1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pci_hotplug.h> 26 #include <asm-generic/pci-bridge.h> 27 #include <asm/setup.h> 28 #include "pci.h" 29 30 const char *pci_power_names[] = { 31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 32 }; 33 EXPORT_SYMBOL_GPL(pci_power_names); 34 35 int isa_dma_bridge_buggy; 36 EXPORT_SYMBOL(isa_dma_bridge_buggy); 37 38 int pci_pci_problems; 39 EXPORT_SYMBOL(pci_pci_problems); 40 41 unsigned int pci_pm_d3_delay; 42 43 static void pci_pme_list_scan(struct work_struct *work); 44 45 static LIST_HEAD(pci_pme_list); 46 static DEFINE_MUTEX(pci_pme_list_mutex); 47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 48 49 struct pci_pme_device { 50 struct list_head list; 51 struct pci_dev *dev; 52 }; 53 54 #define PME_TIMEOUT 1000 /* How long between PME checks */ 55 56 static void pci_dev_d3_sleep(struct pci_dev *dev) 57 { 58 unsigned int delay = dev->d3_delay; 59 60 if (delay < pci_pm_d3_delay) 61 delay = pci_pm_d3_delay; 62 63 msleep(delay); 64 } 65 66 #ifdef CONFIG_PCI_DOMAINS 67 int pci_domains_supported = 1; 68 #endif 69 70 #define DEFAULT_CARDBUS_IO_SIZE (256) 71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 75 76 #define DEFAULT_HOTPLUG_IO_SIZE (256) 77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 81 82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 83 84 /* 85 * The default CLS is used if arch didn't set CLS explicitly and not 86 * all pci devices agree on the same value. Arch can override either 87 * the dfl or actual value as it sees fit. Don't forget this is 88 * measured in 32-bit words, not bytes. 89 */ 90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 91 u8 pci_cache_line_size; 92 93 /* 94 * If we set up a device for bus mastering, we need to check the latency 95 * timer as certain BIOSes forget to set it properly. 96 */ 97 unsigned int pcibios_max_latency = 255; 98 99 /* If set, the PCIe ARI capability will not be used. */ 100 static bool pcie_ari_disabled; 101 102 /** 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 104 * @bus: pointer to PCI bus structure to search 105 * 106 * Given a PCI bus, returns the highest PCI bus number present in the set 107 * including the given PCI bus and its list of child PCI buses. 108 */ 109 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 110 { 111 struct pci_bus *tmp; 112 unsigned char max, n; 113 114 max = bus->busn_res.end; 115 list_for_each_entry(tmp, &bus->children, node) { 116 n = pci_bus_max_busnr(tmp); 117 if(n > max) 118 max = n; 119 } 120 return max; 121 } 122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 123 124 #ifdef CONFIG_HAS_IOMEM 125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 126 { 127 /* 128 * Make sure the BAR is actually a memory resource, not an IO resource 129 */ 130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 131 WARN_ON(1); 132 return NULL; 133 } 134 return ioremap_nocache(pci_resource_start(pdev, bar), 135 pci_resource_len(pdev, bar)); 136 } 137 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 138 #endif 139 140 #define PCI_FIND_CAP_TTL 48 141 142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 143 u8 pos, int cap, int *ttl) 144 { 145 u8 id; 146 147 while ((*ttl)--) { 148 pci_bus_read_config_byte(bus, devfn, pos, &pos); 149 if (pos < 0x40) 150 break; 151 pos &= ~3; 152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 153 &id); 154 if (id == 0xff) 155 break; 156 if (id == cap) 157 return pos; 158 pos += PCI_CAP_LIST_NEXT; 159 } 160 return 0; 161 } 162 163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 164 u8 pos, int cap) 165 { 166 int ttl = PCI_FIND_CAP_TTL; 167 168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 169 } 170 171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 172 { 173 return __pci_find_next_cap(dev->bus, dev->devfn, 174 pos + PCI_CAP_LIST_NEXT, cap); 175 } 176 EXPORT_SYMBOL_GPL(pci_find_next_capability); 177 178 static int __pci_bus_find_cap_start(struct pci_bus *bus, 179 unsigned int devfn, u8 hdr_type) 180 { 181 u16 status; 182 183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 184 if (!(status & PCI_STATUS_CAP_LIST)) 185 return 0; 186 187 switch (hdr_type) { 188 case PCI_HEADER_TYPE_NORMAL: 189 case PCI_HEADER_TYPE_BRIDGE: 190 return PCI_CAPABILITY_LIST; 191 case PCI_HEADER_TYPE_CARDBUS: 192 return PCI_CB_CAPABILITY_LIST; 193 default: 194 return 0; 195 } 196 197 return 0; 198 } 199 200 /** 201 * pci_find_capability - query for devices' capabilities 202 * @dev: PCI device to query 203 * @cap: capability code 204 * 205 * Tell if a device supports a given PCI capability. 206 * Returns the address of the requested capability structure within the 207 * device's PCI configuration space or 0 in case the device does not 208 * support it. Possible values for @cap: 209 * 210 * %PCI_CAP_ID_PM Power Management 211 * %PCI_CAP_ID_AGP Accelerated Graphics Port 212 * %PCI_CAP_ID_VPD Vital Product Data 213 * %PCI_CAP_ID_SLOTID Slot Identification 214 * %PCI_CAP_ID_MSI Message Signalled Interrupts 215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 216 * %PCI_CAP_ID_PCIX PCI-X 217 * %PCI_CAP_ID_EXP PCI Express 218 */ 219 int pci_find_capability(struct pci_dev *dev, int cap) 220 { 221 int pos; 222 223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 224 if (pos) 225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 226 227 return pos; 228 } 229 230 /** 231 * pci_bus_find_capability - query for devices' capabilities 232 * @bus: the PCI bus to query 233 * @devfn: PCI device to query 234 * @cap: capability code 235 * 236 * Like pci_find_capability() but works for pci devices that do not have a 237 * pci_dev structure set up yet. 238 * 239 * Returns the address of the requested capability structure within the 240 * device's PCI configuration space or 0 in case the device does not 241 * support it. 242 */ 243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 244 { 245 int pos; 246 u8 hdr_type; 247 248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 249 250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 251 if (pos) 252 pos = __pci_find_next_cap(bus, devfn, pos, cap); 253 254 return pos; 255 } 256 257 /** 258 * pci_find_next_ext_capability - Find an extended capability 259 * @dev: PCI device to query 260 * @start: address at which to start looking (0 to start at beginning of list) 261 * @cap: capability code 262 * 263 * Returns the address of the next matching extended capability structure 264 * within the device's PCI configuration space or 0 if the device does 265 * not support it. Some capabilities can occur several times, e.g., the 266 * vendor-specific capability, and this provides a way to find them all. 267 */ 268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 269 { 270 u32 header; 271 int ttl; 272 int pos = PCI_CFG_SPACE_SIZE; 273 274 /* minimum 8 bytes per capability */ 275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 276 277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 278 return 0; 279 280 if (start) 281 pos = start; 282 283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 284 return 0; 285 286 /* 287 * If we have no capabilities, this is indicated by cap ID, 288 * cap version and next pointer all being 0. 289 */ 290 if (header == 0) 291 return 0; 292 293 while (ttl-- > 0) { 294 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 295 return pos; 296 297 pos = PCI_EXT_CAP_NEXT(header); 298 if (pos < PCI_CFG_SPACE_SIZE) 299 break; 300 301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 302 break; 303 } 304 305 return 0; 306 } 307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 308 309 /** 310 * pci_find_ext_capability - Find an extended capability 311 * @dev: PCI device to query 312 * @cap: capability code 313 * 314 * Returns the address of the requested extended capability structure 315 * within the device's PCI configuration space or 0 if the device does 316 * not support it. Possible values for @cap: 317 * 318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 319 * %PCI_EXT_CAP_ID_VC Virtual Channel 320 * %PCI_EXT_CAP_ID_DSN Device Serial Number 321 * %PCI_EXT_CAP_ID_PWR Power Budgeting 322 */ 323 int pci_find_ext_capability(struct pci_dev *dev, int cap) 324 { 325 return pci_find_next_ext_capability(dev, 0, cap); 326 } 327 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 328 329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 330 { 331 int rc, ttl = PCI_FIND_CAP_TTL; 332 u8 cap, mask; 333 334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 335 mask = HT_3BIT_CAP_MASK; 336 else 337 mask = HT_5BIT_CAP_MASK; 338 339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 340 PCI_CAP_ID_HT, &ttl); 341 while (pos) { 342 rc = pci_read_config_byte(dev, pos + 3, &cap); 343 if (rc != PCIBIOS_SUCCESSFUL) 344 return 0; 345 346 if ((cap & mask) == ht_cap) 347 return pos; 348 349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 350 pos + PCI_CAP_LIST_NEXT, 351 PCI_CAP_ID_HT, &ttl); 352 } 353 354 return 0; 355 } 356 /** 357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 358 * @dev: PCI device to query 359 * @pos: Position from which to continue searching 360 * @ht_cap: Hypertransport capability code 361 * 362 * To be used in conjunction with pci_find_ht_capability() to search for 363 * all capabilities matching @ht_cap. @pos should always be a value returned 364 * from pci_find_ht_capability(). 365 * 366 * NB. To be 100% safe against broken PCI devices, the caller should take 367 * steps to avoid an infinite loop. 368 */ 369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 370 { 371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 372 } 373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 374 375 /** 376 * pci_find_ht_capability - query a device's Hypertransport capabilities 377 * @dev: PCI device to query 378 * @ht_cap: Hypertransport capability code 379 * 380 * Tell if a device supports a given Hypertransport capability. 381 * Returns an address within the device's PCI configuration space 382 * or 0 in case the device does not support the request capability. 383 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 384 * which has a Hypertransport capability matching @ht_cap. 385 */ 386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 387 { 388 int pos; 389 390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 391 if (pos) 392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 393 394 return pos; 395 } 396 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 397 398 /** 399 * pci_find_parent_resource - return resource region of parent bus of given region 400 * @dev: PCI device structure contains resources to be searched 401 * @res: child resource record for which parent is sought 402 * 403 * For given resource region of given device, return the resource 404 * region of parent bus the given region is contained in. 405 */ 406 struct resource * 407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 408 { 409 const struct pci_bus *bus = dev->bus; 410 struct resource *r; 411 int i; 412 413 pci_bus_for_each_resource(bus, r, i) { 414 if (!r) 415 continue; 416 if (res->start && resource_contains(r, res)) { 417 418 /* 419 * If the window is prefetchable but the BAR is 420 * not, the allocator made a mistake. 421 */ 422 if (r->flags & IORESOURCE_PREFETCH && 423 !(res->flags & IORESOURCE_PREFETCH)) 424 return NULL; 425 426 /* 427 * If we're below a transparent bridge, there may 428 * be both a positively-decoded aperture and a 429 * subtractively-decoded region that contain the BAR. 430 * We want the positively-decoded one, so this depends 431 * on pci_bus_for_each_resource() giving us those 432 * first. 433 */ 434 return r; 435 } 436 } 437 return NULL; 438 } 439 440 /** 441 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 442 * @dev: the PCI device to operate on 443 * @pos: config space offset of status word 444 * @mask: mask of bit(s) to care about in status word 445 * 446 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 447 */ 448 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 449 { 450 int i; 451 452 /* Wait for Transaction Pending bit clean */ 453 for (i = 0; i < 4; i++) { 454 u16 status; 455 if (i) 456 msleep((1 << (i - 1)) * 100); 457 458 pci_read_config_word(dev, pos, &status); 459 if (!(status & mask)) 460 return 1; 461 } 462 463 return 0; 464 } 465 466 /** 467 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 468 * @dev: PCI device to have its BARs restored 469 * 470 * Restore the BAR values for a given device, so as to make it 471 * accessible by its driver. 472 */ 473 static void 474 pci_restore_bars(struct pci_dev *dev) 475 { 476 int i; 477 478 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 479 pci_update_resource(dev, i); 480 } 481 482 static struct pci_platform_pm_ops *pci_platform_pm; 483 484 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 485 { 486 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 487 || !ops->sleep_wake) 488 return -EINVAL; 489 pci_platform_pm = ops; 490 return 0; 491 } 492 493 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 494 { 495 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 496 } 497 498 static inline int platform_pci_set_power_state(struct pci_dev *dev, 499 pci_power_t t) 500 { 501 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 502 } 503 504 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 505 { 506 return pci_platform_pm ? 507 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 508 } 509 510 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 511 { 512 return pci_platform_pm ? 513 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 514 } 515 516 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 517 { 518 return pci_platform_pm ? 519 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 520 } 521 522 /** 523 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 524 * given PCI device 525 * @dev: PCI device to handle. 526 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 527 * 528 * RETURN VALUE: 529 * -EINVAL if the requested state is invalid. 530 * -EIO if device does not support PCI PM or its PM capabilities register has a 531 * wrong version, or device doesn't support the requested state. 532 * 0 if device already is in the requested state. 533 * 0 if device's power state has been successfully changed. 534 */ 535 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 536 { 537 u16 pmcsr; 538 bool need_restore = false; 539 540 /* Check if we're already there */ 541 if (dev->current_state == state) 542 return 0; 543 544 if (!dev->pm_cap) 545 return -EIO; 546 547 if (state < PCI_D0 || state > PCI_D3hot) 548 return -EINVAL; 549 550 /* Validate current state: 551 * Can enter D0 from any state, but if we can only go deeper 552 * to sleep if we're already in a low power state 553 */ 554 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 555 && dev->current_state > state) { 556 dev_err(&dev->dev, "invalid power transition " 557 "(from state %d to %d)\n", dev->current_state, state); 558 return -EINVAL; 559 } 560 561 /* check if this device supports the desired state */ 562 if ((state == PCI_D1 && !dev->d1_support) 563 || (state == PCI_D2 && !dev->d2_support)) 564 return -EIO; 565 566 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 567 568 /* If we're (effectively) in D3, force entire word to 0. 569 * This doesn't affect PME_Status, disables PME_En, and 570 * sets PowerState to 0. 