xref: /openbmc/linux/drivers/pci/pci.c (revision ab73b751)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28 
29 const char *pci_power_names[] = {
30 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33 
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36 
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39 
40 unsigned int pci_pm_d3_delay;
41 
42 static void pci_pme_list_scan(struct work_struct *work);
43 
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47 
48 struct pci_pme_device {
49 	struct list_head list;
50 	struct pci_dev *dev;
51 };
52 
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54 
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 	unsigned int delay = dev->d3_delay;
58 
59 	if (delay < pci_pm_d3_delay)
60 		delay = pci_pm_d3_delay;
61 
62 	msleep(delay);
63 }
64 
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68 
69 #define DEFAULT_CARDBUS_IO_SIZE		(256)
70 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74 
75 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80 
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82 
83 /*
84  * The default CLS is used if arch didn't set CLS explicitly and not
85  * all pci devices agree on the same value.  Arch can override either
86  * the dfl or actual value as it sees fit.  Don't forget this is
87  * measured in 32-bit words, not bytes.
88  */
89 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91 
92 /*
93  * If we set up a device for bus mastering, we need to check the latency
94  * timer as certain BIOSes forget to set it properly.
95  */
96 unsigned int pcibios_max_latency = 255;
97 
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100 
101 /**
102  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103  * @bus: pointer to PCI bus structure to search
104  *
105  * Given a PCI bus, returns the highest PCI bus number present in the set
106  * including the given PCI bus and its list of child PCI buses.
107  */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 	struct list_head *tmp;
111 	unsigned char max, n;
112 
113 	max = bus->subordinate;
114 	list_for_each(tmp, &bus->children) {
115 		n = pci_bus_max_busnr(pci_bus_b(tmp));
116 		if(n > max)
117 			max = n;
118 	}
119 	return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122 
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 	/*
127 	 * Make sure the BAR is actually a memory resource, not an IO resource
128 	 */
129 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 		WARN_ON(1);
131 		return NULL;
132 	}
133 	return ioremap_nocache(pci_resource_start(pdev, bar),
134 				     pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138 
139 #if 0
140 /**
141  * pci_max_busnr - returns maximum PCI bus number
142  *
143  * Returns the highest PCI bus number present in the system global list of
144  * PCI buses.
145  */
146 unsigned char __devinit
147 pci_max_busnr(void)
148 {
149 	struct pci_bus *bus = NULL;
150 	unsigned char max, n;
151 
152 	max = 0;
153 	while ((bus = pci_find_next_bus(bus)) != NULL) {
154 		n = pci_bus_max_busnr(bus);
155 		if(n > max)
156 			max = n;
157 	}
158 	return max;
159 }
160 
161 #endif  /*  0  */
162 
163 #define PCI_FIND_CAP_TTL	48
164 
165 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
166 				   u8 pos, int cap, int *ttl)
167 {
168 	u8 id;
169 
170 	while ((*ttl)--) {
171 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
172 		if (pos < 0x40)
173 			break;
174 		pos &= ~3;
175 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
176 					 &id);
177 		if (id == 0xff)
178 			break;
179 		if (id == cap)
180 			return pos;
181 		pos += PCI_CAP_LIST_NEXT;
182 	}
183 	return 0;
184 }
185 
186 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
187 			       u8 pos, int cap)
188 {
189 	int ttl = PCI_FIND_CAP_TTL;
190 
191 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
192 }
193 
194 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
195 {
196 	return __pci_find_next_cap(dev->bus, dev->devfn,
197 				   pos + PCI_CAP_LIST_NEXT, cap);
198 }
199 EXPORT_SYMBOL_GPL(pci_find_next_capability);
200 
201 static int __pci_bus_find_cap_start(struct pci_bus *bus,
202 				    unsigned int devfn, u8 hdr_type)
203 {
204 	u16 status;
205 
206 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
207 	if (!(status & PCI_STATUS_CAP_LIST))
208 		return 0;
209 
210 	switch (hdr_type) {
211 	case PCI_HEADER_TYPE_NORMAL:
212 	case PCI_HEADER_TYPE_BRIDGE:
213 		return PCI_CAPABILITY_LIST;
214 	case PCI_HEADER_TYPE_CARDBUS:
215 		return PCI_CB_CAPABILITY_LIST;
216 	default:
217 		return 0;
218 	}
219 
220 	return 0;
221 }
222 
223 /**
224  * pci_find_capability - query for devices' capabilities
225  * @dev: PCI device to query
226  * @cap: capability code
227  *
228  * Tell if a device supports a given PCI capability.
229  * Returns the address of the requested capability structure within the
230  * device's PCI configuration space or 0 in case the device does not
231  * support it.  Possible values for @cap:
232  *
233  *  %PCI_CAP_ID_PM           Power Management
234  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
235  *  %PCI_CAP_ID_VPD          Vital Product Data
236  *  %PCI_CAP_ID_SLOTID       Slot Identification
237  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
238  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
239  *  %PCI_CAP_ID_PCIX         PCI-X
240  *  %PCI_CAP_ID_EXP          PCI Express
241  */
242 int pci_find_capability(struct pci_dev *dev, int cap)
243 {
244 	int pos;
245 
246 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
247 	if (pos)
248 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
249 
250 	return pos;
251 }
252 
253 /**
254  * pci_bus_find_capability - query for devices' capabilities
255  * @bus:   the PCI bus to query
256  * @devfn: PCI device to query
257  * @cap:   capability code
258  *
259  * Like pci_find_capability() but works for pci devices that do not have a
260  * pci_dev structure set up yet.
261  *
262  * Returns the address of the requested capability structure within the
263  * device's PCI configuration space or 0 in case the device does not
264  * support it.
265  */
266 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
267 {
268 	int pos;
269 	u8 hdr_type;
270 
271 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
272 
273 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
274 	if (pos)
275 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
276 
277 	return pos;
278 }
279 
280 /**
281  * pci_find_ext_capability - Find an extended capability
282  * @dev: PCI device to query
283  * @cap: capability code
284  *
285  * Returns the address of the requested extended capability structure
286  * within the device's PCI configuration space or 0 if the device does
287  * not support it.  Possible values for @cap:
288  *
289  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
290  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
291  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
292  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
293  */
294 int pci_find_ext_capability(struct pci_dev *dev, int cap)
295 {
296 	u32 header;
297 	int ttl;
298 	int pos = PCI_CFG_SPACE_SIZE;
299 
300 	/* minimum 8 bytes per capability */
301 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
302 
303 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
304 		return 0;
305 
306 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
307 		return 0;
308 
309 	/*
310 	 * If we have no capabilities, this is indicated by cap ID,
311 	 * cap version and next pointer all being 0.
312 	 */
313 	if (header == 0)
314 		return 0;
315 
316 	while (ttl-- > 0) {
317 		if (PCI_EXT_CAP_ID(header) == cap)
318 			return pos;
319 
320 		pos = PCI_EXT_CAP_NEXT(header);
321 		if (pos < PCI_CFG_SPACE_SIZE)
322 			break;
323 
324 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 			break;
326 	}
327 
328 	return 0;
329 }
330 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
331 
332 /**
333  * pci_bus_find_ext_capability - find an extended capability
334  * @bus:   the PCI bus to query
335  * @devfn: PCI device to query
336  * @cap:   capability code
337  *
338  * Like pci_find_ext_capability() but works for pci devices that do not have a
339  * pci_dev structure set up yet.
340  *
341  * Returns the address of the requested capability structure within the
342  * device's PCI configuration space or 0 in case the device does not
343  * support it.
344  */
345 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
346 				int cap)
347 {
348 	u32 header;
349 	int ttl;
350 	int pos = PCI_CFG_SPACE_SIZE;
351 
352 	/* minimum 8 bytes per capability */
353 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
354 
355 	if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
356 		return 0;
357 	if (header == 0xffffffff || header == 0)
358 		return 0;
359 
360 	while (ttl-- > 0) {
361 		if (PCI_EXT_CAP_ID(header) == cap)
362 			return pos;
363 
364 		pos = PCI_EXT_CAP_NEXT(header);
365 		if (pos < PCI_CFG_SPACE_SIZE)
366 			break;
367 
368 		if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
369 			break;
370 	}
371 
372 	return 0;
373 }
374 
375 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
376 {
377 	int rc, ttl = PCI_FIND_CAP_TTL;
378 	u8 cap, mask;
379 
380 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
381 		mask = HT_3BIT_CAP_MASK;
382 	else
383 		mask = HT_5BIT_CAP_MASK;
384 
385 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
386 				      PCI_CAP_ID_HT, &ttl);
387 	while (pos) {
388 		rc = pci_read_config_byte(dev, pos + 3, &cap);
389 		if (rc != PCIBIOS_SUCCESSFUL)
390 			return 0;
391 
392 		if ((cap & mask) == ht_cap)
393 			return pos;
394 
395 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
396 					      pos + PCI_CAP_LIST_NEXT,
397 					      PCI_CAP_ID_HT, &ttl);
398 	}
399 
400 	return 0;
401 }
402 /**
403  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
404  * @dev: PCI device to query
405  * @pos: Position from which to continue searching
406  * @ht_cap: Hypertransport capability code
407  *
408  * To be used in conjunction with pci_find_ht_capability() to search for
409  * all capabilities matching @ht_cap. @pos should always be a value returned
410  * from pci_find_ht_capability().
411  *
412  * NB. To be 100% safe against broken PCI devices, the caller should take
413  * steps to avoid an infinite loop.
414  */
415 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
416 {
417 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
418 }
419 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
420 
421 /**
422  * pci_find_ht_capability - query a device's Hypertransport capabilities
423  * @dev: PCI device to query
424  * @ht_cap: Hypertransport capability code
425  *
426  * Tell if a device supports a given Hypertransport capability.
427  * Returns an address within the device's PCI configuration space
428  * or 0 in case the device does not support the request capability.
429  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
430  * which has a Hypertransport capability matching @ht_cap.
431  */
432 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
433 {
434 	int pos;
435 
436 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
437 	if (pos)
438 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
439 
440 	return pos;
441 }
442 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
443 
444 /**
445  * pci_find_parent_resource - return resource region of parent bus of given region
446  * @dev: PCI device structure contains resources to be searched
447  * @res: child resource record for which parent is sought
448  *
449  *  For given resource region of given device, return the resource
450  *  region of parent bus the given region is contained in or where
451  *  it should be allocated from.
452  */
453 struct resource *
454 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
455 {
456 	const struct pci_bus *bus = dev->bus;
457 	int i;
458 	struct resource *best = NULL, *r;
459 
460 	pci_bus_for_each_resource(bus, r, i) {
461 		if (!r)
462 			continue;
463 		if (res->start && !(res->start >= r->start && res->end <= r->end))
464 			continue;	/* Not contained */
465 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
466 			continue;	/* Wrong type */
467 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
468 			return r;	/* Exact match */
469 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
470 		if (r->flags & IORESOURCE_PREFETCH)
471 			continue;
472 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
473 		if (!best)
474 			best = r;
475 	}
476 	return best;
477 }
478 
479 /**
480  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
481  * @dev: PCI device to have its BARs restored
482  *
483  * Restore the BAR values for a given device, so as to make it
484  * accessible by its driver.
485  */
486 static void
487 pci_restore_bars(struct pci_dev *dev)
488 {
489 	int i;
490 
491 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
492 		pci_update_resource(dev, i);
493 }
494 
495 static struct pci_platform_pm_ops *pci_platform_pm;
496 
497 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
498 {
499 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
500 	    || !ops->sleep_wake || !ops->can_wakeup)
501 		return -EINVAL;
502 	pci_platform_pm = ops;
503 	return 0;
504 }
505 
506 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
507 {
508 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
509 }
510 
511 static inline int platform_pci_set_power_state(struct pci_dev *dev,
512                                                 pci_power_t t)
513 {
514 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
515 }
516 
517 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
518 {
519 	return pci_platform_pm ?
520 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
521 }
522 
523 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
524 {
525 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
526 }
527 
528 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
529 {
530 	return pci_platform_pm ?
531 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
532 }
533 
534 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
535 {
536 	return pci_platform_pm ?
537 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
538 }
539 
540 /**
541  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
542  *                           given PCI device
543  * @dev: PCI device to handle.
544  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
545  *
546  * RETURN VALUE:
547  * -EINVAL if the requested state is invalid.
548  * -EIO if device does not support PCI PM or its PM capabilities register has a
549  * wrong version, or device doesn't support the requested state.
550  * 0 if device already is in the requested state.
551  * 0 if device's power state has been successfully changed.
552  */
553 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
554 {
555 	u16 pmcsr;
556 	bool need_restore = false;
557 
558 	/* Check if we're already there */
559 	if (dev->current_state == state)
560 		return 0;
561 
562 	if (!dev->pm_cap)
563 		return -EIO;
564 
565 	if (state < PCI_D0 || state > PCI_D3hot)
566 		return -EINVAL;
567 
568 	/* Validate current state:
569 	 * Can enter D0 from any state, but if we can only go deeper
570 	 * to sleep if we're already in a low power state
571 	 */
572 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
573 	    && dev->current_state > state) {
574 		dev_err(&dev->dev, "invalid power transition "
575 			"(from state %d to %d)\n", dev->current_state, state);
576 		return -EINVAL;
577 	}
578 
579 	/* check if this device supports the desired state */
580 	if ((state == PCI_D1 && !dev->d1_support)
581 	   || (state == PCI_D2 && !dev->d2_support))
582 		return -EIO;
583 
584 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
585 
586 	/* If we're (effectively) in D3, force entire word to 0.
587 	 * This doesn't affect PME_Status, disables PME_En, and
588 	 * sets PowerState to 0.
