 return rc; 4422 rc = pci_dev_reset_slot_function(dev, 1); 4423 if (rc != -ENOTTY) 4424 return rc; 4425 4426 return pci_parent_bus_reset(dev, 1); 4427 } 4428 4429 /** 4430 * pci_reset_function - quiesce and reset a PCI device function 4431 * @dev: PCI device to reset 4432 * 4433 * Some devices allow an individual function to be reset without affecting 4434 * other functions in the same device. The PCI device must be responsive 4435 * to PCI config space in order to use this function. 4436 * 4437 * This function does not just reset the PCI portion of a device, but 4438 * clears all the state associated with the device. This function differs 4439 * from __pci_reset_function_locked() in that it saves and restores device state 4440 * over the reset and takes the PCI device lock. 4441 * 4442 * Returns 0 if the device function was successfully reset or negative if the 4443 * device doesn't support resetting a single function. 4444 */ 4445 int pci_reset_function(struct pci_dev *dev) 4446 { 4447 int rc; 4448 4449 rc = pci_probe_reset_function(dev); 4450 if (rc) 4451 return rc; 4452 4453 pci_dev_lock(dev); 4454 pci_dev_save_and_disable(dev); 4455 4456 rc = __pci_reset_function_locked(dev); 4457 4458 pci_dev_restore(dev); 4459 pci_dev_unlock(dev); 4460 4461 return rc; 4462 } 4463 EXPORT_SYMBOL_GPL(pci_reset_function); 4464 4465 /** 4466 * pci_reset_function_locked - quiesce and reset a PCI device function 4467 * @dev: PCI device to reset 4468 * 4469 * Some devices allow an individual function to be reset without affecting 4470 * other functions in the same device. The PCI device must be responsive 4471 * to PCI config space in order to use this function. 4472 * 4473 * This function does not just reset the PCI portion of a device, but 4474 * clears all the state associated with the device. This function differs 4475 * from __pci_reset_function_locked() in that it saves and restores device state 4476 * over the reset. It also differs from pci_reset_function() in that it 4477 * requires the PCI device lock to be held. 4478 * 4479 * Returns 0 if the device function was successfully reset or negative if the 4480 * device doesn't support resetting a single function. 4481 */ 4482 int pci_reset_function_locked(struct pci_dev *dev) 4483 { 4484 int rc; 4485 4486 rc = pci_probe_reset_function(dev); 4487 if (rc) 4488 return rc; 4489 4490 pci_dev_save_and_disable(dev); 4491 4492 rc = __pci_reset_function_locked(dev); 4493 4494 pci_dev_restore(dev); 4495 4496 return rc; 4497 } 4498 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4499 4500 /** 4501 * pci_try_reset_function - quiesce and reset a PCI device function 4502 * @dev: PCI device to reset 4503 * 4504 * Same as above, except return -EAGAIN if unable to lock device. 4505 */ 4506 int pci_try_reset_function(struct pci_dev *dev) 4507 { 4508 int rc; 4509 4510 rc = pci_probe_reset_function(dev); 4511 if (rc) 4512 return rc; 4513 4514 if (!pci_dev_trylock(dev)) 4515 return -EAGAIN; 4516 4517 pci_dev_save_and_disable(dev); 4518 rc = __pci_reset_function_locked(dev); 4519 pci_dev_unlock(dev); 4520 4521 pci_dev_restore(dev); 4522 return rc; 4523 } 4524 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4525 4526 /* Do any devices on or below this bus prevent a bus reset? */ 4527 static bool pci_bus_resetable(struct pci_bus *bus) 4528 { 4529 struct pci_dev *dev; 4530 4531 4532 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4533 return false; 4534 4535 list_for_each_entry(dev, &bus->devices, bus_list) { 4536 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4537 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4538 return false; 4539 } 4540 4541 return true; 4542 } 4543 4544 /* Lock devices from the top of the tree down */ 4545 static void pci_bus_lock(struct pci_bus *bus) 4546 { 4547 struct pci_dev *dev; 4548 4549 list_for_each_entry(dev, &bus->devices, bus_list) { 4550 pci_dev_lock(dev); 4551 if (dev->subordinate) 4552 pci_bus_lock(dev->subordinate); 4553 } 4554 } 4555 4556 /* Unlock devices from the bottom of the tree up */ 4557 static void pci_bus_unlock(struct pci_bus *bus) 4558 { 4559 struct pci_dev *dev; 4560 4561 list_for_each_entry(dev, &bus->devices, bus_list) { 4562 if (dev->subordinate) 4563 pci_bus_unlock(dev->subordinate); 4564 pci_dev_unlock(dev); 4565 } 4566 } 4567 4568 /* Return 1 on successful lock, 0 on contention */ 4569 static int pci_bus_trylock(struct pci_bus *bus) 4570 { 4571 struct pci_dev *dev; 4572 4573 list_for_each_entry(dev, &bus->devices, bus_list) { 4574 if (!pci_dev_trylock(dev)) 4575 goto unlock; 4576 if (dev->subordinate) { 