571 */ 572 switch (dev->current_state) { 573 case PCI_D0: 574 case PCI_D1: 575 case PCI_D2: 576 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 577 pmcsr |= state; 578 break; 579 case PCI_D3hot: 580 case PCI_D3cold: 581 case PCI_UNKNOWN: /* Boot-up */ 582 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 583 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 584 need_restore = true; 585 /* Fall-through: force to D0 */ 586 default: 587 pmcsr = 0; 588 break; 589 } 590 591 /* enter specified state */ 592 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 593 594 /* Mandatory power management transition delays */ 595 /* see PCI PM 1.1 5.6.1 table 18 */ 596 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 597 pci_dev_d3_sleep(dev); 598 else if (state == PCI_D2 || dev->current_state == PCI_D2) 599 udelay(PCI_PM_D2_DELAY); 600 601 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 602 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 603 if (dev->current_state != state && printk_ratelimit()) 604 dev_info(&dev->dev, "Refused to change power state, " 605 "currently in D%d\n", dev->current_state); 606 607 /* 608 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 609 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 610 * from D3hot to D0 _may_ perform an internal reset, thereby 611 * going to "D0 Uninitialized" rather than "D0 Initialized". 612 * For example, at least some versions of the 3c905B and the 613 * 3c556B exhibit this behaviour. 614 * 615 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 616 * devices in a D3hot state at boot. Consequently, we need to 617 * restore at least the BARs so that the device will be 618 * accessible to its driver. 619 */ 620 if (need_restore) 621 pci_restore_bars(dev); 622 623 if (dev->bus->self) 624 pcie_aspm_pm_state_change(dev->bus->self); 625 626 return 0; 627 } 628 629 /** 630 * pci_update_current_state - Read PCI power state of given device from its 631 * PCI PM registers and cache it 632 * @dev: PCI device to handle. 633 * @state: State to cache in case the device doesn't have the PM capability 634 */ 635 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 636 { 637 if (dev->pm_cap) { 638 u16 pmcsr; 639 640 /* 641 * Configuration space is not accessible for device in 642 * D3cold, so just keep or set D3cold for safety 643 */ 644 if (dev->current_state == PCI_D3cold) 645 return; 646 if (state == PCI_D3cold) { 647 dev->current_state = PCI_D3cold; 648 return; 649 } 650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 651 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 652 } else { 653 dev->current_state = state; 654 } 655 } 656 657 /** 658 * pci_power_up - Put the given device into D0 forcibly 659 * @dev: PCI device to power up 660 */ 661 void pci_power_up(struct pci_dev *dev) 662 { 663 if (platform_pci_power_manageable(dev)) 664 platform_pci_set_power_state(dev, PCI_D0); 665 666 pci_raw_set_power_state(dev, PCI_D0); 667 pci_update_current_state(dev, PCI_D0); 668 } 669 670 /** 671 * pci_platform_power_transition - Use platform to change device power state 672 * @dev: PCI device to handle. 673 * @state: State to put the device into. 674 */ 675 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 676 { 677 int error; 678 679 if (platform_pci_power_manageable(dev)) { 680 error = platform_pci_set_power_state(dev, state); 681 if (!error) 682 pci_update_current_state(dev, state); 683 } else 684 error = -ENODEV; 685 686 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 687 dev->current_state = PCI_D0; 688 689 return error; 690 } 691 692 /** 693 * pci_wakeup - Wake up a PCI device 694 * @pci_dev: Device to handle. 695 * @ign: ignored parameter 696 */ 697 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 698 { 699 pci_wakeup_event(pci_dev); 700 pm_request_resume(&pci_dev->dev); 701 return 0; 702 } 703 704 /** 705 * pci_wakeup_bus - Walk given bus and wake up devices on it 706 * @bus: Top bus of the subtree to walk. 707 */ 708 static void pci_wakeup_bus(struct pci_bus *bus) 709 { 710 if (bus) 711 pci_walk_bus(bus, pci_wakeup, NULL); 712 } 713 714 /** 715 * __pci_start_power_transition - Start power transition of a PCI device 716 * @dev: PCI device to handle. 717 * @state: State to put the device into. 718 */ 719 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 720 { 721 if (state == PCI_D0) { 722 pci_platform_power_transition(dev, PCI_D0); 723 /* 724 * Mandatory power management transition delays, see 725 * PCI Express Base Specification Revision 2.0 Section 726 * 6.6.1: Conventional Reset. Do not delay for 727 * devices powered on/off by corresponding bridge, 728 * because have already delayed for the bridge. 729 */ 730 if (dev->runtime_d3cold) { 731 msleep(dev->d3cold_delay); 732 /* 733 * When powering on a bridge from D3cold, the 734 * whole hierarchy may be powered on into 735 * D0uninitialized state, resume them to give 736 * them a chance to suspend again 737 */ 738 pci_wakeup_bus(dev->subordinate); 739 } 740 } 741 } 742 743 /** 744 * __pci_dev_set_current_state - Set current state of a PCI device 745 * @dev: Device to handle 746 * @data: pointer to state to be set 747 */ 748 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 749 { 750 pci_power_t state = *(pci_power_t *)data; 751 752 dev->current_state = state; 753 return 0; 754 } 755 756 /** 757 * __pci_bus_set_current_state - Walk given bus and set current state of devices 758 * @bus: Top bus of the subtree to walk. 759 * @state: state to be set 760 */ 761 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 762 { 763 if (bus) 764 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 765 } 766 767 /** 768 * __pci_complete_power_transition - Complete power transition of a PCI device 769 * @dev: PCI device to handle. 770 * @state: State to put the device into. 771 * 772 * This function should not be called directly by device drivers. 773 */ 774 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 775 { 776 int ret; 777 778 if (state <= PCI_D0) 779 return -EINVAL; 780 ret = pci_platform_power_transition(dev, state); 781 /* Power off the bridge may power off the whole hierarchy */ 782 if (!ret && state == PCI_D3cold) 783 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 784 return ret; 785 } 786 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 787 788 /** 789 * pci_set_power_state - Set the power state of a PCI device 790 * @dev: PCI device to handle. 791 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 792 * 793 * Transition a device to a new power state, using the platform firmware and/or 794 * the device's PCI PM registers. 795 * 796 * RETURN VALUE: 797 * -EINVAL if the requested state is invalid. 798 * -EIO if device does not support PCI PM or its PM capabilities register has a 799 * wrong version, or device doesn't support the requested state. 800 * 0 if device already is in the requested state. 801 * 0 if device's power state has been successfully changed. 802 */ 803 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 804 { 805 int error; 806 807 /* bound the state we're entering */ 808 if (state > PCI_D3cold) 809 state = PCI_D3cold; 810 else if (state < PCI_D0) 811 state = PCI_D0; 812 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 813 /* 814 * If the device or the parent bridge do not support PCI PM, 815 * ignore the request if we're doing anything other than putting 816 * it into D0 (which would only happen on boot). 817 */ 818 return 0; 819 820 /* Check if we're already there */ 821 if (dev->current_state == state) 822 return 0; 823 824 __pci_start_power_transition(dev, state); 825 826 /* This device is quirked not to be put into D3, so 827 don't put it in D3 */ 828 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 829 return 0; 830 831 /* 832 * To put device in D3cold, we put device into D3hot in native 833 * way, then put device into D3cold with platform ops 834 */ 835 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 836 PCI_D3hot : state); 837 838 if (!__pci_complete_power_transition(dev, state)) 839 error = 0; 840 /* 841 * When aspm_policy is "powersave" this call ensures 842 * that ASPM is configured. 843 */ 844 if (!error && dev->bus->self) 845 pcie_aspm_powersave_config_link(dev->bus->self); 846 847 return error; 848 } 849 850 /** 851 * pci_choose_state - Choose the power state of a PCI device 852 * @dev: PCI device to be suspended 853 * @state: target sleep state for the whole system. This is the value 854 * that is passed to suspend() function. 855 * 856 * Returns PCI power state suitable for given device and given system 857 * message. 858 */ 859 860 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 861 { 862 pci_power_t ret; 863 864 if (!dev->pm_cap) 865 return PCI_D0; 866 867 ret = platform_pci_choose_state(dev); 868 if (ret != PCI_POWER_ERROR) 869 return ret; 870 871 switch (state.event) { 872 case PM_EVENT_ON: 873 return PCI_D0; 874 case PM_EVENT_FREEZE: 875 case PM_EVENT_PRETHAW: 876 /* REVISIT both freeze and pre-thaw "should" use D0 */ 877 case PM_EVENT_SUSPEND: 878 case PM_EVENT_HIBERNATE: 879 return PCI_D3hot; 880 default: 881 dev_info(&dev->dev, "unrecognized suspend event %d\n", 882 state.event); 883 BUG(); 884 } 885 return PCI_D0; 886 } 887 888 EXPORT_SYMBOL(pci_choose_state); 889 890 #define PCI_EXP_SAVE_REGS 7 891 892 893 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 894 u16 cap, bool extended) 895 { 896 struct pci_cap_saved_state *tmp; 897 898 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 899 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 900 return tmp; 901 } 902 return NULL; 903 } 904 905 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 906 { 907 return _pci_find_saved_cap(dev, cap, false); 908 } 909 910 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 911 { 912 return _pci_find_saved_cap(dev, cap, true); 913 } 914 915 static int pci_save_pcie_state(struct pci_dev *dev) 916 { 917 int i = 0; 918 struct pci_cap_saved_state *save_state; 919 u16 *cap; 920 921 if (!pci_is_pcie(dev)) 922 return 0; 923 924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 925 if (!save_state) { 926 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 927 return -ENOMEM; 928 } 929 930 cap = (u16 *)&save_state->cap.data[0]; 931 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 932 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 933 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 934 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 935 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 936 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 937 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 938 939 return 0; 940 } 941 942 static void pci_restore_pcie_state(struct pci_dev *dev) 943 { 944 int i = 0; 945 struct pci_cap_saved_state *save_state; 946 u16 *cap; 947 948 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 949 if (!save_state) 950 return; 951 952 cap = (u16 *)&save_state->cap.data[0]; 953 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 954 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 955 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 956 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 957 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 958 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 959 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 960 } 961 962 963 static int pci_save_pcix_state(struct pci_dev *dev) 964 { 965 int pos; 966 struct pci_cap_saved_state *save_state; 967 968 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 969 if (pos <= 0) 970 return 0; 971 972 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 973 if (!save_state) { 974 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 975 return -ENOMEM; 976 } 977 978 pci_read_config_word(dev, pos + PCI_X_CMD, 979 (u16 *)save_state->cap.data); 980 981 return 0; 982 } 983 984 static void pci_restore_pcix_state(struct pci_dev *dev) 985 { 986 int i = 0, pos; 987 struct pci_cap_saved_state *save_state; 988 u16 *cap; 989 990 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 991 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 992 if (!save_state || pos <= 0) 993 return; 994 cap = (u16 *)&save_state->cap.data[0]; 995 996 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 997 } 998 999 1000 /** 1001 * pci_save_state - save the PCI configuration space of a device before suspending 1002 * @dev: - PCI device that we're dealing with 1003 */ 1004 int 1005 pci_save_state(struct pci_dev *dev) 1006 { 1007 int i; 1008 /* XXX: 100% dword access ok here? */ 1009 for (i = 0; i < 16; i++) 1010 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1011 dev->state_saved = true; 1012 if ((i = pci_save_pcie_state(dev)) != 0) 1013 return i; 1014 if ((i = pci_save_pcix_state(dev)) != 0) 1015 return i; 1016 if ((i = pci_save_vc_state(dev)) != 0) 1017 return i; 1018 return 0; 1019 } 1020 1021 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1022 u32 saved_val, int retry) 1023 { 1024 u32 val; 1025 1026 pci_read_config_dword(pdev, offset, &val); 1027 if (val == saved_val) 1028 return; 1029 1030 for (;;) { 1031 dev_dbg(&pdev->dev, "restoring config space at offset " 1032 "%#x (was %#x, writing %#x)\n", offset, val, saved_val); 1033 pci_write_config_dword(pdev, offset, saved_val); 1034 if (retry-- <= 0) 1035 return; 1036 1037 pci_read_config_dword(pdev, offset, &val); 1038 if (val == saved_val) 1039 return; 1040 1041 mdelay(1); 1042 } 1043 } 1044 1045 static void pci_restore_config_space_range(struct pci_dev *pdev, 1046 int start, int end, int retry) 1047 { 1048 int index; 1049 1050 for (index = end; index >= start; index--) 1051 pci_restore_config_dword(pdev, 4 * index, 1052 pdev->saved_config_space[index], 1053 retry); 1054 } 1055 1056 static void pci_restore_config_space(struct pci_dev *pdev) 1057 { 1058 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1059 pci_restore_config_space_range(pdev, 10, 15, 0); 1060 /* Restore BARs before the command register. */ 1061 pci_restore_config_space_range(pdev, 4, 9, 10); 1062 pci_restore_config_space_range(pdev, 0, 3, 0); 1063 } else { 1064 pci_restore_config_space_range(pdev, 0, 15, 0); 1065 } 1066 } 1067 1068 /** 1069 * pci_restore_state - Restore the saved state of a PCI device 1070 * @dev: - PCI device that we're dealing with 1071 */ 1072 void pci_restore_state(struct pci_dev *dev) 1073 { 1074 if (!dev->state_saved) 1075 return; 1076 1077 /* PCI Express register must be restored first */ 1078 pci_restore_pcie_state(dev); 1079 pci_restore_ats_state(dev); 1080 pci_restore_vc_state(dev); 1081 1082 pci_restore_config_space(dev); 1083 1084 pci_restore_pcix_state(dev); 1085 pci_restore_msi_state(dev); 1086 pci_restore_iov_state(dev); 1087 1088 dev->state_saved = false; 1089 } 1090 1091 struct pci_saved_state { 1092 u32 config_space[16]; 1093 struct pci_cap_saved_data cap[0]; 1094 }; 1095 1096 /** 1097 * pci_store_saved_state - Allocate and return an opaque struct containing 1098 * the device saved state. 1099 * @dev: PCI device that we're dealing with 1100 * 1101 * Return NULL if no state or error. 