1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <asm-generic/pci-bridge.h> 26 #include <asm/setup.h> 27 #include "pci.h" 28 29 const char *pci_power_names[] = { 30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 31 }; 32 EXPORT_SYMBOL_GPL(pci_power_names); 33 34 int isa_dma_bridge_buggy; 35 EXPORT_SYMBOL(isa_dma_bridge_buggy); 36 37 int pci_pci_problems; 38 EXPORT_SYMBOL(pci_pci_problems); 39 40 unsigned int pci_pm_d3_delay; 41 42 static void pci_pme_list_scan(struct work_struct *work); 43 44 static LIST_HEAD(pci_pme_list); 45 static DEFINE_MUTEX(pci_pme_list_mutex); 46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 47 48 struct pci_pme_device { 49 struct list_head list; 50 struct pci_dev *dev; 51 }; 52 53 #define PME_TIMEOUT 1000 /* How long between PME checks */ 54 55 static void pci_dev_d3_sleep(struct pci_dev *dev) 56 { 57 unsigned int delay = dev->d3_delay; 58 59 if (delay < pci_pm_d3_delay) 60 delay = pci_pm_d3_delay; 61 62 msleep(delay); 63 } 64 65 #ifdef CONFIG_PCI_DOMAINS 66 int pci_domains_supported = 1; 67 #endif 68 69 #define DEFAULT_CARDBUS_IO_SIZE (256) 70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 74 75 #define DEFAULT_HOTPLUG_IO_SIZE (256) 76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 78 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 80 81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 82 83 /* 84 * The default CLS is used if arch didn't set CLS explicitly and not 85 * all pci devices agree on the same value. Arch can override either 86 * the dfl or actual value as it sees fit. Don't forget this is 87 * measured in 32-bit words, not bytes. 88 */ 89 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2; 90 u8 pci_cache_line_size; 91 92 /* 93 * If we set up a device for bus mastering, we need to check the latency 94 * timer as certain BIOSes forget to set it properly. 95 */ 96 unsigned int pcibios_max_latency = 255; 97 98 /* If set, the PCIe ARI capability will not be used. */ 99 static bool pcie_ari_disabled; 100 101 /** 102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 103 * @bus: pointer to PCI bus structure to search 104 * 105 * Given a PCI bus, returns the highest PCI bus number present in the set 106 * including the given PCI bus and its list of child PCI buses. 107 */ 108 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 109 { 110 struct list_head *tmp; 111 unsigned char max, n; 112 113 max = bus->subordinate; 114 list_for_each(tmp, &bus->children) { 115 n = pci_bus_max_busnr(pci_bus_b(tmp)); 116 if(n > max) 117 max = n; 118 } 119 return max; 120 } 121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 122 123 #ifdef CONFIG_HAS_IOMEM 124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 125 { 126 /* 127 * Make sure the BAR is actually a memory resource, not an IO resource 128 */ 129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 130 WARN_ON(1); 131 return NULL; 132 } 133 return ioremap_nocache(pci_resource_start(pdev, bar), 134 pci_resource_len(pdev, bar)); 135 } 136 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 137 #endif 138 139 #if 0 140 /** 141 * pci_max_busnr - returns maximum PCI bus number 142 * 143 * Returns the highest PCI bus number present in the system global list of 144 * PCI buses. 145 */ 146 unsigned char __devinit 147 pci_max_busnr(void) 148 { 149 struct pci_bus *bus = NULL; 150 unsigned char max, n; 151 152 max = 0; 153 while ((bus = pci_find_next_bus(bus)) != NULL) { 154 n = pci_bus_max_busnr(bus); 155 if(n > max) 156 max = n; 157 } 158 return max; 159 } 160 161 #endif /* 0 */ 162 163 #define PCI_FIND_CAP_TTL 48 164 165 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 166 u8 pos, int cap, int *ttl) 167 { 168 u8 id; 169 170 while ((*ttl)--) { 171 pci_bus_read_config_byte(bus, devfn, pos, &pos); 172 if (pos < 0x40) 173 break; 174 pos &= ~3; 175 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 176 &id); 177 if (id == 0xff) 178 break; 179 if (id == cap) 180 return pos; 181 pos += PCI_CAP_LIST_NEXT; 182 } 183 return 0; 184 } 185 186 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 187 u8 pos, int cap) 188 { 189 int ttl = PCI_FIND_CAP_TTL; 190 191 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 192 } 193 194 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 195 { 196 return __pci_find_next_cap(dev->bus, dev->devfn, 197 pos + PCI_CAP_LIST_NEXT, cap); 198 } 199 EXPORT_SYMBOL_GPL(pci_find_next_capability); 200 201 static int __pci_bus_find_cap_start(struct pci_bus *bus, 202 unsigned int devfn, u8 hdr_type) 203 { 204 u16 status; 205 206 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 207 if (!(status & PCI_STATUS_CAP_LIST)) 208 return 0; 209 210 switch (hdr_type) { 211 case PCI_HEADER_TYPE_NORMAL: 212 case PCI_HEADER_TYPE_BRIDGE: 213 return PCI_CAPABILITY_LIST; 214 case PCI_HEADER_TYPE_CARDBUS: 215 return PCI_CB_CAPABILITY_LIST; 216 default: 217 return 0; 218 } 219 220 return 0; 221 } 222 223 /** 224 * pci_find_capability - query for devices' capabilities 225 * @dev: PCI device to query 226 * @cap: capability code 227 * 228 * Tell if a device supports a given PCI capability. 229 * Returns the address of the requested capability structure within the 230 * device's PCI configuration space or 0 in case the device does not 231 * support it. Possible values for @cap: 232 * 233 * %PCI_CAP_ID_PM Power Management 234 * %PCI_CAP_ID_AGP Accelerated Graphics Port 235 * %PCI_CAP_ID_VPD Vital Product Data 236 * %PCI_CAP_ID_SLOTID Slot Identification 237 * %PCI_CAP_ID_MSI Message Signalled Interrupts 238 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 239 * %PCI_CAP_ID_PCIX PCI-X 240 * %PCI_CAP_ID_EXP PCI Express 241 */ 242 int pci_find_capability(struct pci_dev *dev, int cap) 243 { 244 int pos; 245 246 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 247 if (pos) 248 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 249 250 return pos; 251 } 252 253 /** 254 * pci_bus_find_capability - query for devices' capabilities 255 * @bus: the PCI bus to query 256 * @devfn: PCI device to query 257 * @cap: capability code 258 * 259 * Like pci_find_capability() but works for pci devices that do not have a 260 * pci_dev structure set up yet. 261 * 262 * Returns the address of the requested capability structure within the 263 * device's PCI configuration space or 0 in case the device does not 264 * support it. 265 */ 266 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 267 { 268 int pos; 269 u8 hdr_type; 270 271 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 272 273 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 274 if (pos) 275 pos = __pci_find_next_cap(bus, devfn, pos, cap); 276 277 return pos; 278 } 279 280 /** 281 * pci_find_ext_capability - Find an extended capability 282 * @dev: PCI device to query 283 * @cap: capability code 284 * 285 * Returns the address of the requested extended capability structure 286 * within the device's PCI configuration space or 0 if the device does 287 * not support it. Possible values for @cap: 288 * 289 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 290 * %PCI_EXT_CAP_ID_VC Virtual Channel 291 * %PCI_EXT_CAP_ID_DSN Device Serial Number 292 * %PCI_EXT_CAP_ID_PWR Power Budgeting 293 */ 294 int pci_find_ext_capability(struct pci_dev *dev, int cap) 295 { 296 u32 header; 297 int ttl; 298 int pos = PCI_CFG_SPACE_SIZE; 299 300 /* minimum 8 bytes per capability */ 301 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 302 303 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 304 return 0; 305 306 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 307 return 0; 308 309 /* 310 * If we have no capabilities, this is indicated by cap ID, 311 * cap version and next pointer all being 0. 312 */ 313 if (header == 0) 314 return 0; 315 316 while (ttl-- > 0) { 317 if (PCI_EXT_CAP_ID(header) == cap) 318 return pos; 319 320 pos = PCI_EXT_CAP_NEXT(header); 321 if (pos < PCI_CFG_SPACE_SIZE) 322 break; 323 324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 325 break; 326 } 327 328 return 0; 329 } 330 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 331 332 /** 333 * pci_bus_find_ext_capability - find an extended capability 334 * @bus: the PCI bus to query 335 * @devfn: PCI device to query 336 * @cap: capability code 337 * 338 * Like pci_find_ext_capability() but works for pci devices that do not have a 339 * pci_dev structure set up yet. 340 * 341 * Returns the address of the requested capability structure within the 342 * device's PCI configuration space or 0 in case the device does not 343 * support it. 344 */ 345 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn, 346 int cap) 347 { 348 u32 header; 349 int ttl; 350 int pos = PCI_CFG_SPACE_SIZE; 351 352 /* minimum 8 bytes per capability */ 353 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 354 355 if (!pci_bus_read_config_dword(bus, devfn, pos, &header)) 356 return 0; 357 if (header == 0xffffffff || header == 0) 358 return 0; 359 360 while (ttl-- > 0) { 361 if (PCI_EXT_CAP_ID(header) == cap) 362 return pos; 363 364 pos = PCI_EXT_CAP_NEXT(header); 365 if (pos < PCI_CFG_SPACE_SIZE) 366 break; 367 368 if (!pci_bus_read_config_dword(bus, devfn, pos, &header)) 369 break; 370 } 371 372 return 0; 373 } 374 375 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 376 { 377 int rc, ttl = PCI_FIND_CAP_TTL; 378 u8 cap, mask; 379 380 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 381 mask = HT_3BIT_CAP_MASK; 382 else 383 mask = HT_5BIT_CAP_MASK; 384 385 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 386 PCI_CAP_ID_HT, &ttl); 387 while (pos) { 388 rc = pci_read_config_byte(dev, pos + 3, &cap); 389 if (rc != PCIBIOS_SUCCESSFUL) 390 return 0; 391 392 if ((cap & mask) == ht_cap) 393 return pos; 394 395 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 396 pos + PCI_CAP_LIST_NEXT, 397 PCI_CAP_ID_HT, &ttl); 398 } 399 400 return 0; 401 } 402 /** 403 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 404 * @dev: PCI device to query 405 * @pos: Position from which to continue searching 406 * @ht_cap: Hypertransport capability code 407 * 408 * To be used in conjunction with pci_find_ht_capability() to search for 409 * all capabilities matching @ht_cap. @pos should always be a value returned 410 * from pci_find_ht_capability(). 411 * 412 * NB. To be 100% safe against broken PCI devices, the caller should take 413 * steps to avoid an infinite loop. 414 */ 415 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 416 { 417 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 418 } 419 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 420 421 /** 422 * pci_find_ht_capability - query a device's Hypertransport capabilities 423 * @dev: PCI device to query 424 * @ht_cap: Hypertransport capability code 425 * 426 * Tell if a device supports a given Hypertransport capability. 427 * Returns an address within the device's PCI configuration space 428 * or 0 in case the device does not support the request capability. 429 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 430 * which has a Hypertransport capability matching @ht_cap. 431 */ 432 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 433 { 434 int pos; 435 436 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 437 if (pos) 438 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 439 440 return pos; 441 } 442 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 443 444 /** 445 * pci_find_parent_resource - return resource region of parent bus of given region 446 * @dev: PCI device structure contains resources to be searched 447 * @res: child resource record for which parent is sought 448 * 449 * For given resource region of given device, return the resource 450 * region of parent bus the given region is contained in or where 451 * it should be allocated from. 452 */ 453 struct resource * 454 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 455 { 456 const struct pci_bus *bus = dev->bus; 457 int i; 458 struct resource *best = NULL, *r; 459 460 pci_bus_for_each_resource(bus, r, i) { 461 if (!r) 462 continue; 463 if (res->start && !(res->start >= r->start && res->end <= r->end)) 464 continue; /* Not contained */ 465 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 466 continue; /* Wrong type */ 467 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 468 return r; /* Exact match */ 469 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */ 470 if (r->flags & IORESOURCE_PREFETCH) 471 continue; 472 /* .. but we can put a prefetchable resource inside a non-prefetchable one */ 473 if (!best) 474 best = r; 475 } 476 return best; 477 } 478 479 /** 480 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 481 * @dev: PCI device to have its BARs restored 482 * 483 * Restore the BAR values for a given device, so as to make it 484 * accessible by its driver. 485 */ 486 static void 487 pci_restore_bars(struct pci_dev *dev) 488 { 489 int i; 490 491 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 492 pci_update_resource(dev, i); 493 } 494 495 static struct pci_platform_pm_ops *pci_platform_pm; 496 497 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 498 { 499 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 500 || !ops->sleep_wake || !ops->can_wakeup) 501 return -EINVAL; 502 pci_platform_pm = ops; 503 return 0; 504 } 505 506 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 507 { 508 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 509 } 510 511 static inline int platform_pci_set_power_state(struct pci_dev *dev, 512 pci_power_t t) 513 { 514 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 515 } 516 517 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 518 { 519 return pci_platform_pm ? 520 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 521 } 522 523 static inline bool platform_pci_can_wakeup(struct pci_dev *dev) 524 { 525 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false; 526 } 527 528 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 529 { 530 return pci_platform_pm ? 531 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 532 } 533 534 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 535 { 536 return pci_platform_pm ? 537 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 538 } 539 540 /** 541 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 542 * given PCI device 543 * @dev: PCI device to handle. 