1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/of_pci.h> 19 #include <linux/pci.h> 20 #include <linux/pm.h> 21 #include <linux/slab.h> 22 #include <linux/module.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/log2.h> 26 #include <linux/logic_pio.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 DEFINE_MUTEX(pci_slot_mutex); 40 41 const char *pci_power_names[] = { 42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 43 }; 44 EXPORT_SYMBOL_GPL(pci_power_names); 45 46 int isa_dma_bridge_buggy; 47 EXPORT_SYMBOL(isa_dma_bridge_buggy); 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 static void pci_dev_d3_sleep(struct pci_dev *dev) 68 { 69 unsigned int delay = dev->d3_delay; 70 71 if (delay < pci_pm_d3_delay) 72 delay = pci_pm_d3_delay; 73 74 if (delay) 75 msleep(delay); 76 } 77 78 #ifdef CONFIG_PCI_DOMAINS 79 int pci_domains_supported = 1; 80 #endif 81 82 #define DEFAULT_CARDBUS_IO_SIZE (256) 83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 87 88 #define DEFAULT_HOTPLUG_IO_SIZE (256) 89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 91 /* hpiosize=nn can override this */ 92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 93 /* 94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 96 * pci=hpmemsize=nnM overrides both 97 */ 98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 100 101 #define DEFAULT_HOTPLUG_BUS_SIZE 1 102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 103 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 105 106 /* 107 * The default CLS is used if arch didn't set CLS explicitly and not 108 * all pci devices agree on the same value. Arch can override either 109 * the dfl or actual value as it sees fit. Don't forget this is 110 * measured in 32-bit words, not bytes. 111 */ 112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 113 u8 pci_cache_line_size; 114 115 /* 116 * If we set up a device for bus mastering, we need to check the latency 117 * timer as certain BIOSes forget to set it properly. 118 */ 119 unsigned int pcibios_max_latency = 255; 120 121 /* If set, the PCIe ARI capability will not be used. */ 122 static bool pcie_ari_disabled; 123 124 /* If set, the PCIe ATS capability will not be used. */ 125 static bool pcie_ats_disabled; 126 127 /* If set, the PCI config space of each device is printed during boot. */ 128 bool pci_early_dump; 129 130 bool pci_ats_disabled(void) 131 { 132 return pcie_ats_disabled; 133 } 134 135 /* Disable bridge_d3 for all PCIe ports */ 136 static bool pci_bridge_d3_disable; 137 /* Force bridge_d3 for all PCIe ports */ 138 static bool pci_bridge_d3_force; 139 140 static int __init pcie_port_pm_setup(char *str) 141 { 142 if (!strcmp(str, "off")) 143 pci_bridge_d3_disable = true; 144 else if (!strcmp(str, "force")) 145 pci_bridge_d3_force = true; 146 return 1; 147 } 148 __setup("pcie_port_pm=", pcie_port_pm_setup); 149 150 /* Time to wait after a reset for device to become responsive */ 151 #define PCIE_RESET_READY_POLL_MS 60000 152 153 /** 154 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 155 * @bus: pointer to PCI bus structure to search 156 * 157 * Given a PCI bus, returns the highest PCI bus number present in the set 158 * including the given PCI bus and its list of child PCI buses. 159 */ 160 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 161 { 162 struct pci_bus *tmp; 163 unsigned char max, n; 164 165 max = bus->busn_res.end; 166 list_for_each_entry(tmp, &bus->children, node) { 167 n = pci_bus_max_busnr(tmp); 168 if (n > max) 169 max = n; 170 } 171 return max; 172 } 173 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 174 175 #ifdef CONFIG_HAS_IOMEM 176 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 177 { 178 struct resource *res = &pdev->resource[bar]; 179 180 /* 181 * Make sure the BAR is actually a memory resource, not an IO resource 182 */ 183 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 184 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 185 return NULL; 186 } 187 return ioremap_nocache(res->start, resource_size(res)); 188 } 189 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 190 191 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 192 { 193 /* 194 * Make sure the BAR is actually a memory resource, not an IO resource 195 */ 196 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 197 WARN_ON(1); 198 return NULL; 199 } 200 return ioremap_wc(pci_resource_start(pdev, bar), 201 pci_resource_len(pdev, bar)); 202 } 203 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 204 #endif 205 206 /** 207 * pci_dev_str_match_path - test if a path string matches a device 208 * @dev: the PCI device to test 209 * @path: string to match the device against 210 * @endptr: pointer to the string after the match 211 * 212 * Test if a string (typically from a kernel parameter) formatted as a 213 * path of device/function addresses matches a PCI device. The string must 214 * be of the form: 215 * 216 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 217 * 218 * A path for a device can be obtained using 'lspci -t'. Using a path 219 * is more robust against bus renumbering than using only a single bus, 220 * device and function address. 221 * 222 * Returns 1 if the string matches the device, 0 if it does not and 223 * a negative error code if it fails to parse the string. 224 */ 225 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 226 const char **endptr) 227 { 228 int ret; 229 int seg, bus, slot, func; 230 char *wpath, *p; 231 char end; 232 233 *endptr = strchrnul(path, ';'); 234 235 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 236 if (!wpath) 237 return -ENOMEM; 238 239 while (1) { 240 p = strrchr(wpath, '/'); 241 if (!p) 242 break; 243 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 244 if (ret != 2) { 245 ret = -EINVAL; 246 goto free_and_exit; 247 } 248 249 if (dev->devfn != PCI_DEVFN(slot, func)) { 250 ret = 0; 251 goto free_and_exit; 252 } 253 254 /* 255 * Note: we don't need to get a reference to the upstream 256 * bridge because we hold a reference to the top level 257 * device which should hold a reference to the bridge, 258 * and so on. 259 */ 260 dev = pci_upstream_bridge(dev); 261 if (!dev) { 262 ret = 0; 263 goto free_and_exit; 264 } 265 266 *p = 0; 267 } 268 269 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 270 &func, &end); 271 if (ret != 4) { 272 seg = 0; 273 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 274 if (ret != 3) { 275 ret = -EINVAL; 276 goto free_and_exit; 277 } 278 } 279 280 ret = (seg == pci_domain_nr(dev->bus) && 281 bus == dev->bus->number && 282 dev->devfn == PCI_DEVFN(slot, func)); 283 284 free_and_exit: 285 kfree(wpath); 286 return ret; 287 } 288 289 /** 290 * pci_dev_str_match - test if a string matches a device 291 * @dev: the PCI device to test 292 * @p: string to match the device against 293 * @endptr: pointer to the string after the match 294 * 295 * Test if a string (typically from a kernel parameter) matches a specified 296 * PCI device. The string may be of one of the following formats: 297 * 298 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 299 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 300 * 301 * The first format specifies a PCI bus/device/function address which 302 * may change if new hardware is inserted, if motherboard firmware changes, 303 * or due to changes caused in kernel parameters. If the domain is 304 * left unspecified, it is taken to be 0. In order to be robust against 305 * bus renumbering issues, a path of PCI device/function numbers may be used 306 * to address the specific device. The path for a device can be determined 307 * through the use of 'lspci -t'. 308 * 309 * The second format matches devices using IDs in the configuration 310 * space which may match multiple devices in the system. A value of 0 311 * for any field will match all devices. (Note: this differs from 312 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 313 * legacy reasons and convenience so users don't have to specify 314 * FFFFFFFFs on the command line.) 315 * 316 * Returns 1 if the string matches the device, 0 if it does not and 317 * a negative error code if the string cannot be parsed. 318 */ 319 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 320 const char **endptr) 321 { 322 int ret; 323 int count; 324 unsigned short vendor, device, subsystem_vendor, subsystem_device; 325 326 if (strncmp(p, "pci:", 4) == 0) { 327 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 328 p += 4; 329 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 330 &subsystem_vendor, &subsystem_device, &count); 331 if (ret != 4) { 332 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 333 if (ret != 2) 334 return -EINVAL; 335 336 subsystem_vendor = 0; 337 subsystem_device = 0; 338 } 339 340 p += count; 341 342 if ((!vendor || vendor == dev->vendor) && 343 (!device || device == dev->device) && 344 (!subsystem_vendor || 345 subsystem_vendor == dev->subsystem_vendor) && 346 (!subsystem_device || 347 subsystem_device == dev->subsystem_device)) 348 goto found; 349 } else { 350 /* 351 * PCI Bus, Device, Function IDs are specified 352 * (optionally, may include a path of devfns following it) 353 */ 354 ret = pci_dev_str_match_path(dev, p, &p); 355 if (ret < 0) 356 return ret; 357 else if (ret) 358 goto found; 359 } 360 361 *endptr = p; 362 return 0; 363 364 found: 365 *endptr = p; 366 return 1; 367 } 368 369 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 370 u8 pos, int cap, int *ttl) 371 { 372 u8 id; 373 u16 ent; 374 375 pci_bus_read_config_byte(bus, devfn, pos, &pos); 376 377 while ((*ttl)--) { 378 if (pos < 0x40) 379 break; 380 pos &= ~3; 381 pci_bus_read_config_word(bus, devfn, pos, &ent); 382 383 id = ent & 0xff; 384 if (id == 0xff) 385 break; 386 if (id == cap) 387 return pos; 388 pos = (ent >> 8); 389 } 390 return 0; 391 } 392 393 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 394 u8 pos, int cap) 395 { 396 int ttl = PCI_FIND_CAP_TTL; 397 398 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 399 } 400 401 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 402 { 403 return __pci_find_next_cap(dev->bus, dev->devfn, 404 pos + PCI_CAP_LIST_NEXT, cap); 405 } 406 EXPORT_SYMBOL_GPL(pci_find_next_capability); 407 408 static int __pci_bus_find_cap_start(struct pci_bus *bus, 409 unsigned int devfn, u8 hdr_type) 410 { 411 u16 status; 412 413 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 414 if (!(status & PCI_STATUS_CAP_LIST)) 415 return 0; 416 417 switch (hdr_type) { 418 case PCI_HEADER_TYPE_NORMAL: 419 case PCI_HEADER_TYPE_BRIDGE: 420 return PCI_CAPABILITY_LIST; 421 case PCI_HEADER_TYPE_CARDBUS: 422 return PCI_CB_CAPABILITY_LIST; 423 } 424 425 return 0; 426 } 427 428 /** 429 * pci_find_capability - query for devices' capabilities 430 * @dev: PCI device to query 431 * @cap: capability code 432 * 433 * Tell if a device supports a given PCI capability. 434 * Returns the address of the requested capability structure within the 435 * device's PCI configuration space or 0 in case the device does not 436 * support it. Possible values for @cap include: 437 * 438 * %PCI_CAP_ID_PM Power Management 439 * %PCI_CAP_ID_AGP Accelerated Graphics Port 440 * %PCI_CAP_ID_VPD Vital Product Data 441 * %PCI_CAP_ID_SLOTID Slot Identification 442 * %PCI_CAP_ID_MSI Message Signalled Interrupts 443 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 444 * %PCI_CAP_ID_PCIX PCI-X 445 * %PCI_CAP_ID_EXP PCI Express 446 */ 447 int pci_find_capability(struct pci_dev *dev, int cap) 448 { 449 int pos; 450 451 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 452 if (pos) 453 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 454 455 return pos; 456 } 457 EXPORT_SYMBOL(pci_find_capability); 458 459 /** 460 * pci_bus_find_capability - query for devices' capabilities 461 * @bus: the PCI bus to query 462 * @devfn: PCI device to query 463 * @cap: capability code 464 * 465 * Like pci_find_capability() but works for PCI devices that do not have a 466 * pci_dev structure set up yet. 467 * 468 * Returns the address of the requested capability structure within the 469 * device's PCI configuration space or 0 in case the device does not 470 * support it. 471 */ 472 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 473 { 474 int pos; 475 u8 hdr_type; 476 477 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 478 479 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 480 if (pos) 481 pos = __pci_find_next_cap(bus, devfn, pos, cap); 482 483 return pos; 484 } 485 EXPORT_SYMBOL(pci_bus_find_capability); 486 487 /** 488 * pci_find_next_ext_capability - Find an extended capability 489 * @dev: PCI device to query 490 * @start: address at which to start looking (0 to start at beginning of list) 491 * @cap: capability code 492 * 493 * Returns the address of the next matching extended capability structure 494 * within the device's PCI configuration space or 0 if the device does 495 * not support it. Some capabilities can occur several times, e.g., the 496 * vendor-specific capability, and this provides a way to find them all. 497 */ 498 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 499 { 500 u32 header; 501 int ttl; 502 int pos = PCI_CFG_SPACE_SIZE; 503 504 /* minimum 8 bytes per capability */ 505 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 506 507 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 508 return 0; 509 510 if (start) 511 pos = start; 512 513 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 514 return 0; 515 516 /* 517 * If we have no capabilities, this is indicated by cap ID, 518 * cap version and next pointer all being 0. 519 */ 520 if (header == 0) 521 return 0; 522 523 while (ttl-- > 0) { 524 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 525 return pos; 526 527 pos = PCI_EXT_CAP_NEXT(header); 528 if (pos < PCI_CFG_SPACE_SIZE) 529 break; 530 531 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 532 break; 533 } 534 535 return 0; 536 } 537 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 538 539 /** 540 * pci_find_ext_capability - Find an extended capability 541 * @dev: PCI device to query 542 * @cap: capability code 543 * 544 * Returns the address of the requested extended capability structure 545 * within the device's PCI configuration space or 0 if the device does 546 * not support it. Possible values for @cap include: 547 * 548 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 549 * %PCI_EXT_CAP_ID_VC Virtual Channel 550 * %PCI_EXT_CAP_ID_DSN Device Serial Number 551 * %PCI_EXT_CAP_ID_PWR Power Budgeting 552 */ 553 int pci_find_ext_capability(struct pci_dev *dev, int cap) 554 { 555 return pci_find_next_ext_capability(dev, 0, cap); 556 } 557 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 558 559 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 560 { 561 int rc, ttl = PCI_FIND_CAP_TTL; 562 u8 cap, mask; 563 564 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 565 mask = HT_3BIT_CAP_MASK; 566 else 567 mask = HT_5BIT_CAP_MASK; 568 569 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 570 PCI_CAP_ID_HT, &ttl); 571 while (pos) { 572 rc = pci_read_config_byte(dev, pos + 3, &cap); 573 if (rc != PCIBIOS_SUCCESSFUL) 574 return 0; 575 576 if ((cap & mask) == ht_cap) 577 return pos; 578 579 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 580 pos + PCI_CAP_LIST_NEXT, 581 PCI_CAP_ID_HT, &ttl); 582 } 583 584 return 0; 585 } 586 /** 587 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 588 * @dev: PCI device to query 589 * @pos: Position from which to continue searching 590 * @ht_cap: Hypertransport capability code 591 * 592 * To be used in conjunction with pci_find_ht_capability() to search for 593 * all capabilities matching @ht_cap. @pos should always be a value returned 594 * from pci_find_ht_capability(). 595 * 596 * NB. To be 100% safe against broken PCI devices, the caller should take 597 * steps to avoid an infinite loop. 598 */ 599 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 600 { 601 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 602 } 603 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 604 605 /** 606 * pci_find_ht_capability - query a device's Hypertransport capabilities 607 * @dev: PCI device to query 608 * @ht_cap: Hypertransport capability code 609 * 610 * Tell if a device supports a given Hypertransport capability. 611 * Returns an address within the device's PCI configuration space 612 * or 0 in case the device does not support the request capability. 613 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 614 * which has a Hypertransport capability matching @ht_cap. 615 */ 616 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 617 { 618 int pos; 619 620 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 621 if (pos) 622 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 623 624 return pos; 625 } 626 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 627 628 /** 629 * pci_find_parent_resource - return resource region of parent bus of given 630 * region 631 * @dev: PCI device structure contains resources to be searched 632 * @res: child resource record for which parent is sought 633 * 634 * For given resource region of given device, return the resource region of 635 * parent bus the given region is contained in. 636 */ 637 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 638 struct resource *res) 639 { 640 const struct pci_bus *bus = dev->bus; 641 struct resource *r; 642 int i; 643 644 pci_bus_for_each_resource(bus, r, i) { 645 if (!r) 646 continue; 647 if (resource_contains(r, res)) { 648 649 /* 650 * If the window is prefetchable but the BAR is 651 * not, the allocator made a mistake. 652 */ 653 if (r->flags & IORESOURCE_PREFETCH && 654 !(res->flags & IORESOURCE_PREFETCH)) 655 return NULL; 656 657 /* 658 * If we're below a transparent bridge, there may 659 * be both a positively-decoded aperture and a 660 * subtractively-decoded region that contain the BAR. 661 * We want the positively-decoded one, so this depends 662 * on pci_bus_for_each_resource() giving us those 663 * first. 664 */ 665 return r; 666 } 667 } 668 return NULL; 669 } 670 EXPORT_SYMBOL(pci_find_parent_resource); 671 672 /** 673 * pci_find_resource - Return matching PCI device resource 674 * @dev: PCI device to query 675 * @res: Resource to look for 676 * 677 * Goes over standard PCI resources (BARs) and checks if the given resource 678 * is partially or fully contained in any of them. In that case the 679 * matching resource is returned, %NULL otherwise. 680 */ 681 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 682 { 683 int i; 684 685 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 686 struct resource *r = &dev->resource[i]; 687 688 if (r->start && resource_contains(r, res)) 689 return r; 690 } 691 692 return NULL; 693 } 694 EXPORT_SYMBOL(pci_find_resource); 695 696 /** 697 * pci_find_pcie_root_port - return PCIe Root Port 698 * @dev: PCI device to query 699 * 700 * Traverse up the parent chain and return the PCIe Root Port PCI Device 701 * for a given PCI Device. 702 */ 703 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 704 { 705 struct pci_dev *bridge, *highest_pcie_bridge = dev; 706 707 bridge = pci_upstream_bridge(dev); 708 while (bridge && pci_is_pcie(bridge)) { 709 highest_pcie_bridge = bridge; 710 bridge = pci_upstream_bridge(bridge); 711 } 712 713 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 714 return NULL; 715 716 return highest_pcie_bridge; 717 } 718 EXPORT_SYMBOL(pci_find_pcie_root_port); 719 720 /** 721 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 722 * @dev: the PCI device to operate on 723 * @pos: config space offset of status word 724 * @mask: mask of bit(s) to care about in status word 725 * 726 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 727 */ 728 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 729 { 730 int i; 731 732 /* Wait for Transaction Pending bit clean */ 733 for (i = 0; i < 4; i++) { 734 u16 status; 735 if (i) 736 msleep((1 << (i - 1)) * 100); 737 738 pci_read_config_word(dev, pos, &status); 739 if (!(status & mask)) 740 return 1; 741 } 742 743 return 0; 744 } 745 746 /** 747 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 748 * @dev: PCI device to have its BARs restored 749 * 750 * Restore the BAR values for a given device, so as to make it 751 * accessible by its driver. 752 */ 753 static void pci_restore_bars(struct pci_dev *dev) 754 { 755 int i; 756 757 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 758 pci_update_resource(dev, i); 759 } 760 761 static const struct pci_platform_pm_ops *pci_platform_pm; 762 763 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 764 { 765 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 766 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 767 return -EINVAL; 768 pci_platform_pm = ops; 769 return 0; 770 } 771 772 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 773 { 774 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 775 } 776 777 static inline int platform_pci_set_power_state(struct pci_dev *dev, 778 pci_power_t t) 779 { 780 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 781 } 782 783 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 784 { 785 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 786 } 787 788 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 789 { 790 if (pci_platform_pm && pci_platform_pm->refresh_state) 791 pci_platform_pm->refresh_state(dev); 792 } 793 794 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 795 { 796 return pci_platform_pm ? 797 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 798 } 799 800 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 801 { 802 return pci_platform_pm ? 803 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 804 } 805 806 static inline bool platform_pci_need_resume(struct pci_dev *dev) 807 { 808 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 809 } 810 811 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 812 { 813 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 814 } 815 816 /** 817 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 818 * given PCI device 819 * @dev: PCI device to handle. 820 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 821 * 822 * RETURN VALUE: 823 * -EINVAL if the requested state is invalid. 824 * -EIO if device does not support PCI PM or its PM capabilities register has a 825 * wrong version, or device doesn't support the requested state. 826 * 0 if device already is in the requested state. 827 * 0 if device's power state has been successfully changed. 828 */ 829 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 830 { 831 u16 pmcsr; 832 bool need_restore = false; 833 834 /* Check if we're already there */ 835 if (dev->current_state == state) 836 return 0; 837 838 if (!dev->pm_cap) 839 return -EIO; 840 841 if (state < PCI_D0 || state > PCI_D3hot) 842 return -EINVAL; 843 844 /* 845 * Validate transition: We can enter D0 from any state, but if 846 * we're already in a low-power state, we can only go deeper. E.g., 847 * we can go from D1 to D3, but we can't go directly from D3 to D1; 848 * we'd have to go from D3 to D0, then to D1. 849 */ 850 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 851 && dev->current_state > state) { 852 pci_err(dev, "invalid power transition (from %s to %s)\n", 853 pci_power_name(dev->current_state), 854 pci_power_name(state)); 855 return -EINVAL; 856 } 857 858 /* Check if this device supports the desired state */ 859 if ((state == PCI_D1 && !dev->d1_support) 860 || (state == PCI_D2 && !dev->d2_support)) 861 return -EIO; 862 863 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 864 if (pmcsr == (u16) ~0) { 865 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 866 pci_power_name(dev->current_state), 867 pci_power_name(state)); 868 return -EIO; 869 } 870 871 /* 872 * If we're (effectively) in D3, force entire word to 0. 