1102 */ 1103 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1104 { 1105 struct pci_saved_state *state; 1106 struct pci_cap_saved_state *tmp; 1107 struct pci_cap_saved_data *cap; 1108 size_t size; 1109 1110 if (!dev->state_saved) 1111 return NULL; 1112 1113 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1114 1115 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1116 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1117 1118 state = kzalloc(size, GFP_KERNEL); 1119 if (!state) 1120 return NULL; 1121 1122 memcpy(state->config_space, dev->saved_config_space, 1123 sizeof(state->config_space)); 1124 1125 cap = state->cap; 1126 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1127 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1128 memcpy(cap, &tmp->cap, len); 1129 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1130 } 1131 /* Empty cap_save terminates list */ 1132 1133 return state; 1134 } 1135 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1136 1137 /** 1138 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1139 * @dev: PCI device that we're dealing with 1140 * @state: Saved state returned from pci_store_saved_state() 1141 */ 1142 static int pci_load_saved_state(struct pci_dev *dev, 1143 struct pci_saved_state *state) 1144 { 1145 struct pci_cap_saved_data *cap; 1146 1147 dev->state_saved = false; 1148 1149 if (!state) 1150 return 0; 1151 1152 memcpy(dev->saved_config_space, state->config_space, 1153 sizeof(state->config_space)); 1154 1155 cap = state->cap; 1156 while (cap->size) { 1157 struct pci_cap_saved_state *tmp; 1158 1159 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1160 if (!tmp || tmp->cap.size != cap->size) 1161 return -EINVAL; 1162 1163 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1164 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1165 sizeof(struct pci_cap_saved_data) + cap->size); 1166 } 1167 1168 dev->state_saved = true; 1169 return 0; 1170 } 1171 1172 /** 1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1174 * and free the memory allocated for it. 1175 * @dev: PCI device that we're dealing with 1176 * @state: Pointer to saved state returned from pci_store_saved_state() 1177 */ 1178 int pci_load_and_free_saved_state(struct pci_dev *dev, 1179 struct pci_saved_state **state) 1180 { 1181 int ret = pci_load_saved_state(dev, *state); 1182 kfree(*state); 1183 *state = NULL; 1184 return ret; 1185 } 1186 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1187 1188 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1189 { 1190 return pci_enable_resources(dev, bars); 1191 } 1192 1193 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1194 { 1195 int err; 1196 u16 cmd; 1197 u8 pin; 1198 1199 err = pci_set_power_state(dev, PCI_D0); 1200 if (err < 0 && err != -EIO) 1201 return err; 1202 err = pcibios_enable_device(dev, bars); 1203 if (err < 0) 1204 return err; 1205 pci_fixup_device(pci_fixup_enable, dev); 1206 1207 if (dev->msi_enabled || dev->msix_enabled) 1208 return 0; 1209 1210 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1211 if (pin) { 1212 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1213 if (cmd & PCI_COMMAND_INTX_DISABLE) 1214 pci_write_config_word(dev, PCI_COMMAND, 1215 cmd & ~PCI_COMMAND_INTX_DISABLE); 1216 } 1217 1218 return 0; 1219 } 1220 1221 /** 1222 * pci_reenable_device - Resume abandoned device 1223 * @dev: PCI device to be resumed 1224 * 1225 * Note this function is a backend of pci_default_resume and is not supposed 1226 * to be called by normal code, write proper resume handler and use it instead. 1227 */ 1228 int pci_reenable_device(struct pci_dev *dev) 1229 { 1230 if (pci_is_enabled(dev)) 1231 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1232 return 0; 1233 } 1234 1235 static void pci_enable_bridge(struct pci_dev *dev) 1236 { 1237 struct pci_dev *bridge; 1238 int retval; 1239 1240 bridge = pci_upstream_bridge(dev); 1241 if (bridge) 1242 pci_enable_bridge(bridge); 1243 1244 if (pci_is_enabled(dev)) { 1245 if (!dev->is_busmaster) 1246 pci_set_master(dev); 1247 return; 1248 } 1249 1250 retval = pci_enable_device(dev); 1251 if (retval) 1252 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1253 retval); 1254 pci_set_master(dev); 1255 } 1256 1257 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1258 { 1259 struct pci_dev *bridge; 1260 int err; 1261 int i, bars = 0; 1262 1263 /* 1264 * Power state could be unknown at this point, either due to a fresh 1265 * boot or a device removal call. So get the current power state 1266 * so that things like MSI message writing will behave as expected 1267 * (e.g. if the device really is in D0 at enable time). 1268 */ 1269 if (dev->pm_cap) { 1270 u16 pmcsr; 1271 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1272 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1273 } 1274 1275 if (atomic_inc_return(&dev->enable_cnt) > 1) 1276 return 0; /* already enabled */ 1277 1278 bridge = pci_upstream_bridge(dev); 1279 if (bridge) 1280 pci_enable_bridge(bridge); 1281 1282 /* only skip sriov related */ 1283 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1284 if (dev->resource[i].flags & flags) 1285 bars |= (1 << i); 1286 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1287 if (dev->resource[i].flags & flags) 1288 bars |= (1 << i); 1289 1290 err = do_pci_enable_device(dev, bars); 1291 if (err < 0) 1292 atomic_dec(&dev->enable_cnt); 1293 return err; 1294 } 1295 1296 /** 1297 * pci_enable_device_io - Initialize a device for use with IO space 1298 * @dev: PCI device to be initialized 1299 * 1300 * Initialize device before it's used by a driver. Ask low-level code 1301 * to enable I/O resources. Wake up the device if it was suspended. 1302 * Beware, this function can fail. 1303 */ 1304 int pci_enable_device_io(struct pci_dev *dev) 1305 { 1306 return pci_enable_device_flags(dev, IORESOURCE_IO); 1307 } 1308 1309 /** 1310 * pci_enable_device_mem - Initialize a device for use with Memory space 1311 * @dev: PCI device to be initialized 1312 * 1313 * Initialize device before it's used by a driver. Ask low-level code 1314 * to enable Memory resources. Wake up the device if it was suspended. 1315 * Beware, this function can fail. 1316 */ 1317 int pci_enable_device_mem(struct pci_dev *dev) 1318 { 1319 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1320 } 1321 1322 /** 1323 * pci_enable_device - Initialize device before it's used by a driver. 1324 * @dev: PCI device to be initialized 1325 * 1326 * Initialize device before it's used by a driver. Ask low-level code 1327 * to enable I/O and memory. Wake up the device if it was suspended. 1328 * Beware, this function can fail. 1329 * 1330 * Note we don't actually enable the device many times if we call 1331 * this function repeatedly (we just increment the count). 1332 */ 1333 int pci_enable_device(struct pci_dev *dev) 1334 { 1335 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1336 } 1337 1338 /* 1339 * Managed PCI resources. This manages device on/off, intx/msi/msix 1340 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1341 * there's no need to track it separately. pci_devres is initialized 1342 * when a device is enabled using managed PCI device enable interface. 1343 */ 1344 struct pci_devres { 1345 unsigned int enabled:1; 1346 unsigned int pinned:1; 1347 unsigned int orig_intx:1; 1348 unsigned int restore_intx:1; 1349 u32 region_mask; 1350 }; 1351 1352 static void pcim_release(struct device *gendev, void *res) 1353 { 1354 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1355 struct pci_devres *this = res; 1356 int i; 1357 1358 if (dev->msi_enabled) 1359 pci_disable_msi(dev); 1360 if (dev->msix_enabled) 1361 pci_disable_msix(dev); 1362 1363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1364 if (this->region_mask & (1 << i)) 1365 pci_release_region(dev, i); 1366 1367 if (this->restore_intx) 1368 pci_intx(dev, this->orig_intx); 1369 1370 if (this->enabled && !this->pinned) 1371 pci_disable_device(dev); 1372 } 1373 1374 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 1375 { 1376 struct pci_devres *dr, *new_dr; 1377 1378 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1379 if (dr) 1380 return dr; 1381 1382 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1383 if (!new_dr) 1384 return NULL; 1385 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1386 } 1387 1388 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1389 { 1390 if (pci_is_managed(pdev)) 1391 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1392 return NULL; 1393 } 1394 1395 /** 1396 * pcim_enable_device - Managed pci_enable_device() 1397 * @pdev: PCI device to be initialized 1398 * 1399 * Managed pci_enable_device(). 1400 */ 1401 int pcim_enable_device(struct pci_dev *pdev) 1402 { 1403 struct pci_devres *dr; 1404 int rc; 1405 1406 dr = get_pci_dr(pdev); 1407 if (unlikely(!dr)) 1408 return -ENOMEM; 1409 if (dr->enabled) 1410 return 0; 1411 1412 rc = pci_enable_device(pdev); 1413 if (!rc) { 1414 pdev->is_managed = 1; 1415 dr->enabled = 1; 1416 } 1417 return rc; 1418 } 1419 1420 /** 1421 * pcim_pin_device - Pin managed PCI device 1422 * @pdev: PCI device to pin 1423 * 1424 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1425 * driver detach. @pdev must have been enabled with 1426 * pcim_enable_device(). 1427 */ 1428 void pcim_pin_device(struct pci_dev *pdev) 1429 { 1430 struct pci_devres *dr; 1431 1432 dr = find_pci_dr(pdev); 1433 WARN_ON(!dr || !dr->enabled); 1434 if (dr) 1435 dr->pinned = 1; 1436 } 1437 1438 /* 1439 * pcibios_add_device - provide arch specific hooks when adding device dev 1440 * @dev: the PCI device being added 1441 * 1442 * Permits the platform to provide architecture specific functionality when 1443 * devices are added. This is the default implementation. Architecture 1444 * implementations can override this. 1445 */ 1446 int __weak pcibios_add_device (struct pci_dev *dev) 1447 { 1448 return 0; 1449 } 1450 1451 /** 1452 * pcibios_release_device - provide arch specific hooks when releasing device dev 1453 * @dev: the PCI device being released 1454 * 1455 * Permits the platform to provide architecture specific functionality when 1456 * devices are released. This is the default implementation. Architecture 1457 * implementations can override this. 1458 */ 1459 void __weak pcibios_release_device(struct pci_dev *dev) {} 1460 1461 /** 1462 * pcibios_disable_device - disable arch specific PCI resources for device dev 1463 * @dev: the PCI device to disable 1464 * 1465 * Disables architecture specific PCI resources for the device. This 1466 * is the default implementation. Architecture implementations can 1467 * override this. 1468 */ 1469 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1470 1471 static void do_pci_disable_device(struct pci_dev *dev) 1472 { 1473 u16 pci_command; 1474 1475 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1476 if (pci_command & PCI_COMMAND_MASTER) { 1477 pci_command &= ~PCI_COMMAND_MASTER; 1478 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1479 } 1480 1481 pcibios_disable_device(dev); 1482 } 1483 1484 /** 1485 * pci_disable_enabled_device - Disable device without updating enable_cnt 1486 * @dev: PCI device to disable 1487 * 1488 * NOTE: This function is a backend of PCI power management routines and is 1489 * not supposed to be called drivers. 1490 */ 1491 void pci_disable_enabled_device(struct pci_dev *dev) 1492 { 1493 if (pci_is_enabled(dev)) 1494 do_pci_disable_device(dev); 1495 } 1496 1497 /** 1498 * pci_disable_device - Disable PCI device after use 1499 * @dev: PCI device to be disabled 1500 * 1501 * Signal to the system that the PCI device is not in use by the system 1502 * anymore. This only involves disabling PCI bus-mastering, if active. 1503 * 1504 * Note we don't actually disable the device until all callers of 1505 * pci_enable_device() have called pci_disable_device(). 1506 */ 1507 void 1508 pci_disable_device(struct pci_dev *dev) 1509 { 1510 struct pci_devres *dr; 1511 1512 dr = find_pci_dr(dev); 1513 if (dr) 1514 dr->enabled = 0; 1515 1516 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1517 "disabling already-disabled device"); 1518 1519 if (atomic_dec_return(&dev->enable_cnt) != 0) 1520 return; 1521 1522 do_pci_disable_device(dev); 1523 1524 dev->is_busmaster = 0; 1525 } 1526 1527 /** 1528 * pcibios_set_pcie_reset_state - set reset state for device dev 1529 * @dev: the PCIe device reset 1530 * @state: Reset state to enter into 1531 * 1532 * 1533 * Sets the PCIe reset state for the device. This is the default 1534 * implementation. Architecture implementations can override this. 1535 */ 1536 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1537 enum pcie_reset_state state) 1538 { 1539 return -EINVAL; 1540 } 1541 1542 /** 1543 * pci_set_pcie_reset_state - set reset state for device dev 1544 * @dev: the PCIe device reset 1545 * @state: Reset state to enter into 1546 * 1547 * 1548 * Sets the PCI reset state for the device. 1549 */ 1550 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1551 { 1552 return pcibios_set_pcie_reset_state(dev, state); 1553 } 1554 1555 /** 1556 * pci_check_pme_status - Check if given device has generated PME. 1557 * @dev: Device to check. 1558 * 1559 * Check the PME status of the device and if set, clear it and clear PME enable 1560 * (if set). Return 'true' if PME status and PME enable were both set or 1561 * 'false' otherwise. 1562 */ 1563 bool pci_check_pme_status(struct pci_dev *dev) 1564 { 1565 int pmcsr_pos; 1566 u16 pmcsr; 1567 bool ret = false; 1568 1569 if (!dev->pm_cap) 1570 return false; 1571 1572 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1573 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1574 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1575 return false; 1576 1577 /* Clear PME status. */ 1578 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1579 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1580 /* Disable PME to avoid interrupt flood. */ 1581 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1582 ret = true; 1583 } 1584 1585 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1586 1587 return ret; 1588 } 1589 1590 /** 1591 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1592 * @dev: Device to handle. 1593 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1594 * 1595 * Check if @dev has generated PME and queue a resume request for it in that 1596 * case. 1597 */ 1598 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1599 { 1600 if (pme_poll_reset && dev->pme_poll) 1601 dev->pme_poll = false; 1602 1603 if (pci_check_pme_status(dev)) { 1604 pci_wakeup_event(dev); 1605 pm_request_resume(&dev->dev); 1606 } 1607 return 0; 1608 } 1609 1610 /** 1611 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1612 * @bus: Top bus of the subtree to walk. 1613 */ 1614 void pci_pme_wakeup_bus(struct pci_bus *bus) 1615 { 1616 if (bus) 1617 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1618 } 1619 1620 1621 /** 1622 * pci_pme_capable - check the capability of PCI device to generate PME# 1623 * @dev: PCI device to handle. 1624 * @state: PCI state from which device will issue PME#. 1625 */ 1626 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1627 { 1628 if (!dev->pm_cap) 1629 return false; 1630 1631 return !!(dev->pme_support & (1 << state)); 1632 } 1633 1634 static void pci_pme_list_scan(struct work_struct *work) 1635 { 1636 struct pci_pme_device *pme_dev, *n; 1637 1638 mutex_lock(&pci_pme_list_mutex); 1639 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1640 if (pme_dev->dev->pme_poll) { 1641 struct pci_dev *bridge; 1642 1643 bridge = pme_dev->dev->bus->self; 1644 /* 1645 * If bridge is in low power state, the 1646 * configuration space of subordinate devices 1647 * may be not accessible 1648 */ 1649 if (bridge && bridge->current_state != PCI_D0) 1650 continue; 1651 pci_pme_wakeup(pme_dev->dev, NULL); 1652 } else { 1653 list_del(&pme_dev->list); 1654 kfree(pme_dev); 1655 } 1656 } 1657 if (!list_empty(&pci_pme_list)) 1658 schedule_delayed_work(&pci_pme_work, 1659 msecs_to_jiffies(PME_TIMEOUT)); 1660 mutex_unlock(&pci_pme_list_mutex); 1661 } 1662 1663 /** 1664 * pci_pme_active - enable or disable PCI device's PME# function 1665 * @dev: PCI device to handle. 1666 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1667 * 1668 * The caller must verify that the device is capable of generating PME# before 1669 * calling this function with @enable equal to 'true'. 