544 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 545 * 546 * RETURN VALUE: 547 * -EINVAL if the requested state is invalid. 548 * -EIO if device does not support PCI PM or its PM capabilities register has a 549 * wrong version, or device doesn't support the requested state. 550 * 0 if device already is in the requested state. 551 * 0 if device's power state has been successfully changed. 552 */ 553 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 554 { 555 u16 pmcsr; 556 bool need_restore = false; 557 558 /* Check if we're already there */ 559 if (dev->current_state == state) 560 return 0; 561 562 if (!dev->pm_cap) 563 return -EIO; 564 565 if (state < PCI_D0 || state > PCI_D3hot) 566 return -EINVAL; 567 568 /* Validate current state: 569 * Can enter D0 from any state, but if we can only go deeper 570 * to sleep if we're already in a low power state 571 */ 572 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 573 && dev->current_state > state) { 574 dev_err(&dev->dev, "invalid power transition " 575 "(from state %d to %d)\n", dev->current_state, state); 576 return -EINVAL; 577 } 578 579 /* check if this device supports the desired state */ 580 if ((state == PCI_D1 && !dev->d1_support) 581 || (state == PCI_D2 && !dev->d2_support)) 582 return -EIO; 583 584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 585 586 /* If we're (effectively) in D3, force entire word to 0. 587 * This doesn't affect PME_Status, disables PME_En, and 588 * sets PowerState to 0. 589 */ 590 switch (dev->current_state) { 591 case PCI_D0: 592 case PCI_D1: 593 case PCI_D2: 594 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 595 pmcsr |= state; 596 break; 597 case PCI_D3hot: 598 case PCI_D3cold: 599 case PCI_UNKNOWN: /* Boot-up */ 600 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 601 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 602 need_restore = true; 603 /* Fall-through: force to D0 */ 604 default: 605 pmcsr = 0; 606 break; 607 } 608 609 /* enter specified state */ 610 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 611 612 /* Mandatory power management transition delays */ 613 /* see PCI PM 1.1 5.6.1 table 18 */ 614 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 615 pci_dev_d3_sleep(dev); 616 else if (state == PCI_D2 || dev->current_state == PCI_D2) 617 udelay(PCI_PM_D2_DELAY); 618 619 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 620 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 621 if (dev->current_state != state && printk_ratelimit()) 622 dev_info(&dev->dev, "Refused to change power state, " 623 "currently in D%d\n", dev->current_state); 624 625 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 626 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 627 * from D3hot to D0 _may_ perform an internal reset, thereby 628 * going to "D0 Uninitialized" rather than "D0 Initialized". 629 * For example, at least some versions of the 3c905B and the 630 * 3c556B exhibit this behaviour. 631 * 632 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 633 * devices in a D3hot state at boot. Consequently, we need to 634 * restore at least the BARs so that the device will be 635 * accessible to its driver. 636 */ 637 if (need_restore) 638 pci_restore_bars(dev); 639 640 if (dev->bus->self) 641 pcie_aspm_pm_state_change(dev->bus->self); 642 643 return 0; 644 } 645 646 /** 647 * pci_update_current_state - Read PCI power state of given device from its 648 * PCI PM registers and cache it 649 * @dev: PCI device to handle. 650 * @state: State to cache in case the device doesn't have the PM capability 651 */ 652 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 653 { 654 if (dev->pm_cap) { 655 u16 pmcsr; 656 657 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 658 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 659 } else { 660 dev->current_state = state; 661 } 662 } 663 664 /** 665 * pci_platform_power_transition - Use platform to change device power state 666 * @dev: PCI device to handle. 667 * @state: State to put the device into. 668 */ 669 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 670 { 671 int error; 672 673 if (platform_pci_power_manageable(dev)) { 674 error = platform_pci_set_power_state(dev, state); 675 if (!error) 676 pci_update_current_state(dev, state); 677 /* Fall back to PCI_D0 if native PM is not supported */ 678 if (!dev->pm_cap) 679 dev->current_state = PCI_D0; 680 } else { 681 error = -ENODEV; 682 /* Fall back to PCI_D0 if native PM is not supported */ 683 if (!dev->pm_cap) 684 dev->current_state = PCI_D0; 685 } 686 687 return error; 688 } 689 690 /** 691 * __pci_start_power_transition - Start power transition of a PCI device 692 * @dev: PCI device to handle. 693 * @state: State to put the device into. 694 */ 695 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 696 { 697 if (state == PCI_D0) 698 pci_platform_power_transition(dev, PCI_D0); 699 } 700 701 /** 702 * __pci_complete_power_transition - Complete power transition of a PCI device 703 * @dev: PCI device to handle. 704 * @state: State to put the device into. 705 * 706 * This function should not be called directly by device drivers. 707 */ 708 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 709 { 710 return state >= PCI_D0 ? 711 pci_platform_power_transition(dev, state) : -EINVAL; 712 } 713 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 714 715 /** 716 * pci_set_power_state - Set the power state of a PCI device 717 * @dev: PCI device to handle. 718 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 719 * 720 * Transition a device to a new power state, using the platform firmware and/or 721 * the device's PCI PM registers. 722 * 723 * RETURN VALUE: 724 * -EINVAL if the requested state is invalid. 725 * -EIO if device does not support PCI PM or its PM capabilities register has a 726 * wrong version, or device doesn't support the requested state. 727 * 0 if device already is in the requested state. 728 * 0 if device's power state has been successfully changed. 729 */ 730 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 731 { 732 int error; 733 734 /* bound the state we're entering */ 735 if (state > PCI_D3hot) 736 state = PCI_D3hot; 737 else if (state < PCI_D0) 738 state = PCI_D0; 739 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 740 /* 741 * If the device or the parent bridge do not support PCI PM, 742 * ignore the request if we're doing anything other than putting 743 * it into D0 (which would only happen on boot). 744 */ 745 return 0; 746 747 __pci_start_power_transition(dev, state); 748 749 /* This device is quirked not to be put into D3, so 750 don't put it in D3 */ 751 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 752 return 0; 753 754 error = pci_raw_set_power_state(dev, state); 755 756 if (!__pci_complete_power_transition(dev, state)) 757 error = 0; 758 /* 759 * When aspm_policy is "powersave" this call ensures 760 * that ASPM is configured. 761 */ 762 if (!error && dev->bus->self) 763 pcie_aspm_powersave_config_link(dev->bus->self); 764 765 return error; 766 } 767 768 /** 769 * pci_choose_state - Choose the power state of a PCI device 770 * @dev: PCI device to be suspended 771 * @state: target sleep state for the whole system. This is the value 772 * that is passed to suspend() function. 773 * 774 * Returns PCI power state suitable for given device and given system 775 * message. 776 */ 777 778 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 779 { 780 pci_power_t ret; 781 782 if (!pci_find_capability(dev, PCI_CAP_ID_PM)) 783 return PCI_D0; 784 785 ret = platform_pci_choose_state(dev); 786 if (ret != PCI_POWER_ERROR) 787 return ret; 788 789 switch (state.event) { 790 case PM_EVENT_ON: 791 return PCI_D0; 792 case PM_EVENT_FREEZE: 793 case PM_EVENT_PRETHAW: 794 /* REVISIT both freeze and pre-thaw "should" use D0 */ 795 case PM_EVENT_SUSPEND: 796 case PM_EVENT_HIBERNATE: 797 return PCI_D3hot; 798 default: 799 dev_info(&dev->dev, "unrecognized suspend event %d\n", 800 state.event); 801 BUG(); 802 } 803 return PCI_D0; 804 } 805 806 EXPORT_SYMBOL(pci_choose_state); 807 808 #define PCI_EXP_SAVE_REGS 7 809 810 #define pcie_cap_has_devctl(type, flags) 1 811 #define pcie_cap_has_lnkctl(type, flags) \ 812 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 813 (type == PCI_EXP_TYPE_ROOT_PORT || \ 814 type == PCI_EXP_TYPE_ENDPOINT || \ 815 type == PCI_EXP_TYPE_LEG_END)) 816 #define pcie_cap_has_sltctl(type, flags) \ 817 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 818 ((type == PCI_EXP_TYPE_ROOT_PORT) || \ 819 (type == PCI_EXP_TYPE_DOWNSTREAM && \ 820 (flags & PCI_EXP_FLAGS_SLOT)))) 821 #define pcie_cap_has_rtctl(type, flags) \ 822 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \ 823 (type == PCI_EXP_TYPE_ROOT_PORT || \ 824 type == PCI_EXP_TYPE_RC_EC)) 825 #define pcie_cap_has_devctl2(type, flags) \ 826 ((flags & PCI_EXP_FLAGS_VERS) > 1) 827 #define pcie_cap_has_lnkctl2(type, flags) \ 828 ((flags & PCI_EXP_FLAGS_VERS) > 1) 829 #define pcie_cap_has_sltctl2(type, flags) \ 830 ((flags & PCI_EXP_FLAGS_VERS) > 1) 831 832 static struct pci_cap_saved_state *pci_find_saved_cap( 833 struct pci_dev *pci_dev, char cap) 834 { 835 struct pci_cap_saved_state *tmp; 836 struct hlist_node *pos; 837 838 hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) { 839 if (tmp->cap.cap_nr == cap) 840 return tmp; 841 } 842 return NULL; 843 } 844 845 static int pci_save_pcie_state(struct pci_dev *dev) 846 { 847 int pos, i = 0; 848 struct pci_cap_saved_state *save_state; 849 u16 *cap; 850 u16 flags; 851 852 pos = pci_pcie_cap(dev); 853 if (!pos) 854 return 0; 855 856 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 857 if (!save_state) { 858 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 859 return -ENOMEM; 860 } 861 cap = (u16 *)&save_state->cap.data[0]; 862 863 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags); 864 865 if (pcie_cap_has_devctl(dev->pcie_type, flags)) 866 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]); 867 if (pcie_cap_has_lnkctl(dev->pcie_type, flags)) 868 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]); 869 if (pcie_cap_has_sltctl(dev->pcie_type, flags)) 870 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]); 871 if (pcie_cap_has_rtctl(dev->pcie_type, flags)) 872 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]); 873 if (pcie_cap_has_devctl2(dev->pcie_type, flags)) 874 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]); 875 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags)) 876 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]); 877 if (pcie_cap_has_sltctl2(dev->pcie_type, flags)) 878 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]); 879 880 return 0; 881 } 882 883 static void pci_restore_pcie_state(struct pci_dev *dev) 884 { 885 int i = 0, pos; 886 struct pci_cap_saved_state *save_state; 887 u16 *cap; 888 u16 flags; 889 890 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 891 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 892 if (!save_state || pos <= 0) 893 return; 894 cap = (u16 *)&save_state->cap.data[0]; 895 896 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags); 897 898 if (pcie_cap_has_devctl(dev->pcie_type, flags)) 899 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]); 900 if (pcie_cap_has_lnkctl(dev->pcie_type, flags)) 901 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]); 902 if (pcie_cap_has_sltctl(dev->pcie_type, flags)) 903 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]); 904 if (pcie_cap_has_rtctl(dev->pcie_type, flags)) 905 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]); 906 if (pcie_cap_has_devctl2(dev->pcie_type, flags)) 907 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]); 908 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags)) 909 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]); 910 if (pcie_cap_has_sltctl2(dev->pcie_type, flags)) 911 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]); 912 } 913 914 915 static int pci_save_pcix_state(struct pci_dev *dev) 916 { 917 int pos; 918 struct pci_cap_saved_state *save_state; 919 920 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 921 if (pos <= 0) 922 return 0; 923 924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 925 if (!save_state) { 926 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 927 return -ENOMEM; 928 } 929 930 pci_read_config_word(dev, pos + PCI_X_CMD, 931 (u16 *)save_state->cap.data); 932 933 return 0; 934 } 935 936 static void pci_restore_pcix_state(struct pci_dev *dev) 937 { 938 int i = 0, pos; 939 struct pci_cap_saved_state *save_state; 940 u16 *cap; 941 942 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 943 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 944 if (!save_state || pos <= 0) 945 return; 946 cap = (u16 *)&save_state->cap.data[0]; 947 948 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 949 } 950 951 952 /** 953 * pci_save_state - save the PCI configuration space of a device before suspending 954 * @dev: - PCI device that we're dealing with 955 */ 956 int 957 pci_save_state(struct pci_dev *dev) 958 { 959 int i; 960 /* XXX: 100% dword access ok here? */ 961 for (i = 0; i < 16; i++) 962 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 963 dev->state_saved = true; 964 if ((i = pci_save_pcie_state(dev)) != 0) 965 return i; 966 if ((i = pci_save_pcix_state(dev)) != 0) 967 return i; 968 return 0; 969 } 970 971 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 972 u32 saved_val, int retry) 973 { 974 u32 val; 975 976 pci_read_config_dword(pdev, offset, &val); 977 if (val == saved_val) 978 return; 979 980 for (;;) { 981 dev_dbg(&pdev->dev, "restoring config space at offset " 982 "%#x (was %#x, writing %#x)\n", offset, val, saved_val); 983 pci_write_config_dword(pdev, offset, saved_val); 984 if (retry-- <= 0) 985 return; 986 987 pci_read_config_dword(pdev, offset, &val); 988 if (val == saved_val) 989 return; 990 991 mdelay(1); 992 } 993 } 994 995 static void pci_restore_config_space_range(struct pci_dev *pdev, 996 int start, int end, int retry) 997 { 998 int index; 999 1000 for (index = end; index >= start; index--) 1001 pci_restore_config_dword(pdev, 4 * index, 1002 pdev->saved_config_space[index], 1003 retry); 1004 } 1005 1006 static void pci_restore_config_space(struct pci_dev *pdev) 1007 { 1008 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1009 pci_restore_config_space_range(pdev, 10, 15, 0); 1010 /* Restore BARs before the command register. */ 1011 pci_restore_config_space_range(pdev, 4, 9, 10); 1012 pci_restore_config_space_range(pdev, 0, 3, 0); 1013 } else { 1014 pci_restore_config_space_range(pdev, 0, 15, 0); 1015 } 1016 } 1017 1018 /** 1019 * pci_restore_state - Restore the saved state of a PCI device 1020 * @dev: - PCI device that we're dealing with 1021 */ 1022 void pci_restore_state(struct pci_dev *dev) 1023 { 1024 if (!dev->state_saved) 1025 return; 1026 1027 /* PCI Express register must be restored first */ 1028 pci_restore_pcie_state(dev); 1029 pci_restore_ats_state(dev); 1030 1031 pci_restore_config_space(dev); 1032 1033 pci_restore_pcix_state(dev); 1034 pci_restore_msi_state(dev); 1035 pci_restore_iov_state(dev); 1036 1037 dev->state_saved = false; 1038 } 1039 1040 struct pci_saved_state { 1041 u32 config_space[16]; 1042 struct pci_cap_saved_data cap[0]; 1043 }; 1044 1045 /** 1046 * pci_store_saved_state - Allocate and return an opaque struct containing 1047 * the device saved state. 