873 * This doesn't affect PME_Status, disables PME_En, and 874 * sets PowerState to 0. 875 */ 876 switch (dev->current_state) { 877 case PCI_D0: 878 case PCI_D1: 879 case PCI_D2: 880 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 881 pmcsr |= state; 882 break; 883 case PCI_D3hot: 884 case PCI_D3cold: 885 case PCI_UNKNOWN: /* Boot-up */ 886 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 887 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 888 need_restore = true; 889 /* Fall-through - force to D0 */ 890 default: 891 pmcsr = 0; 892 break; 893 } 894 895 /* Enter specified state */ 896 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 897 898 /* 899 * Mandatory power management transition delays; see PCI PM 1.1 900 * 5.6.1 table 18 901 */ 902 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 903 pci_dev_d3_sleep(dev); 904 else if (state == PCI_D2 || dev->current_state == PCI_D2) 905 msleep(PCI_PM_D2_DELAY); 906 907 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 908 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 909 if (dev->current_state != state) 910 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 911 pci_power_name(dev->current_state), 912 pci_power_name(state)); 913 914 /* 915 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 916 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 917 * from D3hot to D0 _may_ perform an internal reset, thereby 918 * going to "D0 Uninitialized" rather than "D0 Initialized". 919 * For example, at least some versions of the 3c905B and the 920 * 3c556B exhibit this behaviour. 921 * 922 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 923 * devices in a D3hot state at boot. Consequently, we need to 924 * restore at least the BARs so that the device will be 925 * accessible to its driver. 926 */ 927 if (need_restore) 928 pci_restore_bars(dev); 929 930 if (dev->bus->self) 931 pcie_aspm_pm_state_change(dev->bus->self); 932 933 return 0; 934 } 935 936 /** 937 * pci_update_current_state - Read power state of given device and cache it 938 * @dev: PCI device to handle. 939 * @state: State to cache in case the device doesn't have the PM capability 940 * 941 * The power state is read from the PMCSR register, which however is 942 * inaccessible in D3cold. The platform firmware is therefore queried first 943 * to detect accessibility of the register. In case the platform firmware 944 * reports an incorrect state or the device isn't power manageable by the 945 * platform at all, we try to detect D3cold by testing accessibility of the 946 * vendor ID in config space. 947 */ 948 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 949 { 950 if (platform_pci_get_power_state(dev) == PCI_D3cold || 951 !pci_device_is_present(dev)) { 952 dev->current_state = PCI_D3cold; 953 } else if (dev->pm_cap) { 954 u16 pmcsr; 955 956 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 957 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 958 } else { 959 dev->current_state = state; 960 } 961 } 962 963 /** 964 * pci_refresh_power_state - Refresh the given device's power state data 965 * @dev: Target PCI device. 966 * 967 * Ask the platform to refresh the devices power state information and invoke 968 * pci_update_current_state() to update its current PCI power state. 969 */ 970 void pci_refresh_power_state(struct pci_dev *dev) 971 { 972 if (platform_pci_power_manageable(dev)) 973 platform_pci_refresh_power_state(dev); 974 975 pci_update_current_state(dev, dev->current_state); 976 } 977 978 /** 979 * pci_platform_power_transition - Use platform to change device power state 980 * @dev: PCI device to handle. 981 * @state: State to put the device into. 982 */ 983 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 984 { 985 int error; 986 987 if (platform_pci_power_manageable(dev)) { 988 error = platform_pci_set_power_state(dev, state); 989 if (!error) 990 pci_update_current_state(dev, state); 991 } else 992 error = -ENODEV; 993 994 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 995 dev->current_state = PCI_D0; 996 997 return error; 998 } 999 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1000 1001 /** 1002 * pci_wakeup - Wake up a PCI device 1003 * @pci_dev: Device to handle. 1004 * @ign: ignored parameter 1005 */ 1006 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1007 { 1008 pci_wakeup_event(pci_dev); 1009 pm_request_resume(&pci_dev->dev); 1010 return 0; 1011 } 1012 1013 /** 1014 * pci_wakeup_bus - Walk given bus and wake up devices on it 1015 * @bus: Top bus of the subtree to walk. 1016 */ 1017 void pci_wakeup_bus(struct pci_bus *bus) 1018 { 1019 if (bus) 1020 pci_walk_bus(bus, pci_wakeup, NULL); 1021 } 1022 1023 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1024 { 1025 int delay = 1; 1026 u32 id; 1027 1028 /* 1029 * After reset, the device should not silently discard config 1030 * requests, but it may still indicate that it needs more time by 1031 * responding to them with CRS completions. The Root Port will 1032 * generally synthesize ~0 data to complete the read (except when 1033 * CRS SV is enabled and the read was for the Vendor ID; in that 1034 * case it synthesizes 0x0001 data). 1035 * 1036 * Wait for the device to return a non-CRS completion. Read the 1037 * Command register instead of Vendor ID so we don't have to 1038 * contend with the CRS SV value. 1039 */ 1040 pci_read_config_dword(dev, PCI_COMMAND, &id); 1041 while (id == ~0) { 1042 if (delay > timeout) { 1043 pci_warn(dev, "not ready %dms after %s; giving up\n", 1044 delay - 1, reset_type); 1045 return -ENOTTY; 1046 } 1047 1048 if (delay > 1000) 1049 pci_info(dev, "not ready %dms after %s; waiting\n", 1050 delay - 1, reset_type); 1051 1052 msleep(delay); 1053 delay *= 2; 1054 pci_read_config_dword(dev, PCI_COMMAND, &id); 1055 } 1056 1057 if (delay > 1000) 1058 pci_info(dev, "ready %dms after %s\n", delay - 1, 1059 reset_type); 1060 1061 return 0; 1062 } 1063 1064 /** 1065 * pci_power_up - Put the given device into D0 1066 * @dev: PCI device to power up 1067 */ 1068 int pci_power_up(struct pci_dev *dev) 1069 { 1070 pci_platform_power_transition(dev, PCI_D0); 1071 1072 /* 1073 * Mandatory power management transition delays are handled in 1074 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1075 * corresponding bridge. 1076 */ 1077 if (dev->runtime_d3cold) { 1078 /* 1079 * When powering on a bridge from D3cold, the whole hierarchy 1080 * may be powered on into D0uninitialized state, resume them to 1081 * give them a chance to suspend again 1082 */ 1083 pci_wakeup_bus(dev->subordinate); 1084 } 1085 1086 return pci_raw_set_power_state(dev, PCI_D0); 1087 } 1088 1089 /** 1090 * __pci_dev_set_current_state - Set current state of a PCI device 1091 * @dev: Device to handle 1092 * @data: pointer to state to be set 1093 */ 1094 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1095 { 1096 pci_power_t state = *(pci_power_t *)data; 1097 1098 dev->current_state = state; 1099 return 0; 1100 } 1101 1102 /** 1103 * pci_bus_set_current_state - Walk given bus and set current state of devices 1104 * @bus: Top bus of the subtree to walk. 1105 * @state: state to be set 1106 */ 1107 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1108 { 1109 if (bus) 1110 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1111 } 1112 1113 /** 1114 * pci_set_power_state - Set the power state of a PCI device 1115 * @dev: PCI device to handle. 1116 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1117 * 1118 * Transition a device to a new power state, using the platform firmware and/or 1119 * the device's PCI PM registers. 1120 * 1121 * RETURN VALUE: 1122 * -EINVAL if the requested state is invalid. 1123 * -EIO if device does not support PCI PM or its PM capabilities register has a 1124 * wrong version, or device doesn't support the requested state. 1125 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1126 * 0 if device already is in the requested state. 1127 * 0 if the transition is to D3 but D3 is not supported. 1128 * 0 if device's power state has been successfully changed. 1129 */ 1130 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1131 { 1132 int error; 1133 1134 /* Bound the state we're entering */ 1135 if (state > PCI_D3cold) 1136 state = PCI_D3cold; 1137 else if (state < PCI_D0) 1138 state = PCI_D0; 1139 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1140 1141 /* 1142 * If the device or the parent bridge do not support PCI 1143 * PM, ignore the request if we're doing anything other 1144 * than putting it into D0 (which would only happen on 1145 * boot). 1146 */ 1147 return 0; 1148 1149 /* Check if we're already there */ 1150 if (dev->current_state == state) 1151 return 0; 1152 1153 if (state == PCI_D0) 1154 return pci_power_up(dev); 1155 1156 /* 1157 * This device is quirked not to be put into D3, so don't put it in 1158 * D3 1159 */ 1160 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1161 return 0; 1162 1163 /* 1164 * To put device in D3cold, we put device into D3hot in native 1165 * way, then put device into D3cold with platform ops 1166 */ 1167 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1168 PCI_D3hot : state); 1169 1170 if (pci_platform_power_transition(dev, state)) 1171 return error; 1172 1173 /* Powering off a bridge may power off the whole hierarchy */ 1174 if (state == PCI_D3cold) 1175 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1176 1177 return 0; 1178 } 1179 EXPORT_SYMBOL(pci_set_power_state); 1180 1181 /** 1182 * pci_choose_state - Choose the power state of a PCI device 1183 * @dev: PCI device to be suspended 1184 * @state: target sleep state for the whole system. This is the value 1185 * that is passed to suspend() function. 1186 * 1187 * Returns PCI power state suitable for given device and given system 1188 * message. 1189 */ 1190 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1191 { 1192 pci_power_t ret; 1193 1194 if (!dev->pm_cap) 1195 return PCI_D0; 1196 1197 ret = platform_pci_choose_state(dev); 1198 if (ret != PCI_POWER_ERROR) 1199 return ret; 1200 1201 switch (state.event) { 1202 case PM_EVENT_ON: 1203 return PCI_D0; 1204 case PM_EVENT_FREEZE: 1205 case PM_EVENT_PRETHAW: 1206 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1207 case PM_EVENT_SUSPEND: 1208 case PM_EVENT_HIBERNATE: 1209 return PCI_D3hot; 1210 default: 1211 pci_info(dev, "unrecognized suspend event %d\n", 1212 state.event); 1213 BUG(); 1214 } 1215 return PCI_D0; 1216 } 1217 EXPORT_SYMBOL(pci_choose_state); 1218 1219 #define PCI_EXP_SAVE_REGS 7 1220 1221 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1222 u16 cap, bool extended) 1223 { 1224 struct pci_cap_saved_state *tmp; 1225 1226 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1227 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1228 return tmp; 1229 } 1230 return NULL; 1231 } 1232 1233 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1234 { 1235 return _pci_find_saved_cap(dev, cap, false); 1236 } 1237 1238 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1239 { 1240 return _pci_find_saved_cap(dev, cap, true); 1241 } 1242 1243 static int pci_save_pcie_state(struct pci_dev *dev) 1244 { 1245 int i = 0; 1246 struct pci_cap_saved_state *save_state; 1247 u16 *cap; 1248 1249 if (!pci_is_pcie(dev)) 1250 return 0; 1251 1252 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1253 if (!save_state) { 1254 pci_err(dev, "buffer not found in %s\n", __func__); 1255 return -ENOMEM; 1256 } 1257 1258 cap = (u16 *)&save_state->cap.data[0]; 1259 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1260 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1261 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1262 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1263 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1264 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1265 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1266 1267 return 0; 1268 } 1269 1270 static void pci_restore_pcie_state(struct pci_dev *dev) 1271 { 1272 int i = 0; 1273 struct pci_cap_saved_state *save_state; 1274 u16 *cap; 1275 1276 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1277 if (!save_state) 1278 return; 1279 1280 cap = (u16 *)&save_state->cap.data[0]; 1281 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1282 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1283 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1284 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1285 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1286 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1287 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1288 } 1289 1290 static int pci_save_pcix_state(struct pci_dev *dev) 1291 { 1292 int pos; 1293 struct pci_cap_saved_state *save_state; 1294 1295 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1296 if (!pos) 1297 return 0; 1298 1299 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1300 if (!save_state) { 1301 pci_err(dev, "buffer not found in %s\n", __func__); 1302 return -ENOMEM; 1303 } 1304 1305 pci_read_config_word(dev, pos + PCI_X_CMD, 1306 (u16 *)save_state->cap.data); 1307 1308 return 0; 1309 } 1310 1311 static void pci_restore_pcix_state(struct pci_dev *dev) 1312 { 1313 int i = 0, pos; 1314 struct pci_cap_saved_state *save_state; 1315 u16 *cap; 1316 1317 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1318 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1319 if (!save_state || !pos) 1320 return; 1321 cap = (u16 *)&save_state->cap.data[0]; 1322 1323 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1324 } 1325 1326 static void pci_save_ltr_state(struct pci_dev *dev) 1327 { 1328 int ltr; 1329 struct pci_cap_saved_state *save_state; 1330 u16 *cap; 1331 1332 if (!pci_is_pcie(dev)) 1333 return; 1334 1335 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1336 if (!ltr) 1337 return; 1338 1339 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1340 if (!save_state) { 1341 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1342 return; 1343 } 1344 1345 cap = (u16 *)&save_state->cap.data[0]; 1346 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1347 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1348 } 1349 1350 static void pci_restore_ltr_state(struct pci_dev *dev) 1351 { 1352 struct pci_cap_saved_state *save_state; 1353 int ltr; 1354 u16 *cap; 1355 1356 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1357 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1358 if (!save_state || !ltr) 1359 return; 1360 1361 cap = (u16 *)&save_state->cap.data[0]; 1362 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1363 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1364 } 1365 1366 /** 1367 * pci_save_state - save the PCI configuration space of a device before 1368 * suspending 1369 * @dev: PCI device that we're dealing with 1370 */ 1371 int pci_save_state(struct pci_dev *dev) 1372 { 1373 int i; 1374 /* XXX: 100% dword access ok here? */ 1375 for (i = 0; i < 16; i++) 1376 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1377 dev->state_saved = true; 1378 1379 i = pci_save_pcie_state(dev); 1380 if (i != 0) 1381 return i; 1382 1383 i = pci_save_pcix_state(dev); 1384 if (i != 0) 1385 return i; 1386 1387 pci_save_ltr_state(dev); 1388 pci_save_dpc_state(dev); 1389 pci_save_aer_state(dev); 1390 return pci_save_vc_state(dev); 1391 } 1392 EXPORT_SYMBOL(pci_save_state); 1393 1394 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1395 u32 saved_val, int retry, bool force) 1396 { 1397 u32 val; 1398 1399 pci_read_config_dword(pdev, offset, &val); 1400 if (!force && val == saved_val) 1401 return; 1402 1403 for (;;) { 1404 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1405 offset, val, saved_val); 1406 pci_write_config_dword(pdev, offset, saved_val); 1407 if (retry-- <= 0) 1408 return; 1409 1410 pci_read_config_dword(pdev, offset, &val); 1411 if (val == saved_val) 1412 return; 1413 1414 mdelay(1); 1415 } 1416 } 1417 1418 static void pci_restore_config_space_range(struct pci_dev *pdev, 1419 int start, int end, int retry, 1420 bool force) 1421 { 1422 int index; 1423 1424 for (index = end; index >= start; index--) 1425 pci_restore_config_dword(pdev, 4 * index, 1426 pdev->saved_config_space[index], 1427 retry, force); 1428 } 1429 1430 static void pci_restore_config_space(struct pci_dev *pdev) 1431 { 1432 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1433 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1434 /* Restore BARs before the command register. */ 1435 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1436 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1437 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1438 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1439 1440 /* 1441 * Force rewriting of prefetch registers to avoid S3 resume 1442 * issues on Intel PCI bridges that occur when these 1443 * registers are not explicitly written. 1444 */ 1445 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1446 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1447 } else { 1448 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1449 } 1450 } 1451 1452 static void pci_restore_rebar_state(struct pci_dev *pdev) 1453 { 1454 unsigned int pos, nbars, i; 1455 u32 ctrl; 1456 1457 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1458 if (!pos) 1459 return; 1460 1461 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1462 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1463 PCI_REBAR_CTRL_NBAR_SHIFT; 1464 1465 for (i = 0; i < nbars; i++, pos += 8) { 1466 struct resource *res; 1467 int bar_idx, size; 1468 1469 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1470 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1471 res = pdev->resource + bar_idx; 1472 size = ilog2(resource_size(res)) - 20; 1473 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1474 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1475 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1476 } 1477 } 1478 1479 /** 1480 * pci_restore_state - Restore the saved state of a PCI device 1481 * @dev: PCI device that we're dealing with 1482 */ 1483 void pci_restore_state(struct pci_dev *dev) 1484 { 1485 if (!dev->state_saved) 1486 return; 1487 1488 /* 1489 * Restore max latencies (in the LTR capability) before enabling 1490 * LTR itself (in the PCIe capability). 1491 */ 1492 pci_restore_ltr_state(dev); 1493 1494 pci_restore_pcie_state(dev); 1495 pci_restore_pasid_state(dev); 1496 pci_restore_pri_state(dev); 1497 pci_restore_ats_state(dev); 1498 pci_restore_vc_state(dev); 1499 pci_restore_rebar_state(dev); 1500 pci_restore_dpc_state(dev); 1501 1502 pci_cleanup_aer_error_status_regs(dev); 1503 pci_restore_aer_state(dev); 1504 1505 pci_restore_config_space(dev); 1506 1507 pci_restore_pcix_state(dev); 1508 pci_restore_msi_state(dev); 1509 1510 /* Restore ACS and IOV configuration state */ 1511 pci_enable_acs(dev); 1512 pci_restore_iov_state(dev); 1513 1514 dev->state_saved = false; 1515 } 1516 EXPORT_SYMBOL(pci_restore_state); 1517 1518 struct pci_saved_state { 1519 u32 config_space[16]; 1520 struct pci_cap_saved_data cap[0]; 1521 }; 1522 1523 /** 1524 * pci_store_saved_state - Allocate and return an opaque struct containing 1525 * the device saved state. 1526 * @dev: PCI device that we're dealing with 1527 * 1528 * Return NULL if no state or error. 1529 */ 1530 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1531 { 1532 struct pci_saved_state *state; 1533 struct pci_cap_saved_state *tmp; 1534 struct pci_cap_saved_data *cap; 1535 size_t size; 1536 1537 if (!dev->state_saved) 1538 return NULL; 1539 1540 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1541 1542 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1543 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1544 1545 state = kzalloc(size, GFP_KERNEL); 1546 if (!state) 1547 return NULL; 1548 1549 memcpy(state->config_space, dev->saved_config_space, 1550 sizeof(state->config_space)); 1551 1552 cap = state->cap; 1553 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1554 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1555 memcpy(cap, &tmp->cap, len); 1556 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1557 } 1558 /* Empty cap_save terminates list */ 1559 1560 return state; 1561 } 1562 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1563 1564 /** 1565 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1566 * @dev: PCI device that we're dealing with 1567 * @state: Saved state returned from pci_store_saved_state() 1568 */ 1569 int pci_load_saved_state(struct pci_dev *dev, 1570 struct pci_saved_state *state) 1571 { 1572 struct pci_cap_saved_data *cap; 1573 1574 dev->state_saved = false; 1575 1576 if (!state) 1577 return 0; 1578 1579 memcpy(dev->saved_config_space, state->config_space, 1580 sizeof(state->config_space)); 1581 1582 cap = state->cap; 1583 while (cap->size) { 1584 struct pci_cap_saved_state *tmp; 1585 1586 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1587 if (!tmp || tmp->cap.size != cap->size) 1588 return -EINVAL; 1589 1590 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1591 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1592 sizeof(struct pci_cap_saved_data) + cap->size); 1593 } 1594 1595 dev->state_saved = true; 1596 return 0; 1597 } 1598 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1599 1600 /** 1601 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1602 * and free the memory allocated for it. 1603 * @dev: PCI device that we're dealing with 1604 * @state: Pointer to saved state returned from pci_store_saved_state() 1605 */ 1606 int pci_load_and_free_saved_state(struct pci_dev *dev, 1607 struct pci_saved_state **state) 1608 { 1609 int ret = pci_load_saved_state(dev, *state); 1610 kfree(*state); 1611 *state = NULL; 1612 return ret; 1613 } 1614 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1615 1616 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1617 { 1618 return pci_enable_resources(dev, bars); 1619 } 1620 1621 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1622 { 1623 int err; 1624 struct pci_dev *bridge; 1625 u16 cmd; 1626 u8 pin; 1627 1628 err = pci_set_power_state(dev, PCI_D0); 1629 if (err < 0 && err != -EIO) 1630 return err; 1631 1632 bridge = pci_upstream_bridge(dev); 1633 if (bridge) 1634 pcie_aspm_powersave_config_link(bridge); 1635 1636 err = pcibios_enable_device(dev, bars); 1637 if (err < 0) 1638 return err; 1639 pci_fixup_device(pci_fixup_enable, dev); 1640 1641 if (dev->msi_enabled || dev->msix_enabled) 1642 return 0; 1643 1644 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1645 if (pin) { 1646 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1647 if (cmd & PCI_COMMAND_INTX_DISABLE) 1648 pci_write_config_word(dev, PCI_COMMAND, 1649 cmd & ~PCI_COMMAND_INTX_DISABLE); 1650 } 1651 1652 return 0; 1653 } 1654 1655 /** 1656 * pci_reenable_device - Resume abandoned device 1657 * @dev: PCI device to be resumed 1658 * 1659 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1660 * to be called by normal code, write proper resume handler and use it instead. 1661 */ 1662 int pci_reenable_device(struct pci_dev *dev) 1663 { 1664 if (pci_is_enabled(dev)) 1665 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1666 return 0; 1667 } 1668 EXPORT_SYMBOL(pci_reenable_device); 1669 1670 static void pci_enable_bridge(struct pci_dev *dev) 1671 { 1672 struct pci_dev *bridge; 1673 int retval; 1674 1675 bridge = pci_upstream_bridge(dev); 1676 if (bridge) 1677 pci_enable_bridge(bridge); 1678 1679 if (pci_is_enabled(dev)) { 1680 if (!dev->is_busmaster) 1681 pci_set_master(dev); 1682 return; 1683 } 1684 1685 retval = pci_enable_device(dev); 1686 if (retval) 1687 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1688 retval); 1689 pci_set_master(dev); 1690 } 1691 1692 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1693 { 1694 struct pci_dev *bridge; 1695 int err; 1696 int i, bars = 0; 1697 1698 /* 1699 * Power state could be unknown at this point, either due to a fresh 1700 * boot or a device removal call. So get the current power state 1701 * so that things like MSI message writing will behave as expected 1702 * (e.g. if the device really is in D0 at enable time). 