1670 */ 1671 void pci_pme_active(struct pci_dev *dev, bool enable) 1672 { 1673 u16 pmcsr; 1674 1675 if (!dev->pme_support) 1676 return; 1677 1678 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1679 /* Clear PME_Status by writing 1 to it and enable PME# */ 1680 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1681 if (!enable) 1682 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1683 1684 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1685 1686 /* 1687 * PCI (as opposed to PCIe) PME requires that the device have 1688 * its PME# line hooked up correctly. Not all hardware vendors 1689 * do this, so the PME never gets delivered and the device 1690 * remains asleep. The easiest way around this is to 1691 * periodically walk the list of suspended devices and check 1692 * whether any have their PME flag set. The assumption is that 1693 * we'll wake up often enough anyway that this won't be a huge 1694 * hit, and the power savings from the devices will still be a 1695 * win. 1696 * 1697 * Although PCIe uses in-band PME message instead of PME# line 1698 * to report PME, PME does not work for some PCIe devices in 1699 * reality. For example, there are devices that set their PME 1700 * status bits, but don't really bother to send a PME message; 1701 * there are PCI Express Root Ports that don't bother to 1702 * trigger interrupts when they receive PME messages from the 1703 * devices below. So PME poll is used for PCIe devices too. 1704 */ 1705 1706 if (dev->pme_poll) { 1707 struct pci_pme_device *pme_dev; 1708 if (enable) { 1709 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1710 GFP_KERNEL); 1711 if (!pme_dev) { 1712 dev_warn(&dev->dev, "can't enable PME#\n"); 1713 return; 1714 } 1715 pme_dev->dev = dev; 1716 mutex_lock(&pci_pme_list_mutex); 1717 list_add(&pme_dev->list, &pci_pme_list); 1718 if (list_is_singular(&pci_pme_list)) 1719 schedule_delayed_work(&pci_pme_work, 1720 msecs_to_jiffies(PME_TIMEOUT)); 1721 mutex_unlock(&pci_pme_list_mutex); 1722 } else { 1723 mutex_lock(&pci_pme_list_mutex); 1724 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1725 if (pme_dev->dev == dev) { 1726 list_del(&pme_dev->list); 1727 kfree(pme_dev); 1728 break; 1729 } 1730 } 1731 mutex_unlock(&pci_pme_list_mutex); 1732 } 1733 } 1734 1735 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1736 } 1737 1738 /** 1739 * __pci_enable_wake - enable PCI device as wakeup event source 1740 * @dev: PCI device affected 1741 * @state: PCI state from which device will issue wakeup events 1742 * @runtime: True if the events are to be generated at run time 1743 * @enable: True to enable event generation; false to disable 1744 * 1745 * This enables the device as a wakeup event source, or disables it. 1746 * When such events involves platform-specific hooks, those hooks are 1747 * called automatically by this routine. 1748 * 1749 * Devices with legacy power management (no standard PCI PM capabilities) 1750 * always require such platform hooks. 1751 * 1752 * RETURN VALUE: 1753 * 0 is returned on success 1754 * -EINVAL is returned if device is not supposed to wake up the system 1755 * Error code depending on the platform is returned if both the platform and 1756 * the native mechanism fail to enable the generation of wake-up events 1757 */ 1758 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1759 bool runtime, bool enable) 1760 { 1761 int ret = 0; 1762 1763 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1764 return -EINVAL; 1765 1766 /* Don't do the same thing twice in a row for one device. */ 1767 if (!!enable == !!dev->wakeup_prepared) 1768 return 0; 1769 1770 /* 1771 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1772 * Anderson we should be doing PME# wake enable followed by ACPI wake 1773 * enable. To disable wake-up we call the platform first, for symmetry. 1774 */ 1775 1776 if (enable) { 1777 int error; 1778 1779 if (pci_pme_capable(dev, state)) 1780 pci_pme_active(dev, true); 1781 else 1782 ret = 1; 1783 error = runtime ? platform_pci_run_wake(dev, true) : 1784 platform_pci_sleep_wake(dev, true); 1785 if (ret) 1786 ret = error; 1787 if (!ret) 1788 dev->wakeup_prepared = true; 1789 } else { 1790 if (runtime) 1791 platform_pci_run_wake(dev, false); 1792 else 1793 platform_pci_sleep_wake(dev, false); 1794 pci_pme_active(dev, false); 1795 dev->wakeup_prepared = false; 1796 } 1797 1798 return ret; 1799 } 1800 EXPORT_SYMBOL(__pci_enable_wake); 1801 1802 /** 1803 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1804 * @dev: PCI device to prepare 1805 * @enable: True to enable wake-up event generation; false to disable 1806 * 1807 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1808 * and this function allows them to set that up cleanly - pci_enable_wake() 1809 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1810 * ordering constraints. 1811 * 1812 * This function only returns error code if the device is not capable of 1813 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1814 * enable wake-up power for it. 1815 */ 1816 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1817 { 1818 return pci_pme_capable(dev, PCI_D3cold) ? 1819 pci_enable_wake(dev, PCI_D3cold, enable) : 1820 pci_enable_wake(dev, PCI_D3hot, enable); 1821 } 1822 1823 /** 1824 * pci_target_state - find an appropriate low power state for a given PCI dev 1825 * @dev: PCI device 1826 * 1827 * Use underlying platform code to find a supported low power state for @dev. 1828 * If the platform can't manage @dev, return the deepest state from which it 1829 * can generate wake events, based on any available PME info. 1830 */ 1831 static pci_power_t pci_target_state(struct pci_dev *dev) 1832 { 1833 pci_power_t target_state = PCI_D3hot; 1834 1835 if (platform_pci_power_manageable(dev)) { 1836 /* 1837 * Call the platform to choose the target state of the device 1838 * and enable wake-up from this state if supported. 1839 */ 1840 pci_power_t state = platform_pci_choose_state(dev); 1841 1842 switch (state) { 1843 case PCI_POWER_ERROR: 1844 case PCI_UNKNOWN: 1845 break; 1846 case PCI_D1: 1847 case PCI_D2: 1848 if (pci_no_d1d2(dev)) 1849 break; 1850 default: 1851 target_state = state; 1852 } 1853 } else if (!dev->pm_cap) { 1854 target_state = PCI_D0; 1855 } else if (device_may_wakeup(&dev->dev)) { 1856 /* 1857 * Find the deepest state from which the device can generate 1858 * wake-up events, make it the target state and enable device 1859 * to generate PME#. 1860 */ 1861 if (dev->pme_support) { 1862 while (target_state 1863 && !(dev->pme_support & (1 << target_state))) 1864 target_state--; 1865 } 1866 } 1867 1868 return target_state; 1869 } 1870 1871 /** 1872 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1873 * @dev: Device to handle. 1874 * 1875 * Choose the power state appropriate for the device depending on whether 1876 * it can wake up the system and/or is power manageable by the platform 1877 * (PCI_D3hot is the default) and put the device into that state. 1878 */ 1879 int pci_prepare_to_sleep(struct pci_dev *dev) 1880 { 1881 pci_power_t target_state = pci_target_state(dev); 1882 int error; 1883 1884 if (target_state == PCI_POWER_ERROR) 1885 return -EIO; 1886 1887 /* D3cold during system suspend/hibernate is not supported */ 1888 if (target_state > PCI_D3hot) 1889 target_state = PCI_D3hot; 1890 1891 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1892 1893 error = pci_set_power_state(dev, target_state); 1894 1895 if (error) 1896 pci_enable_wake(dev, target_state, false); 1897 1898 return error; 1899 } 1900 1901 /** 1902 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1903 * @dev: Device to handle. 1904 * 1905 * Disable device's system wake-up capability and put it into D0. 1906 */ 1907 int pci_back_from_sleep(struct pci_dev *dev) 1908 { 1909 pci_enable_wake(dev, PCI_D0, false); 1910 return pci_set_power_state(dev, PCI_D0); 1911 } 1912 1913 /** 1914 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1915 * @dev: PCI device being suspended. 1916 * 1917 * Prepare @dev to generate wake-up events at run time and put it into a low 1918 * power state. 1919 */ 1920 int pci_finish_runtime_suspend(struct pci_dev *dev) 1921 { 1922 pci_power_t target_state = pci_target_state(dev); 1923 int error; 1924 1925 if (target_state == PCI_POWER_ERROR) 1926 return -EIO; 1927 1928 dev->runtime_d3cold = target_state == PCI_D3cold; 1929 1930 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1931 1932 error = pci_set_power_state(dev, target_state); 1933 1934 if (error) { 1935 __pci_enable_wake(dev, target_state, true, false); 1936 dev->runtime_d3cold = false; 1937 } 1938 1939 return error; 1940 } 1941 1942 /** 1943 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1944 * @dev: Device to check. 1945 * 1946 * Return true if the device itself is capable of generating wake-up events 1947 * (through the platform or using the native PCIe PME) or if the device supports 1948 * PME and one of its upstream bridges can generate wake-up events. 1949 */ 1950 bool pci_dev_run_wake(struct pci_dev *dev) 1951 { 1952 struct pci_bus *bus = dev->bus; 1953 1954 if (device_run_wake(&dev->dev)) 1955 return true; 1956 1957 if (!dev->pme_support) 1958 return false; 1959 1960 while (bus->parent) { 1961 struct pci_dev *bridge = bus->self; 1962 1963 if (device_run_wake(&bridge->dev)) 1964 return true; 1965 1966 bus = bus->parent; 1967 } 1968 1969 /* We have reached the root bus. */ 1970 if (bus->bridge) 1971 return device_run_wake(bus->bridge); 1972 1973 return false; 1974 } 1975 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 1976 1977 void pci_config_pm_runtime_get(struct pci_dev *pdev) 1978 { 1979 struct device *dev = &pdev->dev; 1980 struct device *parent = dev->parent; 1981 1982 if (parent) 1983 pm_runtime_get_sync(parent); 1984 pm_runtime_get_noresume(dev); 1985 /* 1986 * pdev->current_state is set to PCI_D3cold during suspending, 1987 * so wait until suspending completes 1988 */ 1989 pm_runtime_barrier(dev); 1990 /* 1991 * Only need to resume devices in D3cold, because config 1992 * registers are still accessible for devices suspended but 1993 * not in D3cold. 1994 */ 1995 if (pdev->current_state == PCI_D3cold) 1996 pm_runtime_resume(dev); 1997 } 1998 1999 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2000 { 2001 struct device *dev = &pdev->dev; 2002 struct device *parent = dev->parent; 2003 2004 pm_runtime_put(dev); 2005 if (parent) 2006 pm_runtime_put_sync(parent); 2007 } 2008 2009 /** 2010 * pci_pm_init - Initialize PM functions of given PCI device 2011 * @dev: PCI device to handle. 2012 */ 2013 void pci_pm_init(struct pci_dev *dev) 2014 { 2015 int pm; 2016 u16 pmc; 2017 2018 pm_runtime_forbid(&dev->dev); 2019 pm_runtime_set_active(&dev->dev); 2020 pm_runtime_enable(&dev->dev); 2021 device_enable_async_suspend(&dev->dev); 2022 dev->wakeup_prepared = false; 2023 2024 dev->pm_cap = 0; 2025 dev->pme_support = 0; 2026 2027 /* find PCI PM capability in list */ 2028 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2029 if (!pm) 2030 return; 2031 /* Check device's ability to generate PME# */ 2032 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2033 2034 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2035 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2036 pmc & PCI_PM_CAP_VER_MASK); 2037 return; 2038 } 2039 2040 dev->pm_cap = pm; 2041 dev->d3_delay = PCI_PM_D3_WAIT; 2042 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2043 dev->d3cold_allowed = true; 2044 2045 dev->d1_support = false; 2046 dev->d2_support = false; 2047 if (!pci_no_d1d2(dev)) { 2048 if (pmc & PCI_PM_CAP_D1) 2049 dev->d1_support = true; 2050 if (pmc & PCI_PM_CAP_D2) 2051 dev->d2_support = true; 2052 2053 if (dev->d1_support || dev->d2_support) 2054 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2055 dev->d1_support ? " D1" : "", 2056 dev->d2_support ? " D2" : ""); 2057 } 2058 2059 pmc &= PCI_PM_CAP_PME_MASK; 2060 if (pmc) { 2061 dev_printk(KERN_DEBUG, &dev->dev, 2062 "PME# supported from%s%s%s%s%s\n", 2063 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2064 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2065 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2066 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2067 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2068 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2069 dev->pme_poll = true; 2070 /* 2071 * Make device's PM flags reflect the wake-up capability, but 2072 * let the user space enable it to wake up the system as needed. 2073 */ 2074 device_set_wakeup_capable(&dev->dev, true); 2075 /* Disable the PME# generation functionality */ 2076 pci_pme_active(dev, false); 2077 } 2078 } 2079 2080 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2081 struct pci_cap_saved_state *new_cap) 2082 { 2083 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2084 } 2085 2086 /** 2087 * _pci_add_cap_save_buffer - allocate buffer for saving given 2088 * capability registers 2089 * @dev: the PCI device 2090 * @cap: the capability to allocate the buffer for 2091 * @extended: Standard or Extended capability ID 2092 * @size: requested size of the buffer 2093 */ 2094 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2095 bool extended, unsigned int size) 2096 { 2097 int pos; 2098 struct pci_cap_saved_state *save_state; 2099 2100 if (extended) 2101 pos = pci_find_ext_capability(dev, cap); 2102 else 2103 pos = pci_find_capability(dev, cap); 2104 2105 if (pos <= 0) 2106 return 0; 2107 2108 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2109 if (!save_state) 2110 return -ENOMEM; 2111 2112 save_state->cap.cap_nr = cap; 2113 save_state->cap.cap_extended = extended; 2114 save_state->cap.size = size; 2115 pci_add_saved_cap(dev, save_state); 2116 2117 return 0; 2118 } 2119 2120 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2121 { 2122 return _pci_add_cap_save_buffer(dev, cap, false, size); 2123 } 2124 2125 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2126 { 2127 return _pci_add_cap_save_buffer(dev, cap, true, size); 2128 } 2129 2130 /** 2131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2132 * @dev: the PCI device 2133 */ 2134 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2135 { 2136 int error; 2137 2138 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2139 PCI_EXP_SAVE_REGS * sizeof(u16)); 2140 if (error) 2141 dev_err(&dev->dev, 2142 "unable to preallocate PCI Express save buffer\n"); 2143 2144 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2145 if (error) 2146 dev_err(&dev->dev, 2147 "unable to preallocate PCI-X save buffer\n"); 2148 2149 pci_allocate_vc_save_buffers(dev); 2150 } 2151 2152 void pci_free_cap_save_buffers(struct pci_dev *dev) 2153 { 2154 struct pci_cap_saved_state *tmp; 2155 struct hlist_node *n; 2156 2157 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2158 kfree(tmp); 2159 } 2160 2161 /** 2162 * pci_configure_ari - enable or disable ARI forwarding 2163 * @dev: the PCI device 2164 * 2165 * If @dev and its upstream bridge both support ARI, enable ARI in the 2166 * bridge. Otherwise, disable ARI in the bridge. 2167 */ 2168 void pci_configure_ari(struct pci_dev *dev) 2169 { 2170 u32 cap; 2171 struct pci_dev *bridge; 2172 2173 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2174 return; 2175 2176 bridge = dev->bus->self; 2177 if (!bridge) 2178 return; 2179 2180 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2181 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2182 return; 2183 2184 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2185 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2186 PCI_EXP_DEVCTL2_ARI); 2187 bridge->ari_enabled = 1; 2188 } else { 2189 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2190 PCI_EXP_DEVCTL2_ARI); 2191 bridge->ari_enabled = 0; 2192 } 2193 } 2194 2195 static int pci_acs_enable; 2196 2197 /** 2198 * pci_request_acs - ask for ACS to be enabled if supported 2199 */ 2200 void pci_request_acs(void) 2201 { 2202 pci_acs_enable = 1; 2203 } 2204 2205 /** 2206 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2207 * @dev: the PCI device 2208 */ 2209 static int pci_std_enable_acs(struct pci_dev *dev) 2210 { 2211 int pos; 2212 u16 cap; 2213 u16 ctrl; 2214 2215 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2216 if (!pos) 2217 return -ENODEV; 2218 2219 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2220 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2221 2222 /* Source Validation */ 2223 ctrl |= (cap & PCI_ACS_SV); 2224 2225 /* P2P Request Redirect */ 2226 ctrl |= (cap & PCI_ACS_RR); 2227 2228 /* P2P Completion Redirect */ 2229 ctrl |= (cap & PCI_ACS_CR); 2230 2231 /* Upstream Forwarding */ 2232 ctrl |= (cap & PCI_ACS_UF); 2233 2234 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2235 2236 return 0; 2237 } 2238 2239 /** 2240 * pci_enable_acs - enable ACS if hardware support it 2241 * @dev: the PCI device 2242 */ 2243 void pci_enable_acs(struct pci_dev *dev) 2244 { 2245 if (!pci_acs_enable) 2246 return; 2247 2248 if (!pci_std_enable_acs(dev)) 2249 return; 2250 2251 pci_dev_specific_enable_acs(dev); 2252 } 2253 2254 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2255 { 2256 int pos; 2257 u16 cap, ctrl; 2258 2259 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2260 if (!pos) 2261 return false; 2262 2263 /* 2264 * Except for egress control, capabilities are either required 2265 * or only required if controllable. Features missing from the 2266 * capability field can therefore be assumed as hard-wired enabled. 