1048 * @dev: PCI device that we're dealing with 1049 * 1050 * Rerturn NULL if no state or error. 1051 */ 1052 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1053 { 1054 struct pci_saved_state *state; 1055 struct pci_cap_saved_state *tmp; 1056 struct pci_cap_saved_data *cap; 1057 struct hlist_node *pos; 1058 size_t size; 1059 1060 if (!dev->state_saved) 1061 return NULL; 1062 1063 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1064 1065 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) 1066 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1067 1068 state = kzalloc(size, GFP_KERNEL); 1069 if (!state) 1070 return NULL; 1071 1072 memcpy(state->config_space, dev->saved_config_space, 1073 sizeof(state->config_space)); 1074 1075 cap = state->cap; 1076 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) { 1077 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1078 memcpy(cap, &tmp->cap, len); 1079 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1080 } 1081 /* Empty cap_save terminates list */ 1082 1083 return state; 1084 } 1085 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1086 1087 /** 1088 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1089 * @dev: PCI device that we're dealing with 1090 * @state: Saved state returned from pci_store_saved_state() 1091 */ 1092 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state) 1093 { 1094 struct pci_cap_saved_data *cap; 1095 1096 dev->state_saved = false; 1097 1098 if (!state) 1099 return 0; 1100 1101 memcpy(dev->saved_config_space, state->config_space, 1102 sizeof(state->config_space)); 1103 1104 cap = state->cap; 1105 while (cap->size) { 1106 struct pci_cap_saved_state *tmp; 1107 1108 tmp = pci_find_saved_cap(dev, cap->cap_nr); 1109 if (!tmp || tmp->cap.size != cap->size) 1110 return -EINVAL; 1111 1112 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1113 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1114 sizeof(struct pci_cap_saved_data) + cap->size); 1115 } 1116 1117 dev->state_saved = true; 1118 return 0; 1119 } 1120 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1121 1122 /** 1123 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1124 * and free the memory allocated for it. 1125 * @dev: PCI device that we're dealing with 1126 * @state: Pointer to saved state returned from pci_store_saved_state() 1127 */ 1128 int pci_load_and_free_saved_state(struct pci_dev *dev, 1129 struct pci_saved_state **state) 1130 { 1131 int ret = pci_load_saved_state(dev, *state); 1132 kfree(*state); 1133 *state = NULL; 1134 return ret; 1135 } 1136 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1137 1138 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1139 { 1140 int err; 1141 1142 err = pci_set_power_state(dev, PCI_D0); 1143 if (err < 0 && err != -EIO) 1144 return err; 1145 err = pcibios_enable_device(dev, bars); 1146 if (err < 0) 1147 return err; 1148 pci_fixup_device(pci_fixup_enable, dev); 1149 1150 return 0; 1151 } 1152 1153 /** 1154 * pci_reenable_device - Resume abandoned device 1155 * @dev: PCI device to be resumed 1156 * 1157 * Note this function is a backend of pci_default_resume and is not supposed 1158 * to be called by normal code, write proper resume handler and use it instead. 1159 */ 1160 int pci_reenable_device(struct pci_dev *dev) 1161 { 1162 if (pci_is_enabled(dev)) 1163 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1164 return 0; 1165 } 1166 1167 static int __pci_enable_device_flags(struct pci_dev *dev, 1168 resource_size_t flags) 1169 { 1170 int err; 1171 int i, bars = 0; 1172 1173 /* 1174 * Power state could be unknown at this point, either due to a fresh 1175 * boot or a device removal call. So get the current power state 1176 * so that things like MSI message writing will behave as expected 1177 * (e.g. if the device really is in D0 at enable time). 1178 */ 1179 if (dev->pm_cap) { 1180 u16 pmcsr; 1181 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1182 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1183 } 1184 1185 if (atomic_add_return(1, &dev->enable_cnt) > 1) 1186 return 0; /* already enabled */ 1187 1188 /* only skip sriov related */ 1189 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1190 if (dev->resource[i].flags & flags) 1191 bars |= (1 << i); 1192 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1193 if (dev->resource[i].flags & flags) 1194 bars |= (1 << i); 1195 1196 err = do_pci_enable_device(dev, bars); 1197 if (err < 0) 1198 atomic_dec(&dev->enable_cnt); 1199 return err; 1200 } 1201 1202 /** 1203 * pci_enable_device_io - Initialize a device for use with IO space 1204 * @dev: PCI device to be initialized 1205 * 1206 * Initialize device before it's used by a driver. Ask low-level code 1207 * to enable I/O resources. Wake up the device if it was suspended. 1208 * Beware, this function can fail. 1209 */ 1210 int pci_enable_device_io(struct pci_dev *dev) 1211 { 1212 return __pci_enable_device_flags(dev, IORESOURCE_IO); 1213 } 1214 1215 /** 1216 * pci_enable_device_mem - Initialize a device for use with Memory space 1217 * @dev: PCI device to be initialized 1218 * 1219 * Initialize device before it's used by a driver. Ask low-level code 1220 * to enable Memory resources. Wake up the device if it was suspended. 1221 * Beware, this function can fail. 1222 */ 1223 int pci_enable_device_mem(struct pci_dev *dev) 1224 { 1225 return __pci_enable_device_flags(dev, IORESOURCE_MEM); 1226 } 1227 1228 /** 1229 * pci_enable_device - Initialize device before it's used by a driver. 1230 * @dev: PCI device to be initialized 1231 * 1232 * Initialize device before it's used by a driver. Ask low-level code 1233 * to enable I/O and memory. Wake up the device if it was suspended. 1234 * Beware, this function can fail. 1235 * 1236 * Note we don't actually enable the device many times if we call 1237 * this function repeatedly (we just increment the count). 1238 */ 1239 int pci_enable_device(struct pci_dev *dev) 1240 { 1241 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1242 } 1243 1244 /* 1245 * Managed PCI resources. This manages device on/off, intx/msi/msix 1246 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1247 * there's no need to track it separately. pci_devres is initialized 1248 * when a device is enabled using managed PCI device enable interface. 1249 */ 1250 struct pci_devres { 1251 unsigned int enabled:1; 1252 unsigned int pinned:1; 1253 unsigned int orig_intx:1; 1254 unsigned int restore_intx:1; 1255 u32 region_mask; 1256 }; 1257 1258 static void pcim_release(struct device *gendev, void *res) 1259 { 1260 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1261 struct pci_devres *this = res; 1262 int i; 1263 1264 if (dev->msi_enabled) 1265 pci_disable_msi(dev); 1266 if (dev->msix_enabled) 1267 pci_disable_msix(dev); 1268 1269 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1270 if (this->region_mask & (1 << i)) 1271 pci_release_region(dev, i); 1272 1273 if (this->restore_intx) 1274 pci_intx(dev, this->orig_intx); 1275 1276 if (this->enabled && !this->pinned) 1277 pci_disable_device(dev); 1278 } 1279 1280 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 1281 { 1282 struct pci_devres *dr, *new_dr; 1283 1284 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1285 if (dr) 1286 return dr; 1287 1288 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1289 if (!new_dr) 1290 return NULL; 1291 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1292 } 1293 1294 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1295 { 1296 if (pci_is_managed(pdev)) 1297 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1298 return NULL; 1299 } 1300 1301 /** 1302 * pcim_enable_device - Managed pci_enable_device() 1303 * @pdev: PCI device to be initialized 1304 * 1305 * Managed pci_enable_device(). 1306 */ 1307 int pcim_enable_device(struct pci_dev *pdev) 1308 { 1309 struct pci_devres *dr; 1310 int rc; 1311 1312 dr = get_pci_dr(pdev); 1313 if (unlikely(!dr)) 1314 return -ENOMEM; 1315 if (dr->enabled) 1316 return 0; 1317 1318 rc = pci_enable_device(pdev); 1319 if (!rc) { 1320 pdev->is_managed = 1; 1321 dr->enabled = 1; 1322 } 1323 return rc; 1324 } 1325 1326 /** 1327 * pcim_pin_device - Pin managed PCI device 1328 * @pdev: PCI device to pin 1329 * 1330 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1331 * driver detach. @pdev must have been enabled with 1332 * pcim_enable_device(). 1333 */ 1334 void pcim_pin_device(struct pci_dev *pdev) 1335 { 1336 struct pci_devres *dr; 1337 1338 dr = find_pci_dr(pdev); 1339 WARN_ON(!dr || !dr->enabled); 1340 if (dr) 1341 dr->pinned = 1; 1342 } 1343 1344 /** 1345 * pcibios_disable_device - disable arch specific PCI resources for device dev 1346 * @dev: the PCI device to disable 1347 * 1348 * Disables architecture specific PCI resources for the device. This 1349 * is the default implementation. Architecture implementations can 1350 * override this. 1351 */ 1352 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {} 1353 1354 static void do_pci_disable_device(struct pci_dev *dev) 1355 { 1356 u16 pci_command; 1357 1358 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1359 if (pci_command & PCI_COMMAND_MASTER) { 1360 pci_command &= ~PCI_COMMAND_MASTER; 1361 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1362 } 1363 1364 pcibios_disable_device(dev); 1365 } 1366 1367 /** 1368 * pci_disable_enabled_device - Disable device without updating enable_cnt 1369 * @dev: PCI device to disable 1370 * 1371 * NOTE: This function is a backend of PCI power management routines and is 1372 * not supposed to be called drivers. 1373 */ 1374 void pci_disable_enabled_device(struct pci_dev *dev) 1375 { 1376 if (pci_is_enabled(dev)) 1377 do_pci_disable_device(dev); 1378 } 1379 1380 /** 1381 * pci_disable_device - Disable PCI device after use 1382 * @dev: PCI device to be disabled 1383 * 1384 * Signal to the system that the PCI device is not in use by the system 1385 * anymore. This only involves disabling PCI bus-mastering, if active. 1386 * 1387 * Note we don't actually disable the device until all callers of 1388 * pci_enable_device() have called pci_disable_device(). 1389 */ 1390 void 1391 pci_disable_device(struct pci_dev *dev) 1392 { 1393 struct pci_devres *dr; 1394 1395 dr = find_pci_dr(dev); 1396 if (dr) 1397 dr->enabled = 0; 1398 1399 if (atomic_sub_return(1, &dev->enable_cnt) != 0) 1400 return; 1401 1402 do_pci_disable_device(dev); 1403 1404 dev->is_busmaster = 0; 1405 } 1406 1407 /** 1408 * pcibios_set_pcie_reset_state - set reset state for device dev 1409 * @dev: the PCIe device reset 1410 * @state: Reset state to enter into 1411 * 1412 * 1413 * Sets the PCIe reset state for the device. This is the default 1414 * implementation. Architecture implementations can override this. 1415 */ 1416 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev, 1417 enum pcie_reset_state state) 1418 { 1419 return -EINVAL; 1420 } 1421 1422 /** 1423 * pci_set_pcie_reset_state - set reset state for device dev 1424 * @dev: the PCIe device reset 1425 * @state: Reset state to enter into 1426 * 1427 * 1428 * Sets the PCI reset state for the device. 1429 */ 1430 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1431 { 1432 return pcibios_set_pcie_reset_state(dev, state); 1433 } 1434 1435 /** 1436 * pci_check_pme_status - Check if given device has generated PME. 1437 * @dev: Device to check. 1438 * 1439 * Check the PME status of the device and if set, clear it and clear PME enable 1440 * (if set). Return 'true' if PME status and PME enable were both set or 1441 * 'false' otherwise. 1442 */ 1443 bool pci_check_pme_status(struct pci_dev *dev) 1444 { 1445 int pmcsr_pos; 1446 u16 pmcsr; 1447 bool ret = false; 1448 1449 if (!dev->pm_cap) 1450 return false; 1451 1452 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1453 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1454 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1455 return false; 1456 1457 /* Clear PME status. */ 1458 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1459 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1460 /* Disable PME to avoid interrupt flood. */ 1461 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1462 ret = true; 1463 } 1464 1465 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1466 1467 return ret; 1468 } 1469 1470 /** 1471 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1472 * @dev: Device to handle. 1473 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1474 * 1475 * Check if @dev has generated PME and queue a resume request for it in that 1476 * case. 1477 */ 1478 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1479 { 1480 if (pme_poll_reset && dev->pme_poll) 1481 dev->pme_poll = false; 1482 1483 if (pci_check_pme_status(dev)) { 1484 pci_wakeup_event(dev); 1485 pm_request_resume(&dev->dev); 1486 } 1487 return 0; 1488 } 1489 1490 /** 1491 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1492 * @bus: Top bus of the subtree to walk. 1493 */ 1494 void pci_pme_wakeup_bus(struct pci_bus *bus) 1495 { 1496 if (bus) 1497 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1498 } 1499 1500 /** 1501 * pci_pme_capable - check the capability of PCI device to generate PME# 1502 * @dev: PCI device to handle. 