1703 */ 1704 if (dev->pm_cap) { 1705 u16 pmcsr; 1706 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1707 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1708 } 1709 1710 if (atomic_inc_return(&dev->enable_cnt) > 1) 1711 return 0; /* already enabled */ 1712 1713 bridge = pci_upstream_bridge(dev); 1714 if (bridge) 1715 pci_enable_bridge(bridge); 1716 1717 /* only skip sriov related */ 1718 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1719 if (dev->resource[i].flags & flags) 1720 bars |= (1 << i); 1721 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1722 if (dev->resource[i].flags & flags) 1723 bars |= (1 << i); 1724 1725 err = do_pci_enable_device(dev, bars); 1726 if (err < 0) 1727 atomic_dec(&dev->enable_cnt); 1728 return err; 1729 } 1730 1731 /** 1732 * pci_enable_device_io - Initialize a device for use with IO space 1733 * @dev: PCI device to be initialized 1734 * 1735 * Initialize device before it's used by a driver. Ask low-level code 1736 * to enable I/O resources. Wake up the device if it was suspended. 1737 * Beware, this function can fail. 1738 */ 1739 int pci_enable_device_io(struct pci_dev *dev) 1740 { 1741 return pci_enable_device_flags(dev, IORESOURCE_IO); 1742 } 1743 EXPORT_SYMBOL(pci_enable_device_io); 1744 1745 /** 1746 * pci_enable_device_mem - Initialize a device for use with Memory space 1747 * @dev: PCI device to be initialized 1748 * 1749 * Initialize device before it's used by a driver. Ask low-level code 1750 * to enable Memory resources. Wake up the device if it was suspended. 1751 * Beware, this function can fail. 1752 */ 1753 int pci_enable_device_mem(struct pci_dev *dev) 1754 { 1755 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1756 } 1757 EXPORT_SYMBOL(pci_enable_device_mem); 1758 1759 /** 1760 * pci_enable_device - Initialize device before it's used by a driver. 1761 * @dev: PCI device to be initialized 1762 * 1763 * Initialize device before it's used by a driver. Ask low-level code 1764 * to enable I/O and memory. Wake up the device if it was suspended. 1765 * Beware, this function can fail. 1766 * 1767 * Note we don't actually enable the device many times if we call 1768 * this function repeatedly (we just increment the count). 1769 */ 1770 int pci_enable_device(struct pci_dev *dev) 1771 { 1772 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1773 } 1774 EXPORT_SYMBOL(pci_enable_device); 1775 1776 /* 1777 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1778 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1779 * there's no need to track it separately. pci_devres is initialized 1780 * when a device is enabled using managed PCI device enable interface. 1781 */ 1782 struct pci_devres { 1783 unsigned int enabled:1; 1784 unsigned int pinned:1; 1785 unsigned int orig_intx:1; 1786 unsigned int restore_intx:1; 1787 unsigned int mwi:1; 1788 u32 region_mask; 1789 }; 1790 1791 static void pcim_release(struct device *gendev, void *res) 1792 { 1793 struct pci_dev *dev = to_pci_dev(gendev); 1794 struct pci_devres *this = res; 1795 int i; 1796 1797 if (dev->msi_enabled) 1798 pci_disable_msi(dev); 1799 if (dev->msix_enabled) 1800 pci_disable_msix(dev); 1801 1802 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1803 if (this->region_mask & (1 << i)) 1804 pci_release_region(dev, i); 1805 1806 if (this->mwi) 1807 pci_clear_mwi(dev); 1808 1809 if (this->restore_intx) 1810 pci_intx(dev, this->orig_intx); 1811 1812 if (this->enabled && !this->pinned) 1813 pci_disable_device(dev); 1814 } 1815 1816 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1817 { 1818 struct pci_devres *dr, *new_dr; 1819 1820 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1821 if (dr) 1822 return dr; 1823 1824 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1825 if (!new_dr) 1826 return NULL; 1827 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1828 } 1829 1830 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1831 { 1832 if (pci_is_managed(pdev)) 1833 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1834 return NULL; 1835 } 1836 1837 /** 1838 * pcim_enable_device - Managed pci_enable_device() 1839 * @pdev: PCI device to be initialized 1840 * 1841 * Managed pci_enable_device(). 1842 */ 1843 int pcim_enable_device(struct pci_dev *pdev) 1844 { 1845 struct pci_devres *dr; 1846 int rc; 1847 1848 dr = get_pci_dr(pdev); 1849 if (unlikely(!dr)) 1850 return -ENOMEM; 1851 if (dr->enabled) 1852 return 0; 1853 1854 rc = pci_enable_device(pdev); 1855 if (!rc) { 1856 pdev->is_managed = 1; 1857 dr->enabled = 1; 1858 } 1859 return rc; 1860 } 1861 EXPORT_SYMBOL(pcim_enable_device); 1862 1863 /** 1864 * pcim_pin_device - Pin managed PCI device 1865 * @pdev: PCI device to pin 1866 * 1867 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1868 * driver detach. @pdev must have been enabled with 1869 * pcim_enable_device(). 1870 */ 1871 void pcim_pin_device(struct pci_dev *pdev) 1872 { 1873 struct pci_devres *dr; 1874 1875 dr = find_pci_dr(pdev); 1876 WARN_ON(!dr || !dr->enabled); 1877 if (dr) 1878 dr->pinned = 1; 1879 } 1880 EXPORT_SYMBOL(pcim_pin_device); 1881 1882 /* 1883 * pcibios_add_device - provide arch specific hooks when adding device dev 1884 * @dev: the PCI device being added 1885 * 1886 * Permits the platform to provide architecture specific functionality when 1887 * devices are added. This is the default implementation. Architecture 1888 * implementations can override this. 1889 */ 1890 int __weak pcibios_add_device(struct pci_dev *dev) 1891 { 1892 return 0; 1893 } 1894 1895 /** 1896 * pcibios_release_device - provide arch specific hooks when releasing 1897 * device dev 1898 * @dev: the PCI device being released 1899 * 1900 * Permits the platform to provide architecture specific functionality when 1901 * devices are released. This is the default implementation. Architecture 1902 * implementations can override this. 1903 */ 1904 void __weak pcibios_release_device(struct pci_dev *dev) {} 1905 1906 /** 1907 * pcibios_disable_device - disable arch specific PCI resources for device dev 1908 * @dev: the PCI device to disable 1909 * 1910 * Disables architecture specific PCI resources for the device. This 1911 * is the default implementation. Architecture implementations can 1912 * override this. 1913 */ 1914 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1915 1916 /** 1917 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1918 * @irq: ISA IRQ to penalize 1919 * @active: IRQ active or not 1920 * 1921 * Permits the platform to provide architecture-specific functionality when 1922 * penalizing ISA IRQs. This is the default implementation. Architecture 1923 * implementations can override this. 1924 */ 1925 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1926 1927 static void do_pci_disable_device(struct pci_dev *dev) 1928 { 1929 u16 pci_command; 1930 1931 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1932 if (pci_command & PCI_COMMAND_MASTER) { 1933 pci_command &= ~PCI_COMMAND_MASTER; 1934 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1935 } 1936 1937 pcibios_disable_device(dev); 1938 } 1939 1940 /** 1941 * pci_disable_enabled_device - Disable device without updating enable_cnt 1942 * @dev: PCI device to disable 1943 * 1944 * NOTE: This function is a backend of PCI power management routines and is 1945 * not supposed to be called drivers. 1946 */ 1947 void pci_disable_enabled_device(struct pci_dev *dev) 1948 { 1949 if (pci_is_enabled(dev)) 1950 do_pci_disable_device(dev); 1951 } 1952 1953 /** 1954 * pci_disable_device - Disable PCI device after use 1955 * @dev: PCI device to be disabled 1956 * 1957 * Signal to the system that the PCI device is not in use by the system 1958 * anymore. This only involves disabling PCI bus-mastering, if active. 1959 * 1960 * Note we don't actually disable the device until all callers of 1961 * pci_enable_device() have called pci_disable_device(). 1962 */ 1963 void pci_disable_device(struct pci_dev *dev) 1964 { 1965 struct pci_devres *dr; 1966 1967 dr = find_pci_dr(dev); 1968 if (dr) 1969 dr->enabled = 0; 1970 1971 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1972 "disabling already-disabled device"); 1973 1974 if (atomic_dec_return(&dev->enable_cnt) != 0) 1975 return; 1976 1977 do_pci_disable_device(dev); 1978 1979 dev->is_busmaster = 0; 1980 } 1981 EXPORT_SYMBOL(pci_disable_device); 1982 1983 /** 1984 * pcibios_set_pcie_reset_state - set reset state for device dev 1985 * @dev: the PCIe device reset 1986 * @state: Reset state to enter into 1987 * 1988 * Set the PCIe reset state for the device. This is the default 1989 * implementation. Architecture implementations can override this. 1990 */ 1991 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1992 enum pcie_reset_state state) 1993 { 1994 return -EINVAL; 1995 } 1996 1997 /** 1998 * pci_set_pcie_reset_state - set reset state for device dev 1999 * @dev: the PCIe device reset 2000 * @state: Reset state to enter into 2001 * 2002 * Sets the PCI reset state for the device. 2003 */ 2004 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2005 { 2006 return pcibios_set_pcie_reset_state(dev, state); 2007 } 2008 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2009 2010 /** 2011 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2012 * @dev: PCIe root port or event collector. 2013 */ 2014 void pcie_clear_root_pme_status(struct pci_dev *dev) 2015 { 2016 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2017 } 2018 2019 /** 2020 * pci_check_pme_status - Check if given device has generated PME. 2021 * @dev: Device to check. 2022 * 2023 * Check the PME status of the device and if set, clear it and clear PME enable 2024 * (if set). Return 'true' if PME status and PME enable were both set or 2025 * 'false' otherwise. 2026 */ 2027 bool pci_check_pme_status(struct pci_dev *dev) 2028 { 2029 int pmcsr_pos; 2030 u16 pmcsr; 2031 bool ret = false; 2032 2033 if (!dev->pm_cap) 2034 return false; 2035 2036 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2037 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2038 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2039 return false; 2040 2041 /* Clear PME status. */ 2042 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2043 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2044 /* Disable PME to avoid interrupt flood. */ 2045 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2046 ret = true; 2047 } 2048 2049 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2050 2051 return ret; 2052 } 2053 2054 /** 2055 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2056 * @dev: Device to handle. 2057 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2058 * 2059 * Check if @dev has generated PME and queue a resume request for it in that 2060 * case. 2061 */ 2062 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2063 { 2064 if (pme_poll_reset && dev->pme_poll) 2065 dev->pme_poll = false; 2066 2067 if (pci_check_pme_status(dev)) { 2068 pci_wakeup_event(dev); 2069 pm_request_resume(&dev->dev); 2070 } 2071 return 0; 2072 } 2073 2074 /** 2075 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2076 * @bus: Top bus of the subtree to walk. 2077 */ 2078 void pci_pme_wakeup_bus(struct pci_bus *bus) 2079 { 2080 if (bus) 2081 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2082 } 2083 2084 2085 /** 2086 * pci_pme_capable - check the capability of PCI device to generate PME# 2087 * @dev: PCI device to handle. 2088 * @state: PCI state from which device will issue PME#. 2089 */ 2090 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2091 { 2092 if (!dev->pm_cap) 2093 return false; 2094 2095 return !!(dev->pme_support & (1 << state)); 2096 } 2097 EXPORT_SYMBOL(pci_pme_capable); 2098 2099 static void pci_pme_list_scan(struct work_struct *work) 2100 { 2101 struct pci_pme_device *pme_dev, *n; 2102 2103 mutex_lock(&pci_pme_list_mutex); 2104 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2105 if (pme_dev->dev->pme_poll) { 2106 struct pci_dev *bridge; 2107 2108 bridge = pme_dev->dev->bus->self; 2109 /* 2110 * If bridge is in low power state, the 2111 * configuration space of subordinate devices 2112 * may be not accessible 2113 */ 2114 if (bridge && bridge->current_state != PCI_D0) 2115 continue; 2116 /* 2117 * If the device is in D3cold it should not be 2118 * polled either. 2119 */ 2120 if (pme_dev->dev->current_state == PCI_D3cold) 2121 continue; 2122 2123 pci_pme_wakeup(pme_dev->dev, NULL); 2124 } else { 2125 list_del(&pme_dev->list); 2126 kfree(pme_dev); 2127 } 2128 } 2129 if (!list_empty(&pci_pme_list)) 2130 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2131 msecs_to_jiffies(PME_TIMEOUT)); 2132 mutex_unlock(&pci_pme_list_mutex); 2133 } 2134 2135 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2136 { 2137 u16 pmcsr; 2138 2139 if (!dev->pme_support) 2140 return; 2141 2142 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2143 /* Clear PME_Status by writing 1 to it and enable PME# */ 2144 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2145 if (!enable) 2146 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2147 2148 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2149 } 2150 2151 /** 2152 * pci_pme_restore - Restore PME configuration after config space restore. 2153 * @dev: PCI device to update. 2154 */ 2155 void pci_pme_restore(struct pci_dev *dev) 2156 { 2157 u16 pmcsr; 2158 2159 if (!dev->pme_support) 2160 return; 2161 2162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2163 if (dev->wakeup_prepared) { 2164 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2165 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2166 } else { 2167 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2168 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2169 } 2170 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2171 } 2172 2173 /** 2174 * pci_pme_active - enable or disable PCI device's PME# function 2175 * @dev: PCI device to handle. 2176 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2177 * 2178 * The caller must verify that the device is capable of generating PME# before 2179 * calling this function with @enable equal to 'true'. 2180 */ 2181 void pci_pme_active(struct pci_dev *dev, bool enable) 2182 { 2183 __pci_pme_active(dev, enable); 2184 2185 /* 2186 * PCI (as opposed to PCIe) PME requires that the device have 2187 * its PME# line hooked up correctly. Not all hardware vendors 2188 * do this, so the PME never gets delivered and the device 2189 * remains asleep. The easiest way around this is to 2190 * periodically walk the list of suspended devices and check 2191 * whether any have their PME flag set. The assumption is that 2192 * we'll wake up often enough anyway that this won't be a huge 2193 * hit, and the power savings from the devices will still be a 2194 * win. 2195 * 2196 * Although PCIe uses in-band PME message instead of PME# line 2197 * to report PME, PME does not work for some PCIe devices in 2198 * reality. For example, there are devices that set their PME 2199 * status bits, but don't really bother to send a PME message; 2200 * there are PCI Express Root Ports that don't bother to 2201 * trigger interrupts when they receive PME messages from the 2202 * devices below. So PME poll is used for PCIe devices too. 2203 */ 2204 2205 if (dev->pme_poll) { 2206 struct pci_pme_device *pme_dev; 2207 if (enable) { 2208 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2209 GFP_KERNEL); 2210 if (!pme_dev) { 2211 pci_warn(dev, "can't enable PME#\n"); 2212 return; 2213 } 2214 pme_dev->dev = dev; 2215 mutex_lock(&pci_pme_list_mutex); 2216 list_add(&pme_dev->list, &pci_pme_list); 2217 if (list_is_singular(&pci_pme_list)) 2218 queue_delayed_work(system_freezable_wq, 2219 &pci_pme_work, 2220 msecs_to_jiffies(PME_TIMEOUT)); 2221 mutex_unlock(&pci_pme_list_mutex); 2222 } else { 2223 mutex_lock(&pci_pme_list_mutex); 2224 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2225 if (pme_dev->dev == dev) { 2226 list_del(&pme_dev->list); 2227 kfree(pme_dev); 2228 break; 2229 } 2230 } 2231 mutex_unlock(&pci_pme_list_mutex); 2232 } 2233 } 2234 2235 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2236 } 2237 EXPORT_SYMBOL(pci_pme_active); 2238 2239 /** 2240 * __pci_enable_wake - enable PCI device as wakeup event source 2241 * @dev: PCI device affected 2242 * @state: PCI state from which device will issue wakeup events 2243 * @enable: True to enable event generation; false to disable 2244 * 2245 * This enables the device as a wakeup event source, or disables it. 2246 * When such events involves platform-specific hooks, those hooks are 2247 * called automatically by this routine. 2248 * 2249 * Devices with legacy power management (no standard PCI PM capabilities) 2250 * always require such platform hooks. 2251 * 2252 * RETURN VALUE: 2253 * 0 is returned on success 2254 * -EINVAL is returned if device is not supposed to wake up the system 2255 * Error code depending on the platform is returned if both the platform and 2256 * the native mechanism fail to enable the generation of wake-up events 2257 */ 2258 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2259 { 2260 int ret = 0; 2261 2262 /* 2263 * Bridges that are not power-manageable directly only signal 2264 * wakeup on behalf of subordinate devices which is set up 2265 * elsewhere, so skip them. However, bridges that are 2266 * power-manageable may signal wakeup for themselves (for example, 2267 * on a hotplug event) and they need to be covered here. 2268 */ 2269 if (!pci_power_manageable(dev)) 2270 return 0; 2271 2272 /* Don't do the same thing twice in a row for one device. */ 2273 if (!!enable == !!dev->wakeup_prepared) 2274 return 0; 2275 2276 /* 2277 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2278 * Anderson we should be doing PME# wake enable followed by ACPI wake 2279 * enable. To disable wake-up we call the platform first, for symmetry. 2280 */ 2281 2282 if (enable) { 2283 int error; 2284 2285 if (pci_pme_capable(dev, state)) 2286 pci_pme_active(dev, true); 2287 else 2288 ret = 1; 2289 error = platform_pci_set_wakeup(dev, true); 2290 if (ret) 2291 ret = error; 2292 if (!ret) 2293 dev->wakeup_prepared = true; 2294 } else { 2295 platform_pci_set_wakeup(dev, false); 2296 pci_pme_active(dev, false); 2297 dev->wakeup_prepared = false; 2298 } 2299 2300 return ret; 2301 } 2302 2303 /** 2304 * pci_enable_wake - change wakeup settings for a PCI device 2305 * @pci_dev: Target device 2306 * @state: PCI state from which device will issue wakeup events 2307 * @enable: Whether or not to enable event generation 2308 * 2309 * If @enable is set, check device_may_wakeup() for the device before calling 2310 * __pci_enable_wake() for it. 2311 */ 2312 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2313 { 2314 if (enable && !device_may_wakeup(&pci_dev->dev)) 2315 return -EINVAL; 2316 2317 return __pci_enable_wake(pci_dev, state, enable); 2318 } 2319 EXPORT_SYMBOL(pci_enable_wake); 2320 2321 /** 2322 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2323 * @dev: PCI device to prepare 2324 * @enable: True to enable wake-up event generation; false to disable 2325 * 2326 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2327 * and this function allows them to set that up cleanly - pci_enable_wake() 2328 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2329 * ordering constraints. 2330 * 2331 * This function only returns error code if the device is not allowed to wake 2332 * up the system from sleep or it is not capable of generating PME# from both 2333 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2334 */ 2335 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2336 { 2337 return pci_pme_capable(dev, PCI_D3cold) ? 2338 pci_enable_wake(dev, PCI_D3cold, enable) : 2339 pci_enable_wake(dev, PCI_D3hot, enable); 2340 } 2341 EXPORT_SYMBOL(pci_wake_from_d3); 2342 2343 /** 2344 * pci_target_state - find an appropriate low power state for a given PCI dev 2345 * @dev: PCI device 2346 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2347 * 2348 * Use underlying platform code to find a supported low power state for @dev. 2349 * If the platform can't manage @dev, return the deepest state from which it 2350 * can generate wake events, based on any available PME info. 2351 */ 2352 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2353 { 2354 pci_power_t target_state = PCI_D3hot; 2355 2356 if (platform_pci_power_manageable(dev)) { 2357 /* 2358 * Call the platform to find the target state for the device. 2359 */ 2360 pci_power_t state = platform_pci_choose_state(dev); 2361 2362 switch (state) { 2363 case PCI_POWER_ERROR: 2364 case PCI_UNKNOWN: 2365 break; 2366 case PCI_D1: 2367 case PCI_D2: 2368 if (pci_no_d1d2(dev)) 2369 break; 2370 /* else, fall through */ 2371 default: 2372 target_state = state; 2373 } 2374 2375 return target_state; 2376 } 2377 2378 if (!dev->pm_cap) 2379 target_state = PCI_D0; 2380 2381 /* 2382 * If the device is in D3cold even though it's not power-manageable by 2383 * the platform, it may have been powered down by non-standard means. 2384 * Best to let it slumber. 2385 */ 2386 if (dev->current_state == PCI_D3cold) 2387 target_state = PCI_D3cold; 2388 2389 if (wakeup) { 2390 /* 2391 * Find the deepest state from which the device can generate 2392 * PME#. 2393 */ 2394 if (dev->pme_support) { 2395 while (target_state 2396 && !(dev->pme_support & (1 << target_state))) 2397 target_state--; 2398 } 2399 } 2400 2401 return target_state; 2402 } 2403 2404 /** 2405 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2406 * into a sleep state 2407 * @dev: Device to handle. 2408 * 2409 * Choose the power state appropriate for the device depending on whether 2410 * it can wake up the system and/or is power manageable by the platform 2411 * (PCI_D3hot is the default) and put the device into that state. 2412 */ 2413 int pci_prepare_to_sleep(struct pci_dev *dev) 2414 { 2415 bool wakeup = device_may_wakeup(&dev->dev); 2416 pci_power_t target_state = pci_target_state(dev, wakeup); 2417 int error; 2418 2419 if (target_state == PCI_POWER_ERROR) 2420 return -EIO; 2421 2422 pci_enable_wake(dev, target_state, wakeup); 2423 2424 error = pci_set_power_state(dev, target_state); 2425 2426 if (error) 2427 pci_enable_wake(dev, target_state, false); 2428 2429 return error; 2430 } 2431 EXPORT_SYMBOL(pci_prepare_to_sleep); 2432 2433 /** 2434 * pci_back_from_sleep - turn PCI device on during system-wide transition 2435 * into working state 2436 * @dev: Device to handle. 2437 * 2438 * Disable device's system wake-up capability and put it into D0. 2439 */ 2440 int pci_back_from_sleep(struct pci_dev *dev) 2441 { 2442 pci_enable_wake(dev, PCI_D0, false); 2443 return pci_set_power_state(dev, PCI_D0); 2444 } 2445 EXPORT_SYMBOL(pci_back_from_sleep); 2446 2447 /** 2448 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2449 * @dev: PCI device being suspended. 2450 * 2451 * Prepare @dev to generate wake-up events at run time and put it into a low 2452 * power state. 2453 */ 2454 int pci_finish_runtime_suspend(struct pci_dev *dev) 2455 { 2456 pci_power_t target_state; 2457 int error; 2458 2459 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2460 if (target_state == PCI_POWER_ERROR) 2461 return -EIO; 2462 2463 dev->runtime_d3cold = target_state == PCI_D3cold; 2464 2465 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2466 2467 error = pci_set_power_state(dev, target_state); 2468 2469 if (error) { 2470 pci_enable_wake(dev, target_state, false); 2471 dev->runtime_d3cold = false; 2472 } 2473 2474 return error; 2475 } 2476 2477 /** 2478 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2479 * @dev: Device to check. 