589 	 */
590 	switch (dev->current_state) {
591 	case PCI_D0:
592 	case PCI_D1:
593 	case PCI_D2:
594 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
595 		pmcsr |= state;
596 		break;
597 	case PCI_D3hot:
598 	case PCI_D3cold:
599 	case PCI_UNKNOWN: /* Boot-up */
600 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
601 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
602 			need_restore = true;
603 		/* Fall-through: force to D0 */
604 	default:
605 		pmcsr = 0;
606 		break;
607 	}
608 
609 	/* enter specified state */
610 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
611 
612 	/* Mandatory power management transition delays */
613 	/* see PCI PM 1.1 5.6.1 table 18 */
614 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
615 		pci_dev_d3_sleep(dev);
616 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
617 		udelay(PCI_PM_D2_DELAY);
618 
619 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
620 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
621 	if (dev->current_state != state && printk_ratelimit())
622 		dev_info(&dev->dev, "Refused to change power state, "
623 			"currently in D%d\n", dev->current_state);
624 
625 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
626 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
627 	 * from D3hot to D0 _may_ perform an internal reset, thereby
628 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
629 	 * For example, at least some versions of the 3c905B and the
630 	 * 3c556B exhibit this behaviour.
631 	 *
632 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
633 	 * devices in a D3hot state at boot.  Consequently, we need to
634 	 * restore at least the BARs so that the device will be
635 	 * accessible to its driver.
636 	 */
637 	if (need_restore)
638 		pci_restore_bars(dev);
639 
640 	if (dev->bus->self)
641 		pcie_aspm_pm_state_change(dev->bus->self);
642 
643 	return 0;
644 }
645 
646 /**
647  * pci_update_current_state - Read PCI power state of given device from its
648  *                            PCI PM registers and cache it
649  * @dev: PCI device to handle.
650  * @state: State to cache in case the device doesn't have the PM capability
651  */
652 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
653 {
654 	if (dev->pm_cap) {
655 		u16 pmcsr;
656 
657 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
658 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
659 	} else {
660 		dev->current_state = state;
661 	}
662 }
663 
664 /**
665  * pci_platform_power_transition - Use platform to change device power state
666  * @dev: PCI device to handle.
667  * @state: State to put the device into.
668  */
669 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
670 {
671 	int error;
672 
673 	if (platform_pci_power_manageable(dev)) {
674 		error = platform_pci_set_power_state(dev, state);
675 		if (!error)
676 			pci_update_current_state(dev, state);
677 		/* Fall back to PCI_D0 if native PM is not supported */
678 		if (!dev->pm_cap)
679 			dev->current_state = PCI_D0;
680 	} else {
681 		error = -ENODEV;
682 		/* Fall back to PCI_D0 if native PM is not supported */
683 		if (!dev->pm_cap)
684 			dev->current_state = PCI_D0;
685 	}
686 
687 	return error;
688 }
689 
690 /**
691  * __pci_start_power_transition - Start power transition of a PCI device
692  * @dev: PCI device to handle.
693  * @state: State to put the device into.
694  */
695 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
696 {
697 	if (state == PCI_D0)
698 		pci_platform_power_transition(dev, PCI_D0);
699 }
700 
701 /**
702  * __pci_complete_power_transition - Complete power transition of a PCI device
703  * @dev: PCI device to handle.
704  * @state: State to put the device into.
705  *
706  * This function should not be called directly by device drivers.
707  */
708 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
709 {
710 	return state >= PCI_D0 ?
711 			pci_platform_power_transition(dev, state) : -EINVAL;
712 }
713 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
714 
715 /**
716  * pci_set_power_state - Set the power state of a PCI device
717  * @dev: PCI device to handle.
718  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
719  *
720  * Transition a device to a new power state, using the platform firmware and/or
721  * the device's PCI PM registers.
722  *
723  * RETURN VALUE:
724  * -EINVAL if the requested state is invalid.
725  * -EIO if device does not support PCI PM or its PM capabilities register has a
726  * wrong version, or device doesn't support the requested state.
727  * 0 if device already is in the requested state.
728  * 0 if device's power state has been successfully changed.
729  */
730 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
731 {
732 	int error;
733 
734 	/* bound the state we're entering */
735 	if (state > PCI_D3hot)
736 		state = PCI_D3hot;
737 	else if (state < PCI_D0)
738 		state = PCI_D0;
739 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
740 		/*
741 		 * If the device or the parent bridge do not support PCI PM,
742 		 * ignore the request if we're doing anything other than putting
743 		 * it into D0 (which would only happen on boot).
744 		 */
745 		return 0;
746 
747 	__pci_start_power_transition(dev, state);
748 
749 	/* This device is quirked not to be put into D3, so
750 	   don't put it in D3 */
751 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
752 		return 0;
753 
754 	error = pci_raw_set_power_state(dev, state);
755 
756 	if (!__pci_complete_power_transition(dev, state))
757 		error = 0;
758 	/*
759 	 * When aspm_policy is "powersave" this call ensures
760 	 * that ASPM is configured.
761 	 */
762 	if (!error && dev->bus->self)
763 		pcie_aspm_powersave_config_link(dev->bus->self);
764 
765 	return error;
766 }
767 
768 /**
769  * pci_choose_state - Choose the power state of a PCI device
770  * @dev: PCI device to be suspended
771  * @state: target sleep state for the whole system. This is the value
772  *	that is passed to suspend() function.
773  *
774  * Returns PCI power state suitable for given device and given system
775  * message.
776  */
777 
778 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
779 {
780 	pci_power_t ret;
781 
782 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
783 		return PCI_D0;
784 
785 	ret = platform_pci_choose_state(dev);
786 	if (ret != PCI_POWER_ERROR)
787 		return ret;
788 
789 	switch (state.event) {
790 	case PM_EVENT_ON:
791 		return PCI_D0;
792 	case PM_EVENT_FREEZE:
793 	case PM_EVENT_PRETHAW:
794 		/* REVISIT both freeze and pre-thaw "should" use D0 */
795 	case PM_EVENT_SUSPEND:
796 	case PM_EVENT_HIBERNATE:
797 		return PCI_D3hot;
798 	default:
799 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
800 			 state.event);
801 		BUG();
802 	}
803 	return PCI_D0;
804 }
805 
806 EXPORT_SYMBOL(pci_choose_state);
807 
808 #define PCI_EXP_SAVE_REGS	7
809 
810 #define pcie_cap_has_devctl(type, flags)	1
811 #define pcie_cap_has_lnkctl(type, flags)		\
812 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
813 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
814 		  type == PCI_EXP_TYPE_ENDPOINT ||	\
815 		  type == PCI_EXP_TYPE_LEG_END))
816 #define pcie_cap_has_sltctl(type, flags)		\
817 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
818 		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
819 		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
820 		   (flags & PCI_EXP_FLAGS_SLOT))))
821 #define pcie_cap_has_rtctl(type, flags)			\
822 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
823 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
824 		  type == PCI_EXP_TYPE_RC_EC))
825 #define pcie_cap_has_devctl2(type, flags)		\
826 		((flags & PCI_EXP_FLAGS_VERS) > 1)
827 #define pcie_cap_has_lnkctl2(type, flags)		\
828 		((flags & PCI_EXP_FLAGS_VERS) > 1)
829 #define pcie_cap_has_sltctl2(type, flags)		\
830 		((flags & PCI_EXP_FLAGS_VERS) > 1)
831 
832 static struct pci_cap_saved_state *pci_find_saved_cap(
833 	struct pci_dev *pci_dev, char cap)
834 {
835 	struct pci_cap_saved_state *tmp;
836 	struct hlist_node *pos;
837 
838 	hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
839 		if (tmp->cap.cap_nr == cap)
840 			return tmp;
841 	}
842 	return NULL;
843 }
844 
845 static int pci_save_pcie_state(struct pci_dev *dev)
846 {
847 	int pos, i = 0;
848 	struct pci_cap_saved_state *save_state;
849 	u16 *cap;
850 	u16 flags;
851 
852 	pos = pci_pcie_cap(dev);
853 	if (!pos)
854 		return 0;
855 
856 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
857 	if (!save_state) {
858 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
859 		return -ENOMEM;
860 	}
861 	cap = (u16 *)&save_state->cap.data[0];
862 
863 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
864 
865 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
866 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
867 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
868 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
869 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
870 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
871 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
872 		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
873 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
874 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
875 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
876 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
877 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
878 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
879 
880 	return 0;
881 }
882 
883 static void pci_restore_pcie_state(struct pci_dev *dev)
884 {
885 	int i = 0, pos;
886 	struct pci_cap_saved_state *save_state;
887 	u16 *cap;
888 	u16 flags;
889 
890 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
891 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
892 	if (!save_state || pos <= 0)
893 		return;
894 	cap = (u16 *)&save_state->cap.data[0];
895 
896 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
897 
898 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
899 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
900 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
901 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
902 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
903 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
904 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
905 		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
906 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
907 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
908 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
909 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
910 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
911 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
912 }
913 
914 
915 static int pci_save_pcix_state(struct pci_dev *dev)
916 {
917 	int pos;
918 	struct pci_cap_saved_state *save_state;
919 
920 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
921 	if (pos <= 0)
922 		return 0;
923 
924 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
925 	if (!save_state) {
926 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 		return -ENOMEM;
928 	}
929 
930 	pci_read_config_word(dev, pos + PCI_X_CMD,
931 			     (u16 *)save_state->cap.data);
932 
933 	return 0;
934 }
935 
936 static void pci_restore_pcix_state(struct pci_dev *dev)
937 {
938 	int i = 0, pos;
939 	struct pci_cap_saved_state *save_state;
940 	u16 *cap;
941 
942 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
943 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
944 	if (!save_state || pos <= 0)
945 		return;
946 	cap = (u16 *)&save_state->cap.data[0];
947 
948 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
949 }
950 
951 
952 /**
953  * pci_save_state - save the PCI configuration space of a device before suspending
954  * @dev: - PCI device that we're dealing with
955  */
956 int
957 pci_save_state(struct pci_dev *dev)
958 {
959 	int i;
960 	/* XXX: 100% dword access ok here? */
961 	for (i = 0; i < 16; i++)
962 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
963 	dev->state_saved = true;
964 	if ((i = pci_save_pcie_state(dev)) != 0)
965 		return i;
966 	if ((i = pci_save_pcix_state(dev)) != 0)
967 		return i;
968 	return 0;
969 }
970 
971 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
972 				     u32 saved_val, int retry)
973 {
974 	u32 val;
975 
976 	pci_read_config_dword(pdev, offset, &val);
977 	if (val == saved_val)
978 		return;
979 
980 	for (;;) {
981 		dev_dbg(&pdev->dev, "restoring config space at offset "
982 			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
983 		pci_write_config_dword(pdev, offset, saved_val);
984 		if (retry-- <= 0)
985 			return;
986 
987 		pci_read_config_dword(pdev, offset, &val);
988 		if (val == saved_val)
989 			return;
990 
991 		mdelay(1);
992 	}
993 }
994 
995 static void pci_restore_config_space_range(struct pci_dev *pdev,
996 					   int start, int end, int retry)
997 {
998 	int index;
999 
1000 	for (index = end; index >= start; index--)
1001 		pci_restore_config_dword(pdev, 4 * index,
1002 					 pdev->saved_config_space[index],
1003 					 retry);
1004 }
1005 
1006 static void pci_restore_config_space(struct pci_dev *pdev)
1007 {
1008 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1009 		pci_restore_config_space_range(pdev, 10, 15, 0);
1010 		/* Restore BARs before the command register. */
1011 		pci_restore_config_space_range(pdev, 4, 9, 10);
1012 		pci_restore_config_space_range(pdev, 0, 3, 0);
1013 	} else {
1014 		pci_restore_config_space_range(pdev, 0, 15, 0);
1015 	}
1016 }
1017 
1018 /**
1019  * pci_restore_state - Restore the saved state of a PCI device
1020  * @dev: - PCI device that we're dealing with
1021  */
1022 void pci_restore_state(struct pci_dev *dev)
1023 {
1024 	if (!dev->state_saved)
1025 		return;
1026 
1027 	/* PCI Express register must be restored first */
1028 	pci_restore_pcie_state(dev);
1029 	pci_restore_ats_state(dev);
1030 
1031 	pci_restore_config_space(dev);
1032 
1033 	pci_restore_pcix_state(dev);
1034 	pci_restore_msi_state(dev);
1035 	pci_restore_iov_state(dev);
1036 
1037 	dev->state_saved = false;
1038 }
1039 
1040 struct pci_saved_state {
1041 	u32 config_space[16];
1042 	struct pci_cap_saved_data cap[0];
1043 };
1044 
1045 /**
1046  * pci_store_saved_state - Allocate and return an opaque struct containing
1047  *			   the device saved state.
1048  * @dev: PCI device that we're dealing with
1049  *
1050  * Rerturn NULL if no state or error.
1051  */
1052 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1053 {
1054 	struct pci_saved_state *state;
1055 	struct pci_cap_saved_state *tmp;
1056 	struct pci_cap_saved_data *cap;
1057 	struct hlist_node *pos;
1058 	size_t size;
1059 
1060 	if (!dev->state_saved)
1061 		return NULL;
1062 
1063 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1064 
1065 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1066 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1067 
1068 	state = kzalloc(size, GFP_KERNEL);
1069 	if (!state)
1070 		return NULL;
1071 
1072 	memcpy(state->config_space, dev->saved_config_space,
1073 	       sizeof(state->config_space));
1074 
1075 	cap = state->cap;
1076 	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1077 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1078 		memcpy(cap, &tmp->cap, len);
1079 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1080 	}
1081 	/* Empty cap_save terminates list */
1082 
1083 	return state;
1084 }
1085 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1086 
1087 /**
1088  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1089  * @dev: PCI device that we're dealing with
1090  * @state: Saved state returned from pci_store_saved_state()
1091  */
1092 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1093 {
1094 	struct pci_cap_saved_data *cap;
1095 
1096 	dev->state_saved = false;
1097 
1098 	if (!state)
1099 		return 0;
1100 
1101 	memcpy(dev->saved_config_space, state->config_space,
1102 	       sizeof(state->config_space));
1103 
1104 	cap = state->cap;
1105 	while (cap->size) {
1106 		struct pci_cap_saved_state *tmp;
1107 
1108 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1109 		if (!tmp || tmp->cap.size != cap->size)
1110 			return -EINVAL;
1111 
1112 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1113 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1114 		       sizeof(struct pci_cap_saved_data) + cap->size);
1115 	}
1116 
1117 	dev->state_saved = true;
1118 	return 0;
1119 }
1120 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1121 
1122 /**
1123  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1124  *				   and free the memory allocated for it.