4577 if (!pci_bus_trylock(dev->subordinate)) { 4578 pci_dev_unlock(dev); 4579 goto unlock; 4580 } 4581 } 4582 } 4583 return 1; 4584 4585 unlock: 4586 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4587 if (dev->subordinate) 4588 pci_bus_unlock(dev->subordinate); 4589 pci_dev_unlock(dev); 4590 } 4591 return 0; 4592 } 4593 4594 /* Do any devices on or below this slot prevent a bus reset? */ 4595 static bool pci_slot_resetable(struct pci_slot *slot) 4596 { 4597 struct pci_dev *dev; 4598 4599 if (slot->bus->self && 4600 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4601 return false; 4602 4603 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4604 if (!dev->slot || dev->slot != slot) 4605 continue; 4606 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4607 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4608 return false; 4609 } 4610 4611 return true; 4612 } 4613 4614 /* Lock devices from the top of the tree down */ 4615 static void pci_slot_lock(struct pci_slot *slot) 4616 { 4617 struct pci_dev *dev; 4618 4619 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4620 if (!dev->slot || dev->slot != slot) 4621 continue; 4622 pci_dev_lock(dev); 4623 if (dev->subordinate) 4624 pci_bus_lock(dev->subordinate); 4625 } 4626 } 4627 4628 /* Unlock devices from the bottom of the tree up */ 4629 static void pci_slot_unlock(struct pci_slot *slot) 4630 { 4631 struct pci_dev *dev; 4632 4633 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4634 if (!dev->slot || dev->slot != slot) 4635 continue; 4636 if (dev->subordinate) 4637 pci_bus_unlock(dev->subordinate); 4638 pci_dev_unlock(dev); 4639 } 4640 } 4641 4642 /* Return 1 on successful lock, 0 on contention */ 4643 static int pci_slot_trylock(struct pci_slot *slot) 4644 { 4645 struct pci_dev *dev; 4646 4647 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4648 if (!dev->slot || dev->slot != slot) 4649 continue; 4650 if (!pci_dev_trylock(dev)) 4651 goto unlock; 4652 if (dev->subordinate) { 4653 if (!pci_bus_trylock(dev->subordinate)) { 4654 pci_dev_unlock(dev); 4655 goto unlock; 4656 } 4657 } 4658 } 4659 return 1; 4660 4661 unlock: 4662 list_for_each_entry_continue_reverse(dev, 4663 &slot->bus->devices, bus_list) { 4664 if (!dev->slot || dev->slot != slot) 4665 continue; 4666 if (dev->subordinate) 4667 pci_bus_unlock(dev->subordinate); 4668 pci_dev_unlock(dev); 4669 } 4670 return 0; 4671 } 4672 4673 /* Save and disable devices from the top of the tree down */ 4674 static void pci_bus_save_and_disable(struct pci_bus *bus) 4675 { 4676 struct pci_dev *dev; 4677 4678 list_for_each_entry(dev, &bus->devices, bus_list) { 4679 pci_dev_lock(dev); 4680 pci_dev_save_and_disable(dev); 4681 pci_dev_unlock(dev); 4682 if (dev->subordinate) 4683 pci_bus_save_and_disable(dev->subordinate); 4684 } 4685 } 4686 4687 /* 4688 * Restore devices from top of the tree down - parent bridges need to be 4689 * restored before we can get to subordinate devices. 4690 */ 4691 static void pci_bus_restore(struct pci_bus *bus) 4692 { 4693 struct pci_dev *dev; 4694 4695 list_for_each_entry(dev, &bus->devices, bus_list) { 4696 pci_dev_lock(dev); 4697 pci_dev_restore(dev); 4698 pci_dev_unlock(dev); 4699 if (dev->subordinate) 4700 pci_bus_restore(dev->subordinate); 4701 } 4702 } 4703 4704 /* Save and disable devices from the top of the tree down */ 4705 static void pci_slot_save_and_disable(struct pci_slot *slot) 4706 { 4707 struct pci_dev *dev; 4708 4709 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4710 if (!dev->slot || dev->slot != slot) 4711 continue; 4712 pci_dev_save_and_disable(dev); 4713 if (dev->subordinate) 4714 pci_bus_save_and_disable(dev->subordinate); 4715 } 4716 } 4717 4718 /* 4719 * Restore devices from top of the tree down - parent bridges need to be 4720 * restored before we can get to subordinate devices. 4721 */ 4722 static void pci_slot_restore(struct pci_slot *slot) 4723 { 4724 struct pci_dev *dev; 4725 4726 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4727 if (!dev->slot || dev->slot != slot) 4728 continue; 4729 pci_dev_restore(dev); 4730 if (dev->subordinate) 4731 pci_bus_restore(dev->subordinate); 4732 } 4733 } 4734 4735 static int pci_slot_reset(struct pci_slot *slot, int probe) 4736 { 4737 int rc; 4738 4739 if (!slot || !pci_slot_resetable(slot)) 4740 return -ENOTTY; 4741 4742 if (!probe) 4743 pci_slot_lock(slot); 4744 4745 might_sleep(); 4746 4747 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4748 4749 if (!probe) 4750 pci_slot_unlock(slot); 4751 4752 return rc; 4753 } 4754 4755 /** 4756 