1503 * @state: PCI state from which device will issue PME#. 1504 */ 1505 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1506 { 1507 if (!dev->pm_cap) 1508 return false; 1509 1510 return !!(dev->pme_support & (1 << state)); 1511 } 1512 1513 static void pci_pme_list_scan(struct work_struct *work) 1514 { 1515 struct pci_pme_device *pme_dev, *n; 1516 1517 mutex_lock(&pci_pme_list_mutex); 1518 if (!list_empty(&pci_pme_list)) { 1519 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1520 if (pme_dev->dev->pme_poll) { 1521 pci_pme_wakeup(pme_dev->dev, NULL); 1522 } else { 1523 list_del(&pme_dev->list); 1524 kfree(pme_dev); 1525 } 1526 } 1527 if (!list_empty(&pci_pme_list)) 1528 schedule_delayed_work(&pci_pme_work, 1529 msecs_to_jiffies(PME_TIMEOUT)); 1530 } 1531 mutex_unlock(&pci_pme_list_mutex); 1532 } 1533 1534 /** 1535 * pci_pme_active - enable or disable PCI device's PME# function 1536 * @dev: PCI device to handle. 1537 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1538 * 1539 * The caller must verify that the device is capable of generating PME# before 1540 * calling this function with @enable equal to 'true'. 1541 */ 1542 void pci_pme_active(struct pci_dev *dev, bool enable) 1543 { 1544 u16 pmcsr; 1545 1546 if (!dev->pm_cap) 1547 return; 1548 1549 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1550 /* Clear PME_Status by writing 1 to it and enable PME# */ 1551 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1552 if (!enable) 1553 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1554 1555 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1556 1557 /* PCI (as opposed to PCIe) PME requires that the device have 1558 its PME# line hooked up correctly. Not all hardware vendors 1559 do this, so the PME never gets delivered and the device 1560 remains asleep. The easiest way around this is to 1561 periodically walk the list of suspended devices and check 1562 whether any have their PME flag set. The assumption is that 1563 we'll wake up often enough anyway that this won't be a huge 1564 hit, and the power savings from the devices will still be a 1565 win. */ 1566 1567 if (dev->pme_poll) { 1568 struct pci_pme_device *pme_dev; 1569 if (enable) { 1570 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1571 GFP_KERNEL); 1572 if (!pme_dev) 1573 goto out; 1574 pme_dev->dev = dev; 1575 mutex_lock(&pci_pme_list_mutex); 1576 list_add(&pme_dev->list, &pci_pme_list); 1577 if (list_is_singular(&pci_pme_list)) 1578 schedule_delayed_work(&pci_pme_work, 1579 msecs_to_jiffies(PME_TIMEOUT)); 1580 mutex_unlock(&pci_pme_list_mutex); 1581 } else { 1582 mutex_lock(&pci_pme_list_mutex); 1583 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1584 if (pme_dev->dev == dev) { 1585 list_del(&pme_dev->list); 1586 kfree(pme_dev); 1587 break; 1588 } 1589 } 1590 mutex_unlock(&pci_pme_list_mutex); 1591 } 1592 } 1593 1594 out: 1595 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1596 } 1597 1598 /** 1599 * __pci_enable_wake - enable PCI device as wakeup event source 1600 * @dev: PCI device affected 1601 * @state: PCI state from which device will issue wakeup events 1602 * @runtime: True if the events are to be generated at run time 1603 * @enable: True to enable event generation; false to disable 1604 * 1605 * This enables the device as a wakeup event source, or disables it. 1606 * When such events involves platform-specific hooks, those hooks are 1607 * called automatically by this routine. 1608 * 1609 * Devices with legacy power management (no standard PCI PM capabilities) 1610 * always require such platform hooks. 1611 * 1612 * RETURN VALUE: 1613 * 0 is returned on success 1614 * -EINVAL is returned if device is not supposed to wake up the system 1615 * Error code depending on the platform is returned if both the platform and 1616 * the native mechanism fail to enable the generation of wake-up events 1617 */ 1618 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1619 bool runtime, bool enable) 1620 { 1621 int ret = 0; 1622 1623 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1624 return -EINVAL; 1625 1626 /* Don't do the same thing twice in a row for one device. */ 1627 if (!!enable == !!dev->wakeup_prepared) 1628 return 0; 1629 1630 /* 1631 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1632 * Anderson we should be doing PME# wake enable followed by ACPI wake 1633 * enable. To disable wake-up we call the platform first, for symmetry. 1634 */ 1635 1636 if (enable) { 1637 int error; 1638 1639 if (pci_pme_capable(dev, state)) 1640 pci_pme_active(dev, true); 1641 else 1642 ret = 1; 1643 error = runtime ? platform_pci_run_wake(dev, true) : 1644 platform_pci_sleep_wake(dev, true); 1645 if (ret) 1646 ret = error; 1647 if (!ret) 1648 dev->wakeup_prepared = true; 1649 } else { 1650 if (runtime) 1651 platform_pci_run_wake(dev, false); 1652 else 1653 platform_pci_sleep_wake(dev, false); 1654 pci_pme_active(dev, false); 1655 dev->wakeup_prepared = false; 1656 } 1657 1658 return ret; 1659 } 1660 EXPORT_SYMBOL(__pci_enable_wake); 1661 1662 /** 1663 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1664 * @dev: PCI device to prepare 1665 * @enable: True to enable wake-up event generation; false to disable 1666 * 1667 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1668 * and this function allows them to set that up cleanly - pci_enable_wake() 1669 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1670 * ordering constraints. 1671 * 1672 * This function only returns error code if the device is not capable of 1673 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1674 * enable wake-up power for it. 1675 */ 1676 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1677 { 1678 return pci_pme_capable(dev, PCI_D3cold) ? 1679 pci_enable_wake(dev, PCI_D3cold, enable) : 1680 pci_enable_wake(dev, PCI_D3hot, enable); 1681 } 1682 1683 /** 1684 * pci_target_state - find an appropriate low power state for a given PCI dev 1685 * @dev: PCI device 1686 * 1687 * Use underlying platform code to find a supported low power state for @dev. 1688 * If the platform can't manage @dev, return the deepest state from which it 1689 * can generate wake events, based on any available PME info. 1690 */ 1691 pci_power_t pci_target_state(struct pci_dev *dev) 1692 { 1693 pci_power_t target_state = PCI_D3hot; 1694 1695 if (platform_pci_power_manageable(dev)) { 1696 /* 1697 * Call the platform to choose the target state of the device 1698 * and enable wake-up from this state if supported. 1699 */ 1700 pci_power_t state = platform_pci_choose_state(dev); 1701 1702 switch (state) { 1703 case PCI_POWER_ERROR: 1704 case PCI_UNKNOWN: 1705 break; 1706 case PCI_D1: 1707 case PCI_D2: 1708 if (pci_no_d1d2(dev)) 1709 break; 1710 default: 1711 target_state = state; 1712 } 1713 } else if (!dev->pm_cap) { 1714 target_state = PCI_D0; 1715 } else if (device_may_wakeup(&dev->dev)) { 1716 /* 1717 * Find the deepest state from which the device can generate 1718 * wake-up events, make it the target state and enable device 1719 * to generate PME#. 1720 */ 1721 if (dev->pme_support) { 1722 while (target_state 1723 && !(dev->pme_support & (1 << target_state))) 1724 target_state--; 1725 } 1726 } 1727 1728 return target_state; 1729 } 1730 1731 /** 1732 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1733 * @dev: Device to handle. 1734 * 1735 * Choose the power state appropriate for the device depending on whether 1736 * it can wake up the system and/or is power manageable by the platform 1737 * (PCI_D3hot is the default) and put the device into that state. 1738 */ 1739 int pci_prepare_to_sleep(struct pci_dev *dev) 1740 { 1741 pci_power_t target_state = pci_target_state(dev); 1742 int error; 1743 1744 if (target_state == PCI_POWER_ERROR) 1745 return -EIO; 1746 1747 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1748 1749 error = pci_set_power_state(dev, target_state); 1750 1751 if (error) 1752 pci_enable_wake(dev, target_state, false); 1753 1754 return error; 1755 } 1756 1757 /** 1758 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1759 * @dev: Device to handle. 1760 * 1761 * Disable device's system wake-up capability and put it into D0. 1762 */ 1763 int pci_back_from_sleep(struct pci_dev *dev) 1764 { 1765 pci_enable_wake(dev, PCI_D0, false); 1766 return pci_set_power_state(dev, PCI_D0); 1767 } 1768 1769 /** 1770 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1771 * @dev: PCI device being suspended. 1772 * 1773 * Prepare @dev to generate wake-up events at run time and put it into a low 1774 * power state. 1775 */ 1776 int pci_finish_runtime_suspend(struct pci_dev *dev) 1777 { 1778 pci_power_t target_state = pci_target_state(dev); 1779 int error; 1780 1781 if (target_state == PCI_POWER_ERROR) 1782 return -EIO; 1783 1784 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1785 1786 error = pci_set_power_state(dev, target_state); 1787 1788 if (error) 1789 __pci_enable_wake(dev, target_state, true, false); 1790 1791 return error; 1792 } 1793 1794 /** 1795 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1796 * @dev: Device to check. 1797 * 1798 * Return true if the device itself is cabable of generating wake-up events 1799 * (through the platform or using the native PCIe PME) or if the device supports 1800 * PME and one of its upstream bridges can generate wake-up events. 1801 */ 1802 bool pci_dev_run_wake(struct pci_dev *dev) 1803 { 1804 struct pci_bus *bus = dev->bus; 1805 1806 if (device_run_wake(&dev->dev)) 1807 return true; 1808 1809 if (!dev->pme_support) 1810 return false; 1811 1812 while (bus->parent) { 1813 struct pci_dev *bridge = bus->self; 1814 1815 if (device_run_wake(&bridge->dev)) 1816 return true; 1817 1818 bus = bus->parent; 1819 } 1820 1821 /* We have reached the root bus. */ 1822 if (bus->bridge) 1823 return device_run_wake(bus->bridge); 1824 1825 return false; 1826 } 1827 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 1828 1829 /** 1830 * pci_pm_init - Initialize PM functions of given PCI device 1831 * @dev: PCI device to handle. 1832 */ 1833 void pci_pm_init(struct pci_dev *dev) 1834 { 1835 int pm; 1836 u16 pmc; 1837 1838 pm_runtime_forbid(&dev->dev); 1839 device_enable_async_suspend(&dev->dev); 1840 dev->wakeup_prepared = false; 1841 1842 dev->pm_cap = 0; 1843 1844 /* find PCI PM capability in list */ 1845 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 1846 if (!pm) 1847 return; 1848 /* Check device's ability to generate PME# */ 1849 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 1850 1851 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 1852 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 1853 pmc & PCI_PM_CAP_VER_MASK); 1854 return; 1855 } 1856 1857 dev->pm_cap = pm; 1858 dev->d3_delay = PCI_PM_D3_WAIT; 1859 1860 dev->d1_support = false; 1861 dev->d2_support = false; 1862 if (!pci_no_d1d2(dev)) { 1863 if (pmc & PCI_PM_CAP_D1) 1864 dev->d1_support = true; 1865 if (pmc & PCI_PM_CAP_D2) 1866 dev->d2_support = true; 1867 1868 if (dev->d1_support || dev->d2_support) 1869 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 1870 dev->d1_support ? " D1" : "", 1871 dev->d2_support ? " D2" : ""); 1872 } 1873 1874 pmc &= PCI_PM_CAP_PME_MASK; 1875 if (pmc) { 1876 dev_printk(KERN_DEBUG, &dev->dev, 1877 "PME# supported from%s%s%s%s%s\n", 1878 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 1879 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 1880 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 1881 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 1882 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 1883 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 1884 dev->pme_poll = true; 1885 /* 1886 * Make device's PM flags reflect the wake-up capability, but 1887 * let the user space enable it to wake up the system as needed. 1888 */ 1889 device_set_wakeup_capable(&dev->dev, true); 1890 /* Disable the PME# generation functionality */ 1891 pci_pme_active(dev, false); 1892 } else { 1893 dev->pme_support = 0; 1894 } 1895 } 1896 1897 /** 1898 * platform_pci_wakeup_init - init platform wakeup if present 1899 * @dev: PCI device 1900 * 1901 * Some devices don't have PCI PM caps but can still generate wakeup 1902 * events through platform methods (like ACPI events). If @dev supports 1903 * platform wakeup events, set the device flag to indicate as much. This 1904 * may be redundant if the device also supports PCI PM caps, but double 1905 * initialization should be safe in that case. 1906 */ 1907 void platform_pci_wakeup_init(struct pci_dev *dev) 1908 { 1909 if (!platform_pci_can_wakeup(dev)) 1910 return; 1911 1912 device_set_wakeup_capable(&dev->dev, true); 1913 platform_pci_sleep_wake(dev, false); 1914 } 1915 1916 static void pci_add_saved_cap(struct pci_dev *pci_dev, 1917 struct pci_cap_saved_state *new_cap) 1918 { 1919 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 1920 } 1921 1922 /** 1923 * pci_add_save_buffer - allocate buffer for saving given capability registers 1924 * @dev: the PCI device 1925 * @cap: the capability to allocate the buffer for 1926 * @size: requested size of the buffer 1927 */ 1928 static int pci_add_cap_save_buffer( 1929 struct pci_dev *dev, char cap, unsigned int size) 1930 { 1931 int pos; 1932 struct pci_cap_saved_state *save_state; 1933 1934 pos = pci_find_capability(dev, cap); 1935 if (pos <= 0) 1936 return 0; 1937 1938 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 1939 if (!save_state) 1940 return -ENOMEM; 1941 1942 save_state->cap.cap_nr = cap; 1943 save_state->cap.size = size; 1944 pci_add_saved_cap(dev, save_state); 1945 1946 return 0; 1947 } 1948 1949 /** 1950 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 1951 * @dev: the PCI device 1952 */ 1953 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 1954 { 1955 int error; 1956 1957 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 1958 PCI_EXP_SAVE_REGS * sizeof(u16)); 1959 if (error) 1960 dev_err(&dev->dev, 1961 "unable to preallocate PCI Express save buffer\n"); 1962 1963 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 1964 if (error) 1965 dev_err(&dev->dev, 1966 "unable to preallocate PCI-X save buffer\n"); 1967 } 1968 1969 void pci_free_cap_save_buffers(struct pci_dev *dev) 1970 { 1971 struct pci_cap_saved_state *tmp; 1972 struct hlist_node *pos, *n; 1973 1974 hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next) 1975 kfree(tmp); 1976 } 1977 1978 /** 1979 * pci_enable_ari - enable ARI forwarding if hardware support it 1980 * @dev: the PCI device 1981 */ 1982 void pci_enable_ari(struct pci_dev *dev) 1983 { 1984 int pos; 1985 u32 cap; 1986 u16 flags, ctrl; 1987 struct pci_dev *bridge; 1988 1989 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 1990 return; 1991 1992 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI); 1993 if (!pos) 1994 return; 1995 1996 bridge = dev->bus->self; 1997 if (!bridge || !pci_is_pcie(bridge)) 1998 return; 1999 2000 pos = pci_pcie_cap(bridge); 2001 if (!pos) 2002 return; 2003 2004 /* ARI is a PCIe v2 feature */ 2005 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags); 2006 if ((flags & PCI_EXP_FLAGS_VERS) < 2) 2007 return; 2008 2009 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap); 2010 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2011 return; 2012 2013 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl); 2014 ctrl |= PCI_EXP_DEVCTL2_ARI; 2015 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl); 2016 2017 bridge->ari_enabled = 1; 2018 } 2019 2020 /** 2021 * pci_enable_ido - enable ID-based ordering on a device 2022 * @dev: the PCI device 2023 * @type: which types of IDO to enable 2024 * 2025 * Enable ID-based ordering on @dev. @type can contain the bits 2026 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate 2027 * which types of transactions are allowed to be re-ordered. 