2267 */ 2268 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2269 acs_flags &= (cap | PCI_ACS_EC); 2270 2271 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2272 return (ctrl & acs_flags) == acs_flags; 2273 } 2274 2275 /** 2276 * pci_acs_enabled - test ACS against required flags for a given device 2277 * @pdev: device to test 2278 * @acs_flags: required PCI ACS flags 2279 * 2280 * Return true if the device supports the provided flags. Automatically 2281 * filters out flags that are not implemented on multifunction devices. 2282 * 2283 * Note that this interface checks the effective ACS capabilities of the 2284 * device rather than the actual capabilities. For instance, most single 2285 * function endpoints are not required to support ACS because they have no 2286 * opportunity for peer-to-peer access. We therefore return 'true' 2287 * regardless of whether the device exposes an ACS capability. This makes 2288 * it much easier for callers of this function to ignore the actual type 2289 * or topology of the device when testing ACS support. 2290 */ 2291 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2292 { 2293 int ret; 2294 2295 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2296 if (ret >= 0) 2297 return ret > 0; 2298 2299 /* 2300 * Conventional PCI and PCI-X devices never support ACS, either 2301 * effectively or actually. The shared bus topology implies that 2302 * any device on the bus can receive or snoop DMA. 2303 */ 2304 if (!pci_is_pcie(pdev)) 2305 return false; 2306 2307 switch (pci_pcie_type(pdev)) { 2308 /* 2309 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2310 * but since their primary interface is PCI/X, we conservatively 2311 * handle them as we would a non-PCIe device. 2312 */ 2313 case PCI_EXP_TYPE_PCIE_BRIDGE: 2314 /* 2315 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2316 * applicable... must never implement an ACS Extended Capability...". 2317 * This seems arbitrary, but we take a conservative interpretation 2318 * of this statement. 2319 */ 2320 case PCI_EXP_TYPE_PCI_BRIDGE: 2321 case PCI_EXP_TYPE_RC_EC: 2322 return false; 2323 /* 2324 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2325 * implement ACS in order to indicate their peer-to-peer capabilities, 2326 * regardless of whether they are single- or multi-function devices. 2327 */ 2328 case PCI_EXP_TYPE_DOWNSTREAM: 2329 case PCI_EXP_TYPE_ROOT_PORT: 2330 return pci_acs_flags_enabled(pdev, acs_flags); 2331 /* 2332 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2333 * implemented by the remaining PCIe types to indicate peer-to-peer 2334 * capabilities, but only when they are part of a multifunction 2335 * device. The footnote for section 6.12 indicates the specific 2336 * PCIe types included here. 2337 */ 2338 case PCI_EXP_TYPE_ENDPOINT: 2339 case PCI_EXP_TYPE_UPSTREAM: 2340 case PCI_EXP_TYPE_LEG_END: 2341 case PCI_EXP_TYPE_RC_END: 2342 if (!pdev->multifunction) 2343 break; 2344 2345 return pci_acs_flags_enabled(pdev, acs_flags); 2346 } 2347 2348 /* 2349 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2350 * to single function devices with the exception of downstream ports. 2351 */ 2352 return true; 2353 } 2354 2355 /** 2356 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2357 * @start: starting downstream device 2358 * @end: ending upstream device or NULL to search to the root bus 2359 * @acs_flags: required flags 2360 * 2361 * Walk up a device tree from start to end testing PCI ACS support. If 2362 * any step along the way does not support the required flags, return false. 2363 */ 2364 bool pci_acs_path_enabled(struct pci_dev *start, 2365 struct pci_dev *end, u16 acs_flags) 2366 { 2367 struct pci_dev *pdev, *parent = start; 2368 2369 do { 2370 pdev = parent; 2371 2372 if (!pci_acs_enabled(pdev, acs_flags)) 2373 return false; 2374 2375 if (pci_is_root_bus(pdev->bus)) 2376 return (end == NULL); 2377 2378 parent = pdev->bus->self; 2379 } while (pdev != end); 2380 2381 return true; 2382 } 2383 2384 /** 2385 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2386 * @dev: the PCI device 2387 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2388 * 2389 * Perform INTx swizzling for a device behind one level of bridge. This is 2390 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2391 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2392 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2393 * the PCI Express Base Specification, Revision 2.1) 2394 */ 2395 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2396 { 2397 int slot; 2398 2399 if (pci_ari_enabled(dev->bus)) 2400 slot = 0; 2401 else 2402 slot = PCI_SLOT(dev->devfn); 2403 2404 return (((pin - 1) + slot) % 4) + 1; 2405 } 2406 2407 int 2408 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2409 { 2410 u8 pin; 2411 2412 pin = dev->pin; 2413 if (!pin) 2414 return -1; 2415 2416 while (!pci_is_root_bus(dev->bus)) { 2417 pin = pci_swizzle_interrupt_pin(dev, pin); 2418 dev = dev->bus->self; 2419 } 2420 *bridge = dev; 2421 return pin; 2422 } 2423 2424 /** 2425 * pci_common_swizzle - swizzle INTx all the way to root bridge 2426 * @dev: the PCI device 2427 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2428 * 2429 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2430 * bridges all the way up to a PCI root bus. 2431 */ 2432 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2433 { 2434 u8 pin = *pinp; 2435 2436 while (!pci_is_root_bus(dev->bus)) { 2437 pin = pci_swizzle_interrupt_pin(dev, pin); 2438 dev = dev->bus->self; 2439 } 2440 *pinp = pin; 2441 return PCI_SLOT(dev->devfn); 2442 } 2443 2444 /** 2445 * pci_release_region - Release a PCI bar 2446 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2447 * @bar: BAR to release 2448 * 2449 * Releases the PCI I/O and memory resources previously reserved by a 2450 * successful call to pci_request_region. Call this function only 2451 * after all use of the PCI regions has ceased. 2452 */ 2453 void pci_release_region(struct pci_dev *pdev, int bar) 2454 { 2455 struct pci_devres *dr; 2456 2457 if (pci_resource_len(pdev, bar) == 0) 2458 return; 2459 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2460 release_region(pci_resource_start(pdev, bar), 2461 pci_resource_len(pdev, bar)); 2462 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2463 release_mem_region(pci_resource_start(pdev, bar), 2464 pci_resource_len(pdev, bar)); 2465 2466 dr = find_pci_dr(pdev); 2467 if (dr) 2468 dr->region_mask &= ~(1 << bar); 2469 } 2470 2471 /** 2472 * __pci_request_region - Reserved PCI I/O and memory resource 2473 * @pdev: PCI device whose resources are to be reserved 2474 * @bar: BAR to be reserved 2475 * @res_name: Name to be associated with resource. 2476 * @exclusive: whether the region access is exclusive or not 2477 * 2478 * Mark the PCI region associated with PCI device @pdev BR @bar as 2479 * being reserved by owner @res_name. Do not access any 2480 * address inside the PCI regions unless this call returns 2481 * successfully. 2482 * 2483 * If @exclusive is set, then the region is marked so that userspace 2484 * is explicitly not allowed to map the resource via /dev/mem or 2485 * sysfs MMIO access. 2486 * 2487 * Returns 0 on success, or %EBUSY on error. A warning 2488 * message is also printed on failure. 2489 */ 2490 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 2491 int exclusive) 2492 { 2493 struct pci_devres *dr; 2494 2495 if (pci_resource_len(pdev, bar) == 0) 2496 return 0; 2497 2498 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2499 if (!request_region(pci_resource_start(pdev, bar), 2500 pci_resource_len(pdev, bar), res_name)) 2501 goto err_out; 2502 } 2503 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2504 if (!__request_mem_region(pci_resource_start(pdev, bar), 2505 pci_resource_len(pdev, bar), res_name, 2506 exclusive)) 2507 goto err_out; 2508 } 2509 2510 dr = find_pci_dr(pdev); 2511 if (dr) 2512 dr->region_mask |= 1 << bar; 2513 2514 return 0; 2515 2516 err_out: 2517 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2518 &pdev->resource[bar]); 2519 return -EBUSY; 2520 } 2521 2522 /** 2523 * pci_request_region - Reserve PCI I/O and memory resource 2524 * @pdev: PCI device whose resources are to be reserved 2525 * @bar: BAR to be reserved 2526 * @res_name: Name to be associated with resource 2527 * 2528 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2529 * being reserved by owner @res_name. Do not access any 2530 * address inside the PCI regions unless this call returns 2531 * successfully. 2532 * 2533 * Returns 0 on success, or %EBUSY on error. A warning 2534 * message is also printed on failure. 2535 */ 2536 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2537 { 2538 return __pci_request_region(pdev, bar, res_name, 0); 2539 } 2540 2541 /** 2542 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2543 * @pdev: PCI device whose resources are to be reserved 2544 * @bar: BAR to be reserved 2545 * @res_name: Name to be associated with resource. 2546 * 2547 * Mark the PCI region associated with PCI device @pdev BR @bar as 2548 * being reserved by owner @res_name. Do not access any 2549 * address inside the PCI regions unless this call returns 2550 * successfully. 2551 * 2552 * Returns 0 on success, or %EBUSY on error. A warning 2553 * message is also printed on failure. 2554 * 2555 * The key difference that _exclusive makes it that userspace is 2556 * explicitly not allowed to map the resource via /dev/mem or 2557 * sysfs. 2558 */ 2559 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 2560 { 2561 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2562 } 2563 /** 2564 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2565 * @pdev: PCI device whose resources were previously reserved 2566 * @bars: Bitmask of BARs to be released 2567 * 2568 * Release selected PCI I/O and memory resources previously reserved. 2569 * Call this function only after all use of the PCI regions has ceased. 2570 */ 2571 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2572 { 2573 int i; 2574 2575 for (i = 0; i < 6; i++) 2576 if (bars & (1 << i)) 2577 pci_release_region(pdev, i); 2578 } 2579 2580 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2581 const char *res_name, int excl) 2582 { 2583 int i; 2584 2585 for (i = 0; i < 6; i++) 2586 if (bars & (1 << i)) 2587 if (__pci_request_region(pdev, i, res_name, excl)) 2588 goto err_out; 2589 return 0; 2590 2591 err_out: 2592 while(--i >= 0) 2593 if (bars & (1 << i)) 2594 pci_release_region(pdev, i); 2595 2596 return -EBUSY; 2597 } 2598 2599 2600 /** 2601 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2602 * @pdev: PCI device whose resources are to be reserved 2603 * @bars: Bitmask of BARs to be requested 2604 * @res_name: Name to be associated with resource 2605 */ 2606 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2607 const char *res_name) 2608 { 2609 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2610 } 2611 2612 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 2613 int bars, const char *res_name) 2614 { 2615 return __pci_request_selected_regions(pdev, bars, res_name, 2616 IORESOURCE_EXCLUSIVE); 2617 } 2618 2619 /** 2620 * pci_release_regions - Release reserved PCI I/O and memory resources 2621 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2622 * 2623 * Releases all PCI I/O and memory resources previously reserved by a 2624 * successful call to pci_request_regions. Call this function only 2625 * after all use of the PCI regions has ceased. 2626 */ 2627 2628 void pci_release_regions(struct pci_dev *pdev) 2629 { 2630 pci_release_selected_regions(pdev, (1 << 6) - 1); 2631 } 2632 2633 /** 2634 * pci_request_regions - Reserved PCI I/O and memory resources 2635 * @pdev: PCI device whose resources are to be reserved 2636 * @res_name: Name to be associated with resource. 2637 * 2638 * Mark all PCI regions associated with PCI device @pdev as 2639 * being reserved by owner @res_name. Do not access any 2640 * address inside the PCI regions unless this call returns 2641 * successfully. 2642 * 2643 * Returns 0 on success, or %EBUSY on error. A warning 2644 * message is also printed on failure. 2645 */ 2646 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2647 { 2648 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2649 } 2650 2651 /** 2652 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2653 * @pdev: PCI device whose resources are to be reserved 2654 * @res_name: Name to be associated with resource. 2655 * 2656 * Mark all PCI regions associated with PCI device @pdev as 2657 * being reserved by owner @res_name. Do not access any 2658 * address inside the PCI regions unless this call returns 2659 * successfully. 2660 * 2661 * pci_request_regions_exclusive() will mark the region so that 2662 * /dev/mem and the sysfs MMIO access will not be allowed. 2663 * 2664 * Returns 0 on success, or %EBUSY on error. A warning 2665 * message is also printed on failure. 2666 */ 2667 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2668 { 2669 return pci_request_selected_regions_exclusive(pdev, 2670 ((1 << 6) - 1), res_name); 2671 } 2672 2673 static void __pci_set_master(struct pci_dev *dev, bool enable) 2674 { 2675 u16 old_cmd, cmd; 2676 2677 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2678 if (enable) 2679 cmd = old_cmd | PCI_COMMAND_MASTER; 2680 else 2681 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2682 if (cmd != old_cmd) { 2683 dev_dbg(&dev->dev, "%s bus mastering\n", 2684 enable ? "enabling" : "disabling"); 2685 pci_write_config_word(dev, PCI_COMMAND, cmd); 2686 } 2687 dev->is_busmaster = enable; 2688 } 2689 2690 /** 2691 * pcibios_setup - process "pci=" kernel boot arguments 2692 * @str: string used to pass in "pci=" kernel boot arguments 2693 * 2694 * Process kernel boot arguments. This is the default implementation. 2695 * Architecture specific implementations can override this as necessary. 2696 */ 2697 char * __weak __init pcibios_setup(char *str) 2698 { 2699 return str; 2700 } 2701 2702 /** 2703 * pcibios_set_master - enable PCI bus-mastering for device dev 2704 * @dev: the PCI device to enable 2705 * 2706 * Enables PCI bus-mastering for the device. This is the default 2707 * implementation. Architecture specific implementations can override 2708 * this if necessary. 2709 */ 2710 void __weak pcibios_set_master(struct pci_dev *dev) 2711 { 2712 u8 lat; 2713 2714 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2715 if (pci_is_pcie(dev)) 2716 return; 2717 2718 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2719 if (lat < 16) 2720 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2721 else if (lat > pcibios_max_latency) 2722 lat = pcibios_max_latency; 2723 else 2724 return; 2725 2726 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2727 } 2728 2729 /** 2730 * pci_set_master - enables bus-mastering for device dev 2731 * @dev: the PCI device to enable 2732 * 2733 * Enables bus-mastering on the device and calls pcibios_set_master() 2734 * to do the needed arch specific settings. 