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4757 * @slot: PCI slot to probe 4758 * 4759 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4760 */ 4761 int pci_probe_reset_slot(struct pci_slot *slot) 4762 { 4763 return pci_slot_reset(slot, 1); 4764 } 4765 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4766 4767 /** 4768 * pci_reset_slot - reset a PCI slot 4769 * @slot: PCI slot to reset 4770 * 4771 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4772 * independent of other slots. For instance, some slots may support slot power 4773 * control. In the case of a 1:1 bus to slot architecture, this function may 4774 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4775 * Generally a slot reset should be attempted before a bus reset. All of the 4776 * function of the slot and any subordinate buses behind the slot are reset 4777 * through this function. PCI config space of all devices in the slot and 4778 * behind the slot is saved before and restored after reset. 4779 * 4780 * Return 0 on success, non-zero on error. 4781 */ 4782 int pci_reset_slot(struct pci_slot *slot) 4783 { 4784 int rc; 4785 4786 rc = pci_slot_reset(slot, 1); 4787 if (rc) 4788 return rc; 4789 4790 pci_slot_save_and_disable(slot); 4791 4792 rc = pci_slot_reset(slot, 0); 4793 4794 pci_slot_restore(slot); 4795 4796 return rc; 4797 } 4798 EXPORT_SYMBOL_GPL(pci_reset_slot); 4799 4800 /** 4801 * pci_try_reset_slot - Try to reset a PCI slot 4802 * @slot: PCI slot to reset 4803 * 4804 * Same as above except return -EAGAIN if the slot cannot be locked 4805 */ 4806 int pci_try_reset_slot(struct pci_slot *slot) 4807 { 4808 int rc; 4809 4810 rc = pci_slot_reset(slot, 1); 4811 if (rc) 4812 return rc; 4813 4814 pci_slot_save_and_disable(slot); 4815 4816 if (pci_slot_trylock(slot)) { 4817 might_sleep(); 4818 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4819 pci_slot_unlock(slot); 4820 } else 4821 rc = -EAGAIN; 4822 4823 pci_slot_restore(slot); 4824 4825 return rc; 4826 } 4827 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4828 4829 static int pci_bus_reset(struct pci_bus *bus, int probe) 4830 { 4831 if (!bus->self || !pci_bus_resetable(bus)) 4832 return -ENOTTY; 4833 4834 if (probe) 4835 return 0; 4836 4837 pci_bus_lock(bus); 4838 4839 might_sleep(); 4840 4841 pci_reset_bridge_secondary_bus(bus->self); 4842 4843 pci_bus_unlock(bus); 4844 4845 return 0; 4846 } 4847 4848 /** 4849 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4850 * @bus: PCI bus to probe 4851 * 4852 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4853 */ 4854 int pci_probe_reset_bus(struct pci_bus *bus) 4855 { 4856 return pci_bus_reset(bus, 1); 4857 } 4858 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4859 4860 /** 4861 * pci_reset_bus - reset a PCI bus 4862 * @bus: top level PCI bus to reset 4863 * 4864 * Do a bus reset on the given bus and any subordinate buses, saving 4865 * and restoring state of all devices. 4866 * 4867 * Return 0 on success, non-zero on error. 4868 */ 4869 int pci_reset_bus(struct pci_bus *bus) 4870 { 4871 int rc; 4872 4873 rc = pci_bus_reset(bus, 1); 4874 if (rc) 4875 return rc; 4876 4877 pci_bus_save_and_disable(bus); 4878 4879 rc = pci_bus_reset(bus, 0); 4880 4881 pci_bus_restore(bus); 4882 4883 return rc; 4884 } 4885 EXPORT_SYMBOL_GPL(pci_reset_bus); 4886 4887 /** 4888 * pci_try_reset_bus - Try to reset a PCI bus 4889 * @bus: top level PCI bus to reset 4890 * 4891 * Same as above except return -EAGAIN if the bus cannot be locked 4892 */ 4893 int pci_try_reset_bus(struct pci_bus *bus) 4894 { 4895 int rc; 4896 4897 rc = pci_bus_reset(bus, 1); 4898 if (rc) 4899 return rc; 4900 4901 pci_bus_save_and_disable(bus); 4902 4903 if (pci_bus_trylock(bus)) { 4904 might_sleep(); 4905 pci_reset_bridge_secondary_bus(bus->self); 4906 pci_bus_unlock(bus); 4907 } else 4908 rc = -EAGAIN; 4909 4910 pci_bus_restore(bus); 4911 4912 return rc; 4913 } 4914 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4915 4916 /** 4917 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4918 * @dev: PCI device to query 4919 * 4920 * Returns mmrbc: maximum designed memory read count in bytes 4921 * or appropriate error value. 4922 */ 4923 int pcix_get_max_mmrbc(struct pci_dev *dev) 4924 { 4925 int cap; 4926 u32 stat; 4927 4928 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4929 if (!cap) 4930 return -EINVAL; 4931 4932 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4933 return -EINVAL; 4934 4935 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4936 } 4937 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4938 4939 /** 4940 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4941 * @dev: PCI device to query 4942 * 4943 * Returns mmrbc: maximum memory read count in bytes 4944 * or appropriate error value. 