2028 */ 2029 void pci_enable_ido(struct pci_dev *dev, unsigned long type) 2030 { 2031 int pos; 2032 u16 ctrl; 2033 2034 pos = pci_pcie_cap(dev); 2035 if (!pos) 2036 return; 2037 2038 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2039 if (type & PCI_EXP_IDO_REQUEST) 2040 ctrl |= PCI_EXP_IDO_REQ_EN; 2041 if (type & PCI_EXP_IDO_COMPLETION) 2042 ctrl |= PCI_EXP_IDO_CMP_EN; 2043 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2044 } 2045 EXPORT_SYMBOL(pci_enable_ido); 2046 2047 /** 2048 * pci_disable_ido - disable ID-based ordering on a device 2049 * @dev: the PCI device 2050 * @type: which types of IDO to disable 2051 */ 2052 void pci_disable_ido(struct pci_dev *dev, unsigned long type) 2053 { 2054 int pos; 2055 u16 ctrl; 2056 2057 if (!pci_is_pcie(dev)) 2058 return; 2059 2060 pos = pci_pcie_cap(dev); 2061 if (!pos) 2062 return; 2063 2064 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2065 if (type & PCI_EXP_IDO_REQUEST) 2066 ctrl &= ~PCI_EXP_IDO_REQ_EN; 2067 if (type & PCI_EXP_IDO_COMPLETION) 2068 ctrl &= ~PCI_EXP_IDO_CMP_EN; 2069 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2070 } 2071 EXPORT_SYMBOL(pci_disable_ido); 2072 2073 /** 2074 * pci_enable_obff - enable optimized buffer flush/fill 2075 * @dev: PCI device 2076 * @type: type of signaling to use 2077 * 2078 * Try to enable @type OBFF signaling on @dev. It will try using WAKE# 2079 * signaling if possible, falling back to message signaling only if 2080 * WAKE# isn't supported. @type should indicate whether the PCIe link 2081 * be brought out of L0s or L1 to send the message. It should be either 2082 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0. 2083 * 2084 * If your device can benefit from receiving all messages, even at the 2085 * power cost of bringing the link back up from a low power state, use 2086 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the 2087 * preferred type). 2088 * 2089 * RETURNS: 2090 * Zero on success, appropriate error number on failure. 2091 */ 2092 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type) 2093 { 2094 int pos; 2095 u32 cap; 2096 u16 ctrl; 2097 int ret; 2098 2099 if (!pci_is_pcie(dev)) 2100 return -ENOTSUPP; 2101 2102 pos = pci_pcie_cap(dev); 2103 if (!pos) 2104 return -ENOTSUPP; 2105 2106 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap); 2107 if (!(cap & PCI_EXP_OBFF_MASK)) 2108 return -ENOTSUPP; /* no OBFF support at all */ 2109 2110 /* Make sure the topology supports OBFF as well */ 2111 if (dev->bus) { 2112 ret = pci_enable_obff(dev->bus->self, type); 2113 if (ret) 2114 return ret; 2115 } 2116 2117 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2118 if (cap & PCI_EXP_OBFF_WAKE) 2119 ctrl |= PCI_EXP_OBFF_WAKE_EN; 2120 else { 2121 switch (type) { 2122 case PCI_EXP_OBFF_SIGNAL_L0: 2123 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN)) 2124 ctrl |= PCI_EXP_OBFF_MSGA_EN; 2125 break; 2126 case PCI_EXP_OBFF_SIGNAL_ALWAYS: 2127 ctrl &= ~PCI_EXP_OBFF_WAKE_EN; 2128 ctrl |= PCI_EXP_OBFF_MSGB_EN; 2129 break; 2130 default: 2131 WARN(1, "bad OBFF signal type\n"); 2132 return -ENOTSUPP; 2133 } 2134 } 2135 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2136 2137 return 0; 2138 } 2139 EXPORT_SYMBOL(pci_enable_obff); 2140 2141 /** 2142 * pci_disable_obff - disable optimized buffer flush/fill 2143 * @dev: PCI device 2144 * 2145 * Disable OBFF on @dev. 2146 */ 2147 void pci_disable_obff(struct pci_dev *dev) 2148 { 2149 int pos; 2150 u16 ctrl; 2151 2152 if (!pci_is_pcie(dev)) 2153 return; 2154 2155 pos = pci_pcie_cap(dev); 2156 if (!pos) 2157 return; 2158 2159 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2160 ctrl &= ~PCI_EXP_OBFF_WAKE_EN; 2161 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2162 } 2163 EXPORT_SYMBOL(pci_disable_obff); 2164 2165 /** 2166 * pci_ltr_supported - check whether a device supports LTR 2167 * @dev: PCI device 2168 * 2169 * RETURNS: 2170 * True if @dev supports latency tolerance reporting, false otherwise. 2171 */ 2172 bool pci_ltr_supported(struct pci_dev *dev) 2173 { 2174 int pos; 2175 u32 cap; 2176 2177 if (!pci_is_pcie(dev)) 2178 return false; 2179 2180 pos = pci_pcie_cap(dev); 2181 if (!pos) 2182 return false; 2183 2184 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap); 2185 2186 return cap & PCI_EXP_DEVCAP2_LTR; 2187 } 2188 EXPORT_SYMBOL(pci_ltr_supported); 2189 2190 /** 2191 * pci_enable_ltr - enable latency tolerance reporting 2192 * @dev: PCI device 2193 * 2194 * Enable LTR on @dev if possible, which means enabling it first on 2195 * upstream ports. 2196 * 2197 * RETURNS: 2198 * Zero on success, errno on failure. 2199 */ 2200 int pci_enable_ltr(struct pci_dev *dev) 2201 { 2202 int pos; 2203 u16 ctrl; 2204 int ret; 2205 2206 if (!pci_ltr_supported(dev)) 2207 return -ENOTSUPP; 2208 2209 pos = pci_pcie_cap(dev); 2210 if (!pos) 2211 return -ENOTSUPP; 2212 2213 /* Only primary function can enable/disable LTR */ 2214 if (PCI_FUNC(dev->devfn) != 0) 2215 return -EINVAL; 2216 2217 /* Enable upstream ports first */ 2218 if (dev->bus) { 2219 ret = pci_enable_ltr(dev->bus->self); 2220 if (ret) 2221 return ret; 2222 } 2223 2224 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2225 ctrl |= PCI_EXP_LTR_EN; 2226 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2227 2228 return 0; 2229 } 2230 EXPORT_SYMBOL(pci_enable_ltr); 2231 2232 /** 2233 * pci_disable_ltr - disable latency tolerance reporting 2234 * @dev: PCI device 2235 */ 2236 void pci_disable_ltr(struct pci_dev *dev) 2237 { 2238 int pos; 2239 u16 ctrl; 2240 2241 if (!pci_ltr_supported(dev)) 2242 return; 2243 2244 pos = pci_pcie_cap(dev); 2245 if (!pos) 2246 return; 2247 2248 /* Only primary function can enable/disable LTR */ 2249 if (PCI_FUNC(dev->devfn) != 0) 2250 return; 2251 2252 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl); 2253 ctrl &= ~PCI_EXP_LTR_EN; 2254 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl); 2255 } 2256 EXPORT_SYMBOL(pci_disable_ltr); 2257 2258 static int __pci_ltr_scale(int *val) 2259 { 2260 int scale = 0; 2261 2262 while (*val > 1023) { 2263 *val = (*val + 31) / 32; 2264 scale++; 2265 } 2266 return scale; 2267 } 2268 2269 /** 2270 * pci_set_ltr - set LTR latency values 2271 * @dev: PCI device 2272 * @snoop_lat_ns: snoop latency in nanoseconds 2273 * @nosnoop_lat_ns: nosnoop latency in nanoseconds 2274 * 2275 * Figure out the scale and set the LTR values accordingly. 2276 */ 2277 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns) 2278 { 2279 int pos, ret, snoop_scale, nosnoop_scale; 2280 u16 val; 2281 2282 if (!pci_ltr_supported(dev)) 2283 return -ENOTSUPP; 2284 2285 snoop_scale = __pci_ltr_scale(&snoop_lat_ns); 2286 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns); 2287 2288 if (snoop_lat_ns > PCI_LTR_VALUE_MASK || 2289 nosnoop_lat_ns > PCI_LTR_VALUE_MASK) 2290 return -EINVAL; 2291 2292 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) || 2293 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT))) 2294 return -EINVAL; 2295 2296 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 2297 if (!pos) 2298 return -ENOTSUPP; 2299 2300 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns; 2301 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val); 2302 if (ret != 4) 2303 return -EIO; 2304 2305 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns; 2306 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val); 2307 if (ret != 4) 2308 return -EIO; 2309 2310 return 0; 2311 } 2312 EXPORT_SYMBOL(pci_set_ltr); 2313 2314 static int pci_acs_enable; 2315 2316 /** 2317 * pci_request_acs - ask for ACS to be enabled if supported 2318 */ 2319 void pci_request_acs(void) 2320 { 2321 pci_acs_enable = 1; 2322 } 2323 2324 /** 2325 * pci_enable_acs - enable ACS if hardware support it 2326 * @dev: the PCI device 2327 */ 2328 void pci_enable_acs(struct pci_dev *dev) 2329 { 2330 int pos; 2331 u16 cap; 2332 u16 ctrl; 2333 2334 if (!pci_acs_enable) 2335 return; 2336 2337 if (!pci_is_pcie(dev)) 2338 return; 2339 2340 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2341 if (!pos) 2342 return; 2343 2344 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2345 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2346 2347 /* Source Validation */ 2348 ctrl |= (cap & PCI_ACS_SV); 2349 2350 /* P2P Request Redirect */ 2351 ctrl |= (cap & PCI_ACS_RR); 2352 2353 /* P2P Completion Redirect */ 2354 ctrl |= (cap & PCI_ACS_CR); 2355 2356 /* Upstream Forwarding */ 2357 ctrl |= (cap & PCI_ACS_UF); 2358 2359 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2360 } 2361 2362 /** 2363 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2364 * @dev: the PCI device 2365 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2366 * 2367 * Perform INTx swizzling for a device behind one level of bridge. This is 2368 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2369 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2370 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2371 * the PCI Express Base Specification, Revision 2.1) 2372 */ 2373 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2374 { 2375 int slot; 2376 2377 if (pci_ari_enabled(dev->bus)) 2378 slot = 0; 2379 else 2380 slot = PCI_SLOT(dev->devfn); 2381 2382 return (((pin - 1) + slot) % 4) + 1; 2383 } 2384 2385 int 2386 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2387 { 2388 u8 pin; 2389 2390 pin = dev->pin; 2391 if (!pin) 2392 return -1; 2393 2394 while (!pci_is_root_bus(dev->bus)) { 2395 pin = pci_swizzle_interrupt_pin(dev, pin); 2396 dev = dev->bus->self; 2397 } 2398 *bridge = dev; 2399 return pin; 2400 } 2401 2402 /** 2403 * pci_common_swizzle - swizzle INTx all the way to root bridge 2404 * @dev: the PCI device 2405 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2406 * 2407 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2408 * bridges all the way up to a PCI root bus. 2409 */ 2410 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2411 { 2412 u8 pin = *pinp; 2413 2414 while (!pci_is_root_bus(dev->bus)) { 2415 pin = pci_swizzle_interrupt_pin(dev, pin); 2416 dev = dev->bus->self; 2417 } 2418 *pinp = pin; 2419 return PCI_SLOT(dev->devfn); 2420 } 2421 2422 /** 2423 * pci_release_region - Release a PCI bar 2424 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2425 * @bar: BAR to release 2426 * 2427 * Releases the PCI I/O and memory resources previously reserved by a 2428 * successful call to pci_request_region. Call this function only 2429 * after all use of the PCI regions has ceased. 2430 */ 2431 void pci_release_region(struct pci_dev *pdev, int bar) 2432 { 2433 struct pci_devres *dr; 2434 2435 if (pci_resource_len(pdev, bar) == 0) 2436 return; 2437 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2438 release_region(pci_resource_start(pdev, bar), 2439 pci_resource_len(pdev, bar)); 2440 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2441 release_mem_region(pci_resource_start(pdev, bar), 2442 pci_resource_len(pdev, bar)); 2443 2444 dr = find_pci_dr(pdev); 2445 if (dr) 2446 dr->region_mask &= ~(1 << bar); 2447 } 2448 2449 /** 2450 * __pci_request_region - Reserved PCI I/O and memory resource 2451 * @pdev: PCI device whose resources are to be reserved 2452 * @bar: BAR to be reserved 2453 * @res_name: Name to be associated with resource. 2454 * @exclusive: whether the region access is exclusive or not 2455 * 2456 * Mark the PCI region associated with PCI device @pdev BR @bar as 2457 * being reserved by owner @res_name. Do not access any 2458 * address inside the PCI regions unless this call returns 2459 * successfully. 2460 * 2461 * If @exclusive is set, then the region is marked so that userspace 2462 * is explicitly not allowed to map the resource via /dev/mem or 2463 * sysfs MMIO access. 2464 * 2465 * Returns 0 on success, or %EBUSY on error. A warning 2466 * message is also printed on failure. 2467 */ 2468 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 2469 int exclusive) 2470 { 2471 struct pci_devres *dr; 2472 2473 if (pci_resource_len(pdev, bar) == 0) 2474 return 0; 2475 2476 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2477 if (!request_region(pci_resource_start(pdev, bar), 2478 pci_resource_len(pdev, bar), res_name)) 2479 goto err_out; 2480 } 2481 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2482 if (!__request_mem_region(pci_resource_start(pdev, bar), 2483 pci_resource_len(pdev, bar), res_name, 2484 exclusive)) 2485 goto err_out; 2486 } 2487 2488 dr = find_pci_dr(pdev); 2489 if (dr) 2490 dr->region_mask |= 1 << bar; 2491 2492 return 0; 2493 2494 err_out: 2495 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2496 &pdev->resource[bar]); 2497 return -EBUSY; 2498 } 2499 2500 /** 2501 * pci_request_region - Reserve PCI I/O and memory resource 2502 * @pdev: PCI device whose resources are to be reserved 2503 * @bar: BAR to be reserved 2504 * @res_name: Name to be associated with resource 2505 * 2506 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2507 * being reserved by owner @res_name. Do not access any 2508 * address inside the PCI regions unless this call returns 2509 * successfully. 