2480 * 2481 * Return true if the device itself is capable of generating wake-up events 2482 * (through the platform or using the native PCIe PME) or if the device supports 2483 * PME and one of its upstream bridges can generate wake-up events. 2484 */ 2485 bool pci_dev_run_wake(struct pci_dev *dev) 2486 { 2487 struct pci_bus *bus = dev->bus; 2488 2489 if (!dev->pme_support) 2490 return false; 2491 2492 /* PME-capable in principle, but not from the target power state */ 2493 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2494 return false; 2495 2496 if (device_can_wakeup(&dev->dev)) 2497 return true; 2498 2499 while (bus->parent) { 2500 struct pci_dev *bridge = bus->self; 2501 2502 if (device_can_wakeup(&bridge->dev)) 2503 return true; 2504 2505 bus = bus->parent; 2506 } 2507 2508 /* We have reached the root bus. */ 2509 if (bus->bridge) 2510 return device_can_wakeup(bus->bridge); 2511 2512 return false; 2513 } 2514 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2515 2516 /** 2517 * pci_dev_need_resume - Check if it is necessary to resume the device. 2518 * @pci_dev: Device to check. 2519 * 2520 * Return 'true' if the device is not runtime-suspended or it has to be 2521 * reconfigured due to wakeup settings difference between system and runtime 2522 * suspend, or the current power state of it is not suitable for the upcoming 2523 * (system-wide) transition. 2524 */ 2525 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2526 { 2527 struct device *dev = &pci_dev->dev; 2528 pci_power_t target_state; 2529 2530 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2531 return true; 2532 2533 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2534 2535 /* 2536 * If the earlier platform check has not triggered, D3cold is just power 2537 * removal on top of D3hot, so no need to resume the device in that 2538 * case. 2539 */ 2540 return target_state != pci_dev->current_state && 2541 target_state != PCI_D3cold && 2542 pci_dev->current_state != PCI_D3hot; 2543 } 2544 2545 /** 2546 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2547 * @pci_dev: Device to check. 2548 * 2549 * If the device is suspended and it is not configured for system wakeup, 2550 * disable PME for it to prevent it from waking up the system unnecessarily. 2551 * 2552 * Note that if the device's power state is D3cold and the platform check in 2553 * pci_dev_need_resume() has not triggered, the device's configuration need not 2554 * be changed. 2555 */ 2556 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2557 { 2558 struct device *dev = &pci_dev->dev; 2559 2560 spin_lock_irq(&dev->power.lock); 2561 2562 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2563 pci_dev->current_state < PCI_D3cold) 2564 __pci_pme_active(pci_dev, false); 2565 2566 spin_unlock_irq(&dev->power.lock); 2567 } 2568 2569 /** 2570 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2571 * @pci_dev: Device to handle. 2572 * 2573 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2574 * it might have been disabled during the prepare phase of system suspend if 2575 * the device was not configured for system wakeup. 2576 */ 2577 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2578 { 2579 struct device *dev = &pci_dev->dev; 2580 2581 if (!pci_dev_run_wake(pci_dev)) 2582 return; 2583 2584 spin_lock_irq(&dev->power.lock); 2585 2586 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2587 __pci_pme_active(pci_dev, true); 2588 2589 spin_unlock_irq(&dev->power.lock); 2590 } 2591 2592 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2593 { 2594 struct device *dev = &pdev->dev; 2595 struct device *parent = dev->parent; 2596 2597 if (parent) 2598 pm_runtime_get_sync(parent); 2599 pm_runtime_get_noresume(dev); 2600 /* 2601 * pdev->current_state is set to PCI_D3cold during suspending, 2602 * so wait until suspending completes 2603 */ 2604 pm_runtime_barrier(dev); 2605 /* 2606 * Only need to resume devices in D3cold, because config 2607 * registers are still accessible for devices suspended but 2608 * not in D3cold. 2609 */ 2610 if (pdev->current_state == PCI_D3cold) 2611 pm_runtime_resume(dev); 2612 } 2613 2614 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2615 { 2616 struct device *dev = &pdev->dev; 2617 struct device *parent = dev->parent; 2618 2619 pm_runtime_put(dev); 2620 if (parent) 2621 pm_runtime_put_sync(parent); 2622 } 2623 2624 static const struct dmi_system_id bridge_d3_blacklist[] = { 2625 #ifdef CONFIG_X86 2626 { 2627 /* 2628 * Gigabyte X299 root port is not marked as hotplug capable 2629 * which allows Linux to power manage it. However, this 2630 * confuses the BIOS SMI handler so don't power manage root 2631 * ports on that system. 2632 */ 2633 .ident = "X299 DESIGNARE EX-CF", 2634 .matches = { 2635 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2636 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2637 }, 2638 }, 2639 #endif 2640 { } 2641 }; 2642 2643 /** 2644 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2645 * @bridge: Bridge to check 2646 * 2647 * This function checks if it is possible to move the bridge to D3. 2648 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2649 */ 2650 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2651 { 2652 if (!pci_is_pcie(bridge)) 2653 return false; 2654 2655 switch (pci_pcie_type(bridge)) { 2656 case PCI_EXP_TYPE_ROOT_PORT: 2657 case PCI_EXP_TYPE_UPSTREAM: 2658 case PCI_EXP_TYPE_DOWNSTREAM: 2659 if (pci_bridge_d3_disable) 2660 return false; 2661 2662 /* 2663 * Hotplug ports handled by firmware in System Management Mode 2664 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2665 */ 2666 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2667 return false; 2668 2669 if (pci_bridge_d3_force) 2670 return true; 2671 2672 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2673 if (bridge->is_thunderbolt) 2674 return true; 2675 2676 /* Platform might know better if the bridge supports D3 */ 2677 if (platform_pci_bridge_d3(bridge)) 2678 return true; 2679 2680 /* 2681 * Hotplug ports handled natively by the OS were not validated 2682 * by vendors for runtime D3 at least until 2018 because there 2683 * was no OS support. 2684 */ 2685 if (bridge->is_hotplug_bridge) 2686 return false; 2687 2688 if (dmi_check_system(bridge_d3_blacklist)) 2689 return false; 2690 2691 /* 2692 * It should be safe to put PCIe ports from 2015 or newer 2693 * to D3. 2694 */ 2695 if (dmi_get_bios_year() >= 2015) 2696 return true; 2697 break; 2698 } 2699 2700 return false; 2701 } 2702 2703 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2704 { 2705 bool *d3cold_ok = data; 2706 2707 if (/* The device needs to be allowed to go D3cold ... */ 2708 dev->no_d3cold || !dev->d3cold_allowed || 2709 2710 /* ... and if it is wakeup capable to do so from D3cold. */ 2711 (device_may_wakeup(&dev->dev) && 2712 !pci_pme_capable(dev, PCI_D3cold)) || 2713 2714 /* If it is a bridge it must be allowed to go to D3. */ 2715 !pci_power_manageable(dev)) 2716 2717 *d3cold_ok = false; 2718 2719 return !*d3cold_ok; 2720 } 2721 2722 /* 2723 * pci_bridge_d3_update - Update bridge D3 capabilities 2724 * @dev: PCI device which is changed 2725 * 2726 * Update upstream bridge PM capabilities accordingly depending on if the 2727 * device PM configuration was changed or the device is being removed. The 2728 * change is also propagated upstream. 2729 */ 2730 void pci_bridge_d3_update(struct pci_dev *dev) 2731 { 2732 bool remove = !device_is_registered(&dev->dev); 2733 struct pci_dev *bridge; 2734 bool d3cold_ok = true; 2735 2736 bridge = pci_upstream_bridge(dev); 2737 if (!bridge || !pci_bridge_d3_possible(bridge)) 2738 return; 2739 2740 /* 2741 * If D3 is currently allowed for the bridge, removing one of its 2742 * children won't change that. 2743 */ 2744 if (remove && bridge->bridge_d3) 2745 return; 2746 2747 /* 2748 * If D3 is currently allowed for the bridge and a child is added or 2749 * changed, disallowance of D3 can only be caused by that child, so 2750 * we only need to check that single device, not any of its siblings. 2751 * 2752 * If D3 is currently not allowed for the bridge, checking the device 2753 * first may allow us to skip checking its siblings. 2754 */ 2755 if (!remove) 2756 pci_dev_check_d3cold(dev, &d3cold_ok); 2757 2758 /* 2759 * If D3 is currently not allowed for the bridge, this may be caused 2760 * either by the device being changed/removed or any of its siblings, 2761 * so we need to go through all children to find out if one of them 2762 * continues to block D3. 2763 */ 2764 if (d3cold_ok && !bridge->bridge_d3) 2765 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2766 &d3cold_ok); 2767 2768 if (bridge->bridge_d3 != d3cold_ok) { 2769 bridge->bridge_d3 = d3cold_ok; 2770 /* Propagate change to upstream bridges */ 2771 pci_bridge_d3_update(bridge); 2772 } 2773 } 2774 2775 /** 2776 * pci_d3cold_enable - Enable D3cold for device 2777 * @dev: PCI device to handle 2778 * 2779 * This function can be used in drivers to enable D3cold from the device 2780 * they handle. It also updates upstream PCI bridge PM capabilities 2781 * accordingly. 2782 */ 2783 void pci_d3cold_enable(struct pci_dev *dev) 2784 { 2785 if (dev->no_d3cold) { 2786 dev->no_d3cold = false; 2787 pci_bridge_d3_update(dev); 2788 } 2789 } 2790 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2791 2792 /** 2793 * pci_d3cold_disable - Disable D3cold for device 2794 * @dev: PCI device to handle 2795 * 2796 * This function can be used in drivers to disable D3cold from the device 2797 * they handle. It also updates upstream PCI bridge PM capabilities 2798 * accordingly. 2799 */ 2800 void pci_d3cold_disable(struct pci_dev *dev) 2801 { 2802 if (!dev->no_d3cold) { 2803 dev->no_d3cold = true; 2804 pci_bridge_d3_update(dev); 2805 } 2806 } 2807 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2808 2809 /** 2810 * pci_pm_init - Initialize PM functions of given PCI device 2811 * @dev: PCI device to handle. 2812 */ 2813 void pci_pm_init(struct pci_dev *dev) 2814 { 2815 int pm; 2816 u16 status; 2817 u16 pmc; 2818 2819 pm_runtime_forbid(&dev->dev); 2820 pm_runtime_set_active(&dev->dev); 2821 pm_runtime_enable(&dev->dev); 2822 device_enable_async_suspend(&dev->dev); 2823 dev->wakeup_prepared = false; 2824 2825 dev->pm_cap = 0; 2826 dev->pme_support = 0; 2827 2828 /* find PCI PM capability in list */ 2829 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2830 if (!pm) 2831 return; 2832 /* Check device's ability to generate PME# */ 2833 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2834 2835 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2836 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2837 pmc & PCI_PM_CAP_VER_MASK); 2838 return; 2839 } 2840 2841 dev->pm_cap = pm; 2842 dev->d3_delay = PCI_PM_D3_WAIT; 2843 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2844 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2845 dev->d3cold_allowed = true; 2846 2847 dev->d1_support = false; 2848 dev->d2_support = false; 2849 if (!pci_no_d1d2(dev)) { 2850 if (pmc & PCI_PM_CAP_D1) 2851 dev->d1_support = true; 2852 if (pmc & PCI_PM_CAP_D2) 2853 dev->d2_support = true; 2854 2855 if (dev->d1_support || dev->d2_support) 2856 pci_info(dev, "supports%s%s\n", 2857 dev->d1_support ? " D1" : "", 2858 dev->d2_support ? " D2" : ""); 2859 } 2860 2861 pmc &= PCI_PM_CAP_PME_MASK; 2862 if (pmc) { 2863 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 2864 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2865 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2866 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2867 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2868 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2869 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2870 dev->pme_poll = true; 2871 /* 2872 * Make device's PM flags reflect the wake-up capability, but 2873 * let the user space enable it to wake up the system as needed. 2874 */ 2875 device_set_wakeup_capable(&dev->dev, true); 2876 /* Disable the PME# generation functionality */ 2877 pci_pme_active(dev, false); 2878 } 2879 2880 pci_read_config_word(dev, PCI_STATUS, &status); 2881 if (status & PCI_STATUS_IMM_READY) 2882 dev->imm_ready = 1; 2883 } 2884 2885 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2886 { 2887 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2888 2889 switch (prop) { 2890 case PCI_EA_P_MEM: 2891 case PCI_EA_P_VF_MEM: 2892 flags |= IORESOURCE_MEM; 2893 break; 2894 case PCI_EA_P_MEM_PREFETCH: 2895 case PCI_EA_P_VF_MEM_PREFETCH: 2896 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2897 break; 2898 case PCI_EA_P_IO: 2899 flags |= IORESOURCE_IO; 2900 break; 2901 default: 2902 return 0; 2903 } 2904 2905 return flags; 2906 } 2907 2908 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2909 u8 prop) 2910 { 2911 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2912 return &dev->resource[bei]; 2913 #ifdef CONFIG_PCI_IOV 2914 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2915 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2916 return &dev->resource[PCI_IOV_RESOURCES + 2917 bei - PCI_EA_BEI_VF_BAR0]; 2918 #endif 2919 else if (bei == PCI_EA_BEI_ROM) 2920 return &dev->resource[PCI_ROM_RESOURCE]; 2921 else 2922 return NULL; 2923 } 2924 2925 /* Read an Enhanced Allocation (EA) entry */ 2926 static int pci_ea_read(struct pci_dev *dev, int offset) 2927 { 2928 struct resource *res; 2929 int ent_size, ent_offset = offset; 2930 resource_size_t start, end; 2931 unsigned long flags; 2932 u32 dw0, bei, base, max_offset; 2933 u8 prop; 2934 bool support_64 = (sizeof(resource_size_t) >= 8); 2935 2936 pci_read_config_dword(dev, ent_offset, &dw0); 2937 ent_offset += 4; 2938 2939 /* Entry size field indicates DWORDs after 1st */ 2940 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2941 2942 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2943 goto out; 2944 2945 bei = (dw0 & PCI_EA_BEI) >> 4; 2946 prop = (dw0 & PCI_EA_PP) >> 8; 2947 2948 /* 2949 * If the Property is in the reserved range, try the Secondary 2950 * Property instead. 2951 */ 2952 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2953 prop = (dw0 & PCI_EA_SP) >> 16; 2954 if (prop > PCI_EA_P_BRIDGE_IO) 2955 goto out; 2956 2957 res = pci_ea_get_resource(dev, bei, prop); 2958 if (!res) { 2959 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2960 goto out; 2961 } 2962 2963 flags = pci_ea_flags(dev, prop); 2964 if (!flags) { 2965 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2966 goto out; 2967 } 2968 2969 /* Read Base */ 2970 pci_read_config_dword(dev, ent_offset, &base); 2971 start = (base & PCI_EA_FIELD_MASK); 2972 ent_offset += 4; 2973 2974 /* Read MaxOffset */ 2975 pci_read_config_dword(dev, ent_offset, &max_offset); 2976 ent_offset += 4; 2977 2978 /* Read Base MSBs (if 64-bit entry) */ 2979 if (base & PCI_EA_IS_64) { 2980 u32 base_upper; 2981 2982 pci_read_config_dword(dev, ent_offset, &base_upper); 2983 ent_offset += 4; 2984 2985 flags |= IORESOURCE_MEM_64; 2986 2987 /* entry starts above 32-bit boundary, can't use */ 2988 if (!support_64 && base_upper) 2989 goto out; 2990 2991 if (support_64) 2992 start |= ((u64)base_upper << 32); 2993 } 2994 2995 end = start + (max_offset | 0x03); 2996 2997 /* Read MaxOffset MSBs (if 64-bit entry) */ 2998 if (max_offset & PCI_EA_IS_64) { 2999 u32 max_offset_upper; 3000 3001 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3002 ent_offset += 4; 3003 3004 flags |= IORESOURCE_MEM_64; 3005 3006 /* entry too big, can't use */ 3007 if (!support_64 && max_offset_upper) 3008 goto out; 3009 3010 if (support_64) 3011 end += ((u64)max_offset_upper << 32); 3012 } 3013 3014 if (end < start) { 3015 pci_err(dev, "EA Entry crosses address boundary\n"); 3016 goto out; 3017 } 3018 3019 if (ent_size != ent_offset - offset) { 3020 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3021 ent_size, ent_offset - offset); 3022 goto out; 3023 } 3024 3025 res->name = pci_name(dev); 3026 res->start = start; 3027 res->end = end; 3028 res->flags = flags; 3029 3030 if (bei <= PCI_EA_BEI_BAR5) 3031 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3032 bei, res, prop); 3033 else if (bei == PCI_EA_BEI_ROM) 3034 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3035 res, prop); 3036 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3037 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3038 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3039 else 3040 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3041 bei, res, prop); 3042 3043 out: 3044 return offset + ent_size; 3045 } 3046 3047 /* Enhanced Allocation Initialization */ 3048 void pci_ea_init(struct pci_dev *dev) 3049 { 3050 int ea; 3051 u8 num_ent; 3052 int offset; 3053 int i; 3054 3055 /* find PCI EA capability in list */ 3056 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3057 if (!ea) 3058 return; 3059 3060 /* determine the number of entries */ 3061 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3062 &num_ent); 3063 num_ent &= PCI_EA_NUM_ENT_MASK; 3064 3065 offset = ea + PCI_EA_FIRST_ENT; 3066 3067 /* Skip DWORD 2 for type 1 functions */ 3068 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3069 offset += 4; 3070 3071 /* parse each EA entry */ 3072 for (i = 0; i < num_ent; ++i) 3073 offset = pci_ea_read(dev, offset); 3074 } 3075 3076 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3077 struct pci_cap_saved_state *new_cap) 3078 { 3079 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3080 } 3081 3082 /** 3083 * _pci_add_cap_save_buffer - allocate buffer for saving given 3084 * capability registers 3085 * @dev: the PCI device 3086 * @cap: the capability to allocate the buffer for 3087 * @extended: Standard or Extended capability ID 3088 * @size: requested size of the buffer 3089 */ 3090 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3091 bool extended, unsigned int size) 3092 { 3093 int pos; 3094 struct pci_cap_saved_state *save_state; 3095 3096 if (extended) 3097 pos = pci_find_ext_capability(dev, cap); 3098 else 3099 pos = pci_find_capability(dev, cap); 3100 3101 if (!pos) 3102 return 0; 3103 3104 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3105 if (!save_state) 3106 return -ENOMEM; 3107 3108 save_state->cap.cap_nr = cap; 3109 save_state->cap.cap_extended = extended; 3110 save_state->cap.size = size; 3111 pci_add_saved_cap(dev, save_state); 3112 3113 return 0; 3114 } 3115 3116 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3117 { 3118 return _pci_add_cap_save_buffer(dev, cap, false, size); 3119 } 3120 3121 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3122 { 3123 return _pci_add_cap_save_buffer(dev, cap, true, size); 3124 } 3125 3126 /** 3127 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3128 * @dev: the PCI device 3129 */ 3130 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3131 { 3132 int error; 3133 3134 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3135 PCI_EXP_SAVE_REGS * sizeof(u16)); 3136 if (error) 3137 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3138 3139 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3140 if (error) 3141 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3142 3143 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3144 2 * sizeof(u16)); 3145 if (error) 3146 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3147 3148 pci_allocate_vc_save_buffers(dev); 3149 } 3150 3151 void pci_free_cap_save_buffers(struct pci_dev *dev) 3152 { 3153 struct pci_cap_saved_state *tmp; 3154 struct hlist_node *n; 3155 3156 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3157 kfree(tmp); 3158 } 3159 3160 /** 3161 * pci_configure_ari - enable or disable ARI forwarding 3162 * @dev: the PCI device 3163 * 3164 * If @dev and its upstream bridge both support ARI, enable ARI in the 3165 * bridge. Otherwise, disable ARI in the bridge. 3166 */ 3167 void pci_configure_ari(struct pci_dev *dev) 3168 { 3169 u32 cap; 3170 struct pci_dev *bridge; 3171 3172 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3173 return; 3174 3175 bridge = dev->bus->self; 3176 if (!bridge) 3177 return; 3178 3179 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3180 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3181 return; 3182 3183 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3184 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3185 PCI_EXP_DEVCTL2_ARI); 3186 bridge->ari_enabled = 1; 3187 } else { 3188 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3189 PCI_EXP_DEVCTL2_ARI); 3190 bridge->ari_enabled = 0; 3191 } 3192 } 3193 3194 static int pci_acs_enable; 3195 3196 /** 3197 * pci_request_acs - ask for ACS to be enabled if supported 3198 */ 3199 void pci_request_acs(void) 3200 { 3201 pci_acs_enable = 1; 3202 } 3203 3204 static const char *disable_acs_redir_param; 3205 3206 /** 3207 * pci_disable_acs_redir - disable ACS redirect capabilities 3208 * @dev: the PCI device 3209 * 3210 * For only devices specified in the disable_acs_redir parameter. 3211 */ 3212 static void pci_disable_acs_redir(struct pci_dev *dev) 3213 { 3214 int ret = 0; 3215 const char *p; 3216 int pos; 3217 u16 ctrl; 3218 3219 if (!disable_acs_redir_param) 3220 return; 3221 3222 p = disable_acs_redir_param; 3223 while (*p) { 3224 ret = pci_dev_str_match(dev, p, &p); 3225 if (ret < 0) { 3226 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3227 disable_acs_redir_param); 3228 3229 break; 3230 } else if (ret == 1) { 3231 /* Found a match */ 3232 break; 3233 } 3234 3235 if (*p != ';' && *p != ',') { 3236 /* End of param or invalid format */ 3237 break; 3238 } 3239 p++; 3240 } 3241 3242 if (ret != 1) 3243 return; 3244 3245 if (!pci_dev_specific_disable_acs_redir(dev)) 3246 return; 3247 3248 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3249 if (!pos) { 3250 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3251 return; 3252 } 3253 3254 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3255 3256 /* P2P Request & Completion Redirect */ 3257 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3258 3259 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3260 3261 pci_info(dev, "disabled ACS redirect\n"); 3262 } 3263 3264 /** 3265 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 3266 * @dev: the PCI device 3267 */ 3268 static void pci_std_enable_acs(struct pci_dev *dev) 3269 { 3270 int pos; 3271 u16 cap; 3272 u16 ctrl; 3273 3274 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3275 if (!pos) 3276 return; 3277 3278 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3279 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3280 3281 /* Source Validation */ 3282 ctrl |= (cap & PCI_ACS_SV); 3283 3284 /* P2P Request Redirect */ 3285 ctrl |= (cap & PCI_ACS_RR); 3286 3287 /* P2P Completion Redirect */ 3288 ctrl |= (cap & PCI_ACS_CR); 3289 3290 /* Upstream Forwarding */ 3291 ctrl |= (cap & PCI_ACS_UF); 3292 3293 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3294 } 3295 3296 /** 3297 * pci_enable_acs - enable ACS if hardware support it 3298 * @dev: the PCI device 3299 */ 3300 void pci_enable_acs(struct pci_dev *dev) 3301 { 3302 if (!pci_acs_enable) 3303 goto disable_acs_redir; 3304 3305 if (!pci_dev_specific_enable_acs(dev)) 3306 goto disable_acs_redir; 3307 3308 pci_std_enable_acs(dev); 3309 3310 disable_acs_redir: 3311 /* 3312 * Note: pci_disable_acs_redir() must be called even if ACS was not 3313 * enabled by the kernel because it may have been enabled by 3314 * platform firmware. So if we are told to disable it, we should 3315 * always disable it after setting the kernel's default 3316 * preferences. 