4945 */ 4946 int pcix_get_mmrbc(struct pci_dev *dev) 4947 { 4948 int cap; 4949 u16 cmd; 4950 4951 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4952 if (!cap) 4953 return -EINVAL; 4954 4955 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4956 return -EINVAL; 4957 4958 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4959 } 4960 EXPORT_SYMBOL(pcix_get_mmrbc); 4961 4962 /** 4963 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4964 * @dev: PCI device to query 4965 * @mmrbc: maximum memory read count in bytes 4966 * valid values are 512, 1024, 2048, 4096 4967 * 4968 * If possible sets maximum memory read byte count, some bridges have erratas 4969 * that prevent this. 4970 */ 4971 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4972 { 4973 int cap; 4974 u32 stat, v, o; 4975 u16 cmd; 4976 4977 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4978 return -EINVAL; 4979 4980 v = ffs(mmrbc) - 10; 4981 4982 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4983 if (!cap) 4984 return -EINVAL; 4985 4986 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4987 return -EINVAL; 4988 4989 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4990 return -E2BIG; 4991 4992 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4993 return -EINVAL; 4994 4995 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4996 if (o != v) { 4997 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4998 return -EIO; 4999 5000 cmd &= ~PCI_X_CMD_MAX_READ; 5001 cmd |= v << 2; 5002 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5003 return -EIO; 5004 } 5005 return 0; 5006 } 5007 EXPORT_SYMBOL(pcix_set_mmrbc); 5008 5009 /** 5010 * pcie_get_readrq - get PCI Express read request size 5011 * @dev: PCI device to query 5012 * 5013 * Returns maximum memory read request in bytes 5014 * or appropriate error value. 5015 */ 5016 int pcie_get_readrq(struct pci_dev *dev) 5017 { 5018 u16 ctl; 5019 5020 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5021 5022 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5023 } 5024 EXPORT_SYMBOL(pcie_get_readrq); 5025 5026 /** 5027 * pcie_set_readrq - set PCI Express maximum memory read request 5028 * @dev: PCI device to query 5029 * @rq: maximum memory read count in bytes 5030 * valid values are 128, 256, 512, 1024, 2048, 4096 5031 * 5032 * If possible sets maximum memory read request in bytes 5033 */ 5034 int pcie_set_readrq(struct pci_dev *dev, int rq) 5035 { 5036 u16 v; 5037 5038 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5039 return -EINVAL; 5040 5041 /* 5042 * If using the "performance" PCIe config, we clamp the 5043 * read rq size to the max packet size to prevent the 5044 * host bridge generating requests larger than we can 5045 * cope with 5046 */ 5047 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5048 int mps = pcie_get_mps(dev); 5049 5050 if (mps < rq) 5051 rq = mps; 5052 } 5053 5054 v = (ffs(rq) - 8) << 12; 5055 5056 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5057 PCI_EXP_DEVCTL_READRQ, v); 5058 } 5059 EXPORT_SYMBOL(pcie_set_readrq); 5060 5061 /** 5062 * pcie_get_mps - get PCI Express maximum payload size 5063 * @dev: PCI device to query 5064 * 5065 * Returns maximum payload size in bytes 5066 */ 5067 int pcie_get_mps(struct pci_dev *dev) 5068 { 5069 u16 ctl; 5070 5071 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5072 5073 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5074 } 5075 EXPORT_SYMBOL(pcie_get_mps); 5076 5077 /** 5078 * pcie_set_mps - set PCI Express maximum payload size 5079 * @dev: PCI device to query 5080 * @mps: maximum payload size in bytes 5081 * valid values are 128, 256, 512, 1024, 2048, 4096 5082 * 5083 * If possible sets maximum payload size 5084 */ 5085 int pcie_set_mps(struct pci_dev *dev, int mps) 5086 { 5087 u16 v; 5088 5089 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5090 return -EINVAL; 5091 5092 v = ffs(mps) - 8; 5093 if (v > dev->pcie_mpss) 5094 return -EINVAL; 5095 v <<= 5; 5096 5097 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5098 PCI_EXP_DEVCTL_PAYLOAD, v); 5099 } 5100 EXPORT_SYMBOL(pcie_set_mps); 5101 5102 /** 5103 * pcie_get_minimum_link - determine minimum link settings of a PCI device 5104 * @dev: PCI device to query 5105 * @speed: storage for minimum speed 5106 * @width: storage for minimum width 5107 * 5108 * This function will walk up the PCI device chain and determine the minimum 5109 * link width and speed of the device. 