1125  * @dev: PCI device that we're dealing with
1126  * @state: Pointer to saved state returned from pci_store_saved_state()
1127  */
1128 int pci_load_and_free_saved_state(struct pci_dev *dev,
1129 				  struct pci_saved_state **state)
1130 {
1131 	int ret = pci_load_saved_state(dev, *state);
1132 	kfree(*state);
1133 	*state = NULL;
1134 	return ret;
1135 }
1136 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1137 
1138 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1139 {
1140 	int err;
1141 
1142 	err = pci_set_power_state(dev, PCI_D0);
1143 	if (err < 0 && err != -EIO)
1144 		return err;
1145 	err = pcibios_enable_device(dev, bars);
1146 	if (err < 0)
1147 		return err;
1148 	pci_fixup_device(pci_fixup_enable, dev);
1149 
1150 	return 0;
1151 }
1152 
1153 /**
1154  * pci_reenable_device - Resume abandoned device
1155  * @dev: PCI device to be resumed
1156  *
1157  *  Note this function is a backend of pci_default_resume and is not supposed
1158  *  to be called by normal code, write proper resume handler and use it instead.
1159  */
1160 int pci_reenable_device(struct pci_dev *dev)
1161 {
1162 	if (pci_is_enabled(dev))
1163 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1164 	return 0;
1165 }
1166 
1167 static int __pci_enable_device_flags(struct pci_dev *dev,
1168 				     resource_size_t flags)
1169 {
1170 	int err;
1171 	int i, bars = 0;
1172 
1173 	/*
1174 	 * Power state could be unknown at this point, either due to a fresh
1175 	 * boot or a device removal call.  So get the current power state
1176 	 * so that things like MSI message writing will behave as expected
1177 	 * (e.g. if the device really is in D0 at enable time).
1178 	 */
1179 	if (dev->pm_cap) {
1180 		u16 pmcsr;
1181 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1182 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1183 	}
1184 
1185 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
1186 		return 0;		/* already enabled */
1187 
1188 	/* only skip sriov related */
1189 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1190 		if (dev->resource[i].flags & flags)
1191 			bars |= (1 << i);
1192 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1193 		if (dev->resource[i].flags & flags)
1194 			bars |= (1 << i);
1195 
1196 	err = do_pci_enable_device(dev, bars);
1197 	if (err < 0)
1198 		atomic_dec(&dev->enable_cnt);
1199 	return err;
1200 }
1201 
1202 /**
1203  * pci_enable_device_io - Initialize a device for use with IO space
1204  * @dev: PCI device to be initialized
1205  *
1206  *  Initialize device before it's used by a driver. Ask low-level code
1207  *  to enable I/O resources. Wake up the device if it was suspended.
1208  *  Beware, this function can fail.
1209  */
1210 int pci_enable_device_io(struct pci_dev *dev)
1211 {
1212 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
1213 }
1214 
1215 /**
1216  * pci_enable_device_mem - Initialize a device for use with Memory space
1217  * @dev: PCI device to be initialized
1218  *
1219  *  Initialize device before it's used by a driver. Ask low-level code
1220  *  to enable Memory resources. Wake up the device if it was suspended.
1221  *  Beware, this function can fail.
1222  */
1223 int pci_enable_device_mem(struct pci_dev *dev)
1224 {
1225 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1226 }
1227 
1228 /**
1229  * pci_enable_device - Initialize device before it's used by a driver.
1230  * @dev: PCI device to be initialized
1231  *
1232  *  Initialize device before it's used by a driver. Ask low-level code
1233  *  to enable I/O and memory. Wake up the device if it was suspended.
1234  *  Beware, this function can fail.
1235  *
1236  *  Note we don't actually enable the device many times if we call
1237  *  this function repeatedly (we just increment the count).
1238  */
1239 int pci_enable_device(struct pci_dev *dev)
1240 {
1241 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1242 }
1243 
1244 /*
1245  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1246  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1247  * there's no need to track it separately.  pci_devres is initialized
1248  * when a device is enabled using managed PCI device enable interface.
1249  */
1250 struct pci_devres {
1251 	unsigned int enabled:1;
1252 	unsigned int pinned:1;
1253 	unsigned int orig_intx:1;
1254 	unsigned int restore_intx:1;
1255 	u32 region_mask;
1256 };
1257 
1258 static void pcim_release(struct device *gendev, void *res)
1259 {
1260 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1261 	struct pci_devres *this = res;
1262 	int i;
1263 
1264 	if (dev->msi_enabled)
1265 		pci_disable_msi(dev);
1266 	if (dev->msix_enabled)
1267 		pci_disable_msix(dev);
1268 
1269 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1270 		if (this->region_mask & (1 << i))
1271 			pci_release_region(dev, i);
1272 
1273 	if (this->restore_intx)
1274 		pci_intx(dev, this->orig_intx);
1275 
1276 	if (this->enabled && !this->pinned)
1277 		pci_disable_device(dev);
1278 }
1279 
1280 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1281 {
1282 	struct pci_devres *dr, *new_dr;
1283 
1284 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1285 	if (dr)
1286 		return dr;
1287 
1288 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1289 	if (!new_dr)
1290 		return NULL;
1291 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1292 }
1293 
1294 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1295 {
1296 	if (pci_is_managed(pdev))
1297 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1298 	return NULL;
1299 }
1300 
1301 /**
1302  * pcim_enable_device - Managed pci_enable_device()
1303  * @pdev: PCI device to be initialized
1304  *
1305  * Managed pci_enable_device().
1306  */
1307 int pcim_enable_device(struct pci_dev *pdev)
1308 {
1309 	struct pci_devres *dr;
1310 	int rc;
1311 
1312 	dr = get_pci_dr(pdev);
1313 	if (unlikely(!dr))
1314 		return -ENOMEM;
1315 	if (dr->enabled)
1316 		return 0;
1317 
1318 	rc = pci_enable_device(pdev);
1319 	if (!rc) {
1320 		pdev->is_managed = 1;
1321 		dr->enabled = 1;
1322 	}
1323 	return rc;
1324 }
1325 
1326 /**
1327  * pcim_pin_device - Pin managed PCI device
1328  * @pdev: PCI device to pin
1329  *
1330  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1331  * driver detach.  @pdev must have been enabled with
1332  * pcim_enable_device().
1333  */
1334 void pcim_pin_device(struct pci_dev *pdev)
1335 {
1336 	struct pci_devres *dr;
1337 
1338 	dr = find_pci_dr(pdev);
1339 	WARN_ON(!dr || !dr->enabled);
1340 	if (dr)
1341 		dr->pinned = 1;
1342 }
1343 
1344 /**
1345  * pcibios_disable_device - disable arch specific PCI resources for device dev
1346  * @dev: the PCI device to disable
1347  *
1348  * Disables architecture specific PCI resources for the device. This
1349  * is the default implementation. Architecture implementations can
1350  * override this.
1351  */
1352 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1353 
1354 static void do_pci_disable_device(struct pci_dev *dev)
1355 {
1356 	u16 pci_command;
1357 
1358 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1359 	if (pci_command & PCI_COMMAND_MASTER) {
1360 		pci_command &= ~PCI_COMMAND_MASTER;
1361 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1362 	}
1363 
1364 	pcibios_disable_device(dev);
1365 }
1366 
1367 /**
1368  * pci_disable_enabled_device - Disable device without updating enable_cnt
1369  * @dev: PCI device to disable
1370  *
1371  * NOTE: This function is a backend of PCI power management routines and is
1372  * not supposed to be called drivers.
1373  */
1374 void pci_disable_enabled_device(struct pci_dev *dev)
1375 {
1376 	if (pci_is_enabled(dev))
1377 		do_pci_disable_device(dev);
1378 }
1379 
1380 /**
1381  * pci_disable_device - Disable PCI device after use
1382  * @dev: PCI device to be disabled
1383  *
1384  * Signal to the system that the PCI device is not in use by the system
1385  * anymore.  This only involves disabling PCI bus-mastering, if active.
1386  *
1387  * Note we don't actually disable the device until all callers of
1388  * pci_enable_device() have called pci_disable_device().
1389  */
1390 void
1391 pci_disable_device(struct pci_dev *dev)
1392 {
1393 	struct pci_devres *dr;
1394 
1395 	dr = find_pci_dr(dev);
1396 	if (dr)
1397 		dr->enabled = 0;
1398 
1399 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1400 		return;
1401 
1402 	do_pci_disable_device(dev);
1403 
1404 	dev->is_busmaster = 0;
1405 }
1406 
1407 /**
1408  * pcibios_set_pcie_reset_state - set reset state for device dev
1409  * @dev: the PCIe device reset
1410  * @state: Reset state to enter into
1411  *
1412  *
1413  * Sets the PCIe reset state for the device. This is the default
1414  * implementation. Architecture implementations can override this.
1415  */
1416 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1417 							enum pcie_reset_state state)
1418 {
1419 	return -EINVAL;
1420 }
1421 
1422 /**
1423  * pci_set_pcie_reset_state - set reset state for device dev
1424  * @dev: the PCIe device reset
1425  * @state: Reset state to enter into
1426  *
1427  *
1428  * Sets the PCI reset state for the device.
1429  */
1430 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1431 {
1432 	return pcibios_set_pcie_reset_state(dev, state);
1433 }
1434 
1435 /**
1436  * pci_check_pme_status - Check if given device has generated PME.
1437  * @dev: Device to check.
1438  *
1439  * Check the PME status of the device and if set, clear it and clear PME enable
1440  * (if set).  Return 'true' if PME status and PME enable were both set or
1441  * 'false' otherwise.
1442  */
1443 bool pci_check_pme_status(struct pci_dev *dev)
1444 {
1445 	int pmcsr_pos;
1446 	u16 pmcsr;
1447 	bool ret = false;
1448 
1449 	if (!dev->pm_cap)
1450 		return false;
1451 
1452 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1453 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1454 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1455 		return false;
1456 
1457 	/* Clear PME status. */
1458 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1459 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1460 		/* Disable PME to avoid interrupt flood. */
1461 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1462 		ret = true;
1463 	}
1464 
1465 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1466 
1467 	return ret;
1468 }
1469 
1470 /**
1471  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1472  * @dev: Device to handle.
1473  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1474  *
1475  * Check if @dev has generated PME and queue a resume request for it in that
1476  * case.
1477  */
1478 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1479 {
1480 	if (pme_poll_reset && dev->pme_poll)
1481 		dev->pme_poll = false;
1482 
1483 	if (pci_check_pme_status(dev)) {
1484 		pci_wakeup_event(dev);
1485 		pm_request_resume(&dev->dev);
1486 	}
1487 	return 0;
1488 }
1489 
1490 /**
1491  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1492  * @bus: Top bus of the subtree to walk.
1493  */
1494 void pci_pme_wakeup_bus(struct pci_bus *bus)
1495 {
1496 	if (bus)
1497 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1498 }
1499 
1500 /**
1501  * pci_pme_capable - check the capability of PCI device to generate PME#
1502  * @dev: PCI device to handle.
1503  * @state: PCI state from which device will issue PME#.
1504  */
1505 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1506 {
1507 	if (!dev->pm_cap)
1508 		return false;
1509 
1510 	return !!(dev->pme_support & (1 << state));
1511 }
1512 
1513 static void pci_pme_list_scan(struct work_struct *work)
1514 {
1515 	struct pci_pme_device *pme_dev, *n;
1516 
1517 	mutex_lock(&pci_pme_list_mutex);
1518 	if (!list_empty(&pci_pme_list)) {
1519 		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1520 			if (pme_dev->dev->pme_poll) {
1521 				pci_pme_wakeup(pme_dev->dev, NULL);
1522 			} else {
1523 				list_del(&pme_dev->list);
1524 				kfree(pme_dev);
1525 			}
1526 		}
1527 		if (!list_empty(&pci_pme_list))
1528 			schedule_delayed_work(&pci_pme_work,
1529 					      msecs_to_jiffies(PME_TIMEOUT));
1530 	}
1531 	mutex_unlock(&pci_pme_list_mutex);
1532 }
1533 
1534 /**
1535  * pci_pme_active - enable or disable PCI device's PME# function
1536  * @dev: PCI device to handle.
1537  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1538  *
1539  * The caller must verify that the device is capable of generating PME# before
1540  * calling this function with @enable equal to 'true'.
1541  */
1542 void pci_pme_active(struct pci_dev *dev, bool enable)
1543 {
1544 	u16 pmcsr;
1545 
1546 	if (!dev->pm_cap)
1547 		return;
1548 
1549 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1550 	/* Clear PME_Status by writing 1 to it and enable PME# */
1551 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1552 	if (!enable)
1553 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1554 
1555 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1556 
1557 	/* PCI (as opposed to PCIe) PME requires that the device have
1558 	   its PME# line hooked up correctly. Not all hardware vendors
1559 	   do this, so the PME never gets delivered and the device
1560 	   remains asleep. The easiest way around this is to
1561 	   periodically walk the list of suspended devices and check
1562 	   whether any have their PME flag set. The assumption is that
1563 	   we'll wake up often enough anyway that this won't be a huge
1564 	   hit, and the power savings from the devices will still be a
1565 	   win. */
1566 
1567 	if (dev->pme_poll) {
1568 		struct pci_pme_device *pme_dev;
1569 		if (enable) {
1570 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1571 					  GFP_KERNEL);
1572 			if (!pme_dev)
1573 				goto out;
1574 			pme_dev->dev = dev;
1575 			mutex_lock(&pci_pme_list_mutex);
1576 			list_add(&pme_dev->list, &pci_pme_list);
1577 			if (list_is_singular(&pci_pme_list))
1578 				schedule_delayed_work(&pci_pme_work,
1579 						      msecs_to_jiffies(PME_TIMEOUT));
1580 			mutex_unlock(&pci_pme_list_mutex);
1581 		} else {
1582 			mutex_lock(&pci_pme_list_mutex);
1583 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1584 				if (pme_dev->dev == dev) {
1585 					list_del(&pme_dev->list);
1586 					kfree(pme_dev);
1587 					break;
1588 				}
1589 			}
1590 			mutex_unlock(&pci_pme_list_mutex);
1591 		}
1592 	}
1593 
1594 out:
1595 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1596 }
1597 
1598 /**
1599  * __pci_enable_wake - enable PCI device as wakeup event source
1600  * @dev: PCI device affected
1601  * @state: PCI state from which device will issue wakeup events
1602  * @runtime: True if the events are to be generated at run time
1603  * @enable: True to enable event generation; false to disable
1604  *
1605  * This enables the device as a wakeup event source, or disables it.