3317 */ 3318 pci_disable_acs_redir(dev); 3319 } 3320 3321 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3322 { 3323 int pos; 3324 u16 cap, ctrl; 3325 3326 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3327 if (!pos) 3328 return false; 3329 3330 /* 3331 * Except for egress control, capabilities are either required 3332 * or only required if controllable. Features missing from the 3333 * capability field can therefore be assumed as hard-wired enabled. 3334 */ 3335 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3336 acs_flags &= (cap | PCI_ACS_EC); 3337 3338 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3339 return (ctrl & acs_flags) == acs_flags; 3340 } 3341 3342 /** 3343 * pci_acs_enabled - test ACS against required flags for a given device 3344 * @pdev: device to test 3345 * @acs_flags: required PCI ACS flags 3346 * 3347 * Return true if the device supports the provided flags. Automatically 3348 * filters out flags that are not implemented on multifunction devices. 3349 * 3350 * Note that this interface checks the effective ACS capabilities of the 3351 * device rather than the actual capabilities. For instance, most single 3352 * function endpoints are not required to support ACS because they have no 3353 * opportunity for peer-to-peer access. We therefore return 'true' 3354 * regardless of whether the device exposes an ACS capability. This makes 3355 * it much easier for callers of this function to ignore the actual type 3356 * or topology of the device when testing ACS support. 3357 */ 3358 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3359 { 3360 int ret; 3361 3362 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3363 if (ret >= 0) 3364 return ret > 0; 3365 3366 /* 3367 * Conventional PCI and PCI-X devices never support ACS, either 3368 * effectively or actually. The shared bus topology implies that 3369 * any device on the bus can receive or snoop DMA. 3370 */ 3371 if (!pci_is_pcie(pdev)) 3372 return false; 3373 3374 switch (pci_pcie_type(pdev)) { 3375 /* 3376 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3377 * but since their primary interface is PCI/X, we conservatively 3378 * handle them as we would a non-PCIe device. 3379 */ 3380 case PCI_EXP_TYPE_PCIE_BRIDGE: 3381 /* 3382 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3383 * applicable... must never implement an ACS Extended Capability...". 3384 * This seems arbitrary, but we take a conservative interpretation 3385 * of this statement. 3386 */ 3387 case PCI_EXP_TYPE_PCI_BRIDGE: 3388 case PCI_EXP_TYPE_RC_EC: 3389 return false; 3390 /* 3391 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3392 * implement ACS in order to indicate their peer-to-peer capabilities, 3393 * regardless of whether they are single- or multi-function devices. 3394 */ 3395 case PCI_EXP_TYPE_DOWNSTREAM: 3396 case PCI_EXP_TYPE_ROOT_PORT: 3397 return pci_acs_flags_enabled(pdev, acs_flags); 3398 /* 3399 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3400 * implemented by the remaining PCIe types to indicate peer-to-peer 3401 * capabilities, but only when they are part of a multifunction 3402 * device. The footnote for section 6.12 indicates the specific 3403 * PCIe types included here. 3404 */ 3405 case PCI_EXP_TYPE_ENDPOINT: 3406 case PCI_EXP_TYPE_UPSTREAM: 3407 case PCI_EXP_TYPE_LEG_END: 3408 case PCI_EXP_TYPE_RC_END: 3409 if (!pdev->multifunction) 3410 break; 3411 3412 return pci_acs_flags_enabled(pdev, acs_flags); 3413 } 3414 3415 /* 3416 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3417 * to single function devices with the exception of downstream ports. 3418 */ 3419 return true; 3420 } 3421 3422 /** 3423 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3424 * @start: starting downstream device 3425 * @end: ending upstream device or NULL to search to the root bus 3426 * @acs_flags: required flags 3427 * 3428 * Walk up a device tree from start to end testing PCI ACS support. If 3429 * any step along the way does not support the required flags, return false. 3430 */ 3431 bool pci_acs_path_enabled(struct pci_dev *start, 3432 struct pci_dev *end, u16 acs_flags) 3433 { 3434 struct pci_dev *pdev, *parent = start; 3435 3436 do { 3437 pdev = parent; 3438 3439 if (!pci_acs_enabled(pdev, acs_flags)) 3440 return false; 3441 3442 if (pci_is_root_bus(pdev->bus)) 3443 return (end == NULL); 3444 3445 parent = pdev->bus->self; 3446 } while (pdev != end); 3447 3448 return true; 3449 } 3450 3451 /** 3452 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3453 * @pdev: PCI device 3454 * @bar: BAR to find 3455 * 3456 * Helper to find the position of the ctrl register for a BAR. 3457 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3458 * Returns -ENOENT if no ctrl register for the BAR could be found. 3459 */ 3460 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3461 { 3462 unsigned int pos, nbars, i; 3463 u32 ctrl; 3464 3465 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3466 if (!pos) 3467 return -ENOTSUPP; 3468 3469 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3470 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3471 PCI_REBAR_CTRL_NBAR_SHIFT; 3472 3473 for (i = 0; i < nbars; i++, pos += 8) { 3474 int bar_idx; 3475 3476 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3477 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3478 if (bar_idx == bar) 3479 return pos; 3480 } 3481 3482 return -ENOENT; 3483 } 3484 3485 /** 3486 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3487 * @pdev: PCI device 3488 * @bar: BAR to query 3489 * 3490 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3491 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3492 */ 3493 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3494 { 3495 int pos; 3496 u32 cap; 3497 3498 pos = pci_rebar_find_pos(pdev, bar); 3499 if (pos < 0) 3500 return 0; 3501 3502 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3503 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3504 } 3505 3506 /** 3507 * pci_rebar_get_current_size - get the current size of a BAR 3508 * @pdev: PCI device 3509 * @bar: BAR to set size to 3510 * 3511 * Read the size of a BAR from the resizable BAR config. 3512 * Returns size if found or negative error code. 3513 */ 3514 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3515 { 3516 int pos; 3517 u32 ctrl; 3518 3519 pos = pci_rebar_find_pos(pdev, bar); 3520 if (pos < 0) 3521 return pos; 3522 3523 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3524 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3525 } 3526 3527 /** 3528 * pci_rebar_set_size - set a new size for a BAR 3529 * @pdev: PCI device 3530 * @bar: BAR to set size to 3531 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3532 * 3533 * Set the new size of a BAR as defined in the spec. 3534 * Returns zero if resizing was successful, error code otherwise. 3535 */ 3536 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3537 { 3538 int pos; 3539 u32 ctrl; 3540 3541 pos = pci_rebar_find_pos(pdev, bar); 3542 if (pos < 0) 3543 return pos; 3544 3545 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3546 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3547 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3548 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3549 return 0; 3550 } 3551 3552 /** 3553 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3554 * @dev: the PCI device 3555 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3556 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3557 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3558 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3559 * 3560 * Return 0 if all upstream bridges support AtomicOp routing, egress 3561 * blocking is disabled on all upstream ports, and the root port supports 3562 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3563 * AtomicOp completion), or negative otherwise. 3564 */ 3565 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3566 { 3567 struct pci_bus *bus = dev->bus; 3568 struct pci_dev *bridge; 3569 u32 cap, ctl2; 3570 3571 if (!pci_is_pcie(dev)) 3572 return -EINVAL; 3573 3574 /* 3575 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3576 * AtomicOp requesters. For now, we only support endpoints as 3577 * requesters and root ports as completers. No endpoints as 3578 * completers, and no peer-to-peer. 3579 */ 3580 3581 switch (pci_pcie_type(dev)) { 3582 case PCI_EXP_TYPE_ENDPOINT: 3583 case PCI_EXP_TYPE_LEG_END: 3584 case PCI_EXP_TYPE_RC_END: 3585 break; 3586 default: 3587 return -EINVAL; 3588 } 3589 3590 while (bus->parent) { 3591 bridge = bus->self; 3592 3593 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3594 3595 switch (pci_pcie_type(bridge)) { 3596 /* Ensure switch ports support AtomicOp routing */ 3597 case PCI_EXP_TYPE_UPSTREAM: 3598 case PCI_EXP_TYPE_DOWNSTREAM: 3599 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3600 return -EINVAL; 3601 break; 3602 3603 /* Ensure root port supports all the sizes we care about */ 3604 case PCI_EXP_TYPE_ROOT_PORT: 3605 if ((cap & cap_mask) != cap_mask) 3606 return -EINVAL; 3607 break; 3608 } 3609 3610 /* Ensure upstream ports don't block AtomicOps on egress */ 3611 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3612 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3613 &ctl2); 3614 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3615 return -EINVAL; 3616 } 3617 3618 bus = bus->parent; 3619 } 3620 3621 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3622 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3623 return 0; 3624 } 3625 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3626 3627 /** 3628 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3629 * @dev: the PCI device 3630 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3631 * 3632 * Perform INTx swizzling for a device behind one level of bridge. This is 3633 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3634 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3635 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3636 * the PCI Express Base Specification, Revision 2.1) 3637 */ 3638 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3639 { 3640 int slot; 3641 3642 if (pci_ari_enabled(dev->bus)) 3643 slot = 0; 3644 else 3645 slot = PCI_SLOT(dev->devfn); 3646 3647 return (((pin - 1) + slot) % 4) + 1; 3648 } 3649 3650 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3651 { 3652 u8 pin; 3653 3654 pin = dev->pin; 3655 if (!pin) 3656 return -1; 3657 3658 while (!pci_is_root_bus(dev->bus)) { 3659 pin = pci_swizzle_interrupt_pin(dev, pin); 3660 dev = dev->bus->self; 3661 } 3662 *bridge = dev; 3663 return pin; 3664 } 3665 3666 /** 3667 * pci_common_swizzle - swizzle INTx all the way to root bridge 3668 * @dev: the PCI device 3669 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3670 * 3671 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3672 * bridges all the way up to a PCI root bus. 3673 */ 3674 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3675 { 3676 u8 pin = *pinp; 3677 3678 while (!pci_is_root_bus(dev->bus)) { 3679 pin = pci_swizzle_interrupt_pin(dev, pin); 3680 dev = dev->bus->self; 3681 } 3682 *pinp = pin; 3683 return PCI_SLOT(dev->devfn); 3684 } 3685 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3686 3687 /** 3688 * pci_release_region - Release a PCI bar 3689 * @pdev: PCI device whose resources were previously reserved by 3690 * pci_request_region() 3691 * @bar: BAR to release 3692 * 3693 * Releases the PCI I/O and memory resources previously reserved by a 3694 * successful call to pci_request_region(). Call this function only 3695 * after all use of the PCI regions has ceased. 3696 */ 3697 void pci_release_region(struct pci_dev *pdev, int bar) 3698 { 3699 struct pci_devres *dr; 3700 3701 if (pci_resource_len(pdev, bar) == 0) 3702 return; 3703 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3704 release_region(pci_resource_start(pdev, bar), 3705 pci_resource_len(pdev, bar)); 3706 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3707 release_mem_region(pci_resource_start(pdev, bar), 3708 pci_resource_len(pdev, bar)); 3709 3710 dr = find_pci_dr(pdev); 3711 if (dr) 3712 dr->region_mask &= ~(1 << bar); 3713 } 3714 EXPORT_SYMBOL(pci_release_region); 3715 3716 /** 3717 * __pci_request_region - Reserved PCI I/O and memory resource 3718 * @pdev: PCI device whose resources are to be reserved 3719 * @bar: BAR to be reserved 3720 * @res_name: Name to be associated with resource. 3721 * @exclusive: whether the region access is exclusive or not 3722 * 3723 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3724 * being reserved by owner @res_name. Do not access any 3725 * address inside the PCI regions unless this call returns 3726 * successfully. 3727 * 3728 * If @exclusive is set, then the region is marked so that userspace 3729 * is explicitly not allowed to map the resource via /dev/mem or 3730 * sysfs MMIO access. 3731 * 3732 * Returns 0 on success, or %EBUSY on error. A warning 3733 * message is also printed on failure. 3734 */ 3735 static int __pci_request_region(struct pci_dev *pdev, int bar, 3736 const char *res_name, int exclusive) 3737 { 3738 struct pci_devres *dr; 3739 3740 if (pci_resource_len(pdev, bar) == 0) 3741 return 0; 3742 3743 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3744 if (!request_region(pci_resource_start(pdev, bar), 3745 pci_resource_len(pdev, bar), res_name)) 3746 goto err_out; 3747 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3748 if (!__request_mem_region(pci_resource_start(pdev, bar), 3749 pci_resource_len(pdev, bar), res_name, 3750 exclusive)) 3751 goto err_out; 3752 } 3753 3754 dr = find_pci_dr(pdev); 3755 if (dr) 3756 dr->region_mask |= 1 << bar; 3757 3758 return 0; 3759 3760 err_out: 3761 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3762 &pdev->resource[bar]); 3763 return -EBUSY; 3764 } 3765 3766 /** 3767 * pci_request_region - Reserve PCI I/O and memory resource 3768 * @pdev: PCI device whose resources are to be reserved 3769 * @bar: BAR to be reserved 3770 * @res_name: Name to be associated with resource 3771 * 3772 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3773 * being reserved by owner @res_name. Do not access any 3774 * address inside the PCI regions unless this call returns 3775 * successfully. 3776 * 3777 * Returns 0 on success, or %EBUSY on error. A warning 3778 * message is also printed on failure. 3779 */ 3780 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3781 { 3782 return __pci_request_region(pdev, bar, res_name, 0); 3783 } 3784 EXPORT_SYMBOL(pci_request_region); 3785 3786 /** 3787 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3788 * @pdev: PCI device whose resources were previously reserved 3789 * @bars: Bitmask of BARs to be released 3790 * 3791 * Release selected PCI I/O and memory resources previously reserved. 3792 * Call this function only after all use of the PCI regions has ceased. 3793 */ 3794 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3795 { 3796 int i; 3797 3798 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3799 if (bars & (1 << i)) 3800 pci_release_region(pdev, i); 3801 } 3802 EXPORT_SYMBOL(pci_release_selected_regions); 3803 3804 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3805 const char *res_name, int excl) 3806 { 3807 int i; 3808 3809 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3810 if (bars & (1 << i)) 3811 if (__pci_request_region(pdev, i, res_name, excl)) 3812 goto err_out; 3813 return 0; 3814 3815 err_out: 3816 while (--i >= 0) 3817 if (bars & (1 << i)) 3818 pci_release_region(pdev, i); 3819 3820 return -EBUSY; 3821 } 3822 3823 3824 /** 3825 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3826 * @pdev: PCI device whose resources are to be reserved 3827 * @bars: Bitmask of BARs to be requested 3828 * @res_name: Name to be associated with resource 3829 */ 3830 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3831 const char *res_name) 3832 { 3833 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3834 } 3835 EXPORT_SYMBOL(pci_request_selected_regions); 3836 3837 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3838 const char *res_name) 3839 { 3840 return __pci_request_selected_regions(pdev, bars, res_name, 3841 IORESOURCE_EXCLUSIVE); 3842 } 3843 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3844 3845 /** 3846 * pci_release_regions - Release reserved PCI I/O and memory resources 3847 * @pdev: PCI device whose resources were previously reserved by 3848 * pci_request_regions() 3849 * 3850 * Releases all PCI I/O and memory resources previously reserved by a 3851 * successful call to pci_request_regions(). Call this function only 3852 * after all use of the PCI regions has ceased. 3853 */ 3854 3855 void pci_release_regions(struct pci_dev *pdev) 3856 { 3857 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3858 } 3859 EXPORT_SYMBOL(pci_release_regions); 3860 3861 /** 3862 * pci_request_regions - Reserve PCI I/O and memory resources 3863 * @pdev: PCI device whose resources are to be reserved 3864 * @res_name: Name to be associated with resource. 3865 * 3866 * Mark all PCI regions associated with PCI device @pdev as 3867 * being reserved by owner @res_name. Do not access any 3868 * address inside the PCI regions unless this call returns 3869 * successfully. 3870 * 3871 * Returns 0 on success, or %EBUSY on error. A warning 3872 * message is also printed on failure. 3873 */ 3874 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3875 { 3876 return pci_request_selected_regions(pdev, 3877 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3878 } 3879 EXPORT_SYMBOL(pci_request_regions); 3880 3881 /** 3882 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3883 * @pdev: PCI device whose resources are to be reserved 3884 * @res_name: Name to be associated with resource. 3885 * 3886 * Mark all PCI regions associated with PCI device @pdev as being reserved 3887 * by owner @res_name. Do not access any address inside the PCI regions 3888 * unless this call returns successfully. 3889 * 3890 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3891 * and the sysfs MMIO access will not be allowed. 3892 * 3893 * Returns 0 on success, or %EBUSY on error. A warning message is also 3894 * printed on failure. 3895 */ 3896 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3897 { 3898 return pci_request_selected_regions_exclusive(pdev, 3899 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3900 } 3901 EXPORT_SYMBOL(pci_request_regions_exclusive); 3902 3903 /* 3904 * Record the PCI IO range (expressed as CPU physical address + size). 3905 * Return a negative value if an error has occurred, zero otherwise 3906 */ 3907 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3908 resource_size_t size) 3909 { 3910 int ret = 0; 3911 #ifdef PCI_IOBASE 3912 struct logic_pio_hwaddr *range; 3913 3914 if (!size || addr + size < addr) 3915 return -EINVAL; 3916 3917 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3918 if (!range) 3919 return -ENOMEM; 3920 3921 range->fwnode = fwnode; 3922 range->size = size; 3923 range->hw_start = addr; 3924 range->flags = LOGIC_PIO_CPU_MMIO; 3925 3926 ret = logic_pio_register_range(range); 3927 if (ret) 3928 kfree(range); 3929 #endif 3930 3931 return ret; 3932 } 3933 3934 phys_addr_t pci_pio_to_address(unsigned long pio) 3935 { 3936 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3937 3938 #ifdef PCI_IOBASE 3939 if (pio >= MMIO_UPPER_LIMIT) 3940 return address; 3941 3942 address = logic_pio_to_hwaddr(pio); 3943 #endif 3944 3945 return address; 3946 } 3947 3948 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3949 { 3950 #ifdef PCI_IOBASE 3951 return logic_pio_trans_cpuaddr(address); 3952 #else 3953 if (address > IO_SPACE_LIMIT) 3954 return (unsigned long)-1; 3955 3956 return (unsigned long) address; 3957 #endif 3958 } 3959 3960 /** 3961 * pci_remap_iospace - Remap the memory mapped I/O space 3962 * @res: Resource describing the I/O space 3963 * @phys_addr: physical address of range to be mapped 3964 * 3965 * Remap the memory mapped I/O space described by the @res and the CPU 3966 * physical address @phys_addr into virtual address space. Only 3967 * architectures that have memory mapped IO functions defined (and the 3968 * PCI_IOBASE value defined) should call this function. 3969 */ 3970 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3971 { 3972 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3973 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3974 3975 if (!(res->flags & IORESOURCE_IO)) 3976 return -EINVAL; 3977 3978 if (res->end > IO_SPACE_LIMIT) 3979 return -EINVAL; 3980 3981 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3982 pgprot_device(PAGE_KERNEL)); 3983 #else 3984 /* 3985 * This architecture does not have memory mapped I/O space, 3986 * so this function should never be called 3987 */ 3988 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3989 return -ENODEV; 3990 #endif 3991 } 3992 EXPORT_SYMBOL(pci_remap_iospace); 3993 3994 /** 3995 * pci_unmap_iospace - Unmap the memory mapped I/O space 3996 * @res: resource to be unmapped 3997 * 3998 * Unmap the CPU virtual address @res from virtual address space. Only 3999 * architectures that have memory mapped IO functions defined (and the 4000 * PCI_IOBASE value defined) should call this function. 4001 */ 4002 void pci_unmap_iospace(struct resource *res) 4003 { 4004 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4005 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4006 4007 unmap_kernel_range(vaddr, resource_size(res)); 4008 #endif 4009 } 4010 EXPORT_SYMBOL(pci_unmap_iospace); 4011 4012 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4013 { 4014 struct resource **res = ptr; 4015 4016 pci_unmap_iospace(*res); 4017 } 4018 4019 /** 4020 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4021 * @dev: Generic device to remap IO address for 4022 * @res: Resource describing the I/O space 4023 * @phys_addr: physical address of range to be mapped 4024 * 4025 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4026 * detach. 4027 */ 4028 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4029 phys_addr_t phys_addr) 4030 { 4031 const struct resource **ptr; 4032 int error; 4033 4034 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4035 if (!ptr) 4036 return -ENOMEM; 4037 4038 error = pci_remap_iospace(res, phys_addr); 4039 if (error) { 4040 devres_free(ptr); 4041 } else { 4042 *ptr = res; 4043 devres_add(dev, ptr); 4044 } 4045 4046 return error; 4047 } 4048 EXPORT_SYMBOL(devm_pci_remap_iospace); 4049 4050 /** 4051 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4052 * @dev: Generic device to remap IO address for 4053 * @offset: Resource address to map 4054 * @size: Size of map 4055 * 4056 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4057 * detach. 4058 */ 4059 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4060 resource_size_t offset, 4061 resource_size_t size) 4062 { 4063 void __iomem **ptr, *addr; 4064 4065 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4066 if (!ptr) 4067 return NULL; 4068 4069 addr = pci_remap_cfgspace(offset, size); 4070 if (addr) { 4071 *ptr = addr; 4072 devres_add(dev, ptr); 4073 } else 4074 devres_free(ptr); 4075 4076 return addr; 4077 } 4078 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4079 4080 /** 4081 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4082 * @dev: generic device to handle the resource for 4083 * @res: configuration space resource to be handled 4084 * 4085 * Checks that a resource is a valid memory region, requests the memory 4086 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4087 * proper PCI configuration space memory attributes are guaranteed. 4088 * 4089 * All operations are managed and will be undone on driver detach. 