5110 */ 5111 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 5112 enum pcie_link_width *width) 5113 { 5114 int ret; 5115 5116 *speed = PCI_SPEED_UNKNOWN; 5117 *width = PCIE_LNK_WIDTH_UNKNOWN; 5118 5119 while (dev) { 5120 u16 lnksta; 5121 enum pci_bus_speed next_speed; 5122 enum pcie_link_width next_width; 5123 5124 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5125 if (ret) 5126 return ret; 5127 5128 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5129 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5130 PCI_EXP_LNKSTA_NLW_SHIFT; 5131 5132 if (next_speed < *speed) 5133 *speed = next_speed; 5134 5135 if (next_width < *width) 5136 *width = next_width; 5137 5138 dev = dev->bus->self; 5139 } 5140 5141 return 0; 5142 } 5143 EXPORT_SYMBOL(pcie_get_minimum_link); 5144 5145 /** 5146 * pci_select_bars - Make BAR mask from the type of resource 5147 * @dev: the PCI device for which BAR mask is made 5148 * @flags: resource type mask to be selected 5149 * 5150 * This helper routine makes bar mask from the type of resource. 5151 */ 5152 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5153 { 5154 int i, bars = 0; 5155 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5156 if (pci_resource_flags(dev, i) & flags) 5157 bars |= (1 << i); 5158 return bars; 5159 } 5160 EXPORT_SYMBOL(pci_select_bars); 5161 5162 /* Some architectures require additional programming to enable VGA */ 5163 static arch_set_vga_state_t arch_set_vga_state; 5164 5165 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5166 { 5167 arch_set_vga_state = func; /* NULL disables */ 5168 } 5169 5170 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5171 unsigned int command_bits, u32 flags) 5172 { 5173 if (arch_set_vga_state) 5174 return arch_set_vga_state(dev, decode, command_bits, 5175 flags); 5176 return 0; 5177 } 5178 5179 /** 5180 * pci_set_vga_state - set VGA decode state on device and parents if requested 5181 * @dev: the PCI device 5182 * @decode: true = enable decoding, false = disable decoding 5183 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5184 * @flags: traverse ancestors and change bridges 5185 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5186 */ 5187 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5188 unsigned int command_bits, u32 flags) 5189 { 5190 struct pci_bus *bus; 5191 struct pci_dev *bridge; 5192 u16 cmd; 5193 int rc; 5194 5195 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5196 5197 /* ARCH specific VGA enables */ 5198 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5199 if (rc) 5200 return rc; 5201 5202 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5203 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5204 if (decode == true) 5205 cmd |= command_bits; 5206 else 5207 cmd &= ~command_bits; 5208 pci_write_config_word(dev, PCI_COMMAND, cmd); 5209 } 5210 5211 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5212 return 0; 5213 5214 bus = dev->bus; 5215 while (bus) { 5216 bridge = bus->self; 5217 if (bridge) { 5218 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5219 &cmd); 5220 if (decode == true) 5221 cmd |= PCI_BRIDGE_CTL_VGA; 5222 else 5223 cmd &= ~PCI_BRIDGE_CTL_VGA; 5224 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5225 cmd); 5226 } 5227 bus = bus->parent; 5228 } 5229 return 0; 5230 } 5231 5232 /** 5233 * pci_add_dma_alias - Add a DMA devfn alias for a device 5234 * @dev: the PCI device for which alias is added 5235 * @devfn: alias slot and function 5236 * 5237 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5238 * It should be called early, preferably as PCI fixup header quirk. 5239 */ 5240 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5241 { 5242 if (!dev->dma_alias_mask) 5243 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5244 sizeof(long), GFP_KERNEL); 5245 if (!dev->dma_alias_mask) { 5246 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5247 return; 5248 } 5249 5250 set_bit(devfn, dev->dma_alias_mask); 5251 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5252 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5253 } 5254 5255 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5256 { 5257 return (dev1->dma_alias_mask && 5258 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5259 (dev2->dma_alias_mask && 5260 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5261 } 5262 5263 bool pci_device_is_present(struct pci_dev *pdev) 5264 { 5265 u32 v; 5266 5267 if (pci_dev_is_disconnected(pdev)) 5268 return false; 5269 