1606  * When such events involves platform-specific hooks, those hooks are
1607  * called automatically by this routine.
1608  *
1609  * Devices with legacy power management (no standard PCI PM capabilities)
1610  * always require such platform hooks.
1611  *
1612  * RETURN VALUE:
1613  * 0 is returned on success
1614  * -EINVAL is returned if device is not supposed to wake up the system
1615  * Error code depending on the platform is returned if both the platform and
1616  * the native mechanism fail to enable the generation of wake-up events
1617  */
1618 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1619 		      bool runtime, bool enable)
1620 {
1621 	int ret = 0;
1622 
1623 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1624 		return -EINVAL;
1625 
1626 	/* Don't do the same thing twice in a row for one device. */
1627 	if (!!enable == !!dev->wakeup_prepared)
1628 		return 0;
1629 
1630 	/*
1631 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1632 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1633 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1634 	 */
1635 
1636 	if (enable) {
1637 		int error;
1638 
1639 		if (pci_pme_capable(dev, state))
1640 			pci_pme_active(dev, true);
1641 		else
1642 			ret = 1;
1643 		error = runtime ? platform_pci_run_wake(dev, true) :
1644 					platform_pci_sleep_wake(dev, true);
1645 		if (ret)
1646 			ret = error;
1647 		if (!ret)
1648 			dev->wakeup_prepared = true;
1649 	} else {
1650 		if (runtime)
1651 			platform_pci_run_wake(dev, false);
1652 		else
1653 			platform_pci_sleep_wake(dev, false);
1654 		pci_pme_active(dev, false);
1655 		dev->wakeup_prepared = false;
1656 	}
1657 
1658 	return ret;
1659 }
1660 EXPORT_SYMBOL(__pci_enable_wake);
1661 
1662 /**
1663  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1664  * @dev: PCI device to prepare
1665  * @enable: True to enable wake-up event generation; false to disable
1666  *
1667  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1668  * and this function allows them to set that up cleanly - pci_enable_wake()
1669  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1670  * ordering constraints.
1671  *
1672  * This function only returns error code if the device is not capable of
1673  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1674  * enable wake-up power for it.
1675  */
1676 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1677 {
1678 	return pci_pme_capable(dev, PCI_D3cold) ?
1679 			pci_enable_wake(dev, PCI_D3cold, enable) :
1680 			pci_enable_wake(dev, PCI_D3hot, enable);
1681 }
1682 
1683 /**
1684  * pci_target_state - find an appropriate low power state for a given PCI dev
1685  * @dev: PCI device
1686  *
1687  * Use underlying platform code to find a supported low power state for @dev.
1688  * If the platform can't manage @dev, return the deepest state from which it
1689  * can generate wake events, based on any available PME info.
1690  */
1691 pci_power_t pci_target_state(struct pci_dev *dev)
1692 {
1693 	pci_power_t target_state = PCI_D3hot;
1694 
1695 	if (platform_pci_power_manageable(dev)) {
1696 		/*
1697 		 * Call the platform to choose the target state of the device
1698 		 * and enable wake-up from this state if supported.
1699 		 */
1700 		pci_power_t state = platform_pci_choose_state(dev);
1701 
1702 		switch (state) {
1703 		case PCI_POWER_ERROR:
1704 		case PCI_UNKNOWN:
1705 			break;
1706 		case PCI_D1:
1707 		case PCI_D2:
1708 			if (pci_no_d1d2(dev))
1709 				break;
1710 		default:
1711 			target_state = state;
1712 		}
1713 	} else if (!dev->pm_cap) {
1714 		target_state = PCI_D0;
1715 	} else if (device_may_wakeup(&dev->dev)) {
1716 		/*
1717 		 * Find the deepest state from which the device can generate
1718 		 * wake-up events, make it the target state and enable device
1719 		 * to generate PME#.
1720 		 */
1721 		if (dev->pme_support) {
1722 			while (target_state
1723 			      && !(dev->pme_support & (1 << target_state)))
1724 				target_state--;
1725 		}
1726 	}
1727 
1728 	return target_state;
1729 }
1730 
1731 /**
1732  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1733  * @dev: Device to handle.
1734  *
1735  * Choose the power state appropriate for the device depending on whether
1736  * it can wake up the system and/or is power manageable by the platform
1737  * (PCI_D3hot is the default) and put the device into that state.
1738  */
1739 int pci_prepare_to_sleep(struct pci_dev *dev)
1740 {
1741 	pci_power_t target_state = pci_target_state(dev);
1742 	int error;
1743 
1744 	if (target_state == PCI_POWER_ERROR)
1745 		return -EIO;
1746 
1747 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1748 
1749 	error = pci_set_power_state(dev, target_state);
1750 
1751 	if (error)
1752 		pci_enable_wake(dev, target_state, false);
1753 
1754 	return error;
1755 }
1756 
1757 /**
1758  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1759  * @dev: Device to handle.
1760  *
1761  * Disable device's system wake-up capability and put it into D0.
1762  */
1763 int pci_back_from_sleep(struct pci_dev *dev)
1764 {
1765 	pci_enable_wake(dev, PCI_D0, false);
1766 	return pci_set_power_state(dev, PCI_D0);
1767 }
1768 
1769 /**
1770  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1771  * @dev: PCI device being suspended.
1772  *
1773  * Prepare @dev to generate wake-up events at run time and put it into a low
1774  * power state.
1775  */
1776 int pci_finish_runtime_suspend(struct pci_dev *dev)
1777 {
1778 	pci_power_t target_state = pci_target_state(dev);
1779 	int error;
1780 
1781 	if (target_state == PCI_POWER_ERROR)
1782 		return -EIO;
1783 
1784 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1785 
1786 	error = pci_set_power_state(dev, target_state);
1787 
1788 	if (error)
1789 		__pci_enable_wake(dev, target_state, true, false);
1790 
1791 	return error;
1792 }
1793 
1794 /**
1795  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1796  * @dev: Device to check.
1797  *
1798  * Return true if the device itself is cabable of generating wake-up events
1799  * (through the platform or using the native PCIe PME) or if the device supports
1800  * PME and one of its upstream bridges can generate wake-up events.
1801  */
1802 bool pci_dev_run_wake(struct pci_dev *dev)
1803 {
1804 	struct pci_bus *bus = dev->bus;
1805 
1806 	if (device_run_wake(&dev->dev))
1807 		return true;
1808 
1809 	if (!dev->pme_support)
1810 		return false;
1811 
1812 	while (bus->parent) {
1813 		struct pci_dev *bridge = bus->self;
1814 
1815 		if (device_run_wake(&bridge->dev))
1816 			return true;
1817 
1818 		bus = bus->parent;
1819 	}
1820 
1821 	/* We have reached the root bus. */
1822 	if (bus->bridge)
1823 		return device_run_wake(bus->bridge);
1824 
1825 	return false;
1826 }
1827 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1828 
1829 /**
1830  * pci_pm_init - Initialize PM functions of given PCI device
1831  * @dev: PCI device to handle.
1832  */
1833 void pci_pm_init(struct pci_dev *dev)
1834 {
1835 	int pm;
1836 	u16 pmc;
1837 
1838 	pm_runtime_forbid(&dev->dev);
1839 	device_enable_async_suspend(&dev->dev);
1840 	dev->wakeup_prepared = false;
1841 
1842 	dev->pm_cap = 0;
1843 
1844 	/* find PCI PM capability in list */
1845 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1846 	if (!pm)
1847 		return;
1848 	/* Check device's ability to generate PME# */
1849 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1850 
1851 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1852 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1853 			pmc & PCI_PM_CAP_VER_MASK);
1854 		return;
1855 	}
1856 
1857 	dev->pm_cap = pm;
1858 	dev->d3_delay = PCI_PM_D3_WAIT;
1859 
1860 	dev->d1_support = false;
1861 	dev->d2_support = false;
1862 	if (!pci_no_d1d2(dev)) {
1863 		if (pmc & PCI_PM_CAP_D1)
1864 			dev->d1_support = true;
1865 		if (pmc & PCI_PM_CAP_D2)
1866 			dev->d2_support = true;
1867 
1868 		if (dev->d1_support || dev->d2_support)
1869 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1870 				   dev->d1_support ? " D1" : "",
1871 				   dev->d2_support ? " D2" : "");
1872 	}
1873 
1874 	pmc &= PCI_PM_CAP_PME_MASK;
1875 	if (pmc) {
1876 		dev_printk(KERN_DEBUG, &dev->dev,
1877 			 "PME# supported from%s%s%s%s%s\n",
1878 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1879 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1880 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1881 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1882 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1883 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1884 		dev->pme_poll = true;
1885 		/*
1886 		 * Make device's PM flags reflect the wake-up capability, but
1887 		 * let the user space enable it to wake up the system as needed.
1888 		 */
1889 		device_set_wakeup_capable(&dev->dev, true);
1890 		/* Disable the PME# generation functionality */
1891 		pci_pme_active(dev, false);
1892 	} else {
1893 		dev->pme_support = 0;
1894 	}
1895 }
1896 
1897 /**
1898  * platform_pci_wakeup_init - init platform wakeup if present
1899  * @dev: PCI device
1900  *
1901  * Some devices don't have PCI PM caps but can still generate wakeup
1902  * events through platform methods (like ACPI events).  If @dev supports
1903  * platform wakeup events, set the device flag to indicate as much.  This
1904  * may be redundant if the device also supports PCI PM caps, but double
1905  * initialization should be safe in that case.
1906  */
1907 void platform_pci_wakeup_init(struct pci_dev *dev)
1908 {
1909 	if (!platform_pci_can_wakeup(dev))
1910 		return;
1911 
1912 	device_set_wakeup_capable(&dev->dev, true);
1913 	platform_pci_sleep_wake(dev, false);
1914 }
1915 
1916 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1917 	struct pci_cap_saved_state *new_cap)
1918 {
1919 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1920 }
1921 
1922 /**
1923  * pci_add_save_buffer - allocate buffer for saving given capability registers
1924  * @dev: the PCI device
1925  * @cap: the capability to allocate the buffer for
1926  * @size: requested size of the buffer
1927  */
1928 static int pci_add_cap_save_buffer(
1929 	struct pci_dev *dev, char cap, unsigned int size)
1930 {
1931 	int pos;
1932 	struct pci_cap_saved_state *save_state;
1933 
1934 	pos = pci_find_capability(dev, cap);
1935 	if (pos <= 0)
1936 		return 0;
1937 
1938 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1939 	if (!save_state)
1940 		return -ENOMEM;
1941 
1942 	save_state->cap.cap_nr = cap;
1943 	save_state->cap.size = size;
1944 	pci_add_saved_cap(dev, save_state);
1945 
1946 	return 0;
1947 }
1948 
1949 /**
1950  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1951  * @dev: the PCI device
1952  */
1953 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1954 {
1955 	int error;
1956 
1957 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1958 					PCI_EXP_SAVE_REGS * sizeof(u16));
1959 	if (error)
1960 		dev_err(&dev->dev,
1961 			"unable to preallocate PCI Express save buffer\n");
1962 
1963 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1964 	if (error)
1965 		dev_err(&dev->dev,
1966 			"unable to preallocate PCI-X save buffer\n");
1967 }
1968 
1969 void pci_free_cap_save_buffers(struct pci_dev *dev)
1970 {
1971 	struct pci_cap_saved_state *tmp;
1972 	struct hlist_node *pos, *n;
1973 
1974 	hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
1975 		kfree(tmp);
1976 }
1977 
1978 /**
1979  * pci_enable_ari - enable ARI forwarding if hardware support it
1980  * @dev: the PCI device
1981  */
1982 void pci_enable_ari(struct pci_dev *dev)
1983 {
1984 	int pos;
1985 	u32 cap;
1986 	u16 flags, ctrl;
1987 	struct pci_dev *bridge;
1988 
1989 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
1990 		return;
1991 
1992 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1993 	if (!pos)
1994 		return;
1995 
1996 	bridge = dev->bus->self;
1997 	if (!bridge || !pci_is_pcie(bridge))
1998 		return;
1999 
2000 	pos = pci_pcie_cap(bridge);
2001 	if (!pos)
2002 		return;
2003 
2004 	/* ARI is a PCIe v2 feature */
2005 	pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
2006 	if ((flags & PCI_EXP_FLAGS_VERS) < 2)
2007 		return;
2008 
2009 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
2010 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2011 		return;
2012 
2013 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
2014 	ctrl |= PCI_EXP_DEVCTL2_ARI;
2015 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
2016 
2017 	bridge->ari_enabled = 1;
2018 }
2019 
2020 /**
2021  * pci_enable_ido - enable ID-based ordering on a device
2022  * @dev: the PCI device
2023  * @type: which types of IDO to enable
2024  *
2025  * Enable ID-based ordering on @dev.  @type can contain the bits
2026  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2027  * which types of transactions are allowed to be re-ordered.