2510 * 2511 * Returns 0 on success, or %EBUSY on error. A warning 2512 * message is also printed on failure. 2513 */ 2514 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2515 { 2516 return __pci_request_region(pdev, bar, res_name, 0); 2517 } 2518 2519 /** 2520 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2521 * @pdev: PCI device whose resources are to be reserved 2522 * @bar: BAR to be reserved 2523 * @res_name: Name to be associated with resource. 2524 * 2525 * Mark the PCI region associated with PCI device @pdev BR @bar as 2526 * being reserved by owner @res_name. Do not access any 2527 * address inside the PCI regions unless this call returns 2528 * successfully. 2529 * 2530 * Returns 0 on success, or %EBUSY on error. A warning 2531 * message is also printed on failure. 2532 * 2533 * The key difference that _exclusive makes it that userspace is 2534 * explicitly not allowed to map the resource via /dev/mem or 2535 * sysfs. 2536 */ 2537 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 2538 { 2539 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2540 } 2541 /** 2542 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2543 * @pdev: PCI device whose resources were previously reserved 2544 * @bars: Bitmask of BARs to be released 2545 * 2546 * Release selected PCI I/O and memory resources previously reserved. 2547 * Call this function only after all use of the PCI regions has ceased. 2548 */ 2549 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2550 { 2551 int i; 2552 2553 for (i = 0; i < 6; i++) 2554 if (bars & (1 << i)) 2555 pci_release_region(pdev, i); 2556 } 2557 2558 int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2559 const char *res_name, int excl) 2560 { 2561 int i; 2562 2563 for (i = 0; i < 6; i++) 2564 if (bars & (1 << i)) 2565 if (__pci_request_region(pdev, i, res_name, excl)) 2566 goto err_out; 2567 return 0; 2568 2569 err_out: 2570 while(--i >= 0) 2571 if (bars & (1 << i)) 2572 pci_release_region(pdev, i); 2573 2574 return -EBUSY; 2575 } 2576 2577 2578 /** 2579 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2580 * @pdev: PCI device whose resources are to be reserved 2581 * @bars: Bitmask of BARs to be requested 2582 * @res_name: Name to be associated with resource 2583 */ 2584 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2585 const char *res_name) 2586 { 2587 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2588 } 2589 2590 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 2591 int bars, const char *res_name) 2592 { 2593 return __pci_request_selected_regions(pdev, bars, res_name, 2594 IORESOURCE_EXCLUSIVE); 2595 } 2596 2597 /** 2598 * pci_release_regions - Release reserved PCI I/O and memory resources 2599 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2600 * 2601 * Releases all PCI I/O and memory resources previously reserved by a 2602 * successful call to pci_request_regions. Call this function only 2603 * after all use of the PCI regions has ceased. 2604 */ 2605 2606 void pci_release_regions(struct pci_dev *pdev) 2607 { 2608 pci_release_selected_regions(pdev, (1 << 6) - 1); 2609 } 2610 2611 /** 2612 * pci_request_regions - Reserved PCI I/O and memory resources 2613 * @pdev: PCI device whose resources are to be reserved 2614 * @res_name: Name to be associated with resource. 2615 * 2616 * Mark all PCI regions associated with PCI device @pdev as 2617 * being reserved by owner @res_name. Do not access any 2618 * address inside the PCI regions unless this call returns 2619 * successfully. 2620 * 2621 * Returns 0 on success, or %EBUSY on error. A warning 2622 * message is also printed on failure. 2623 */ 2624 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2625 { 2626 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2627 } 2628 2629 /** 2630 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2631 * @pdev: PCI device whose resources are to be reserved 2632 * @res_name: Name to be associated with resource. 2633 * 2634 * Mark all PCI regions associated with PCI device @pdev as 2635 * being reserved by owner @res_name. Do not access any 2636 * address inside the PCI regions unless this call returns 2637 * successfully. 2638 * 2639 * pci_request_regions_exclusive() will mark the region so that 2640 * /dev/mem and the sysfs MMIO access will not be allowed. 2641 * 2642 * Returns 0 on success, or %EBUSY on error. A warning 2643 * message is also printed on failure. 2644 */ 2645 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2646 { 2647 return pci_request_selected_regions_exclusive(pdev, 2648 ((1 << 6) - 1), res_name); 2649 } 2650 2651 static void __pci_set_master(struct pci_dev *dev, bool enable) 2652 { 2653 u16 old_cmd, cmd; 2654 2655 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2656 if (enable) 2657 cmd = old_cmd | PCI_COMMAND_MASTER; 2658 else 2659 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2660 if (cmd != old_cmd) { 2661 dev_dbg(&dev->dev, "%s bus mastering\n", 2662 enable ? "enabling" : "disabling"); 2663 pci_write_config_word(dev, PCI_COMMAND, cmd); 2664 } 2665 dev->is_busmaster = enable; 2666 } 2667 2668 /** 2669 * pcibios_set_master - enable PCI bus-mastering for device dev 2670 * @dev: the PCI device to enable 2671 * 2672 * Enables PCI bus-mastering for the device. This is the default 2673 * implementation. Architecture specific implementations can override 2674 * this if necessary. 2675 */ 2676 void __weak pcibios_set_master(struct pci_dev *dev) 2677 { 2678 u8 lat; 2679 2680 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2681 if (pci_is_pcie(dev)) 2682 return; 2683 2684 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2685 if (lat < 16) 2686 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2687 else if (lat > pcibios_max_latency) 2688 lat = pcibios_max_latency; 2689 else 2690 return; 2691 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat); 2692 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2693 } 2694 2695 /** 2696 * pci_set_master - enables bus-mastering for device dev 2697 * @dev: the PCI device to enable 2698 * 2699 * Enables bus-mastering on the device and calls pcibios_set_master() 2700 * to do the needed arch specific settings. 2701 */ 2702 void pci_set_master(struct pci_dev *dev) 2703 { 2704 __pci_set_master(dev, true); 2705 pcibios_set_master(dev); 2706 } 2707 2708 /** 2709 * pci_clear_master - disables bus-mastering for device dev 2710 * @dev: the PCI device to disable 2711 */ 2712 void pci_clear_master(struct pci_dev *dev) 2713 { 2714 __pci_set_master(dev, false); 2715 } 2716 2717 /** 2718 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2719 * @dev: the PCI device for which MWI is to be enabled 2720 * 2721 * Helper function for pci_set_mwi. 2722 * Originally copied from drivers/net/acenic.c. 2723 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2724 * 2725 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2726 */ 2727 int pci_set_cacheline_size(struct pci_dev *dev) 2728 { 2729 u8 cacheline_size; 2730 2731 if (!pci_cache_line_size) 2732 return -EINVAL; 2733 2734 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2735 equal to or multiple of the right value. */ 2736 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2737 if (cacheline_size >= pci_cache_line_size && 2738 (cacheline_size % pci_cache_line_size) == 0) 2739 return 0; 2740 2741 /* Write the correct value. */ 2742 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2743 /* Read it back. */ 2744 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2745 if (cacheline_size == pci_cache_line_size) 2746 return 0; 2747 2748 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 2749 "supported\n", pci_cache_line_size << 2); 2750 2751 return -EINVAL; 2752 } 2753 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2754 2755 #ifdef PCI_DISABLE_MWI 2756 int pci_set_mwi(struct pci_dev *dev) 2757 { 2758 return 0; 2759 } 2760 2761 int pci_try_set_mwi(struct pci_dev *dev) 2762 { 2763 return 0; 2764 } 2765 2766 void pci_clear_mwi(struct pci_dev *dev) 2767 { 2768 } 2769 2770 #else 2771 2772 /** 2773 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2774 * @dev: the PCI device for which MWI is enabled 2775 * 2776 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2777 * 2778 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2779 */ 2780 int 2781 pci_set_mwi(struct pci_dev *dev) 2782 { 2783 int rc; 2784 u16 cmd; 2785 2786 rc = pci_set_cacheline_size(dev); 2787 if (rc) 2788 return rc; 2789 2790 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2791 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 2792 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2793 cmd |= PCI_COMMAND_INVALIDATE; 2794 pci_write_config_word(dev, PCI_COMMAND, cmd); 2795 } 2796 2797 return 0; 2798 } 2799 2800 /** 2801 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2802 * @dev: the PCI device for which MWI is enabled 2803 * 2804 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2805 * Callers are not required to check the return value. 2806 * 2807 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2808 */ 2809 int pci_try_set_mwi(struct pci_dev *dev) 2810 { 2811 int rc = pci_set_mwi(dev); 2812 return rc; 2813 } 2814 2815 /** 2816 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2817 * @dev: the PCI device to disable 2818 * 2819 * Disables PCI Memory-Write-Invalidate transaction on the device 2820 */ 2821 void 2822 pci_clear_mwi(struct pci_dev *dev) 2823 { 2824 u16 cmd; 2825 2826 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2827 if (cmd & PCI_COMMAND_INVALIDATE) { 2828 cmd &= ~PCI_COMMAND_INVALIDATE; 2829 pci_write_config_word(dev, PCI_COMMAND, cmd); 2830 } 2831 } 2832 #endif /* ! PCI_DISABLE_MWI */ 2833 2834 /** 2835 * pci_intx - enables/disables PCI INTx for device dev 2836 * @pdev: the PCI device to operate on 2837 * @enable: boolean: whether to enable or disable PCI INTx 2838 * 2839 * Enables/disables PCI INTx for device dev 2840 */ 2841 void 2842 pci_intx(struct pci_dev *pdev, int enable) 2843 { 2844 u16 pci_command, new; 2845 2846 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2847 2848 if (enable) { 2849 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2850 } else { 2851 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2852 } 2853 2854 if (new != pci_command) { 2855 struct pci_devres *dr; 2856 2857 pci_write_config_word(pdev, PCI_COMMAND, new); 2858 2859 dr = find_pci_dr(pdev); 2860 if (dr && !dr->restore_intx) { 2861 dr->restore_intx = 1; 2862 dr->orig_intx = !enable; 2863 } 2864 } 2865 } 2866 2867 /** 2868 * pci_intx_mask_supported - probe for INTx masking support 2869 * @dev: the PCI device to operate on 2870 * 2871 * Check if the device dev support INTx masking via the config space 2872 * command word. 2873 */ 2874 bool pci_intx_mask_supported(struct pci_dev *dev) 2875 { 2876 bool mask_supported = false; 2877 u16 orig, new; 2878 2879 pci_cfg_access_lock(dev); 2880 2881 pci_read_config_word(dev, PCI_COMMAND, &orig); 2882 pci_write_config_word(dev, PCI_COMMAND, 2883 orig ^ PCI_COMMAND_INTX_DISABLE); 2884 pci_read_config_word(dev, PCI_COMMAND, &new); 2885 2886 /* 2887 * There's no way to protect against hardware bugs or detect them 2888 * reliably, but as long as we know what the value should be, let's 2889 * go ahead and check it. 2890 */ 2891 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 2892 dev_err(&dev->dev, "Command register changed from " 2893 "0x%x to 0x%x: driver or hardware bug?\n", orig, new); 2894 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 2895 mask_supported = true; 2896 pci_write_config_word(dev, PCI_COMMAND, orig); 2897 } 2898 2899 pci_cfg_access_unlock(dev); 2900 return mask_supported; 2901 } 2902 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 2903 2904 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 2905 { 2906 struct pci_bus *bus = dev->bus; 2907 bool mask_updated = true; 2908 u32 cmd_status_dword; 2909 u16 origcmd, newcmd; 2910 unsigned long flags; 2911 bool irq_pending; 2912 2913 /* 2914 * We do a single dword read to retrieve both command and status. 2915 * Document assumptions that make this possible. 2916 */ 2917 BUILD_BUG_ON(PCI_COMMAND % 4); 2918 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 2919 2920 raw_spin_lock_irqsave(&pci_lock, flags); 2921 2922 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 2923 2924 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 2925 2926 /* 2927 * Check interrupt status register to see whether our device 2928 * triggered the interrupt (when masking) or the next IRQ is 2929 * already pending (when unmasking). 2930 */ 2931 if (mask != irq_pending) { 2932 mask_updated = false; 2933 goto done; 2934 } 2935 2936 origcmd = cmd_status_dword; 2937 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 2938 if (mask) 2939 newcmd |= PCI_COMMAND_INTX_DISABLE; 2940 if (newcmd != origcmd) 2941 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 2942 2943 done: 2944 raw_spin_unlock_irqrestore(&pci_lock, flags); 2945 2946 return mask_updated; 2947 } 2948 2949 /** 2950 * pci_check_and_mask_intx - mask INTx on pending interrupt 2951 * @dev: the PCI device to operate on 2952 * 2953 * Check if the device dev has its INTx line asserted, mask it and 2954 * return true in that case. False is returned if not interrupt was 2955 * pending. 2956 */ 2957 bool pci_check_and_mask_intx(struct pci_dev *dev) 2958 { 2959 return pci_check_and_set_intx_mask(dev, true); 2960 } 2961 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 2962 2963 /** 2964 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending 2965 * @dev: the PCI device to operate on 2966 * 2967 * Check if the device dev has its INTx line asserted, unmask it if not 2968 * and return true. False is returned and the mask remains active if 2969 * there was still an interrupt pending. 2970 */ 2971 bool pci_check_and_unmask_intx(struct pci_dev *dev) 2972 { 2973 return pci_check_and_set_intx_mask(dev, false); 2974 } 2975 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 2976 2977 /** 2978 * pci_msi_off - disables any msi or msix capabilities 2979 * @dev: the PCI device to operate on 2980 * 2981 * If you want to use msi see pci_enable_msi and friends. 