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5270 } 5271 EXPORT_SYMBOL_GPL(pci_device_is_present); 5272 5273 void pci_ignore_hotplug(struct pci_dev *dev) 5274 { 5275 struct pci_dev *bridge = dev->bus->self; 5276 5277 dev->ignore_hotplug = 1; 5278 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5279 if (bridge) 5280 bridge->ignore_hotplug = 1; 5281 } 5282 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5283 5284 resource_size_t __weak pcibios_default_alignment(void) 5285 { 5286 return 0; 5287 } 5288 5289 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5290 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5291 static DEFINE_SPINLOCK(resource_alignment_lock); 5292 5293 /** 5294 * pci_specified_resource_alignment - get resource alignment specified by user. 5295 * @dev: the PCI device to get 5296 * @resize: whether or not to change resources' size when reassigning alignment 5297 * 5298 * RETURNS: Resource alignment if it is specified. 5299 * Zero if it is not specified. 5300 */ 5301 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5302 bool *resize) 5303 { 5304 int seg, bus, slot, func, align_order, count; 5305 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5306 resource_size_t align = pcibios_default_alignment(); 5307 char *p; 5308 5309 spin_lock(&resource_alignment_lock); 5310 p = resource_alignment_param; 5311 if (!*p && !align) 5312 goto out; 5313 if (pci_has_flag(PCI_PROBE_ONLY)) { 5314 align = 0; 5315 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5316 goto out; 5317 } 5318 5319 while (*p) { 5320 count = 0; 5321 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5322 p[count] == '@') { 5323 p += count + 1; 5324 } else { 5325 align_order = -1; 5326 } 5327 if (strncmp(p, "pci:", 4) == 0) { 5328 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5329 p += 4; 5330 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5331 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5332 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5333 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5334 p); 5335 break; 5336 } 5337 subsystem_vendor = subsystem_device = 0; 5338 } 5339 p += count; 5340 if ((!vendor || (vendor == dev->vendor)) && 5341 (!device || (device == dev->device)) && 5342 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5343 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5344 *resize = true; 5345 if (align_order == -1) 5346 align = PAGE_SIZE; 5347 else 5348 align = 1 << align_order; 5349 /* Found */ 5350 break; 5351 } 5352 } 5353 else { 5354 if (sscanf(p, "%x:%x:%x.%x%n", 5355 &seg, &bus, &slot, &func, &count) != 4) { 5356 seg = 0; 5357 if (sscanf(p, "%x:%x.%x%n", 5358 &bus, &slot, &func, &count) != 3) { 5359 /* Invalid format */ 5360 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5361 p); 5362 break; 5363 } 5364 } 5365 p += count; 5366 if (seg == pci_domain_nr(dev->bus) && 5367 bus == dev->bus->number && 5368 slot == PCI_SLOT(dev->devfn) && 5369 func == PCI_FUNC(dev->devfn)) { 5370 *resize = true; 5371 if (align_order == -1) 5372 align = PAGE_SIZE; 5373 else 5374 align = 1 << align_order; 5375 /* Found */ 5376 break; 5377 } 5378 } 5379 if (*p != ';' && *p != ',') { 5380 /* End of param or invalid format */ 5381 break; 5382 } 5383 p++; 5384 } 5385 out: 5386 spin_unlock(&resource_alignment_lock); 5387 return align; 5388 } 5389 5390 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5391 resource_size_t align, bool resize) 5392 { 5393 struct resource *r = &dev->resource[bar]; 5394 resource_size_t size; 5395 5396 if (!(r->flags & IORESOURCE_MEM)) 5397 return; 5398 5399 if (r->flags & IORESOURCE_PCI_FIXED) { 5400 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5401 bar, r, (unsigned long long)align); 5402 return; 5403 } 5404 5405 size = resource_size(r); 5406 if (size >= align) 5407 return; 5408 5409 /* 5410 * Increase the alignment of the resource. There are two ways we 5411 * can do this: 5412 * 5413 * 1) Increase the size of the resource. BARs are aligned on their 5414 * size, so when we reallocate space for this resource, we'll 5415 * allocate it with the larger alignment. This also prevents 5416 * assignment of any other BARs inside the alignment region, so 5417 * if we're requesting page alignment, this means no other BARs 5418 * will share the page. 5419 * 5420 * The disadvantage is that this makes the resource larger than 5421 * the hardware BAR, which may break drivers that compute things 5422 * based on the resource size, e.g., to find registers at a 5423 * fixed offset before the end of the BAR. 5424 * 5425 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5426 * set r->start to the desired alignment. By itself this 5427 * doesn't prevent other BARs being put inside the alignment 5428 * region, but if we realign *every* resource of every device in 5429 * the system, none of them will share an alignment region. 