2735 */ 2736 void pci_set_master(struct pci_dev *dev) 2737 { 2738 __pci_set_master(dev, true); 2739 pcibios_set_master(dev); 2740 } 2741 2742 /** 2743 * pci_clear_master - disables bus-mastering for device dev 2744 * @dev: the PCI device to disable 2745 */ 2746 void pci_clear_master(struct pci_dev *dev) 2747 { 2748 __pci_set_master(dev, false); 2749 } 2750 2751 /** 2752 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2753 * @dev: the PCI device for which MWI is to be enabled 2754 * 2755 * Helper function for pci_set_mwi. 2756 * Originally copied from drivers/net/acenic.c. 2757 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2758 * 2759 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2760 */ 2761 int pci_set_cacheline_size(struct pci_dev *dev) 2762 { 2763 u8 cacheline_size; 2764 2765 if (!pci_cache_line_size) 2766 return -EINVAL; 2767 2768 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2769 equal to or multiple of the right value. */ 2770 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2771 if (cacheline_size >= pci_cache_line_size && 2772 (cacheline_size % pci_cache_line_size) == 0) 2773 return 0; 2774 2775 /* Write the correct value. */ 2776 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2777 /* Read it back. */ 2778 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2779 if (cacheline_size == pci_cache_line_size) 2780 return 0; 2781 2782 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 2783 "supported\n", pci_cache_line_size << 2); 2784 2785 return -EINVAL; 2786 } 2787 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2788 2789 #ifdef PCI_DISABLE_MWI 2790 int pci_set_mwi(struct pci_dev *dev) 2791 { 2792 return 0; 2793 } 2794 2795 int pci_try_set_mwi(struct pci_dev *dev) 2796 { 2797 return 0; 2798 } 2799 2800 void pci_clear_mwi(struct pci_dev *dev) 2801 { 2802 } 2803 2804 #else 2805 2806 /** 2807 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2808 * @dev: the PCI device for which MWI is enabled 2809 * 2810 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2811 * 2812 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2813 */ 2814 int 2815 pci_set_mwi(struct pci_dev *dev) 2816 { 2817 int rc; 2818 u16 cmd; 2819 2820 rc = pci_set_cacheline_size(dev); 2821 if (rc) 2822 return rc; 2823 2824 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2825 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 2826 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2827 cmd |= PCI_COMMAND_INVALIDATE; 2828 pci_write_config_word(dev, PCI_COMMAND, cmd); 2829 } 2830 2831 return 0; 2832 } 2833 2834 /** 2835 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2836 * @dev: the PCI device for which MWI is enabled 2837 * 2838 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2839 * Callers are not required to check the return value. 2840 * 2841 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2842 */ 2843 int pci_try_set_mwi(struct pci_dev *dev) 2844 { 2845 int rc = pci_set_mwi(dev); 2846 return rc; 2847 } 2848 2849 /** 2850 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2851 * @dev: the PCI device to disable 2852 * 2853 * Disables PCI Memory-Write-Invalidate transaction on the device 2854 */ 2855 void 2856 pci_clear_mwi(struct pci_dev *dev) 2857 { 2858 u16 cmd; 2859 2860 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2861 if (cmd & PCI_COMMAND_INVALIDATE) { 2862 cmd &= ~PCI_COMMAND_INVALIDATE; 2863 pci_write_config_word(dev, PCI_COMMAND, cmd); 2864 } 2865 } 2866 #endif /* ! PCI_DISABLE_MWI */ 2867 2868 /** 2869 * pci_intx - enables/disables PCI INTx for device dev 2870 * @pdev: the PCI device to operate on 2871 * @enable: boolean: whether to enable or disable PCI INTx 2872 * 2873 * Enables/disables PCI INTx for device dev 2874 */ 2875 void 2876 pci_intx(struct pci_dev *pdev, int enable) 2877 { 2878 u16 pci_command, new; 2879 2880 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2881 2882 if (enable) { 2883 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2884 } else { 2885 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2886 } 2887 2888 if (new != pci_command) { 2889 struct pci_devres *dr; 2890 2891 pci_write_config_word(pdev, PCI_COMMAND, new); 2892 2893 dr = find_pci_dr(pdev); 2894 if (dr && !dr->restore_intx) { 2895 dr->restore_intx = 1; 2896 dr->orig_intx = !enable; 2897 } 2898 } 2899 } 2900 2901 /** 2902 * pci_intx_mask_supported - probe for INTx masking support 2903 * @dev: the PCI device to operate on 2904 * 2905 * Check if the device dev support INTx masking via the config space 2906 * command word. 2907 */ 2908 bool pci_intx_mask_supported(struct pci_dev *dev) 2909 { 2910 bool mask_supported = false; 2911 u16 orig, new; 2912 2913 if (dev->broken_intx_masking) 2914 return false; 2915 2916 pci_cfg_access_lock(dev); 2917 2918 pci_read_config_word(dev, PCI_COMMAND, &orig); 2919 pci_write_config_word(dev, PCI_COMMAND, 2920 orig ^ PCI_COMMAND_INTX_DISABLE); 2921 pci_read_config_word(dev, PCI_COMMAND, &new); 2922 2923 /* 2924 * There's no way to protect against hardware bugs or detect them 2925 * reliably, but as long as we know what the value should be, let's 2926 * go ahead and check it. 2927 */ 2928 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 2929 dev_err(&dev->dev, "Command register changed from " 2930 "0x%x to 0x%x: driver or hardware bug?\n", orig, new); 2931 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 2932 mask_supported = true; 2933 pci_write_config_word(dev, PCI_COMMAND, orig); 2934 } 2935 2936 pci_cfg_access_unlock(dev); 2937 return mask_supported; 2938 } 2939 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 2940 2941 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 2942 { 2943 struct pci_bus *bus = dev->bus; 2944 bool mask_updated = true; 2945 u32 cmd_status_dword; 2946 u16 origcmd, newcmd; 2947 unsigned long flags; 2948 bool irq_pending; 2949 2950 /* 2951 * We do a single dword read to retrieve both command and status. 2952 * Document assumptions that make this possible. 2953 */ 2954 BUILD_BUG_ON(PCI_COMMAND % 4); 2955 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 2956 2957 raw_spin_lock_irqsave(&pci_lock, flags); 2958 2959 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 2960 2961 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 2962 2963 /* 2964 * Check interrupt status register to see whether our device 2965 * triggered the interrupt (when masking) or the next IRQ is 2966 * already pending (when unmasking). 2967 */ 2968 if (mask != irq_pending) { 2969 mask_updated = false; 2970 goto done; 2971 } 2972 2973 origcmd = cmd_status_dword; 2974 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 2975 if (mask) 2976 newcmd |= PCI_COMMAND_INTX_DISABLE; 2977 if (newcmd != origcmd) 2978 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 2979 2980 done: 2981 raw_spin_unlock_irqrestore(&pci_lock, flags); 2982 2983 return mask_updated; 2984 } 2985 2986 /** 2987 * pci_check_and_mask_intx - mask INTx on pending interrupt 2988 * @dev: the PCI device to operate on 2989 * 2990 * Check if the device dev has its INTx line asserted, mask it and 2991 * return true in that case. False is returned if not interrupt was 2992 * pending. 2993 */ 2994 bool pci_check_and_mask_intx(struct pci_dev *dev) 2995 { 2996 return pci_check_and_set_intx_mask(dev, true); 2997 } 2998 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 2999 3000 /** 3001 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3002 * @dev: the PCI device to operate on 3003 * 3004 * Check if the device dev has its INTx line asserted, unmask it if not 3005 * and return true. False is returned and the mask remains active if 3006 * there was still an interrupt pending. 3007 */ 3008 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3009 { 3010 return pci_check_and_set_intx_mask(dev, false); 3011 } 3012 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3013 3014 /** 3015 * pci_msi_off - disables any MSI or MSI-X capabilities 3016 * @dev: the PCI device to operate on 3017 * 3018 * If you want to use MSI, see pci_enable_msi() and friends. 3019 * This is a lower-level primitive that allows us to disable 3020 * MSI operation at the device level. 3021 */ 3022 void pci_msi_off(struct pci_dev *dev) 3023 { 3024 int pos; 3025 u16 control; 3026 3027 /* 3028 * This looks like it could go in msi.c, but we need it even when 3029 * CONFIG_PCI_MSI=n. For the same reason, we can't use 3030 * dev->msi_cap or dev->msix_cap here. 3031 */ 3032 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 3033 if (pos) { 3034 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 3035 control &= ~PCI_MSI_FLAGS_ENABLE; 3036 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3037 } 3038 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3039 if (pos) { 3040 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3041 control &= ~PCI_MSIX_FLAGS_ENABLE; 3042 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3043 } 3044 } 3045 EXPORT_SYMBOL_GPL(pci_msi_off); 3046 3047 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3048 { 3049 return dma_set_max_seg_size(&dev->dev, size); 3050 } 3051 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3052 3053 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3054 { 3055 return dma_set_seg_boundary(&dev->dev, mask); 3056 } 3057 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3058 3059 /** 3060 * pci_wait_for_pending_transaction - waits for pending transaction 3061 * @dev: the PCI device to operate on 3062 * 3063 * Return 0 if transaction is pending 1 otherwise. 3064 */ 3065 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3066 { 3067 if (!pci_is_pcie(dev)) 3068 return 1; 3069 3070 return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND); 3071 } 3072 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3073 3074 static int pcie_flr(struct pci_dev *dev, int probe) 3075 { 3076 u32 cap; 3077 3078 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3079 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3080 return -ENOTTY; 3081 3082 if (probe) 3083 return 0; 3084 3085 if (!pci_wait_for_pending_transaction(dev)) 3086 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 3087 3088 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3089 3090 msleep(100); 3091 3092 return 0; 3093 } 3094 3095 static int pci_af_flr(struct pci_dev *dev, int probe) 3096 { 3097 int pos; 3098 u8 cap; 3099 3100 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3101 if (!pos) 3102 return -ENOTTY; 3103 3104 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3105 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3106 return -ENOTTY; 3107 3108 if (probe) 3109 return 0; 3110 3111 /* Wait for Transaction Pending bit clean */ 3112 if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP)) 3113 goto clear; 3114 3115 dev_err(&dev->dev, "transaction is not cleared; " 3116 "proceeding with reset anyway\n"); 3117 3118 clear: 3119 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3120 msleep(100); 3121 3122 return 0; 3123 } 3124 3125 /** 3126 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3127 * @dev: Device to reset. 3128 * @probe: If set, only check if the device can be reset this way. 3129 * 3130 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3131 * unset, it will be reinitialized internally when going from PCI_D3hot to 3132 * PCI_D0. If that's the case and the device is not in a low-power state 3133 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3134 * 3135 * NOTE: This causes the caller to sleep for twice the device power transition 3136 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3137 * by default (i.e. unless the @dev's d3_delay field has a different value). 3138 * Moreover, only devices in D0 can be reset by this function. 3139 */ 3140 static int pci_pm_reset(struct pci_dev *dev, int probe) 3141 { 3142 u16 csr; 3143 3144 if (!dev->pm_cap) 3145 return -ENOTTY; 3146 3147 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3148 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3149 return -ENOTTY; 3150 3151 if (probe) 3152 return 0; 3153 3154 if (dev->current_state != PCI_D0) 3155 return -EINVAL; 3156 3157 csr &= ~PCI_PM_CTRL_STATE_MASK; 3158 csr |= PCI_D3hot; 3159 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3160 pci_dev_d3_sleep(dev); 3161 3162 csr &= ~PCI_PM_CTRL_STATE_MASK; 3163 csr |= PCI_D0; 3164 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3165 pci_dev_d3_sleep(dev); 3166 3167 return 0; 3168 } 3169 3170 /** 3171 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3172 * @dev: Bridge device 3173 * 3174 * Use the bridge control register to assert reset on the secondary bus. 3175 * Devices on the secondary bus are left in power-on state. 3176 */ 3177 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3178 { 3179 u16 ctrl; 3180 3181 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3182 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3183 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3184 /* 3185 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3186 * this to 2ms to ensure that we meet the minimum requirement. 3187 */ 3188 msleep(2); 3189 3190 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3191 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3192 3193 /* 3194 * Trhfa for conventional PCI is 2^25 clock cycles. 3195 * Assuming a minimum 33MHz clock this results in a 1s 3196 * delay before we can consider subordinate devices to 3197 * be re-initialized. PCIe has some ways to shorten this, 3198 * but we don't make use of them yet. 3199 */ 3200 ssleep(1); 3201 } 3202 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3203 3204 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3205 { 3206 struct pci_dev *pdev; 3207 3208 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3209 return -ENOTTY; 3210 3211 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3212 if (pdev != dev) 3213 return -ENOTTY; 3214 3215 if (probe) 3216 return 0; 3217 3218 pci_reset_bridge_secondary_bus(dev->bus->self); 3219 3220 return 0; 3221 } 3222 3223 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3224 { 3225 int rc = -ENOTTY; 3226 3227 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3228 return rc; 3229 3230 if (hotplug->ops->reset_slot) 3231 rc = hotplug->ops->reset_slot(hotplug, probe); 3232 3233 module_put(hotplug->ops->owner); 3234 3235 return rc; 3236 } 3237 3238 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3239 { 3240 struct pci_dev *pdev; 3241 3242 if (dev->subordinate || !dev->slot) 3243 return -ENOTTY; 3244 3245 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3246 if (pdev != dev && pdev->slot == dev->slot) 3247 return -ENOTTY; 3248 3249 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3250 } 3251 3252 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3253 { 3254 int rc; 3255 3256 might_sleep(); 3257 3258 rc = pci_dev_specific_reset(dev, probe); 3259 if (rc != -ENOTTY) 3260 goto done; 3261 3262 rc = pcie_flr(dev, probe); 3263 if (rc != -ENOTTY) 3264 goto done; 3265 3266 rc = pci_af_flr(dev, probe); 3267 if (rc != -ENOTTY) 3268 goto done; 3269 3270 rc = pci_pm_reset(dev, probe); 3271 if (rc != -ENOTTY) 3272 goto done; 3273 3274 rc = pci_dev_reset_slot_function(dev, probe); 3275 if (rc != -ENOTTY) 3276 goto done; 3277 3278 rc = pci_parent_bus_reset(dev, probe); 3279 done: 3280 return rc; 3281 } 3282 3283 static void pci_dev_lock(struct pci_dev *dev) 3284 { 3285 pci_cfg_access_lock(dev); 3286 /* block PM suspend, driver probe, etc. */ 3287 device_lock(&dev->dev); 3288 } 3289 3290 /* Return 1 on successful lock, 0 on contention */ 3291 static int pci_dev_trylock(struct pci_dev *dev) 3292 { 3293 if (pci_cfg_access_trylock(dev)) { 3294 if (device_trylock(&dev->dev)) 3295 return 1; 3296 pci_cfg_access_unlock(dev); 3297 } 3298 3299 return 0; 3300 } 3301 3302 static void pci_dev_unlock(struct pci_dev *dev) 3303 { 3304 device_unlock(&dev->dev); 3305 pci_cfg_access_unlock(dev); 3306 } 3307 3308 static void pci_dev_save_and_disable(struct pci_dev *dev) 3309 { 3310 /* 3311 * Wake-up device prior to save. PM registers default to D0 after 3312 * reset and a simple register restore doesn't reliably return 3313 * to a non-D0 state anyway. 3314 */ 3315 pci_set_power_state(dev, PCI_D0); 3316 3317 pci_save_state(dev); 3318 /* 3319 * Disable the device by clearing the Command register, except for 3320 * INTx-disable which is set. This not only disables MMIO and I/O port 3321 * BARs, but also prevents the device from being Bus Master, preventing 3322 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3323 * compliant devices, INTx-disable prevents legacy interrupts. 