2028  */
2029 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2030 {
2031 	int pos;
2032 	u16 ctrl;
2033 
2034 	pos = pci_pcie_cap(dev);
2035 	if (!pos)
2036 		return;
2037 
2038 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2039 	if (type & PCI_EXP_IDO_REQUEST)
2040 		ctrl |= PCI_EXP_IDO_REQ_EN;
2041 	if (type & PCI_EXP_IDO_COMPLETION)
2042 		ctrl |= PCI_EXP_IDO_CMP_EN;
2043 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2044 }
2045 EXPORT_SYMBOL(pci_enable_ido);
2046 
2047 /**
2048  * pci_disable_ido - disable ID-based ordering on a device
2049  * @dev: the PCI device
2050  * @type: which types of IDO to disable
2051  */
2052 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2053 {
2054 	int pos;
2055 	u16 ctrl;
2056 
2057 	if (!pci_is_pcie(dev))
2058 		return;
2059 
2060 	pos = pci_pcie_cap(dev);
2061 	if (!pos)
2062 		return;
2063 
2064 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2065 	if (type & PCI_EXP_IDO_REQUEST)
2066 		ctrl &= ~PCI_EXP_IDO_REQ_EN;
2067 	if (type & PCI_EXP_IDO_COMPLETION)
2068 		ctrl &= ~PCI_EXP_IDO_CMP_EN;
2069 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2070 }
2071 EXPORT_SYMBOL(pci_disable_ido);
2072 
2073 /**
2074  * pci_enable_obff - enable optimized buffer flush/fill
2075  * @dev: PCI device
2076  * @type: type of signaling to use
2077  *
2078  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2079  * signaling if possible, falling back to message signaling only if
2080  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2081  * be brought out of L0s or L1 to send the message.  It should be either
2082  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2083  *
2084  * If your device can benefit from receiving all messages, even at the
2085  * power cost of bringing the link back up from a low power state, use
2086  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2087  * preferred type).
2088  *
2089  * RETURNS:
2090  * Zero on success, appropriate error number on failure.
2091  */
2092 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2093 {
2094 	int pos;
2095 	u32 cap;
2096 	u16 ctrl;
2097 	int ret;
2098 
2099 	if (!pci_is_pcie(dev))
2100 		return -ENOTSUPP;
2101 
2102 	pos = pci_pcie_cap(dev);
2103 	if (!pos)
2104 		return -ENOTSUPP;
2105 
2106 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2107 	if (!(cap & PCI_EXP_OBFF_MASK))
2108 		return -ENOTSUPP; /* no OBFF support at all */
2109 
2110 	/* Make sure the topology supports OBFF as well */
2111 	if (dev->bus) {
2112 		ret = pci_enable_obff(dev->bus->self, type);
2113 		if (ret)
2114 			return ret;
2115 	}
2116 
2117 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2118 	if (cap & PCI_EXP_OBFF_WAKE)
2119 		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2120 	else {
2121 		switch (type) {
2122 		case PCI_EXP_OBFF_SIGNAL_L0:
2123 			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2124 				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2125 			break;
2126 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2127 			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2128 			ctrl |= PCI_EXP_OBFF_MSGB_EN;
2129 			break;
2130 		default:
2131 			WARN(1, "bad OBFF signal type\n");
2132 			return -ENOTSUPP;
2133 		}
2134 	}
2135 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2136 
2137 	return 0;
2138 }
2139 EXPORT_SYMBOL(pci_enable_obff);
2140 
2141 /**
2142  * pci_disable_obff - disable optimized buffer flush/fill
2143  * @dev: PCI device
2144  *
2145  * Disable OBFF on @dev.
2146  */
2147 void pci_disable_obff(struct pci_dev *dev)
2148 {
2149 	int pos;
2150 	u16 ctrl;
2151 
2152 	if (!pci_is_pcie(dev))
2153 		return;
2154 
2155 	pos = pci_pcie_cap(dev);
2156 	if (!pos)
2157 		return;
2158 
2159 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2160 	ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2161 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2162 }
2163 EXPORT_SYMBOL(pci_disable_obff);
2164 
2165 /**
2166  * pci_ltr_supported - check whether a device supports LTR
2167  * @dev: PCI device
2168  *
2169  * RETURNS:
2170  * True if @dev supports latency tolerance reporting, false otherwise.
2171  */
2172 bool pci_ltr_supported(struct pci_dev *dev)
2173 {
2174 	int pos;
2175 	u32 cap;
2176 
2177 	if (!pci_is_pcie(dev))
2178 		return false;
2179 
2180 	pos = pci_pcie_cap(dev);
2181 	if (!pos)
2182 		return false;
2183 
2184 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2185 
2186 	return cap & PCI_EXP_DEVCAP2_LTR;
2187 }
2188 EXPORT_SYMBOL(pci_ltr_supported);
2189 
2190 /**
2191  * pci_enable_ltr - enable latency tolerance reporting
2192  * @dev: PCI device
2193  *
2194  * Enable LTR on @dev if possible, which means enabling it first on
2195  * upstream ports.
2196  *
2197  * RETURNS:
2198  * Zero on success, errno on failure.
2199  */
2200 int pci_enable_ltr(struct pci_dev *dev)
2201 {
2202 	int pos;
2203 	u16 ctrl;
2204 	int ret;
2205 
2206 	if (!pci_ltr_supported(dev))
2207 		return -ENOTSUPP;
2208 
2209 	pos = pci_pcie_cap(dev);
2210 	if (!pos)
2211 		return -ENOTSUPP;
2212 
2213 	/* Only primary function can enable/disable LTR */
2214 	if (PCI_FUNC(dev->devfn) != 0)
2215 		return -EINVAL;
2216 
2217 	/* Enable upstream ports first */
2218 	if (dev->bus) {
2219 		ret = pci_enable_ltr(dev->bus->self);
2220 		if (ret)
2221 			return ret;
2222 	}
2223 
2224 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2225 	ctrl |= PCI_EXP_LTR_EN;
2226 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2227 
2228 	return 0;
2229 }
2230 EXPORT_SYMBOL(pci_enable_ltr);
2231 
2232 /**
2233  * pci_disable_ltr - disable latency tolerance reporting
2234  * @dev: PCI device
2235  */
2236 void pci_disable_ltr(struct pci_dev *dev)
2237 {
2238 	int pos;
2239 	u16 ctrl;
2240 
2241 	if (!pci_ltr_supported(dev))
2242 		return;
2243 
2244 	pos = pci_pcie_cap(dev);
2245 	if (!pos)
2246 		return;
2247 
2248 	/* Only primary function can enable/disable LTR */
2249 	if (PCI_FUNC(dev->devfn) != 0)
2250 		return;
2251 
2252 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2253 	ctrl &= ~PCI_EXP_LTR_EN;
2254 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2255 }
2256 EXPORT_SYMBOL(pci_disable_ltr);
2257 
2258 static int __pci_ltr_scale(int *val)
2259 {
2260 	int scale = 0;
2261 
2262 	while (*val > 1023) {
2263 		*val = (*val + 31) / 32;
2264 		scale++;
2265 	}
2266 	return scale;
2267 }
2268 
2269 /**
2270  * pci_set_ltr - set LTR latency values
2271  * @dev: PCI device
2272  * @snoop_lat_ns: snoop latency in nanoseconds
2273  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2274  *
2275  * Figure out the scale and set the LTR values accordingly.
2276  */
2277 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2278 {
2279 	int pos, ret, snoop_scale, nosnoop_scale;
2280 	u16 val;
2281 
2282 	if (!pci_ltr_supported(dev))
2283 		return -ENOTSUPP;
2284 
2285 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2286 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2287 
2288 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2289 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2290 		return -EINVAL;
2291 
2292 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2293 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2294 		return -EINVAL;
2295 
2296 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2297 	if (!pos)
2298 		return -ENOTSUPP;
2299 
2300 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2301 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2302 	if (ret != 4)
2303 		return -EIO;
2304 
2305 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2306 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2307 	if (ret != 4)
2308 		return -EIO;
2309 
2310 	return 0;
2311 }
2312 EXPORT_SYMBOL(pci_set_ltr);
2313 
2314 static int pci_acs_enable;
2315 
2316 /**
2317  * pci_request_acs - ask for ACS to be enabled if supported
2318  */
2319 void pci_request_acs(void)
2320 {
2321 	pci_acs_enable = 1;
2322 }
2323 
2324 /**
2325  * pci_enable_acs - enable ACS if hardware support it
2326  * @dev: the PCI device
2327  */
2328 void pci_enable_acs(struct pci_dev *dev)
2329 {
2330 	int pos;
2331 	u16 cap;
2332 	u16 ctrl;
2333 
2334 	if (!pci_acs_enable)
2335 		return;
2336 
2337 	if (!pci_is_pcie(dev))
2338 		return;
2339 
2340 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2341 	if (!pos)
2342 		return;
2343 
2344 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2345 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2346 
2347 	/* Source Validation */
2348 	ctrl |= (cap & PCI_ACS_SV);
2349 
2350 	/* P2P Request Redirect */
2351 	ctrl |= (cap & PCI_ACS_RR);
2352 
2353 	/* P2P Completion Redirect */
2354 	ctrl |= (cap & PCI_ACS_CR);
2355 
2356 	/* Upstream Forwarding */
2357 	ctrl |= (cap & PCI_ACS_UF);
2358 
2359 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2360 }
2361 
2362 /**
2363  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2364  * @dev: the PCI device
2365  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2366  *
2367  * Perform INTx swizzling for a device behind one level of bridge.  This is
2368  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2369  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2370  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2371  * the PCI Express Base Specification, Revision 2.1)
2372  */
2373 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2374 {
2375 	int slot;
2376 
2377 	if (pci_ari_enabled(dev->bus))
2378 		slot = 0;
2379 	else
2380 		slot = PCI_SLOT(dev->devfn);
2381 
2382 	return (((pin - 1) + slot) % 4) + 1;
2383 }
2384 
2385 int
2386 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2387 {
2388 	u8 pin;
2389 
2390 	pin = dev->pin;
2391 	if (!pin)
2392 		return -1;
2393 
2394 	while (!pci_is_root_bus(dev->bus)) {
2395 		pin = pci_swizzle_interrupt_pin(dev, pin);
2396 		dev = dev->bus->self;
2397 	}
2398 	*bridge = dev;
2399 	return pin;
2400 }
2401 
2402 /**
2403  * pci_common_swizzle - swizzle INTx all the way to root bridge
2404  * @dev: the PCI device
2405  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2406  *
2407  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2408  * bridges all the way up to a PCI root bus.
2409  */
2410 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2411 {
2412 	u8 pin = *pinp;
2413 
2414 	while (!pci_is_root_bus(dev->bus)) {
2415 		pin = pci_swizzle_interrupt_pin(dev, pin);
2416 		dev = dev->bus->self;
2417 	}
2418 	*pinp = pin;
2419 	return PCI_SLOT(dev->devfn);
2420 }
2421 
2422 /**
2423  *	pci_release_region - Release a PCI bar
2424  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2425  *	@bar: BAR to release
2426  *
2427  *	Releases the PCI I/O and memory resources previously reserved by a
2428  *	successful call to pci_request_region.  Call this function only
2429  *	after all use of the PCI regions has ceased.
2430  */
2431 void pci_release_region(struct pci_dev *pdev, int bar)
2432 {
2433 	struct pci_devres *dr;
2434 
2435 	if (pci_resource_len(pdev, bar) == 0)
2436 		return;
2437 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2438 		release_region(pci_resource_start(pdev, bar),
2439 				pci_resource_len(pdev, bar));
2440 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2441 		release_mem_region(pci_resource_start(pdev, bar),
2442 				pci_resource_len(pdev, bar));
2443 
2444 	dr = find_pci_dr(pdev);
2445 	if (dr)
2446 		dr->region_mask &= ~(1 << bar);
2447 }
2448 
2449 /**
2450  *	__pci_request_region - Reserved PCI I/O and memory resource
2451  *	@pdev: PCI device whose resources are to be reserved
2452  *	@bar: BAR to be reserved
2453  *	@res_name: Name to be associated with resource.
2454  *	@exclusive: whether the region access is exclusive or not
2455  *
2456  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2457  *	being reserved by owner @res_name.  Do not access any
2458  *	address inside the PCI regions unless this call returns
2459  *	successfully.
2460  *
2461  *	If @exclusive is set, then the region is marked so that userspace
2462  *	is explicitly not allowed to map the resource via /dev/mem or
2463  * 	sysfs MMIO access.
2464  *
2465  *	Returns 0 on success, or %EBUSY on error.  A warning
2466  *	message is also printed on failure.
2467  */
2468 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2469 									int exclusive)
2470 {
2471 	struct pci_devres *dr;
2472 
2473 	if (pci_resource_len(pdev, bar) == 0)
2474 		return 0;
2475 
2476 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2477 		if (!request_region(pci_resource_start(pdev, bar),
2478 			    pci_resource_len(pdev, bar), res_name))
2479 			goto err_out;
2480 	}
2481 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2482 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2483 					pci_resource_len(pdev, bar), res_name,
2484 					exclusive))
2485 			goto err_out;
2486 	}
2487 
2488 	dr = find_pci_dr(pdev);
2489 	if (dr)
2490 		dr->region_mask |= 1 << bar;
2491 
2492 	return 0;
2493 
2494 err_out:
2495 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2496 		 &pdev->resource[bar]);
2497 	return -EBUSY;
2498 }
2499 
2500 /**
2501  *	pci_request_region - Reserve PCI I/O and memory resource
2502  *	@pdev: PCI device whose resources are to be reserved
2503  *	@bar: BAR to be reserved
2504  *	@res_name: Name to be associated with resource
2505  *
2506  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2507  *	being reserved by owner @res_name.  Do not access any
2508  *	address inside the PCI regions unless this call returns
2509  *	successfully.
2510  *
2511  *	Returns 0 on success, or %EBUSY on error.  A warning
2512  *	message is also printed on failure.
2513  */
2514 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2515 {
2516 	return __pci_request_region(pdev, bar, res_name, 0);
2517 }
2518 
2519 /**
2520  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2521  *	@pdev: PCI device whose resources are to be reserved
2522  *	@bar: BAR to be reserved
2523  *	@res_name: Name to be associated with resource.