5430 * 5431 * When the user has requested alignment for only some devices via 5432 * the "pci=resource_alignment" argument, "resize" is true and we 5433 * use the first method. Otherwise we assume we're aligning all 5434 * devices and we use the second. 5435 */ 5436 5437 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 5438 bar, r, (unsigned long long)align); 5439 5440 if (resize) { 5441 r->start = 0; 5442 r->end = align - 1; 5443 } else { 5444 r->flags &= ~IORESOURCE_SIZEALIGN; 5445 r->flags |= IORESOURCE_STARTALIGN; 5446 r->start = align; 5447 r->end = r->start + size - 1; 5448 } 5449 r->flags |= IORESOURCE_UNSET; 5450 } 5451 5452 /* 5453 * This function disables memory decoding and releases memory resources 5454 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5455 * It also rounds up size to specified alignment. 5456 * Later on, the kernel will assign page-aligned memory resource back 5457 * to the device. 5458 */ 5459 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5460 { 5461 int i; 5462 struct resource *r; 5463 resource_size_t align; 5464 u16 command; 5465 bool resize = false; 5466 5467 /* 5468 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5469 * 3.4.1.11. Their resources are allocated from the space 5470 * described by the VF BARx register in the PF's SR-IOV capability. 5471 * We can't influence their alignment here. 5472 */ 5473 if (dev->is_virtfn) 5474 return; 5475 5476 /* check if specified PCI is target device to reassign */ 5477 align = pci_specified_resource_alignment(dev, &resize); 5478 if (!align) 5479 return; 5480 5481 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5482 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5483 pci_warn(dev, "Can't reassign resources to host bridge\n"); 5484 return; 5485 } 5486 5487 pci_info(dev, "Disabling memory decoding and releasing memory resources\n"); 5488 pci_read_config_word(dev, PCI_COMMAND, &command); 5489 command &= ~PCI_COMMAND_MEMORY; 5490 pci_write_config_word(dev, PCI_COMMAND, command); 5491 5492 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5493 pci_request_resource_alignment(dev, i, align, resize); 5494 5495 /* 5496 * Need to disable bridge's resource window, 5497 * to enable the kernel to reassign new resource 5498 * window later on. 5499 */ 5500 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5501 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5502 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5503 r = &dev->resource[i]; 5504 if (!(r->flags & IORESOURCE_MEM)) 5505 continue; 5506 r->flags |= IORESOURCE_UNSET; 5507 r->end = resource_size(r) - 1; 5508 r->start = 0; 5509 } 5510 pci_disable_bridge_window(dev); 5511 } 5512 } 5513 5514 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5515 { 5516 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5517 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5518 spin_lock(&resource_alignment_lock); 5519 strncpy(resource_alignment_param, buf, count); 5520 resource_alignment_param[count] = '\0'; 5521 spin_unlock(&resource_alignment_lock); 5522 return count; 5523 } 5524 5525 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5526 { 5527 size_t count; 5528 spin_lock(&resource_alignment_lock); 5529 count = snprintf(buf, size, "%s", resource_alignment_param); 5530 spin_unlock(&resource_alignment_lock); 5531 return count; 5532 } 5533 5534 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5535 { 5536 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5537 } 5538 5539 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5540 const char *buf, size_t count) 5541 { 5542 return pci_set_resource_alignment_param(buf, count); 5543 } 5544 5545 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5546 pci_resource_alignment_store); 5547 5548 static int __init pci_resource_alignment_sysfs_init(void) 5549 { 5550 return bus_create_file(&pci_bus_type, 5551 &bus_attr_resource_alignment); 5552 } 5553 late_initcall(pci_resource_alignment_sysfs_init); 5554 5555 static void pci_no_domains(void) 5556 { 5557 #ifdef CONFIG_PCI_DOMAINS 5558 pci_domains_supported = 0; 5559 #endif 5560 } 5561 5562 #ifdef CONFIG_PCI_DOMAINS 5563 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5564 5565 int pci_get_new_domain_nr(void) 5566 { 5567 return atomic_inc_return(&__domain_nr); 5568 } 5569 5570 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5571 static int of_pci_bus_find_domain_nr(struct device *parent) 5572 { 5573 static int use_dt_domains = -1; 5574 int domain = -1; 5575 5576 if (parent) 5577 domain = of_get_pci_domain_nr(parent->of_node); 5578 /* 5579 * Check DT domain and use_dt_domains values. 