3324 */ 3325 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3326 } 3327 3328 static void pci_dev_restore(struct pci_dev *dev) 3329 { 3330 pci_restore_state(dev); 3331 } 3332 3333 static int pci_dev_reset(struct pci_dev *dev, int probe) 3334 { 3335 int rc; 3336 3337 if (!probe) 3338 pci_dev_lock(dev); 3339 3340 rc = __pci_dev_reset(dev, probe); 3341 3342 if (!probe) 3343 pci_dev_unlock(dev); 3344 3345 return rc; 3346 } 3347 /** 3348 * __pci_reset_function - reset a PCI device function 3349 * @dev: PCI device to reset 3350 * 3351 * Some devices allow an individual function to be reset without affecting 3352 * other functions in the same device. The PCI device must be responsive 3353 * to PCI config space in order to use this function. 3354 * 3355 * The device function is presumed to be unused when this function is called. 3356 * Resetting the device will make the contents of PCI configuration space 3357 * random, so any caller of this must be prepared to reinitialise the 3358 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3359 * etc. 3360 * 3361 * Returns 0 if the device function was successfully reset or negative if the 3362 * device doesn't support resetting a single function. 3363 */ 3364 int __pci_reset_function(struct pci_dev *dev) 3365 { 3366 return pci_dev_reset(dev, 0); 3367 } 3368 EXPORT_SYMBOL_GPL(__pci_reset_function); 3369 3370 /** 3371 * __pci_reset_function_locked - reset a PCI device function while holding 3372 * the @dev mutex lock. 3373 * @dev: PCI device to reset 3374 * 3375 * Some devices allow an individual function to be reset without affecting 3376 * other functions in the same device. The PCI device must be responsive 3377 * to PCI config space in order to use this function. 3378 * 3379 * The device function is presumed to be unused and the caller is holding 3380 * the device mutex lock when this function is called. 3381 * Resetting the device will make the contents of PCI configuration space 3382 * random, so any caller of this must be prepared to reinitialise the 3383 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3384 * etc. 3385 * 3386 * Returns 0 if the device function was successfully reset or negative if the 3387 * device doesn't support resetting a single function. 3388 */ 3389 int __pci_reset_function_locked(struct pci_dev *dev) 3390 { 3391 return __pci_dev_reset(dev, 0); 3392 } 3393 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3394 3395 /** 3396 * pci_probe_reset_function - check whether the device can be safely reset 3397 * @dev: PCI device to reset 3398 * 3399 * Some devices allow an individual function to be reset without affecting 3400 * other functions in the same device. The PCI device must be responsive 3401 * to PCI config space in order to use this function. 3402 * 3403 * Returns 0 if the device function can be reset or negative if the 3404 * device doesn't support resetting a single function. 3405 */ 3406 int pci_probe_reset_function(struct pci_dev *dev) 3407 { 3408 return pci_dev_reset(dev, 1); 3409 } 3410 3411 /** 3412 * pci_reset_function - quiesce and reset a PCI device function 3413 * @dev: PCI device to reset 3414 * 3415 * Some devices allow an individual function to be reset without affecting 3416 * other functions in the same device. The PCI device must be responsive 3417 * to PCI config space in order to use this function. 3418 * 3419 * This function does not just reset the PCI portion of a device, but 3420 * clears all the state associated with the device. This function differs 3421 * from __pci_reset_function in that it saves and restores device state 3422 * over the reset. 3423 * 3424 * Returns 0 if the device function was successfully reset or negative if the 3425 * device doesn't support resetting a single function. 3426 */ 3427 int pci_reset_function(struct pci_dev *dev) 3428 { 3429 int rc; 3430 3431 rc = pci_dev_reset(dev, 1); 3432 if (rc) 3433 return rc; 3434 3435 pci_dev_save_and_disable(dev); 3436 3437 rc = pci_dev_reset(dev, 0); 3438 3439 pci_dev_restore(dev); 3440 3441 return rc; 3442 } 3443 EXPORT_SYMBOL_GPL(pci_reset_function); 3444 3445 /** 3446 * pci_try_reset_function - quiesce and reset a PCI device function 3447 * @dev: PCI device to reset 3448 * 3449 * Same as above, except return -EAGAIN if unable to lock device. 3450 */ 3451 int pci_try_reset_function(struct pci_dev *dev) 3452 { 3453 int rc; 3454 3455 rc = pci_dev_reset(dev, 1); 3456 if (rc) 3457 return rc; 3458 3459 pci_dev_save_and_disable(dev); 3460 3461 if (pci_dev_trylock(dev)) { 3462 rc = __pci_dev_reset(dev, 0); 3463 pci_dev_unlock(dev); 3464 } else 3465 rc = -EAGAIN; 3466 3467 pci_dev_restore(dev); 3468 3469 return rc; 3470 } 3471 EXPORT_SYMBOL_GPL(pci_try_reset_function); 3472 3473 /* Lock devices from the top of the tree down */ 3474 static void pci_bus_lock(struct pci_bus *bus) 3475 { 3476 struct pci_dev *dev; 3477 3478 list_for_each_entry(dev, &bus->devices, bus_list) { 3479 pci_dev_lock(dev); 3480 if (dev->subordinate) 3481 pci_bus_lock(dev->subordinate); 3482 } 3483 } 3484 3485 /* Unlock devices from the bottom of the tree up */ 3486 static void pci_bus_unlock(struct pci_bus *bus) 3487 { 3488 struct pci_dev *dev; 3489 3490 list_for_each_entry(dev, &bus->devices, bus_list) { 3491 if (dev->subordinate) 3492 pci_bus_unlock(dev->subordinate); 3493 pci_dev_unlock(dev); 3494 } 3495 } 3496 3497 /* Return 1 on successful lock, 0 on contention */ 3498 static int pci_bus_trylock(struct pci_bus *bus) 3499 { 3500 struct pci_dev *dev; 3501 3502 list_for_each_entry(dev, &bus->devices, bus_list) { 3503 if (!pci_dev_trylock(dev)) 3504 goto unlock; 3505 if (dev->subordinate) { 3506 if (!pci_bus_trylock(dev->subordinate)) { 3507 pci_dev_unlock(dev); 3508 goto unlock; 3509 } 3510 } 3511 } 3512 return 1; 3513 3514 unlock: 3515 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 3516 if (dev->subordinate) 3517 pci_bus_unlock(dev->subordinate); 3518 pci_dev_unlock(dev); 3519 } 3520 return 0; 3521 } 3522 3523 /* Lock devices from the top of the tree down */ 3524 static void pci_slot_lock(struct pci_slot *slot) 3525 { 3526 struct pci_dev *dev; 3527 3528 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3529 if (!dev->slot || dev->slot != slot) 3530 continue; 3531 pci_dev_lock(dev); 3532 if (dev->subordinate) 3533 pci_bus_lock(dev->subordinate); 3534 } 3535 } 3536 3537 /* Unlock devices from the bottom of the tree up */ 3538 static void pci_slot_unlock(struct pci_slot *slot) 3539 { 3540 struct pci_dev *dev; 3541 3542 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3543 if (!dev->slot || dev->slot != slot) 3544 continue; 3545 if (dev->subordinate) 3546 pci_bus_unlock(dev->subordinate); 3547 pci_dev_unlock(dev); 3548 } 3549 } 3550 3551 /* Return 1 on successful lock, 0 on contention */ 3552 static int pci_slot_trylock(struct pci_slot *slot) 3553 { 3554 struct pci_dev *dev; 3555 3556 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3557 if (!dev->slot || dev->slot != slot) 3558 continue; 3559 if (!pci_dev_trylock(dev)) 3560 goto unlock; 3561 if (dev->subordinate) { 3562 if (!pci_bus_trylock(dev->subordinate)) { 3563 pci_dev_unlock(dev); 3564 goto unlock; 3565 } 3566 } 3567 } 3568 return 1; 3569 3570 unlock: 3571 list_for_each_entry_continue_reverse(dev, 3572 &slot->bus->devices, bus_list) { 3573 if (!dev->slot || dev->slot != slot) 3574 continue; 3575 if (dev->subordinate) 3576 pci_bus_unlock(dev->subordinate); 3577 pci_dev_unlock(dev); 3578 } 3579 return 0; 3580 } 3581 3582 /* Save and disable devices from the top of the tree down */ 3583 static void pci_bus_save_and_disable(struct pci_bus *bus) 3584 { 3585 struct pci_dev *dev; 3586 3587 list_for_each_entry(dev, &bus->devices, bus_list) { 3588 pci_dev_save_and_disable(dev); 3589 if (dev->subordinate) 3590 pci_bus_save_and_disable(dev->subordinate); 3591 } 3592 } 3593 3594 /* 3595 * Restore devices from top of the tree down - parent bridges need to be 3596 * restored before we can get to subordinate devices. 3597 */ 3598 static void pci_bus_restore(struct pci_bus *bus) 3599 { 3600 struct pci_dev *dev; 3601 3602 list_for_each_entry(dev, &bus->devices, bus_list) { 3603 pci_dev_restore(dev); 3604 if (dev->subordinate) 3605 pci_bus_restore(dev->subordinate); 3606 } 3607 } 3608 3609 /* Save and disable devices from the top of the tree down */ 3610 static void pci_slot_save_and_disable(struct pci_slot *slot) 3611 { 3612 struct pci_dev *dev; 3613 3614 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3615 if (!dev->slot || dev->slot != slot) 3616 continue; 3617 pci_dev_save_and_disable(dev); 3618 if (dev->subordinate) 3619 pci_bus_save_and_disable(dev->subordinate); 3620 } 3621 } 3622 3623 /* 3624 * Restore devices from top of the tree down - parent bridges need to be 3625 * restored before we can get to subordinate devices. 3626 */ 3627 static void pci_slot_restore(struct pci_slot *slot) 3628 { 3629 struct pci_dev *dev; 3630 3631 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3632 if (!dev->slot || dev->slot != slot) 3633 continue; 3634 pci_dev_restore(dev); 3635 if (dev->subordinate) 3636 pci_bus_restore(dev->subordinate); 3637 } 3638 } 3639 3640 static int pci_slot_reset(struct pci_slot *slot, int probe) 3641 { 3642 int rc; 3643 3644 if (!slot) 3645 return -ENOTTY; 3646 3647 if (!probe) 3648 pci_slot_lock(slot); 3649 3650 might_sleep(); 3651 3652 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 3653 3654 if (!probe) 3655 pci_slot_unlock(slot); 3656 3657 return rc; 3658 } 3659 3660 /** 3661 * pci_probe_reset_slot - probe whether a PCI slot can be reset 3662 * @slot: PCI slot to probe 3663 * 3664 * Return 0 if slot can be reset, negative if a slot reset is not supported. 3665 */ 3666 int pci_probe_reset_slot(struct pci_slot *slot) 3667 { 3668 return pci_slot_reset(slot, 1); 3669 } 3670 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 3671 3672 /** 3673 * pci_reset_slot - reset a PCI slot 3674 * @slot: PCI slot to reset 3675 * 3676 * A PCI bus may host multiple slots, each slot may support a reset mechanism 3677 * independent of other slots. For instance, some slots may support slot power 3678 * control. In the case of a 1:1 bus to slot architecture, this function may 3679 * wrap the bus reset to avoid spurious slot related events such as hotplug. 3680 * Generally a slot reset should be attempted before a bus reset. All of the 3681 * function of the slot and any subordinate buses behind the slot are reset 3682 * through this function. PCI config space of all devices in the slot and 3683 * behind the slot is saved before and restored after reset. 3684 * 3685 * Return 0 on success, non-zero on error. 3686 */ 3687 int pci_reset_slot(struct pci_slot *slot) 3688 { 3689 int rc; 3690 3691 rc = pci_slot_reset(slot, 1); 3692 if (rc) 3693 return rc; 3694 3695 pci_slot_save_and_disable(slot); 3696 3697 rc = pci_slot_reset(slot, 0); 3698 3699 pci_slot_restore(slot); 3700 3701 return rc; 3702 } 3703 EXPORT_SYMBOL_GPL(pci_reset_slot); 3704 3705 /** 3706 * pci_try_reset_slot - Try to reset a PCI slot 3707 * @slot: PCI slot to reset 3708 * 3709 * Same as above except return -EAGAIN if the slot cannot be locked 3710 */ 3711 int pci_try_reset_slot(struct pci_slot *slot) 3712 { 3713 int rc; 3714 3715 rc = pci_slot_reset(slot, 1); 3716 if (rc) 3717 return rc; 3718 3719 pci_slot_save_and_disable(slot); 3720 3721 if (pci_slot_trylock(slot)) { 3722 might_sleep(); 3723 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 3724 pci_slot_unlock(slot); 3725 } else 3726 rc = -EAGAIN; 3727 3728 pci_slot_restore(slot); 3729 3730 return rc; 3731 } 3732 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 3733 3734 static int pci_bus_reset(struct pci_bus *bus, int probe) 3735 { 3736 if (!bus->self) 3737 return -ENOTTY; 3738 3739 if (probe) 3740 return 0; 3741 3742 pci_bus_lock(bus); 3743 3744 might_sleep(); 3745 3746 pci_reset_bridge_secondary_bus(bus->self); 3747 3748 pci_bus_unlock(bus); 3749 3750 return 0; 3751 } 3752 3753 /** 3754 * pci_probe_reset_bus - probe whether a PCI bus can be reset 3755 * @bus: PCI bus to probe 3756 * 3757 * Return 0 if bus can be reset, negative if a bus reset is not supported. 3758 */ 3759 int pci_probe_reset_bus(struct pci_bus *bus) 3760 { 3761 return pci_bus_reset(bus, 1); 3762 } 3763 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 3764 3765 /** 3766 * pci_reset_bus - reset a PCI bus 3767 * @bus: top level PCI bus to reset 3768 * 3769 * Do a bus reset on the given bus and any subordinate buses, saving 3770 * and restoring state of all devices. 3771 * 3772 * Return 0 on success, non-zero on error. 3773 */ 3774 int pci_reset_bus(struct pci_bus *bus) 3775 { 3776 int rc; 3777 3778 rc = pci_bus_reset(bus, 1); 3779 if (rc) 3780 return rc; 3781 3782 pci_bus_save_and_disable(bus); 3783 3784 rc = pci_bus_reset(bus, 0); 3785 3786 pci_bus_restore(bus); 3787 3788 return rc; 3789 } 3790 EXPORT_SYMBOL_GPL(pci_reset_bus); 3791 3792 /** 3793 * pci_try_reset_bus - Try to reset a PCI bus 3794 * @bus: top level PCI bus to reset 3795 * 3796 * Same as above except return -EAGAIN if the bus cannot be locked 3797 */ 3798 int pci_try_reset_bus(struct pci_bus *bus) 3799 { 3800 int rc; 3801 3802 rc = pci_bus_reset(bus, 1); 3803 if (rc) 3804 return rc; 3805 3806 pci_bus_save_and_disable(bus); 3807 3808 if (pci_bus_trylock(bus)) { 3809 might_sleep(); 3810 pci_reset_bridge_secondary_bus(bus->self); 3811 pci_bus_unlock(bus); 3812 } else 3813 rc = -EAGAIN; 3814 3815 pci_bus_restore(bus); 3816 3817 return rc; 3818 } 3819 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 3820 3821 /** 3822 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3823 * @dev: PCI device to query 3824 * 3825 * Returns mmrbc: maximum designed memory read count in bytes 3826 * or appropriate error value. 3827 */ 3828 int pcix_get_max_mmrbc(struct pci_dev *dev) 3829 { 3830 int cap; 3831 u32 stat; 3832 3833 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3834 if (!cap) 3835 return -EINVAL; 3836 3837 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3838 return -EINVAL; 3839 3840 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3841 } 3842 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3843 3844 /** 3845 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3846 * @dev: PCI device to query 3847 * 3848 * Returns mmrbc: maximum memory read count in bytes 3849 * or appropriate error value. 3850 */ 3851 int pcix_get_mmrbc(struct pci_dev *dev) 3852 { 3853 int cap; 3854 u16 cmd; 3855 3856 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3857 if (!cap) 3858 return -EINVAL; 3859 3860 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3861 return -EINVAL; 3862 3863 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3864 } 3865 EXPORT_SYMBOL(pcix_get_mmrbc); 3866 3867 /** 3868 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3869 * @dev: PCI device to query 3870 * @mmrbc: maximum memory read count in bytes 3871 * valid values are 512, 1024, 2048, 4096 3872 * 3873 * If possible sets maximum memory read byte count, some bridges have erratas 3874 * that prevent this. 3875 */ 3876 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3877 { 3878 int cap; 3879 u32 stat, v, o; 3880 u16 cmd; 3881 3882 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3883 return -EINVAL; 3884 3885 v = ffs(mmrbc) - 10; 3886 3887 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3888 if (!cap) 3889 return -EINVAL; 3890 3891 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3892 return -EINVAL; 3893 3894 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3895 return -E2BIG; 3896 3897 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3898 return -EINVAL; 3899 3900 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3901 if (o != v) { 3902 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3903 return -EIO; 3904 3905 cmd &= ~PCI_X_CMD_MAX_READ; 3906 cmd |= v << 2; 3907 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 3908 return -EIO; 3909 } 3910 return 0; 3911 } 3912 EXPORT_SYMBOL(pcix_set_mmrbc); 3913 3914 /** 3915 * pcie_get_readrq - get PCI Express read request size 3916 * @dev: PCI device to query 3917 * 3918 * Returns maximum memory read request in bytes 3919 * or appropriate error value. 