2524  *
2525  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2526  *	being reserved by owner @res_name.  Do not access any
2527  *	address inside the PCI regions unless this call returns
2528  *	successfully.
2529  *
2530  *	Returns 0 on success, or %EBUSY on error.  A warning
2531  *	message is also printed on failure.
2532  *
2533  *	The key difference that _exclusive makes it that userspace is
2534  *	explicitly not allowed to map the resource via /dev/mem or
2535  * 	sysfs.
2536  */
2537 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2538 {
2539 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2540 }
2541 /**
2542  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2543  * @pdev: PCI device whose resources were previously reserved
2544  * @bars: Bitmask of BARs to be released
2545  *
2546  * Release selected PCI I/O and memory resources previously reserved.
2547  * Call this function only after all use of the PCI regions has ceased.
2548  */
2549 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2550 {
2551 	int i;
2552 
2553 	for (i = 0; i < 6; i++)
2554 		if (bars & (1 << i))
2555 			pci_release_region(pdev, i);
2556 }
2557 
2558 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2559 				 const char *res_name, int excl)
2560 {
2561 	int i;
2562 
2563 	for (i = 0; i < 6; i++)
2564 		if (bars & (1 << i))
2565 			if (__pci_request_region(pdev, i, res_name, excl))
2566 				goto err_out;
2567 	return 0;
2568 
2569 err_out:
2570 	while(--i >= 0)
2571 		if (bars & (1 << i))
2572 			pci_release_region(pdev, i);
2573 
2574 	return -EBUSY;
2575 }
2576 
2577 
2578 /**
2579  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2580  * @pdev: PCI device whose resources are to be reserved
2581  * @bars: Bitmask of BARs to be requested
2582  * @res_name: Name to be associated with resource
2583  */
2584 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2585 				 const char *res_name)
2586 {
2587 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2588 }
2589 
2590 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2591 				 int bars, const char *res_name)
2592 {
2593 	return __pci_request_selected_regions(pdev, bars, res_name,
2594 			IORESOURCE_EXCLUSIVE);
2595 }
2596 
2597 /**
2598  *	pci_release_regions - Release reserved PCI I/O and memory resources
2599  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2600  *
2601  *	Releases all PCI I/O and memory resources previously reserved by a
2602  *	successful call to pci_request_regions.  Call this function only
2603  *	after all use of the PCI regions has ceased.
2604  */
2605 
2606 void pci_release_regions(struct pci_dev *pdev)
2607 {
2608 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2609 }
2610 
2611 /**
2612  *	pci_request_regions - Reserved PCI I/O and memory resources
2613  *	@pdev: PCI device whose resources are to be reserved
2614  *	@res_name: Name to be associated with resource.
2615  *
2616  *	Mark all PCI regions associated with PCI device @pdev as
2617  *	being reserved by owner @res_name.  Do not access any
2618  *	address inside the PCI regions unless this call returns
2619  *	successfully.
2620  *
2621  *	Returns 0 on success, or %EBUSY on error.  A warning
2622  *	message is also printed on failure.
2623  */
2624 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2625 {
2626 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2627 }
2628 
2629 /**
2630  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2631  *	@pdev: PCI device whose resources are to be reserved
2632  *	@res_name: Name to be associated with resource.
2633  *
2634  *	Mark all PCI regions associated with PCI device @pdev as
2635  *	being reserved by owner @res_name.  Do not access any
2636  *	address inside the PCI regions unless this call returns
2637  *	successfully.
2638  *
2639  *	pci_request_regions_exclusive() will mark the region so that
2640  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2641  *
2642  *	Returns 0 on success, or %EBUSY on error.  A warning
2643  *	message is also printed on failure.
2644  */
2645 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2646 {
2647 	return pci_request_selected_regions_exclusive(pdev,
2648 					((1 << 6) - 1), res_name);
2649 }
2650 
2651 static void __pci_set_master(struct pci_dev *dev, bool enable)
2652 {
2653 	u16 old_cmd, cmd;
2654 
2655 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2656 	if (enable)
2657 		cmd = old_cmd | PCI_COMMAND_MASTER;
2658 	else
2659 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2660 	if (cmd != old_cmd) {
2661 		dev_dbg(&dev->dev, "%s bus mastering\n",
2662 			enable ? "enabling" : "disabling");
2663 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2664 	}
2665 	dev->is_busmaster = enable;
2666 }
2667 
2668 /**
2669  * pcibios_set_master - enable PCI bus-mastering for device dev
2670  * @dev: the PCI device to enable
2671  *
2672  * Enables PCI bus-mastering for the device.  This is the default
2673  * implementation.  Architecture specific implementations can override
2674  * this if necessary.
2675  */
2676 void __weak pcibios_set_master(struct pci_dev *dev)
2677 {
2678 	u8 lat;
2679 
2680 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2681 	if (pci_is_pcie(dev))
2682 		return;
2683 
2684 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2685 	if (lat < 16)
2686 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2687 	else if (lat > pcibios_max_latency)
2688 		lat = pcibios_max_latency;
2689 	else
2690 		return;
2691 	dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2692 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2693 }
2694 
2695 /**
2696  * pci_set_master - enables bus-mastering for device dev
2697  * @dev: the PCI device to enable
2698  *
2699  * Enables bus-mastering on the device and calls pcibios_set_master()
2700  * to do the needed arch specific settings.
2701  */
2702 void pci_set_master(struct pci_dev *dev)
2703 {
2704 	__pci_set_master(dev, true);
2705 	pcibios_set_master(dev);
2706 }
2707 
2708 /**
2709  * pci_clear_master - disables bus-mastering for device dev
2710  * @dev: the PCI device to disable
2711  */
2712 void pci_clear_master(struct pci_dev *dev)
2713 {
2714 	__pci_set_master(dev, false);
2715 }
2716 
2717 /**
2718  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2719  * @dev: the PCI device for which MWI is to be enabled
2720  *
2721  * Helper function for pci_set_mwi.
2722  * Originally copied from drivers/net/acenic.c.
2723  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2724  *
2725  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2726  */
2727 int pci_set_cacheline_size(struct pci_dev *dev)
2728 {
2729 	u8 cacheline_size;
2730 
2731 	if (!pci_cache_line_size)
2732 		return -EINVAL;
2733 
2734 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2735 	   equal to or multiple of the right value. */
2736 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2737 	if (cacheline_size >= pci_cache_line_size &&
2738 	    (cacheline_size % pci_cache_line_size) == 0)
2739 		return 0;
2740 
2741 	/* Write the correct value. */
2742 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2743 	/* Read it back. */
2744 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2745 	if (cacheline_size == pci_cache_line_size)
2746 		return 0;
2747 
2748 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2749 		   "supported\n", pci_cache_line_size << 2);
2750 
2751 	return -EINVAL;
2752 }
2753 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2754 
2755 #ifdef PCI_DISABLE_MWI
2756 int pci_set_mwi(struct pci_dev *dev)
2757 {
2758 	return 0;
2759 }
2760 
2761 int pci_try_set_mwi(struct pci_dev *dev)
2762 {
2763 	return 0;
2764 }
2765 
2766 void pci_clear_mwi(struct pci_dev *dev)
2767 {
2768 }
2769 
2770 #else
2771 
2772 /**
2773  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2774  * @dev: the PCI device for which MWI is enabled
2775  *
2776  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2777  *
2778  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2779  */
2780 int
2781 pci_set_mwi(struct pci_dev *dev)
2782 {
2783 	int rc;
2784 	u16 cmd;
2785 
2786 	rc = pci_set_cacheline_size(dev);
2787 	if (rc)
2788 		return rc;
2789 
2790 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2791 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2792 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2793 		cmd |= PCI_COMMAND_INVALIDATE;
2794 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2795 	}
2796 
2797 	return 0;
2798 }
2799 
2800 /**
2801  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2802  * @dev: the PCI device for which MWI is enabled
2803  *
2804  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2805  * Callers are not required to check the return value.
2806  *
2807  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2808  */
2809 int pci_try_set_mwi(struct pci_dev *dev)
2810 {
2811 	int rc = pci_set_mwi(dev);
2812 	return rc;
2813 }
2814 
2815 /**
2816  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2817  * @dev: the PCI device to disable
2818  *
2819  * Disables PCI Memory-Write-Invalidate transaction on the device
2820  */
2821 void
2822 pci_clear_mwi(struct pci_dev *dev)
2823 {
2824 	u16 cmd;
2825 
2826 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2827 	if (cmd & PCI_COMMAND_INVALIDATE) {
2828 		cmd &= ~PCI_COMMAND_INVALIDATE;
2829 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2830 	}
2831 }
2832 #endif /* ! PCI_DISABLE_MWI */
2833 
2834 /**
2835  * pci_intx - enables/disables PCI INTx for device dev
2836  * @pdev: the PCI device to operate on
2837  * @enable: boolean: whether to enable or disable PCI INTx
2838  *
2839  * Enables/disables PCI INTx for device dev
2840  */
2841 void
2842 pci_intx(struct pci_dev *pdev, int enable)
2843 {
2844 	u16 pci_command, new;
2845 
2846 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2847 
2848 	if (enable) {
2849 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2850 	} else {
2851 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2852 	}
2853 
2854 	if (new != pci_command) {
2855 		struct pci_devres *dr;
2856 
2857 		pci_write_config_word(pdev, PCI_COMMAND, new);
2858 
2859 		dr = find_pci_dr(pdev);
2860 		if (dr && !dr->restore_intx) {
2861 			dr->restore_intx = 1;
2862 			dr->orig_intx = !enable;
2863 		}
2864 	}
2865 }
2866 
2867 /**
2868  * pci_intx_mask_supported - probe for INTx masking support
2869  * @dev: the PCI device to operate on
2870  *
2871  * Check if the device dev support INTx masking via the config space
2872  * command word.
2873  */
2874 bool pci_intx_mask_supported(struct pci_dev *dev)
2875 {
2876 	bool mask_supported = false;
2877 	u16 orig, new;
2878 
2879 	pci_cfg_access_lock(dev);
2880 
2881 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2882 	pci_write_config_word(dev, PCI_COMMAND,
2883 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2884 	pci_read_config_word(dev, PCI_COMMAND, &new);
2885 
2886 	/*
2887 	 * There's no way to protect against hardware bugs or detect them
2888 	 * reliably, but as long as we know what the value should be, let's
2889 	 * go ahead and check it.
2890 	 */
2891 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2892 		dev_err(&dev->dev, "Command register changed from "
2893 			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2894 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2895 		mask_supported = true;
2896 		pci_write_config_word(dev, PCI_COMMAND, orig);
2897 	}
2898 
2899 	pci_cfg_access_unlock(dev);
2900 	return mask_supported;
2901 }
2902 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2903 
2904 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2905 {
2906 	struct pci_bus *bus = dev->bus;
2907 	bool mask_updated = true;
2908 	u32 cmd_status_dword;
2909 	u16 origcmd, newcmd;
2910 	unsigned long flags;
2911 	bool irq_pending;
2912 
2913 	/*
2914 	 * We do a single dword read to retrieve both command and status.
2915 	 * Document assumptions that make this possible.
2916 	 */
2917 	BUILD_BUG_ON(PCI_COMMAND % 4);
2918 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2919 
2920 	raw_spin_lock_irqsave(&pci_lock, flags);
2921 
2922 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2923 
2924 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2925 
2926 	/*
2927 	 * Check interrupt status register to see whether our device
2928 	 * triggered the interrupt (when masking) or the next IRQ is
2929 	 * already pending (when unmasking).
2930 	 */
2931 	if (mask != irq_pending) {
2932 		mask_updated = false;
2933 		goto done;
2934 	}
2935 
2936 	origcmd = cmd_status_dword;
2937 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2938 	if (mask)
2939 		newcmd |= PCI_COMMAND_INTX_DISABLE;
2940 	if (newcmd != origcmd)
2941 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2942 
2943 done:
2944 	raw_spin_unlock_irqrestore(&pci_lock, flags);
2945 
2946 	return mask_updated;
2947 }
2948 
2949 /**
2950  * pci_check_and_mask_intx - mask INTx on pending interrupt
2951  * @dev: the PCI device to operate on
2952  *
2953  * Check if the device dev has its INTx line asserted, mask it and
2954  * return true in that case. False is returned if not interrupt was
2955  * pending.
2956  */
2957 bool pci_check_and_mask_intx(struct pci_dev *dev)
2958 {
2959 	return pci_check_and_set_intx_mask(dev, true);
2960 }
2961 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2962 
2963 /**
2964  * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
2965  * @dev: the PCI device to operate on
2966  *
2967  * Check if the device dev has its INTx line asserted, unmask it if not
2968  * and return true. False is returned and the mask remains active if
2969  * there was still an interrupt pending.
2970  */
2971 bool pci_check_and_unmask_intx(struct pci_dev *dev)
2972 {
2973 	return pci_check_and_set_intx_mask(dev, false);
2974 }
2975 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2976 
2977 /**
2978  * pci_msi_off - disables any msi or msix capabilities
2979  * @dev: the PCI device to operate on
2980  *
2981  * If you want to use msi see pci_enable_msi and friends.
2982  * This is a lower level primitive that allows us to disable
2983  * msi operation at the device level.