2982 * This is a lower level primitive that allows us to disable 2983 * msi operation at the device level. 2984 */ 2985 void pci_msi_off(struct pci_dev *dev) 2986 { 2987 int pos; 2988 u16 control; 2989 2990 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 2991 if (pos) { 2992 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 2993 control &= ~PCI_MSI_FLAGS_ENABLE; 2994 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 2995 } 2996 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 2997 if (pos) { 2998 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 2999 control &= ~PCI_MSIX_FLAGS_ENABLE; 3000 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3001 } 3002 } 3003 EXPORT_SYMBOL_GPL(pci_msi_off); 3004 3005 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3006 { 3007 return dma_set_max_seg_size(&dev->dev, size); 3008 } 3009 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3010 3011 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3012 { 3013 return dma_set_seg_boundary(&dev->dev, mask); 3014 } 3015 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3016 3017 static int pcie_flr(struct pci_dev *dev, int probe) 3018 { 3019 int i; 3020 int pos; 3021 u32 cap; 3022 u16 status, control; 3023 3024 pos = pci_pcie_cap(dev); 3025 if (!pos) 3026 return -ENOTTY; 3027 3028 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap); 3029 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3030 return -ENOTTY; 3031 3032 if (probe) 3033 return 0; 3034 3035 /* Wait for Transaction Pending bit clean */ 3036 for (i = 0; i < 4; i++) { 3037 if (i) 3038 msleep((1 << (i - 1)) * 100); 3039 3040 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status); 3041 if (!(status & PCI_EXP_DEVSTA_TRPND)) 3042 goto clear; 3043 } 3044 3045 dev_err(&dev->dev, "transaction is not cleared; " 3046 "proceeding with reset anyway\n"); 3047 3048 clear: 3049 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control); 3050 control |= PCI_EXP_DEVCTL_BCR_FLR; 3051 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control); 3052 3053 msleep(100); 3054 3055 return 0; 3056 } 3057 3058 static int pci_af_flr(struct pci_dev *dev, int probe) 3059 { 3060 int i; 3061 int pos; 3062 u8 cap; 3063 u8 status; 3064 3065 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3066 if (!pos) 3067 return -ENOTTY; 3068 3069 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3070 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3071 return -ENOTTY; 3072 3073 if (probe) 3074 return 0; 3075 3076 /* Wait for Transaction Pending bit clean */ 3077 for (i = 0; i < 4; i++) { 3078 if (i) 3079 msleep((1 << (i - 1)) * 100); 3080 3081 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status); 3082 if (!(status & PCI_AF_STATUS_TP)) 3083 goto clear; 3084 } 3085 3086 dev_err(&dev->dev, "transaction is not cleared; " 3087 "proceeding with reset anyway\n"); 3088 3089 clear: 3090 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3091 msleep(100); 3092 3093 return 0; 3094 } 3095 3096 /** 3097 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3098 * @dev: Device to reset. 3099 * @probe: If set, only check if the device can be reset this way. 3100 * 3101 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3102 * unset, it will be reinitialized internally when going from PCI_D3hot to 3103 * PCI_D0. If that's the case and the device is not in a low-power state 3104 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3105 * 3106 * NOTE: This causes the caller to sleep for twice the device power transition 3107 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3108 * by devault (i.e. unless the @dev's d3_delay field has a different value). 3109 * Moreover, only devices in D0 can be reset by this function. 3110 */ 3111 static int pci_pm_reset(struct pci_dev *dev, int probe) 3112 { 3113 u16 csr; 3114 3115 if (!dev->pm_cap) 3116 return -ENOTTY; 3117 3118 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3119 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3120 return -ENOTTY; 3121 3122 if (probe) 3123 return 0; 3124 3125 if (dev->current_state != PCI_D0) 3126 return -EINVAL; 3127 3128 csr &= ~PCI_PM_CTRL_STATE_MASK; 3129 csr |= PCI_D3hot; 3130 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3131 pci_dev_d3_sleep(dev); 3132 3133 csr &= ~PCI_PM_CTRL_STATE_MASK; 3134 csr |= PCI_D0; 3135 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3136 pci_dev_d3_sleep(dev); 3137 3138 return 0; 3139 } 3140 3141 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3142 { 3143 u16 ctrl; 3144 struct pci_dev *pdev; 3145 3146 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3147 return -ENOTTY; 3148 3149 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3150 if (pdev != dev) 3151 return -ENOTTY; 3152 3153 if (probe) 3154 return 0; 3155 3156 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl); 3157 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3158 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl); 3159 msleep(100); 3160 3161 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3162 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl); 3163 msleep(100); 3164 3165 return 0; 3166 } 3167 3168 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3169 { 3170 int rc; 3171 3172 might_sleep(); 3173 3174 rc = pci_dev_specific_reset(dev, probe); 3175 if (rc != -ENOTTY) 3176 goto done; 3177 3178 rc = pcie_flr(dev, probe); 3179 if (rc != -ENOTTY) 3180 goto done; 3181 3182 rc = pci_af_flr(dev, probe); 3183 if (rc != -ENOTTY) 3184 goto done; 3185 3186 rc = pci_pm_reset(dev, probe); 3187 if (rc != -ENOTTY) 3188 goto done; 3189 3190 rc = pci_parent_bus_reset(dev, probe); 3191 done: 3192 return rc; 3193 } 3194 3195 static int pci_dev_reset(struct pci_dev *dev, int probe) 3196 { 3197 int rc; 3198 3199 if (!probe) { 3200 pci_cfg_access_lock(dev); 3201 /* block PM suspend, driver probe, etc. */ 3202 device_lock(&dev->dev); 3203 } 3204 3205 rc = __pci_dev_reset(dev, probe); 3206 3207 if (!probe) { 3208 device_unlock(&dev->dev); 3209 pci_cfg_access_unlock(dev); 3210 } 3211 return rc; 3212 } 3213 /** 3214 * __pci_reset_function - reset a PCI device function 3215 * @dev: PCI device to reset 3216 * 3217 * Some devices allow an individual function to be reset without affecting 3218 * other functions in the same device. The PCI device must be responsive 3219 * to PCI config space in order to use this function. 3220 * 3221 * The device function is presumed to be unused when this function is called. 3222 * Resetting the device will make the contents of PCI configuration space 3223 * random, so any caller of this must be prepared to reinitialise the 3224 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3225 * etc. 3226 * 3227 * Returns 0 if the device function was successfully reset or negative if the 3228 * device doesn't support resetting a single function. 3229 */ 3230 int __pci_reset_function(struct pci_dev *dev) 3231 { 3232 return pci_dev_reset(dev, 0); 3233 } 3234 EXPORT_SYMBOL_GPL(__pci_reset_function); 3235 3236 /** 3237 * __pci_reset_function_locked - reset a PCI device function while holding 3238 * the @dev mutex lock. 3239 * @dev: PCI device to reset 3240 * 3241 * Some devices allow an individual function to be reset without affecting 3242 * other functions in the same device. The PCI device must be responsive 3243 * to PCI config space in order to use this function. 3244 * 3245 * The device function is presumed to be unused and the caller is holding 3246 * the device mutex lock when this function is called. 3247 * Resetting the device will make the contents of PCI configuration space 3248 * random, so any caller of this must be prepared to reinitialise the 3249 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3250 * etc. 3251 * 3252 * Returns 0 if the device function was successfully reset or negative if the 3253 * device doesn't support resetting a single function. 3254 */ 3255 int __pci_reset_function_locked(struct pci_dev *dev) 3256 { 3257 return __pci_dev_reset(dev, 0); 3258 } 3259 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3260 3261 /** 3262 * pci_probe_reset_function - check whether the device can be safely reset 3263 * @dev: PCI device to reset 3264 * 3265 * Some devices allow an individual function to be reset without affecting 3266 * other functions in the same device. The PCI device must be responsive 3267 * to PCI config space in order to use this function. 3268 * 3269 * Returns 0 if the device function can be reset or negative if the 3270 * device doesn't support resetting a single function. 3271 */ 3272 int pci_probe_reset_function(struct pci_dev *dev) 3273 { 3274 return pci_dev_reset(dev, 1); 3275 } 3276 3277 /** 3278 * pci_reset_function - quiesce and reset a PCI device function 3279 * @dev: PCI device to reset 3280 * 3281 * Some devices allow an individual function to be reset without affecting 3282 * other functions in the same device. The PCI device must be responsive 3283 * to PCI config space in order to use this function. 3284 * 3285 * This function does not just reset the PCI portion of a device, but 3286 * clears all the state associated with the device. This function differs 3287 * from __pci_reset_function in that it saves and restores device state 3288 * over the reset. 3289 * 3290 * Returns 0 if the device function was successfully reset or negative if the 3291 * device doesn't support resetting a single function. 3292 */ 3293 int pci_reset_function(struct pci_dev *dev) 3294 { 3295 int rc; 3296 3297 rc = pci_dev_reset(dev, 1); 3298 if (rc) 3299 return rc; 3300 3301 pci_save_state(dev); 3302 3303 /* 3304 * both INTx and MSI are disabled after the Interrupt Disable bit 3305 * is set and the Bus Master bit is cleared. 3306 */ 3307 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3308 3309 rc = pci_dev_reset(dev, 0); 3310 3311 pci_restore_state(dev); 3312 3313 return rc; 3314 } 3315 EXPORT_SYMBOL_GPL(pci_reset_function); 3316 3317 /** 3318 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3319 * @dev: PCI device to query 3320 * 3321 * Returns mmrbc: maximum designed memory read count in bytes 3322 * or appropriate error value. 3323 */ 3324 int pcix_get_max_mmrbc(struct pci_dev *dev) 3325 { 3326 int cap; 3327 u32 stat; 3328 3329 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3330 if (!cap) 3331 return -EINVAL; 3332 3333 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3334 return -EINVAL; 3335 3336 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3337 } 3338 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3339 3340 /** 3341 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3342 * @dev: PCI device to query 3343 * 3344 * Returns mmrbc: maximum memory read count in bytes 3345 * or appropriate error value. 3346 */ 3347 int pcix_get_mmrbc(struct pci_dev *dev) 3348 { 3349 int cap; 3350 u16 cmd; 3351 3352 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3353 if (!cap) 3354 return -EINVAL; 3355 3356 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3357 return -EINVAL; 3358 3359 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3360 } 3361 EXPORT_SYMBOL(pcix_get_mmrbc); 3362 3363 /** 3364 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3365 * @dev: PCI device to query 3366 * @mmrbc: maximum memory read count in bytes 3367 * valid values are 512, 1024, 2048, 4096 3368 * 3369 * If possible sets maximum memory read byte count, some bridges have erratas 3370 * that prevent this. 3371 */ 3372 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3373 { 3374 int cap; 3375 u32 stat, v, o; 3376 u16 cmd; 3377 3378 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3379 return -EINVAL; 3380 3381 v = ffs(mmrbc) - 10; 3382 3383 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3384 if (!cap) 3385 return -EINVAL; 3386 3387 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3388 return -EINVAL; 3389 3390 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3391 return -E2BIG; 3392 3393 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3394 return -EINVAL; 3395 3396 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3397 if (o != v) { 3398 if (v > o && dev->bus && 3399 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3400 return -EIO; 3401 3402 cmd &= ~PCI_X_CMD_MAX_READ; 3403 cmd |= v << 2; 3404 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 3405 return -EIO; 3406 } 3407 return 0; 3408 } 3409 EXPORT_SYMBOL(pcix_set_mmrbc); 3410 3411 /** 3412 * pcie_get_readrq - get PCI Express read request size 3413 * @dev: PCI device to query 3414 * 3415 * Returns maximum memory read request in bytes 3416 * or appropriate error value. 3417 */ 3418 int pcie_get_readrq(struct pci_dev *dev) 3419 { 3420 int ret, cap; 3421 u16 ctl; 3422 3423 cap = pci_pcie_cap(dev); 3424 if (!cap) 3425 return -EINVAL; 3426 3427 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 3428 if (!ret) 3429 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 3430 3431 return ret; 3432 } 3433 EXPORT_SYMBOL(pcie_get_readrq); 3434 3435 /** 3436 * pcie_set_readrq - set PCI Express maximum memory read request 3437 * @dev: PCI device to query 3438 * @rq: maximum memory read count in bytes 3439 * valid values are 128, 256, 512, 1024, 2048, 4096 3440 * 3441 * If possible sets maximum memory read request in bytes 3442 */ 3443 int pcie_set_readrq(struct pci_dev *dev, int rq) 3444 { 3445 int cap, err = -EINVAL; 3446 u16 ctl, v; 3447 3448 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 3449 goto out; 3450 3451 cap = pci_pcie_cap(dev); 3452 if (!cap) 3453 goto out; 3454 3455 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 3456 if (err) 3457 goto out; 3458 /* 3459 * If using the "performance" PCIe config, we clamp the 3460 * read rq size to the max packet size to prevent the 3461 * host bridge generating requests larger than we can 3462 * cope with 3463 */ 3464 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 3465 int mps = pcie_get_mps(dev); 3466 3467 if (mps < 0) 3468 return mps; 3469 if (mps < rq) 3470 rq = mps; 3471 } 3472 3473 v = (ffs(rq) - 8) << 12; 3474 3475 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) { 3476 ctl &= ~PCI_EXP_DEVCTL_READRQ; 3477 ctl |= v; 3478 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl); 3479 } 3480 3481 out: 3482 return err; 3483 } 3484 EXPORT_SYMBOL(pcie_set_readrq); 3485 3486 /** 3487 * pcie_get_mps - get PCI Express maximum payload size 3488 * @dev: PCI device to query 3489 * 3490 * Returns maximum payload size in bytes 3491 * or appropriate error value. 