4090 * 4091 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4092 * on failure. Usage example:: 4093 * 4094 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4095 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4096 * if (IS_ERR(base)) 4097 * return PTR_ERR(base); 4098 */ 4099 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4100 struct resource *res) 4101 { 4102 resource_size_t size; 4103 const char *name; 4104 void __iomem *dest_ptr; 4105 4106 BUG_ON(!dev); 4107 4108 if (!res || resource_type(res) != IORESOURCE_MEM) { 4109 dev_err(dev, "invalid resource\n"); 4110 return IOMEM_ERR_PTR(-EINVAL); 4111 } 4112 4113 size = resource_size(res); 4114 name = res->name ?: dev_name(dev); 4115 4116 if (!devm_request_mem_region(dev, res->start, size, name)) { 4117 dev_err(dev, "can't request region for resource %pR\n", res); 4118 return IOMEM_ERR_PTR(-EBUSY); 4119 } 4120 4121 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4122 if (!dest_ptr) { 4123 dev_err(dev, "ioremap failed for resource %pR\n", res); 4124 devm_release_mem_region(dev, res->start, size); 4125 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4126 } 4127 4128 return dest_ptr; 4129 } 4130 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4131 4132 static void __pci_set_master(struct pci_dev *dev, bool enable) 4133 { 4134 u16 old_cmd, cmd; 4135 4136 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4137 if (enable) 4138 cmd = old_cmd | PCI_COMMAND_MASTER; 4139 else 4140 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4141 if (cmd != old_cmd) { 4142 pci_dbg(dev, "%s bus mastering\n", 4143 enable ? "enabling" : "disabling"); 4144 pci_write_config_word(dev, PCI_COMMAND, cmd); 4145 } 4146 dev->is_busmaster = enable; 4147 } 4148 4149 /** 4150 * pcibios_setup - process "pci=" kernel boot arguments 4151 * @str: string used to pass in "pci=" kernel boot arguments 4152 * 4153 * Process kernel boot arguments. This is the default implementation. 4154 * Architecture specific implementations can override this as necessary. 4155 */ 4156 char * __weak __init pcibios_setup(char *str) 4157 { 4158 return str; 4159 } 4160 4161 /** 4162 * pcibios_set_master - enable PCI bus-mastering for device dev 4163 * @dev: the PCI device to enable 4164 * 4165 * Enables PCI bus-mastering for the device. This is the default 4166 * implementation. Architecture specific implementations can override 4167 * this if necessary. 4168 */ 4169 void __weak pcibios_set_master(struct pci_dev *dev) 4170 { 4171 u8 lat; 4172 4173 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4174 if (pci_is_pcie(dev)) 4175 return; 4176 4177 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4178 if (lat < 16) 4179 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4180 else if (lat > pcibios_max_latency) 4181 lat = pcibios_max_latency; 4182 else 4183 return; 4184 4185 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4186 } 4187 4188 /** 4189 * pci_set_master - enables bus-mastering for device dev 4190 * @dev: the PCI device to enable 4191 * 4192 * Enables bus-mastering on the device and calls pcibios_set_master() 4193 * to do the needed arch specific settings. 4194 */ 4195 void pci_set_master(struct pci_dev *dev) 4196 { 4197 __pci_set_master(dev, true); 4198 pcibios_set_master(dev); 4199 } 4200 EXPORT_SYMBOL(pci_set_master); 4201 4202 /** 4203 * pci_clear_master - disables bus-mastering for device dev 4204 * @dev: the PCI device to disable 4205 */ 4206 void pci_clear_master(struct pci_dev *dev) 4207 { 4208 __pci_set_master(dev, false); 4209 } 4210 EXPORT_SYMBOL(pci_clear_master); 4211 4212 /** 4213 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4214 * @dev: the PCI device for which MWI is to be enabled 4215 * 4216 * Helper function for pci_set_mwi. 4217 * Originally copied from drivers/net/acenic.c. 4218 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4219 * 4220 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4221 */ 4222 int pci_set_cacheline_size(struct pci_dev *dev) 4223 { 4224 u8 cacheline_size; 4225 4226 if (!pci_cache_line_size) 4227 return -EINVAL; 4228 4229 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4230 equal to or multiple of the right value. */ 4231 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4232 if (cacheline_size >= pci_cache_line_size && 4233 (cacheline_size % pci_cache_line_size) == 0) 4234 return 0; 4235 4236 /* Write the correct value. */ 4237 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4238 /* Read it back. */ 4239 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4240 if (cacheline_size == pci_cache_line_size) 4241 return 0; 4242 4243 pci_info(dev, "cache line size of %d is not supported\n", 4244 pci_cache_line_size << 2); 4245 4246 return -EINVAL; 4247 } 4248 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4249 4250 /** 4251 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4252 * @dev: the PCI device for which MWI is enabled 4253 * 4254 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4255 * 4256 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4257 */ 4258 int pci_set_mwi(struct pci_dev *dev) 4259 { 4260 #ifdef PCI_DISABLE_MWI 4261 return 0; 4262 #else 4263 int rc; 4264 u16 cmd; 4265 4266 rc = pci_set_cacheline_size(dev); 4267 if (rc) 4268 return rc; 4269 4270 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4271 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4272 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4273 cmd |= PCI_COMMAND_INVALIDATE; 4274 pci_write_config_word(dev, PCI_COMMAND, cmd); 4275 } 4276 return 0; 4277 #endif 4278 } 4279 EXPORT_SYMBOL(pci_set_mwi); 4280 4281 /** 4282 * pcim_set_mwi - a device-managed pci_set_mwi() 4283 * @dev: the PCI device for which MWI is enabled 4284 * 4285 * Managed pci_set_mwi(). 4286 * 4287 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4288 */ 4289 int pcim_set_mwi(struct pci_dev *dev) 4290 { 4291 struct pci_devres *dr; 4292 4293 dr = find_pci_dr(dev); 4294 if (!dr) 4295 return -ENOMEM; 4296 4297 dr->mwi = 1; 4298 return pci_set_mwi(dev); 4299 } 4300 EXPORT_SYMBOL(pcim_set_mwi); 4301 4302 /** 4303 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4304 * @dev: the PCI device for which MWI is enabled 4305 * 4306 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4307 * Callers are not required to check the return value. 4308 * 4309 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4310 */ 4311 int pci_try_set_mwi(struct pci_dev *dev) 4312 { 4313 #ifdef PCI_DISABLE_MWI 4314 return 0; 4315 #else 4316 return pci_set_mwi(dev); 4317 #endif 4318 } 4319 EXPORT_SYMBOL(pci_try_set_mwi); 4320 4321 /** 4322 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4323 * @dev: the PCI device to disable 4324 * 4325 * Disables PCI Memory-Write-Invalidate transaction on the device 4326 */ 4327 void pci_clear_mwi(struct pci_dev *dev) 4328 { 4329 #ifndef PCI_DISABLE_MWI 4330 u16 cmd; 4331 4332 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4333 if (cmd & PCI_COMMAND_INVALIDATE) { 4334 cmd &= ~PCI_COMMAND_INVALIDATE; 4335 pci_write_config_word(dev, PCI_COMMAND, cmd); 4336 } 4337 #endif 4338 } 4339 EXPORT_SYMBOL(pci_clear_mwi); 4340 4341 /** 4342 * pci_intx - enables/disables PCI INTx for device dev 4343 * @pdev: the PCI device to operate on 4344 * @enable: boolean: whether to enable or disable PCI INTx 4345 * 4346 * Enables/disables PCI INTx for device @pdev 4347 */ 4348 void pci_intx(struct pci_dev *pdev, int enable) 4349 { 4350 u16 pci_command, new; 4351 4352 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4353 4354 if (enable) 4355 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4356 else 4357 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4358 4359 if (new != pci_command) { 4360 struct pci_devres *dr; 4361 4362 pci_write_config_word(pdev, PCI_COMMAND, new); 4363 4364 dr = find_pci_dr(pdev); 4365 if (dr && !dr->restore_intx) { 4366 dr->restore_intx = 1; 4367 dr->orig_intx = !enable; 4368 } 4369 } 4370 } 4371 EXPORT_SYMBOL_GPL(pci_intx); 4372 4373 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4374 { 4375 struct pci_bus *bus = dev->bus; 4376 bool mask_updated = true; 4377 u32 cmd_status_dword; 4378 u16 origcmd, newcmd; 4379 unsigned long flags; 4380 bool irq_pending; 4381 4382 /* 4383 * We do a single dword read to retrieve both command and status. 4384 * Document assumptions that make this possible. 4385 */ 4386 BUILD_BUG_ON(PCI_COMMAND % 4); 4387 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4388 4389 raw_spin_lock_irqsave(&pci_lock, flags); 4390 4391 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4392 4393 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4394 4395 /* 4396 * Check interrupt status register to see whether our device 4397 * triggered the interrupt (when masking) or the next IRQ is 4398 * already pending (when unmasking). 4399 */ 4400 if (mask != irq_pending) { 4401 mask_updated = false; 4402 goto done; 4403 } 4404 4405 origcmd = cmd_status_dword; 4406 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4407 if (mask) 4408 newcmd |= PCI_COMMAND_INTX_DISABLE; 4409 if (newcmd != origcmd) 4410 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4411 4412 done: 4413 raw_spin_unlock_irqrestore(&pci_lock, flags); 4414 4415 return mask_updated; 4416 } 4417 4418 /** 4419 * pci_check_and_mask_intx - mask INTx on pending interrupt 4420 * @dev: the PCI device to operate on 4421 * 4422 * Check if the device dev has its INTx line asserted, mask it and return 4423 * true in that case. False is returned if no interrupt was pending. 4424 */ 4425 bool pci_check_and_mask_intx(struct pci_dev *dev) 4426 { 4427 return pci_check_and_set_intx_mask(dev, true); 4428 } 4429 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4430 4431 /** 4432 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4433 * @dev: the PCI device to operate on 4434 * 4435 * Check if the device dev has its INTx line asserted, unmask it if not and 4436 * return true. False is returned and the mask remains active if there was 4437 * still an interrupt pending. 4438 */ 4439 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4440 { 4441 return pci_check_and_set_intx_mask(dev, false); 4442 } 4443 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4444 4445 /** 4446 * pci_wait_for_pending_transaction - wait for pending transaction 4447 * @dev: the PCI device to operate on 4448 * 4449 * Return 0 if transaction is pending 1 otherwise. 4450 */ 4451 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4452 { 4453 if (!pci_is_pcie(dev)) 4454 return 1; 4455 4456 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4457 PCI_EXP_DEVSTA_TRPND); 4458 } 4459 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4460 4461 /** 4462 * pcie_has_flr - check if a device supports function level resets 4463 * @dev: device to check 4464 * 4465 * Returns true if the device advertises support for PCIe function level 4466 * resets. 4467 */ 4468 bool pcie_has_flr(struct pci_dev *dev) 4469 { 4470 u32 cap; 4471 4472 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4473 return false; 4474 4475 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4476 return cap & PCI_EXP_DEVCAP_FLR; 4477 } 4478 EXPORT_SYMBOL_GPL(pcie_has_flr); 4479 4480 /** 4481 * pcie_flr - initiate a PCIe function level reset 4482 * @dev: device to reset 4483 * 4484 * Initiate a function level reset on @dev. The caller should ensure the 4485 * device supports FLR before calling this function, e.g. by using the 4486 * pcie_has_flr() helper. 4487 */ 4488 int pcie_flr(struct pci_dev *dev) 4489 { 4490 if (!pci_wait_for_pending_transaction(dev)) 4491 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4492 4493 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4494 4495 if (dev->imm_ready) 4496 return 0; 4497 4498 /* 4499 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4500 * 100ms, but may silently discard requests while the FLR is in 4501 * progress. Wait 100ms before trying to access the device. 4502 */ 4503 msleep(100); 4504 4505 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4506 } 4507 EXPORT_SYMBOL_GPL(pcie_flr); 4508 4509 static int pci_af_flr(struct pci_dev *dev, int probe) 4510 { 4511 int pos; 4512 u8 cap; 4513 4514 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4515 if (!pos) 4516 return -ENOTTY; 4517 4518 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4519 return -ENOTTY; 4520 4521 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4522 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4523 return -ENOTTY; 4524 4525 if (probe) 4526 return 0; 4527 4528 /* 4529 * Wait for Transaction Pending bit to clear. A word-aligned test 4530 * is used, so we use the control offset rather than status and shift 4531 * the test bit to match. 4532 */ 4533 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4534 PCI_AF_STATUS_TP << 8)) 4535 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4536 4537 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4538 4539 if (dev->imm_ready) 4540 return 0; 4541 4542 /* 4543 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4544 * updated 27 July 2006; a device must complete an FLR within 4545 * 100ms, but may silently discard requests while the FLR is in 4546 * progress. Wait 100ms before trying to access the device. 4547 */ 4548 msleep(100); 4549 4550 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4551 } 4552 4553 /** 4554 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4555 * @dev: Device to reset. 4556 * @probe: If set, only check if the device can be reset this way. 4557 * 4558 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4559 * unset, it will be reinitialized internally when going from PCI_D3hot to 4560 * PCI_D0. If that's the case and the device is not in a low-power state 4561 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4562 * 4563 * NOTE: This causes the caller to sleep for twice the device power transition 4564 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4565 * by default (i.e. unless the @dev's d3_delay field has a different value). 4566 * Moreover, only devices in D0 can be reset by this function. 4567 */ 4568 static int pci_pm_reset(struct pci_dev *dev, int probe) 4569 { 4570 u16 csr; 4571 4572 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4573 return -ENOTTY; 4574 4575 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4576 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4577 return -ENOTTY; 4578 4579 if (probe) 4580 return 0; 4581 4582 if (dev->current_state != PCI_D0) 4583 return -EINVAL; 4584 4585 csr &= ~PCI_PM_CTRL_STATE_MASK; 4586 csr |= PCI_D3hot; 4587 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4588 pci_dev_d3_sleep(dev); 4589 4590 csr &= ~PCI_PM_CTRL_STATE_MASK; 4591 csr |= PCI_D0; 4592 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4593 pci_dev_d3_sleep(dev); 4594 4595 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4596 } 4597 4598 /** 4599 * pcie_wait_for_link_delay - Wait until link is active or inactive 4600 * @pdev: Bridge device 4601 * @active: waiting for active or inactive? 4602 * @delay: Delay to wait after link has become active (in ms) 4603 * 4604 * Use this to wait till link becomes active or inactive. 4605 */ 4606 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4607 int delay) 4608 { 4609 int timeout = 1000; 4610 bool ret; 4611 u16 lnk_status; 4612 4613 /* 4614 * Some controllers might not implement link active reporting. In this 4615 * case, we wait for 1000 + 100 ms. 4616 */ 4617 if (!pdev->link_active_reporting) { 4618 msleep(1100); 4619 return true; 4620 } 4621 4622 /* 4623 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4624 * after which we should expect an link active if the reset was 4625 * successful. If so, software must wait a minimum 100ms before sending 4626 * configuration requests to devices downstream this port. 4627 * 4628 * If the link fails to activate, either the device was physically 4629 * removed or the link is permanently failed. 4630 */ 4631 if (active) 4632 msleep(20); 4633 for (;;) { 4634 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4635 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4636 if (ret == active) 4637 break; 4638 if (timeout <= 0) 4639 break; 4640 msleep(10); 4641 timeout -= 10; 4642 } 4643 if (active && ret) 4644 msleep(delay); 4645 else if (ret != active) 4646 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4647 active ? "set" : "cleared"); 4648 return ret == active; 4649 } 4650 4651 /** 4652 * pcie_wait_for_link - Wait until link is active or inactive 4653 * @pdev: Bridge device 4654 * @active: waiting for active or inactive? 4655 * 4656 * Use this to wait till link becomes active or inactive. 4657 */ 4658 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4659 { 4660 return pcie_wait_for_link_delay(pdev, active, 100); 4661 } 4662 4663 /* 4664 * Find maximum D3cold delay required by all the devices on the bus. The 4665 * spec says 100 ms, but firmware can lower it and we allow drivers to 4666 * increase it as well. 4667 * 4668 * Called with @pci_bus_sem locked for reading. 4669 */ 4670 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4671 { 4672 const struct pci_dev *pdev; 4673 int min_delay = 100; 4674 int max_delay = 0; 4675 4676 list_for_each_entry(pdev, &bus->devices, bus_list) { 4677 if (pdev->d3cold_delay < min_delay) 4678 min_delay = pdev->d3cold_delay; 4679 if (pdev->d3cold_delay > max_delay) 4680 max_delay = pdev->d3cold_delay; 4681 } 4682 4683 return max(min_delay, max_delay); 4684 } 4685 4686 /** 4687 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4688 * @dev: PCI bridge 4689 * 4690 * Handle necessary delays before access to the devices on the secondary 4691 * side of the bridge are permitted after D3cold to D0 transition. 4692 * 4693 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4694 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4695 * 4.3.2. 4696 */ 4697 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4698 { 4699 struct pci_dev *child; 4700 int delay; 4701 4702 if (pci_dev_is_disconnected(dev)) 4703 return; 4704 4705 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4706 return; 4707 4708 down_read(&pci_bus_sem); 4709 4710 /* 4711 * We only deal with devices that are present currently on the bus. 4712 * For any hot-added devices the access delay is handled in pciehp 4713 * board_added(). In case of ACPI hotplug the firmware is expected 4714 * to configure the devices before OS is notified. 4715 */ 4716 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4717 up_read(&pci_bus_sem); 4718 return; 4719 } 4720 4721 /* Take d3cold_delay requirements into account */ 4722 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4723 if (!delay) { 4724 up_read(&pci_bus_sem); 4725 return; 4726 } 4727 4728 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4729 bus_list); 4730 up_read(&pci_bus_sem); 4731 4732 /* 4733 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4734 * accessing the device after reset (that is 1000 ms + 100 ms). In 4735 * practice this should not be needed because we don't do power 4736 * management for them (see pci_bridge_d3_possible()). 4737 */ 4738 if (!pci_is_pcie(dev)) { 4739 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4740 msleep(1000 + delay); 4741 return; 4742 } 4743 4744 /* 4745 * For PCIe downstream and root ports that do not support speeds 4746 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4747 * speeds (gen3) we need to wait first for the data link layer to 4748 * become active. 4749 * 4750 * However, 100 ms is the minimum and the PCIe spec says the 4751 * software must allow at least 1s before it can determine that the 4752 * device that did not respond is a broken device. There is 4753 * evidence that 100 ms is not always enough, for example certain 4754 * Titan Ridge xHCI controller does not always respond to 4755 * configuration requests if we only wait for 100 ms (see 4756 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4757 * 4758 * Therefore we wait for 100 ms and check for the device presence. 4759 * If it is still not present give it an additional 100 ms. 4760 */ 4761 if (!pcie_downstream_port(dev)) 4762 return; 4763 4764 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4765 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4766 msleep(delay); 4767 } else { 4768 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4769 delay); 4770 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4771 /* Did not train, no need to wait any further */ 4772 return; 4773 } 4774 } 4775 4776 if (!pci_device_is_present(child)) { 4777 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4778 msleep(delay); 4779 } 4780 } 4781 4782 void pci_reset_secondary_bus(struct pci_dev *dev) 4783 { 4784 u16 ctrl; 4785 4786 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4787 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4788 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4789 4790 /* 4791 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4792 * this to 2ms to ensure that we meet the minimum requirement. 4793 */ 4794 msleep(2); 4795 4796 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4797 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4798 4799 /* 4800 * Trhfa for conventional PCI is 2^25 clock cycles. 4801 * Assuming a minimum 33MHz clock this results in a 1s 4802 * delay before we can consider subordinate devices to 4803 * be re-initialized. PCIe has some ways to shorten this, 4804 * but we don't make use of them yet. 4805 */ 4806 ssleep(1); 4807 } 4808 4809 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4810 { 4811 pci_reset_secondary_bus(dev); 4812 } 4813 4814 /** 4815 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4816 * @dev: Bridge device 4817 * 4818 * Use the bridge control register to assert reset on the secondary bus. 4819 * Devices on the secondary bus are left in power-on state. 4820 */ 4821 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4822 { 4823 pcibios_reset_secondary_bus(dev); 4824 4825 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4826 } 4827 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4828 4829 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4830 { 4831 struct pci_dev *pdev; 4832 4833 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4834 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4835 return -ENOTTY; 4836 4837 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4838 if (pdev != dev) 4839 return -ENOTTY; 4840 4841 if (probe) 4842 return 0; 4843 4844 return pci_bridge_secondary_bus_reset(dev->bus->self); 4845 } 4846 4847 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4848 { 4849 int rc = -ENOTTY; 4850 4851 if (!hotplug || !try_module_get(hotplug->owner)) 4852 return rc; 4853 4854 if (hotplug->ops->reset_slot) 4855 rc = hotplug->ops->reset_slot(hotplug, probe); 4856 4857 module_put(hotplug->owner); 4858 4859 return rc; 4860 } 4861 4862 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4863 { 4864 struct pci_dev *pdev; 4865 4866 if (dev->subordinate || !dev->slot || 4867 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4868 return -ENOTTY; 4869 4870 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4871 if (pdev != dev && pdev->slot == dev->slot) 4872 return -ENOTTY; 4873 4874 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4875 } 4876 4877 static void pci_dev_lock(struct pci_dev *dev) 4878 { 4879 pci_cfg_access_lock(dev); 4880 /* block PM suspend, driver probe, etc. */ 4881 device_lock(&dev->dev); 4882 } 4883 4884 /* Return 1 on successful lock, 0 on contention */ 4885 static int pci_dev_trylock(struct pci_dev *dev) 4886 { 4887 if (pci_cfg_access_trylock(dev)) { 4888 if (device_trylock(&dev->dev)) 4889 return 1; 4890 pci_cfg_access_unlock(dev); 4891 } 4892 4893 return 0; 4894 } 4895 4896 static void pci_dev_unlock(struct pci_dev *dev) 4897 { 4898 device_unlock(&dev->dev); 4899 pci_cfg_access_unlock(dev); 4900 } 4901 4902 static void pci_dev_save_and_disable(struct pci_dev *dev) 4903 { 4904 const struct pci_error_handlers *err_handler = 4905 dev->driver ? dev->driver->err_handler : NULL; 4906 4907 /* 4908 * dev->driver->err_handler->reset_prepare() is protected against 4909 * races with ->remove() by the device lock, which must be held by 4910 * the caller. 