2984  */
2985 void pci_msi_off(struct pci_dev *dev)
2986 {
2987 	int pos;
2988 	u16 control;
2989 
2990 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2991 	if (pos) {
2992 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2993 		control &= ~PCI_MSI_FLAGS_ENABLE;
2994 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2995 	}
2996 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2997 	if (pos) {
2998 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2999 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3000 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3001 	}
3002 }
3003 EXPORT_SYMBOL_GPL(pci_msi_off);
3004 
3005 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3006 {
3007 	return dma_set_max_seg_size(&dev->dev, size);
3008 }
3009 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3010 
3011 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3012 {
3013 	return dma_set_seg_boundary(&dev->dev, mask);
3014 }
3015 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3016 
3017 static int pcie_flr(struct pci_dev *dev, int probe)
3018 {
3019 	int i;
3020 	int pos;
3021 	u32 cap;
3022 	u16 status, control;
3023 
3024 	pos = pci_pcie_cap(dev);
3025 	if (!pos)
3026 		return -ENOTTY;
3027 
3028 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
3029 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3030 		return -ENOTTY;
3031 
3032 	if (probe)
3033 		return 0;
3034 
3035 	/* Wait for Transaction Pending bit clean */
3036 	for (i = 0; i < 4; i++) {
3037 		if (i)
3038 			msleep((1 << (i - 1)) * 100);
3039 
3040 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
3041 		if (!(status & PCI_EXP_DEVSTA_TRPND))
3042 			goto clear;
3043 	}
3044 
3045 	dev_err(&dev->dev, "transaction is not cleared; "
3046 			"proceeding with reset anyway\n");
3047 
3048 clear:
3049 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
3050 	control |= PCI_EXP_DEVCTL_BCR_FLR;
3051 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
3052 
3053 	msleep(100);
3054 
3055 	return 0;
3056 }
3057 
3058 static int pci_af_flr(struct pci_dev *dev, int probe)
3059 {
3060 	int i;
3061 	int pos;
3062 	u8 cap;
3063 	u8 status;
3064 
3065 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3066 	if (!pos)
3067 		return -ENOTTY;
3068 
3069 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3070 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3071 		return -ENOTTY;
3072 
3073 	if (probe)
3074 		return 0;
3075 
3076 	/* Wait for Transaction Pending bit clean */
3077 	for (i = 0; i < 4; i++) {
3078 		if (i)
3079 			msleep((1 << (i - 1)) * 100);
3080 
3081 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3082 		if (!(status & PCI_AF_STATUS_TP))
3083 			goto clear;
3084 	}
3085 
3086 	dev_err(&dev->dev, "transaction is not cleared; "
3087 			"proceeding with reset anyway\n");
3088 
3089 clear:
3090 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3091 	msleep(100);
3092 
3093 	return 0;
3094 }
3095 
3096 /**
3097  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3098  * @dev: Device to reset.
3099  * @probe: If set, only check if the device can be reset this way.
3100  *
3101  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3102  * unset, it will be reinitialized internally when going from PCI_D3hot to
3103  * PCI_D0.  If that's the case and the device is not in a low-power state
3104  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3105  *
3106  * NOTE: This causes the caller to sleep for twice the device power transition
3107  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3108  * by devault (i.e. unless the @dev's d3_delay field has a different value).
3109  * Moreover, only devices in D0 can be reset by this function.
3110  */
3111 static int pci_pm_reset(struct pci_dev *dev, int probe)
3112 {
3113 	u16 csr;
3114 
3115 	if (!dev->pm_cap)
3116 		return -ENOTTY;
3117 
3118 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3119 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3120 		return -ENOTTY;
3121 
3122 	if (probe)
3123 		return 0;
3124 
3125 	if (dev->current_state != PCI_D0)
3126 		return -EINVAL;
3127 
3128 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3129 	csr |= PCI_D3hot;
3130 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3131 	pci_dev_d3_sleep(dev);
3132 
3133 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3134 	csr |= PCI_D0;
3135 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3136 	pci_dev_d3_sleep(dev);
3137 
3138 	return 0;
3139 }
3140 
3141 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3142 {
3143 	u16 ctrl;
3144 	struct pci_dev *pdev;
3145 
3146 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3147 		return -ENOTTY;
3148 
3149 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3150 		if (pdev != dev)
3151 			return -ENOTTY;
3152 
3153 	if (probe)
3154 		return 0;
3155 
3156 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3157 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3158 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3159 	msleep(100);
3160 
3161 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3162 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3163 	msleep(100);
3164 
3165 	return 0;
3166 }
3167 
3168 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3169 {
3170 	int rc;
3171 
3172 	might_sleep();
3173 
3174 	rc = pci_dev_specific_reset(dev, probe);
3175 	if (rc != -ENOTTY)
3176 		goto done;
3177 
3178 	rc = pcie_flr(dev, probe);
3179 	if (rc != -ENOTTY)
3180 		goto done;
3181 
3182 	rc = pci_af_flr(dev, probe);
3183 	if (rc != -ENOTTY)
3184 		goto done;
3185 
3186 	rc = pci_pm_reset(dev, probe);
3187 	if (rc != -ENOTTY)
3188 		goto done;
3189 
3190 	rc = pci_parent_bus_reset(dev, probe);
3191 done:
3192 	return rc;
3193 }
3194 
3195 static int pci_dev_reset(struct pci_dev *dev, int probe)
3196 {
3197 	int rc;
3198 
3199 	if (!probe) {
3200 		pci_cfg_access_lock(dev);
3201 		/* block PM suspend, driver probe, etc. */
3202 		device_lock(&dev->dev);
3203 	}
3204 
3205 	rc = __pci_dev_reset(dev, probe);
3206 
3207 	if (!probe) {
3208 		device_unlock(&dev->dev);
3209 		pci_cfg_access_unlock(dev);
3210 	}
3211 	return rc;
3212 }
3213 /**
3214  * __pci_reset_function - reset a PCI device function
3215  * @dev: PCI device to reset
3216  *
3217  * Some devices allow an individual function to be reset without affecting
3218  * other functions in the same device.  The PCI device must be responsive
3219  * to PCI config space in order to use this function.
3220  *
3221  * The device function is presumed to be unused when this function is called.
3222  * Resetting the device will make the contents of PCI configuration space
3223  * random, so any caller of this must be prepared to reinitialise the
3224  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3225  * etc.
3226  *
3227  * Returns 0 if the device function was successfully reset or negative if the
3228  * device doesn't support resetting a single function.
3229  */
3230 int __pci_reset_function(struct pci_dev *dev)
3231 {
3232 	return pci_dev_reset(dev, 0);
3233 }
3234 EXPORT_SYMBOL_GPL(__pci_reset_function);
3235 
3236 /**
3237  * __pci_reset_function_locked - reset a PCI device function while holding
3238  * the @dev mutex lock.
3239  * @dev: PCI device to reset
3240  *
3241  * Some devices allow an individual function to be reset without affecting
3242  * other functions in the same device.  The PCI device must be responsive
3243  * to PCI config space in order to use this function.
3244  *
3245  * The device function is presumed to be unused and the caller is holding
3246  * the device mutex lock when this function is called.
3247  * Resetting the device will make the contents of PCI configuration space
3248  * random, so any caller of this must be prepared to reinitialise the
3249  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3250  * etc.
3251  *
3252  * Returns 0 if the device function was successfully reset or negative if the
3253  * device doesn't support resetting a single function.
3254  */
3255 int __pci_reset_function_locked(struct pci_dev *dev)
3256 {
3257 	return __pci_dev_reset(dev, 0);
3258 }
3259 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3260 
3261 /**
3262  * pci_probe_reset_function - check whether the device can be safely reset
3263  * @dev: PCI device to reset
3264  *
3265  * Some devices allow an individual function to be reset without affecting
3266  * other functions in the same device.  The PCI device must be responsive
3267  * to PCI config space in order to use this function.
3268  *
3269  * Returns 0 if the device function can be reset or negative if the
3270  * device doesn't support resetting a single function.
3271  */
3272 int pci_probe_reset_function(struct pci_dev *dev)
3273 {
3274 	return pci_dev_reset(dev, 1);
3275 }
3276 
3277 /**
3278  * pci_reset_function - quiesce and reset a PCI device function
3279  * @dev: PCI device to reset
3280  *
3281  * Some devices allow an individual function to be reset without affecting
3282  * other functions in the same device.  The PCI device must be responsive
3283  * to PCI config space in order to use this function.
3284  *
3285  * This function does not just reset the PCI portion of a device, but
3286  * clears all the state associated with the device.  This function differs
3287  * from __pci_reset_function in that it saves and restores device state
3288  * over the reset.
3289  *
3290  * Returns 0 if the device function was successfully reset or negative if the
3291  * device doesn't support resetting a single function.
3292  */
3293 int pci_reset_function(struct pci_dev *dev)
3294 {
3295 	int rc;
3296 
3297 	rc = pci_dev_reset(dev, 1);
3298 	if (rc)
3299 		return rc;
3300 
3301 	pci_save_state(dev);
3302 
3303 	/*
3304 	 * both INTx and MSI are disabled after the Interrupt Disable bit
3305 	 * is set and the Bus Master bit is cleared.
3306 	 */
3307 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3308 
3309 	rc = pci_dev_reset(dev, 0);
3310 
3311 	pci_restore_state(dev);
3312 
3313 	return rc;
3314 }
3315 EXPORT_SYMBOL_GPL(pci_reset_function);
3316 
3317 /**
3318  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3319  * @dev: PCI device to query
3320  *
3321  * Returns mmrbc: maximum designed memory read count in bytes
3322  *    or appropriate error value.
3323  */
3324 int pcix_get_max_mmrbc(struct pci_dev *dev)
3325 {
3326 	int cap;
3327 	u32 stat;
3328 
3329 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3330 	if (!cap)
3331 		return -EINVAL;
3332 
3333 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3334 		return -EINVAL;
3335 
3336 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3337 }
3338 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3339 
3340 /**
3341  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3342  * @dev: PCI device to query
3343  *
3344  * Returns mmrbc: maximum memory read count in bytes
3345  *    or appropriate error value.
3346  */
3347 int pcix_get_mmrbc(struct pci_dev *dev)
3348 {
3349 	int cap;
3350 	u16 cmd;
3351 
3352 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3353 	if (!cap)
3354 		return -EINVAL;
3355 
3356 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3357 		return -EINVAL;
3358 
3359 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3360 }
3361 EXPORT_SYMBOL(pcix_get_mmrbc);
3362 
3363 /**
3364  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3365  * @dev: PCI device to query
3366  * @mmrbc: maximum memory read count in bytes
3367  *    valid values are 512, 1024, 2048, 4096
3368  *
3369  * If possible sets maximum memory read byte count, some bridges have erratas
3370  * that prevent this.
3371  */
3372 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3373 {
3374 	int cap;
3375 	u32 stat, v, o;
3376 	u16 cmd;
3377 
3378 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3379 		return -EINVAL;
3380 
3381 	v = ffs(mmrbc) - 10;
3382 
3383 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3384 	if (!cap)
3385 		return -EINVAL;
3386 
3387 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3388 		return -EINVAL;
3389 
3390 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3391 		return -E2BIG;
3392 
3393 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3394 		return -EINVAL;
3395 
3396 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3397 	if (o != v) {
3398 		if (v > o && dev->bus &&
3399 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3400 			return -EIO;
3401 
3402 		cmd &= ~PCI_X_CMD_MAX_READ;
3403 		cmd |= v << 2;
3404 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3405 			return -EIO;
3406 	}
3407 	return 0;
3408 }
3409 EXPORT_SYMBOL(pcix_set_mmrbc);
3410 
3411 /**
3412  * pcie_get_readrq - get PCI Express read request size
3413  * @dev: PCI device to query
3414  *
3415  * Returns maximum memory read request in bytes
3416  *    or appropriate error value.
3417  */
3418 int pcie_get_readrq(struct pci_dev *dev)
3419 {
3420 	int ret, cap;
3421 	u16 ctl;
3422 
3423 	cap = pci_pcie_cap(dev);
3424 	if (!cap)
3425 		return -EINVAL;
3426 
3427 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3428 	if (!ret)
3429 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3430 
3431 	return ret;
3432 }
3433 EXPORT_SYMBOL(pcie_get_readrq);
3434 
3435 /**
3436  * pcie_set_readrq - set PCI Express maximum memory read request
3437  * @dev: PCI device to query
3438  * @rq: maximum memory read count in bytes
3439  *    valid values are 128, 256, 512, 1024, 2048, 4096
3440  *
3441  * If possible sets maximum memory read request in bytes
3442  */
3443 int pcie_set_readrq(struct pci_dev *dev, int rq)
3444 {
3445 	int cap, err = -EINVAL;
3446 	u16 ctl, v;
3447 
3448 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3449 		goto out;
3450 
3451 	cap = pci_pcie_cap(dev);
3452 	if (!cap)
3453 		goto out;
3454 
3455 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3456 	if (err)
3457 		goto out;
3458 	/*
3459 	 * If using the "performance" PCIe config, we clamp the
3460 	 * read rq size to the max packet size to prevent the
3461 	 * host bridge generating requests larger than we can
3462 	 * cope with
3463 	 */
3464 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3465 		int mps = pcie_get_mps(dev);
3466 
3467 		if (mps < 0)
3468 			return mps;
3469 		if (mps < rq)
3470 			rq = mps;
3471 	}
3472 
3473 	v = (ffs(rq) - 8) << 12;
3474 
3475 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3476 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
3477 		ctl |= v;
3478 		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3479 	}
3480 
3481 out:
3482 	return err;
3483 }
3484 EXPORT_SYMBOL(pcie_set_readrq);
3485 
3486 /**
3487  * pcie_get_mps - get PCI Express maximum payload size
3488  * @dev: PCI device to query
3489  *
3490  * Returns maximum payload size in bytes
3491  *    or appropriate error value.
3492  */
3493 int pcie_get_mps(struct pci_dev *dev)
3494 {
3495 	int ret, cap;
3496 	u16 ctl;
3497 
3498 	cap = pci_pcie_cap(dev);
3499 	if (!cap)
3500 		return -EINVAL;
3501 
3502 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3503 	if (!ret)
3504 		ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3505 
3506 	return ret;
3507 }
3508 
3509 /**
3510  * pcie_set_mps - set PCI Express maximum payload size
3511  * @dev: PCI device to query
3512  * @mps: maximum payload size in bytes
3513  *    valid values are 128, 256, 512, 1024, 2048, 4096
3514  *
3515  * If possible sets maximum payload size
3516  */
3517 int pcie_set_mps(struct pci_dev *dev, int mps)
3518 {
3519 	int cap, err = -EINVAL;
3520 	u16 ctl, v;
3521 
3522 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3523 		goto out;
3524 
3525 	v = ffs(mps) - 8;
3526 	if (v > dev->pcie_mpss)
3527 		goto out;
3528 	v <<= 5;
3529 
3530 	cap = pci_pcie_cap(dev);
3531 	if (!cap)
3532 		goto out;
3533 
3534 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3535 	if (err)
3536 		goto out;
3537 
3538 	if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3539 		ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3540 		ctl |= v;
3541 		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3542 	}
3543 out:
3544 	return err;
3545 }
3546 
3547 /**
3548  * pci_select_bars - Make BAR mask from the type of resource
3549  * @dev: the PCI device for which BAR mask is made
3550  * @flags: resource type mask to be selected
3551  *
3552  * This helper routine makes bar mask from the type of resource.