3492 */ 3493 int pcie_get_mps(struct pci_dev *dev) 3494 { 3495 int ret, cap; 3496 u16 ctl; 3497 3498 cap = pci_pcie_cap(dev); 3499 if (!cap) 3500 return -EINVAL; 3501 3502 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 3503 if (!ret) 3504 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 3505 3506 return ret; 3507 } 3508 3509 /** 3510 * pcie_set_mps - set PCI Express maximum payload size 3511 * @dev: PCI device to query 3512 * @mps: maximum payload size in bytes 3513 * valid values are 128, 256, 512, 1024, 2048, 4096 3514 * 3515 * If possible sets maximum payload size 3516 */ 3517 int pcie_set_mps(struct pci_dev *dev, int mps) 3518 { 3519 int cap, err = -EINVAL; 3520 u16 ctl, v; 3521 3522 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 3523 goto out; 3524 3525 v = ffs(mps) - 8; 3526 if (v > dev->pcie_mpss) 3527 goto out; 3528 v <<= 5; 3529 3530 cap = pci_pcie_cap(dev); 3531 if (!cap) 3532 goto out; 3533 3534 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl); 3535 if (err) 3536 goto out; 3537 3538 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) { 3539 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD; 3540 ctl |= v; 3541 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl); 3542 } 3543 out: 3544 return err; 3545 } 3546 3547 /** 3548 * pci_select_bars - Make BAR mask from the type of resource 3549 * @dev: the PCI device for which BAR mask is made 3550 * @flags: resource type mask to be selected 3551 * 3552 * This helper routine makes bar mask from the type of resource. 3553 */ 3554 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 3555 { 3556 int i, bars = 0; 3557 for (i = 0; i < PCI_NUM_RESOURCES; i++) 3558 if (pci_resource_flags(dev, i) & flags) 3559 bars |= (1 << i); 3560 return bars; 3561 } 3562 3563 /** 3564 * pci_resource_bar - get position of the BAR associated with a resource 3565 * @dev: the PCI device 3566 * @resno: the resource number 3567 * @type: the BAR type to be filled in 3568 * 3569 * Returns BAR position in config space, or 0 if the BAR is invalid. 3570 */ 3571 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 3572 { 3573 int reg; 3574 3575 if (resno < PCI_ROM_RESOURCE) { 3576 *type = pci_bar_unknown; 3577 return PCI_BASE_ADDRESS_0 + 4 * resno; 3578 } else if (resno == PCI_ROM_RESOURCE) { 3579 *type = pci_bar_mem32; 3580 return dev->rom_base_reg; 3581 } else if (resno < PCI_BRIDGE_RESOURCES) { 3582 /* device specific resource */ 3583 reg = pci_iov_resource_bar(dev, resno, type); 3584 if (reg) 3585 return reg; 3586 } 3587 3588 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 3589 return 0; 3590 } 3591 3592 /* Some architectures require additional programming to enable VGA */ 3593 static arch_set_vga_state_t arch_set_vga_state; 3594 3595 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 3596 { 3597 arch_set_vga_state = func; /* NULL disables */ 3598 } 3599 3600 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 3601 unsigned int command_bits, u32 flags) 3602 { 3603 if (arch_set_vga_state) 3604 return arch_set_vga_state(dev, decode, command_bits, 3605 flags); 3606 return 0; 3607 } 3608 3609 /** 3610 * pci_set_vga_state - set VGA decode state on device and parents if requested 3611 * @dev: the PCI device 3612 * @decode: true = enable decoding, false = disable decoding 3613 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 3614 * @flags: traverse ancestors and change bridges 3615 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 3616 */ 3617 int pci_set_vga_state(struct pci_dev *dev, bool decode, 3618 unsigned int command_bits, u32 flags) 3619 { 3620 struct pci_bus *bus; 3621 struct pci_dev *bridge; 3622 u16 cmd; 3623 int rc; 3624 3625 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 3626 3627 /* ARCH specific VGA enables */ 3628 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 3629 if (rc) 3630 return rc; 3631 3632 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 3633 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3634 if (decode == true) 3635 cmd |= command_bits; 3636 else 3637 cmd &= ~command_bits; 3638 pci_write_config_word(dev, PCI_COMMAND, cmd); 3639 } 3640 3641 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 3642 return 0; 3643 3644 bus = dev->bus; 3645 while (bus) { 3646 bridge = bus->self; 3647 if (bridge) { 3648 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 3649 &cmd); 3650 if (decode == true) 3651 cmd |= PCI_BRIDGE_CTL_VGA; 3652 else 3653 cmd &= ~PCI_BRIDGE_CTL_VGA; 3654 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 3655 cmd); 3656 } 3657 bus = bus->parent; 3658 } 3659 return 0; 3660 } 3661 3662 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 3663 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 3664 static DEFINE_SPINLOCK(resource_alignment_lock); 3665 3666 /** 3667 * pci_specified_resource_alignment - get resource alignment specified by user. 3668 * @dev: the PCI device to get 3669 * 3670 * RETURNS: Resource alignment if it is specified. 3671 * Zero if it is not specified. 3672 */ 3673 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 3674 { 3675 int seg, bus, slot, func, align_order, count; 3676 resource_size_t align = 0; 3677 char *p; 3678 3679 spin_lock(&resource_alignment_lock); 3680 p = resource_alignment_param; 3681 while (*p) { 3682 count = 0; 3683 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 3684 p[count] == '@') { 3685 p += count + 1; 3686 } else { 3687 align_order = -1; 3688 } 3689 if (sscanf(p, "%x:%x:%x.%x%n", 3690 &seg, &bus, &slot, &func, &count) != 4) { 3691 seg = 0; 3692 if (sscanf(p, "%x:%x.%x%n", 3693 &bus, &slot, &func, &count) != 3) { 3694 /* Invalid format */ 3695 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 3696 p); 3697 break; 3698 } 3699 } 3700 p += count; 3701 if (seg == pci_domain_nr(dev->bus) && 3702 bus == dev->bus->number && 3703 slot == PCI_SLOT(dev->devfn) && 3704 func == PCI_FUNC(dev->devfn)) { 3705 if (align_order == -1) { 3706 align = PAGE_SIZE; 3707 } else { 3708 align = 1 << align_order; 3709 } 3710 /* Found */ 3711 break; 3712 } 3713 if (*p != ';' && *p != ',') { 3714 /* End of param or invalid format */ 3715 break; 3716 } 3717 p++; 3718 } 3719 spin_unlock(&resource_alignment_lock); 3720 return align; 3721 } 3722 3723 /** 3724 * pci_is_reassigndev - check if specified PCI is target device to reassign 3725 * @dev: the PCI device to check 3726 * 3727 * RETURNS: non-zero for PCI device is a target device to reassign, 3728 * or zero is not. 3729 */ 3730 int pci_is_reassigndev(struct pci_dev *dev) 3731 { 3732 return (pci_specified_resource_alignment(dev) != 0); 3733 } 3734 3735 /* 3736 * This function disables memory decoding and releases memory resources 3737 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 3738 * It also rounds up size to specified alignment. 3739 * Later on, the kernel will assign page-aligned memory resource back 3740 * to the device. 3741 */ 3742 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 3743 { 3744 int i; 3745 struct resource *r; 3746 resource_size_t align, size; 3747 u16 command; 3748 3749 if (!pci_is_reassigndev(dev)) 3750 return; 3751 3752 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 3753 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 3754 dev_warn(&dev->dev, 3755 "Can't reassign resources to host bridge.\n"); 3756 return; 3757 } 3758 3759 dev_info(&dev->dev, 3760 "Disabling memory decoding and releasing memory resources.\n"); 3761 pci_read_config_word(dev, PCI_COMMAND, &command); 3762 command &= ~PCI_COMMAND_MEMORY; 3763 pci_write_config_word(dev, PCI_COMMAND, command); 3764 3765 align = pci_specified_resource_alignment(dev); 3766 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 3767 r = &dev->resource[i]; 3768 if (!(r->flags & IORESOURCE_MEM)) 3769 continue; 3770 size = resource_size(r); 3771 if (size < align) { 3772 size = align; 3773 dev_info(&dev->dev, 3774 "Rounding up size of resource #%d to %#llx.\n", 3775 i, (unsigned long long)size); 3776 } 3777 r->end = size - 1; 3778 r->start = 0; 3779 } 3780 /* Need to disable bridge's resource window, 3781 * to enable the kernel to reassign new resource 3782 * window later on. 3783 */ 3784 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 3785 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 3786 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 3787 r = &dev->resource[i]; 3788 if (!(r->flags & IORESOURCE_MEM)) 3789 continue; 3790 r->end = resource_size(r) - 1; 3791 r->start = 0; 3792 } 3793 pci_disable_bridge_window(dev); 3794 } 3795 } 3796 3797 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 3798 { 3799 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 3800 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 3801 spin_lock(&resource_alignment_lock); 3802 strncpy(resource_alignment_param, buf, count); 3803 resource_alignment_param[count] = '\0'; 3804 spin_unlock(&resource_alignment_lock); 3805 return count; 3806 } 3807 3808 ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 3809 { 3810 size_t count; 3811 spin_lock(&resource_alignment_lock); 3812 count = snprintf(buf, size, "%s", resource_alignment_param); 3813 spin_unlock(&resource_alignment_lock); 3814 return count; 3815 } 3816 3817 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 3818 { 3819 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 3820 } 3821 3822 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 3823 const char *buf, size_t count) 3824 { 3825 return pci_set_resource_alignment_param(buf, count); 3826 } 3827 3828 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 3829 pci_resource_alignment_store); 3830 3831 static int __init pci_resource_alignment_sysfs_init(void) 3832 { 3833 return bus_create_file(&pci_bus_type, 3834 &bus_attr_resource_alignment); 3835 } 3836 3837 late_initcall(pci_resource_alignment_sysfs_init); 3838 3839 static void __devinit pci_no_domains(void) 3840 { 3841 #ifdef CONFIG_PCI_DOMAINS 3842 pci_domains_supported = 0; 3843 #endif 3844 } 3845 3846 /** 3847 * pci_ext_cfg_enabled - can we access extended PCI config space? 3848 * @dev: The PCI device of the root bridge. 3849 * 3850 * Returns 1 if we can access PCI extended config space (offsets 3851 * greater than 0xff). This is the default implementation. Architecture 3852 * implementations can override this. 3853 */ 3854 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev) 3855 { 3856 return 1; 3857 } 3858 3859 void __weak pci_fixup_cardbus(struct pci_bus *bus) 3860 { 3861 } 3862 EXPORT_SYMBOL(pci_fixup_cardbus); 3863 3864 static int __init pci_setup(char *str) 3865 { 3866 while (str) { 3867 char *k = strchr(str, ','); 3868 if (k) 3869 *k++ = 0; 3870 if (*str && (str = pcibios_setup(str)) && *str) { 3871 if (!strcmp(str, "nomsi")) { 3872 pci_no_msi(); 3873 } else if (!strcmp(str, "noaer")) { 3874 pci_no_aer(); 3875 } else if (!strncmp(str, "realloc=", 8)) { 3876 pci_realloc_get_opt(str + 8); 3877 } else if (!strncmp(str, "realloc", 7)) { 3878 pci_realloc_get_opt("on"); 3879 } else if (!strcmp(str, "nodomains")) { 3880 pci_no_domains(); 3881 } else if (!strncmp(str, "noari", 5)) { 3882 pcie_ari_disabled = true; 3883 } else if (!strncmp(str, "cbiosize=", 9)) { 3884 pci_cardbus_io_size = memparse(str + 9, &str); 3885 } else if (!strncmp(str, "cbmemsize=", 10)) { 3886 pci_cardbus_mem_size = memparse(str + 10, &str); 3887 } else if (!strncmp(str, "resource_alignment=", 19)) { 3888 pci_set_resource_alignment_param(str + 19, 3889 strlen(str + 19)); 3890 } else if (!strncmp(str, "ecrc=", 5)) { 3891 pcie_ecrc_get_policy(str + 5); 3892 } else if (!strncmp(str, "hpiosize=", 9)) { 3893 pci_hotplug_io_size = memparse(str + 9, &str); 3894 } else if (!strncmp(str, "hpmemsize=", 10)) { 3895 pci_hotplug_mem_size = memparse(str + 10, &str); 3896 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 3897 pcie_bus_config = PCIE_BUS_TUNE_OFF; 3898 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 3899 pcie_bus_config = PCIE_BUS_SAFE; 3900 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 3901 pcie_bus_config = PCIE_BUS_PERFORMANCE; 3902 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 3903 pcie_bus_config = PCIE_BUS_PEER2PEER; 3904 } else if (!strncmp(str, "pcie_scan_all", 13)) { 3905 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 3906 } else { 3907 printk(KERN_ERR "PCI: Unknown option `%s'\n", 3908 str); 3909 } 3910 } 3911 str = k; 3912 } 3913 return 0; 3914 } 3915 early_param("pci", pci_setup); 3916 3917 EXPORT_SYMBOL(pci_reenable_device); 3918 EXPORT_SYMBOL(pci_enable_device_io); 3919 EXPORT_SYMBOL(pci_enable_device_mem); 3920 EXPORT_SYMBOL(pci_enable_device); 3921 EXPORT_SYMBOL(pcim_enable_device); 3922 EXPORT_SYMBOL(pcim_pin_device); 3923 EXPORT_SYMBOL(pci_disable_device); 3924 EXPORT_SYMBOL(pci_find_capability); 3925 EXPORT_SYMBOL(pci_bus_find_capability); 3926 EXPORT_SYMBOL(pci_release_regions); 3927 EXPORT_SYMBOL(pci_request_regions); 3928 EXPORT_SYMBOL(pci_request_regions_exclusive); 3929 EXPORT_SYMBOL(pci_release_region); 3930 EXPORT_SYMBOL(pci_request_region); 3931 EXPORT_SYMBOL(pci_request_region_exclusive); 3932 EXPORT_SYMBOL(pci_release_selected_regions); 3933 EXPORT_SYMBOL(pci_request_selected_regions); 3934 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3935 EXPORT_SYMBOL(pci_set_master); 3936 EXPORT_SYMBOL(pci_clear_master); 3937 EXPORT_SYMBOL(pci_set_mwi); 3938 EXPORT_SYMBOL(pci_try_set_mwi); 3939 EXPORT_SYMBOL(pci_clear_mwi); 3940 EXPORT_SYMBOL_GPL(pci_intx); 3941 EXPORT_SYMBOL(pci_assign_resource); 3942 EXPORT_SYMBOL(pci_find_parent_resource); 3943 EXPORT_SYMBOL(pci_select_bars); 3944 3945 EXPORT_SYMBOL(pci_set_power_state); 3946 EXPORT_SYMBOL(pci_save_state); 3947 EXPORT_SYMBOL(pci_restore_state); 3948 EXPORT_SYMBOL(pci_pme_capable); 3949 EXPORT_SYMBOL(pci_pme_active); 3950 EXPORT_SYMBOL(pci_wake_from_d3); 3951 EXPORT_SYMBOL(pci_target_state); 3952 EXPORT_SYMBOL(pci_prepare_to_sleep); 3953 EXPORT_SYMBOL(pci_back_from_sleep); 3954 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 3955