4911 */ 4912 if (err_handler && err_handler->reset_prepare) 4913 err_handler->reset_prepare(dev); 4914 4915 /* 4916 * Wake-up device prior to save. PM registers default to D0 after 4917 * reset and a simple register restore doesn't reliably return 4918 * to a non-D0 state anyway. 4919 */ 4920 pci_set_power_state(dev, PCI_D0); 4921 4922 pci_save_state(dev); 4923 /* 4924 * Disable the device by clearing the Command register, except for 4925 * INTx-disable which is set. This not only disables MMIO and I/O port 4926 * BARs, but also prevents the device from being Bus Master, preventing 4927 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4928 * compliant devices, INTx-disable prevents legacy interrupts. 4929 */ 4930 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4931 } 4932 4933 static void pci_dev_restore(struct pci_dev *dev) 4934 { 4935 const struct pci_error_handlers *err_handler = 4936 dev->driver ? dev->driver->err_handler : NULL; 4937 4938 pci_restore_state(dev); 4939 4940 /* 4941 * dev->driver->err_handler->reset_done() is protected against 4942 * races with ->remove() by the device lock, which must be held by 4943 * the caller. 4944 */ 4945 if (err_handler && err_handler->reset_done) 4946 err_handler->reset_done(dev); 4947 } 4948 4949 /** 4950 * __pci_reset_function_locked - reset a PCI device function while holding 4951 * the @dev mutex lock. 4952 * @dev: PCI device to reset 4953 * 4954 * Some devices allow an individual function to be reset without affecting 4955 * other functions in the same device. The PCI device must be responsive 4956 * to PCI config space in order to use this function. 4957 * 4958 * The device function is presumed to be unused and the caller is holding 4959 * the device mutex lock when this function is called. 4960 * 4961 * Resetting the device will make the contents of PCI configuration space 4962 * random, so any caller of this must be prepared to reinitialise the 4963 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4964 * etc. 4965 * 4966 * Returns 0 if the device function was successfully reset or negative if the 4967 * device doesn't support resetting a single function. 4968 */ 4969 int __pci_reset_function_locked(struct pci_dev *dev) 4970 { 4971 int rc; 4972 4973 might_sleep(); 4974 4975 /* 4976 * A reset method returns -ENOTTY if it doesn't support this device 4977 * and we should try the next method. 4978 * 4979 * If it returns 0 (success), we're finished. If it returns any 4980 * other error, we're also finished: this indicates that further 4981 * reset mechanisms might be broken on the device. 4982 */ 4983 rc = pci_dev_specific_reset(dev, 0); 4984 if (rc != -ENOTTY) 4985 return rc; 4986 if (pcie_has_flr(dev)) { 4987 rc = pcie_flr(dev); 4988 if (rc != -ENOTTY) 4989 return rc; 4990 } 4991 rc = pci_af_flr(dev, 0); 4992 if (rc != -ENOTTY) 4993 return rc; 4994 rc = pci_pm_reset(dev, 0); 4995 if (rc != -ENOTTY) 4996 return rc; 4997 rc = pci_dev_reset_slot_function(dev, 0); 4998 if (rc != -ENOTTY) 4999 return rc; 5000 return pci_parent_bus_reset(dev, 0); 5001 } 5002 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5003 5004 /** 5005 * pci_probe_reset_function - check whether the device can be safely reset 5006 * @dev: PCI device to reset 5007 * 5008 * Some devices allow an individual function to be reset without affecting 5009 * other functions in the same device. The PCI device must be responsive 5010 * to PCI config space in order to use this function. 5011 * 5012 * Returns 0 if the device function can be reset or negative if the 5013 * device doesn't support resetting a single function. 5014 */ 5015 int pci_probe_reset_function(struct pci_dev *dev) 5016 { 5017 int rc; 5018 5019 might_sleep(); 5020 5021 rc = pci_dev_specific_reset(dev, 1); 5022 if (rc != -ENOTTY) 5023 return rc; 5024 if (pcie_has_flr(dev)) 5025 return 0; 5026 rc = pci_af_flr(dev, 1); 5027 if (rc != -ENOTTY) 5028 return rc; 5029 rc = pci_pm_reset(dev, 1); 5030 if (rc != -ENOTTY) 5031 return rc; 5032 rc = pci_dev_reset_slot_function(dev, 1); 5033 if (rc != -ENOTTY) 5034 return rc; 5035 5036 return pci_parent_bus_reset(dev, 1); 5037 } 5038 5039 /** 5040 * pci_reset_function - quiesce and reset a PCI device function 5041 * @dev: PCI device to reset 5042 * 5043 * Some devices allow an individual function to be reset without affecting 5044 * other functions in the same device. The PCI device must be responsive 5045 * to PCI config space in order to use this function. 5046 * 5047 * This function does not just reset the PCI portion of a device, but 5048 * clears all the state associated with the device. This function differs 5049 * from __pci_reset_function_locked() in that it saves and restores device state 5050 * over the reset and takes the PCI device lock. 5051 * 5052 * Returns 0 if the device function was successfully reset or negative if the 5053 * device doesn't support resetting a single function. 5054 */ 5055 int pci_reset_function(struct pci_dev *dev) 5056 { 5057 int rc; 5058 5059 if (!dev->reset_fn) 5060 return -ENOTTY; 5061 5062 pci_dev_lock(dev); 5063 pci_dev_save_and_disable(dev); 5064 5065 rc = __pci_reset_function_locked(dev); 5066 5067 pci_dev_restore(dev); 5068 pci_dev_unlock(dev); 5069 5070 return rc; 5071 } 5072 EXPORT_SYMBOL_GPL(pci_reset_function); 5073 5074 /** 5075 * pci_reset_function_locked - quiesce and reset a PCI device function 5076 * @dev: PCI device to reset 5077 * 5078 * Some devices allow an individual function to be reset without affecting 5079 * other functions in the same device. The PCI device must be responsive 5080 * to PCI config space in order to use this function. 5081 * 5082 * This function does not just reset the PCI portion of a device, but 5083 * clears all the state associated with the device. This function differs 5084 * from __pci_reset_function_locked() in that it saves and restores device state 5085 * over the reset. It also differs from pci_reset_function() in that it 5086 * requires the PCI device lock to be held. 5087 * 5088 * Returns 0 if the device function was successfully reset or negative if the 5089 * device doesn't support resetting a single function. 5090 */ 5091 int pci_reset_function_locked(struct pci_dev *dev) 5092 { 5093 int rc; 5094 5095 if (!dev->reset_fn) 5096 return -ENOTTY; 5097 5098 pci_dev_save_and_disable(dev); 5099 5100 rc = __pci_reset_function_locked(dev); 5101 5102 pci_dev_restore(dev); 5103 5104 return rc; 5105 } 5106 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5107 5108 /** 5109 * pci_try_reset_function - quiesce and reset a PCI device function 5110 * @dev: PCI device to reset 5111 * 5112 * Same as above, except return -EAGAIN if unable to lock device. 5113 */ 5114 int pci_try_reset_function(struct pci_dev *dev) 5115 { 5116 int rc; 5117 5118 if (!dev->reset_fn) 5119 return -ENOTTY; 5120 5121 if (!pci_dev_trylock(dev)) 5122 return -EAGAIN; 5123 5124 pci_dev_save_and_disable(dev); 5125 rc = __pci_reset_function_locked(dev); 5126 pci_dev_restore(dev); 5127 pci_dev_unlock(dev); 5128 5129 return rc; 5130 } 5131 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5132 5133 /* Do any devices on or below this bus prevent a bus reset? */ 5134 static bool pci_bus_resetable(struct pci_bus *bus) 5135 { 5136 struct pci_dev *dev; 5137 5138 5139 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5140 return false; 5141 5142 list_for_each_entry(dev, &bus->devices, bus_list) { 5143 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5144 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5145 return false; 5146 } 5147 5148 return true; 5149 } 5150 5151 /* Lock devices from the top of the tree down */ 5152 static void pci_bus_lock(struct pci_bus *bus) 5153 { 5154 struct pci_dev *dev; 5155 5156 list_for_each_entry(dev, &bus->devices, bus_list) { 5157 pci_dev_lock(dev); 5158 if (dev->subordinate) 5159 pci_bus_lock(dev->subordinate); 5160 } 5161 } 5162 5163 /* Unlock devices from the bottom of the tree up */ 5164 static void pci_bus_unlock(struct pci_bus *bus) 5165 { 5166 struct pci_dev *dev; 5167 5168 list_for_each_entry(dev, &bus->devices, bus_list) { 5169 if (dev->subordinate) 5170 pci_bus_unlock(dev->subordinate); 5171 pci_dev_unlock(dev); 5172 } 5173 } 5174 5175 /* Return 1 on successful lock, 0 on contention */ 5176 static int pci_bus_trylock(struct pci_bus *bus) 5177 { 5178 struct pci_dev *dev; 5179 5180 list_for_each_entry(dev, &bus->devices, bus_list) { 5181 if (!pci_dev_trylock(dev)) 5182 goto unlock; 5183 if (dev->subordinate) { 5184 if (!pci_bus_trylock(dev->subordinate)) { 5185 pci_dev_unlock(dev); 5186 goto unlock; 5187 } 5188 } 5189 } 5190 return 1; 5191 5192 unlock: 5193 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5194 if (dev->subordinate) 5195 pci_bus_unlock(dev->subordinate); 5196 pci_dev_unlock(dev); 5197 } 5198 return 0; 5199 } 5200 5201 /* Do any devices on or below this slot prevent a bus reset? */ 5202 static bool pci_slot_resetable(struct pci_slot *slot) 5203 { 5204 struct pci_dev *dev; 5205 5206 if (slot->bus->self && 5207 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5208 return false; 5209 5210 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5211 if (!dev->slot || dev->slot != slot) 5212 continue; 5213 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5214 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5215 return false; 5216 } 5217 5218 return true; 5219 } 5220 5221 /* Lock devices from the top of the tree down */ 5222 static void pci_slot_lock(struct pci_slot *slot) 5223 { 5224 struct pci_dev *dev; 5225 5226 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5227 if (!dev->slot || dev->slot != slot) 5228 continue; 5229 pci_dev_lock(dev); 5230 if (dev->subordinate) 5231 pci_bus_lock(dev->subordinate); 5232 } 5233 } 5234 5235 /* Unlock devices from the bottom of the tree up */ 5236 static void pci_slot_unlock(struct pci_slot *slot) 5237 { 5238 struct pci_dev *dev; 5239 5240 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5241 if (!dev->slot || dev->slot != slot) 5242 continue; 5243 if (dev->subordinate) 5244 pci_bus_unlock(dev->subordinate); 5245 pci_dev_unlock(dev); 5246 } 5247 } 5248 5249 /* Return 1 on successful lock, 0 on contention */ 5250 static int pci_slot_trylock(struct pci_slot *slot) 5251 { 5252 struct pci_dev *dev; 5253 5254 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5255 if (!dev->slot || dev->slot != slot) 5256 continue; 5257 if (!pci_dev_trylock(dev)) 5258 goto unlock; 5259 if (dev->subordinate) { 5260 if (!pci_bus_trylock(dev->subordinate)) { 5261 pci_dev_unlock(dev); 5262 goto unlock; 5263 } 5264 } 5265 } 5266 return 1; 5267 5268 unlock: 5269 list_for_each_entry_continue_reverse(dev, 5270 &slot->bus->devices, bus_list) { 5271 if (!dev->slot || dev->slot != slot) 5272 continue; 5273 if (dev->subordinate) 5274 pci_bus_unlock(dev->subordinate); 5275 pci_dev_unlock(dev); 5276 } 5277 return 0; 5278 } 5279 5280 /* 5281 * Save and disable devices from the top of the tree down while holding 5282 * the @dev mutex lock for the entire tree. 5283 */ 5284 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5285 { 5286 struct pci_dev *dev; 5287 5288 list_for_each_entry(dev, &bus->devices, bus_list) { 5289 pci_dev_save_and_disable(dev); 5290 if (dev->subordinate) 5291 pci_bus_save_and_disable_locked(dev->subordinate); 5292 } 5293 } 5294 5295 /* 5296 * Restore devices from top of the tree down while holding @dev mutex lock 5297 * for the entire tree. Parent bridges need to be restored before we can 5298 * get to subordinate devices. 5299 */ 5300 static void pci_bus_restore_locked(struct pci_bus *bus) 5301 { 5302 struct pci_dev *dev; 5303 5304 list_for_each_entry(dev, &bus->devices, bus_list) { 5305 pci_dev_restore(dev); 5306 if (dev->subordinate) 5307 pci_bus_restore_locked(dev->subordinate); 5308 } 5309 } 5310 5311 /* 5312 * Save and disable devices from the top of the tree down while holding 5313 * the @dev mutex lock for the entire tree. 5314 */ 5315 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5316 { 5317 struct pci_dev *dev; 5318 5319 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5320 if (!dev->slot || dev->slot != slot) 5321 continue; 5322 pci_dev_save_and_disable(dev); 5323 if (dev->subordinate) 5324 pci_bus_save_and_disable_locked(dev->subordinate); 5325 } 5326 } 5327 5328 /* 5329 * Restore devices from top of the tree down while holding @dev mutex lock 5330 * for the entire tree. Parent bridges need to be restored before we can 5331 * get to subordinate devices. 5332 */ 5333 static void pci_slot_restore_locked(struct pci_slot *slot) 5334 { 5335 struct pci_dev *dev; 5336 5337 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5338 if (!dev->slot || dev->slot != slot) 5339 continue; 5340 pci_dev_restore(dev); 5341 if (dev->subordinate) 5342 pci_bus_restore_locked(dev->subordinate); 5343 } 5344 } 5345 5346 static int pci_slot_reset(struct pci_slot *slot, int probe) 5347 { 5348 int rc; 5349 5350 if (!slot || !pci_slot_resetable(slot)) 5351 return -ENOTTY; 5352 5353 if (!probe) 5354 pci_slot_lock(slot); 5355 5356 might_sleep(); 5357 5358 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5359 5360 if (!probe) 5361 pci_slot_unlock(slot); 5362 5363 return rc; 5364 } 5365 5366 /** 5367 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5368 * @slot: PCI slot to probe 5369 * 5370 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5371 */ 5372 int pci_probe_reset_slot(struct pci_slot *slot) 5373 { 5374 return pci_slot_reset(slot, 1); 5375 } 5376 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5377 5378 /** 5379 * __pci_reset_slot - Try to reset a PCI slot 5380 * @slot: PCI slot to reset 5381 * 5382 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5383 * independent of other slots. For instance, some slots may support slot power 5384 * control. In the case of a 1:1 bus to slot architecture, this function may 5385 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5386 * Generally a slot reset should be attempted before a bus reset. All of the 5387 * function of the slot and any subordinate buses behind the slot are reset 5388 * through this function. PCI config space of all devices in the slot and 5389 * behind the slot is saved before and restored after reset. 5390 * 5391 * Same as above except return -EAGAIN if the slot cannot be locked 5392 */ 5393 static int __pci_reset_slot(struct pci_slot *slot) 5394 { 5395 int rc; 5396 5397 rc = pci_slot_reset(slot, 1); 5398 if (rc) 5399 return rc; 5400 5401 if (pci_slot_trylock(slot)) { 5402 pci_slot_save_and_disable_locked(slot); 5403 might_sleep(); 5404 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5405 pci_slot_restore_locked(slot); 5406 pci_slot_unlock(slot); 5407 } else 5408 rc = -EAGAIN; 5409 5410 return rc; 5411 } 5412 5413 static int pci_bus_reset(struct pci_bus *bus, int probe) 5414 { 5415 int ret; 5416 5417 if (!bus->self || !pci_bus_resetable(bus)) 5418 return -ENOTTY; 5419 5420 if (probe) 5421 return 0; 5422 5423 pci_bus_lock(bus); 5424 5425 might_sleep(); 5426 5427 ret = pci_bridge_secondary_bus_reset(bus->self); 5428 5429 pci_bus_unlock(bus); 5430 5431 return ret; 5432 } 5433 5434 /** 5435 * pci_bus_error_reset - reset the bridge's subordinate bus 5436 * @bridge: The parent device that connects to the bus to reset 5437 * 5438 * This function will first try to reset the slots on this bus if the method is 5439 * available. If slot reset fails or is not available, this will fall back to a 5440 * secondary bus reset. 5441 */ 5442 int pci_bus_error_reset(struct pci_dev *bridge) 5443 { 5444 struct pci_bus *bus = bridge->subordinate; 5445 struct pci_slot *slot; 5446 5447 if (!bus) 5448 return -ENOTTY; 5449 5450 mutex_lock(&pci_slot_mutex); 5451 if (list_empty(&bus->slots)) 5452 goto bus_reset; 5453 5454 list_for_each_entry(slot, &bus->slots, list) 5455 if (pci_probe_reset_slot(slot)) 5456 goto bus_reset; 5457 5458 list_for_each_entry(slot, &bus->slots, list) 5459 if (pci_slot_reset(slot, 0)) 5460 goto bus_reset; 5461 5462 mutex_unlock(&pci_slot_mutex); 5463 return 0; 5464 bus_reset: 5465 mutex_unlock(&pci_slot_mutex); 5466 return pci_bus_reset(bridge->subordinate, 0); 5467 } 5468 5469 /** 5470 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5471 * @bus: PCI bus to probe 5472 * 5473 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5474 */ 5475 int pci_probe_reset_bus(struct pci_bus *bus) 5476 { 5477 return pci_bus_reset(bus, 1); 5478 } 5479 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5480 5481 /** 5482 * __pci_reset_bus - Try to reset a PCI bus 5483 * @bus: top level PCI bus to reset 5484 * 5485 * Same as above except return -EAGAIN if the bus cannot be locked 5486 */ 5487 static int __pci_reset_bus(struct pci_bus *bus) 5488 { 5489 int rc; 5490 5491 rc = pci_bus_reset(bus, 1); 5492 if (rc) 5493 return rc; 5494 5495 if (pci_bus_trylock(bus)) { 5496 pci_bus_save_and_disable_locked(bus); 5497 might_sleep(); 5498 rc = pci_bridge_secondary_bus_reset(bus->self); 5499 pci_bus_restore_locked(bus); 5500 pci_bus_unlock(bus); 5501 } else 5502 rc = -EAGAIN; 5503 5504 return rc; 5505 } 5506 5507 /** 5508 * pci_reset_bus - Try to reset a PCI bus 5509 * @pdev: top level PCI device to reset via slot/bus 5510 * 5511 * Same as above except return -EAGAIN if the bus cannot be locked 5512 */ 5513 int pci_reset_bus(struct pci_dev *pdev) 5514 { 5515 return (!pci_probe_reset_slot(pdev->slot)) ? 5516 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5517 } 5518 EXPORT_SYMBOL_GPL(pci_reset_bus); 5519 5520 /** 5521 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5522 * @dev: PCI device to query 5523 * 5524 * Returns mmrbc: maximum designed memory read count in bytes or 5525 * appropriate error value. 5526 */ 5527 int pcix_get_max_mmrbc(struct pci_dev *dev) 5528 { 5529 int cap; 5530 u32 stat; 5531 5532 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5533 if (!cap) 5534 return -EINVAL; 5535 5536 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5537 return -EINVAL; 5538 5539 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5540 } 5541 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5542 5543 /** 5544 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5545 * @dev: PCI device to query 5546 * 5547 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5548 * value. 5549 */ 5550 int pcix_get_mmrbc(struct pci_dev *dev) 5551 { 5552 int cap; 5553 u16 cmd; 5554 5555 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5556 if (!cap) 5557 return -EINVAL; 5558 5559 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5560 return -EINVAL; 5561 5562 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5563 } 5564 EXPORT_SYMBOL(pcix_get_mmrbc); 5565 5566 /** 5567 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5568 * @dev: PCI device to query 5569 * @mmrbc: maximum memory read count in bytes 5570 * valid values are 512, 1024, 2048, 4096 5571 * 5572 * If possible sets maximum memory read byte count, some bridges have errata 5573 * that prevent this. 5574 */ 5575 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5576 { 5577 int cap; 5578 u32 stat, v, o; 5579 u16 cmd; 5580 5581 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5582 return -EINVAL; 5583 5584 v = ffs(mmrbc) - 10; 5585 5586 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5587 if (!cap) 5588 return -EINVAL; 5589 5590 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5591 return -EINVAL; 5592 5593 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5594 return -E2BIG; 5595 5596 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5597 return -EINVAL; 5598 5599 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5600 if (o != v) { 5601 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5602 return -EIO; 5603 5604 cmd &= ~PCI_X_CMD_MAX_READ; 5605 cmd |= v << 2; 5606 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5607 return -EIO; 5608 } 5609 return 0; 5610 } 5611 EXPORT_SYMBOL(pcix_set_mmrbc); 5612 5613 /** 5614 * pcie_get_readrq - get PCI Express read request size 5615 * @dev: PCI device to query 5616 * 5617 * Returns maximum memory read request in bytes or appropriate error value. 5618 */ 5619 int pcie_get_readrq(struct pci_dev *dev) 5620 { 5621 u16 ctl; 5622 5623 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5624 5625 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5626 } 5627 EXPORT_SYMBOL(pcie_get_readrq); 5628 5629 /** 5630 * pcie_set_readrq - set PCI Express maximum memory read request 5631 * @dev: PCI device to query 5632 * @rq: maximum memory read count in bytes 5633 * valid values are 128, 256, 512, 1024, 2048, 4096 5634 * 5635 * If possible sets maximum memory read request in bytes 5636 */ 5637 int pcie_set_readrq(struct pci_dev *dev, int rq) 5638 { 5639 u16 v; 5640 5641 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5642 return -EINVAL; 5643 5644 /* 5645 * If using the "performance" PCIe config, we clamp the read rq 5646 * size to the max packet size to keep the host bridge from 5647 * generating requests larger than we can cope with. 5648 */ 5649 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5650 int mps = pcie_get_mps(dev); 5651 5652 if (mps < rq) 5653 rq = mps; 5654 } 5655 5656 v = (ffs(rq) - 8) << 12; 5657 5658 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5659 PCI_EXP_DEVCTL_READRQ, v); 5660 } 5661 EXPORT_SYMBOL(pcie_set_readrq); 5662 5663 /** 5664 * pcie_get_mps - get PCI Express maximum payload size 5665 * @dev: PCI device to query 5666 * 5667 * Returns maximum payload size in bytes 5668 */ 5669 int pcie_get_mps(struct pci_dev *dev) 5670 { 5671 u16 ctl; 5672 5673 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5674 5675 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5676 } 5677 EXPORT_SYMBOL(pcie_get_mps); 5678 5679 /** 5680 * pcie_set_mps - set PCI Express maximum payload size 5681 * @dev: PCI device to query 5682 * @mps: maximum payload size in bytes 5683 * valid values are 128, 256, 512, 1024, 2048, 4096 5684 * 5685 * If possible sets maximum payload size 5686 */ 5687 int pcie_set_mps(struct pci_dev *dev, int mps) 5688 { 5689 u16 v; 5690 5691 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5692 return -EINVAL; 5693 5694 v = ffs(mps) - 8; 5695 if (v > dev->pcie_mpss) 5696 return -EINVAL; 5697 v <<= 5; 5698 5699 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5700 PCI_EXP_DEVCTL_PAYLOAD, v); 5701 } 5702 EXPORT_SYMBOL(pcie_set_mps); 5703 5704 /** 5705 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5706 * device and its bandwidth limitation 5707 * @dev: PCI device to query 5708 * @limiting_dev: storage for device causing the bandwidth limitation 5709 * @speed: storage for speed of limiting device 5710 * @width: storage for width of limiting device 5711 * 5712 * Walk up the PCI device chain and find the point where the minimum 5713 * bandwidth is available. Return the bandwidth available there and (if 5714 * limiting_dev, speed, and width pointers are supplied) information about 5715 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5716 * raw bandwidth. 