5580 * 5581 * If DT domain property is valid (domain >= 0) and 5582 * use_dt_domains != 0, the DT assignment is valid since this means 5583 * we have not previously allocated a domain number by using 5584 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5585 * 1, to indicate that we have just assigned a domain number from 5586 * DT. 5587 * 5588 * If DT domain property value is not valid (ie domain < 0), and we 5589 * have not previously assigned a domain number from DT 5590 * (use_dt_domains != 1) we should assign a domain number by 5591 * using the: 5592 * 5593 * pci_get_new_domain_nr() 5594 * 5595 * API and update the use_dt_domains value to keep track of method we 5596 * are using to assign domain numbers (use_dt_domains = 0). 5597 * 5598 * All other combinations imply we have a platform that is trying 5599 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5600 * which is a recipe for domain mishandling and it is prevented by 5601 * invalidating the domain value (domain = -1) and printing a 5602 * corresponding error. 5603 */ 5604 if (domain >= 0 && use_dt_domains) { 5605 use_dt_domains = 1; 5606 } else if (domain < 0 && use_dt_domains != 1) { 5607 use_dt_domains = 0; 5608 domain = pci_get_new_domain_nr(); 5609 } else { 5610 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n", 5611 parent->of_node); 5612 domain = -1; 5613 } 5614 5615 return domain; 5616 } 5617 5618 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5619 { 5620 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5621 acpi_pci_bus_find_domain_nr(bus); 5622 } 5623 #endif 5624 #endif 5625 5626 /** 5627 * pci_ext_cfg_avail - can we access extended PCI config space? 5628 * 5629 * Returns 1 if we can access PCI extended config space (offsets 5630 * greater than 0xff). This is the default implementation. Architecture 5631 * implementations can override this. 5632 */ 5633 int __weak pci_ext_cfg_avail(void) 5634 { 5635 return 1; 5636 } 5637 5638 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5639 { 5640 } 5641 EXPORT_SYMBOL(pci_fixup_cardbus); 5642 5643 static int __init pci_setup(char *str) 5644 { 5645 while (str) { 5646 char *k = strchr(str, ','); 5647 if (k) 5648 *k++ = 0; 5649 if (*str && (str = pcibios_setup(str)) && *str) { 5650 if (!strcmp(str, "nomsi")) { 5651 pci_no_msi(); 5652 } else if (!strcmp(str, "noaer")) { 5653 pci_no_aer(); 5654 } else if (!strncmp(str, "realloc=", 8)) { 5655 pci_realloc_get_opt(str + 8); 5656 } else if (!strncmp(str, "realloc", 7)) { 5657 pci_realloc_get_opt("on"); 5658 } else if (!strcmp(str, "nodomains")) { 5659 pci_no_domains(); 5660 } else if (!strncmp(str, "noari", 5)) { 5661 pcie_ari_disabled = true; 5662 } else if (!strncmp(str, "cbiosize=", 9)) { 5663 pci_cardbus_io_size = memparse(str + 9, &str); 5664 } else if (!strncmp(str, "cbmemsize=", 10)) { 5665 pci_cardbus_mem_size = memparse(str + 10, &str); 5666 } else if (!strncmp(str, "resource_alignment=", 19)) { 5667 pci_set_resource_alignment_param(str + 19, 5668 strlen(str + 19)); 5669 } else if (!strncmp(str, "ecrc=", 5)) { 5670 pcie_ecrc_get_policy(str + 5); 5671 } else if (!strncmp(str, "hpiosize=", 9)) { 5672 pci_hotplug_io_size = memparse(str + 9, &str); 5673 } else if (!strncmp(str, "hpmemsize=", 10)) { 5674 pci_hotplug_mem_size = memparse(str + 10, &str); 5675 } else if (!strncmp(str, "hpbussize=", 10)) { 5676 pci_hotplug_bus_size = 5677 simple_strtoul(str + 10, &str, 0); 5678 if (pci_hotplug_bus_size > 0xff) 5679 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5680 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5681 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5682 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5683 pcie_bus_config = PCIE_BUS_SAFE; 5684 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5685 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5686 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5687 pcie_bus_config = PCIE_BUS_PEER2PEER; 5688 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5689 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5690 } else { 5691 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5692 str); 5693 } 5694 } 5695 str = k; 5696 } 5697 return 0; 5698 } 5699 early_param("pci", pci_setup); 5700