3920 */ 3921 int pcie_get_readrq(struct pci_dev *dev) 3922 { 3923 u16 ctl; 3924 3925 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3926 3927 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 3928 } 3929 EXPORT_SYMBOL(pcie_get_readrq); 3930 3931 /** 3932 * pcie_set_readrq - set PCI Express maximum memory read request 3933 * @dev: PCI device to query 3934 * @rq: maximum memory read count in bytes 3935 * valid values are 128, 256, 512, 1024, 2048, 4096 3936 * 3937 * If possible sets maximum memory read request in bytes 3938 */ 3939 int pcie_set_readrq(struct pci_dev *dev, int rq) 3940 { 3941 u16 v; 3942 3943 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 3944 return -EINVAL; 3945 3946 /* 3947 * If using the "performance" PCIe config, we clamp the 3948 * read rq size to the max packet size to prevent the 3949 * host bridge generating requests larger than we can 3950 * cope with 3951 */ 3952 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 3953 int mps = pcie_get_mps(dev); 3954 3955 if (mps < rq) 3956 rq = mps; 3957 } 3958 3959 v = (ffs(rq) - 8) << 12; 3960 3961 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3962 PCI_EXP_DEVCTL_READRQ, v); 3963 } 3964 EXPORT_SYMBOL(pcie_set_readrq); 3965 3966 /** 3967 * pcie_get_mps - get PCI Express maximum payload size 3968 * @dev: PCI device to query 3969 * 3970 * Returns maximum payload size in bytes 3971 */ 3972 int pcie_get_mps(struct pci_dev *dev) 3973 { 3974 u16 ctl; 3975 3976 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3977 3978 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 3979 } 3980 EXPORT_SYMBOL(pcie_get_mps); 3981 3982 /** 3983 * pcie_set_mps - set PCI Express maximum payload size 3984 * @dev: PCI device to query 3985 * @mps: maximum payload size in bytes 3986 * valid values are 128, 256, 512, 1024, 2048, 4096 3987 * 3988 * If possible sets maximum payload size 3989 */ 3990 int pcie_set_mps(struct pci_dev *dev, int mps) 3991 { 3992 u16 v; 3993 3994 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 3995 return -EINVAL; 3996 3997 v = ffs(mps) - 8; 3998 if (v > dev->pcie_mpss) 3999 return -EINVAL; 4000 v <<= 5; 4001 4002 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4003 PCI_EXP_DEVCTL_PAYLOAD, v); 4004 } 4005 EXPORT_SYMBOL(pcie_set_mps); 4006 4007 /** 4008 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4009 * @dev: PCI device to query 4010 * @speed: storage for minimum speed 4011 * @width: storage for minimum width 4012 * 4013 * This function will walk up the PCI device chain and determine the minimum 4014 * link width and speed of the device. 4015 */ 4016 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4017 enum pcie_link_width *width) 4018 { 4019 int ret; 4020 4021 *speed = PCI_SPEED_UNKNOWN; 4022 *width = PCIE_LNK_WIDTH_UNKNOWN; 4023 4024 while (dev) { 4025 u16 lnksta; 4026 enum pci_bus_speed next_speed; 4027 enum pcie_link_width next_width; 4028 4029 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4030 if (ret) 4031 return ret; 4032 4033 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4034 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4035 PCI_EXP_LNKSTA_NLW_SHIFT; 4036 4037 if (next_speed < *speed) 4038 *speed = next_speed; 4039 4040 if (next_width < *width) 4041 *width = next_width; 4042 4043 dev = dev->bus->self; 4044 } 4045 4046 return 0; 4047 } 4048 EXPORT_SYMBOL(pcie_get_minimum_link); 4049 4050 /** 4051 * pci_select_bars - Make BAR mask from the type of resource 4052 * @dev: the PCI device for which BAR mask is made 4053 * @flags: resource type mask to be selected 4054 * 4055 * This helper routine makes bar mask from the type of resource. 4056 */ 4057 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4058 { 4059 int i, bars = 0; 4060 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4061 if (pci_resource_flags(dev, i) & flags) 4062 bars |= (1 << i); 4063 return bars; 4064 } 4065 4066 /** 4067 * pci_resource_bar - get position of the BAR associated with a resource 4068 * @dev: the PCI device 4069 * @resno: the resource number 4070 * @type: the BAR type to be filled in 4071 * 4072 * Returns BAR position in config space, or 0 if the BAR is invalid. 4073 */ 4074 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4075 { 4076 int reg; 4077 4078 if (resno < PCI_ROM_RESOURCE) { 4079 *type = pci_bar_unknown; 4080 return PCI_BASE_ADDRESS_0 + 4 * resno; 4081 } else if (resno == PCI_ROM_RESOURCE) { 4082 *type = pci_bar_mem32; 4083 return dev->rom_base_reg; 4084 } else if (resno < PCI_BRIDGE_RESOURCES) { 4085 /* device specific resource */ 4086 reg = pci_iov_resource_bar(dev, resno, type); 4087 if (reg) 4088 return reg; 4089 } 4090 4091 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4092 return 0; 4093 } 4094 4095 /* Some architectures require additional programming to enable VGA */ 4096 static arch_set_vga_state_t arch_set_vga_state; 4097 4098 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4099 { 4100 arch_set_vga_state = func; /* NULL disables */ 4101 } 4102 4103 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4104 unsigned int command_bits, u32 flags) 4105 { 4106 if (arch_set_vga_state) 4107 return arch_set_vga_state(dev, decode, command_bits, 4108 flags); 4109 return 0; 4110 } 4111 4112 /** 4113 * pci_set_vga_state - set VGA decode state on device and parents if requested 4114 * @dev: the PCI device 4115 * @decode: true = enable decoding, false = disable decoding 4116 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4117 * @flags: traverse ancestors and change bridges 4118 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4119 */ 4120 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4121 unsigned int command_bits, u32 flags) 4122 { 4123 struct pci_bus *bus; 4124 struct pci_dev *bridge; 4125 u16 cmd; 4126 int rc; 4127 4128 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4129 4130 /* ARCH specific VGA enables */ 4131 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4132 if (rc) 4133 return rc; 4134 4135 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4136 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4137 if (decode == true) 4138 cmd |= command_bits; 4139 else 4140 cmd &= ~command_bits; 4141 pci_write_config_word(dev, PCI_COMMAND, cmd); 4142 } 4143 4144 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4145 return 0; 4146 4147 bus = dev->bus; 4148 while (bus) { 4149 bridge = bus->self; 4150 if (bridge) { 4151 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4152 &cmd); 4153 if (decode == true) 4154 cmd |= PCI_BRIDGE_CTL_VGA; 4155 else 4156 cmd &= ~PCI_BRIDGE_CTL_VGA; 4157 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4158 cmd); 4159 } 4160 bus = bus->parent; 4161 } 4162 return 0; 4163 } 4164 4165 bool pci_device_is_present(struct pci_dev *pdev) 4166 { 4167 u32 v; 4168 4169 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4170 } 4171 EXPORT_SYMBOL_GPL(pci_device_is_present); 4172 4173 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4174 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4175 static DEFINE_SPINLOCK(resource_alignment_lock); 4176 4177 /** 4178 * pci_specified_resource_alignment - get resource alignment specified by user. 4179 * @dev: the PCI device to get 4180 * 4181 * RETURNS: Resource alignment if it is specified. 4182 * Zero if it is not specified. 4183 */ 4184 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4185 { 4186 int seg, bus, slot, func, align_order, count; 4187 resource_size_t align = 0; 4188 char *p; 4189 4190 spin_lock(&resource_alignment_lock); 4191 p = resource_alignment_param; 4192 while (*p) { 4193 count = 0; 4194 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4195 p[count] == '@') { 4196 p += count + 1; 4197 } else { 4198 align_order = -1; 4199 } 4200 if (sscanf(p, "%x:%x:%x.%x%n", 4201 &seg, &bus, &slot, &func, &count) != 4) { 4202 seg = 0; 4203 if (sscanf(p, "%x:%x.%x%n", 4204 &bus, &slot, &func, &count) != 3) { 4205 /* Invalid format */ 4206 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4207 p); 4208 break; 4209 } 4210 } 4211 p += count; 4212 if (seg == pci_domain_nr(dev->bus) && 4213 bus == dev->bus->number && 4214 slot == PCI_SLOT(dev->devfn) && 4215 func == PCI_FUNC(dev->devfn)) { 4216 if (align_order == -1) { 4217 align = PAGE_SIZE; 4218 } else { 4219 align = 1 << align_order; 4220 } 4221 /* Found */ 4222 break; 4223 } 4224 if (*p != ';' && *p != ',') { 4225 /* End of param or invalid format */ 4226 break; 4227 } 4228 p++; 4229 } 4230 spin_unlock(&resource_alignment_lock); 4231 return align; 4232 } 4233 4234 /* 4235 * This function disables memory decoding and releases memory resources 4236 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4237 * It also rounds up size to specified alignment. 4238 * Later on, the kernel will assign page-aligned memory resource back 4239 * to the device. 4240 */ 4241 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4242 { 4243 int i; 4244 struct resource *r; 4245 resource_size_t align, size; 4246 u16 command; 4247 4248 /* check if specified PCI is target device to reassign */ 4249 align = pci_specified_resource_alignment(dev); 4250 if (!align) 4251 return; 4252 4253 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4254 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4255 dev_warn(&dev->dev, 4256 "Can't reassign resources to host bridge.\n"); 4257 return; 4258 } 4259 4260 dev_info(&dev->dev, 4261 "Disabling memory decoding and releasing memory resources.\n"); 4262 pci_read_config_word(dev, PCI_COMMAND, &command); 4263 command &= ~PCI_COMMAND_MEMORY; 4264 pci_write_config_word(dev, PCI_COMMAND, command); 4265 4266 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4267 r = &dev->resource[i]; 4268 if (!(r->flags & IORESOURCE_MEM)) 4269 continue; 4270 size = resource_size(r); 4271 if (size < align) { 4272 size = align; 4273 dev_info(&dev->dev, 4274 "Rounding up size of resource #%d to %#llx.\n", 4275 i, (unsigned long long)size); 4276 } 4277 r->flags |= IORESOURCE_UNSET; 4278 r->end = size - 1; 4279 r->start = 0; 4280 } 4281 /* Need to disable bridge's resource window, 4282 * to enable the kernel to reassign new resource 4283 * window later on. 4284 */ 4285 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4286 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4287 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4288 r = &dev->resource[i]; 4289 if (!(r->flags & IORESOURCE_MEM)) 4290 continue; 4291 r->flags |= IORESOURCE_UNSET; 4292 r->end = resource_size(r) - 1; 4293 r->start = 0; 4294 } 4295 pci_disable_bridge_window(dev); 4296 } 4297 } 4298 4299 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4300 { 4301 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4302 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4303 spin_lock(&resource_alignment_lock); 4304 strncpy(resource_alignment_param, buf, count); 4305 resource_alignment_param[count] = '\0'; 4306 spin_unlock(&resource_alignment_lock); 4307 return count; 4308 } 4309 4310 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4311 { 4312 size_t count; 4313 spin_lock(&resource_alignment_lock); 4314 count = snprintf(buf, size, "%s", resource_alignment_param); 4315 spin_unlock(&resource_alignment_lock); 4316 return count; 4317 } 4318 4319 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4320 { 4321 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4322 } 4323 4324 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4325 const char *buf, size_t count) 4326 { 4327 return pci_set_resource_alignment_param(buf, count); 4328 } 4329 4330 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4331 pci_resource_alignment_store); 4332 4333 static int __init pci_resource_alignment_sysfs_init(void) 4334 { 4335 return bus_create_file(&pci_bus_type, 4336 &bus_attr_resource_alignment); 4337 } 4338 4339 late_initcall(pci_resource_alignment_sysfs_init); 4340 4341 static void pci_no_domains(void) 4342 { 4343 #ifdef CONFIG_PCI_DOMAINS 4344 pci_domains_supported = 0; 4345 #endif 4346 } 4347 4348 /** 4349 * pci_ext_cfg_avail - can we access extended PCI config space? 4350 * 4351 * Returns 1 if we can access PCI extended config space (offsets 4352 * greater than 0xff). This is the default implementation. Architecture 4353 * implementations can override this. 4354 */ 4355 int __weak pci_ext_cfg_avail(void) 4356 { 4357 return 1; 4358 } 4359 4360 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4361 { 4362 } 4363 EXPORT_SYMBOL(pci_fixup_cardbus); 4364 4365 static int __init pci_setup(char *str) 4366 { 4367 while (str) { 4368 char *k = strchr(str, ','); 4369 if (k) 4370 *k++ = 0; 4371 if (*str && (str = pcibios_setup(str)) && *str) { 4372 if (!strcmp(str, "nomsi")) { 4373 pci_no_msi(); 4374 } else if (!strcmp(str, "noaer")) { 4375 pci_no_aer(); 4376 } else if (!strncmp(str, "realloc=", 8)) { 4377 pci_realloc_get_opt(str + 8); 4378 } else if (!strncmp(str, "realloc", 7)) { 4379 pci_realloc_get_opt("on"); 4380 } else if (!strcmp(str, "nodomains")) { 4381 pci_no_domains(); 4382 } else if (!strncmp(str, "noari", 5)) { 4383 pcie_ari_disabled = true; 4384 } else if (!strncmp(str, "cbiosize=", 9)) { 4385 pci_cardbus_io_size = memparse(str + 9, &str); 4386 } else if (!strncmp(str, "cbmemsize=", 10)) { 4387 pci_cardbus_mem_size = memparse(str + 10, &str); 4388 } else if (!strncmp(str, "resource_alignment=", 19)) { 4389 pci_set_resource_alignment_param(str + 19, 4390 strlen(str + 19)); 4391 } else if (!strncmp(str, "ecrc=", 5)) { 4392 pcie_ecrc_get_policy(str + 5); 4393 } else if (!strncmp(str, "hpiosize=", 9)) { 4394 pci_hotplug_io_size = memparse(str + 9, &str); 4395 } else if (!strncmp(str, "hpmemsize=", 10)) { 4396 pci_hotplug_mem_size = memparse(str + 10, &str); 4397 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4398 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4399 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4400 pcie_bus_config = PCIE_BUS_SAFE; 4401 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4402 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4403 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4404 pcie_bus_config = PCIE_BUS_PEER2PEER; 4405 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4406 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4407 } else { 4408 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4409 str); 4410 } 4411 } 4412 str = k; 4413 } 4414 return 0; 4415 } 4416 early_param("pci", pci_setup); 4417 4418 EXPORT_SYMBOL(pci_reenable_device); 4419 EXPORT_SYMBOL(pci_enable_device_io); 4420 EXPORT_SYMBOL(pci_enable_device_mem); 4421 EXPORT_SYMBOL(pci_enable_device); 4422 EXPORT_SYMBOL(pcim_enable_device); 4423 EXPORT_SYMBOL(pcim_pin_device); 4424 EXPORT_SYMBOL(pci_disable_device); 4425 EXPORT_SYMBOL(pci_find_capability); 4426 EXPORT_SYMBOL(pci_bus_find_capability); 4427 EXPORT_SYMBOL(pci_release_regions); 4428 EXPORT_SYMBOL(pci_request_regions); 4429 EXPORT_SYMBOL(pci_request_regions_exclusive); 4430 EXPORT_SYMBOL(pci_release_region); 4431 EXPORT_SYMBOL(pci_request_region); 4432 EXPORT_SYMBOL(pci_request_region_exclusive); 4433 EXPORT_SYMBOL(pci_release_selected_regions); 4434 EXPORT_SYMBOL(pci_request_selected_regions); 4435 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4436 EXPORT_SYMBOL(pci_set_master); 4437 EXPORT_SYMBOL(pci_clear_master); 4438 EXPORT_SYMBOL(pci_set_mwi); 4439 EXPORT_SYMBOL(pci_try_set_mwi); 4440 EXPORT_SYMBOL(pci_clear_mwi); 4441 EXPORT_SYMBOL_GPL(pci_intx); 4442 EXPORT_SYMBOL(pci_assign_resource); 4443 EXPORT_SYMBOL(pci_find_parent_resource); 4444 EXPORT_SYMBOL(pci_select_bars); 4445 4446 EXPORT_SYMBOL(pci_set_power_state); 4447 EXPORT_SYMBOL(pci_save_state); 4448 EXPORT_SYMBOL(pci_restore_state); 4449 EXPORT_SYMBOL(pci_pme_capable); 4450 EXPORT_SYMBOL(pci_pme_active); 4451 EXPORT_SYMBOL(pci_wake_from_d3); 4452 EXPORT_SYMBOL(pci_prepare_to_sleep); 4453 EXPORT_SYMBOL(pci_back_from_sleep); 4454 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 4455