5717 */ 5718 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5719 enum pci_bus_speed *speed, 5720 enum pcie_link_width *width) 5721 { 5722 u16 lnksta; 5723 enum pci_bus_speed next_speed; 5724 enum pcie_link_width next_width; 5725 u32 bw, next_bw; 5726 5727 if (speed) 5728 *speed = PCI_SPEED_UNKNOWN; 5729 if (width) 5730 *width = PCIE_LNK_WIDTH_UNKNOWN; 5731 5732 bw = 0; 5733 5734 while (dev) { 5735 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5736 5737 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5738 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5739 PCI_EXP_LNKSTA_NLW_SHIFT; 5740 5741 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5742 5743 /* Check if current device limits the total bandwidth */ 5744 if (!bw || next_bw <= bw) { 5745 bw = next_bw; 5746 5747 if (limiting_dev) 5748 *limiting_dev = dev; 5749 if (speed) 5750 *speed = next_speed; 5751 if (width) 5752 *width = next_width; 5753 } 5754 5755 dev = pci_upstream_bridge(dev); 5756 } 5757 5758 return bw; 5759 } 5760 EXPORT_SYMBOL(pcie_bandwidth_available); 5761 5762 /** 5763 * pcie_get_speed_cap - query for the PCI device's link speed capability 5764 * @dev: PCI device to query 5765 * 5766 * Query the PCI device speed capability. Return the maximum link speed 5767 * supported by the device. 5768 */ 5769 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5770 { 5771 u32 lnkcap2, lnkcap; 5772 5773 /* 5774 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5775 * implementation note there recommends using the Supported Link 5776 * Speeds Vector in Link Capabilities 2 when supported. 5777 * 5778 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5779 * should use the Supported Link Speeds field in Link Capabilities, 5780 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5781 */ 5782 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5783 if (lnkcap2) { /* PCIe r3.0-compliant */ 5784 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB) 5785 return PCIE_SPEED_32_0GT; 5786 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5787 return PCIE_SPEED_16_0GT; 5788 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5789 return PCIE_SPEED_8_0GT; 5790 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5791 return PCIE_SPEED_5_0GT; 5792 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5793 return PCIE_SPEED_2_5GT; 5794 return PCI_SPEED_UNKNOWN; 5795 } 5796 5797 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5798 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5799 return PCIE_SPEED_5_0GT; 5800 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5801 return PCIE_SPEED_2_5GT; 5802 5803 return PCI_SPEED_UNKNOWN; 5804 } 5805 EXPORT_SYMBOL(pcie_get_speed_cap); 5806 5807 /** 5808 * pcie_get_width_cap - query for the PCI device's link width capability 5809 * @dev: PCI device to query 5810 * 5811 * Query the PCI device width capability. Return the maximum link width 5812 * supported by the device. 5813 */ 5814 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5815 { 5816 u32 lnkcap; 5817 5818 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5819 if (lnkcap) 5820 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5821 5822 return PCIE_LNK_WIDTH_UNKNOWN; 5823 } 5824 EXPORT_SYMBOL(pcie_get_width_cap); 5825 5826 /** 5827 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5828 * @dev: PCI device 5829 * @speed: storage for link speed 5830 * @width: storage for link width 5831 * 5832 * Calculate a PCI device's link bandwidth by querying for its link speed 5833 * and width, multiplying them, and applying encoding overhead. The result 5834 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5835 */ 5836 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5837 enum pcie_link_width *width) 5838 { 5839 *speed = pcie_get_speed_cap(dev); 5840 *width = pcie_get_width_cap(dev); 5841 5842 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5843 return 0; 5844 5845 return *width * PCIE_SPEED2MBS_ENC(*speed); 5846 } 5847 5848 /** 5849 * __pcie_print_link_status - Report the PCI device's link speed and width 5850 * @dev: PCI device to query 5851 * @verbose: Print info even when enough bandwidth is available 5852 * 5853 * If the available bandwidth at the device is less than the device is 5854 * capable of, report the device's maximum possible bandwidth and the 5855 * upstream link that limits its performance. If @verbose, always print 5856 * the available bandwidth, even if the device isn't constrained. 5857 */ 5858 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5859 { 5860 enum pcie_link_width width, width_cap; 5861 enum pci_bus_speed speed, speed_cap; 5862 struct pci_dev *limiting_dev = NULL; 5863 u32 bw_avail, bw_cap; 5864 5865 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5866 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5867 5868 if (bw_avail >= bw_cap && verbose) 5869 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5870 bw_cap / 1000, bw_cap % 1000, 5871 PCIE_SPEED2STR(speed_cap), width_cap); 5872 else if (bw_avail < bw_cap) 5873 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5874 bw_avail / 1000, bw_avail % 1000, 5875 PCIE_SPEED2STR(speed), width, 5876 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5877 bw_cap / 1000, bw_cap % 1000, 5878 PCIE_SPEED2STR(speed_cap), width_cap); 5879 } 5880 5881 /** 5882 * pcie_print_link_status - Report the PCI device's link speed and width 5883 * @dev: PCI device to query 5884 * 5885 * Report the available bandwidth at the device. 5886 */ 5887 void pcie_print_link_status(struct pci_dev *dev) 5888 { 5889 __pcie_print_link_status(dev, true); 5890 } 5891 EXPORT_SYMBOL(pcie_print_link_status); 5892 5893 /** 5894 * pci_select_bars - Make BAR mask from the type of resource 5895 * @dev: the PCI device for which BAR mask is made 5896 * @flags: resource type mask to be selected 5897 * 5898 * This helper routine makes bar mask from the type of resource. 5899 */ 5900 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5901 { 5902 int i, bars = 0; 5903 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5904 if (pci_resource_flags(dev, i) & flags) 5905 bars |= (1 << i); 5906 return bars; 5907 } 5908 EXPORT_SYMBOL(pci_select_bars); 5909 5910 /* Some architectures require additional programming to enable VGA */ 5911 static arch_set_vga_state_t arch_set_vga_state; 5912 5913 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5914 { 5915 arch_set_vga_state = func; /* NULL disables */ 5916 } 5917 5918 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5919 unsigned int command_bits, u32 flags) 5920 { 5921 if (arch_set_vga_state) 5922 return arch_set_vga_state(dev, decode, command_bits, 5923 flags); 5924 return 0; 5925 } 5926 5927 /** 5928 * pci_set_vga_state - set VGA decode state on device and parents if requested 5929 * @dev: the PCI device 5930 * @decode: true = enable decoding, false = disable decoding 5931 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5932 * @flags: traverse ancestors and change bridges 5933 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5934 */ 5935 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5936 unsigned int command_bits, u32 flags) 5937 { 5938 struct pci_bus *bus; 5939 struct pci_dev *bridge; 5940 u16 cmd; 5941 int rc; 5942 5943 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5944 5945 /* ARCH specific VGA enables */ 5946 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5947 if (rc) 5948 return rc; 5949 5950 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5951 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5952 if (decode == true) 5953 cmd |= command_bits; 5954 else 5955 cmd &= ~command_bits; 5956 pci_write_config_word(dev, PCI_COMMAND, cmd); 5957 } 5958 5959 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5960 return 0; 5961 5962 bus = dev->bus; 5963 while (bus) { 5964 bridge = bus->self; 5965 if (bridge) { 5966 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5967 &cmd); 5968 if (decode == true) 5969 cmd |= PCI_BRIDGE_CTL_VGA; 5970 else 5971 cmd &= ~PCI_BRIDGE_CTL_VGA; 5972 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5973 cmd); 5974 } 5975 bus = bus->parent; 5976 } 5977 return 0; 5978 } 5979 5980 #ifdef CONFIG_ACPI 5981 bool pci_pr3_present(struct pci_dev *pdev) 5982 { 5983 struct acpi_device *adev; 5984 5985 if (acpi_disabled) 5986 return false; 5987 5988 adev = ACPI_COMPANION(&pdev->dev); 5989 if (!adev) 5990 return false; 5991 5992 return adev->power.flags.power_resources && 5993 acpi_has_method(adev->handle, "_PR3"); 5994 } 5995 EXPORT_SYMBOL_GPL(pci_pr3_present); 5996 #endif 5997 5998 /** 5999 * pci_add_dma_alias - Add a DMA devfn alias for a device 6000 * @dev: the PCI device for which alias is added 6001 * @devfn: alias slot and function 6002 * 6003 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6004 * which is used to program permissible bus-devfn source addresses for DMA 6005 * requests in an IOMMU. These aliases factor into IOMMU group creation 6006 * and are useful for devices generating DMA requests beyond or different 6007 * from their logical bus-devfn. Examples include device quirks where the 6008 * device simply uses the wrong devfn, as well as non-transparent bridges 6009 * where the alias may be a proxy for devices in another domain. 6010 * 6011 * IOMMU group creation is performed during device discovery or addition, 6012 * prior to any potential DMA mapping and therefore prior to driver probing 6013 * (especially for userspace assigned devices where IOMMU group definition 6014 * cannot be left as a userspace activity). DMA aliases should therefore 6015 * be configured via quirks, such as the PCI fixup header quirk. 6016 */ 6017 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 6018 { 6019 if (!dev->dma_alias_mask) 6020 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL); 6021 if (!dev->dma_alias_mask) { 6022 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6023 return; 6024 } 6025 6026 set_bit(devfn, dev->dma_alias_mask); 6027 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6028 PCI_SLOT(devfn), PCI_FUNC(devfn)); 6029 } 6030 6031 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6032 { 6033 return (dev1->dma_alias_mask && 6034 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6035 (dev2->dma_alias_mask && 6036 test_bit(dev1->devfn, dev2->dma_alias_mask)); 6037 } 6038 6039 bool pci_device_is_present(struct pci_dev *pdev) 6040 { 6041 u32 v; 6042 6043 if (pci_dev_is_disconnected(pdev)) 6044 return false; 6045 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6046 } 6047 EXPORT_SYMBOL_GPL(pci_device_is_present); 6048 6049 void pci_ignore_hotplug(struct pci_dev *dev) 6050 { 6051 struct pci_dev *bridge = dev->bus->self; 6052 6053 dev->ignore_hotplug = 1; 6054 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6055 if (bridge) 6056 bridge->ignore_hotplug = 1; 6057 } 6058 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6059 6060 resource_size_t __weak pcibios_default_alignment(void) 6061 { 6062 return 0; 6063 } 6064 6065 /* 6066 * Arches that don't want to expose struct resource to userland as-is in 6067 * sysfs and /proc can implement their own pci_resource_to_user(). 6068 */ 6069 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6070 const struct resource *rsrc, 6071 resource_size_t *start, resource_size_t *end) 6072 { 6073 *start = rsrc->start; 6074 *end = rsrc->end; 6075 } 6076 6077 static char *resource_alignment_param; 6078 static DEFINE_SPINLOCK(resource_alignment_lock); 6079 6080 /** 6081 * pci_specified_resource_alignment - get resource alignment specified by user. 6082 * @dev: the PCI device to get 6083 * @resize: whether or not to change resources' size when reassigning alignment 6084 * 6085 * RETURNS: Resource alignment if it is specified. 6086 * Zero if it is not specified. 6087 */ 6088 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6089 bool *resize) 6090 { 6091 int align_order, count; 6092 resource_size_t align = pcibios_default_alignment(); 6093 const char *p; 6094 int ret; 6095 6096 spin_lock(&resource_alignment_lock); 6097 p = resource_alignment_param; 6098 if (!p || !*p) 6099 goto out; 6100 if (pci_has_flag(PCI_PROBE_ONLY)) { 6101 align = 0; 6102 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6103 goto out; 6104 } 6105 6106 while (*p) { 6107 count = 0; 6108 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6109 p[count] == '@') { 6110 p += count + 1; 6111 } else { 6112 align_order = -1; 6113 } 6114 6115 ret = pci_dev_str_match(dev, p, &p); 6116 if (ret == 1) { 6117 *resize = true; 6118 if (align_order == -1) 6119 align = PAGE_SIZE; 6120 else 6121 align = 1 << align_order; 6122 break; 6123 } else if (ret < 0) { 6124 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6125 p); 6126 break; 6127 } 6128 6129 if (*p != ';' && *p != ',') { 6130 /* End of param or invalid format */ 6131 break; 6132 } 6133 p++; 6134 } 6135 out: 6136 spin_unlock(&resource_alignment_lock); 6137 return align; 6138 } 6139 6140 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6141 resource_size_t align, bool resize) 6142 { 6143 struct resource *r = &dev->resource[bar]; 6144 resource_size_t size; 6145 6146 if (!(r->flags & IORESOURCE_MEM)) 6147 return; 6148 6149 if (r->flags & IORESOURCE_PCI_FIXED) { 6150 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6151 bar, r, (unsigned long long)align); 6152 return; 6153 } 6154 6155 size = resource_size(r); 6156 if (size >= align) 6157 return; 6158 6159 /* 6160 * Increase the alignment of the resource. There are two ways we 6161 * can do this: 6162 * 6163 * 1) Increase the size of the resource. BARs are aligned on their 6164 * size, so when we reallocate space for this resource, we'll 6165 * allocate it with the larger alignment. This also prevents 6166 * assignment of any other BARs inside the alignment region, so 6167 * if we're requesting page alignment, this means no other BARs 6168 * will share the page. 6169 * 6170 * The disadvantage is that this makes the resource larger than 6171 * the hardware BAR, which may break drivers that compute things 6172 * based on the resource size, e.g., to find registers at a 6173 * fixed offset before the end of the BAR. 6174 * 6175 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6176 * set r->start to the desired alignment. By itself this 6177 * doesn't prevent other BARs being put inside the alignment 6178 * region, but if we realign *every* resource of every device in 6179 * the system, none of them will share an alignment region. 6180 * 6181 * When the user has requested alignment for only some devices via 6182 * the "pci=resource_alignment" argument, "resize" is true and we 6183 * use the first method. Otherwise we assume we're aligning all 6184 * devices and we use the second. 6185 */ 6186 6187 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6188 bar, r, (unsigned long long)align); 6189 6190 if (resize) { 6191 r->start = 0; 6192 r->end = align - 1; 6193 } else { 6194 r->flags &= ~IORESOURCE_SIZEALIGN; 6195 r->flags |= IORESOURCE_STARTALIGN; 6196 r->start = align; 6197 r->end = r->start + size - 1; 6198 } 6199 r->flags |= IORESOURCE_UNSET; 6200 } 6201 6202 /* 6203 * This function disables memory decoding and releases memory resources 6204 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6205 * It also rounds up size to specified alignment. 6206 * Later on, the kernel will assign page-aligned memory resource back 6207 * to the device. 6208 */ 6209 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6210 { 6211 int i; 6212 struct resource *r; 6213 resource_size_t align; 6214 u16 command; 6215 bool resize = false; 6216 6217 /* 6218 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6219 * 3.4.1.11. Their resources are allocated from the space 6220 * described by the VF BARx register in the PF's SR-IOV capability. 6221 * We can't influence their alignment here. 6222 */ 6223 if (dev->is_virtfn) 6224 return; 6225 6226 /* check if specified PCI is target device to reassign */ 6227 align = pci_specified_resource_alignment(dev, &resize); 6228 if (!align) 6229 return; 6230 6231 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6232 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6233 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6234 return; 6235 } 6236 6237 pci_read_config_word(dev, PCI_COMMAND, &command); 6238 command &= ~PCI_COMMAND_MEMORY; 6239 pci_write_config_word(dev, PCI_COMMAND, command); 6240 6241 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6242 pci_request_resource_alignment(dev, i, align, resize); 6243 6244 /* 6245 * Need to disable bridge's resource window, 6246 * to enable the kernel to reassign new resource 6247 * window later on. 6248 */ 6249 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6250 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6251 r = &dev->resource[i]; 6252 if (!(r->flags & IORESOURCE_MEM)) 6253 continue; 6254 r->flags |= IORESOURCE_UNSET; 6255 r->end = resource_size(r) - 1; 6256 r->start = 0; 6257 } 6258 pci_disable_bridge_window(dev); 6259 } 6260 } 6261 6262 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6263 { 6264 size_t count = 0; 6265 6266 spin_lock(&resource_alignment_lock); 6267 if (resource_alignment_param) 6268 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6269 spin_unlock(&resource_alignment_lock); 6270 6271 /* 6272 * When set by the command line, resource_alignment_param will not 6273 * have a trailing line feed, which is ugly. So conditionally add 6274 * it here. 6275 */ 6276 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6277 buf[count - 1] = '\n'; 6278 buf[count++] = 0; 6279 } 6280 6281 return count; 6282 } 6283 6284 static ssize_t resource_alignment_store(struct bus_type *bus, 6285 const char *buf, size_t count) 6286 { 6287 char *param = kstrndup(buf, count, GFP_KERNEL); 6288 6289 if (!param) 6290 return -ENOMEM; 6291 6292 spin_lock(&resource_alignment_lock); 6293 kfree(resource_alignment_param); 6294 resource_alignment_param = param; 6295 spin_unlock(&resource_alignment_lock); 6296 return count; 6297 } 6298 6299 static BUS_ATTR_RW(resource_alignment); 6300 6301 static int __init pci_resource_alignment_sysfs_init(void) 6302 { 6303 return bus_create_file(&pci_bus_type, 6304 &bus_attr_resource_alignment); 6305 } 6306 late_initcall(pci_resource_alignment_sysfs_init); 6307 6308 static void pci_no_domains(void) 6309 { 6310 #ifdef CONFIG_PCI_DOMAINS 6311 pci_domains_supported = 0; 6312 #endif 6313 } 6314 6315 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6316 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6317 6318 static int pci_get_new_domain_nr(void) 6319 { 6320 return atomic_inc_return(&__domain_nr); 6321 } 6322 6323 static int of_pci_bus_find_domain_nr(struct device *parent) 6324 { 6325 static int use_dt_domains = -1; 6326 int domain = -1; 6327 6328 if (parent) 6329 domain = of_get_pci_domain_nr(parent->of_node); 6330 6331 /* 6332 * Check DT domain and use_dt_domains values. 6333 * 6334 * If DT domain property is valid (domain >= 0) and 6335 * use_dt_domains != 0, the DT assignment is valid since this means 6336 * we have not previously allocated a domain number by using 6337 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6338 * 1, to indicate that we have just assigned a domain number from 6339 * DT. 6340 * 6341 * If DT domain property value is not valid (ie domain < 0), and we 6342 * have not previously assigned a domain number from DT 6343 * (use_dt_domains != 1) we should assign a domain number by 6344 * using the: 6345 * 6346 * pci_get_new_domain_nr() 6347 * 6348 * API and update the use_dt_domains value to keep track of method we 6349 * are using to assign domain numbers (use_dt_domains = 0). 6350 * 6351 * All other combinations imply we have a platform that is trying 6352 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6353 * which is a recipe for domain mishandling and it is prevented by 6354 * invalidating the domain value (domain = -1) and printing a 6355 * corresponding error. 6356 */ 6357 if (domain >= 0 && use_dt_domains) { 6358 use_dt_domains = 1; 6359 } else if (domain < 0 && use_dt_domains != 1) { 6360 use_dt_domains = 0; 6361 domain = pci_get_new_domain_nr(); 6362 } else { 6363 if (parent) 6364 pr_err("Node %pOF has ", parent->of_node); 6365 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6366 domain = -1; 6367 } 6368 6369 return domain; 6370 } 6371 6372 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6373 { 6374 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6375 acpi_pci_bus_find_domain_nr(bus); 6376 } 6377 #endif 6378 6379 /** 6380 * pci_ext_cfg_avail - can we access extended PCI config space? 6381 * 6382 * Returns 1 if we can access PCI extended config space (offsets 6383 * greater than 0xff). This is the default implementation. Architecture 6384 * implementations can override this. 6385 */ 6386 int __weak pci_ext_cfg_avail(void) 6387 { 6388 return 1; 6389 } 6390 6391 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6392 { 6393 } 6394 EXPORT_SYMBOL(pci_fixup_cardbus); 6395 6396 static int __init pci_setup(char *str) 6397 { 6398 while (str) { 6399 char *k = strchr(str, ','); 6400 if (k) 6401 *k++ = 0; 6402 if (*str && (str = pcibios_setup(str)) && *str) { 6403 if (!strcmp(str, "nomsi")) { 6404 pci_no_msi(); 6405 } else if (!strncmp(str, "noats", 5)) { 6406 pr_info("PCIe: ATS is disabled\n"); 6407 pcie_ats_disabled = true; 6408 } else if (!strcmp(str, "noaer")) { 6409 pci_no_aer(); 6410 } else if (!strcmp(str, "earlydump")) { 6411 pci_early_dump = true; 6412 } else if (!strncmp(str, "realloc=", 8)) { 6413 pci_realloc_get_opt(str + 8); 6414 } else if (!strncmp(str, "realloc", 7)) { 6415 pci_realloc_get_opt("on"); 6416 } else if (!strcmp(str, "nodomains")) { 6417 pci_no_domains(); 6418 } else if (!strncmp(str, "noari", 5)) { 6419 pcie_ari_disabled = true; 6420 } else if (!strncmp(str, "cbiosize=", 9)) { 6421 pci_cardbus_io_size = memparse(str + 9, &str); 6422 } else if (!strncmp(str, "cbmemsize=", 10)) { 6423 pci_cardbus_mem_size = memparse(str + 10, &str); 6424 } else if (!strncmp(str, "resource_alignment=", 19)) { 6425 resource_alignment_param = str + 19; 6426 } else if (!strncmp(str, "ecrc=", 5)) { 6427 pcie_ecrc_get_policy(str + 5); 6428 } else if (!strncmp(str, "hpiosize=", 9)) { 6429 pci_hotplug_io_size = memparse(str + 9, &str); 6430 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6431 pci_hotplug_mmio_size = memparse(str + 11, &str); 6432 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6433 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6434 } else if (!strncmp(str, "hpmemsize=", 10)) { 6435 pci_hotplug_mmio_size = memparse(str + 10, &str); 6436 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6437 } else if (!strncmp(str, "hpbussize=", 10)) { 6438 pci_hotplug_bus_size = 6439 simple_strtoul(str + 10, &str, 0); 6440 if (pci_hotplug_bus_size > 0xff) 6441 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6442 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6443 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6444 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6445 pcie_bus_config = PCIE_BUS_SAFE; 6446 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6447 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6448 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6449 pcie_bus_config = PCIE_BUS_PEER2PEER; 6450 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6451 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6452 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6453 disable_acs_redir_param = str + 18; 6454 } else { 6455 pr_err("PCI: Unknown option `%s'\n", str); 6456 } 6457 } 6458 str = k; 6459 } 6460 return 0; 6461 } 6462 early_param("pci", pci_setup); 6463 6464 /* 6465 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6466 * in pci_setup(), above, to point to data in the __initdata section which 6467 * will be freed after the init sequence is complete. We can't allocate memory 6468 * in pci_setup() because some architectures do not have any memory allocation 6469 * service available during an early_param() call. So we allocate memory and 6470 * copy the variable here before the init section is freed. 6471 * 6472 */ 6473 static int __init pci_realloc_setup_params(void) 6474 { 6475 resource_alignment_param = kstrdup(resource_alignment_param, 6476 GFP_KERNEL); 6477 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6478 6479 return 0; 6480 } 6481 pure_initcall(pci_realloc_setup_params); 6482