3553  */
3554 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3555 {
3556 	int i, bars = 0;
3557 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3558 		if (pci_resource_flags(dev, i) & flags)
3559 			bars |= (1 << i);
3560 	return bars;
3561 }
3562 
3563 /**
3564  * pci_resource_bar - get position of the BAR associated with a resource
3565  * @dev: the PCI device
3566  * @resno: the resource number
3567  * @type: the BAR type to be filled in
3568  *
3569  * Returns BAR position in config space, or 0 if the BAR is invalid.
3570  */
3571 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3572 {
3573 	int reg;
3574 
3575 	if (resno < PCI_ROM_RESOURCE) {
3576 		*type = pci_bar_unknown;
3577 		return PCI_BASE_ADDRESS_0 + 4 * resno;
3578 	} else if (resno == PCI_ROM_RESOURCE) {
3579 		*type = pci_bar_mem32;
3580 		return dev->rom_base_reg;
3581 	} else if (resno < PCI_BRIDGE_RESOURCES) {
3582 		/* device specific resource */
3583 		reg = pci_iov_resource_bar(dev, resno, type);
3584 		if (reg)
3585 			return reg;
3586 	}
3587 
3588 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3589 	return 0;
3590 }
3591 
3592 /* Some architectures require additional programming to enable VGA */
3593 static arch_set_vga_state_t arch_set_vga_state;
3594 
3595 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3596 {
3597 	arch_set_vga_state = func;	/* NULL disables */
3598 }
3599 
3600 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3601 		      unsigned int command_bits, u32 flags)
3602 {
3603 	if (arch_set_vga_state)
3604 		return arch_set_vga_state(dev, decode, command_bits,
3605 						flags);
3606 	return 0;
3607 }
3608 
3609 /**
3610  * pci_set_vga_state - set VGA decode state on device and parents if requested
3611  * @dev: the PCI device
3612  * @decode: true = enable decoding, false = disable decoding
3613  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3614  * @flags: traverse ancestors and change bridges
3615  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3616  */
3617 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3618 		      unsigned int command_bits, u32 flags)
3619 {
3620 	struct pci_bus *bus;
3621 	struct pci_dev *bridge;
3622 	u16 cmd;
3623 	int rc;
3624 
3625 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3626 
3627 	/* ARCH specific VGA enables */
3628 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3629 	if (rc)
3630 		return rc;
3631 
3632 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3633 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3634 		if (decode == true)
3635 			cmd |= command_bits;
3636 		else
3637 			cmd &= ~command_bits;
3638 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3639 	}
3640 
3641 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3642 		return 0;
3643 
3644 	bus = dev->bus;
3645 	while (bus) {
3646 		bridge = bus->self;
3647 		if (bridge) {
3648 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3649 					     &cmd);
3650 			if (decode == true)
3651 				cmd |= PCI_BRIDGE_CTL_VGA;
3652 			else
3653 				cmd &= ~PCI_BRIDGE_CTL_VGA;
3654 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3655 					      cmd);
3656 		}
3657 		bus = bus->parent;
3658 	}
3659 	return 0;
3660 }
3661 
3662 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3663 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3664 static DEFINE_SPINLOCK(resource_alignment_lock);
3665 
3666 /**
3667  * pci_specified_resource_alignment - get resource alignment specified by user.
3668  * @dev: the PCI device to get
3669  *
3670  * RETURNS: Resource alignment if it is specified.
3671  *          Zero if it is not specified.
3672  */
3673 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3674 {
3675 	int seg, bus, slot, func, align_order, count;
3676 	resource_size_t align = 0;
3677 	char *p;
3678 
3679 	spin_lock(&resource_alignment_lock);
3680 	p = resource_alignment_param;
3681 	while (*p) {
3682 		count = 0;
3683 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3684 							p[count] == '@') {
3685 			p += count + 1;
3686 		} else {
3687 			align_order = -1;
3688 		}
3689 		if (sscanf(p, "%x:%x:%x.%x%n",
3690 			&seg, &bus, &slot, &func, &count) != 4) {
3691 			seg = 0;
3692 			if (sscanf(p, "%x:%x.%x%n",
3693 					&bus, &slot, &func, &count) != 3) {
3694 				/* Invalid format */
3695 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3696 					p);
3697 				break;
3698 			}
3699 		}
3700 		p += count;
3701 		if (seg == pci_domain_nr(dev->bus) &&
3702 			bus == dev->bus->number &&
3703 			slot == PCI_SLOT(dev->devfn) &&
3704 			func == PCI_FUNC(dev->devfn)) {
3705 			if (align_order == -1) {
3706 				align = PAGE_SIZE;
3707 			} else {
3708 				align = 1 << align_order;
3709 			}
3710 			/* Found */
3711 			break;
3712 		}
3713 		if (*p != ';' && *p != ',') {
3714 			/* End of param or invalid format */
3715 			break;
3716 		}
3717 		p++;
3718 	}
3719 	spin_unlock(&resource_alignment_lock);
3720 	return align;
3721 }
3722 
3723 /**
3724  * pci_is_reassigndev - check if specified PCI is target device to reassign
3725  * @dev: the PCI device to check
3726  *
3727  * RETURNS: non-zero for PCI device is a target device to reassign,
3728  *          or zero is not.
3729  */
3730 int pci_is_reassigndev(struct pci_dev *dev)
3731 {
3732 	return (pci_specified_resource_alignment(dev) != 0);
3733 }
3734 
3735 /*
3736  * This function disables memory decoding and releases memory resources
3737  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3738  * It also rounds up size to specified alignment.
3739  * Later on, the kernel will assign page-aligned memory resource back
3740  * to the device.
3741  */
3742 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3743 {
3744 	int i;
3745 	struct resource *r;
3746 	resource_size_t align, size;
3747 	u16 command;
3748 
3749 	if (!pci_is_reassigndev(dev))
3750 		return;
3751 
3752 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3753 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3754 		dev_warn(&dev->dev,
3755 			"Can't reassign resources to host bridge.\n");
3756 		return;
3757 	}
3758 
3759 	dev_info(&dev->dev,
3760 		"Disabling memory decoding and releasing memory resources.\n");
3761 	pci_read_config_word(dev, PCI_COMMAND, &command);
3762 	command &= ~PCI_COMMAND_MEMORY;
3763 	pci_write_config_word(dev, PCI_COMMAND, command);
3764 
3765 	align = pci_specified_resource_alignment(dev);
3766 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3767 		r = &dev->resource[i];
3768 		if (!(r->flags & IORESOURCE_MEM))
3769 			continue;
3770 		size = resource_size(r);
3771 		if (size < align) {
3772 			size = align;
3773 			dev_info(&dev->dev,
3774 				"Rounding up size of resource #%d to %#llx.\n",
3775 				i, (unsigned long long)size);
3776 		}
3777 		r->end = size - 1;
3778 		r->start = 0;
3779 	}
3780 	/* Need to disable bridge's resource window,
3781 	 * to enable the kernel to reassign new resource
3782 	 * window later on.
3783 	 */
3784 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3785 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3786 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3787 			r = &dev->resource[i];
3788 			if (!(r->flags & IORESOURCE_MEM))
3789 				continue;
3790 			r->end = resource_size(r) - 1;
3791 			r->start = 0;
3792 		}
3793 		pci_disable_bridge_window(dev);
3794 	}
3795 }
3796 
3797 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3798 {
3799 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3800 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3801 	spin_lock(&resource_alignment_lock);
3802 	strncpy(resource_alignment_param, buf, count);
3803 	resource_alignment_param[count] = '\0';
3804 	spin_unlock(&resource_alignment_lock);
3805 	return count;
3806 }
3807 
3808 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3809 {
3810 	size_t count;
3811 	spin_lock(&resource_alignment_lock);
3812 	count = snprintf(buf, size, "%s", resource_alignment_param);
3813 	spin_unlock(&resource_alignment_lock);
3814 	return count;
3815 }
3816 
3817 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3818 {
3819 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3820 }
3821 
3822 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3823 					const char *buf, size_t count)
3824 {
3825 	return pci_set_resource_alignment_param(buf, count);
3826 }
3827 
3828 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3829 					pci_resource_alignment_store);
3830 
3831 static int __init pci_resource_alignment_sysfs_init(void)
3832 {
3833 	return bus_create_file(&pci_bus_type,
3834 					&bus_attr_resource_alignment);
3835 }
3836 
3837 late_initcall(pci_resource_alignment_sysfs_init);
3838 
3839 static void __devinit pci_no_domains(void)
3840 {
3841 #ifdef CONFIG_PCI_DOMAINS
3842 	pci_domains_supported = 0;
3843 #endif
3844 }
3845 
3846 /**
3847  * pci_ext_cfg_enabled - can we access extended PCI config space?
3848  * @dev: The PCI device of the root bridge.
3849  *
3850  * Returns 1 if we can access PCI extended config space (offsets
3851  * greater than 0xff). This is the default implementation. Architecture
3852  * implementations can override this.
3853  */
3854 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3855 {
3856 	return 1;
3857 }
3858 
3859 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3860 {
3861 }
3862 EXPORT_SYMBOL(pci_fixup_cardbus);
3863 
3864 static int __init pci_setup(char *str)
3865 {
3866 	while (str) {
3867 		char *k = strchr(str, ',');
3868 		if (k)
3869 			*k++ = 0;
3870 		if (*str && (str = pcibios_setup(str)) && *str) {
3871 			if (!strcmp(str, "nomsi")) {
3872 				pci_no_msi();
3873 			} else if (!strcmp(str, "noaer")) {
3874 				pci_no_aer();
3875 			} else if (!strncmp(str, "realloc=", 8)) {
3876 				pci_realloc_get_opt(str + 8);
3877 			} else if (!strncmp(str, "realloc", 7)) {
3878 				pci_realloc_get_opt("on");
3879 			} else if (!strcmp(str, "nodomains")) {
3880 				pci_no_domains();
3881 			} else if (!strncmp(str, "noari", 5)) {
3882 				pcie_ari_disabled = true;
3883 			} else if (!strncmp(str, "cbiosize=", 9)) {
3884 				pci_cardbus_io_size = memparse(str + 9, &str);
3885 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3886 				pci_cardbus_mem_size = memparse(str + 10, &str);
3887 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3888 				pci_set_resource_alignment_param(str + 19,
3889 							strlen(str + 19));
3890 			} else if (!strncmp(str, "ecrc=", 5)) {
3891 				pcie_ecrc_get_policy(str + 5);
3892 			} else if (!strncmp(str, "hpiosize=", 9)) {
3893 				pci_hotplug_io_size = memparse(str + 9, &str);
3894 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3895 				pci_hotplug_mem_size = memparse(str + 10, &str);
3896 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3897 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
3898 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3899 				pcie_bus_config = PCIE_BUS_SAFE;
3900 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3901 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3902 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3903 				pcie_bus_config = PCIE_BUS_PEER2PEER;
3904 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
3905 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3906 			} else {
3907 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3908 						str);
3909 			}
3910 		}
3911 		str = k;
3912 	}
3913 	return 0;
3914 }
3915 early_param("pci", pci_setup);
3916 
3917 EXPORT_SYMBOL(pci_reenable_device);
3918 EXPORT_SYMBOL(pci_enable_device_io);
3919 EXPORT_SYMBOL(pci_enable_device_mem);
3920 EXPORT_SYMBOL(pci_enable_device);
3921 EXPORT_SYMBOL(pcim_enable_device);
3922 EXPORT_SYMBOL(pcim_pin_device);
3923 EXPORT_SYMBOL(pci_disable_device);
3924 EXPORT_SYMBOL(pci_find_capability);
3925 EXPORT_SYMBOL(pci_bus_find_capability);
3926 EXPORT_SYMBOL(pci_release_regions);
3927 EXPORT_SYMBOL(pci_request_regions);
3928 EXPORT_SYMBOL(pci_request_regions_exclusive);
3929 EXPORT_SYMBOL(pci_release_region);
3930 EXPORT_SYMBOL(pci_request_region);
3931 EXPORT_SYMBOL(pci_request_region_exclusive);
3932 EXPORT_SYMBOL(pci_release_selected_regions);
3933 EXPORT_SYMBOL(pci_request_selected_regions);
3934 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3935 EXPORT_SYMBOL(pci_set_master);
3936 EXPORT_SYMBOL(pci_clear_master);
3937 EXPORT_SYMBOL(pci_set_mwi);
3938 EXPORT_SYMBOL(pci_try_set_mwi);
3939 EXPORT_SYMBOL(pci_clear_mwi);
3940 EXPORT_SYMBOL_GPL(pci_intx);
3941 EXPORT_SYMBOL(pci_assign_resource);
3942 EXPORT_SYMBOL(pci_find_parent_resource);
3943 EXPORT_SYMBOL(pci_select_bars);
3944 
3945 EXPORT_SYMBOL(pci_set_power_state);
3946 EXPORT_SYMBOL(pci_save_state);
3947 EXPORT_SYMBOL(pci_restore_state);
3948 EXPORT_SYMBOL(pci_pme_capable);
3949 EXPORT_SYMBOL(pci_pme_active);
3950 EXPORT_SYMBOL(pci_wake_from_d3);
3951 EXPORT_SYMBOL(pci_target_state);
3952 EXPORT_SYMBOL(pci_prepare_to_sleep);
3953 EXPORT_SYMBOL(pci_back_from_sleep);
3954 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3955